Recent Research Trends in Severe Plastic Deformation of Metallic and Non-Metallic Materials
Severe plastic deformation (SPD) has emerged as a transformative tool in materials science, enabling the development of ultrafine-grained, nanostructured and heterostructured materials with exceptional mechanical and functional properties. Initially gaining prominence in the early 2000s for microstr...
Saved in:
Published in | MATERIALS TRANSACTIONS Vol. 66; no. 4; pp. 450 - 461 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Sendai
The Japan Institute of Metals and Materials
01.04.2025
公益社団法人 日本金属学会 Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1345-9678 1347-5320 |
DOI | 10.2320/matertrans.MT-M2024189 |
Cover
Abstract | Severe plastic deformation (SPD) has emerged as a transformative tool in materials science, enabling the development of ultrafine-grained, nanostructured and heterostructured materials with exceptional mechanical and functional properties. Initially gaining prominence in the early 2000s for microstructure control and mechanical property enhancement, SPD is now increasingly applied to improve functional properties, particularly in biomedical, energy, and hydrogen-related applications. The scope of SPD has expanded from metallic materials to encompass a wide range of non-metallic materials, including ceramics and polymers. Additionally, SPD methods have provided insights into natural phenomena involving high strain and pressure, such as phase transformations and certain geological and astronomical processes. This article reviews recent research trends, as highlighted in the 2023 special issue of Materials Transactions entitled “Superfunctional Nanomaterials by Severe Plastic Deformation”, focusing on recent advancements and interdisciplinary applications of SPD. |
---|---|
AbstractList | Severe plastic deformation (SPD) has emerged as a transformative tool in materials science, enabling the development of ultrafine-grained, nanostructured and heterostructured materials with exceptional mechanical and functional properties. Initially gaining prominence in the early 2000s for microstructure control and mechanical property enhancement, SPD is now increasingly applied to improve functional properties, particularly in biomedical, energy, and hydrogen-related applications. The scope of SPD has expanded from metallic materials to encompass a wide range of non-metallic materials, including ceramics and polymers. Additionally, SPD methods have provided insights into natural phenomena involving high strain and pressure, such as phase transformations and certain geological and astronomical processes. This article reviews recent research trends, as highlighted in the 2023 special issue of Materials Transactions entitled “Superfunctional Nanomaterials by Severe Plastic Deformation”, focusing on recent advancements and interdisciplinary applications of SPD. |
ArticleNumber | MT-M2024189 |
Author | Edalati, Kaveh Horita, Zenji |
Author_xml | – sequence: 1 fullname: Edalati, Kaveh organization: WPI, International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University – sequence: 1 fullname: Horita, Zenji organization: Synchrotron Light Application Center, Saga University |
BackLink | https://cir.nii.ac.jp/crid/1390585095042500864$$DView record in CiNii |
BookMark | eNpNkE9PGzEQxa0KpELgKyBL9Lqp_699rNLSVsoCgnDiYHm9Y9ho46X2Uolvj9NAymXGGv3mvfE7RgdxjIDQGSVzxhn5unETpCm5mOfNqmoYYYJq8wkdUS7qShbk4N9bVkbV-jM6znlNCK8lY0fo_gY8xAnfQAaX_CNeJYhdxn3Et_AXEuDrweWp9_g7hDEVr36MeAy4gckNQ5m72OHLMVb7QbO9p3dDPkGHoTQ4feszdHfxY7X4VS2vfv5efFtWXkg1VTwQoVujPQtEtaylstzvhJLeGB6C7FrmTQdCc6GV90CCaJmhted112lgfIbOd7pPafzzDHmy6_E5xWJpy-cFFYpSXii1o3wac04Q7FPqNy69WErsNkj7P0jbrOx7kGXxy24x9r31_bZSbojUkhhJBJOEaCUKttxh6zy5B9iru1TSG-CjulJWbMsHlz3mH12yEPkrsA2RvQ |
Cites_doi | 10.2320/matertrans.M2009375 10.1016/j.matchar.2018.02.028 10.1039/D1TA03861C 10.1016/j.msea.2003.10.257 10.2320/matertrans.MT-MF2022039 10.2320/matertrans.MT-MF2022047 10.2320/matertrans.MT-MF2022028 10.1016/j.matdes.2016.05.079 10.2320/matertrans.MT-MF2022005 10.1016/j.matlet.2021.130144 10.3390/ma17246189 10.1016/j.ijhydene.2019.01.104 10.1134/S0965545X1403002X 10.2320/matertrans.MT-MF2022031 10.1016/j.msea.2022.142666 10.2320/matertrans.MT-MF2022025 10.1016/j.actamat.2015.07.060 10.1016/j.jallcom.2021.161101 10.1063/10.0011605 10.2320/matertrans.MB200914 10.1007/s00161-021-01065-5 10.3390/ma11071175 10.1038/s41467-022-33802-y 10.2320/matertrans.MT-MF2022056 10.1038/s41598-018-25140-1 10.3390/ma15031007 10.1016/j.jmst.2021.01.096 10.1002/adem.202400578 10.3390/ma16031081 10.1016/j.carbon.2019.02.012 10.2320/matertrans.MT-MF2022021 10.1080/14686996.2018.1435131 10.2320/matertrans.MF201923 10.2320/matertrans.MF201938 10.2320/matertrans.MT-MF2022058 10.1016/j.jallcom.2021.159063 10.1016/j.corsci.2022.110253 10.1016/j.jallcom.2024.176722 10.1021/acs.energyfuels.2c03722 10.1016/j.apcatb.2021.120896 10.1016/j.msea.2019.138074 10.1080/21663831.2022.2057821 10.2320/matertrans.MT-MF2022043 10.1016/j.scriptamat.2022.114949 10.2320/matertrans.MF201920 10.1016/j.matlet.2022.132414 10.2320/matertrans.MT-MF2022022 10.1007/s11661-010-0400-6 10.2320/matertrans.MT-MF2022016 10.1016/j.actamat.2023.118671 10.1016/j.jcis.2024.04.010 10.1016/j.msea.2015.11.074 10.2320/matertrans.MF201941 10.1002/pen.21613 10.1016/j.pmatsci.2023.101131 10.1016/j.corsci.2023.111097 10.1002/adem.200300567 10.2320/matertrans.MF201929 10.2320/matertrans.MT-MF2022006 10.2320/matertrans.MT-MF2022033 10.3390/cryst12010054 10.1016/j.msea.2021.141869 10.1016/j.cej.2022.137800 10.1016/j.actamat.2016.02.049 10.2320/matertrans.MT-L2023022 10.1016/j.scriptamat.2022.114631 10.1063/1.4754574 10.5796/electrochemistry.22-00133 10.2320/matertrans.MF201943 10.2320/matertrans.MT-MF2022053 10.1016/j.scriptamat.2024.116268 10.2320/matertrans.MT-MF2022030 10.1016/j.matlet.2019.126933 10.1016/j.scriptamat.2021.114472 10.1016/j.scriptamat.2011.11.039 10.2320/matertrans.MT-MF2022032 10.1016/j.matlet.2021.130368 10.1016/S1875-5372(17)30059-0 10.1016/j.scriptamat.2010.09.034 10.1146/annurev-matsci-070909-104445 10.1016/j.intermet.2021.107445 10.2320/matertrans.MT-MF2022024 10.2307/20023239 10.2320/matertrans.MT-MF2022007 10.4149/km_2016_1_1 10.1002/adem.202302267 10.2320/matertrans.MT-MF2022029 10.1088/0953-8984/18/25/S14 10.2320/matertrans.MF201934 10.2320/matertrans.MT-MF2022040 10.1016/j.cej.2022.136209 10.2320/matertrans.MT-MF2022010 10.2320/matertrans.MF201912 10.1016/j.jphotochem.2023.115409 10.1007/s11837-006-0213-7 10.14356/kona.2024003 10.1016/j.scriptamat.2021.114390 10.1002/adem.202100159 10.1016/j.actamat.2011.09.026 10.1063/5.0009456 10.1016/j.cej.2024.158730 10.4028/www.scientific.net/MSF.735.146 10.5923/j.nn.20120203.01 10.1016/j.msea.2015.10.121 10.1016/j.scriptamat.2016.07.007 10.1016/j.msea.2022.143179 10.1039/D3TA04198K 10.2320/matertrans.MT-MF2022050 10.1063/5.0044030 10.1016/j.jallcom.2019.153548 10.1016/j.actamat.2012.10.038 10.1016/j.scriptamat.2018.08.031 10.1557/s43577-021-00060-0 10.2320/matertrans.MF201918 10.2320/matertrans.MT-MF2022027 10.1016/j.scriptamat.2019.08.011 10.1016/j.jphotochem.2022.114167 10.1080/21663831.2015.1065454 10.1016/j.msea.2017.12.065 10.1016/j.actamat.2016.02.026 10.2320/matertrans.MT-MF2022018 10.1016/S0079-6425(01)00002-0 10.1016/j.msea.2018.02.002 10.2320/matertrans.MF201914 10.2320/matertrans.MT-MF2022011 10.1016/j.jallcom.2024.174667 10.1002/app.42180 10.1039/C9TA12846H 10.1002/adem.201801300 10.2320/matertrans.MT-MF2022051 10.1007/s10853-022-07616-8 10.2320/matertrans.MT-MF2022004 10.2320/matertrans.MD200822 10.1016/j.actamat.2019.12.007 10.1007/s10853-023-09206-8 10.2320/matertrans.MT-MF2022015 10.1016/j.actamat.2024.120559 10.1016/j.apcatb.2024.124968 10.1016/j.jallcom.2021.162413 10.2320/matertrans.MT-M2023136 10.2320/matertrans.MT-M2020314 10.2320/matertrans.MT-MF2022049 10.1016/j.ijhydene.2024.07.306 10.2320/matertrans.MF201924 10.1016/j.actamat.2020.06.015 10.2320/matertrans.MT-MF2022035 10.1007/s10853-024-09464-0 10.2320/matertrans.MT-MF2022013 10.1016/j.actamat.2019.01.027 10.1039/C9TA11839J 10.1016/j.jcat.2024.115808 10.3390/met10060772 10.1016/j.jmst.2022.10.068 10.1016/j.msea.2017.06.076 10.2320/matertrans.MT-MF2022048 10.2320/matertrans.MT-MF2022020 10.2320/matertrans.MT-MF2022034 10.2320/matertrans.MT-MF2022009 10.1103/PhysRev.48.825 10.3390/met13081340 10.2320/matertrans.MT-MF2022023 10.1016/j.msea.2018.05.079 10.1016/j.jallcom.2024.178274 10.2320/matertrans.MT-MF2022038 10.2320/matertrans.MF201922 10.1016/j.msea.2009.11.060 10.1002/app.49720 10.1016/j.msea.2015.12.085 10.1038/s41598-022-09735-3 10.1002/adem.201000119 10.1016/j.pmatsci.2008.03.002 10.2320/matertrans.MT-MF2022037 10.1086/624468 10.2320/matertrans.MF201915 10.1007/s10853-023-09198-5 10.1007/s11837-014-1113-x 10.2320/matertrans.MT-MF2022044 10.3390/ma16020587 10.1016/j.intermet.2024.108368 10.3390/cryst8020068 10.1016/j.jallcom.2016.05.337 10.2320/matertrans.MT-MF2022055 10.1016/j.msea.2016.08.118 10.2320/matertrans.MT-M2020134 10.1016/j.scriptamat.2004.02.004 10.1557/jmr.2015.239 10.1016/j.actamat.2022.117689 10.2320/matertrans.MT-MF2022036 10.2320/matertrans.MT-MF2022042 10.2320/matertrans.MT-MF2022057 10.2320/matertrans.MF201909 10.2320/matertrans.MT-MF2022014 10.1016/j.msec.2020.110908 10.1016/j.scriptamat.2016.06.022 10.3390/met5042148 10.1007/s10853-011-5822-z 10.2320/matertrans.MT-MF2022019 10.2320/matertrans.MT-MF2022059 10.1016/j.cirp.2008.09.005 10.1016/j.actamat.2015.06.025 10.1016/j.scriptamat.2014.04.023 10.2320/matertrans.MF201919 10.2320/matertrans.MT-MF2022008 10.1080/21663831.2022.2029779 10.2320/matertrans.MT-MF2022041 10.1016/j.scriptamat.2024.116205 10.2320/matertrans.MPR2023905 10.2320/matertrans.MT-MF2022046 10.2320/matertrans.MT-MF2022012 10.1016/j.actamat.2012.09.048 10.2320/matertrans.MT-MF2022045 10.2320/matertrans.MF201937 10.1016/j.actamat.2019.11.010 10.2320/matertrans.MF201936 10.2320/matertrans.MT-MF2022026 10.1007/s11661-007-9459-0 10.1016/j.msea.2022.142670 10.1002/adem.202000011 10.1016/j.msea.2022.143399 10.1016/S1359-6454(98)00365-6 10.1002/adem.201800272 10.1038/s41467-024-54169-2 10.1016/S0921-5093(00)00686-9 10.1016/j.matlet.2015.03.066 10.1016/j.ijplas.2021.103193 10.2320/matertrans.MPR2019904 10.1088/1742-6596/1750/1/012077 10.1038/s41467-024-51469-5 10.2320/matertrans.MF201942 10.1016/j.ijhydene.2024.11.353 10.1007/s12598-023-02340-x 10.1016/j.pmatsci.2018.02.002 10.2320/matertrans.MT-MF2022017 10.1016/j.apcatb.2021.120566 10.1016/S0079-6425(99)00007-9 10.1038/s41578-020-0212-2 |
ContentType | Journal Article |
Copyright | 2025 The Japan Institute of Metals and Materials Copyright Japan Science and Technology Agency 2025 |
Copyright_xml | – notice: 2025 The Japan Institute of Metals and Materials – notice: Copyright Japan Science and Technology Agency 2025 |
DBID | RYH AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.2320/matertrans.MT-M2024189 |
DatabaseName | CiNii Complete CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-5320 |
EndPage | 461 |
ExternalDocumentID | 10_2320_matertrans_MT_M2024189 article_matertrans_66_4_66_MT_M2024189_article_char_en |
GroupedDBID | -~X .L7 .LE 5GY 93D ABJNI ACGFS ACIWK ADMLS AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 JSI JSP RJT RZJ SJN RYH AAYXX CITATION 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c456t-3f048b98c2f06b2b15418a465c993ff5db2c9de483486cce0f4b2917c37dd8e23 |
ISSN | 1345-9678 |
IngestDate | Mon Jun 30 08:41:50 EDT 2025 Tue Jul 01 05:16:09 EDT 2025 Thu Jun 26 23:53:09 EDT 2025 Wed Sep 03 06:30:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c456t-3f048b98c2f06b2b15418a465c993ff5db2c9de483486cce0f4b2917c37dd8e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/matertrans/66/4/66_MT-M2024189/_article/-char/en |
PQID | 3204146113 |
PQPubID | 1976393 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3204146113 crossref_primary_10_2320_matertrans_MT_M2024189 nii_cinii_1390585095042500864 jstage_primary_article_matertrans_66_4_66_MT_M2024189_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Sendai |
PublicationPlace_xml | – name: Sendai |
PublicationTitle | MATERIALS TRANSACTIONS |
PublicationTitleAlternate | Mater. Trans. |
PublicationTitle_FL | MATERIALS TRANSACTIONS Mater. Trans |
PublicationYear | 2025 |
Publisher | The Japan Institute of Metals and Materials 公益社団法人 日本金属学会 Japan Science and Technology Agency |
Publisher_xml | – name: The Japan Institute of Metals and Materials – name: 公益社団法人 日本金属学会 – name: Japan Science and Technology Agency |
References | 216) N.T.C. Nguyen, P. Asghari-Rad, H. Park and H.S. Kim: Differential superplasticity in a multi-phase multi-principal element alloy by initial annealing, J. Mater. Sci. 57 (2022) 18154–18167. doi:10.1007/s10853-022-07616-8 202) B.B. Straumal, R. Kulagin, B. Baretzky, N.Y. Anisimova, M.V. Kiselevskiy, L. Klinger, P.B. Straumal, O.A. Kogtenkova and R.Z. Valiev: Severe plastic deformation and phase transformations in high entropy alloys: a review, Crystals 12 (2022) 54. doi:10.3390/cryst12010054 58) G. Wilde, H. Rösner and S. Divinski: Internal interfaces in severely deformed metals and alloys: coupling of kinetics, structure and strain with properties and performance, Mater. Trans. 64 (2023) 1331–1345. doi:10.2320/matertrans.MT-MF2022009 160) A. Mohammadi, P. Edalati, M. Arita, J.W. Bae, H.S. Kim and K. Edalati: High strength and high ductility of a severely deformed high-entropy alloy in the presence of hydrogen, Corros. Sci. 216 (2023) 111097. doi:10.1016/j.corsci.2023.111097 190) V.H. Hammond, M.A. Atwater, K.A. Darling, H.Q. Nguyen and L.J. Kecskes: Equal-channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying, JOM 66 (2014) 2021–2029. doi:10.1007/s11837-014-1113-x 229) G. Rogl, S. Ghosh, L. Wang, J. Bursik, A. Grytsiv, M. Kerber, E. Bauer, R.C. Malik, X.Q. Chen, M. Zehetbauer and P. Rogl: Half-Heusler alloys: Enhancement of ZT after severe plastic deformation (ultra-low thermal conductivity), Acta Mater. 183 (2020) 285–300. doi:10.1016/j.actamat.2019.11.010 105) L. Takacs: Self-sustaining reactions induced by ball milling, Prog. Mater. Sci. 47 (2002) 355–414. doi:10.1016/S0079-6425(01)00002-0 171) Y. Wang, S. Lee, K. Yamamoto, T. Matsunaga, H. Miki, H. Iba, K. Tsuchiya, T. Uchiyama, T. Watanabe, T. Takami and Y. Uchimoto: Properties of composite electrodes for all-solid-state fluoride-ion secondary batteries processed by high-pressure torsion, Electrochemistry 91 (2023) 027002. doi:10.5796/electrochemistry.22-00133 174) J. Hidalgo-Jiménez, T. Akbay, T. Ishihara and K. Edalati: Understanding high photocatalytic activity of the TiO2 high-pressure columbite phase by experiments and first-principles calculations, J. Mater. Chem. A 11 (2023) 23523–23535. doi:10.1039/D3TA04198K 197) Q.H. Tang, Y. Huang, H. Cheng, X.Z. Liao, T.G. Langdon and P.Q. Dai: The effect of grain size on the annealing-induced phase transformation in an Al0.3CoCrFeNi high entropy alloy, Mater. Des. 105 (2016) 381–385. doi:10.1016/j.matdes.2016.05.079 40) R.B. Figueiredo, K. Edalati and T.G. Langdon: Effect of creep parameters on the steady-state flow stress of pure metals processed by high-pressure torsion, Mater. Sci. Eng. A 835 (2022) 142666. doi:10.1016/j.msea.2022.142666 70) Y. Mine: Micro-mechanical characterisation of hydrogen embrittlement and fatigue crack growth behaviours in metastable austenitic stainless steels with microstructure refinement, Mater. Trans. 64 (2023) 1474–1488. doi:10.2320/matertrans.MT-MF2022041 193) D.H. Lee, I.C. Choi, M.Y. Seok, J. He, Z. Lu, J.Y. Suh, M. Kawasaki, T.G. Langdon and J. Jang: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, J. Mater. Res. 30 (2015) 2804–2815. doi:10.1557/jmr.2015.239 198) H. Shahmir, J. He, Z. Lu, M. Kawasaki and T.G. Langdon: Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, Mater. Sci. Eng. A 676 (2016) 294–303. doi:10.1016/j.msea.2016.08.118 90) M.W. Kapp, A. Hohenwarter, A. Bachmaier, T. Müller and R. Pippan: SPD deformation of pearlitic, bainitic and martensitic steels, Mater. Trans. 64 (2023) 1353–1363. doi:10.2320/matertrans.MT-MF2022027 20) T.C. Lowe, R.Z. Valiev, X. Li and B.R. Ewing: Commercialization of bulk nanostructured metals and alloys, MRS Bull. 46 (2021) 265–272. doi:10.1557/s43577-021-00060-0 108) G. Liu, J. Lu and K. Lu: Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening, Mater. Sci. Eng. A 286 (2000) 91–95. doi:10.1016/S0921-5093(00)00686-9 181) S. Akrami, Y. Murakami, M. Watanabe, T. Ishihara, M. Arita, M. Fuji and K. Edalati: Defective high-entropy oxide photocatalyst with high activity for CO2 conversion, Appl. Catal. B 303 (2022) 120896. doi:10.1016/j.apcatb.2021.120896 3) K. Edalati et al.: Nanomaterials by severe plastic deformation: review of historical developments and recent advances, Mater. Res. Lett. 10 (2022) 163–256. doi:10.1080/21663831.2022.2029779 187) J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303. doi:10.1002/adem.200300567 165) G. Rogl, M.J. Zehetbauer and P.F. Rogl: The effect of severe plastic deformation on thermoelectric performance of skutterudites, half-Heuslers and Bi-tellurides, Mater. Trans. 60 (2019) 2071–2085. doi:10.2320/matertrans.MF201941 220) P. Edalati, R. Floriano, Y. Tang, A. Mohammadi, K.D. Pereira, A.D. Luchessi and K. Edalati: Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion, Mater. Sci. Eng. C 112 (2020) 110908. doi:10.1016/j.msec.2020.110908 41) K. Edalati, R. Uehiro, K. Fujiwara, Y. Ikeda, H.W. Li, X. Sauvage, R.Z. Valiev, E. Akiba, I. Tanaka and Z. Horita: Ultra-severe plastic deformation: evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems, Mater. Sci. Eng. A 701 (2017) 158–166. doi:10.1016/j.msea.2017.06.076 164) R.Z. Valiev, E.V. Parfenov and L.V. Parfenova: Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality, Mater. Trans. 60 (2019) 1356–1366. doi:10.2320/matertrans.MF201943 158) I.A. Ovid’ko, R.Z. Valiev and Y.T. Zhu: Review on superior strength and enhanced ductility of metallic nanomaterials, Prog. Mater. Sci. 94 (2018) 462–540. doi:10.1016/j.pmatsci.2018.02.002 51) Y. Takizawa and Z. Horita: Incremental feeding high-pressure sliding (IF-HPS) process for upscaling highly strained areas in metallic materials with enhanced mechanical properties, Mater. Trans. 64 (2023) 1364–1375. doi:10.2320/matertrans.MT-MF2022025 191) B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan and A. Hohenwarter: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater. 96 (2015) 258–268. doi:10.1016/j.actamat.2015.06.025 233) V.A. Beloshenko, V.N. Varyukhin, A.V. Voznyak and Y.V. Voznyak: Equal-channel multiangular extrusion of semicrystalline polymers, Polym. Eng. Sci. 50 (2010) 1000–1006. doi:10.1002/pen.21613 126) K. Edalati, M. Arimura, Y. Ikoma, T. Daio, M. Miyata, D.J. Smith and Z. Horita: Plastic deformation of BaTiO3 ceramics by high-pressure torsion and changes in phase transformations, optical and dielectric properties, Mater. Res. Lett. 3 (2015) 216–221. doi:10.1080/21663831.2015.1065454 59) V.V. Popov, E.N. Popova and E.V. Osinnikov: Specific features of grain boundaries in nickel processed by high-pressure torsion, Mater. Trans. 64 (2023) 1401–1409. doi:10.2320/matertrans.MT-MF2022012 25) K. Edalati, I. Taniguchi, R. Floriano and A. Ducati Luchessi: Glycine amino acid transformation under impacts by small solar system bodies, simulated by high-pressure torsion method, Sci. Rep. 12 (2022) 5677. doi:10.1038/s41598-022-09735-3 77) Á. Révész and M. Gajdics: The effect of severe plastic deformation on the hydrogen storage properties of metal hydrides, Mater. Trans. 64 (2023) 1387–1400. doi:10.2320/matertrans.MT-MF2022019 106) J. Sort, D.C. Ile, A.P. Zhilyaev, A. Concustell, T. Czeppe, M. Stoica, S. Surinach, J. Eckert and M.D. Baro: Cold-consolidation of ball-milled Fe-based amorphous ribbons by high pressure torsion, Scr. Mater. 50 (2004) 1221–1225. doi:10.1016/j.scriptamat.2004.02.004 219) P. Edalati, A. Cremasco, K. Edalati and R. Floriano: High corrosion resistance of nanograined and nanotwinned Al0.1CoCrFeNi high-entropy alloy processed by high-pressure torsion, Intermetallics 172 (2024) 108368. doi:10.1016/j.intermet.2024.108368 86) K. Bryła and J. Horky: Magnesium alloys processed by severe plastic deformation (SPD) for biomedical applications: an overview, Mater. Trans. 64 (2023) 1709–1723. doi:10.2320/matertrans.MT-MF2022056 159) S. Kuramoto and T. Furuta: Severe plastic deformation to achieve high strength and high ductility in FeNi based alloys with lattice softening, Mater. Trans. 60 (2019) 1116–1122. doi:10.2320/matertrans.MF201920 127) H. Razavi-Khosroshahi, K. Edalati, M. Arita, Z. Horita and M. Fuji: Plastic strain and grain size effect on high-pressure phase transformations in nanostructured TiO2 ceramics, Scr. Mater. 124 (2016) 59–62. doi:10.1016/j.scriptamat.2016.06.022 31) A. Mazilkin, B. Straumal, A. Kilmametov, P. Straumal and B. Baretzky: Phase transformations induced by severe plastic deformation, Mater. Trans. 60 (2019) 1489–1499. doi:10.2320/matertrans.MF201938 239) S. Yesudhas, V.I. Levitas, F. Lin, K.K. Pandey and J. Smith: Unusual plastic strain-induced phase transformation phenomena in silicon, Nat. Commun. 15 (2024) 7054. doi:10.1038/s41467-024-51469-5 207) P.T. Hung, M. Kawasaki, J.K. Han, Á. Szabó, J.L. Lábár, Z. Hegedűs and J. Gubicza: Thermal stability of nanocrystalline CoCrFeNi multi-principal element alloy: effect of the degree of severe plastic deformation, Intermetallics 142 (2022) 107445. doi:10.1016/j.intermet.2021.107445 225) P. Edalati, A. Mohammadi, M. Ketabchi and K. Edalati: Microstructure and microhardness of dual-phase high-entropy alloy by high-pressure torsion: twins and stacking faults in FCC and dislocations in BCC, J. Alloy. Compd. 894 (2022) 162413. doi:10.1016/j.jallcom.2021.162413 96) D.H. Lee, I.C. Choi, M. Kawasaki, T.G. Langdon and J.I. Jang: A review of recent research on 230 110 231 111 232 112 233 113 234 114 235 115 236 116 237 117 238 118 119 10 11 12 13 14 15 16 17 18 19 120 121 1 122 2 123 3 124 4 125 5 126 6 127 7 128 8 129 9 20 21 22 23 24 25 26 27 28 29 130 131 132 133 134 135 136 137 138 139 30 31 32 33 34 35 36 37 38 39 140 141 142 143 144 145 146 147 148 149 40 41 42 43 44 45 46 47 48 49 150 151 152 153 154 155 156 157 158 159 50 51 52 53 54 55 56 57 58 59 160 161 162 163 164 165 166 167 168 169 60 61 62 63 64 65 66 67 68 69 170 171 172 173 174 175 176 177 178 179 70 71 72 73 74 75 76 77 78 79 180 181 182 183 184 185 186 187 188 189 80 81 82 83 84 85 86 87 88 89 190 191 192 193 194 195 196 197 198 199 90 91 92 93 94 95 96 97 98 99 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 100 221 101 222 102 223 103 224 104 225 105 226 106 227 107 228 108 229 109 |
References_xml | – reference: 66) O. Renk and R. Pippan: Anneal hardening in single phase nanostructured metals, Mater. Trans. 64 (2023) 1464–1473. doi:10.2320/matertrans.MT-MF2022029 – reference: 88) N.Q. Chinh, D. Olasz, A.Q. Ahmed, E.V. Bobruk and R.Z. Valiev: Review on grain size- and grain boundary phenomenon in unusual mechanical behavior of ultrafine-grained Al alloys, Mater. Trans. 64 (2023) 1844–1855. doi:10.2320/matertrans.MT-MF2022020 – reference: 53) L. Kommel: Overview of hard cyclic viscoplastic deformation as a new method for modifying the structure and properties of metallic materials, Mater. Trans. 65 (2024) 109–118. doi:10.2320/matertrans.MT-M2023136 – reference: 63) B. Straumal, A. Gornakova, G. Davdjan, A. Mazilkin, Ł. Gondek, M. Szczerba and A. Korneva: Review - phase transitions in Ti alloys driven by the high pressure torsion, Mater. Trans. 64 (2023) 1820–1832. doi:10.2320/matertrans.MT-MF2022044 – reference: 178) S. Hao, K. Edalati, Q. Gao and H.J. Lin: Effect of crystal defects on the electrocatalytic CO2 reduction performance of pure copper, Scr. Mater. 252 (2024) 116268. doi:10.1016/j.scriptamat.2024.116268 – reference: 207) P.T. Hung, M. Kawasaki, J.K. Han, Á. Szabó, J.L. Lábár, Z. Hegedűs and J. Gubicza: Thermal stability of nanocrystalline CoCrFeNi multi-principal element alloy: effect of the degree of severe plastic deformation, Intermetallics 142 (2022) 107445. doi:10.1016/j.intermet.2021.107445 – reference: 200) X. Liu, H. Ding, Y. Huang, X. Bai, Q. Zhang, H. Zhang, T.G. Langdon and J. Cui: Evidence for a phase transition in an AlCrFe2Ni2 high entropy alloy processed by high-pressure torsion, J. Alloy. Compd. 867 (2021) 159063. doi:10.1016/j.jallcom.2021.159063 – reference: 174) J. Hidalgo-Jiménez, T. Akbay, T. Ishihara and K. Edalati: Understanding high photocatalytic activity of the TiO2 high-pressure columbite phase by experiments and first-principles calculations, J. Mater. Chem. A 11 (2023) 23523–23535. doi:10.1039/D3TA04198K – reference: 76) J. Zhong, F. Zhang, X. Tong, X. Hu and B. Wang: Hydrolytic hydrogen production from severely plastic deformed aluminum-based materials: an overview, Mater. Trans. 64 (2023) 1376–1386. doi:10.2320/matertrans.MT-MF2022023 – reference: 79) N. Kudriashova and J. Huot: Effect of cold rolling on magnesium-based metal hydrides, Mater. Trans. 64 (2023) 1879–1885. doi:10.2320/matertrans.MT-MF2022058 – reference: 187) J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303. doi:10.1002/adem.200300567 – reference: 180) M. Katai, P. Edalati, J. Hidalgo-Jimenez, Y. Shundo, T. Akbay, T. Ishihara, M. Arita, M. Fuji and K. Edalati: Black brookite rich in oxygen vacancies as an active photocatalyst for CO2 conversion: experiments and first-principles calculations, J. Photochem. Photobiol. A 449 (2024) 115409. doi:10.1016/j.jphotochem.2023.115409 – reference: 3) K. Edalati et al.: Nanomaterials by severe plastic deformation: review of historical developments and recent advances, Mater. Res. Lett. 10 (2022) 163–256. doi:10.1080/21663831.2022.2029779 – reference: 190) V.H. Hammond, M.A. Atwater, K.A. Darling, H.Q. Nguyen and L.J. Kecskes: Equal-channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying, JOM 66 (2014) 2021–2029. doi:10.1007/s11837-014-1113-x – reference: 103) T. Grosdidier, M. Novelli and L. Weiss: Surface severe plastic deformation for improved mechanical/corrosion properties and further applications in the bio-medical and hydrogen sectors, Mater. Trans. 64 (2023) 1695–1708. doi:10.2320/matertrans.MT-MF2022040 – reference: 90) M.W. Kapp, A. Hohenwarter, A. Bachmaier, T. Müller and R. Pippan: SPD deformation of pearlitic, bainitic and martensitic steels, Mater. Trans. 64 (2023) 1353–1363. doi:10.2320/matertrans.MT-MF2022027 – reference: 21) K. Edalati: Review on recent advancements in severe plastic deformation of oxides by high-pressure torsion (HPT), Adv. Eng. Mater. 21 (2019) 1800272. doi:10.1002/adem.201800272 – reference: 165) G. Rogl, M.J. Zehetbauer and P.F. Rogl: The effect of severe plastic deformation on thermoelectric performance of skutterudites, half-Heuslers and Bi-tellurides, Mater. Trans. 60 (2019) 2071–2085. doi:10.2320/matertrans.MF201941 – reference: 14) K. Edalati and Z. Horita: A review on high-pressure torsion (HPT) from 1935 to 1988, Mater. Sci. Eng. A 652 (2016) 325–352. doi:10.1016/j.msea.2015.11.074 – reference: 123) V.D. Blank, M.Y. Popov and B.A. Kulnitskiy: The effect of severe plastic deformations on phase transitions and structure of solids, Mater. Trans. 60 (2019) 1500–1505. doi:10.2320/matertrans.MF201942 – reference: 15) V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy and V.I. Kopylov: Plastic working of metals by simple shear, Russ. Metall. 1 (1981) 99–105. – reference: 25) K. Edalati, I. Taniguchi, R. Floriano and A. Ducati Luchessi: Glycine amino acid transformation under impacts by small solar system bodies, simulated by high-pressure torsion method, Sci. Rep. 12 (2022) 5677. doi:10.1038/s41598-022-09735-3 – reference: 172) J.P. Rojas, J.E. González-Hernández, J.M. Cubero-Sesin, Z. Horita and D. González-Flores: Benchmarking of aluminum alloys processed by high-pressure torsion: Al-3% Mg alloy for high-energy density Al-Air batteries, Energy Fuels 37 (2023) 4632–4640. doi:10.1021/acs.energyfuels.2c03722 – reference: 109) M. Novelli, P. Bocher and T. Grosdidier: Effect of cryogenic temperatures and processing parameters on gradient-structure of a stainless steel treated by ultrasonic surface mechanical attrition treatment, Mater. Charact. 139 (2018) 197–207. doi:10.1016/j.matchar.2018.02.028 – reference: 10) K. Edalati, E. Akiba and Z. Horita: High-pressure torsion for new hydrogen storage materials, Sci. Technol. Adv. Mater. 19 (2018) 185–193. doi:10.1080/14686996.2018.1435131 – reference: 57) Y. Beygelzimer, Y. Estrin and R. Kulagin: Some unresolved problems of high-pressure torsion, Mater. Trans. 64 (2023) 1856–1865. doi:10.2320/matertrans.MT-MF2022038 – reference: 129) K. Edalati and Z. Horita: Scaling-up of high pressure torsion using ring shape, Mater. Trans. 50 (2009) 92–95. doi:10.2320/matertrans.MD200822 – reference: 35) X. Sauvage, A. Duchaussoy and G. Zaher: Strain induced segregations in severely deformed materials, Mater. Trans. 60 (2019) 1151–1158. doi:10.2320/matertrans.MF201919 – reference: 141) S. Akrami, Y. Murakami, M. Watanabe, T. Ishihara, M. Arita, Q. Guo, M. Fuji and K. Edalati: Enhanced CO2 conversion on highly-strained and oxygen-deficient BiVO4 photocatalyst, Chem. Eng. J. 442 (2022) 136209. doi:10.1016/j.cej.2022.136209 – reference: 151) J. González-Masís, J.M. Cubero-Sesin, A. Campos-Quirós and K. Edalati: Synthesis of biocompatible high-entropy alloy TiNbZrTaHf by high-pressure torsion, Mater. Sci. Eng. A 825 (2021) 141869. doi:10.1016/j.msea.2021.141869 – reference: 202) B.B. Straumal, R. Kulagin, B. Baretzky, N.Y. Anisimova, M.V. Kiselevskiy, L. Klinger, P.B. Straumal, O.A. Kogtenkova and R.Z. Valiev: Severe plastic deformation and phase transformations in high entropy alloys: a review, Crystals 12 (2022) 54. doi:10.3390/cryst12010054 – reference: 228) P. Edalati, Q. Wang, H. Razavi-Khosroshahi, M. Fuji, T. Ishihara and K. Edalati: Photocatalytic hydrogen evolution on a high-entropy oxide, J. Mater. Chem. A 8 (2020) 3814–3821. doi:10.1039/C9TA12846H – reference: 122) Y. Ikoma, K. Hayano, K. Edalati, K. Saito, Q. Guo and Z. Horita: Phase transformation and nanograin refinement of silicon by processing through high-pressure torsion, Appl. Phys. Lett. 101 (2012) 121908. doi:10.1063/1.4754574 – reference: 16) Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Novel ultra-high straining process for bulk materials: Development of the accumulative roll-bonding (ARB) process, Acta Mater. 47 (1999) 579–583. doi:10.1016/S1359-6454(98)00365-6 – reference: 146) K.K. Pandey and V.I. Levitas: In situ quantitative study of plastic strain-induced phase transformations under high pressure: example for ultra-pure Zr, Acta Mater. 196 (2020) 338–346. doi:10.1016/j.actamat.2020.06.015 – reference: 56) A. Lalpour, M. Mosallaee, A. Ashrafi and A. Zargaran: Microstructural evolution in the friction stir processed AA2024, Mater. Trans. 64 (2023) 1894–1901. doi:10.2320/matertrans.MT-MF2022006 – reference: 38) M. Demirtas and G. Purcek: Room temperature superplasticity in fine/ultrafine grained materials subjected to severe plastic deformation, Mater. Trans. 60 (2019) 1159–1167. doi:10.2320/matertrans.MF201922 – reference: 24) V.I. Levitas: Resolving puzzles of the phase-transformation-based mechanism of the deep-focus earthquake, Nat. Commun. 13 (2022) 6291. doi:10.1038/s41467-022-33802-y – reference: 226) K. Edalati, I. Fujita, S. Takechi, Y. Nakashima, K. Kumano, H. Razavi-Khosroshahi, M. Arita, M. Watanabe, X. Sauvage, T. Akbay, T. Ishihara, M. Fuji and Z. Horita: Photocatalytic activity of aluminum oxide by oxygen vacancy generation using high-pressure torsion straining, Scr. Mater. 173 (2019) 120–124. doi:10.1016/j.scriptamat.2019.08.011 – reference: 32) V.I. Levitas: High-pressure phase transformations under severe plastic deformation by torsion in rotational anvils, Mater. Trans. 60 (2019) 1294–1301. doi:10.2320/matertrans.MF201923 – reference: 230) Q. Wang, Y. Tang, Z. Horita and S. Iikubo: Structural and thermoelectric properties of CH3NH3SnI3 perovskites processed by applying high pressure with shear strain, Mater. Res. Lett. 10 (2022) 521–529. doi:10.1080/21663831.2022.2057821 – reference: 143) K. Edalati and N. Enikeev: Dislocation density in ceramics processed by severe plastic deformation via high-pressure torsion, Materials 17 (2024) 6189. doi:10.3390/ma17246189 – reference: 87) A.P. Carvalho and R.B. Figueiredo: An overview of the effect of grain size on mechanical properties of magnesium and its alloys, Mater. Trans. 64 (2023) 1272–1283. doi:10.2320/matertrans.MT-MF2022005 – reference: 163) Z. Song, R. Niu, X. Cui, E.V. Bobruk, M.Y. Murashkin, N.A. Enikeev, J. Gu, M. Song, V. Bhatia, S.P. Ringer, R.Z. Valiev and X. Liao: Mechanism of room-temperature superplasticity in ultrafine-grained Al–Zn alloys, Acta Mater. 246 (2023) 118671. doi:10.1016/j.actamat.2023.118671 – reference: 98) Y. Ikoma: Structural and functional properties of Si and related semiconducting materials processed by high-pressure torsion, Mater. Trans. 64 (2023) 1346–1352. doi:10.2320/matertrans.MT-MF2022031 – reference: 8) V. Segal: Review: modes and processes of severe plastic deformation (SPD), Materials 11 (2018) 1175. doi:10.3390/ma11071175 – reference: 233) V.A. Beloshenko, V.N. Varyukhin, A.V. Voznyak and Y.V. Voznyak: Equal-channel multiangular extrusion of semicrystalline polymers, Polym. Eng. Sci. 50 (2010) 1000–1006. doi:10.1002/pen.21613 – reference: 107) K. Edalati, Z. Horita, H. Fujiwara and K. Ameyama: Cold consolidation of ball-milled titanium powders using high-pressure torsion, Metall. Mater. Trans. A 41 (2010) 3308–3317. doi:10.1007/s11661-010-0400-6 – reference: 150) A. Kilmametov, R. Kulagin, A. Mazilkin, S. Seils, T. Boll, M. Heilmaier and H. Hahn: High-pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy, Scr. Mater. 158 (2019) 29–33. doi:10.1016/j.scriptamat.2018.08.031 – reference: 77) Á. Révész and M. Gajdics: The effect of severe plastic deformation on the hydrogen storage properties of metal hydrides, Mater. Trans. 64 (2023) 1387–1400. doi:10.2320/matertrans.MT-MF2022019 – reference: 217) N.T.C. Nguyen, P. Asghari-Rad, A. Zargaran, E.S. Kim, P. Sathiyamoorthi and H.S. Kim: Relation of phase fraction to superplastic behavior of multi-principal element alloy with a multi-phase structure, Scr. Mater. 221 (2022) 114949. doi:10.1016/j.scriptamat.2022.114949 – reference: 86) K. Bryła and J. Horky: Magnesium alloys processed by severe plastic deformation (SPD) for biomedical applications: an overview, Mater. Trans. 64 (2023) 1709–1723. doi:10.2320/matertrans.MT-MF2022056 – reference: 145) T.T. Nguyen and K. Edalati: Efficient photocatalytic hydrogen production on defective and strained black bismuth (III) oxide, Int. J. Hydrogen Energ. 96 (2024) 841–848. doi:10.1016/j.ijhydene.2024.11.353 – reference: 169) C. Qian, Z. He, C. Liang, Y. Cha and W. Ji: Superior intracluster conductivity of metallic lithium-ion battery anode achieved by high-pressure torsion, Mater. Lett. 260 (2020) 126933. doi:10.1016/j.matlet.2019.126933 – reference: 40) R.B. Figueiredo, K. Edalati and T.G. Langdon: Effect of creep parameters on the steady-state flow stress of pure metals processed by high-pressure torsion, Mater. Sci. Eng. A 835 (2022) 142666. doi:10.1016/j.msea.2022.142666 – reference: 81) D. Fruchart, N. Skryabina, P. de Rango, M. Fouladvind and V. Aptukov: Severe plastic deformation by fast forging to easy produce hydride from bulk Mg-based alloys, Mater. Trans. 64 (2023) 1886–1893. doi:10.2320/matertrans.MT-MF2022049 – reference: 206) N.N. Liang, R.R. Xu, G.Z. Wu, X.Z. Gao and Y.H. Zhao: High thermal stability of nanocrystalline FeNi2CoMo0.2V0.5 high-entropy alloy by twin boundary and sluggish diffusion, Mater. Sci. Eng. A 848 (2022) 143399. doi:10.1016/j.msea.2022.143399 – reference: 4) K. Edalati et al.: Severe plastic deformation for producing superfunctional ultrafine-grained and heterostructured materials: an interdisciplinary review, J. Alloy. Compd. 1002 (2024) 174667. doi:10.1016/j.jallcom.2024.174667 – reference: 13) A.P. Zhilyaev and T.G. Langdon: Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893–979. doi:10.1016/j.pmatsci.2008.03.002 – reference: 148) J. Hidalgo-Jiménez, T. Akbay, Y. Ikeda, T. Ishihara and K. Edalati: Mechanism of anatase-to-columbite TiO2 phase transformation via sheared phases: first-principles calculations and high-pressure torsion experiments, J. Mater. Sci. 59 (2024) 5995–6007. doi:10.1007/s10853-023-09206-8 – reference: 209) A.I. Almazrouee, K.J. Al-Fadhalah, S.N. Alhajeri, Y. Huang and T.G. Langdon: Effect of long-term storage on microstructure and microhardness stability in OFHC copper processed by high-pressure torsion, Adv. Eng. Mater. 21 (2019) 1801300. doi:10.1002/adem.201801300 – reference: 136) A. Mohammadi, N.A. Enikeev, M.Y. Murashkin, M. Arita and K. Edalati: Examination of inverse Hall-Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation, J. Mater. Sci. Technol. 91 (2021) 78–89. doi:10.1016/j.jmst.2021.01.096 – reference: 156) K. Edalati, H. Emami, Y. Ikeda, H. Iwaoka, I. Tanaka, E. Akiba and Z. Horita: New nanostructured phases with reversible hydrogen storage capability in immiscible magnesium-zirconium system produced by high-pressure torsion, Acta Mater. 108 (2016) 293–303. doi:10.1016/j.actamat.2016.02.026 – reference: 30) N. Tsuji, R. Gholizadeh, R. Ueji, N. Kamikawa, L. Zhao, Y. Tian, Y. Bai and A. Shibata: Formation mechanism of ultrafine grained microstructures: various possibilities for fabricating bulk nanostructured metals and alloys, Mater. Trans. 60 (2019) 1518–1532. doi:10.2320/matertrans.MF201936 – reference: 220) P. Edalati, R. Floriano, Y. Tang, A. Mohammadi, K.D. Pereira, A.D. Luchessi and K. Edalati: Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion, Mater. Sci. Eng. C 112 (2020) 110908. doi:10.1016/j.msec.2020.110908 – reference: 120) B. Zheng, Y. Zhou, S.N. Mathaudhu, R.Z. Valiev, C.Y.A. Tsao, J.M. Schoenung and E.J. Lavernia: Multiple and extended shear band formation in MgCuGd metallic glass during high-pressure torsion, Scr. Mater. 86 (2014) 24–27. doi:10.1016/j.scriptamat.2014.04.023 – reference: 196) D.H. Lee, M.Y. Seok, Y. Zhao, I.C. Choi, J. He, Z. Lu, J.Y. Suh, U. Ramamurty, M. Kawasaki, T.G. Langdon and J. Jang: Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys, Acta Mater. 109 (2016) 314–322. doi:10.1016/j.actamat.2016.02.049 – reference: 219) P. Edalati, A. Cremasco, K. Edalati and R. Floriano: High corrosion resistance of nanograined and nanotwinned Al0.1CoCrFeNi high-entropy alloy processed by high-pressure torsion, Intermetallics 172 (2024) 108368. doi:10.1016/j.intermet.2024.108368 – reference: 197) Q.H. Tang, Y. Huang, H. Cheng, X.Z. Liao, T.G. Langdon and P.Q. Dai: The effect of grain size on the annealing-induced phase transformation in an Al0.3CoCrFeNi high entropy alloy, Mater. Des. 105 (2016) 381–385. doi:10.1016/j.matdes.2016.05.079 – reference: 26) K. Edalati, E. Akiba, W.J. Botta, Y. Estrin, R. Floriano, D. Fruchart, T. Grosdidier, Z. Horita, J. Huot, H.W. Li, H.J. Lin, Á. Révész and M.J. Zehetbauer: Impact of severe plastic deformation on kinetics and thermodynamics of hydrogen storage in magnesium and its alloys, J. Mater. Sci. Technol. 146 (2023) 221–239. doi:10.1016/j.jmst.2022.10.068 – reference: 116) M.A. Nikitina, R.K. Islamgaliev and V.D. Sitdikov: Thermal stability of TiAl-based intermetallic alloys subjected to high pressure torsion, Mater. Sci. Eng. A 651 (2016) 306–310. doi:10.1016/j.msea.2015.10.121 – reference: 167) J.B. Colbe et al.: Application of hydrides in hydrogen storage and compression: achievements, outlook and perspectives, Int. J. Hydrogen Energ. 44 (2019) 7780–7808. doi:10.1016/j.ijhydene.2019.01.104 – reference: 157) E.I. Lopez-Gomez, K. Edalati, D.D. Coimbroo, F.J. Antiqueira, G. Zepon, J.M. Cubero-Sesin and W.J. Botta: FCC phase formation in immiscible Mg-Hf (magnesium-hafnium) system by high-pressure torsion, AIP Adv. 10 (2020) 055222. doi:10.1063/5.0009456 – reference: 121) K. Edalati and Z. Horita: Correlations between hardness and atomic bond parameters of pure metals and semi-metals after processing by high-pressure torsion, Scr. Mater. 64 (2011) 161–164. doi:10.1016/j.scriptamat.2010.09.034 – reference: 18) Z. Ma: Friction stir processing technology: a review, Metall. Mater. Trans. A 39 (2008) 642–658. doi:10.1007/s11661-007-9459-0 – reference: 78) L. He, X. Shi, X. Li, J. Huang, T. Cheng, X. Wang, Y. Li, H. Lin, K. Edalati and H.W. Li: Severe plastic deformation through high-pressure torsion for preparation of hydrogen storage materials -a review, Mater. Trans. 64 (2023) 1575–1584. doi:10.2320/matertrans.MT-MF2022039 – reference: 104) T.P. Yadav, R.M. Yadav and D.P. Singh: Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites, Nanosci. Nanotechnol. 2 (2012) 22–48. doi:10.5923/j.nn.20120203.01 – reference: 214) H. Shahmir, M. Nili-Ahmadabadi, A. Shafiee and T.G. Langdon: Effect of a minor titanium -addition on the superplastic properties of a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, Mater. Sci. Eng. A 718 (2018) 468–476. doi:10.1016/j.msea.2018.02.002 – reference: 132) B. Omranpour, Y. Ivanisenko, R. Kulagin, L. Kommel, E. Garcia Sanchez, D. Nugmanov, T. Scherer, A. Heczel and J. Gubicza: Evolution of microstructure and hardness in aluminum processed by high pressure torsion extrusion, Mater. Sci. Eng. A 762 (2019) 138074. doi:10.1016/j.msea.2019.138074 – reference: 6) R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter and A. Bachmaier: Saturation of fragmentation during severe plastic deformation, Annu. Rev. Mater. Res. 40 (2010) 319–343. doi:10.1146/annurev-matsci-070909-104445 – reference: 67) V. Sklenicka, P. Kral, J. Dvorak, M. Kvapilova and K. Kucharova: Creep in nanostructured materials, Mater. Trans. 64 (2023) 1566–1574. doi:10.2320/matertrans.MT-MF2022035 – reference: 199) H. Yuan, M.H. Tsai, G. Sha, F. Liu, Z. Horita, Y. Zhu and J.T. Wang: Atomic-scale homogenization in an fcc-based high-entropy alloy via severe plastic deformation, J. Alloy. Compd. 686 (2016) 15–23. doi:10.1016/j.jallcom.2016.05.337 – reference: 161) R.B. Figueiredo, M. Kawasaki and T.G. Langdon: Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress, Prog. Mater. Sci. 137 (2023) 101131. doi:10.1016/j.pmatsci.2023.101131 – reference: 159) S. Kuramoto and T. Furuta: Severe plastic deformation to achieve high strength and high ductility in FeNi based alloys with lattice softening, Mater. Trans. 60 (2019) 1116–1122. doi:10.2320/matertrans.MF201920 – reference: 54) E. Tabachnikova, T. Hryhorova, S. Shumilin, Y. Semerenko, Y. Huang and T.G. Langdon: Cryo-Severe Plastic deformation, microstructures and properties of metallic nanomaterials at low temperatures, Mater. Trans. 64 (2023) 1806–1819. doi:10.2320/matertrans.MT-MF2022037 – reference: 47) K. Edalati and Z. Horita: Special issue on severe plastic deformation for nanomaterials with advanced functionality, Mater. Trans. 60 (2019) 1103. doi:10.2320/matertrans.MPR2019904 – reference: 147) Z. Horita, D. Maruno, Y. Ikeda, T. Masuda, Y. Tang, M. Arita, Y. Higo, Y. Tange and Y. Ohishi: In situ synchrotron X-ray analysis: application of high-pressure sliding process to Ti allotropic transformation, Mater. Trans. 62 (2021) 167–176. doi:10.2320/matertrans.MT-M2020314 – reference: 42) K. Edalati: Metallurgical alchemy by ultra-severe plastic deformation via high-pressure torsion process, Mater. Trans. 60 (2019) 1221–1229. doi:10.2320/matertrans.MF201914 – reference: 91) K. Nagano, M. Kawabata-Ota, D. Nanya, H. Fujiwara, K. Ameyama, K. Edalati and Z. Horita: Unique microstructure evolution of HPT-processed (α + γ) two-phase stainless steel, Mater. Trans. 64 (2023) 1912–1919. doi:10.2320/matertrans.MT-MF2022053 – reference: 201) P. Edalati, A. Mohammadi, Y. Tang, R. Floriano, M. Fuji and K. Edalati: Phase transformation and microstructure evolution in ultrahard carbon-doped AlTiFeCoNi high-entropy alloy by high-pressure torsion, Mater. Lett. 302 (2021) 130368. doi:10.1016/j.matlet.2021.130368 – reference: 80) Z. Horita, Y. Tang, M. Matsuo, K. Edalati, M. Yumoto and Y. Takizawa: Enhancement of activation and hydrogen storage kinetics of TiFe(Mn) using high-pressure sliding (HPS) process, Mater. Trans. 64 (2023) 1920–1923. doi:10.2320/matertrans.MT-MF2022059 – reference: 36) G. Wilde and S. Divinski: Grain boundaries and diffusion phenomena in severely deformed materials, Mater. Trans. 60 (2019) 1302–1315. doi:10.2320/matertrans.MF201934 – reference: 195) P.F. Yu, H. Cheng, L.J. Zhang, H. Zhang, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li and R.P. Liu: Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy, Mater. Sci. Eng. A 655 (2016) 283–291. doi:10.1016/j.msea.2015.12.085 – reference: 221) A. Mohammadi, P. Edalati, M. Arita, J.W. Bae, H.S. Kim and K. Edalati: Microstructure and defect effects on strength and hydrogen embrittlement of high-entropy alloy CrMnFeCoNi processed by high-pressure torsion, Mater. Sci. Eng. A 844 (2022) 143179. doi:10.1016/j.msea.2022.143179 – reference: 139) M.B. Kerber, F. Spieckermann, R. Schuster, C. von Baeckmann, T. Fischer, N. Schell, T. Waitz and E. Schafler: In situ synchrotron x-ray diffraction during high-pressure torsion deformation of Ni and NiTi, Adv. Eng. Mater. 23 (2021) 2100159. doi:10.1002/adem.202100159 – reference: 49) Y. Ivanisenko: Perspectives of scaling up of severe plastic deformation: a case of high pressure torsion extrusion, Mater. Trans. 64 (2023) 1489–1496. doi:10.2320/matertrans.MT-MF2022057 – reference: 64) Z. Horita, Y. Tang, T. Masuda, K. Edalati and Y. Higo: In situ synchrotron high-pressure X-ray analysis for ZnO with rocksalt structure, Mater. Trans. 64 (2023) 1585–1590. doi:10.2320/matertrans.MT-MF2022036 – reference: 73) L. Weissitsch, F. Staab, K. Durst and A. Bachmaier: Magnetic materials via high-pressure torsion of powders, Mater. Trans. 64 (2023) 1537–1550. doi:10.2320/matertrans.MT-MF2022026 – reference: 124) V.D. Blank, V.D. Churkin, B.A. Kulnitskiy, I.A. Perezhogin, A.N. Kirichenko, S.V. Erohin, P.B. Sorokin and M.Y. Popov: Pressure-induced transformation of graphite and diamond to onions, Crystals 8 (2018) 68. doi:10.3390/cryst8020068 – reference: 102) Z. Sun, J. Zhou and D. Retraint: Mechanical properties of metallic materials processed by surface severe plastic deformation, Mater. Trans. 64 (2023) 1739–1753. doi:10.2320/matertrans.MT-MF2022028 – reference: 28) T.T. Nguyen and K. Edalati: Impact of high-pressure torsion on hydrogen production from photodegradation of polypropylene plastic wastes, Int. J. Hydrogen Energ. 81 (2024) 411–417. doi:10.1016/j.ijhydene.2024.07.306 – reference: 69) M. Demirtas and G. Purcek: An overview of the principles of low-temperature superplasticity in metallic materials processed by severe plastic deformation, Mater. Trans. 64 (2023) 1724–1738. doi:10.2320/matertrans.MT-MF2022018 – reference: 48) Z. Horita and K. Edalati: Severe plastic deformation for nanostructure controls, Mater. Trans. 61 (2020) 2241–2247. doi:10.2320/matertrans.MT-M2020134 – reference: 74) H. Sena and M. Fuji: Band gap engineering of semiconductors and ceramics by severe plastic deformation for solar energy harvesting, Mater. Trans. 64 (2023) 1497–1503. doi:10.2320/matertrans.MT-MF2022004 – reference: 110) T. Grosdidier and M. Novelli: Recent developments in the application of surface mechanical attrition treatments for improved gradient structures: processing parameters and surface reactivity, Mater. Trans. 60 (2019) 1344–1355. doi:10.2320/matertrans.MF201929 – reference: 92) S. Kuramoto, Y. Kawano, Y. Mori, J. Kobayashi, S. Emura and T. Sawaguchi: Mechanical properties and deformation behavior in severely cold-rolled Fe-Ni-Al-C alloys with Lüders deformation - overview with recent experimental results, Mater. Trans. 64 (2023) 1410–1418. doi:10.2320/matertrans.MT-MF2022024 – reference: 153) J. Hidalgo-Jiménez, T. Akbay, T. Ishihara and K. Edalati: Investigation of a high-entropy oxide photocatalyst for hydrogen generation by first-principles calculations coupled with experiments: significance of electronegativity, Scr. Mater. 250 (2024) 116205. doi:10.1016/j.scriptamat.2024.116205 – reference: 227) P. Edalati, Y. Itagoe, H. Ishihara, T. Ishihara, H. Emami, M. Arita, M. Fuji and K. Edalati: Visible-light photocatalytic oxygen production on a high-entropy oxide with multiple-heterojunction introduction, J. Photochem. Photobiol. A 433 (2022) 114167. doi:10.1016/j.jphotochem.2022.114167 – reference: 119) Y.B. Wang, D.D. Qu, X.H. Wang, Y. Cao, X.Z. Liao, M. Kawasaki, S.P. Ringer, Z.W. Shan, T.G. Langdon and J. Shen: Introducing a strain-hardening capability to improve the ductility of bulk metallic glasses via severe plastic deformation, Acta Mater. 60 (2012) 253–260. doi:10.1016/j.actamat.2011.09.026 – reference: 126) K. Edalati, M. Arimura, Y. Ikoma, T. Daio, M. Miyata, D.J. Smith and Z. Horita: Plastic deformation of BaTiO3 ceramics by high-pressure torsion and changes in phase transformations, optical and dielectric properties, Mater. Res. Lett. 3 (2015) 216–221. doi:10.1080/21663831.2015.1065454 – reference: 140) J.K. Han, K. Sugimoto, M. Kawasaki and K.D. Liss: Strain-dependent phase transformation mapping of diffusion-bonded nanocrystalline aluminum-magnesium by high-energy synchrotron X-rays, Mater. Lett. 321 (2022) 132414. doi:10.1016/j.matlet.2022.132414 – reference: 131) M. Murashkin, A. Medvedev, V. Kazykhanov, A. Krokhin, G. Raab, N. Enikeev and R.Z. Valiev: Enhanced mechanical properties and electrical conductivity in ultrafine-grained al 6101 alloy processed via ECAP-conform, Metals 5 (2015) 2148–2164. doi:10.3390/met5042148 – reference: 128) K. Edalati, R. Uehiro, S. Takechi, Q. Wang, M. Arita, M. Watanabe, T. Ishihara and Z. Horita: Enhanced photocatalytic hydrogen production on GaN-ZnO oxynitride by introduction of strain-induced nitrogen vacancy complexes, Acta Mater. 185 (2020) 149–156. doi:10.1016/j.actamat.2019.12.007 – reference: 101) C. Li, X. Li, Z. Fu, H. Pan, Y. Gong and X. Zhu: An overview on recent works of heterostructured materials fabricated by surface mechanical attrition treatment, Mater. Trans. 64 (2023) 1429–1440. doi:10.2320/matertrans.MT-MF2022016 – reference: 105) L. Takacs: Self-sustaining reactions induced by ball milling, Prog. Mater. Sci. 47 (2002) 355–414. doi:10.1016/S0079-6425(01)00002-0 – reference: 223) P. Edalati, A. Mohammadi, M. Ketabchi and K. Edalati: Ultrahigh hardness in nanostructured dual-phase high-entropy alloy AlCrFeCoNiNb developed by high-pressure torsion, J. Alloy. Compd. 884 (2021) 161101. doi:10.1016/j.jallcom.2021.161101 – reference: 23) K. Edalati, J. Hidalgo-Jiménez, T.T. Nguyen, M. Watanabe and I. Taniguchi: High-pressure torsion processing of serine and glutamic acid: understanding mechanochemical behavior of amino acids under astronomical impacts, Adv. Eng. Mater. 26 (2024) 2302267. doi:10.1002/adem.202302267 – reference: 215) H. Shahmir, M. Nili-Ahmadabadi, A. Shafiee and T.G. Langdon: Effect of a minor titanium -addition on the superplastic properties of a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, Mater. Sci. Eng. A 718 (2018) 468–476. doi:10.1016/j.msea.2018.02.002 – reference: 138) G. Da Costa, C. Castro, A. Normand, C. Vaudolon, A. Zakirov, J. Macchi, M. Ilhami, K. Edalati, F. Vurpillot and W. Lefebvre: Bringing atom probe tomography to transmission electron microscopes, Nat. Commun. 15 (2024) 9870. doi:10.1038/s41467-024-54169-2 – reference: 160) A. Mohammadi, P. Edalati, M. Arita, J.W. Bae, H.S. Kim and K. Edalati: High strength and high ductility of a severely deformed high-entropy alloy in the presence of hydrogen, Corros. Sci. 216 (2023) 111097. doi:10.1016/j.corsci.2023.111097 – reference: 237) P.W. Bridgman: Shearing phenomena at high pressure of possible importance for geology, J. Geol. 44 (1936) 653–669. doi:10.1086/624468 – reference: 114) L. Chen, L. Ping, T. Ye, L. Lingfeng, X. Kemin and Z. Meng: Observations on the ductility and thermostability of tungsten processed from micropowder by improved high-pressure torsion, Rare Met. Mater. Eng. 45 (2016) 3089–3094. doi:10.1016/S1875-5372(17)30059-0 – reference: 162) K. Edalati, Z. Horita and R.Z. Valiev: Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy, Sci. Rep. 8 (2018) 6740. doi:10.1038/s41598-018-25140-1 – reference: 27) S. Akrami, T. Ishihara, M. Fuji and K. Edalati: Active photocatalysts for CO2 conversion by severe plastic deformation (SPD), Materials 16 (2023) 1081. doi:10.3390/ma16031081 – reference: 216) N.T.C. Nguyen, P. Asghari-Rad, H. Park and H.S. Kim: Differential superplasticity in a multi-phase multi-principal element alloy by initial annealing, J. Mater. Sci. 57 (2022) 18154–18167. doi:10.1007/s10853-022-07616-8 – reference: 62) V.I. Levitas: Recent in situ experimental and theoretical advances in severe plastic deformations, strain-induced phase transformations, and microstructure evolution under high pressure, Mater. Trans. 64 (2023) 1866–1878. doi:10.2320/matertrans.MT-MF2022055 – reference: 173) M. Zohrevand, N. Hassanzadeh, R. Alizadeh and T.G. Langdon: Review: recent advances using severe plastic deformation to improve the properties of battery materials, J. Mater. Sci. 59 (2024) 5651–5680. doi:10.1007/s10853-023-09198-5 – reference: 176) J. Hidalgo-Jiménez, T. Akbay, X. Sauvage, T. Ishihara and K. Edalati: Mixed atomic-scale electronic configuration as a strategy to avoid cocatalyst utilization in photocatalysis by high-entropy oxides, Acta Mater. 283 (2025) 120559. doi:10.1016/j.actamat.2024.120559 – reference: 113) K. Edalati, Z. Horita and Y. Mine: High-pressure torsion of hafnium, Mater. Sci. Eng. A 527 (2010) 2136–2141. doi:10.1016/j.msea.2009.11.060 – reference: 158) I.A. Ovid’ko, R.Z. Valiev and Y.T. Zhu: Review on superior strength and enhanced ductility of metallic nanomaterials, Prog. Mater. Sci. 94 (2018) 462–540. doi:10.1016/j.pmatsci.2018.02.002 – reference: 135) A.V. Podolskiy, E.D. Tabachnikova, B. Bonarski, D. Setman, C. Mangler, E. Schafler and M.J. Zehetbauer: Temperature dependent mechanical properties of zirconium processed by high-pressure torsion at 300 and 77 K, Kovove Mater. 54 (2016) 1–8. doi:10.4149/km_2016_1_1 – reference: 72) M.Y. Murashkin, N.A. Enikeev and X. Sauvage: Potency of severe plastic deformation processes for optimizing combinations of strength and electrical conductivity of lightweight Al-based conductor alloys, Mater. Trans. 64 (2023) 1833–1843. doi:10.2320/matertrans.MT-MF2022048 – reference: 236) I. Vozniak, V. Beloshenko, B. Savchenko and A. Voznyak: Improvement of mechanical properties of polylactide by equal channel multiple angular extrusion, J. Appl. Polym. Sci. 138 (2021) 49720. doi:10.1002/app.49720 – reference: 142) Y. Shundo, T.T. Nguyen, S. Akrami, P. Edalati, Y. Itagoe, T. Ishihara, M. Arita, Q. Guo, M. Fuji and K. Edalati: Oxygen vacancy-rich high-pressure rocksalt phase of zinc oxide for enhanced photocatalytic hydrogen evolution, J. Colloid Interface Sci. 666 (2024) 22–34. doi:10.1016/j.jcis.2024.04.010 – reference: 95) J. Gubicza and P.T. Hung: Nanostructuring of multi-principal element alloys by severe plastic deformation: from fundamentals to an improved functionality, Mater. Trans. 64 (2023) 1284–1298. doi:10.2320/matertrans.MT-MF2022013 – reference: 37) M. Kawasaki and T.G. Langdon: The contribution of severe plastic deformation to research on superplasticity, Mater. Trans. 60 (2019) 1123–1130. doi:10.2320/matertrans.MF201915 – reference: 93) A.M. Jorge, Jr., V. Roche, D.A.G. Pérez and R.Z. Valiev: Nanostructuring Ti-alloys by HPT: phase transformation, mechanical and corrosion properties, and bioactivation, Mater. Trans. 64 (2023) 1306–1316. doi:10.2320/matertrans.MT-MF2022014 – reference: 118) K. Edalati, Y. Yokoyama and Z. Horita: High-pressure torsion of machining chips and bulk discs of amorphous Zr50Cu30Al10Ni10, Mater. Trans. 51 (2010) 23–26. doi:10.2320/matertrans.MB200914 – reference: 130) K. Edalati, S. Lee and Z. Horita: Continuous high-pressure torsion using wires, J. Mater. Sci. 47 (2012) 473–478. doi:10.1007/s10853-011-5822-z – reference: 229) G. Rogl, S. Ghosh, L. Wang, J. Bursik, A. Grytsiv, M. Kerber, E. Bauer, R.C. Malik, X.Q. Chen, M. Zehetbauer and P. Rogl: Half-Heusler alloys: Enhancement of ZT after severe plastic deformation (ultra-low thermal conductivity), Acta Mater. 183 (2020) 285–300. doi:10.1016/j.actamat.2019.11.010 – reference: 235) V.A. Beloshenko, A.V. Voznyak and Y. Voznyak: Effects of equal-channel, multiple-angular extrusion on the physical and mechanical properties of glassy polymers, J. Appl. Polym. Sci. 132 (2015) 42180. doi:10.1002/app.42180 – reference: 45) O. Renk, A. Hohenwarter, K. Edalati and M.W. Kapp: Saturation of grain fragmentation upon severe plastic deformation: fact or fiction? Adv. Eng. Mater. 26 (2024) 2400578. doi:10.1002/adem.202400578 – reference: 117) J.K. Han, X. Li, R. Dippenaar, K.D. Liss and M. Kawasaki: Microscopic plastic response in a bulk nano-structured TiAl intermetallic compound processed by high-pressure torsion, Mater. Sci. Eng. A 714 (2018) 84–92. doi:10.1016/j.msea.2017.12.065 – reference: 192) Q.H. Tang, Y. Huang, Y.Y. Huang, X.Z. Liao, T.G. Langdon and P.Q. Dai: Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing, Mater. Lett. 151 (2015) 126–129. doi:10.1016/j.matlet.2015.03.066 – reference: 218) H. Shimizu, M. Yuasa, H. Miyamoto and K. Edalati: Corrosion behavior of ultrafine-grained CoCrFeMnNi high-entropy alloys fabricated by high-pressure torsion, Materials 15 (2022) 1007. doi:10.3390/ma15031007 – reference: 112) S. Lee, K. Edalati and Z. Horita: Microstructures and mechanical properties of pure V and Mo processed by high-pressure torsion, Mater. Trans. 51 (2010) 1072–1079. doi:10.2320/matertrans.M2009375 – reference: 33) J. Gubicza: Lattice defects and their influence on the mechanical properties of bulk materials processed by severe plastic deformation, Mater. Trans. 60 (2019) 1230–1242. doi:10.2320/matertrans.MF201909 – reference: 238) Y. Ma, E. Selvi, V.I. Levitas and J. Hashemi: Effect of shear strain on the alpha-epsilon phase transition of iron: a new approach in the rotational diamond anvil cell, J. Phys. Condens. Matter 18 (2006) S1075–S1082. doi:10.1088/0953-8984/18/25/S14 – reference: 82) H. Miyamoto: Revealing what enhance the corrosion resistance beside grain size in ultrafine grained materials by severe plastic deformation: stainless steels case, Mater. Trans. 64 (2023) 1419–1428. doi:10.2320/matertrans.MT-MF2022034 – reference: 71) J.E. González-Hernández and J.M. Cubero-Sesin: Electrical conductivity of ultrafine-grained cu and al alloys: attaining the best compromise with mechanical properties, Mater. Trans. 64 (2023) 1754–1768. doi:10.2320/matertrans.MT-MF2022046 – reference: 168) M. Hirscher et al.: Materials for hydrogen-based energy storage - past, recent progress and future outlook, J. Alloy. Compd. 827 (2020) 153548. doi:10.1016/j.jallcom.2019.153548 – reference: 41) K. Edalati, R. Uehiro, K. Fujiwara, Y. Ikeda, H.W. Li, X. Sauvage, R.Z. Valiev, E. Akiba, I. Tanaka and Z. Horita: Ultra-severe plastic deformation: evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems, Mater. Sci. Eng. A 701 (2017) 158–166. doi:10.1016/j.msea.2017.06.076 – reference: 1) R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103–189. doi:10.1016/S0079-6425(99)00007-9 – reference: 186) D.V. Gunderov, R.N. Asfandiyarov, V.V. Astanin and A.V. Sharafutdinov: Metals 13 (2023) 1340. doi:10.3390/met13081340 – reference: 222) A. Mohammadi, M. Novelli, M. Arita, J.W. Bae, H.S. Kim, T. Grosdidier and K. Edalati: Gradient-structured high-entropy alloy with improved combination of strength and hydrogen embrittlement resistance, Corros. Sci. 200 (2022) 110253. doi:10.1016/j.corsci.2022.110253 – reference: 55) H. Miura, W. Nakamura and C. Watanabe: Basic research on multi-directional forging of AZ80Mg alloy for fabrication of bulky mechanical components, Mater. Trans. 64 (2023) 1504–1514. doi:10.2320/matertrans.MT-MF2022033 – reference: 232) P.W. Bridgman: Shearing phenomena at high pressures, particularly in inorganic compounds, Proc. Am. Acad. Arts Sci. 71 (1937) 387–460. doi:10.2307/20023239 – reference: 210) Z. Gao, Y. Zhao, J.M. Park, A.H. Jeon, K. Murakami, S. Komazaki, K. Tsuchiya, U. Ramamurty and J. Jang: Decoupling the roles of constituent phases in the strengthening of hydrogenated nanocrystalline dual-phase high-entropy alloys, Scr. Mater. 210 (2022) 114472. doi:10.1016/j.scriptamat.2021.114472 – reference: 29) O. Renk and R. Pippan: Saturation of grain refinement during severe plastic deformation of single phase materials: reconsiderations, current status and open questions, Mater. Trans. 60 (2019) 1270–1282. doi:10.2320/matertrans.MF201918 – reference: 211) S. Son, P. Asghari-Rad, A. Zargaran, W. Chen and H.S. Kim: Superlative room temperature and cryogenic tensile properties of nanostructured CoCrFeNi medium-entropy alloy fabricated by powder high-pressure torsion, Scr. Mater. 213 (2022) 114631. doi:10.1016/j.scriptamat.2022.114631 – reference: 50) Z. Li, Y. Liu, J.T. Wang and T.G. Langdon: Tube high-pressure shearing: a simple shear path to unusual microstructures, Mater. Trans. 64 (2023) 1449–1463. doi:10.2320/matertrans.MT-MF2022051 – reference: 2) R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer and Y.T. Zhu: Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58(4) (2006) 33–39. doi:10.1007/s11837-006-0213-7 – reference: 11) S. Akrami, P. Edalati, M. Fuji and K. Edalati: High-pressure torsion for highly-strained and high-entropy photocatalysts, KONA Powder Part. J. 41 (2024) 123–139. doi:10.14356/kona.2024003 – reference: 203) A.K. Chandan, K. Kishore, P.T. Hung, M. Ghosh, S.G. Chowdhury, M. Kawasaki and J. Gubicza: Effect of nickel addition on enhancing nano-structuring and suppressing TRIP effect in Fe40Mn40Co10Cr10 high entropy alloy during high-pressure torsion, Int. J. Plast. 150 (2022) 103193. doi:10.1016/j.ijplas.2021.103193 – reference: 100) L. Romero-Resendiz, M. Naeem and Y.T. Zhu: Heterostructured materials by severe plastic deformation: overview and perspectives, Mater. Trans. 64 (2023) 2346–2360. doi:10.2320/matertrans.MT-MF2022010 – reference: 31) A. Mazilkin, B. Straumal, A. Kilmametov, P. Straumal and B. Baretzky: Phase transformations induced by severe plastic deformation, Mater. Trans. 60 (2019) 1489–1499. doi:10.2320/matertrans.MF201938 – reference: 137) K.K. Pandey and V.I. Levitas: Displacement field measurements in traditional and rotational diamond anvil cells, J. Appl. Phys. 129 (2021) 115901. doi:10.1063/5.0044030 – reference: 34) J. Čížek, M. Janeček, T. Vlasák, B. Smola, O. Melikhova, R.K. Islamgaliev and S.V. Dobatkin: The development of vacancies during severe plastic deformation, Mater. Trans. 60 (2019) 1533–1542. doi:10.2320/matertrans.MF201937 – reference: 94) W. Skrotzki and R. Chulist: Severe plastic deformation of high-entropy alloys, Mater. Trans. 64 (2023) 1769–1783. doi:10.2320/matertrans.MT-MF2022050 – reference: 89) E. Kobayashi, M. Ohnuma, S. Kuramoto, J. Kobayashi and G. Itoh: Nanoscale analysis of solute distribution in ultrahigh-strength aluminum alloys, Mater. Trans. 64 (2023) 1441–1448. doi:10.2320/matertrans.MT-MF2022032 – reference: 234) V. Beloshenko, Y. Voznyak and V.M. Mikhal’chuk: Microcalorimetric study of crystallizable polymers subjected to severe plastic deformation, Polym. Sci. Ser. A 56 (2014) 269–274. doi:10.1134/S0965545X1403002X – reference: 155) K. Edalati, H. Emami, A. Staykov, D.J. Smith, E. Akiba and Z. Horita: Formation of metastable phases in magnesium-titanium system by high-pressure torsion and their hydrogen storage performance, Acta Mater. 99 (2015) 150–156. doi:10.1016/j.actamat.2015.07.060 – reference: 108) G. Liu, J. Lu and K. Lu: Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening, Mater. Sci. Eng. A 286 (2000) 91–95. doi:10.1016/S0921-5093(00)00686-9 – reference: 166) K. Edalati, M. Matsuo, H. Emami, S. Itano, A. Alhamidi, A. Staykov, D.J. Smith, S. Orimo, E. Akiba and Z. Horita: Impact of severe plastic deformation on microstructure and hydrogen storage of titanium-iron-manganese intermetallics, Scr. Mater. 124 (2016) 108–111. doi:10.1016/j.scriptamat.2016.07.007 – reference: 52) A.R. Rezaei, M. Zohrevand, M.R. Sabour, E. Taherkhani and G. Faraji: Recent progress on SPD processes empowered by hydrostatic pressure, Mater. Trans. 64 (2023) 1663–1672. doi:10.2320/matertrans.MT-MF2022007 – reference: 171) Y. Wang, S. Lee, K. Yamamoto, T. Matsunaga, H. Miki, H. Iba, K. Tsuchiya, T. Uchiyama, T. Watanabe, T. Takami and Y. Uchimoto: Properties of composite electrodes for all-solid-state fluoride-ion secondary batteries processed by high-pressure torsion, Electrochemistry 91 (2023) 027002. doi:10.5796/electrochemistry.22-00133 – reference: 144) T.T. Nguyen, X. Sauvage, K. Saito, Q. Guo and K. Edalati: Phase and sulfur vacancy engineering in cadmium sulfide for boosting hydrogen production from catalytic plastic waste photoconversion, Chem. Eng. J. 504 (2025) 158730. doi:10.1016/j.cej.2024.158730 – reference: 152) E.I. Lopez-Gomez, K. Edalati, F.J. Antiqueira, D.D. Coimbroo, G. Zepon, D.R. Leiva, T.T. Ishikawa, J.M. Cubero-Sesin and W.J. Botta: Synthesis of nanostructured TiFe hydrogen storage material by mechanical alloying via high-pressure torsion, Adv. Eng. Mater. 22 (2020) 2000011. doi:10.1002/adem.202000011 – reference: 194) Q.H. Tang, X.Z. Liao and P. Dai: Microstructure evolution of Al0.3CoCrFeNi high-entropy alloy during high-pressure torsion, J. Mater. Eng. 43 (2015) 45–51. doi:10.11868/j.issn.1001-4381.2015.12.008 – reference: 65) Y. Tang, T. Fuji, S. Hirosawa, K. Matsuda, D. Terada and Z. Horita: Comparison of mechanical properties in ultrafine grained commercial-purity aluminum (A1050) processed by accumulative roll bonding (ARB) and high-pressure sliding (HPS), Mater. Trans. 64 (2023) 1902–1911. doi:10.2320/matertrans.MT-MF2022047 – reference: 39) P. Kral, J. Dvorak, V. Sklenicka and T.G. Langdon: The characteristics of creep in metallic materials processed by severe plastic deformation, Mater. Trans. 60 (2019) 1506–1517. doi:10.2320/matertrans.MF201924 – reference: 70) Y. Mine: Micro-mechanical characterisation of hydrogen embrittlement and fatigue crack growth behaviours in metastable austenitic stainless steels with microstructure refinement, Mater. Trans. 64 (2023) 1474–1488. doi:10.2320/matertrans.MT-MF2022041 – reference: 193) D.H. Lee, I.C. Choi, M.Y. Seok, J. He, Z. Lu, J.Y. Suh, M. Kawasaki, T.G. Langdon and J. Jang: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, J. Mater. Res. 30 (2015) 2804–2815. doi:10.1557/jmr.2015.239 – reference: 59) V.V. Popov, E.N. Popova and E.V. Osinnikov: Specific features of grain boundaries in nickel processed by high-pressure torsion, Mater. Trans. 64 (2023) 1401–1409. doi:10.2320/matertrans.MT-MF2022012 – reference: 164) R.Z. Valiev, E.V. Parfenov and L.V. Parfenova: Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality, Mater. Trans. 60 (2019) 1356–1366. doi:10.2320/matertrans.MF201943 – reference: 183) T.T. Nguyen and K. Edalati: Efficient photoreforming of plastic waste using a high-entropy oxide catalyst, J. Catal. 440 (2024) 115808. doi:10.1016/j.jcat.2024.115808 – reference: 68) T.G. Langdon: Overview: using severe plastic deformation in the processing of superplastic materials, Mater. Trans. 64 (2023) 1299–1305. doi:10.2320/matertrans.MT-MF2022021 – reference: 7) M.J. Starink, X.C. Cheng and S. Yang: Hardening of pure metals by high-pressure torsion: A physically based model employing volume-averaged defect evolutions, Acta Mater. 61 (2013) 183–192. doi:10.1016/j.actamat.2012.09.048 – reference: 189) A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev and O.N. Senkov: Superplasticity of AlCoCrCuFeNi high entropy alloy, Mater. Sci. Forum 735 (2013) 146–151. doi:10.4028/www.scientific.net/MSF.735.146 – reference: 75) X. Jian, J. Li, L. He, H.W. Li, M. Zhang, P. Zhang and H.J. Lin: Severe plastic deformation for advanced electrocatalysts for electrocatalytic hydrogen production, Mater. Trans. 64 (2023) 1515–1525. doi:10.2320/matertrans.MT-MF2022011 – reference: 99) V. Beloshenko, A. Vozniak and A. Voznyak: Equal channel angular extrusion of polymers: structural changes and their effects on properties, Mater. Trans. 64 (2023) 1325–1330. doi:10.2320/matertrans.MT-MF2022017 – reference: 212) C. Duan, M. Reiberg, P. Kutlesa, X. Li, R. Pippan and E. Werner: Strain-hardening properties of the high-entropy alloy MoNbTaTiVZr processed by high-pressure torsion, Contin. Mech. Thermodyn. 34 (2022) 475–489. doi:10.1007/s00161-021-01065-5 – reference: 106) J. Sort, D.C. Ile, A.P. Zhilyaev, A. Concustell, T. Czeppe, M. Stoica, S. Surinach, J. Eckert and M.D. Baro: Cold-consolidation of ball-milled Fe-based amorphous ribbons by high pressure torsion, Scr. Mater. 50 (2004) 1221–1225. doi:10.1016/j.scriptamat.2004.02.004 – reference: 185) K. Edalati: Severe plastic deformation of light metals (magnesium, aluminum and titanium) and alloys by high-pressure torsion: review of fundamentals and mechanical/functional properties, Mater. Trans. 65 (2024) 466–480. doi:10.2320/matertrans.MT-L2023022 – reference: 184) H.T.N. Hai, T.T. Nguyen, M. Nishibori, T. Ishihara and K. Edalati: Photoreforming of plastic waste into valuable products and hydrogen using a high-entropy oxynitride with distorted atomic-scale structure, Appl. Catal. B 365 (2025) 124968. doi:10.1016/j.apcatb.2024.124968 – reference: 19) A.P. Zykova, S.Y. Tarasov, A.V. Chumaevskiy and E.A. Kolubaev: A review of friction stir processing of structural metallic materials: process, properties, and methods, Metals 10 (2020) 772. doi:10.3390/met10060772 – reference: 85) M. Ashida: Effects of high-pressure torsion on mechanical properties of biocompatible Ti–6Al–7Nb alloy, Mater. Trans. 64 (2023) 1784–1790. doi:10.2320/matertrans.MT-MF2022045 – reference: 170) M. Wang, F. Zhang, L. Chen, B. Xu, Z. Cui and K. Edalati: Influence of Cu doping and high-pressure torsion on electrochemical performance of lithium-rich cathode material, J. Phys. Conf. Ser. 1750 (2021) 012077. doi:10.1088/1742-6596/1750/1/012077 – reference: 231) P.W. Bridgman: Effects of high shearing stress combined with high hydrostatic pressure, Phys. Rev. 48 (1935) 825–847. doi:10.1103/PhysRev.48.825 – reference: 179) S. Akrami, M. Watanabe, T.H. Ling, T. Ishihara, M. Arita, M. Fuji and K. Edalati: High-pressure TiO2-II polymorph as an active photocatalyst for CO2 to CO conversion, Appl. Catal. B 298 (2021) 120566. doi:10.1016/j.apcatb.2021.120566 – reference: 111) X. Li, L. Lu, J. Li, X. Zhang and H. Gao: Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys, Nat. Rev. Mater. 5 (2020) 706–723. doi:10.1038/s41578-020-0212-2 – reference: 239) S. Yesudhas, V.I. Levitas, F. Lin, K.K. Pandey and J. Smith: Unusual plastic strain-induced phase transformation phenomena in silicon, Nat. Commun. 15 (2024) 7054. doi:10.1038/s41467-024-51469-5 – reference: 225) P. Edalati, A. Mohammadi, M. Ketabchi and K. Edalati: Microstructure and microhardness of dual-phase high-entropy alloy by high-pressure torsion: twins and stacking faults in FCC and dislocations in BCC, J. Alloy. Compd. 894 (2022) 162413. doi:10.1016/j.jallcom.2021.162413 – reference: 51) Y. Takizawa and Z. Horita: Incremental feeding high-pressure sliding (IF-HPS) process for upscaling highly strained areas in metallic materials with enhanced mechanical properties, Mater. Trans. 64 (2023) 1364–1375. doi:10.2320/matertrans.MT-MF2022025 – reference: 198) H. Shahmir, J. He, Z. Lu, M. Kawasaki and T.G. Langdon: Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, Mater. Sci. Eng. A 676 (2016) 294–303. doi:10.1016/j.msea.2016.08.118 – reference: 5) Y. Estrin and A. Vinogradov: Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater. 61 (2013) 782–817. doi:10.1016/j.actamat.2012.10.038 – reference: 208) K. Edalati, Y. Hashiguchi, H. Iwaoka, H. Matsunaga, R.Z. Valiev and Z. Horita: Long-time stability of metals after severe plastic deformation: softening and hardening by self-annealing versus thermal stability, Mater. Sci. Eng. A 729 (2018) 340–348. doi:10.1016/j.msea.2018.05.079 – reference: 204) Y. Zhang, M. Liu, J. Sun, G. Li, R. Zheng, W. Xiao and C. Ma: Excellent thermal stability and mechanical properties of bulk nanostructured FeCoNiCu high entropy alloy, Mater. Sci. Eng. A 835 (2022) 142670. doi:10.1016/j.msea.2022.142670 – reference: 133) K. Lin, Z. Li, Y. Liu, E. Ma, J.T. Wang and T.G. Langdon: Exploiting tube high-pressure shearing to prepare a microstructure in Pb-Sn alloys for unprecedented superplasticity, Scr. Mater. 209 (2022) 114390. doi:10.1016/j.scriptamat.2021.114390 – reference: 44) P. Edalati, M. Fuji and K. Edalati: Superfunctional high-entropy alloys and ceramics by severe plastic deformation, Rare Met. 42 (2023) 3246–3268. doi:10.1007/s12598-023-02340-x – reference: 213) A.V. Levenets, H.V. Rusakova, L.S. Fomenko, Y. Huang, V. Kolodiy, R.L. Vasilenko, E.D. Tabachnikova, M.A. Tikhonovsky and T.G. Langdon: Structure and low-temperature micromechanical properties of as-cast and SPD-processed high-entropy Co25−xCr25Fe25Ni25Cx alloys, Low Temp. Phys. 48 (2022) 560–569. doi:10.1063/10.0011605 – reference: 224) S. Dangwal and K. Edalati: Developing a single-phase and nanograined refractory high-entropy alloy ZrHfNbTaW with ultrahigh hardness by phase transformation via high-pressure torsion, J. Alloy. Compd. 1010 (2025) 178274. doi:10.1016/j.jallcom.2024.178274 – reference: 181) S. Akrami, Y. Murakami, M. Watanabe, T. Ishihara, M. Arita, M. Fuji and K. Edalati: Defective high-entropy oxide photocatalyst with high activity for CO2 conversion, Appl. Catal. B 303 (2022) 120896. doi:10.1016/j.apcatb.2021.120896 – reference: 83) D.M.M. Cardona and F.E.C. Nieto: An overview on the corrosion behavior of steels processed by severe plastic deformation, Mater. Trans. 64 (2023) 1317–1324. doi:10.2320/matertrans.MT-MF2022030 – reference: 182) T.T. Nguyen and K. Edalati: Impact of high-pressure columbite phase of titanium dioxide (TiO2) on catalytic photoconversion of plastic waste and simultaneous hydrogen (H2) production, J. Alloy. Compd. 1008 (2024) 176722. doi:10.1016/j.jallcom.2024.176722 – reference: 60) J.A. Muñoz, T. Khelfa, D. Gheorghe, O.F. Higuera, P. Rodriguez and J.M. Cabrera: Microstructure characterization of metallic materials processed by equal channel angular pressing (ECAP): an electron backscatter diffraction (EBSD) analysis, Mater. Trans. 64 (2023) 1791–1805. doi:10.2320/matertrans.MT-MF2022042 – reference: 96) D.H. Lee, I.C. Choi, M. Kawasaki, T.G. Langdon and J.I. Jang: A review of recent research on nanoindentation of high-entropy alloys processed by high-pressure torsion, Mater. Trans. 64 (2023) 1551–1565. doi:10.2320/matertrans.MT-MF2022015 – reference: 84) R. Floriano and K. Edalati: Effects of severe plastic deformation on advanced biomaterials for biomedical applications: a brief overview, Mater. Trans. 64 (2023) 1673–1682. doi:10.2320/matertrans.MT-MF2022043 – reference: 154) S. Akrami, P. Edalati, Y. Shundo, M. Watanabe, T. Ishihara, M. Fuji and K. Edalati: Significant CO2 photoreduction on a high-entropy oxynitride, Chem. Eng. J. 449 (2022) 137800. doi:10.1016/j.cej.2022.137800 – reference: 115) K. Edalati, S. Toh, M. Watanabe and Z. Horita: In-situ production of bulk intermetallic-based nanocompsites and nanostructured intermetallics by high-pressure torsion, Scr. Mater. 66 (2012) 386–389. doi:10.1016/j.scriptamat.2011.11.039 – reference: 58) G. Wilde, H. Rösner and S. Divinski: Internal interfaces in severely deformed metals and alloys: coupling of kinetics, structure and strain with properties and performance, Mater. Trans. 64 (2023) 1331–1345. doi:10.2320/matertrans.MT-MF2022009 – reference: 149) A. Duchaussoy, X. Sauvage, K. Edalati, Z. Horita, G. Renou, A. Deschamps and F. De Geuser: Structure and mechanical behavior of ultrafine-grained aluminum-iron alloy stabilized by nanoscaled intermetallic particles, Acta Mater. 167 (2019) 89–102. doi:10.1016/j.actamat.2019.01.027 – reference: 134) Y. Tang, K. Edalati, T. Masuda, Y. Takizawa, M. Yumoto and Z. Horita: Grain refinement and superplasticity of Inconel 718 processed by multi-pass high-pressure sliding, Mater. Lett. 300 (2021) 130144. doi:10.1016/j.matlet.2021.130144 – reference: 46) K. Edalati and Z. Horita: Special issue on superfunctional nanomaterials by severe plastic deformation, Mater. Trans. 64 (2023) 1271. doi:10.2320/matertrans.MPR2023905 – reference: 125) Y. Gao, Y. Ma, Q. An, V.I. Levitas, Y. Zhang, B. Feng, J. Chaudhuri and W.A. Goddard, III: Shear driven formation of nano-diamonds at sub-gigapascals and 300 K, Carbon 146 (2019) 364–368. doi:10.1016/j.carbon.2019.02.012 – reference: 191) B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan and A. Hohenwarter: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater. 96 (2015) 258–268. doi:10.1016/j.actamat.2015.06.025 – reference: 20) T.C. Lowe, R.Z. Valiev, X. Li and B.R. Ewing: Commercialization of bulk nanostructured metals and alloys, MRS Bull. 46 (2021) 265–272. doi:10.1557/s43577-021-00060-0 – reference: 127) H. Razavi-Khosroshahi, K. Edalati, M. Arita, Z. Horita and M. Fuji: Plastic strain and grain size effect on high-pressure phase transformations in nanostructured TiO2 ceramics, Scr. Mater. 124 (2016) 59–62. doi:10.1016/j.scriptamat.2016.06.022 – reference: 97) H. Shahmir, M.S. Mehranpour, M. Kawasaki and T.G. Langdon: Superplasticity in severely deformed high-entropy alloys, Mater. Trans. 64 (2023) 1526–1536. doi:10.2320/matertrans.MT-MF2022008 – reference: 43) K. Edalati: Superfunctional materials by ultra-severe plastic deformation, Materials 16 (2023) 587. doi:10.3390/ma16020587 – reference: 205) T. Keil, S. Taheriniya, E. Bruder, G. Wilde and K. Durst: Effects of solutes on thermal stability, microstructure and mechanical properties in CrMnFeCoNi based alloys after high pressure torsion, Acta Mater. 227 (2022) 117689. doi:10.1016/j.actamat.2022.117689 – reference: 177) P. Edalati, X.F. Shen, M. Watanabe, T. Ishihara, M. Arita, M. Fuji and K. Edalati: High-entropy oxynitride as low-bandgap and stable photocatalyst for hydrogen production, J. Mater. Chem. A 9 (2021) 15076–15086. doi:10.1039/D1TA03861C – reference: 188) B. Cantor, I. Chang, P. Knight and A. Vincent: Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375–377 (2004) 213–218. doi:10.1016/j.msea.2003.10.257 – reference: 12) R.Z. Valiev, Y. Zheng and K. Edalati: Review: NanoSPD-produced metallic materials for advanced medical devices, J. Mater. Sci. 59 (2024) 5681–5697. doi:10.1007/s10853-024-09464-0 – reference: 175) Q. Wang, K. Edalati, Y. Koganemaru, S. Nakamura, M. Watanabe, T. Ishihara and Z. Horita: Photocatalytic hydrogen generation on low-bandgap black zirconia (ZrO2) produced by high-pressure torsion, J. Mater. Chem. 8 (2020) 3643–3650. doi:10.1039/C9TA11839J – reference: 22) V. Beloshenko, I. Vozniak, Y. Beygelzimer, Y. Estrin and R. Kulagin: Severe plastic deformation of polymers, Mater. Trans. 60 (2019) 1192–1202. doi:10.2320/matertrans.MF201912 – reference: 17) A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski and A. Yanagida: Severe plastic deformation (SPD) processes for metals, CRIP Ann. Mauuf. Technol. 57 (2008) 716–735. doi:10.1016/j.cirp.2008.09.005 – reference: 9) M. Zehetbauer, R. Grossinger, H. Krenn, M. Krystian, R. Pippan, P. Rogl, T. Waitz and R. Wurschum: Bulk nanostructured functional materials by severe plastic deformation, Adv. Eng. Mater. 12 (2010) 692–700. doi:10.1002/adem.201000119 – reference: 61) M. Kawasaki, J.K. Han, X. Liu, S.C. Moon and K.D. Liss: Synchrotron high-energy X-ray & neutron diffraction, and laser-scanning confocal microscopy: In-situ characterization techniques for bulk nanocrystalline metals, Mater. Trans. 64 (2023) 1683–1694. doi:10.2320/matertrans.MT-MF2022022 – ident: 112 doi: 10.2320/matertrans.M2009375 – ident: 109 doi: 10.1016/j.matchar.2018.02.028 – ident: 177 doi: 10.1039/D1TA03861C – ident: 188 doi: 10.1016/j.msea.2003.10.257 – ident: 78 doi: 10.2320/matertrans.MT-MF2022039 – ident: 65 doi: 10.2320/matertrans.MT-MF2022047 – ident: 102 doi: 10.2320/matertrans.MT-MF2022028 – ident: 197 doi: 10.1016/j.matdes.2016.05.079 – ident: 87 doi: 10.2320/matertrans.MT-MF2022005 – ident: 134 doi: 10.1016/j.matlet.2021.130144 – ident: 143 doi: 10.3390/ma17246189 – ident: 167 doi: 10.1016/j.ijhydene.2019.01.104 – ident: 233 doi: 10.1134/S0965545X1403002X – ident: 98 doi: 10.2320/matertrans.MT-MF2022031 – ident: 40 doi: 10.1016/j.msea.2022.142666 – ident: 51 doi: 10.2320/matertrans.MT-MF2022025 – ident: 155 doi: 10.1016/j.actamat.2015.07.060 – ident: 222 doi: 10.1016/j.jallcom.2021.161101 – ident: 213 doi: 10.1063/10.0011605 – ident: 118 doi: 10.2320/matertrans.MB200914 – ident: 212 doi: 10.1007/s00161-021-01065-5 – ident: 8 doi: 10.3390/ma11071175 – ident: 24 doi: 10.1038/s41467-022-33802-y – ident: 86 doi: 10.2320/matertrans.MT-MF2022056 – ident: 162 doi: 10.1038/s41598-018-25140-1 – ident: 217 doi: 10.3390/ma15031007 – ident: 136 doi: 10.1016/j.jmst.2021.01.096 – ident: 45 doi: 10.1002/adem.202400578 – ident: 27 doi: 10.3390/ma16031081 – ident: 125 doi: 10.1016/j.carbon.2019.02.012 – ident: 68 doi: 10.2320/matertrans.MT-MF2022021 – ident: 10 doi: 10.1080/14686996.2018.1435131 – ident: 32 doi: 10.2320/matertrans.MF201923 – ident: 31 doi: 10.2320/matertrans.MF201938 – ident: 79 doi: 10.2320/matertrans.MT-MF2022058 – ident: 200 doi: 10.1016/j.jallcom.2021.159063 – ident: 221 doi: 10.1016/j.corsci.2022.110253 – ident: 182 doi: 10.1016/j.jallcom.2024.176722 – ident: 172 doi: 10.1021/acs.energyfuels.2c03722 – ident: 181 doi: 10.1016/j.apcatb.2021.120896 – ident: 132 doi: 10.1016/j.msea.2019.138074 – ident: 229 doi: 10.1080/21663831.2022.2057821 – ident: 84 doi: 10.2320/matertrans.MT-MF2022043 – ident: 216 doi: 10.1016/j.scriptamat.2022.114949 – ident: 159 doi: 10.2320/matertrans.MF201920 – ident: 140 doi: 10.1016/j.matlet.2022.132414 – ident: 61 doi: 10.2320/matertrans.MT-MF2022022 – ident: 107 doi: 10.1007/s11661-010-0400-6 – ident: 101 doi: 10.2320/matertrans.MT-MF2022016 – ident: 163 doi: 10.1016/j.actamat.2023.118671 – ident: 142 doi: 10.1016/j.jcis.2024.04.010 – ident: 14 doi: 10.1016/j.msea.2015.11.074 – ident: 165 doi: 10.2320/matertrans.MF201941 – ident: 232 doi: 10.1002/pen.21613 – ident: 161 doi: 10.1016/j.pmatsci.2023.101131 – ident: 15 – ident: 160 doi: 10.1016/j.corsci.2023.111097 – ident: 187 doi: 10.1002/adem.200300567 – ident: 110 doi: 10.2320/matertrans.MF201929 – ident: 56 doi: 10.2320/matertrans.MT-MF2022006 – ident: 55 doi: 10.2320/matertrans.MT-MF2022033 – ident: 202 doi: 10.3390/cryst12010054 – ident: 151 doi: 10.1016/j.msea.2021.141869 – ident: 154 doi: 10.1016/j.cej.2022.137800 – ident: 196 doi: 10.1016/j.actamat.2016.02.049 – ident: 185 doi: 10.2320/matertrans.MT-L2023022 – ident: 211 doi: 10.1016/j.scriptamat.2022.114631 – ident: 122 doi: 10.1063/1.4754574 – ident: 171 doi: 10.5796/electrochemistry.22-00133 – ident: 164 doi: 10.2320/matertrans.MF201943 – ident: 91 doi: 10.2320/matertrans.MT-MF2022053 – ident: 178 doi: 10.1016/j.scriptamat.2024.116268 – ident: 83 doi: 10.2320/matertrans.MT-MF2022030 – ident: 169 doi: 10.1016/j.matlet.2019.126933 – ident: 210 doi: 10.1016/j.scriptamat.2021.114472 – ident: 115 doi: 10.1016/j.scriptamat.2011.11.039 – ident: 89 doi: 10.2320/matertrans.MT-MF2022032 – ident: 201 doi: 10.1016/j.matlet.2021.130368 – ident: 114 doi: 10.1016/S1875-5372(17)30059-0 – ident: 121 doi: 10.1016/j.scriptamat.2010.09.034 – ident: 6 doi: 10.1146/annurev-matsci-070909-104445 – ident: 207 doi: 10.1016/j.intermet.2021.107445 – ident: 92 doi: 10.2320/matertrans.MT-MF2022024 – ident: 231 doi: 10.2307/20023239 – ident: 52 doi: 10.2320/matertrans.MT-MF2022007 – ident: 135 doi: 10.4149/km_2016_1_1 – ident: 23 doi: 10.1002/adem.202302267 – ident: 66 doi: 10.2320/matertrans.MT-MF2022029 – ident: 237 doi: 10.1088/0953-8984/18/25/S14 – ident: 36 doi: 10.2320/matertrans.MF201934 – ident: 194 – ident: 103 doi: 10.2320/matertrans.MT-MF2022040 – ident: 141 doi: 10.1016/j.cej.2022.136209 – ident: 100 doi: 10.2320/matertrans.MT-MF2022010 – ident: 22 doi: 10.2320/matertrans.MF201912 – ident: 180 doi: 10.1016/j.jphotochem.2023.115409 – ident: 2 doi: 10.1007/s11837-006-0213-7 – ident: 11 doi: 10.14356/kona.2024003 – ident: 133 doi: 10.1016/j.scriptamat.2021.114390 – ident: 139 doi: 10.1002/adem.202100159 – ident: 119 doi: 10.1016/j.actamat.2011.09.026 – ident: 157 doi: 10.1063/5.0009456 – ident: 144 doi: 10.1016/j.cej.2024.158730 – ident: 189 doi: 10.4028/www.scientific.net/MSF.735.146 – ident: 104 doi: 10.5923/j.nn.20120203.01 – ident: 116 doi: 10.1016/j.msea.2015.10.121 – ident: 166 doi: 10.1016/j.scriptamat.2016.07.007 – ident: 220 doi: 10.1016/j.msea.2022.143179 – ident: 174 doi: 10.1039/D3TA04198K – ident: 94 doi: 10.2320/matertrans.MT-MF2022050 – ident: 137 doi: 10.1063/5.0044030 – ident: 168 doi: 10.1016/j.jallcom.2019.153548 – ident: 5 doi: 10.1016/j.actamat.2012.10.038 – ident: 150 doi: 10.1016/j.scriptamat.2018.08.031 – ident: 20 doi: 10.1557/s43577-021-00060-0 – ident: 29 doi: 10.2320/matertrans.MF201918 – ident: 90 doi: 10.2320/matertrans.MT-MF2022027 – ident: 225 doi: 10.1016/j.scriptamat.2019.08.011 – ident: 226 doi: 10.1016/j.jphotochem.2022.114167 – ident: 126 doi: 10.1080/21663831.2015.1065454 – ident: 117 doi: 10.1016/j.msea.2017.12.065 – ident: 156 doi: 10.1016/j.actamat.2016.02.026 – ident: 69 doi: 10.2320/matertrans.MT-MF2022018 – ident: 105 doi: 10.1016/S0079-6425(01)00002-0 – ident: 214 doi: 10.1016/j.msea.2018.02.002 – ident: 42 doi: 10.2320/matertrans.MF201914 – ident: 75 doi: 10.2320/matertrans.MT-MF2022011 – ident: 4 doi: 10.1016/j.jallcom.2024.174667 – ident: 234 doi: 10.1002/app.42180 – ident: 227 doi: 10.1039/C9TA12846H – ident: 209 doi: 10.1002/adem.201801300 – ident: 50 doi: 10.2320/matertrans.MT-MF2022051 – ident: 215 doi: 10.1007/s10853-022-07616-8 – ident: 74 doi: 10.2320/matertrans.MT-MF2022004 – ident: 129 doi: 10.2320/matertrans.MD200822 – ident: 128 doi: 10.1016/j.actamat.2019.12.007 – ident: 148 doi: 10.1007/s10853-023-09206-8 – ident: 96 doi: 10.2320/matertrans.MT-MF2022015 – ident: 176 doi: 10.1016/j.actamat.2024.120559 – ident: 184 doi: 10.1016/j.apcatb.2024.124968 – ident: 224 doi: 10.1016/j.jallcom.2021.162413 – ident: 53 doi: 10.2320/matertrans.MT-M2023136 – ident: 147 doi: 10.2320/matertrans.MT-M2020314 – ident: 81 doi: 10.2320/matertrans.MT-MF2022049 – ident: 28 doi: 10.1016/j.ijhydene.2024.07.306 – ident: 39 doi: 10.2320/matertrans.MF201924 – ident: 146 doi: 10.1016/j.actamat.2020.06.015 – ident: 67 doi: 10.2320/matertrans.MT-MF2022035 – ident: 12 doi: 10.1007/s10853-024-09464-0 – ident: 95 doi: 10.2320/matertrans.MT-MF2022013 – ident: 149 doi: 10.1016/j.actamat.2019.01.027 – ident: 175 doi: 10.1039/C9TA11839J – ident: 183 doi: 10.1016/j.jcat.2024.115808 – ident: 19 doi: 10.3390/met10060772 – ident: 26 doi: 10.1016/j.jmst.2022.10.068 – ident: 41 doi: 10.1016/j.msea.2017.06.076 – ident: 72 doi: 10.2320/matertrans.MT-MF2022048 – ident: 88 doi: 10.2320/matertrans.MT-MF2022020 – ident: 82 doi: 10.2320/matertrans.MT-MF2022034 – ident: 58 doi: 10.2320/matertrans.MT-MF2022009 – ident: 230 doi: 10.1103/PhysRev.48.825 – ident: 186 doi: 10.3390/met13081340 – ident: 76 doi: 10.2320/matertrans.MT-MF2022023 – ident: 208 doi: 10.1016/j.msea.2018.05.079 – ident: 223 doi: 10.1016/j.jallcom.2024.178274 – ident: 57 doi: 10.2320/matertrans.MT-MF2022038 – ident: 38 doi: 10.2320/matertrans.MF201922 – ident: 113 doi: 10.1016/j.msea.2009.11.060 – ident: 235 doi: 10.1002/app.49720 – ident: 195 doi: 10.1016/j.msea.2015.12.085 – ident: 25 doi: 10.1038/s41598-022-09735-3 – ident: 9 doi: 10.1002/adem.201000119 – ident: 13 doi: 10.1016/j.pmatsci.2008.03.002 – ident: 54 doi: 10.2320/matertrans.MT-MF2022037 – ident: 236 doi: 10.1086/624468 – ident: 37 doi: 10.2320/matertrans.MF201915 – ident: 173 doi: 10.1007/s10853-023-09198-5 – ident: 190 doi: 10.1007/s11837-014-1113-x – ident: 63 doi: 10.2320/matertrans.MT-MF2022044 – ident: 43 doi: 10.3390/ma16020587 – ident: 218 doi: 10.1016/j.intermet.2024.108368 – ident: 124 doi: 10.3390/cryst8020068 – ident: 199 doi: 10.1016/j.jallcom.2016.05.337 – ident: 62 doi: 10.2320/matertrans.MT-MF2022055 – ident: 198 doi: 10.1016/j.msea.2016.08.118 – ident: 48 doi: 10.2320/matertrans.MT-M2020134 – ident: 106 doi: 10.1016/j.scriptamat.2004.02.004 – ident: 193 doi: 10.1557/jmr.2015.239 – ident: 205 doi: 10.1016/j.actamat.2022.117689 – ident: 64 doi: 10.2320/matertrans.MT-MF2022036 – ident: 60 doi: 10.2320/matertrans.MT-MF2022042 – ident: 49 doi: 10.2320/matertrans.MT-MF2022057 – ident: 33 doi: 10.2320/matertrans.MF201909 – ident: 93 doi: 10.2320/matertrans.MT-MF2022014 – ident: 219 doi: 10.1016/j.msec.2020.110908 – ident: 127 doi: 10.1016/j.scriptamat.2016.06.022 – ident: 131 doi: 10.3390/met5042148 – ident: 130 doi: 10.1007/s10853-011-5822-z – ident: 77 doi: 10.2320/matertrans.MT-MF2022019 – ident: 80 doi: 10.2320/matertrans.MT-MF2022059 – ident: 17 doi: 10.1016/j.cirp.2008.09.005 – ident: 191 doi: 10.1016/j.actamat.2015.06.025 – ident: 120 doi: 10.1016/j.scriptamat.2014.04.023 – ident: 35 doi: 10.2320/matertrans.MF201919 – ident: 97 doi: 10.2320/matertrans.MT-MF2022008 – ident: 3 doi: 10.1080/21663831.2022.2029779 – ident: 70 doi: 10.2320/matertrans.MT-MF2022041 – ident: 153 doi: 10.1016/j.scriptamat.2024.116205 – ident: 46 doi: 10.2320/matertrans.MPR2023905 – ident: 71 doi: 10.2320/matertrans.MT-MF2022046 – ident: 59 doi: 10.2320/matertrans.MT-MF2022012 – ident: 7 doi: 10.1016/j.actamat.2012.09.048 – ident: 85 doi: 10.2320/matertrans.MT-MF2022045 – ident: 34 doi: 10.2320/matertrans.MF201937 – ident: 228 doi: 10.1016/j.actamat.2019.11.010 – ident: 30 doi: 10.2320/matertrans.MF201936 – ident: 73 doi: 10.2320/matertrans.MT-MF2022026 – ident: 18 doi: 10.1007/s11661-007-9459-0 – ident: 204 doi: 10.1016/j.msea.2022.142670 – ident: 152 doi: 10.1002/adem.202000011 – ident: 206 doi: 10.1016/j.msea.2022.143399 – ident: 16 doi: 10.1016/S1359-6454(98)00365-6 – ident: 21 doi: 10.1002/adem.201800272 – ident: 138 doi: 10.1038/s41467-024-54169-2 – ident: 108 doi: 10.1016/S0921-5093(00)00686-9 – ident: 192 doi: 10.1016/j.matlet.2015.03.066 – ident: 203 doi: 10.1016/j.ijplas.2021.103193 – ident: 47 doi: 10.2320/matertrans.MPR2019904 – ident: 170 doi: 10.1088/1742-6596/1750/1/012077 – ident: 238 doi: 10.1038/s41467-024-51469-5 – ident: 123 doi: 10.2320/matertrans.MF201942 – ident: 145 doi: 10.1016/j.ijhydene.2024.11.353 – ident: 44 doi: 10.1007/s12598-023-02340-x – ident: 158 doi: 10.1016/j.pmatsci.2018.02.002 – ident: 99 doi: 10.2320/matertrans.MT-MF2022017 – ident: 179 doi: 10.1016/j.apcatb.2021.120566 – ident: 1 doi: 10.1016/S0079-6425(99)00007-9 – ident: 111 doi: 10.1038/s41578-020-0212-2 |
SSID | ssj0037522 |
Score | 2.4335537 |
Snippet | Severe plastic deformation (SPD) has emerged as a transformative tool in materials science, enabling the development of ultrafine-grained, nanostructured and... |
SourceID | proquest crossref nii jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 450 |
SubjectTerms | Addition polymerization gradient-structured materials heterostructured materials high-pressure torsion (HPT) Materials science Nanomaterials nanostructured materials Phase transitions Plastic deformation Trends ultrafine-grained (UFG) materials Ultrafines |
Title | Recent Research Trends in Severe Plastic Deformation of Metallic and Non-Metallic Materials |
URI | https://www.jstage.jst.go.jp/article/matertrans/66/4/66_MT-M2024189/_article/-char/en https://cir.nii.ac.jp/crid/1390585095042500864 https://www.proquest.com/docview/3204146113 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | MATERIALS TRANSACTIONS, 2025/04/01, Vol.66(4), pp.450-461 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6jQMcEJ9aYUM-4FOVrUkcxz66XVCBZQfaSRMconzYUieaIsg48D_wP_McJ6mBSXxIlRW92pb73q_PPzvPzwi95ByAE1WRV8RMeZTmpcdhwB5M1bAiqrTQ7am09IItLumbq-hqNPruRC3dNMVJ-e3WcyX_Y1WQgV3NKdl_sOzQKQjgGewLJVgYyr-yMXA-8yq_j56b7AJclwp-jDJXEpk8zOBVhkOKbcyLAsr9scvUerGtvUGQ5o0duEtaUwmc97U8X05W7-TF0sadDCQyqXITTzd5m39Vw97yYms2HSbvVX29djcWgsiJRzFQIElEeETknCQxETPCpXmQlMwS8xVIZEgSRmYhERFJQC7hMzEiAfWi9mHetheEQxe-aTbziWjbyzMiWdtsToR0PHBII08we6_PieplsWdusHDdtr2spYMndXwwtZlsu-mc2lzvv84UQCRNaOXGaLVpWcGm8TagBupzsYcOgjg2b_0P5Fl6vuyn9jC26eeHMdoj56av09t7-ont3LkGwm8yOezV6_Vvc39LaFYP0P1uJYKlhdVDNFL1I3TPyU_5GH2wAMM9wLAFGF7X2AIMdwDDDsDwVuMeTxgAhl2A4QFgT9Dlq2Q1X3jdbRxeCSS78UINzr4QvAz0lBVBAdzb5zllUQkUV-uoKoJSVMpsTnNWlmqqaREIPy7DuKq4CsKnaL_e1uoQ4TAo_aDSU-2rgk4p477Oi0Kzaa41KC0Yo9Nea9knm3Qlg8Wq0XO203OWrrK00_MYJVa5Q_3uT-nWZyyjpnDaDdXMGUdwKWN0DLbJyrUpYXE0hdU0LELMzGYW_3SMjnqrZZ0j-JLBsCgQDnBuz_7Q_Dm6u_unHaH95vONOgZS2xQvOqj9AHxek7w |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Research+Trends+in+Severe+Plastic+Deformation+of+Metallic+and+Non-Metallic+Materials&rft.jtitle=MATERIALS+TRANSACTIONS&rft.au=Edalati+Kaveh&rft.au=Horita+Zenji&rft.date=2025-04-01&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E9%87%91%E5%B1%9E%E5%AD%A6%E4%BC%9A&rft.issn=1345-9678&rft.eissn=1347-5320&rft.volume=66&rft.issue=4&rft.spage=450&rft.epage=461&rft_id=info:doi/10.2320%2Fmatertrans.mt-m2024189 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-9678&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-9678&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-9678&client=summon |