Recent Research Trends in Severe Plastic Deformation of Metallic and Non-Metallic Materials

Severe plastic deformation (SPD) has emerged as a transformative tool in materials science, enabling the development of ultrafine-grained, nanostructured and heterostructured materials with exceptional mechanical and functional properties. Initially gaining prominence in the early 2000s for microstr...

Full description

Saved in:
Bibliographic Details
Published inMATERIALS TRANSACTIONS Vol. 66; no. 4; pp. 450 - 461
Main Authors Edalati, Kaveh, Horita, Zenji
Format Journal Article
LanguageEnglish
Published Sendai The Japan Institute of Metals and Materials 01.04.2025
公益社団法人 日本金属学会
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1345-9678
1347-5320
DOI10.2320/matertrans.MT-M2024189

Cover

Abstract Severe plastic deformation (SPD) has emerged as a transformative tool in materials science, enabling the development of ultrafine-grained, nanostructured and heterostructured materials with exceptional mechanical and functional properties. Initially gaining prominence in the early 2000s for microstructure control and mechanical property enhancement, SPD is now increasingly applied to improve functional properties, particularly in biomedical, energy, and hydrogen-related applications. The scope of SPD has expanded from metallic materials to encompass a wide range of non-metallic materials, including ceramics and polymers. Additionally, SPD methods have provided insights into natural phenomena involving high strain and pressure, such as phase transformations and certain geological and astronomical processes. This article reviews recent research trends, as highlighted in the 2023 special issue of Materials Transactions entitled “Superfunctional Nanomaterials by Severe Plastic Deformation”, focusing on recent advancements and interdisciplinary applications of SPD.
AbstractList Severe plastic deformation (SPD) has emerged as a transformative tool in materials science, enabling the development of ultrafine-grained, nanostructured and heterostructured materials with exceptional mechanical and functional properties. Initially gaining prominence in the early 2000s for microstructure control and mechanical property enhancement, SPD is now increasingly applied to improve functional properties, particularly in biomedical, energy, and hydrogen-related applications. The scope of SPD has expanded from metallic materials to encompass a wide range of non-metallic materials, including ceramics and polymers. Additionally, SPD methods have provided insights into natural phenomena involving high strain and pressure, such as phase transformations and certain geological and astronomical processes. This article reviews recent research trends, as highlighted in the 2023 special issue of Materials Transactions entitled “Superfunctional Nanomaterials by Severe Plastic Deformation”, focusing on recent advancements and interdisciplinary applications of SPD.
ArticleNumber MT-M2024189
Author Edalati, Kaveh
Horita, Zenji
Author_xml – sequence: 1
  fullname: Edalati, Kaveh
  organization: WPI, International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University
– sequence: 1
  fullname: Horita, Zenji
  organization: Synchrotron Light Application Center, Saga University
BackLink https://cir.nii.ac.jp/crid/1390585095042500864$$DView record in CiNii
BookMark eNpNkE9PGzEQxa0KpELgKyBL9Lqp_699rNLSVsoCgnDiYHm9Y9ho46X2Uolvj9NAymXGGv3mvfE7RgdxjIDQGSVzxhn5unETpCm5mOfNqmoYYYJq8wkdUS7qShbk4N9bVkbV-jM6znlNCK8lY0fo_gY8xAnfQAaX_CNeJYhdxn3Et_AXEuDrweWp9_g7hDEVr36MeAy4gckNQ5m72OHLMVb7QbO9p3dDPkGHoTQ4feszdHfxY7X4VS2vfv5efFtWXkg1VTwQoVujPQtEtaylstzvhJLeGB6C7FrmTQdCc6GV90CCaJmhted112lgfIbOd7pPafzzDHmy6_E5xWJpy-cFFYpSXii1o3wac04Q7FPqNy69WErsNkj7P0jbrOx7kGXxy24x9r31_bZSbojUkhhJBJOEaCUKttxh6zy5B9iru1TSG-CjulJWbMsHlz3mH12yEPkrsA2RvQ
Cites_doi 10.2320/matertrans.M2009375
10.1016/j.matchar.2018.02.028
10.1039/D1TA03861C
10.1016/j.msea.2003.10.257
10.2320/matertrans.MT-MF2022039
10.2320/matertrans.MT-MF2022047
10.2320/matertrans.MT-MF2022028
10.1016/j.matdes.2016.05.079
10.2320/matertrans.MT-MF2022005
10.1016/j.matlet.2021.130144
10.3390/ma17246189
10.1016/j.ijhydene.2019.01.104
10.1134/S0965545X1403002X
10.2320/matertrans.MT-MF2022031
10.1016/j.msea.2022.142666
10.2320/matertrans.MT-MF2022025
10.1016/j.actamat.2015.07.060
10.1016/j.jallcom.2021.161101
10.1063/10.0011605
10.2320/matertrans.MB200914
10.1007/s00161-021-01065-5
10.3390/ma11071175
10.1038/s41467-022-33802-y
10.2320/matertrans.MT-MF2022056
10.1038/s41598-018-25140-1
10.3390/ma15031007
10.1016/j.jmst.2021.01.096
10.1002/adem.202400578
10.3390/ma16031081
10.1016/j.carbon.2019.02.012
10.2320/matertrans.MT-MF2022021
10.1080/14686996.2018.1435131
10.2320/matertrans.MF201923
10.2320/matertrans.MF201938
10.2320/matertrans.MT-MF2022058
10.1016/j.jallcom.2021.159063
10.1016/j.corsci.2022.110253
10.1016/j.jallcom.2024.176722
10.1021/acs.energyfuels.2c03722
10.1016/j.apcatb.2021.120896
10.1016/j.msea.2019.138074
10.1080/21663831.2022.2057821
10.2320/matertrans.MT-MF2022043
10.1016/j.scriptamat.2022.114949
10.2320/matertrans.MF201920
10.1016/j.matlet.2022.132414
10.2320/matertrans.MT-MF2022022
10.1007/s11661-010-0400-6
10.2320/matertrans.MT-MF2022016
10.1016/j.actamat.2023.118671
10.1016/j.jcis.2024.04.010
10.1016/j.msea.2015.11.074
10.2320/matertrans.MF201941
10.1002/pen.21613
10.1016/j.pmatsci.2023.101131
10.1016/j.corsci.2023.111097
10.1002/adem.200300567
10.2320/matertrans.MF201929
10.2320/matertrans.MT-MF2022006
10.2320/matertrans.MT-MF2022033
10.3390/cryst12010054
10.1016/j.msea.2021.141869
10.1016/j.cej.2022.137800
10.1016/j.actamat.2016.02.049
10.2320/matertrans.MT-L2023022
10.1016/j.scriptamat.2022.114631
10.1063/1.4754574
10.5796/electrochemistry.22-00133
10.2320/matertrans.MF201943
10.2320/matertrans.MT-MF2022053
10.1016/j.scriptamat.2024.116268
10.2320/matertrans.MT-MF2022030
10.1016/j.matlet.2019.126933
10.1016/j.scriptamat.2021.114472
10.1016/j.scriptamat.2011.11.039
10.2320/matertrans.MT-MF2022032
10.1016/j.matlet.2021.130368
10.1016/S1875-5372(17)30059-0
10.1016/j.scriptamat.2010.09.034
10.1146/annurev-matsci-070909-104445
10.1016/j.intermet.2021.107445
10.2320/matertrans.MT-MF2022024
10.2307/20023239
10.2320/matertrans.MT-MF2022007
10.4149/km_2016_1_1
10.1002/adem.202302267
10.2320/matertrans.MT-MF2022029
10.1088/0953-8984/18/25/S14
10.2320/matertrans.MF201934
10.2320/matertrans.MT-MF2022040
10.1016/j.cej.2022.136209
10.2320/matertrans.MT-MF2022010
10.2320/matertrans.MF201912
10.1016/j.jphotochem.2023.115409
10.1007/s11837-006-0213-7
10.14356/kona.2024003
10.1016/j.scriptamat.2021.114390
10.1002/adem.202100159
10.1016/j.actamat.2011.09.026
10.1063/5.0009456
10.1016/j.cej.2024.158730
10.4028/www.scientific.net/MSF.735.146
10.5923/j.nn.20120203.01
10.1016/j.msea.2015.10.121
10.1016/j.scriptamat.2016.07.007
10.1016/j.msea.2022.143179
10.1039/D3TA04198K
10.2320/matertrans.MT-MF2022050
10.1063/5.0044030
10.1016/j.jallcom.2019.153548
10.1016/j.actamat.2012.10.038
10.1016/j.scriptamat.2018.08.031
10.1557/s43577-021-00060-0
10.2320/matertrans.MF201918
10.2320/matertrans.MT-MF2022027
10.1016/j.scriptamat.2019.08.011
10.1016/j.jphotochem.2022.114167
10.1080/21663831.2015.1065454
10.1016/j.msea.2017.12.065
10.1016/j.actamat.2016.02.026
10.2320/matertrans.MT-MF2022018
10.1016/S0079-6425(01)00002-0
10.1016/j.msea.2018.02.002
10.2320/matertrans.MF201914
10.2320/matertrans.MT-MF2022011
10.1016/j.jallcom.2024.174667
10.1002/app.42180
10.1039/C9TA12846H
10.1002/adem.201801300
10.2320/matertrans.MT-MF2022051
10.1007/s10853-022-07616-8
10.2320/matertrans.MT-MF2022004
10.2320/matertrans.MD200822
10.1016/j.actamat.2019.12.007
10.1007/s10853-023-09206-8
10.2320/matertrans.MT-MF2022015
10.1016/j.actamat.2024.120559
10.1016/j.apcatb.2024.124968
10.1016/j.jallcom.2021.162413
10.2320/matertrans.MT-M2023136
10.2320/matertrans.MT-M2020314
10.2320/matertrans.MT-MF2022049
10.1016/j.ijhydene.2024.07.306
10.2320/matertrans.MF201924
10.1016/j.actamat.2020.06.015
10.2320/matertrans.MT-MF2022035
10.1007/s10853-024-09464-0
10.2320/matertrans.MT-MF2022013
10.1016/j.actamat.2019.01.027
10.1039/C9TA11839J
10.1016/j.jcat.2024.115808
10.3390/met10060772
10.1016/j.jmst.2022.10.068
10.1016/j.msea.2017.06.076
10.2320/matertrans.MT-MF2022048
10.2320/matertrans.MT-MF2022020
10.2320/matertrans.MT-MF2022034
10.2320/matertrans.MT-MF2022009
10.1103/PhysRev.48.825
10.3390/met13081340
10.2320/matertrans.MT-MF2022023
10.1016/j.msea.2018.05.079
10.1016/j.jallcom.2024.178274
10.2320/matertrans.MT-MF2022038
10.2320/matertrans.MF201922
10.1016/j.msea.2009.11.060
10.1002/app.49720
10.1016/j.msea.2015.12.085
10.1038/s41598-022-09735-3
10.1002/adem.201000119
10.1016/j.pmatsci.2008.03.002
10.2320/matertrans.MT-MF2022037
10.1086/624468
10.2320/matertrans.MF201915
10.1007/s10853-023-09198-5
10.1007/s11837-014-1113-x
10.2320/matertrans.MT-MF2022044
10.3390/ma16020587
10.1016/j.intermet.2024.108368
10.3390/cryst8020068
10.1016/j.jallcom.2016.05.337
10.2320/matertrans.MT-MF2022055
10.1016/j.msea.2016.08.118
10.2320/matertrans.MT-M2020134
10.1016/j.scriptamat.2004.02.004
10.1557/jmr.2015.239
10.1016/j.actamat.2022.117689
10.2320/matertrans.MT-MF2022036
10.2320/matertrans.MT-MF2022042
10.2320/matertrans.MT-MF2022057
10.2320/matertrans.MF201909
10.2320/matertrans.MT-MF2022014
10.1016/j.msec.2020.110908
10.1016/j.scriptamat.2016.06.022
10.3390/met5042148
10.1007/s10853-011-5822-z
10.2320/matertrans.MT-MF2022019
10.2320/matertrans.MT-MF2022059
10.1016/j.cirp.2008.09.005
10.1016/j.actamat.2015.06.025
10.1016/j.scriptamat.2014.04.023
10.2320/matertrans.MF201919
10.2320/matertrans.MT-MF2022008
10.1080/21663831.2022.2029779
10.2320/matertrans.MT-MF2022041
10.1016/j.scriptamat.2024.116205
10.2320/matertrans.MPR2023905
10.2320/matertrans.MT-MF2022046
10.2320/matertrans.MT-MF2022012
10.1016/j.actamat.2012.09.048
10.2320/matertrans.MT-MF2022045
10.2320/matertrans.MF201937
10.1016/j.actamat.2019.11.010
10.2320/matertrans.MF201936
10.2320/matertrans.MT-MF2022026
10.1007/s11661-007-9459-0
10.1016/j.msea.2022.142670
10.1002/adem.202000011
10.1016/j.msea.2022.143399
10.1016/S1359-6454(98)00365-6
10.1002/adem.201800272
10.1038/s41467-024-54169-2
10.1016/S0921-5093(00)00686-9
10.1016/j.matlet.2015.03.066
10.1016/j.ijplas.2021.103193
10.2320/matertrans.MPR2019904
10.1088/1742-6596/1750/1/012077
10.1038/s41467-024-51469-5
10.2320/matertrans.MF201942
10.1016/j.ijhydene.2024.11.353
10.1007/s12598-023-02340-x
10.1016/j.pmatsci.2018.02.002
10.2320/matertrans.MT-MF2022017
10.1016/j.apcatb.2021.120566
10.1016/S0079-6425(99)00007-9
10.1038/s41578-020-0212-2
ContentType Journal Article
Copyright 2025 The Japan Institute of Metals and Materials
Copyright Japan Science and Technology Agency 2025
Copyright_xml – notice: 2025 The Japan Institute of Metals and Materials
– notice: Copyright Japan Science and Technology Agency 2025
DBID RYH
AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.2320/matertrans.MT-M2024189
DatabaseName CiNii Complete
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-5320
EndPage 461
ExternalDocumentID 10_2320_matertrans_MT_M2024189
article_matertrans_66_4_66_MT_M2024189_article_char_en
GroupedDBID -~X
.L7
.LE
5GY
93D
ABJNI
ACGFS
ACIWK
ADMLS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
JSI
JSP
RJT
RZJ
SJN
RYH
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c456t-3f048b98c2f06b2b15418a465c993ff5db2c9de483486cce0f4b2917c37dd8e23
ISSN 1345-9678
IngestDate Mon Jun 30 08:41:50 EDT 2025
Tue Jul 01 05:16:09 EDT 2025
Thu Jun 26 23:53:09 EDT 2025
Wed Sep 03 06:30:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c456t-3f048b98c2f06b2b15418a465c993ff5db2c9de483486cce0f4b2917c37dd8e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/matertrans/66/4/66_MT-M2024189/_article/-char/en
PQID 3204146113
PQPubID 1976393
PageCount 12
ParticipantIDs proquest_journals_3204146113
crossref_primary_10_2320_matertrans_MT_M2024189
nii_cinii_1390585095042500864
jstage_primary_article_matertrans_66_4_66_MT_M2024189_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Sendai
PublicationPlace_xml – name: Sendai
PublicationTitle MATERIALS TRANSACTIONS
PublicationTitleAlternate Mater. Trans.
PublicationTitle_FL MATERIALS TRANSACTIONS
Mater. Trans
PublicationYear 2025
Publisher The Japan Institute of Metals and Materials
公益社団法人 日本金属学会
Japan Science and Technology Agency
Publisher_xml – name: The Japan Institute of Metals and Materials
– name: 公益社団法人 日本金属学会
– name: Japan Science and Technology Agency
References 216) N.T.C. Nguyen, P. Asghari-Rad, H. Park and H.S. Kim: Differential superplasticity in a multi-phase multi-principal element alloy by initial annealing, J. Mater. Sci. 57 (2022) 18154–18167. doi:10.1007/s10853-022-07616-8
202) B.B. Straumal, R. Kulagin, B. Baretzky, N.Y. Anisimova, M.V. Kiselevskiy, L. Klinger, P.B. Straumal, O.A. Kogtenkova and R.Z. Valiev: Severe plastic deformation and phase transformations in high entropy alloys: a review, Crystals 12 (2022) 54. doi:10.3390/cryst12010054
58) G. Wilde, H. Rösner and S. Divinski: Internal interfaces in severely deformed metals and alloys: coupling of kinetics, structure and strain with properties and performance, Mater. Trans. 64 (2023) 1331–1345. doi:10.2320/matertrans.MT-MF2022009
160) A. Mohammadi, P. Edalati, M. Arita, J.W. Bae, H.S. Kim and K. Edalati: High strength and high ductility of a severely deformed high-entropy alloy in the presence of hydrogen, Corros. Sci. 216 (2023) 111097. doi:10.1016/j.corsci.2023.111097
190) V.H. Hammond, M.A. Atwater, K.A. Darling, H.Q. Nguyen and L.J. Kecskes: Equal-channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying, JOM 66 (2014) 2021–2029. doi:10.1007/s11837-014-1113-x
229) G. Rogl, S. Ghosh, L. Wang, J. Bursik, A. Grytsiv, M. Kerber, E. Bauer, R.C. Malik, X.Q. Chen, M. Zehetbauer and P. Rogl: Half-Heusler alloys: Enhancement of ZT after severe plastic deformation (ultra-low thermal conductivity), Acta Mater. 183 (2020) 285–300. doi:10.1016/j.actamat.2019.11.010
105) L. Takacs: Self-sustaining reactions induced by ball milling, Prog. Mater. Sci. 47 (2002) 355–414. doi:10.1016/S0079-6425(01)00002-0
171) Y. Wang, S. Lee, K. Yamamoto, T. Matsunaga, H. Miki, H. Iba, K. Tsuchiya, T. Uchiyama, T. Watanabe, T. Takami and Y. Uchimoto: Properties of composite electrodes for all-solid-state fluoride-ion secondary batteries processed by high-pressure torsion, Electrochemistry 91 (2023) 027002. doi:10.5796/electrochemistry.22-00133
174) J. Hidalgo-Jiménez, T. Akbay, T. Ishihara and K. Edalati: Understanding high photocatalytic activity of the TiO2 high-pressure columbite phase by experiments and first-principles calculations, J. Mater. Chem. A 11 (2023) 23523–23535. doi:10.1039/D3TA04198K
197) Q.H. Tang, Y. Huang, H. Cheng, X.Z. Liao, T.G. Langdon and P.Q. Dai: The effect of grain size on the annealing-induced phase transformation in an Al0.3CoCrFeNi high entropy alloy, Mater. Des. 105 (2016) 381–385. doi:10.1016/j.matdes.2016.05.079
40) R.B. Figueiredo, K. Edalati and T.G. Langdon: Effect of creep parameters on the steady-state flow stress of pure metals processed by high-pressure torsion, Mater. Sci. Eng. A 835 (2022) 142666. doi:10.1016/j.msea.2022.142666
70) Y. Mine: Micro-mechanical characterisation of hydrogen embrittlement and fatigue crack growth behaviours in metastable austenitic stainless steels with microstructure refinement, Mater. Trans. 64 (2023) 1474–1488. doi:10.2320/matertrans.MT-MF2022041
193) D.H. Lee, I.C. Choi, M.Y. Seok, J. He, Z. Lu, J.Y. Suh, M. Kawasaki, T.G. Langdon and J. Jang: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, J. Mater. Res. 30 (2015) 2804–2815. doi:10.1557/jmr.2015.239
198) H. Shahmir, J. He, Z. Lu, M. Kawasaki and T.G. Langdon: Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, Mater. Sci. Eng. A 676 (2016) 294–303. doi:10.1016/j.msea.2016.08.118
90) M.W. Kapp, A. Hohenwarter, A. Bachmaier, T. Müller and R. Pippan: SPD deformation of pearlitic, bainitic and martensitic steels, Mater. Trans. 64 (2023) 1353–1363. doi:10.2320/matertrans.MT-MF2022027
20) T.C. Lowe, R.Z. Valiev, X. Li and B.R. Ewing: Commercialization of bulk nanostructured metals and alloys, MRS Bull. 46 (2021) 265–272. doi:10.1557/s43577-021-00060-0
108) G. Liu, J. Lu and K. Lu: Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening, Mater. Sci. Eng. A 286 (2000) 91–95. doi:10.1016/S0921-5093(00)00686-9
181) S. Akrami, Y. Murakami, M. Watanabe, T. Ishihara, M. Arita, M. Fuji and K. Edalati: Defective high-entropy oxide photocatalyst with high activity for CO2 conversion, Appl. Catal. B 303 (2022) 120896. doi:10.1016/j.apcatb.2021.120896
3) K. Edalati et al.: Nanomaterials by severe plastic deformation: review of historical developments and recent advances, Mater. Res. Lett. 10 (2022) 163–256. doi:10.1080/21663831.2022.2029779
187) J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303. doi:10.1002/adem.200300567
165) G. Rogl, M.J. Zehetbauer and P.F. Rogl: The effect of severe plastic deformation on thermoelectric performance of skutterudites, half-Heuslers and Bi-tellurides, Mater. Trans. 60 (2019) 2071–2085. doi:10.2320/matertrans.MF201941
220) P. Edalati, R. Floriano, Y. Tang, A. Mohammadi, K.D. Pereira, A.D. Luchessi and K. Edalati: Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion, Mater. Sci. Eng. C 112 (2020) 110908. doi:10.1016/j.msec.2020.110908
41) K. Edalati, R. Uehiro, K. Fujiwara, Y. Ikeda, H.W. Li, X. Sauvage, R.Z. Valiev, E. Akiba, I. Tanaka and Z. Horita: Ultra-severe plastic deformation: evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems, Mater. Sci. Eng. A 701 (2017) 158–166. doi:10.1016/j.msea.2017.06.076
164) R.Z. Valiev, E.V. Parfenov and L.V. Parfenova: Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality, Mater. Trans. 60 (2019) 1356–1366. doi:10.2320/matertrans.MF201943
158) I.A. Ovid’ko, R.Z. Valiev and Y.T. Zhu: Review on superior strength and enhanced ductility of metallic nanomaterials, Prog. Mater. Sci. 94 (2018) 462–540. doi:10.1016/j.pmatsci.2018.02.002
51) Y. Takizawa and Z. Horita: Incremental feeding high-pressure sliding (IF-HPS) process for upscaling highly strained areas in metallic materials with enhanced mechanical properties, Mater. Trans. 64 (2023) 1364–1375. doi:10.2320/matertrans.MT-MF2022025
191) B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan and A. Hohenwarter: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater. 96 (2015) 258–268. doi:10.1016/j.actamat.2015.06.025
233) V.A. Beloshenko, V.N. Varyukhin, A.V. Voznyak and Y.V. Voznyak: Equal-channel multiangular extrusion of semicrystalline polymers, Polym. Eng. Sci. 50 (2010) 1000–1006. doi:10.1002/pen.21613
126) K. Edalati, M. Arimura, Y. Ikoma, T. Daio, M. Miyata, D.J. Smith and Z. Horita: Plastic deformation of BaTiO3 ceramics by high-pressure torsion and changes in phase transformations, optical and dielectric properties, Mater. Res. Lett. 3 (2015) 216–221. doi:10.1080/21663831.2015.1065454
59) V.V. Popov, E.N. Popova and E.V. Osinnikov: Specific features of grain boundaries in nickel processed by high-pressure torsion, Mater. Trans. 64 (2023) 1401–1409. doi:10.2320/matertrans.MT-MF2022012
25) K. Edalati, I. Taniguchi, R. Floriano and A. Ducati Luchessi: Glycine amino acid transformation under impacts by small solar system bodies, simulated by high-pressure torsion method, Sci. Rep. 12 (2022) 5677. doi:10.1038/s41598-022-09735-3
77) Á. Révész and M. Gajdics: The effect of severe plastic deformation on the hydrogen storage properties of metal hydrides, Mater. Trans. 64 (2023) 1387–1400. doi:10.2320/matertrans.MT-MF2022019
106) J. Sort, D.C. Ile, A.P. Zhilyaev, A. Concustell, T. Czeppe, M. Stoica, S. Surinach, J. Eckert and M.D. Baro: Cold-consolidation of ball-milled Fe-based amorphous ribbons by high pressure torsion, Scr. Mater. 50 (2004) 1221–1225. doi:10.1016/j.scriptamat.2004.02.004
219) P. Edalati, A. Cremasco, K. Edalati and R. Floriano: High corrosion resistance of nanograined and nanotwinned Al0.1CoCrFeNi high-entropy alloy processed by high-pressure torsion, Intermetallics 172 (2024) 108368. doi:10.1016/j.intermet.2024.108368
86) K. Bryła and J. Horky: Magnesium alloys processed by severe plastic deformation (SPD) for biomedical applications: an overview, Mater. Trans. 64 (2023) 1709–1723. doi:10.2320/matertrans.MT-MF2022056
159) S. Kuramoto and T. Furuta: Severe plastic deformation to achieve high strength and high ductility in FeNi based alloys with lattice softening, Mater. Trans. 60 (2019) 1116–1122. doi:10.2320/matertrans.MF201920
127) H. Razavi-Khosroshahi, K. Edalati, M. Arita, Z. Horita and M. Fuji: Plastic strain and grain size effect on high-pressure phase transformations in nanostructured TiO2 ceramics, Scr. Mater. 124 (2016) 59–62. doi:10.1016/j.scriptamat.2016.06.022
31) A. Mazilkin, B. Straumal, A. Kilmametov, P. Straumal and B. Baretzky: Phase transformations induced by severe plastic deformation, Mater. Trans. 60 (2019) 1489–1499. doi:10.2320/matertrans.MF201938
239) S. Yesudhas, V.I. Levitas, F. Lin, K.K. Pandey and J. Smith: Unusual plastic strain-induced phase transformation phenomena in silicon, Nat. Commun. 15 (2024) 7054. doi:10.1038/s41467-024-51469-5
207) P.T. Hung, M. Kawasaki, J.K. Han, Á. Szabó, J.L. Lábár, Z. Hegedűs and J. Gubicza: Thermal stability of nanocrystalline CoCrFeNi multi-principal element alloy: effect of the degree of severe plastic deformation, Intermetallics 142 (2022) 107445. doi:10.1016/j.intermet.2021.107445
225) P. Edalati, A. Mohammadi, M. Ketabchi and K. Edalati: Microstructure and microhardness of dual-phase high-entropy alloy by high-pressure torsion: twins and stacking faults in FCC and dislocations in BCC, J. Alloy. Compd. 894 (2022) 162413. doi:10.1016/j.jallcom.2021.162413
96) D.H. Lee, I.C. Choi, M. Kawasaki, T.G. Langdon and J.I. Jang: A review of recent research on
230
110
231
111
232
112
233
113
234
114
235
115
236
116
237
117
238
118
119
10
11
12
13
14
15
16
17
18
19
120
121
1
122
2
123
3
124
4
125
5
126
6
127
7
128
8
129
9
20
21
22
23
24
25
26
27
28
29
130
131
132
133
134
135
136
137
138
139
30
31
32
33
34
35
36
37
38
39
140
141
142
143
144
145
146
147
148
149
40
41
42
43
44
45
46
47
48
49
150
151
152
153
154
155
156
157
158
159
50
51
52
53
54
55
56
57
58
59
160
161
162
163
164
165
166
167
168
169
60
61
62
63
64
65
66
67
68
69
170
171
172
173
174
175
176
177
178
179
70
71
72
73
74
75
76
77
78
79
180
181
182
183
184
185
186
187
188
189
80
81
82
83
84
85
86
87
88
89
190
191
192
193
194
195
196
197
198
199
90
91
92
93
94
95
96
97
98
99
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
100
221
101
222
102
223
103
224
104
225
105
226
106
227
107
228
108
229
109
References_xml – reference: 66) O. Renk and R. Pippan: Anneal hardening in single phase nanostructured metals, Mater. Trans. 64 (2023) 1464–1473. doi:10.2320/matertrans.MT-MF2022029
– reference: 88) N.Q. Chinh, D. Olasz, A.Q. Ahmed, E.V. Bobruk and R.Z. Valiev: Review on grain size- and grain boundary phenomenon in unusual mechanical behavior of ultrafine-grained Al alloys, Mater. Trans. 64 (2023) 1844–1855. doi:10.2320/matertrans.MT-MF2022020
– reference: 53) L. Kommel: Overview of hard cyclic viscoplastic deformation as a new method for modifying the structure and properties of metallic materials, Mater. Trans. 65 (2024) 109–118. doi:10.2320/matertrans.MT-M2023136
– reference: 63) B. Straumal, A. Gornakova, G. Davdjan, A. Mazilkin, Ł. Gondek, M. Szczerba and A. Korneva: Review - phase transitions in Ti alloys driven by the high pressure torsion, Mater. Trans. 64 (2023) 1820–1832. doi:10.2320/matertrans.MT-MF2022044
– reference: 178) S. Hao, K. Edalati, Q. Gao and H.J. Lin: Effect of crystal defects on the electrocatalytic CO2 reduction performance of pure copper, Scr. Mater. 252 (2024) 116268. doi:10.1016/j.scriptamat.2024.116268
– reference: 207) P.T. Hung, M. Kawasaki, J.K. Han, Á. Szabó, J.L. Lábár, Z. Hegedűs and J. Gubicza: Thermal stability of nanocrystalline CoCrFeNi multi-principal element alloy: effect of the degree of severe plastic deformation, Intermetallics 142 (2022) 107445. doi:10.1016/j.intermet.2021.107445
– reference: 200) X. Liu, H. Ding, Y. Huang, X. Bai, Q. Zhang, H. Zhang, T.G. Langdon and J. Cui: Evidence for a phase transition in an AlCrFe2Ni2 high entropy alloy processed by high-pressure torsion, J. Alloy. Compd. 867 (2021) 159063. doi:10.1016/j.jallcom.2021.159063
– reference: 174) J. Hidalgo-Jiménez, T. Akbay, T. Ishihara and K. Edalati: Understanding high photocatalytic activity of the TiO2 high-pressure columbite phase by experiments and first-principles calculations, J. Mater. Chem. A 11 (2023) 23523–23535. doi:10.1039/D3TA04198K
– reference: 76) J. Zhong, F. Zhang, X. Tong, X. Hu and B. Wang: Hydrolytic hydrogen production from severely plastic deformed aluminum-based materials: an overview, Mater. Trans. 64 (2023) 1376–1386. doi:10.2320/matertrans.MT-MF2022023
– reference: 79) N. Kudriashova and J. Huot: Effect of cold rolling on magnesium-based metal hydrides, Mater. Trans. 64 (2023) 1879–1885. doi:10.2320/matertrans.MT-MF2022058
– reference: 187) J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303. doi:10.1002/adem.200300567
– reference: 180) M. Katai, P. Edalati, J. Hidalgo-Jimenez, Y. Shundo, T. Akbay, T. Ishihara, M. Arita, M. Fuji and K. Edalati: Black brookite rich in oxygen vacancies as an active photocatalyst for CO2 conversion: experiments and first-principles calculations, J. Photochem. Photobiol. A 449 (2024) 115409. doi:10.1016/j.jphotochem.2023.115409
– reference: 3) K. Edalati et al.: Nanomaterials by severe plastic deformation: review of historical developments and recent advances, Mater. Res. Lett. 10 (2022) 163–256. doi:10.1080/21663831.2022.2029779
– reference: 190) V.H. Hammond, M.A. Atwater, K.A. Darling, H.Q. Nguyen and L.J. Kecskes: Equal-channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying, JOM 66 (2014) 2021–2029. doi:10.1007/s11837-014-1113-x
– reference: 103) T. Grosdidier, M. Novelli and L. Weiss: Surface severe plastic deformation for improved mechanical/corrosion properties and further applications in the bio-medical and hydrogen sectors, Mater. Trans. 64 (2023) 1695–1708. doi:10.2320/matertrans.MT-MF2022040
– reference: 90) M.W. Kapp, A. Hohenwarter, A. Bachmaier, T. Müller and R. Pippan: SPD deformation of pearlitic, bainitic and martensitic steels, Mater. Trans. 64 (2023) 1353–1363. doi:10.2320/matertrans.MT-MF2022027
– reference: 21) K. Edalati: Review on recent advancements in severe plastic deformation of oxides by high-pressure torsion (HPT), Adv. Eng. Mater. 21 (2019) 1800272. doi:10.1002/adem.201800272
– reference: 165) G. Rogl, M.J. Zehetbauer and P.F. Rogl: The effect of severe plastic deformation on thermoelectric performance of skutterudites, half-Heuslers and Bi-tellurides, Mater. Trans. 60 (2019) 2071–2085. doi:10.2320/matertrans.MF201941
– reference: 14) K. Edalati and Z. Horita: A review on high-pressure torsion (HPT) from 1935 to 1988, Mater. Sci. Eng. A 652 (2016) 325–352. doi:10.1016/j.msea.2015.11.074
– reference: 123) V.D. Blank, M.Y. Popov and B.A. Kulnitskiy: The effect of severe plastic deformations on phase transitions and structure of solids, Mater. Trans. 60 (2019) 1500–1505. doi:10.2320/matertrans.MF201942
– reference: 15) V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy and V.I. Kopylov: Plastic working of metals by simple shear, Russ. Metall. 1 (1981) 99–105.
– reference: 25) K. Edalati, I. Taniguchi, R. Floriano and A. Ducati Luchessi: Glycine amino acid transformation under impacts by small solar system bodies, simulated by high-pressure torsion method, Sci. Rep. 12 (2022) 5677. doi:10.1038/s41598-022-09735-3
– reference: 172) J.P. Rojas, J.E. González-Hernández, J.M. Cubero-Sesin, Z. Horita and D. González-Flores: Benchmarking of aluminum alloys processed by high-pressure torsion: Al-3% Mg alloy for high-energy density Al-Air batteries, Energy Fuels 37 (2023) 4632–4640. doi:10.1021/acs.energyfuels.2c03722
– reference: 109) M. Novelli, P. Bocher and T. Grosdidier: Effect of cryogenic temperatures and processing parameters on gradient-structure of a stainless steel treated by ultrasonic surface mechanical attrition treatment, Mater. Charact. 139 (2018) 197–207. doi:10.1016/j.matchar.2018.02.028
– reference: 10) K. Edalati, E. Akiba and Z. Horita: High-pressure torsion for new hydrogen storage materials, Sci. Technol. Adv. Mater. 19 (2018) 185–193. doi:10.1080/14686996.2018.1435131
– reference: 57) Y. Beygelzimer, Y. Estrin and R. Kulagin: Some unresolved problems of high-pressure torsion, Mater. Trans. 64 (2023) 1856–1865. doi:10.2320/matertrans.MT-MF2022038
– reference: 129) K. Edalati and Z. Horita: Scaling-up of high pressure torsion using ring shape, Mater. Trans. 50 (2009) 92–95. doi:10.2320/matertrans.MD200822
– reference: 35) X. Sauvage, A. Duchaussoy and G. Zaher: Strain induced segregations in severely deformed materials, Mater. Trans. 60 (2019) 1151–1158. doi:10.2320/matertrans.MF201919
– reference: 141) S. Akrami, Y. Murakami, M. Watanabe, T. Ishihara, M. Arita, Q. Guo, M. Fuji and K. Edalati: Enhanced CO2 conversion on highly-strained and oxygen-deficient BiVO4 photocatalyst, Chem. Eng. J. 442 (2022) 136209. doi:10.1016/j.cej.2022.136209
– reference: 151) J. González-Masís, J.M. Cubero-Sesin, A. Campos-Quirós and K. Edalati: Synthesis of biocompatible high-entropy alloy TiNbZrTaHf by high-pressure torsion, Mater. Sci. Eng. A 825 (2021) 141869. doi:10.1016/j.msea.2021.141869
– reference: 202) B.B. Straumal, R. Kulagin, B. Baretzky, N.Y. Anisimova, M.V. Kiselevskiy, L. Klinger, P.B. Straumal, O.A. Kogtenkova and R.Z. Valiev: Severe plastic deformation and phase transformations in high entropy alloys: a review, Crystals 12 (2022) 54. doi:10.3390/cryst12010054
– reference: 228) P. Edalati, Q. Wang, H. Razavi-Khosroshahi, M. Fuji, T. Ishihara and K. Edalati: Photocatalytic hydrogen evolution on a high-entropy oxide, J. Mater. Chem. A 8 (2020) 3814–3821. doi:10.1039/C9TA12846H
– reference: 122) Y. Ikoma, K. Hayano, K. Edalati, K. Saito, Q. Guo and Z. Horita: Phase transformation and nanograin refinement of silicon by processing through high-pressure torsion, Appl. Phys. Lett. 101 (2012) 121908. doi:10.1063/1.4754574
– reference: 16) Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Novel ultra-high straining process for bulk materials: Development of the accumulative roll-bonding (ARB) process, Acta Mater. 47 (1999) 579–583. doi:10.1016/S1359-6454(98)00365-6
– reference: 146) K.K. Pandey and V.I. Levitas: In situ quantitative study of plastic strain-induced phase transformations under high pressure: example for ultra-pure Zr, Acta Mater. 196 (2020) 338–346. doi:10.1016/j.actamat.2020.06.015
– reference: 56) A. Lalpour, M. Mosallaee, A. Ashrafi and A. Zargaran: Microstructural evolution in the friction stir processed AA2024, Mater. Trans. 64 (2023) 1894–1901. doi:10.2320/matertrans.MT-MF2022006
– reference: 38) M. Demirtas and G. Purcek: Room temperature superplasticity in fine/ultrafine grained materials subjected to severe plastic deformation, Mater. Trans. 60 (2019) 1159–1167. doi:10.2320/matertrans.MF201922
– reference: 24) V.I. Levitas: Resolving puzzles of the phase-transformation-based mechanism of the deep-focus earthquake, Nat. Commun. 13 (2022) 6291. doi:10.1038/s41467-022-33802-y
– reference: 226) K. Edalati, I. Fujita, S. Takechi, Y. Nakashima, K. Kumano, H. Razavi-Khosroshahi, M. Arita, M. Watanabe, X. Sauvage, T. Akbay, T. Ishihara, M. Fuji and Z. Horita: Photocatalytic activity of aluminum oxide by oxygen vacancy generation using high-pressure torsion straining, Scr. Mater. 173 (2019) 120–124. doi:10.1016/j.scriptamat.2019.08.011
– reference: 32) V.I. Levitas: High-pressure phase transformations under severe plastic deformation by torsion in rotational anvils, Mater. Trans. 60 (2019) 1294–1301. doi:10.2320/matertrans.MF201923
– reference: 230) Q. Wang, Y. Tang, Z. Horita and S. Iikubo: Structural and thermoelectric properties of CH3NH3SnI3 perovskites processed by applying high pressure with shear strain, Mater. Res. Lett. 10 (2022) 521–529. doi:10.1080/21663831.2022.2057821
– reference: 143) K. Edalati and N. Enikeev: Dislocation density in ceramics processed by severe plastic deformation via high-pressure torsion, Materials 17 (2024) 6189. doi:10.3390/ma17246189
– reference: 87) A.P. Carvalho and R.B. Figueiredo: An overview of the effect of grain size on mechanical properties of magnesium and its alloys, Mater. Trans. 64 (2023) 1272–1283. doi:10.2320/matertrans.MT-MF2022005
– reference: 163) Z. Song, R. Niu, X. Cui, E.V. Bobruk, M.Y. Murashkin, N.A. Enikeev, J. Gu, M. Song, V. Bhatia, S.P. Ringer, R.Z. Valiev and X. Liao: Mechanism of room-temperature superplasticity in ultrafine-grained Al–Zn alloys, Acta Mater. 246 (2023) 118671. doi:10.1016/j.actamat.2023.118671
– reference: 98) Y. Ikoma: Structural and functional properties of Si and related semiconducting materials processed by high-pressure torsion, Mater. Trans. 64 (2023) 1346–1352. doi:10.2320/matertrans.MT-MF2022031
– reference: 8) V. Segal: Review: modes and processes of severe plastic deformation (SPD), Materials 11 (2018) 1175. doi:10.3390/ma11071175
– reference: 233) V.A. Beloshenko, V.N. Varyukhin, A.V. Voznyak and Y.V. Voznyak: Equal-channel multiangular extrusion of semicrystalline polymers, Polym. Eng. Sci. 50 (2010) 1000–1006. doi:10.1002/pen.21613
– reference: 107) K. Edalati, Z. Horita, H. Fujiwara and K. Ameyama: Cold consolidation of ball-milled titanium powders using high-pressure torsion, Metall. Mater. Trans. A 41 (2010) 3308–3317. doi:10.1007/s11661-010-0400-6
– reference: 150) A. Kilmametov, R. Kulagin, A. Mazilkin, S. Seils, T. Boll, M. Heilmaier and H. Hahn: High-pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy, Scr. Mater. 158 (2019) 29–33. doi:10.1016/j.scriptamat.2018.08.031
– reference: 77) Á. Révész and M. Gajdics: The effect of severe plastic deformation on the hydrogen storage properties of metal hydrides, Mater. Trans. 64 (2023) 1387–1400. doi:10.2320/matertrans.MT-MF2022019
– reference: 217) N.T.C. Nguyen, P. Asghari-Rad, A. Zargaran, E.S. Kim, P. Sathiyamoorthi and H.S. Kim: Relation of phase fraction to superplastic behavior of multi-principal element alloy with a multi-phase structure, Scr. Mater. 221 (2022) 114949. doi:10.1016/j.scriptamat.2022.114949
– reference: 86) K. Bryła and J. Horky: Magnesium alloys processed by severe plastic deformation (SPD) for biomedical applications: an overview, Mater. Trans. 64 (2023) 1709–1723. doi:10.2320/matertrans.MT-MF2022056
– reference: 145) T.T. Nguyen and K. Edalati: Efficient photocatalytic hydrogen production on defective and strained black bismuth (III) oxide, Int. J. Hydrogen Energ. 96 (2024) 841–848. doi:10.1016/j.ijhydene.2024.11.353
– reference: 169) C. Qian, Z. He, C. Liang, Y. Cha and W. Ji: Superior intracluster conductivity of metallic lithium-ion battery anode achieved by high-pressure torsion, Mater. Lett. 260 (2020) 126933. doi:10.1016/j.matlet.2019.126933
– reference: 40) R.B. Figueiredo, K. Edalati and T.G. Langdon: Effect of creep parameters on the steady-state flow stress of pure metals processed by high-pressure torsion, Mater. Sci. Eng. A 835 (2022) 142666. doi:10.1016/j.msea.2022.142666
– reference: 81) D. Fruchart, N. Skryabina, P. de Rango, M. Fouladvind and V. Aptukov: Severe plastic deformation by fast forging to easy produce hydride from bulk Mg-based alloys, Mater. Trans. 64 (2023) 1886–1893. doi:10.2320/matertrans.MT-MF2022049
– reference: 206) N.N. Liang, R.R. Xu, G.Z. Wu, X.Z. Gao and Y.H. Zhao: High thermal stability of nanocrystalline FeNi2CoMo0.2V0.5 high-entropy alloy by twin boundary and sluggish diffusion, Mater. Sci. Eng. A 848 (2022) 143399. doi:10.1016/j.msea.2022.143399
– reference: 4) K. Edalati et al.: Severe plastic deformation for producing superfunctional ultrafine-grained and heterostructured materials: an interdisciplinary review, J. Alloy. Compd. 1002 (2024) 174667. doi:10.1016/j.jallcom.2024.174667
– reference: 13) A.P. Zhilyaev and T.G. Langdon: Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893–979. doi:10.1016/j.pmatsci.2008.03.002
– reference: 148) J. Hidalgo-Jiménez, T. Akbay, Y. Ikeda, T. Ishihara and K. Edalati: Mechanism of anatase-to-columbite TiO2 phase transformation via sheared phases: first-principles calculations and high-pressure torsion experiments, J. Mater. Sci. 59 (2024) 5995–6007. doi:10.1007/s10853-023-09206-8
– reference: 209) A.I. Almazrouee, K.J. Al-Fadhalah, S.N. Alhajeri, Y. Huang and T.G. Langdon: Effect of long-term storage on microstructure and microhardness stability in OFHC copper processed by high-pressure torsion, Adv. Eng. Mater. 21 (2019) 1801300. doi:10.1002/adem.201801300
– reference: 136) A. Mohammadi, N.A. Enikeev, M.Y. Murashkin, M. Arita and K. Edalati: Examination of inverse Hall-Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation, J. Mater. Sci. Technol. 91 (2021) 78–89. doi:10.1016/j.jmst.2021.01.096
– reference: 156) K. Edalati, H. Emami, Y. Ikeda, H. Iwaoka, I. Tanaka, E. Akiba and Z. Horita: New nanostructured phases with reversible hydrogen storage capability in immiscible magnesium-zirconium system produced by high-pressure torsion, Acta Mater. 108 (2016) 293–303. doi:10.1016/j.actamat.2016.02.026
– reference: 30) N. Tsuji, R. Gholizadeh, R. Ueji, N. Kamikawa, L. Zhao, Y. Tian, Y. Bai and A. Shibata: Formation mechanism of ultrafine grained microstructures: various possibilities for fabricating bulk nanostructured metals and alloys, Mater. Trans. 60 (2019) 1518–1532. doi:10.2320/matertrans.MF201936
– reference: 220) P. Edalati, R. Floriano, Y. Tang, A. Mohammadi, K.D. Pereira, A.D. Luchessi and K. Edalati: Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion, Mater. Sci. Eng. C 112 (2020) 110908. doi:10.1016/j.msec.2020.110908
– reference: 120) B. Zheng, Y. Zhou, S.N. Mathaudhu, R.Z. Valiev, C.Y.A. Tsao, J.M. Schoenung and E.J. Lavernia: Multiple and extended shear band formation in MgCuGd metallic glass during high-pressure torsion, Scr. Mater. 86 (2014) 24–27. doi:10.1016/j.scriptamat.2014.04.023
– reference: 196) D.H. Lee, M.Y. Seok, Y. Zhao, I.C. Choi, J. He, Z. Lu, J.Y. Suh, U. Ramamurty, M. Kawasaki, T.G. Langdon and J. Jang: Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys, Acta Mater. 109 (2016) 314–322. doi:10.1016/j.actamat.2016.02.049
– reference: 219) P. Edalati, A. Cremasco, K. Edalati and R. Floriano: High corrosion resistance of nanograined and nanotwinned Al0.1CoCrFeNi high-entropy alloy processed by high-pressure torsion, Intermetallics 172 (2024) 108368. doi:10.1016/j.intermet.2024.108368
– reference: 197) Q.H. Tang, Y. Huang, H. Cheng, X.Z. Liao, T.G. Langdon and P.Q. Dai: The effect of grain size on the annealing-induced phase transformation in an Al0.3CoCrFeNi high entropy alloy, Mater. Des. 105 (2016) 381–385. doi:10.1016/j.matdes.2016.05.079
– reference: 26) K. Edalati, E. Akiba, W.J. Botta, Y. Estrin, R. Floriano, D. Fruchart, T. Grosdidier, Z. Horita, J. Huot, H.W. Li, H.J. Lin, Á. Révész and M.J. Zehetbauer: Impact of severe plastic deformation on kinetics and thermodynamics of hydrogen storage in magnesium and its alloys, J. Mater. Sci. Technol. 146 (2023) 221–239. doi:10.1016/j.jmst.2022.10.068
– reference: 116) M.A. Nikitina, R.K. Islamgaliev and V.D. Sitdikov: Thermal stability of TiAl-based intermetallic alloys subjected to high pressure torsion, Mater. Sci. Eng. A 651 (2016) 306–310. doi:10.1016/j.msea.2015.10.121
– reference: 167) J.B. Colbe et al.: Application of hydrides in hydrogen storage and compression: achievements, outlook and perspectives, Int. J. Hydrogen Energ. 44 (2019) 7780–7808. doi:10.1016/j.ijhydene.2019.01.104
– reference: 157) E.I. Lopez-Gomez, K. Edalati, D.D. Coimbroo, F.J. Antiqueira, G. Zepon, J.M. Cubero-Sesin and W.J. Botta: FCC phase formation in immiscible Mg-Hf (magnesium-hafnium) system by high-pressure torsion, AIP Adv. 10 (2020) 055222. doi:10.1063/5.0009456
– reference: 121) K. Edalati and Z. Horita: Correlations between hardness and atomic bond parameters of pure metals and semi-metals after processing by high-pressure torsion, Scr. Mater. 64 (2011) 161–164. doi:10.1016/j.scriptamat.2010.09.034
– reference: 18) Z. Ma: Friction stir processing technology: a review, Metall. Mater. Trans. A 39 (2008) 642–658. doi:10.1007/s11661-007-9459-0
– reference: 78) L. He, X. Shi, X. Li, J. Huang, T. Cheng, X. Wang, Y. Li, H. Lin, K. Edalati and H.W. Li: Severe plastic deformation through high-pressure torsion for preparation of hydrogen storage materials -a review, Mater. Trans. 64 (2023) 1575–1584. doi:10.2320/matertrans.MT-MF2022039
– reference: 104) T.P. Yadav, R.M. Yadav and D.P. Singh: Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites, Nanosci. Nanotechnol. 2 (2012) 22–48. doi:10.5923/j.nn.20120203.01
– reference: 214) H. Shahmir, M. Nili-Ahmadabadi, A. Shafiee and T.G. Langdon: Effect of a minor titanium -addition on the superplastic properties of a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, Mater. Sci. Eng. A 718 (2018) 468–476. doi:10.1016/j.msea.2018.02.002
– reference: 132) B. Omranpour, Y. Ivanisenko, R. Kulagin, L. Kommel, E. Garcia Sanchez, D. Nugmanov, T. Scherer, A. Heczel and J. Gubicza: Evolution of microstructure and hardness in aluminum processed by high pressure torsion extrusion, Mater. Sci. Eng. A 762 (2019) 138074. doi:10.1016/j.msea.2019.138074
– reference: 6) R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter and A. Bachmaier: Saturation of fragmentation during severe plastic deformation, Annu. Rev. Mater. Res. 40 (2010) 319–343. doi:10.1146/annurev-matsci-070909-104445
– reference: 67) V. Sklenicka, P. Kral, J. Dvorak, M. Kvapilova and K. Kucharova: Creep in nanostructured materials, Mater. Trans. 64 (2023) 1566–1574. doi:10.2320/matertrans.MT-MF2022035
– reference: 199) H. Yuan, M.H. Tsai, G. Sha, F. Liu, Z. Horita, Y. Zhu and J.T. Wang: Atomic-scale homogenization in an fcc-based high-entropy alloy via severe plastic deformation, J. Alloy. Compd. 686 (2016) 15–23. doi:10.1016/j.jallcom.2016.05.337
– reference: 161) R.B. Figueiredo, M. Kawasaki and T.G. Langdon: Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress, Prog. Mater. Sci. 137 (2023) 101131. doi:10.1016/j.pmatsci.2023.101131
– reference: 159) S. Kuramoto and T. Furuta: Severe plastic deformation to achieve high strength and high ductility in FeNi based alloys with lattice softening, Mater. Trans. 60 (2019) 1116–1122. doi:10.2320/matertrans.MF201920
– reference: 54) E. Tabachnikova, T. Hryhorova, S. Shumilin, Y. Semerenko, Y. Huang and T.G. Langdon: Cryo-Severe Plastic deformation, microstructures and properties of metallic nanomaterials at low temperatures, Mater. Trans. 64 (2023) 1806–1819. doi:10.2320/matertrans.MT-MF2022037
– reference: 47) K. Edalati and Z. Horita: Special issue on severe plastic deformation for nanomaterials with advanced functionality, Mater. Trans. 60 (2019) 1103. doi:10.2320/matertrans.MPR2019904
– reference: 147) Z. Horita, D. Maruno, Y. Ikeda, T. Masuda, Y. Tang, M. Arita, Y. Higo, Y. Tange and Y. Ohishi: In situ synchrotron X-ray analysis: application of high-pressure sliding process to Ti allotropic transformation, Mater. Trans. 62 (2021) 167–176. doi:10.2320/matertrans.MT-M2020314
– reference: 42) K. Edalati: Metallurgical alchemy by ultra-severe plastic deformation via high-pressure torsion process, Mater. Trans. 60 (2019) 1221–1229. doi:10.2320/matertrans.MF201914
– reference: 91) K. Nagano, M. Kawabata-Ota, D. Nanya, H. Fujiwara, K. Ameyama, K. Edalati and Z. Horita: Unique microstructure evolution of HPT-processed (α + γ) two-phase stainless steel, Mater. Trans. 64 (2023) 1912–1919. doi:10.2320/matertrans.MT-MF2022053
– reference: 201) P. Edalati, A. Mohammadi, Y. Tang, R. Floriano, M. Fuji and K. Edalati: Phase transformation and microstructure evolution in ultrahard carbon-doped AlTiFeCoNi high-entropy alloy by high-pressure torsion, Mater. Lett. 302 (2021) 130368. doi:10.1016/j.matlet.2021.130368
– reference: 80) Z. Horita, Y. Tang, M. Matsuo, K. Edalati, M. Yumoto and Y. Takizawa: Enhancement of activation and hydrogen storage kinetics of TiFe(Mn) using high-pressure sliding (HPS) process, Mater. Trans. 64 (2023) 1920–1923. doi:10.2320/matertrans.MT-MF2022059
– reference: 36) G. Wilde and S. Divinski: Grain boundaries and diffusion phenomena in severely deformed materials, Mater. Trans. 60 (2019) 1302–1315. doi:10.2320/matertrans.MF201934
– reference: 195) P.F. Yu, H. Cheng, L.J. Zhang, H. Zhang, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li and R.P. Liu: Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy, Mater. Sci. Eng. A 655 (2016) 283–291. doi:10.1016/j.msea.2015.12.085
– reference: 221) A. Mohammadi, P. Edalati, M. Arita, J.W. Bae, H.S. Kim and K. Edalati: Microstructure and defect effects on strength and hydrogen embrittlement of high-entropy alloy CrMnFeCoNi processed by high-pressure torsion, Mater. Sci. Eng. A 844 (2022) 143179. doi:10.1016/j.msea.2022.143179
– reference: 139) M.B. Kerber, F. Spieckermann, R. Schuster, C. von Baeckmann, T. Fischer, N. Schell, T. Waitz and E. Schafler: In situ synchrotron x-ray diffraction during high-pressure torsion deformation of Ni and NiTi, Adv. Eng. Mater. 23 (2021) 2100159. doi:10.1002/adem.202100159
– reference: 49) Y. Ivanisenko: Perspectives of scaling up of severe plastic deformation: a case of high pressure torsion extrusion, Mater. Trans. 64 (2023) 1489–1496. doi:10.2320/matertrans.MT-MF2022057
– reference: 64) Z. Horita, Y. Tang, T. Masuda, K. Edalati and Y. Higo: In situ synchrotron high-pressure X-ray analysis for ZnO with rocksalt structure, Mater. Trans. 64 (2023) 1585–1590. doi:10.2320/matertrans.MT-MF2022036
– reference: 73) L. Weissitsch, F. Staab, K. Durst and A. Bachmaier: Magnetic materials via high-pressure torsion of powders, Mater. Trans. 64 (2023) 1537–1550. doi:10.2320/matertrans.MT-MF2022026
– reference: 124) V.D. Blank, V.D. Churkin, B.A. Kulnitskiy, I.A. Perezhogin, A.N. Kirichenko, S.V. Erohin, P.B. Sorokin and M.Y. Popov: Pressure-induced transformation of graphite and diamond to onions, Crystals 8 (2018) 68. doi:10.3390/cryst8020068
– reference: 102) Z. Sun, J. Zhou and D. Retraint: Mechanical properties of metallic materials processed by surface severe plastic deformation, Mater. Trans. 64 (2023) 1739–1753. doi:10.2320/matertrans.MT-MF2022028
– reference: 28) T.T. Nguyen and K. Edalati: Impact of high-pressure torsion on hydrogen production from photodegradation of polypropylene plastic wastes, Int. J. Hydrogen Energ. 81 (2024) 411–417. doi:10.1016/j.ijhydene.2024.07.306
– reference: 69) M. Demirtas and G. Purcek: An overview of the principles of low-temperature superplasticity in metallic materials processed by severe plastic deformation, Mater. Trans. 64 (2023) 1724–1738. doi:10.2320/matertrans.MT-MF2022018
– reference: 48) Z. Horita and K. Edalati: Severe plastic deformation for nanostructure controls, Mater. Trans. 61 (2020) 2241–2247. doi:10.2320/matertrans.MT-M2020134
– reference: 74) H. Sena and M. Fuji: Band gap engineering of semiconductors and ceramics by severe plastic deformation for solar energy harvesting, Mater. Trans. 64 (2023) 1497–1503. doi:10.2320/matertrans.MT-MF2022004
– reference: 110) T. Grosdidier and M. Novelli: Recent developments in the application of surface mechanical attrition treatments for improved gradient structures: processing parameters and surface reactivity, Mater. Trans. 60 (2019) 1344–1355. doi:10.2320/matertrans.MF201929
– reference: 92) S. Kuramoto, Y. Kawano, Y. Mori, J. Kobayashi, S. Emura and T. Sawaguchi: Mechanical properties and deformation behavior in severely cold-rolled Fe-Ni-Al-C alloys with Lüders deformation - overview with recent experimental results, Mater. Trans. 64 (2023) 1410–1418. doi:10.2320/matertrans.MT-MF2022024
– reference: 153) J. Hidalgo-Jiménez, T. Akbay, T. Ishihara and K. Edalati: Investigation of a high-entropy oxide photocatalyst for hydrogen generation by first-principles calculations coupled with experiments: significance of electronegativity, Scr. Mater. 250 (2024) 116205. doi:10.1016/j.scriptamat.2024.116205
– reference: 227) P. Edalati, Y. Itagoe, H. Ishihara, T. Ishihara, H. Emami, M. Arita, M. Fuji and K. Edalati: Visible-light photocatalytic oxygen production on a high-entropy oxide with multiple-heterojunction introduction, J. Photochem. Photobiol. A 433 (2022) 114167. doi:10.1016/j.jphotochem.2022.114167
– reference: 119) Y.B. Wang, D.D. Qu, X.H. Wang, Y. Cao, X.Z. Liao, M. Kawasaki, S.P. Ringer, Z.W. Shan, T.G. Langdon and J. Shen: Introducing a strain-hardening capability to improve the ductility of bulk metallic glasses via severe plastic deformation, Acta Mater. 60 (2012) 253–260. doi:10.1016/j.actamat.2011.09.026
– reference: 126) K. Edalati, M. Arimura, Y. Ikoma, T. Daio, M. Miyata, D.J. Smith and Z. Horita: Plastic deformation of BaTiO3 ceramics by high-pressure torsion and changes in phase transformations, optical and dielectric properties, Mater. Res. Lett. 3 (2015) 216–221. doi:10.1080/21663831.2015.1065454
– reference: 140) J.K. Han, K. Sugimoto, M. Kawasaki and K.D. Liss: Strain-dependent phase transformation mapping of diffusion-bonded nanocrystalline aluminum-magnesium by high-energy synchrotron X-rays, Mater. Lett. 321 (2022) 132414. doi:10.1016/j.matlet.2022.132414
– reference: 131) M. Murashkin, A. Medvedev, V. Kazykhanov, A. Krokhin, G. Raab, N. Enikeev and R.Z. Valiev: Enhanced mechanical properties and electrical conductivity in ultrafine-grained al 6101 alloy processed via ECAP-conform, Metals 5 (2015) 2148–2164. doi:10.3390/met5042148
– reference: 128) K. Edalati, R. Uehiro, S. Takechi, Q. Wang, M. Arita, M. Watanabe, T. Ishihara and Z. Horita: Enhanced photocatalytic hydrogen production on GaN-ZnO oxynitride by introduction of strain-induced nitrogen vacancy complexes, Acta Mater. 185 (2020) 149–156. doi:10.1016/j.actamat.2019.12.007
– reference: 101) C. Li, X. Li, Z. Fu, H. Pan, Y. Gong and X. Zhu: An overview on recent works of heterostructured materials fabricated by surface mechanical attrition treatment, Mater. Trans. 64 (2023) 1429–1440. doi:10.2320/matertrans.MT-MF2022016
– reference: 105) L. Takacs: Self-sustaining reactions induced by ball milling, Prog. Mater. Sci. 47 (2002) 355–414. doi:10.1016/S0079-6425(01)00002-0
– reference: 223) P. Edalati, A. Mohammadi, M. Ketabchi and K. Edalati: Ultrahigh hardness in nanostructured dual-phase high-entropy alloy AlCrFeCoNiNb developed by high-pressure torsion, J. Alloy. Compd. 884 (2021) 161101. doi:10.1016/j.jallcom.2021.161101
– reference: 23) K. Edalati, J. Hidalgo-Jiménez, T.T. Nguyen, M. Watanabe and I. Taniguchi: High-pressure torsion processing of serine and glutamic acid: understanding mechanochemical behavior of amino acids under astronomical impacts, Adv. Eng. Mater. 26 (2024) 2302267. doi:10.1002/adem.202302267
– reference: 215) H. Shahmir, M. Nili-Ahmadabadi, A. Shafiee and T.G. Langdon: Effect of a minor titanium -addition on the superplastic properties of a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, Mater. Sci. Eng. A 718 (2018) 468–476. doi:10.1016/j.msea.2018.02.002
– reference: 138) G. Da Costa, C. Castro, A. Normand, C. Vaudolon, A. Zakirov, J. Macchi, M. Ilhami, K. Edalati, F. Vurpillot and W. Lefebvre: Bringing atom probe tomography to transmission electron microscopes, Nat. Commun. 15 (2024) 9870. doi:10.1038/s41467-024-54169-2
– reference: 160) A. Mohammadi, P. Edalati, M. Arita, J.W. Bae, H.S. Kim and K. Edalati: High strength and high ductility of a severely deformed high-entropy alloy in the presence of hydrogen, Corros. Sci. 216 (2023) 111097. doi:10.1016/j.corsci.2023.111097
– reference: 237) P.W. Bridgman: Shearing phenomena at high pressure of possible importance for geology, J. Geol. 44 (1936) 653–669. doi:10.1086/624468
– reference: 114) L. Chen, L. Ping, T. Ye, L. Lingfeng, X. Kemin and Z. Meng: Observations on the ductility and thermostability of tungsten processed from micropowder by improved high-pressure torsion, Rare Met. Mater. Eng. 45 (2016) 3089–3094. doi:10.1016/S1875-5372(17)30059-0
– reference: 162) K. Edalati, Z. Horita and R.Z. Valiev: Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy, Sci. Rep. 8 (2018) 6740. doi:10.1038/s41598-018-25140-1
– reference: 27) S. Akrami, T. Ishihara, M. Fuji and K. Edalati: Active photocatalysts for CO2 conversion by severe plastic deformation (SPD), Materials 16 (2023) 1081. doi:10.3390/ma16031081
– reference: 216) N.T.C. Nguyen, P. Asghari-Rad, H. Park and H.S. Kim: Differential superplasticity in a multi-phase multi-principal element alloy by initial annealing, J. Mater. Sci. 57 (2022) 18154–18167. doi:10.1007/s10853-022-07616-8
– reference: 62) V.I. Levitas: Recent in situ experimental and theoretical advances in severe plastic deformations, strain-induced phase transformations, and microstructure evolution under high pressure, Mater. Trans. 64 (2023) 1866–1878. doi:10.2320/matertrans.MT-MF2022055
– reference: 173) M. Zohrevand, N. Hassanzadeh, R. Alizadeh and T.G. Langdon: Review: recent advances using severe plastic deformation to improve the properties of battery materials, J. Mater. Sci. 59 (2024) 5651–5680. doi:10.1007/s10853-023-09198-5
– reference: 176) J. Hidalgo-Jiménez, T. Akbay, X. Sauvage, T. Ishihara and K. Edalati: Mixed atomic-scale electronic configuration as a strategy to avoid cocatalyst utilization in photocatalysis by high-entropy oxides, Acta Mater. 283 (2025) 120559. doi:10.1016/j.actamat.2024.120559
– reference: 113) K. Edalati, Z. Horita and Y. Mine: High-pressure torsion of hafnium, Mater. Sci. Eng. A 527 (2010) 2136–2141. doi:10.1016/j.msea.2009.11.060
– reference: 158) I.A. Ovid’ko, R.Z. Valiev and Y.T. Zhu: Review on superior strength and enhanced ductility of metallic nanomaterials, Prog. Mater. Sci. 94 (2018) 462–540. doi:10.1016/j.pmatsci.2018.02.002
– reference: 135) A.V. Podolskiy, E.D. Tabachnikova, B. Bonarski, D. Setman, C. Mangler, E. Schafler and M.J. Zehetbauer: Temperature dependent mechanical properties of zirconium processed by high-pressure torsion at 300 and 77 K, Kovove Mater. 54 (2016) 1–8. doi:10.4149/km_2016_1_1
– reference: 72) M.Y. Murashkin, N.A. Enikeev and X. Sauvage: Potency of severe plastic deformation processes for optimizing combinations of strength and electrical conductivity of lightweight Al-based conductor alloys, Mater. Trans. 64 (2023) 1833–1843. doi:10.2320/matertrans.MT-MF2022048
– reference: 236) I. Vozniak, V. Beloshenko, B. Savchenko and A. Voznyak: Improvement of mechanical properties of polylactide by equal channel multiple angular extrusion, J. Appl. Polym. Sci. 138 (2021) 49720. doi:10.1002/app.49720
– reference: 142) Y. Shundo, T.T. Nguyen, S. Akrami, P. Edalati, Y. Itagoe, T. Ishihara, M. Arita, Q. Guo, M. Fuji and K. Edalati: Oxygen vacancy-rich high-pressure rocksalt phase of zinc oxide for enhanced photocatalytic hydrogen evolution, J. Colloid Interface Sci. 666 (2024) 22–34. doi:10.1016/j.jcis.2024.04.010
– reference: 95) J. Gubicza and P.T. Hung: Nanostructuring of multi-principal element alloys by severe plastic deformation: from fundamentals to an improved functionality, Mater. Trans. 64 (2023) 1284–1298. doi:10.2320/matertrans.MT-MF2022013
– reference: 37) M. Kawasaki and T.G. Langdon: The contribution of severe plastic deformation to research on superplasticity, Mater. Trans. 60 (2019) 1123–1130. doi:10.2320/matertrans.MF201915
– reference: 93) A.M. Jorge, Jr., V. Roche, D.A.G. Pérez and R.Z. Valiev: Nanostructuring Ti-alloys by HPT: phase transformation, mechanical and corrosion properties, and bioactivation, Mater. Trans. 64 (2023) 1306–1316. doi:10.2320/matertrans.MT-MF2022014
– reference: 118) K. Edalati, Y. Yokoyama and Z. Horita: High-pressure torsion of machining chips and bulk discs of amorphous Zr50Cu30Al10Ni10, Mater. Trans. 51 (2010) 23–26. doi:10.2320/matertrans.MB200914
– reference: 130) K. Edalati, S. Lee and Z. Horita: Continuous high-pressure torsion using wires, J. Mater. Sci. 47 (2012) 473–478. doi:10.1007/s10853-011-5822-z
– reference: 229) G. Rogl, S. Ghosh, L. Wang, J. Bursik, A. Grytsiv, M. Kerber, E. Bauer, R.C. Malik, X.Q. Chen, M. Zehetbauer and P. Rogl: Half-Heusler alloys: Enhancement of ZT after severe plastic deformation (ultra-low thermal conductivity), Acta Mater. 183 (2020) 285–300. doi:10.1016/j.actamat.2019.11.010
– reference: 235) V.A. Beloshenko, A.V. Voznyak and Y. Voznyak: Effects of equal-channel, multiple-angular extrusion on the physical and mechanical properties of glassy polymers, J. Appl. Polym. Sci. 132 (2015) 42180. doi:10.1002/app.42180
– reference: 45) O. Renk, A. Hohenwarter, K. Edalati and M.W. Kapp: Saturation of grain fragmentation upon severe plastic deformation: fact or fiction? Adv. Eng. Mater. 26 (2024) 2400578. doi:10.1002/adem.202400578
– reference: 117) J.K. Han, X. Li, R. Dippenaar, K.D. Liss and M. Kawasaki: Microscopic plastic response in a bulk nano-structured TiAl intermetallic compound processed by high-pressure torsion, Mater. Sci. Eng. A 714 (2018) 84–92. doi:10.1016/j.msea.2017.12.065
– reference: 192) Q.H. Tang, Y. Huang, Y.Y. Huang, X.Z. Liao, T.G. Langdon and P.Q. Dai: Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing, Mater. Lett. 151 (2015) 126–129. doi:10.1016/j.matlet.2015.03.066
– reference: 218) H. Shimizu, M. Yuasa, H. Miyamoto and K. Edalati: Corrosion behavior of ultrafine-grained CoCrFeMnNi high-entropy alloys fabricated by high-pressure torsion, Materials 15 (2022) 1007. doi:10.3390/ma15031007
– reference: 112) S. Lee, K. Edalati and Z. Horita: Microstructures and mechanical properties of pure V and Mo processed by high-pressure torsion, Mater. Trans. 51 (2010) 1072–1079. doi:10.2320/matertrans.M2009375
– reference: 33) J. Gubicza: Lattice defects and their influence on the mechanical properties of bulk materials processed by severe plastic deformation, Mater. Trans. 60 (2019) 1230–1242. doi:10.2320/matertrans.MF201909
– reference: 238) Y. Ma, E. Selvi, V.I. Levitas and J. Hashemi: Effect of shear strain on the alpha-epsilon phase transition of iron: a new approach in the rotational diamond anvil cell, J. Phys. Condens. Matter 18 (2006) S1075–S1082. doi:10.1088/0953-8984/18/25/S14
– reference: 82) H. Miyamoto: Revealing what enhance the corrosion resistance beside grain size in ultrafine grained materials by severe plastic deformation: stainless steels case, Mater. Trans. 64 (2023) 1419–1428. doi:10.2320/matertrans.MT-MF2022034
– reference: 71) J.E. González-Hernández and J.M. Cubero-Sesin: Electrical conductivity of ultrafine-grained cu and al alloys: attaining the best compromise with mechanical properties, Mater. Trans. 64 (2023) 1754–1768. doi:10.2320/matertrans.MT-MF2022046
– reference: 168) M. Hirscher et al.: Materials for hydrogen-based energy storage - past, recent progress and future outlook, J. Alloy. Compd. 827 (2020) 153548. doi:10.1016/j.jallcom.2019.153548
– reference: 41) K. Edalati, R. Uehiro, K. Fujiwara, Y. Ikeda, H.W. Li, X. Sauvage, R.Z. Valiev, E. Akiba, I. Tanaka and Z. Horita: Ultra-severe plastic deformation: evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems, Mater. Sci. Eng. A 701 (2017) 158–166. doi:10.1016/j.msea.2017.06.076
– reference: 1) R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103–189. doi:10.1016/S0079-6425(99)00007-9
– reference: 186) D.V. Gunderov, R.N. Asfandiyarov, V.V. Astanin and A.V. Sharafutdinov: Metals 13 (2023) 1340. doi:10.3390/met13081340
– reference: 222) A. Mohammadi, M. Novelli, M. Arita, J.W. Bae, H.S. Kim, T. Grosdidier and K. Edalati: Gradient-structured high-entropy alloy with improved combination of strength and hydrogen embrittlement resistance, Corros. Sci. 200 (2022) 110253. doi:10.1016/j.corsci.2022.110253
– reference: 55) H. Miura, W. Nakamura and C. Watanabe: Basic research on multi-directional forging of AZ80Mg alloy for fabrication of bulky mechanical components, Mater. Trans. 64 (2023) 1504–1514. doi:10.2320/matertrans.MT-MF2022033
– reference: 232) P.W. Bridgman: Shearing phenomena at high pressures, particularly in inorganic compounds, Proc. Am. Acad. Arts Sci. 71 (1937) 387–460. doi:10.2307/20023239
– reference: 210) Z. Gao, Y. Zhao, J.M. Park, A.H. Jeon, K. Murakami, S. Komazaki, K. Tsuchiya, U. Ramamurty and J. Jang: Decoupling the roles of constituent phases in the strengthening of hydrogenated nanocrystalline dual-phase high-entropy alloys, Scr. Mater. 210 (2022) 114472. doi:10.1016/j.scriptamat.2021.114472
– reference: 29) O. Renk and R. Pippan: Saturation of grain refinement during severe plastic deformation of single phase materials: reconsiderations, current status and open questions, Mater. Trans. 60 (2019) 1270–1282. doi:10.2320/matertrans.MF201918
– reference: 211) S. Son, P. Asghari-Rad, A. Zargaran, W. Chen and H.S. Kim: Superlative room temperature and cryogenic tensile properties of nanostructured CoCrFeNi medium-entropy alloy fabricated by powder high-pressure torsion, Scr. Mater. 213 (2022) 114631. doi:10.1016/j.scriptamat.2022.114631
– reference: 50) Z. Li, Y. Liu, J.T. Wang and T.G. Langdon: Tube high-pressure shearing: a simple shear path to unusual microstructures, Mater. Trans. 64 (2023) 1449–1463. doi:10.2320/matertrans.MT-MF2022051
– reference: 2) R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer and Y.T. Zhu: Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58(4) (2006) 33–39. doi:10.1007/s11837-006-0213-7
– reference: 11) S. Akrami, P. Edalati, M. Fuji and K. Edalati: High-pressure torsion for highly-strained and high-entropy photocatalysts, KONA Powder Part. J. 41 (2024) 123–139. doi:10.14356/kona.2024003
– reference: 203) A.K. Chandan, K. Kishore, P.T. Hung, M. Ghosh, S.G. Chowdhury, M. Kawasaki and J. Gubicza: Effect of nickel addition on enhancing nano-structuring and suppressing TRIP effect in Fe40Mn40Co10Cr10 high entropy alloy during high-pressure torsion, Int. J. Plast. 150 (2022) 103193. doi:10.1016/j.ijplas.2021.103193
– reference: 100) L. Romero-Resendiz, M. Naeem and Y.T. Zhu: Heterostructured materials by severe plastic deformation: overview and perspectives, Mater. Trans. 64 (2023) 2346–2360. doi:10.2320/matertrans.MT-MF2022010
– reference: 31) A. Mazilkin, B. Straumal, A. Kilmametov, P. Straumal and B. Baretzky: Phase transformations induced by severe plastic deformation, Mater. Trans. 60 (2019) 1489–1499. doi:10.2320/matertrans.MF201938
– reference: 137) K.K. Pandey and V.I. Levitas: Displacement field measurements in traditional and rotational diamond anvil cells, J. Appl. Phys. 129 (2021) 115901. doi:10.1063/5.0044030
– reference: 34) J. Čížek, M. Janeček, T. Vlasák, B. Smola, O. Melikhova, R.K. Islamgaliev and S.V. Dobatkin: The development of vacancies during severe plastic deformation, Mater. Trans. 60 (2019) 1533–1542. doi:10.2320/matertrans.MF201937
– reference: 94) W. Skrotzki and R. Chulist: Severe plastic deformation of high-entropy alloys, Mater. Trans. 64 (2023) 1769–1783. doi:10.2320/matertrans.MT-MF2022050
– reference: 89) E. Kobayashi, M. Ohnuma, S. Kuramoto, J. Kobayashi and G. Itoh: Nanoscale analysis of solute distribution in ultrahigh-strength aluminum alloys, Mater. Trans. 64 (2023) 1441–1448. doi:10.2320/matertrans.MT-MF2022032
– reference: 234) V. Beloshenko, Y. Voznyak and V.M. Mikhal’chuk: Microcalorimetric study of crystallizable polymers subjected to severe plastic deformation, Polym. Sci. Ser. A 56 (2014) 269–274. doi:10.1134/S0965545X1403002X
– reference: 155) K. Edalati, H. Emami, A. Staykov, D.J. Smith, E. Akiba and Z. Horita: Formation of metastable phases in magnesium-titanium system by high-pressure torsion and their hydrogen storage performance, Acta Mater. 99 (2015) 150–156. doi:10.1016/j.actamat.2015.07.060
– reference: 108) G. Liu, J. Lu and K. Lu: Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening, Mater. Sci. Eng. A 286 (2000) 91–95. doi:10.1016/S0921-5093(00)00686-9
– reference: 166) K. Edalati, M. Matsuo, H. Emami, S. Itano, A. Alhamidi, A. Staykov, D.J. Smith, S. Orimo, E. Akiba and Z. Horita: Impact of severe plastic deformation on microstructure and hydrogen storage of titanium-iron-manganese intermetallics, Scr. Mater. 124 (2016) 108–111. doi:10.1016/j.scriptamat.2016.07.007
– reference: 52) A.R. Rezaei, M. Zohrevand, M.R. Sabour, E. Taherkhani and G. Faraji: Recent progress on SPD processes empowered by hydrostatic pressure, Mater. Trans. 64 (2023) 1663–1672. doi:10.2320/matertrans.MT-MF2022007
– reference: 171) Y. Wang, S. Lee, K. Yamamoto, T. Matsunaga, H. Miki, H. Iba, K. Tsuchiya, T. Uchiyama, T. Watanabe, T. Takami and Y. Uchimoto: Properties of composite electrodes for all-solid-state fluoride-ion secondary batteries processed by high-pressure torsion, Electrochemistry 91 (2023) 027002. doi:10.5796/electrochemistry.22-00133
– reference: 144) T.T. Nguyen, X. Sauvage, K. Saito, Q. Guo and K. Edalati: Phase and sulfur vacancy engineering in cadmium sulfide for boosting hydrogen production from catalytic plastic waste photoconversion, Chem. Eng. J. 504 (2025) 158730. doi:10.1016/j.cej.2024.158730
– reference: 152) E.I. Lopez-Gomez, K. Edalati, F.J. Antiqueira, D.D. Coimbroo, G. Zepon, D.R. Leiva, T.T. Ishikawa, J.M. Cubero-Sesin and W.J. Botta: Synthesis of nanostructured TiFe hydrogen storage material by mechanical alloying via high-pressure torsion, Adv. Eng. Mater. 22 (2020) 2000011. doi:10.1002/adem.202000011
– reference: 194) Q.H. Tang, X.Z. Liao and P. Dai: Microstructure evolution of Al0.3CoCrFeNi high-entropy alloy during high-pressure torsion, J. Mater. Eng. 43 (2015) 45–51. doi:10.11868/j.issn.1001-4381.2015.12.008
– reference: 65) Y. Tang, T. Fuji, S. Hirosawa, K. Matsuda, D. Terada and Z. Horita: Comparison of mechanical properties in ultrafine grained commercial-purity aluminum (A1050) processed by accumulative roll bonding (ARB) and high-pressure sliding (HPS), Mater. Trans. 64 (2023) 1902–1911. doi:10.2320/matertrans.MT-MF2022047
– reference: 39) P. Kral, J. Dvorak, V. Sklenicka and T.G. Langdon: The characteristics of creep in metallic materials processed by severe plastic deformation, Mater. Trans. 60 (2019) 1506–1517. doi:10.2320/matertrans.MF201924
– reference: 70) Y. Mine: Micro-mechanical characterisation of hydrogen embrittlement and fatigue crack growth behaviours in metastable austenitic stainless steels with microstructure refinement, Mater. Trans. 64 (2023) 1474–1488. doi:10.2320/matertrans.MT-MF2022041
– reference: 193) D.H. Lee, I.C. Choi, M.Y. Seok, J. He, Z. Lu, J.Y. Suh, M. Kawasaki, T.G. Langdon and J. Jang: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, J. Mater. Res. 30 (2015) 2804–2815. doi:10.1557/jmr.2015.239
– reference: 59) V.V. Popov, E.N. Popova and E.V. Osinnikov: Specific features of grain boundaries in nickel processed by high-pressure torsion, Mater. Trans. 64 (2023) 1401–1409. doi:10.2320/matertrans.MT-MF2022012
– reference: 164) R.Z. Valiev, E.V. Parfenov and L.V. Parfenova: Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality, Mater. Trans. 60 (2019) 1356–1366. doi:10.2320/matertrans.MF201943
– reference: 183) T.T. Nguyen and K. Edalati: Efficient photoreforming of plastic waste using a high-entropy oxide catalyst, J. Catal. 440 (2024) 115808. doi:10.1016/j.jcat.2024.115808
– reference: 68) T.G. Langdon: Overview: using severe plastic deformation in the processing of superplastic materials, Mater. Trans. 64 (2023) 1299–1305. doi:10.2320/matertrans.MT-MF2022021
– reference: 7) M.J. Starink, X.C. Cheng and S. Yang: Hardening of pure metals by high-pressure torsion: A physically based model employing volume-averaged defect evolutions, Acta Mater. 61 (2013) 183–192. doi:10.1016/j.actamat.2012.09.048
– reference: 189) A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev and O.N. Senkov: Superplasticity of AlCoCrCuFeNi high entropy alloy, Mater. Sci. Forum 735 (2013) 146–151. doi:10.4028/www.scientific.net/MSF.735.146
– reference: 75) X. Jian, J. Li, L. He, H.W. Li, M. Zhang, P. Zhang and H.J. Lin: Severe plastic deformation for advanced electrocatalysts for electrocatalytic hydrogen production, Mater. Trans. 64 (2023) 1515–1525. doi:10.2320/matertrans.MT-MF2022011
– reference: 99) V. Beloshenko, A. Vozniak and A. Voznyak: Equal channel angular extrusion of polymers: structural changes and their effects on properties, Mater. Trans. 64 (2023) 1325–1330. doi:10.2320/matertrans.MT-MF2022017
– reference: 212) C. Duan, M. Reiberg, P. Kutlesa, X. Li, R. Pippan and E. Werner: Strain-hardening properties of the high-entropy alloy MoNbTaTiVZr processed by high-pressure torsion, Contin. Mech. Thermodyn. 34 (2022) 475–489. doi:10.1007/s00161-021-01065-5
– reference: 106) J. Sort, D.C. Ile, A.P. Zhilyaev, A. Concustell, T. Czeppe, M. Stoica, S. Surinach, J. Eckert and M.D. Baro: Cold-consolidation of ball-milled Fe-based amorphous ribbons by high pressure torsion, Scr. Mater. 50 (2004) 1221–1225. doi:10.1016/j.scriptamat.2004.02.004
– reference: 185) K. Edalati: Severe plastic deformation of light metals (magnesium, aluminum and titanium) and alloys by high-pressure torsion: review of fundamentals and mechanical/functional properties, Mater. Trans. 65 (2024) 466–480. doi:10.2320/matertrans.MT-L2023022
– reference: 184) H.T.N. Hai, T.T. Nguyen, M. Nishibori, T. Ishihara and K. Edalati: Photoreforming of plastic waste into valuable products and hydrogen using a high-entropy oxynitride with distorted atomic-scale structure, Appl. Catal. B 365 (2025) 124968. doi:10.1016/j.apcatb.2024.124968
– reference: 19) A.P. Zykova, S.Y. Tarasov, A.V. Chumaevskiy and E.A. Kolubaev: A review of friction stir processing of structural metallic materials: process, properties, and methods, Metals 10 (2020) 772. doi:10.3390/met10060772
– reference: 85) M. Ashida: Effects of high-pressure torsion on mechanical properties of biocompatible Ti–6Al–7Nb alloy, Mater. Trans. 64 (2023) 1784–1790. doi:10.2320/matertrans.MT-MF2022045
– reference: 170) M. Wang, F. Zhang, L. Chen, B. Xu, Z. Cui and K. Edalati: Influence of Cu doping and high-pressure torsion on electrochemical performance of lithium-rich cathode material, J. Phys. Conf. Ser. 1750 (2021) 012077. doi:10.1088/1742-6596/1750/1/012077
– reference: 231) P.W. Bridgman: Effects of high shearing stress combined with high hydrostatic pressure, Phys. Rev. 48 (1935) 825–847. doi:10.1103/PhysRev.48.825
– reference: 179) S. Akrami, M. Watanabe, T.H. Ling, T. Ishihara, M. Arita, M. Fuji and K. Edalati: High-pressure TiO2-II polymorph as an active photocatalyst for CO2 to CO conversion, Appl. Catal. B 298 (2021) 120566. doi:10.1016/j.apcatb.2021.120566
– reference: 111) X. Li, L. Lu, J. Li, X. Zhang and H. Gao: Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys, Nat. Rev. Mater. 5 (2020) 706–723. doi:10.1038/s41578-020-0212-2
– reference: 239) S. Yesudhas, V.I. Levitas, F. Lin, K.K. Pandey and J. Smith: Unusual plastic strain-induced phase transformation phenomena in silicon, Nat. Commun. 15 (2024) 7054. doi:10.1038/s41467-024-51469-5
– reference: 225) P. Edalati, A. Mohammadi, M. Ketabchi and K. Edalati: Microstructure and microhardness of dual-phase high-entropy alloy by high-pressure torsion: twins and stacking faults in FCC and dislocations in BCC, J. Alloy. Compd. 894 (2022) 162413. doi:10.1016/j.jallcom.2021.162413
– reference: 51) Y. Takizawa and Z. Horita: Incremental feeding high-pressure sliding (IF-HPS) process for upscaling highly strained areas in metallic materials with enhanced mechanical properties, Mater. Trans. 64 (2023) 1364–1375. doi:10.2320/matertrans.MT-MF2022025
– reference: 198) H. Shahmir, J. He, Z. Lu, M. Kawasaki and T.G. Langdon: Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, Mater. Sci. Eng. A 676 (2016) 294–303. doi:10.1016/j.msea.2016.08.118
– reference: 5) Y. Estrin and A. Vinogradov: Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater. 61 (2013) 782–817. doi:10.1016/j.actamat.2012.10.038
– reference: 208) K. Edalati, Y. Hashiguchi, H. Iwaoka, H. Matsunaga, R.Z. Valiev and Z. Horita: Long-time stability of metals after severe plastic deformation: softening and hardening by self-annealing versus thermal stability, Mater. Sci. Eng. A 729 (2018) 340–348. doi:10.1016/j.msea.2018.05.079
– reference: 204) Y. Zhang, M. Liu, J. Sun, G. Li, R. Zheng, W. Xiao and C. Ma: Excellent thermal stability and mechanical properties of bulk nanostructured FeCoNiCu high entropy alloy, Mater. Sci. Eng. A 835 (2022) 142670. doi:10.1016/j.msea.2022.142670
– reference: 133) K. Lin, Z. Li, Y. Liu, E. Ma, J.T. Wang and T.G. Langdon: Exploiting tube high-pressure shearing to prepare a microstructure in Pb-Sn alloys for unprecedented superplasticity, Scr. Mater. 209 (2022) 114390. doi:10.1016/j.scriptamat.2021.114390
– reference: 44) P. Edalati, M. Fuji and K. Edalati: Superfunctional high-entropy alloys and ceramics by severe plastic deformation, Rare Met. 42 (2023) 3246–3268. doi:10.1007/s12598-023-02340-x
– reference: 213) A.V. Levenets, H.V. Rusakova, L.S. Fomenko, Y. Huang, V. Kolodiy, R.L. Vasilenko, E.D. Tabachnikova, M.A. Tikhonovsky and T.G. Langdon: Structure and low-temperature micromechanical properties of as-cast and SPD-processed high-entropy Co25−xCr25Fe25Ni25Cx alloys, Low Temp. Phys. 48 (2022) 560–569. doi:10.1063/10.0011605
– reference: 224) S. Dangwal and K. Edalati: Developing a single-phase and nanograined refractory high-entropy alloy ZrHfNbTaW with ultrahigh hardness by phase transformation via high-pressure torsion, J. Alloy. Compd. 1010 (2025) 178274. doi:10.1016/j.jallcom.2024.178274
– reference: 181) S. Akrami, Y. Murakami, M. Watanabe, T. Ishihara, M. Arita, M. Fuji and K. Edalati: Defective high-entropy oxide photocatalyst with high activity for CO2 conversion, Appl. Catal. B 303 (2022) 120896. doi:10.1016/j.apcatb.2021.120896
– reference: 83) D.M.M. Cardona and F.E.C. Nieto: An overview on the corrosion behavior of steels processed by severe plastic deformation, Mater. Trans. 64 (2023) 1317–1324. doi:10.2320/matertrans.MT-MF2022030
– reference: 182) T.T. Nguyen and K. Edalati: Impact of high-pressure columbite phase of titanium dioxide (TiO2) on catalytic photoconversion of plastic waste and simultaneous hydrogen (H2) production, J. Alloy. Compd. 1008 (2024) 176722. doi:10.1016/j.jallcom.2024.176722
– reference: 60) J.A. Muñoz, T. Khelfa, D. Gheorghe, O.F. Higuera, P. Rodriguez and J.M. Cabrera: Microstructure characterization of metallic materials processed by equal channel angular pressing (ECAP): an electron backscatter diffraction (EBSD) analysis, Mater. Trans. 64 (2023) 1791–1805. doi:10.2320/matertrans.MT-MF2022042
– reference: 96) D.H. Lee, I.C. Choi, M. Kawasaki, T.G. Langdon and J.I. Jang: A review of recent research on nanoindentation of high-entropy alloys processed by high-pressure torsion, Mater. Trans. 64 (2023) 1551–1565. doi:10.2320/matertrans.MT-MF2022015
– reference: 84) R. Floriano and K. Edalati: Effects of severe plastic deformation on advanced biomaterials for biomedical applications: a brief overview, Mater. Trans. 64 (2023) 1673–1682. doi:10.2320/matertrans.MT-MF2022043
– reference: 154) S. Akrami, P. Edalati, Y. Shundo, M. Watanabe, T. Ishihara, M. Fuji and K. Edalati: Significant CO2 photoreduction on a high-entropy oxynitride, Chem. Eng. J. 449 (2022) 137800. doi:10.1016/j.cej.2022.137800
– reference: 115) K. Edalati, S. Toh, M. Watanabe and Z. Horita: In-situ production of bulk intermetallic-based nanocompsites and nanostructured intermetallics by high-pressure torsion, Scr. Mater. 66 (2012) 386–389. doi:10.1016/j.scriptamat.2011.11.039
– reference: 58) G. Wilde, H. Rösner and S. Divinski: Internal interfaces in severely deformed metals and alloys: coupling of kinetics, structure and strain with properties and performance, Mater. Trans. 64 (2023) 1331–1345. doi:10.2320/matertrans.MT-MF2022009
– reference: 149) A. Duchaussoy, X. Sauvage, K. Edalati, Z. Horita, G. Renou, A. Deschamps and F. De Geuser: Structure and mechanical behavior of ultrafine-grained aluminum-iron alloy stabilized by nanoscaled intermetallic particles, Acta Mater. 167 (2019) 89–102. doi:10.1016/j.actamat.2019.01.027
– reference: 134) Y. Tang, K. Edalati, T. Masuda, Y. Takizawa, M. Yumoto and Z. Horita: Grain refinement and superplasticity of Inconel 718 processed by multi-pass high-pressure sliding, Mater. Lett. 300 (2021) 130144. doi:10.1016/j.matlet.2021.130144
– reference: 46) K. Edalati and Z. Horita: Special issue on superfunctional nanomaterials by severe plastic deformation, Mater. Trans. 64 (2023) 1271. doi:10.2320/matertrans.MPR2023905
– reference: 125) Y. Gao, Y. Ma, Q. An, V.I. Levitas, Y. Zhang, B. Feng, J. Chaudhuri and W.A. Goddard, III: Shear driven formation of nano-diamonds at sub-gigapascals and 300 K, Carbon 146 (2019) 364–368. doi:10.1016/j.carbon.2019.02.012
– reference: 191) B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan and A. Hohenwarter: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater. 96 (2015) 258–268. doi:10.1016/j.actamat.2015.06.025
– reference: 20) T.C. Lowe, R.Z. Valiev, X. Li and B.R. Ewing: Commercialization of bulk nanostructured metals and alloys, MRS Bull. 46 (2021) 265–272. doi:10.1557/s43577-021-00060-0
– reference: 127) H. Razavi-Khosroshahi, K. Edalati, M. Arita, Z. Horita and M. Fuji: Plastic strain and grain size effect on high-pressure phase transformations in nanostructured TiO2 ceramics, Scr. Mater. 124 (2016) 59–62. doi:10.1016/j.scriptamat.2016.06.022
– reference: 97) H. Shahmir, M.S. Mehranpour, M. Kawasaki and T.G. Langdon: Superplasticity in severely deformed high-entropy alloys, Mater. Trans. 64 (2023) 1526–1536. doi:10.2320/matertrans.MT-MF2022008
– reference: 43) K. Edalati: Superfunctional materials by ultra-severe plastic deformation, Materials 16 (2023) 587. doi:10.3390/ma16020587
– reference: 205) T. Keil, S. Taheriniya, E. Bruder, G. Wilde and K. Durst: Effects of solutes on thermal stability, microstructure and mechanical properties in CrMnFeCoNi based alloys after high pressure torsion, Acta Mater. 227 (2022) 117689. doi:10.1016/j.actamat.2022.117689
– reference: 177) P. Edalati, X.F. Shen, M. Watanabe, T. Ishihara, M. Arita, M. Fuji and K. Edalati: High-entropy oxynitride as low-bandgap and stable photocatalyst for hydrogen production, J. Mater. Chem. A 9 (2021) 15076–15086. doi:10.1039/D1TA03861C
– reference: 188) B. Cantor, I. Chang, P. Knight and A. Vincent: Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375–377 (2004) 213–218. doi:10.1016/j.msea.2003.10.257
– reference: 12) R.Z. Valiev, Y. Zheng and K. Edalati: Review: NanoSPD-produced metallic materials for advanced medical devices, J. Mater. Sci. 59 (2024) 5681–5697. doi:10.1007/s10853-024-09464-0
– reference: 175) Q. Wang, K. Edalati, Y. Koganemaru, S. Nakamura, M. Watanabe, T. Ishihara and Z. Horita: Photocatalytic hydrogen generation on low-bandgap black zirconia (ZrO2) produced by high-pressure torsion, J. Mater. Chem. 8 (2020) 3643–3650. doi:10.1039/C9TA11839J
– reference: 22) V. Beloshenko, I. Vozniak, Y. Beygelzimer, Y. Estrin and R. Kulagin: Severe plastic deformation of polymers, Mater. Trans. 60 (2019) 1192–1202. doi:10.2320/matertrans.MF201912
– reference: 17) A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski and A. Yanagida: Severe plastic deformation (SPD) processes for metals, CRIP Ann. Mauuf. Technol. 57 (2008) 716–735. doi:10.1016/j.cirp.2008.09.005
– reference: 9) M. Zehetbauer, R. Grossinger, H. Krenn, M. Krystian, R. Pippan, P. Rogl, T. Waitz and R. Wurschum: Bulk nanostructured functional materials by severe plastic deformation, Adv. Eng. Mater. 12 (2010) 692–700. doi:10.1002/adem.201000119
– reference: 61) M. Kawasaki, J.K. Han, X. Liu, S.C. Moon and K.D. Liss: Synchrotron high-energy X-ray & neutron diffraction, and laser-scanning confocal microscopy: In-situ characterization techniques for bulk nanocrystalline metals, Mater. Trans. 64 (2023) 1683–1694. doi:10.2320/matertrans.MT-MF2022022
– ident: 112
  doi: 10.2320/matertrans.M2009375
– ident: 109
  doi: 10.1016/j.matchar.2018.02.028
– ident: 177
  doi: 10.1039/D1TA03861C
– ident: 188
  doi: 10.1016/j.msea.2003.10.257
– ident: 78
  doi: 10.2320/matertrans.MT-MF2022039
– ident: 65
  doi: 10.2320/matertrans.MT-MF2022047
– ident: 102
  doi: 10.2320/matertrans.MT-MF2022028
– ident: 197
  doi: 10.1016/j.matdes.2016.05.079
– ident: 87
  doi: 10.2320/matertrans.MT-MF2022005
– ident: 134
  doi: 10.1016/j.matlet.2021.130144
– ident: 143
  doi: 10.3390/ma17246189
– ident: 167
  doi: 10.1016/j.ijhydene.2019.01.104
– ident: 233
  doi: 10.1134/S0965545X1403002X
– ident: 98
  doi: 10.2320/matertrans.MT-MF2022031
– ident: 40
  doi: 10.1016/j.msea.2022.142666
– ident: 51
  doi: 10.2320/matertrans.MT-MF2022025
– ident: 155
  doi: 10.1016/j.actamat.2015.07.060
– ident: 222
  doi: 10.1016/j.jallcom.2021.161101
– ident: 213
  doi: 10.1063/10.0011605
– ident: 118
  doi: 10.2320/matertrans.MB200914
– ident: 212
  doi: 10.1007/s00161-021-01065-5
– ident: 8
  doi: 10.3390/ma11071175
– ident: 24
  doi: 10.1038/s41467-022-33802-y
– ident: 86
  doi: 10.2320/matertrans.MT-MF2022056
– ident: 162
  doi: 10.1038/s41598-018-25140-1
– ident: 217
  doi: 10.3390/ma15031007
– ident: 136
  doi: 10.1016/j.jmst.2021.01.096
– ident: 45
  doi: 10.1002/adem.202400578
– ident: 27
  doi: 10.3390/ma16031081
– ident: 125
  doi: 10.1016/j.carbon.2019.02.012
– ident: 68
  doi: 10.2320/matertrans.MT-MF2022021
– ident: 10
  doi: 10.1080/14686996.2018.1435131
– ident: 32
  doi: 10.2320/matertrans.MF201923
– ident: 31
  doi: 10.2320/matertrans.MF201938
– ident: 79
  doi: 10.2320/matertrans.MT-MF2022058
– ident: 200
  doi: 10.1016/j.jallcom.2021.159063
– ident: 221
  doi: 10.1016/j.corsci.2022.110253
– ident: 182
  doi: 10.1016/j.jallcom.2024.176722
– ident: 172
  doi: 10.1021/acs.energyfuels.2c03722
– ident: 181
  doi: 10.1016/j.apcatb.2021.120896
– ident: 132
  doi: 10.1016/j.msea.2019.138074
– ident: 229
  doi: 10.1080/21663831.2022.2057821
– ident: 84
  doi: 10.2320/matertrans.MT-MF2022043
– ident: 216
  doi: 10.1016/j.scriptamat.2022.114949
– ident: 159
  doi: 10.2320/matertrans.MF201920
– ident: 140
  doi: 10.1016/j.matlet.2022.132414
– ident: 61
  doi: 10.2320/matertrans.MT-MF2022022
– ident: 107
  doi: 10.1007/s11661-010-0400-6
– ident: 101
  doi: 10.2320/matertrans.MT-MF2022016
– ident: 163
  doi: 10.1016/j.actamat.2023.118671
– ident: 142
  doi: 10.1016/j.jcis.2024.04.010
– ident: 14
  doi: 10.1016/j.msea.2015.11.074
– ident: 165
  doi: 10.2320/matertrans.MF201941
– ident: 232
  doi: 10.1002/pen.21613
– ident: 161
  doi: 10.1016/j.pmatsci.2023.101131
– ident: 15
– ident: 160
  doi: 10.1016/j.corsci.2023.111097
– ident: 187
  doi: 10.1002/adem.200300567
– ident: 110
  doi: 10.2320/matertrans.MF201929
– ident: 56
  doi: 10.2320/matertrans.MT-MF2022006
– ident: 55
  doi: 10.2320/matertrans.MT-MF2022033
– ident: 202
  doi: 10.3390/cryst12010054
– ident: 151
  doi: 10.1016/j.msea.2021.141869
– ident: 154
  doi: 10.1016/j.cej.2022.137800
– ident: 196
  doi: 10.1016/j.actamat.2016.02.049
– ident: 185
  doi: 10.2320/matertrans.MT-L2023022
– ident: 211
  doi: 10.1016/j.scriptamat.2022.114631
– ident: 122
  doi: 10.1063/1.4754574
– ident: 171
  doi: 10.5796/electrochemistry.22-00133
– ident: 164
  doi: 10.2320/matertrans.MF201943
– ident: 91
  doi: 10.2320/matertrans.MT-MF2022053
– ident: 178
  doi: 10.1016/j.scriptamat.2024.116268
– ident: 83
  doi: 10.2320/matertrans.MT-MF2022030
– ident: 169
  doi: 10.1016/j.matlet.2019.126933
– ident: 210
  doi: 10.1016/j.scriptamat.2021.114472
– ident: 115
  doi: 10.1016/j.scriptamat.2011.11.039
– ident: 89
  doi: 10.2320/matertrans.MT-MF2022032
– ident: 201
  doi: 10.1016/j.matlet.2021.130368
– ident: 114
  doi: 10.1016/S1875-5372(17)30059-0
– ident: 121
  doi: 10.1016/j.scriptamat.2010.09.034
– ident: 6
  doi: 10.1146/annurev-matsci-070909-104445
– ident: 207
  doi: 10.1016/j.intermet.2021.107445
– ident: 92
  doi: 10.2320/matertrans.MT-MF2022024
– ident: 231
  doi: 10.2307/20023239
– ident: 52
  doi: 10.2320/matertrans.MT-MF2022007
– ident: 135
  doi: 10.4149/km_2016_1_1
– ident: 23
  doi: 10.1002/adem.202302267
– ident: 66
  doi: 10.2320/matertrans.MT-MF2022029
– ident: 237
  doi: 10.1088/0953-8984/18/25/S14
– ident: 36
  doi: 10.2320/matertrans.MF201934
– ident: 194
– ident: 103
  doi: 10.2320/matertrans.MT-MF2022040
– ident: 141
  doi: 10.1016/j.cej.2022.136209
– ident: 100
  doi: 10.2320/matertrans.MT-MF2022010
– ident: 22
  doi: 10.2320/matertrans.MF201912
– ident: 180
  doi: 10.1016/j.jphotochem.2023.115409
– ident: 2
  doi: 10.1007/s11837-006-0213-7
– ident: 11
  doi: 10.14356/kona.2024003
– ident: 133
  doi: 10.1016/j.scriptamat.2021.114390
– ident: 139
  doi: 10.1002/adem.202100159
– ident: 119
  doi: 10.1016/j.actamat.2011.09.026
– ident: 157
  doi: 10.1063/5.0009456
– ident: 144
  doi: 10.1016/j.cej.2024.158730
– ident: 189
  doi: 10.4028/www.scientific.net/MSF.735.146
– ident: 104
  doi: 10.5923/j.nn.20120203.01
– ident: 116
  doi: 10.1016/j.msea.2015.10.121
– ident: 166
  doi: 10.1016/j.scriptamat.2016.07.007
– ident: 220
  doi: 10.1016/j.msea.2022.143179
– ident: 174
  doi: 10.1039/D3TA04198K
– ident: 94
  doi: 10.2320/matertrans.MT-MF2022050
– ident: 137
  doi: 10.1063/5.0044030
– ident: 168
  doi: 10.1016/j.jallcom.2019.153548
– ident: 5
  doi: 10.1016/j.actamat.2012.10.038
– ident: 150
  doi: 10.1016/j.scriptamat.2018.08.031
– ident: 20
  doi: 10.1557/s43577-021-00060-0
– ident: 29
  doi: 10.2320/matertrans.MF201918
– ident: 90
  doi: 10.2320/matertrans.MT-MF2022027
– ident: 225
  doi: 10.1016/j.scriptamat.2019.08.011
– ident: 226
  doi: 10.1016/j.jphotochem.2022.114167
– ident: 126
  doi: 10.1080/21663831.2015.1065454
– ident: 117
  doi: 10.1016/j.msea.2017.12.065
– ident: 156
  doi: 10.1016/j.actamat.2016.02.026
– ident: 69
  doi: 10.2320/matertrans.MT-MF2022018
– ident: 105
  doi: 10.1016/S0079-6425(01)00002-0
– ident: 214
  doi: 10.1016/j.msea.2018.02.002
– ident: 42
  doi: 10.2320/matertrans.MF201914
– ident: 75
  doi: 10.2320/matertrans.MT-MF2022011
– ident: 4
  doi: 10.1016/j.jallcom.2024.174667
– ident: 234
  doi: 10.1002/app.42180
– ident: 227
  doi: 10.1039/C9TA12846H
– ident: 209
  doi: 10.1002/adem.201801300
– ident: 50
  doi: 10.2320/matertrans.MT-MF2022051
– ident: 215
  doi: 10.1007/s10853-022-07616-8
– ident: 74
  doi: 10.2320/matertrans.MT-MF2022004
– ident: 129
  doi: 10.2320/matertrans.MD200822
– ident: 128
  doi: 10.1016/j.actamat.2019.12.007
– ident: 148
  doi: 10.1007/s10853-023-09206-8
– ident: 96
  doi: 10.2320/matertrans.MT-MF2022015
– ident: 176
  doi: 10.1016/j.actamat.2024.120559
– ident: 184
  doi: 10.1016/j.apcatb.2024.124968
– ident: 224
  doi: 10.1016/j.jallcom.2021.162413
– ident: 53
  doi: 10.2320/matertrans.MT-M2023136
– ident: 147
  doi: 10.2320/matertrans.MT-M2020314
– ident: 81
  doi: 10.2320/matertrans.MT-MF2022049
– ident: 28
  doi: 10.1016/j.ijhydene.2024.07.306
– ident: 39
  doi: 10.2320/matertrans.MF201924
– ident: 146
  doi: 10.1016/j.actamat.2020.06.015
– ident: 67
  doi: 10.2320/matertrans.MT-MF2022035
– ident: 12
  doi: 10.1007/s10853-024-09464-0
– ident: 95
  doi: 10.2320/matertrans.MT-MF2022013
– ident: 149
  doi: 10.1016/j.actamat.2019.01.027
– ident: 175
  doi: 10.1039/C9TA11839J
– ident: 183
  doi: 10.1016/j.jcat.2024.115808
– ident: 19
  doi: 10.3390/met10060772
– ident: 26
  doi: 10.1016/j.jmst.2022.10.068
– ident: 41
  doi: 10.1016/j.msea.2017.06.076
– ident: 72
  doi: 10.2320/matertrans.MT-MF2022048
– ident: 88
  doi: 10.2320/matertrans.MT-MF2022020
– ident: 82
  doi: 10.2320/matertrans.MT-MF2022034
– ident: 58
  doi: 10.2320/matertrans.MT-MF2022009
– ident: 230
  doi: 10.1103/PhysRev.48.825
– ident: 186
  doi: 10.3390/met13081340
– ident: 76
  doi: 10.2320/matertrans.MT-MF2022023
– ident: 208
  doi: 10.1016/j.msea.2018.05.079
– ident: 223
  doi: 10.1016/j.jallcom.2024.178274
– ident: 57
  doi: 10.2320/matertrans.MT-MF2022038
– ident: 38
  doi: 10.2320/matertrans.MF201922
– ident: 113
  doi: 10.1016/j.msea.2009.11.060
– ident: 235
  doi: 10.1002/app.49720
– ident: 195
  doi: 10.1016/j.msea.2015.12.085
– ident: 25
  doi: 10.1038/s41598-022-09735-3
– ident: 9
  doi: 10.1002/adem.201000119
– ident: 13
  doi: 10.1016/j.pmatsci.2008.03.002
– ident: 54
  doi: 10.2320/matertrans.MT-MF2022037
– ident: 236
  doi: 10.1086/624468
– ident: 37
  doi: 10.2320/matertrans.MF201915
– ident: 173
  doi: 10.1007/s10853-023-09198-5
– ident: 190
  doi: 10.1007/s11837-014-1113-x
– ident: 63
  doi: 10.2320/matertrans.MT-MF2022044
– ident: 43
  doi: 10.3390/ma16020587
– ident: 218
  doi: 10.1016/j.intermet.2024.108368
– ident: 124
  doi: 10.3390/cryst8020068
– ident: 199
  doi: 10.1016/j.jallcom.2016.05.337
– ident: 62
  doi: 10.2320/matertrans.MT-MF2022055
– ident: 198
  doi: 10.1016/j.msea.2016.08.118
– ident: 48
  doi: 10.2320/matertrans.MT-M2020134
– ident: 106
  doi: 10.1016/j.scriptamat.2004.02.004
– ident: 193
  doi: 10.1557/jmr.2015.239
– ident: 205
  doi: 10.1016/j.actamat.2022.117689
– ident: 64
  doi: 10.2320/matertrans.MT-MF2022036
– ident: 60
  doi: 10.2320/matertrans.MT-MF2022042
– ident: 49
  doi: 10.2320/matertrans.MT-MF2022057
– ident: 33
  doi: 10.2320/matertrans.MF201909
– ident: 93
  doi: 10.2320/matertrans.MT-MF2022014
– ident: 219
  doi: 10.1016/j.msec.2020.110908
– ident: 127
  doi: 10.1016/j.scriptamat.2016.06.022
– ident: 131
  doi: 10.3390/met5042148
– ident: 130
  doi: 10.1007/s10853-011-5822-z
– ident: 77
  doi: 10.2320/matertrans.MT-MF2022019
– ident: 80
  doi: 10.2320/matertrans.MT-MF2022059
– ident: 17
  doi: 10.1016/j.cirp.2008.09.005
– ident: 191
  doi: 10.1016/j.actamat.2015.06.025
– ident: 120
  doi: 10.1016/j.scriptamat.2014.04.023
– ident: 35
  doi: 10.2320/matertrans.MF201919
– ident: 97
  doi: 10.2320/matertrans.MT-MF2022008
– ident: 3
  doi: 10.1080/21663831.2022.2029779
– ident: 70
  doi: 10.2320/matertrans.MT-MF2022041
– ident: 153
  doi: 10.1016/j.scriptamat.2024.116205
– ident: 46
  doi: 10.2320/matertrans.MPR2023905
– ident: 71
  doi: 10.2320/matertrans.MT-MF2022046
– ident: 59
  doi: 10.2320/matertrans.MT-MF2022012
– ident: 7
  doi: 10.1016/j.actamat.2012.09.048
– ident: 85
  doi: 10.2320/matertrans.MT-MF2022045
– ident: 34
  doi: 10.2320/matertrans.MF201937
– ident: 228
  doi: 10.1016/j.actamat.2019.11.010
– ident: 30
  doi: 10.2320/matertrans.MF201936
– ident: 73
  doi: 10.2320/matertrans.MT-MF2022026
– ident: 18
  doi: 10.1007/s11661-007-9459-0
– ident: 204
  doi: 10.1016/j.msea.2022.142670
– ident: 152
  doi: 10.1002/adem.202000011
– ident: 206
  doi: 10.1016/j.msea.2022.143399
– ident: 16
  doi: 10.1016/S1359-6454(98)00365-6
– ident: 21
  doi: 10.1002/adem.201800272
– ident: 138
  doi: 10.1038/s41467-024-54169-2
– ident: 108
  doi: 10.1016/S0921-5093(00)00686-9
– ident: 192
  doi: 10.1016/j.matlet.2015.03.066
– ident: 203
  doi: 10.1016/j.ijplas.2021.103193
– ident: 47
  doi: 10.2320/matertrans.MPR2019904
– ident: 170
  doi: 10.1088/1742-6596/1750/1/012077
– ident: 238
  doi: 10.1038/s41467-024-51469-5
– ident: 123
  doi: 10.2320/matertrans.MF201942
– ident: 145
  doi: 10.1016/j.ijhydene.2024.11.353
– ident: 44
  doi: 10.1007/s12598-023-02340-x
– ident: 158
  doi: 10.1016/j.pmatsci.2018.02.002
– ident: 99
  doi: 10.2320/matertrans.MT-MF2022017
– ident: 179
  doi: 10.1016/j.apcatb.2021.120566
– ident: 1
  doi: 10.1016/S0079-6425(99)00007-9
– ident: 111
  doi: 10.1038/s41578-020-0212-2
SSID ssj0037522
Score 2.4335537
Snippet Severe plastic deformation (SPD) has emerged as a transformative tool in materials science, enabling the development of ultrafine-grained, nanostructured and...
SourceID proquest
crossref
nii
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 450
SubjectTerms Addition polymerization
gradient-structured materials
heterostructured materials
high-pressure torsion (HPT)
Materials science
Nanomaterials
nanostructured materials
Phase transitions
Plastic deformation
Trends
ultrafine-grained (UFG) materials
Ultrafines
Title Recent Research Trends in Severe Plastic Deformation of Metallic and Non-Metallic Materials
URI https://www.jstage.jst.go.jp/article/matertrans/66/4/66_MT-M2024189/_article/-char/en
https://cir.nii.ac.jp/crid/1390585095042500864
https://www.proquest.com/docview/3204146113
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX MATERIALS TRANSACTIONS, 2025/04/01, Vol.66(4), pp.450-461
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6jQMcEJ9aYUM-4FOVrUkcxz66XVCBZQfaSRMconzYUieaIsg48D_wP_McJ6mBSXxIlRW92pb73q_PPzvPzwi95ByAE1WRV8RMeZTmpcdhwB5M1bAiqrTQ7am09IItLumbq-hqNPruRC3dNMVJ-e3WcyX_Y1WQgV3NKdl_sOzQKQjgGewLJVgYyr-yMXA-8yq_j56b7AJclwp-jDJXEpk8zOBVhkOKbcyLAsr9scvUerGtvUGQ5o0duEtaUwmc97U8X05W7-TF0sadDCQyqXITTzd5m39Vw97yYms2HSbvVX29djcWgsiJRzFQIElEeETknCQxETPCpXmQlMwS8xVIZEgSRmYhERFJQC7hMzEiAfWi9mHetheEQxe-aTbziWjbyzMiWdtsToR0PHBII08we6_PieplsWdusHDdtr2spYMndXwwtZlsu-mc2lzvv84UQCRNaOXGaLVpWcGm8TagBupzsYcOgjg2b_0P5Fl6vuyn9jC26eeHMdoj56av09t7-ont3LkGwm8yOezV6_Vvc39LaFYP0P1uJYKlhdVDNFL1I3TPyU_5GH2wAMM9wLAFGF7X2AIMdwDDDsDwVuMeTxgAhl2A4QFgT9Dlq2Q1X3jdbRxeCSS78UINzr4QvAz0lBVBAdzb5zllUQkUV-uoKoJSVMpsTnNWlmqqaREIPy7DuKq4CsKnaL_e1uoQ4TAo_aDSU-2rgk4p477Oi0Kzaa41KC0Yo9Nea9knm3Qlg8Wq0XO203OWrrK00_MYJVa5Q_3uT-nWZyyjpnDaDdXMGUdwKWN0DLbJyrUpYXE0hdU0LELMzGYW_3SMjnqrZZ0j-JLBsCgQDnBuz_7Q_Dm6u_unHaH95vONOgZS2xQvOqj9AHxek7w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Research+Trends+in+Severe+Plastic+Deformation+of+Metallic+and+Non-Metallic+Materials&rft.jtitle=MATERIALS+TRANSACTIONS&rft.au=Edalati+Kaveh&rft.au=Horita+Zenji&rft.date=2025-04-01&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E9%87%91%E5%B1%9E%E5%AD%A6%E4%BC%9A&rft.issn=1345-9678&rft.eissn=1347-5320&rft.volume=66&rft.issue=4&rft.spage=450&rft.epage=461&rft_id=info:doi/10.2320%2Fmatertrans.mt-m2024189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-9678&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-9678&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-9678&client=summon