Multiple agricultural cropland products of South Asia developed using Landsat-8 30 m and MODIS 250 m data using machine learning on the Google Earth Engine (GEE) cloud and spectral matching techniques (SMTs) in support of food and water security
Cropland products are of great importance in water and food security assessments, especially in South Asia, which is home to nearly 2 billion people and 230 million hectares of net cropland area. In South Asia, croplands account for about 90% of all human water use. Cropland extent, cropping intensi...
Saved in:
Published in | GIScience and remote sensing Vol. 59; no. 1; pp. 1048 - 1077 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
31.12.2022
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-1603 1943-7226 1943-7226 |
DOI | 10.1080/15481603.2022.2088651 |
Cover
Abstract | Cropland products are of great importance in water and food security assessments, especially in South Asia, which is home to nearly 2 billion people and 230 million hectares of net cropland area. In South Asia, croplands account for about 90% of all human water use. Cropland extent, cropping intensity, crop watering methods, and crop types are important factors that have a bearing on the quantity, quality, and location of production. Currently, cropland products are produced using mainly coarse-resolution (250-1000 m) remote sensing data. As multiple cropland products are needed to address food and water security challenges, our study was aimed at producing three distinct products that would be useful overall in South Asia. The first of these, Product 1, was meant to assess irrigated versus rainfed croplands in South Asia using Landsat 30 m data on the Google Earth Engine (GEE) platform. The second, Product 2, was tailored for major crop types using Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m data. The third, Product 3, was designed for cropping intensity (single, double, and triple cropping) using MODIS 250 m data. For the kharif season (the main cropping season in South Asia, Jun-Oct), 10 major crops (5 irrigated crops: rice, soybean, maize, sugarcane, cotton; and 5 rainfed crops: pulses, rice, sorghum, millet, groundnut) were mapped. For the rabi season (post-rainy season, Nov-Feb), five major crops (three irrigated crops: rice, wheat, maize; and two rainfed crops: chickpea, pulses) were mapped. The irrigated versus rainfed 30 m product showed an overall accuracy of 79.8% with the irrigated cropland class providing a producer's accuracy of 79% and the rainfed cropland class 74%. The overall accuracy demonstrated by the cropping intensity product was 85.3% with the producer's accuracies of 88%, 85%, and 67% for single, double, and triple cropping, respectively. Crop types were mapped to accuracy levels ranging from 72% to 97%. A comparison of the crop-type area statistics with national statistics explained 63-98% variability. The study produced multiple-cropland products that are crucial for food and water security assessments, modeling, mapping, and monitoring using multiple-satellite sensor big-data, and Random Forest (RF) machine learning algorithms by coding, processing, and computing on the GEE cloud. |
---|---|
AbstractList | Cropland products are of great importance in water and food security assessments, especially in South Asia, which is home to nearly 2 billion people and 230 million hectares of net cropland area. In South Asia, croplands account for about 90% of all human water use. Cropland extent, cropping intensity, crop watering methods, and crop types are important factors that have a bearing on the quantity, quality, and location of production. Currently, cropland products are produced using mainly coarse-resolution (250-1000 m) remote sensing data. As multiple cropland products are needed to address food and water security challenges, our study was aimed at producing three distinct products that would be useful overall in South Asia. The first of these, Product 1, was meant to assess irrigated versus rainfed croplands in South Asia using Landsat 30 m data on the Google Earth Engine (GEE) platform. The second, Product 2, was tailored for major crop types using Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m data. The third, Product 3, was designed for cropping intensity (single, double, and triple cropping) using MODIS 250 m data. For the kharif season (the main cropping season in South Asia, Jun-Oct), 10 major crops (5 irrigated crops: rice, soybean, maize, sugarcane, cotton; and 5 rainfed crops: pulses, rice, sorghum, millet, groundnut) were mapped. For the rabi season (post-rainy season, Nov-Feb), five major crops (three irrigated crops: rice, wheat, maize; and two rainfed crops: chickpea, pulses) were mapped. The irrigated versus rainfed 30 m product showed an overall accuracy of 79.8% with the irrigated cropland class providing a producer's accuracy of 79% and the rainfed cropland class 74%. The overall accuracy demonstrated by the cropping intensity product was 85.3% with the producer's accuracies of 88%, 85%, and 67% for single, double, and triple cropping, respectively. Crop types were mapped to accuracy levels ranging from 72% to 97%. A comparison of the crop-type area statistics with national statistics explained 63-98% variability. The study produced multiple-cropland products that are crucial for food and water security assessments, modeling, mapping, and monitoring using multiple-satellite sensor big-data, and Random Forest (RF) machine learning algorithms by coding, processing, and computing on the GEE cloud. |
Author | Mohammed, Ismail Gumma, Murali Krishna Yamano, Takashi Thenkabail, Prasad S Teluguntla, Pardhasaradhi Panjala, Pranay |
Author_xml | – sequence: 1 givenname: Murali Krishna orcidid: 0000-0002-3760-3935 surname: Gumma fullname: Gumma, Murali Krishna email: gummamk@gmail.com organization: International Crops Research Institute for the Semi-Arid Tropics – sequence: 2 givenname: Prasad S orcidid: 0000-0002-2182-8822 surname: Thenkabail fullname: Thenkabail, Prasad S email: pthenkabail@usgs.gov organization: Western Geographic Science Center – sequence: 3 givenname: Pranay orcidid: 0000-0002-2111-6550 surname: Panjala fullname: Panjala, Pranay organization: International Crops Research Institute for the Semi-Arid Tropics – sequence: 4 givenname: Pardhasaradhi orcidid: 0000-0001-8060-9841 surname: Teluguntla fullname: Teluguntla, Pardhasaradhi organization: Bay Area Environmental Research Institute (BAERI) – sequence: 5 givenname: Takashi orcidid: 0000-0001-6202-1956 surname: Yamano fullname: Yamano, Takashi organization: Asian Development Bank (ADB) – sequence: 6 givenname: Ismail orcidid: 0000-0002-4197-8326 surname: Mohammed fullname: Mohammed, Ismail organization: International Crops Research Institute for the Semi-Arid Tropics |
BookMark | eNqFUk1vGyEUXFWp1CTtT6jE0Tk4XWDZD_XSKHVdS7ZycHpGb4FdE7GwBbaRf3jvZWPn0kN7AR6aGebx5iq7sM6qLPuI81uc1_knzIoalzm9JTkhaanrkuE32SVuCrqsCCkv0jlhljPoXXYVwlOeU4Yxu8x-7yYT9WgUgt5rkYrJg0HCu9GAlWj0Tk4iBuQ6tHdTPKC7oAFJ9UsZNyqJpqBtj7YJGyAua0RzNKCZuXv4utkjwuZaQoQzcgBx0FYho8Db-cJZFA8KrZ3rk4sV-PTGyvYzZrFerW6QMG6SL5JhVCLO9gaIs0qPohIHq39OKqDFfvcYbpC2KEzj6HycLXfOnajPEJVHQYnJ63h8n73twAT14bxfZz--rR7vvy-3D-vN_d12KQpWxiVVqiW4ZURWRZGXVYkpETgvgbWMtq2oyqrGRV2opum6lsmKdAIXDS06QRg0QK-zzUlXOnjio9cD-CN3oPnLhfM9T_1qYRQnTICSuJItlEXb0LaUOKdYNbKQVS1Z0lqctNJI5oYjH3QQyqQxKTcFTmpaEIJpVSbo5xM0jTEErzoudISonU2_pw3HOZ-Dw1-Dw-fg8HNwEpv9xX41_j_elxNP2875AZ6dN5JHOBrnOw9W6MDpvyX-APNR3cQ |
CitedBy_id | crossref_primary_10_1016_j_ejrh_2024_101935 crossref_primary_10_1016_j_jafr_2024_101593 crossref_primary_10_3389_frsen_2024_1451594 crossref_primary_10_14358_PERS_24_00072R3 crossref_primary_10_3390_rs16061035 crossref_primary_10_1029_2023EF003872 crossref_primary_10_3390_rs16081362 crossref_primary_10_1080_10106049_2024_2356841 crossref_primary_10_1016_j_isprsjprs_2024_10_015 crossref_primary_10_1080_09640568_2024_2337855 crossref_primary_10_1080_10106049_2024_2387786 crossref_primary_10_1080_15481603_2023_2233756 crossref_primary_10_3390_rs15030763 crossref_primary_10_1080_17538947_2024_2398068 crossref_primary_10_1016_j_isprsjprs_2023_08_007 crossref_primary_10_3390_agronomy13092302 crossref_primary_10_3390_ijgi12020050 crossref_primary_10_1016_j_compag_2025_110184 crossref_primary_10_3390_s23156932 crossref_primary_10_3390_su17062508 crossref_primary_10_1016_j_cj_2023_12_010 crossref_primary_10_1016_j_atech_2022_100149 crossref_primary_10_3390_data10010008 crossref_primary_10_1038_s43247_023_01078_9 crossref_primary_10_1016_j_heliyon_2024_e40836 crossref_primary_10_1186_s12284_024_00700_4 crossref_primary_10_3390_land12091764 crossref_primary_10_1016_j_scitotenv_2024_176188 crossref_primary_10_1080_10106049_2023_2186493 crossref_primary_10_3390_rs16173180 crossref_primary_10_1007_s12665_024_11991_7 crossref_primary_10_3390_rs16173280 crossref_primary_10_1016_j_atech_2023_100374 crossref_primary_10_1080_19475705_2023_2290350 crossref_primary_10_1016_j_rsase_2025_101524 crossref_primary_10_3390_agriengineering6010045 crossref_primary_10_1109_JSTARS_2023_3290677 |
Cites_doi | 10.1016/0034-4257(91)90048-B 10.1029/2007WR006331 10.1002/sd.2145 10.1016/j.isprsjprs.2018.07.017 10.3389/fenvs.2020.00086 10.1016/j.ijpe.2019.107599 10.5194/hess-19-1521-2015 10.3390/land10080861 10.1080/01431161.2012.657366 10.1016/j.isprsjprs.2020.11.022 10.3133/ofr20161032 10.1016/j.jag.2020.102198 10.1117/1.JRS.11.026005 10.1016/j.rse.2005.10.004 10.1016/j.rse.2020.112095 10.1061/(ASCE)EE.1943-7870.0001693 10.1016/j.rse.2020.111946 10.1016/j.landusepol.2019.104190 10.1080/10106049.2020.1805029 10.3133/pp1868 10.1016/j.isprsjprs.2009.08.004 10.1016/j.scitotenv.2016.10.223 10.1016/j.rse.2004.12.009 10.1080/10106049.2011.562309 10.1080/17538947.2016.1168489 10.1080/09640568.2014.958609 10.1016/j.isprsjprs.2016.05.010 10.1080/10408398.2020.1754161 10.3390/rs11080920 10.1016/j.jag.2021.102561 10.1080/01431161.2016.1151572 10.1117/1.3619838 10.3390/rs9101065 10.1029/2001GB001425 10.3390/ijgi8100463 10.1016/j.rse.2017.04.026 10.1631/jzus.A0820536 10.3390/rs12182957 10.3390/rs12223688 10.1007/978-1-4613-8982-8_1 10.1016/j.agsy.2020.102792 10.1016/j.seps.2020.100938 10.1016/j.compag.2020.105595 10.1080/01431160802698919 10.1016/j.scitotenv.2020.141035 10.1016/j.isprsjprs.2017.01.019 10.1080/014311698214451 10.1038/35087589 10.1016/j.jag.2008.11.002 10.1016/j.isprsjprs.2014.02.007 10.1016/j.oneear.2020.09.006 10.5067/MEaSUREs/GFSAD/GFSAD30SAAFGIRCE.001 10.3390/rs8110954 10.1080/15481603.2019.1690780 10.1016/j.envint.2019.104945 10.1080/1747423X.2020.1858198 10.1080/07352689.2020.1782069 10.1016/j.gloenvcha.2020.102131 10.1016/j.agee.2019.03.007 10.1111/gcb.12838 10.1007/s12524-020-01282-6 10.1016/j.scitotenv.2019.04.365 10.1016/j.jclepro.2019.118982 10.1016/j.isprsjprs.2011.11.002 10.1080/17538947.2019.1654274 10.3390/rs2010211 10.1201/9781420055139 10.3390/rs2071844 10.1016/j.jag.2018.11.014 10.1073/pnas.0605739104 10.1016/j.isprsjprs.2020.06.022 10.1109/JSTARS.2014.2344630 10.14358/PERS.75.12.1383 10.1016/j.envsci.2014.01.010 10.1016/j.foodpol.2018.10.012 10.1007/BF00052709 10.1007/s10653-018-00239-6 10.1016/j.fcr.2006.01.004 10.1016/j.ecoenv.2020.111601 10.5337/2011.0024 10.1016/j.rse.2017.06.033 |
ContentType | Journal Article |
Copyright | This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC 105, no copyright protection is available for such works under US Law. |
Copyright_xml | – notice: This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC 105, no copyright protection is available for such works under US Law. |
DBID | 0YH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1080/15481603.2022.2088651 |
DatabaseName | Taylor & Francis Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Statistics |
EISSN | 1943-7226 |
EndPage | 1077 |
ExternalDocumentID | oai_doaj_org_article_25caed17dba64b93b6d1031e9d4d78d5 10_1080_15481603_2022_2088651 2088651 |
Genre | Research Article |
GeographicLocations | South Asia |
GeographicLocations_xml | – name: South Asia |
GroupedDBID | 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABFIM ABPEM ABTAI ACGFS ACTIO ADCVX AEISY AENEX AEYOC AIJEM ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CS3 DGEBU DKSSO DU5 EBS E~A E~B GROUPED_DOAJ GTTXZ H13 HZ~ H~P IPNFZ KYCEM LJTGL M4Z O9- OK1 RIG S-T SNACF TDBHL TEI TFL TFT TFW TTHFI UT5 ~02 AAYXX AIYEW CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c456t-3eeb21b52d7440676132c106a5b53bbc76781484e99ffb5d72fc14934fc25a9a3 |
IEDL.DBID | 0YH |
ISSN | 1548-1603 1943-7226 |
IngestDate | Wed Aug 27 01:25:43 EDT 2025 Mon May 05 21:31:35 EDT 2025 Tue Jul 01 02:27:28 EDT 2025 Thu Apr 24 23:04:55 EDT 2025 Wed Dec 25 09:04:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: https://creativecommons.org/publicdomain/mark/1.0/: https://creativecommons.org/publicdomain/mark/1.0/: This is an Open Access article that has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights (https://creativecommons.org/publicdomain/mark/1.0/). You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-3eeb21b52d7440676132c106a5b53bbc76781484e99ffb5d72fc14934fc25a9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2111-6550 0000-0002-4197-8326 0000-0001-6202-1956 0000-0002-3760-3935 0000-0002-2182-8822 0000-0001-8060-9841 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/15481603.2022.2088651 |
PQID | 2834221376 |
PQPubID | 24069 |
PageCount | 30 |
ParticipantIDs | crossref_citationtrail_10_1080_15481603_2022_2088651 crossref_primary_10_1080_15481603_2022_2088651 doaj_primary_oai_doaj_org_article_25caed17dba64b93b6d1031e9d4d78d5 proquest_miscellaneous_2834221376 informaworld_taylorfrancis_310_1080_15481603_2022_2088651 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-31 |
PublicationDateYYYYMMDD | 2022-12-31 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | GIScience and remote sensing |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | cit0077 cit0110 cit0111 cit0075 cit0076 Thenkabail P. S. (cit0092) 2011 cit0072 cit0070 Sebby K (cit0073) 2010; 10 cit0079 cit0112 cit0066 cit0067 cit0100 cit0064 cit0065 cit0062 cit0063 Huke R. E (cit0038) 1982 cit0060 cit0061 cit0109 cit0107 cit0108 cit0105 cit0106 cit0103 cit0104 cit0101 cit0069 cit0102 cit0011 cit0099 cit0012 cit0097 cit0010 Santana M. S. (cit0071) 2020; 143829 cit0098 cit0095 cit0096 cit0094 cit0091 cit0090 Thenkabail P. (cit0088) 2007; 73 cit0019 cit0017 cit0018 cit0015 cit0013 cit0014 cit0001 cit0089 cit0086 Rouse J. W. (cit0068) 1974 cit0087 cit0084 Siebert S. (cit0078) 2007 cit0082 cit0083 cit0080 cit0081 cit0008 cit0009 cit0006 cit0007 cit0004 Seinn S. (cit0074) 2015; 6 cit0005 cit0002 cit0003 cit0033 cit0034 cit0031 cit0032 cit0030 cit0037 Takeuchi W. (cit0085) 2009 cit0035 Döll P. (cit0016) 2000; 49 cit0022 cit0023 cit0020 cit0021 Maiorano G (cit0049) 2020; 10 cit0028 cit0029 cit0026 cit0027 cit0024 cit0025 cit0055 cit0056 cit0053 cit0054 cit0051 cit0052 cit0050 Homayouni S. (cit0036) 2003 Huke R. E. (cit0039) 1997 Thenkabail P. S. (cit0093) 2012; 78 cit0059 cit0057 cit0058 cit0044 cit0045 cit0042 cit0043 cit0040 cit0041 cit0048 cit0046 cit0047 |
References_xml | – ident: cit0012 doi: 10.1016/0034-4257(91)90048-B – ident: cit0009 – start-page: 281 volume-title: Remote Sensing of Global Croplands for Food Security (Remote Sensing Applications Series) year: 2009 ident: cit0085 – ident: cit0067 doi: 10.1029/2007WR006331 – ident: cit0103 doi: 10.1002/sd.2145 – ident: cit0087 doi: 10.1016/j.isprsjprs.2018.07.017 – ident: cit0005 doi: 10.3389/fenvs.2020.00086 – ident: cit0018 doi: 10.1016/j.ijpe.2019.107599 – start-page: 383 year: 2011 ident: cit0092 publication-title: Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications – ident: cit0006 – ident: cit0080 doi: 10.5194/hess-19-1521-2015 – ident: cit0021 – ident: cit0096 – ident: cit0045 doi: 10.3390/land10080861 – volume-title: Rice Area by Type of Culture: South, Southeast, and East Asia, a Revised and Updated Data Base year: 1997 ident: cit0039 – ident: cit0084 doi: 10.1080/01431161.2012.657366 – ident: cit0110 doi: 10.1016/j.isprsjprs.2020.11.022 – ident: cit0053 doi: 10.3133/ofr20161032 – ident: cit0041 – ident: cit0010 – ident: cit0050 doi: 10.1016/j.jag.2020.102198 – ident: cit0076 doi: 10.1117/1.JRS.11.026005 – ident: cit0106 doi: 10.1016/j.rse.2005.10.004 – ident: cit0046 doi: 10.1016/j.rse.2020.112095 – ident: cit0003 – ident: cit0035 doi: 10.1061/(ASCE)EE.1943-7870.0001693 – ident: cit0109 doi: 10.1016/j.rse.2020.111946 – ident: cit0101 doi: 10.1016/j.landusepol.2019.104190 – ident: cit0034 doi: 10.1080/10106049.2020.1805029 – volume-title: Rice Area by Type of Culture: South, Southeast, and East Asia year: 1982 ident: cit0038 – ident: cit0094 doi: 10.3133/pp1868 – ident: cit0015 doi: 10.1016/j.isprsjprs.2009.08.004 – ident: cit0111 doi: 10.1016/j.scitotenv.2016.10.223 – ident: cit0105 doi: 10.1016/j.rse.2004.12.009 – ident: cit0008 doi: 10.1080/10106049.2011.562309 – ident: cit0031 doi: 10.1080/17538947.2016.1168489 – ident: cit0070 doi: 10.1080/09640568.2014.958609 – ident: cit0017 doi: 10.1016/j.isprsjprs.2016.05.010 – ident: cit0055 doi: 10.1080/10408398.2020.1754161 – volume: 73 start-page: 1029 issue: 10 year: 2007 ident: cit0088 publication-title: Photogrammetric Engineering and Remote Sensing – ident: cit0079 – ident: cit0075 doi: 10.3390/rs11080920 – ident: cit0072 doi: 10.1016/j.jag.2021.102561 – ident: cit0043 doi: 10.1080/01431161.2016.1151572 – ident: cit0029 doi: 10.1117/1.3619838 – ident: cit0108 doi: 10.3390/rs9101065 – ident: cit0024 doi: 10.1029/2001GB001425 – ident: cit0044 doi: 10.3390/ijgi8100463 – ident: cit0081 doi: 10.1016/j.rse.2017.04.026 – ident: cit0083 doi: 10.1631/jzus.A0820536 – volume: 6 start-page: 2157 year: 2015 ident: cit0074 publication-title: Journal of Earth Science & Climatic Change – ident: cit0102 doi: 10.3390/rs12182957 – ident: cit0042 doi: 10.3390/rs12223688 – start-page: d.C., 309 volume-title: Third Earth Resources Technology Satellite–1 Syposium. Volume I: Technical Presentations year: 1974 ident: cit0068 – ident: cit0086 – ident: cit0059 doi: 10.1007/978-1-4613-8982-8_1 – ident: cit0040 – ident: cit0098 doi: 10.1016/j.agsy.2020.102792 – ident: cit0052 doi: 10.1016/j.seps.2020.100938 – ident: cit0022 doi: 10.1016/j.compag.2020.105595 – ident: cit0090 doi: 10.1080/01431160802698919 – ident: cit0002 – ident: cit0037 doi: 10.1016/j.scitotenv.2020.141035 – volume: 49 start-page: 55 issue: 2 year: 2000 ident: cit0016 publication-title: Icid Journal – ident: cit0054 – ident: cit0107 doi: 10.1016/j.isprsjprs.2017.01.019 – ident: cit0011 doi: 10.1080/014311698214451 – ident: cit0048 doi: 10.1038/35087589 – ident: cit0077 – ident: cit0007 doi: 10.1016/j.jag.2008.11.002 – ident: cit0030 doi: 10.1016/j.isprsjprs.2014.02.007 – ident: cit0019 doi: 10.1016/j.oneear.2020.09.006 – start-page: 2003 volume-title: IEEE Workshop in honour of Prof. Landgrebe year: 2003 ident: cit0036 – ident: cit0032 doi: 10.5067/MEaSUREs/GFSAD/GFSAD30SAAFGIRCE.001 – ident: cit0095 doi: 10.3390/rs8110954 – ident: cit0033 doi: 10.1080/15481603.2019.1690780 – ident: cit0057 doi: 10.1016/j.envint.2019.104945 – ident: cit0069 doi: 10.1080/1747423X.2020.1858198 – ident: cit0020 – ident: cit0082 doi: 10.1080/07352689.2020.1782069 – ident: cit0100 doi: 10.1016/j.gloenvcha.2020.102131 – volume-title: Global Map of Irrigation Areas year: 2007 ident: cit0078 – volume: 143829 year: 2020 ident: cit0071 publication-title: Science of the Total Environment – ident: cit0064 doi: 10.1016/j.agee.2019.03.007 – ident: cit0023 doi: 10.1111/gcb.12838 – ident: cit0063 doi: 10.1007/s12524-020-01282-6 – ident: cit0112 doi: 10.1016/j.scitotenv.2019.04.365 – ident: cit0026 doi: 10.1016/j.jclepro.2019.118982 – volume: 78 start-page: 773 issue: 8 year: 2012 ident: cit0093 publication-title: Photogrammetric Engineering and Remote Sensing – ident: cit0066 doi: 10.1016/j.isprsjprs.2011.11.002 – ident: cit0097 doi: 10.1080/17538947.2019.1654274 – ident: cit0091 doi: 10.3390/rs2010211 – ident: cit0013 doi: 10.1201/9781420055139 – ident: cit0056 – ident: cit0061 doi: 10.3390/rs2071844 – ident: cit0058 doi: 10.1016/j.jag.2018.11.014 – ident: cit0065 doi: 10.1073/pnas.0605739104 – ident: cit0104 – ident: cit0060 doi: 10.1016/j.isprsjprs.2020.06.022 – ident: cit0028 doi: 10.1109/JSTARS.2014.2344630 – volume: 10 start-page: 34 issue: 1 year: 2020 ident: cit0049 publication-title: Journal of Microbiology, Biotechnology and Food Sciences – ident: cit0099 doi: 10.14358/PERS.75.12.1383 – ident: cit0062 doi: 10.1016/j.envsci.2014.01.010 – ident: cit0027 doi: 10.1016/j.foodpol.2018.10.012 – ident: cit0047 – ident: cit0004 doi: 10.1007/BF00052709 – ident: cit0001 doi: 10.1007/s10653-018-00239-6 – ident: cit0025 doi: 10.1016/j.fcr.2006.01.004 – ident: cit0014 doi: 10.1016/j.ecoenv.2020.111601 – ident: cit0089 doi: 10.5337/2011.0024 – ident: cit0051 doi: 10.1016/j.rse.2017.06.033 – volume: 10 start-page: 1 year: 2010 ident: cit0073 publication-title: Environmental Studies Undergraduate Student Theses |
SSID | ssj0035115 |
Score | 2.4509113 |
Snippet | Cropland products are of great importance in water and food security assessments, especially in South Asia, which is home to nearly 2 billion people and 230... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1048 |
SubjectTerms | chickpeas corn cotton Crop types cropland cropping intensities food security humans Internet irrigated crop irrigated farming irrigation Landsat millets MODIS peanuts rainfed crop remote sensing rice South Asia soybeans spectroradiometers statistics sugarcane water security wheat |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQn-rypUFCqD2EJo7jxMcC2xbEwqGt1Ftkx862UjdZbbJC_HDuzNjeVYHDXrglVmZ3lLzYb5yZN4y9pRjASN4kJi_bRJRcJsrhUSob4Zqs5dz5BNlv8uxSfLkqru60-qKcsCAPHG7cES8a7WxWWqOlMCo30lJnAqessGVlvXppqtJNMBXmYPo6VnilVIExkkzzTe1OlR7RGA1hbMipEquqZJH9sSp58f6_pEv_mar9-nPykD2IxBGOg8OP2D3XPWb7xwNtZfeLn_AO_HHYqRiesF-zmCoIer7aCmwAdeyiZEZYBqnXAfoWfB89tL_REIuonAXKiJ_DVyoF1mNSQZ7CAshy9v3T53NAUoPnlGAar1z4tEwHsQ_FHPoOkF3Cad_P0Ysp3uprCPKHcHA6nR5Cc9uvrf9JX-9J7iF_9smdsNWWHeDgfHYxHMJNB8N6SeECudz2fTD9gWR5BUNsw_eUXZ5MLz6eJbHHQ9IgdRuT3GFon5mCW1IqlCWyC95gmKoLU-TGNKUkTa5KOKXa1hS25G2DQV0u2oYXWun8Gdvr-s7tM5BKp7mmUmPdCptKJa3mXCEYrVYYi0-Y2DzjuokC6NSH47bOok7qBho1QaOO0Jiw91uzZVAA2WXwgQC0vZgEvP0AwrqOsK53wXrC1F341aPfv2lDs5U63-HAmw1Wa5ws6AuQ7ly_HmrkkoLzDBeV5__DyRfsPv1v0L18yfbG1dq9Qo42mtf-dfwNEvU0iw priority: 102 providerName: Directory of Open Access Journals |
Title | Multiple agricultural cropland products of South Asia developed using Landsat-8 30 m and MODIS 250 m data using machine learning on the Google Earth Engine (GEE) cloud and spectral matching techniques (SMTs) in support of food and water security |
URI | https://www.tandfonline.com/doi/abs/10.1080/15481603.2022.2088651 https://www.proquest.com/docview/2834221376 https://doaj.org/article/25caed17dba64b93b6d1031e9d4d78d5 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQuXBBPNXlUQ0SQu0hsOs4zvpYYNsFsXBoK8EpsmM7VOrGq82uED-cOzOOs-Ih1AO3JMpYljIZf2N_8w1jzykHMJLXmclLn4mSy0w5vBrLWrh64jl3kSD7Uc4vxPvPxcAm7BKtknJo3wtFxFhNP7c23cCIe0Uom7ojY3bHqZZqOpVURH2TI1AkVt_4y3wIxnRMVkTJVIHJEtoMRTz_Gua35Smq-P-hYfpXzI4L0ckddjshSDjuP_lddsO199j-cUd72mH5HV5AvO63LLr77McicQZBN-ud0gZQ6y5iNcKq13ztIHiIDfXQ_lJDqqZyFoga38AHqgnWm2wK-RiWQJaLT2_fnQGiG7wnpml6cxn5mQ5SQ4oGQgsIM-E0hAZnMUNn_Qq9DiIcns5mR1Bfha2NQ8bCT5oeAunI8oSdyGwHh2eL8-4ILlvotivKG2jKPoTe9Bui5jV0qR_fA3ZxMjt_M89Ss4esRgy3yXKHOf7EFNySZKEsEWbwGvNVXZgiN6YuJYlzTYVTyntT2JL7GrO7XPiaF1rp_CHba0Pr9hlIpce5pppj7YUdSyWt5lyhV1qtMCkfMTF846pOSujUkOOqmiTB1ME1KnKNKrnGiL3cma16KZDrDF6TA-1eJiXv-CCsmyoFhooXtXZ2UlqjpTAqN9JS5w2nrLDl1BYjpn51v2oTN3J833Wlyq-ZwLPBVyuMGnQUpFsXtl2FoFJwPsHV5dF_jP-Y3aLbXvfyCdvbrLfuKWK0jTmIf-FB3OH4CdRfMYc |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hcoAL4qmmvAYJofZgiNfrtX0skDaFpByaSuVkrfcRKjXeKE6E-OHcmVnbUQGhHrj5NauVPJ79vvXMN4y9Jg5QSa6jKslcJDIuo8Li0VBqYXXsOLchQfZUjs_Fp4v04lotDKVVEod2rVBEiNX0cdNmdJ8S945gNrVHRnrHqZgqzyVVUd9Oc2QT6NPDr-M-GtN_sjRopgpkS2jTV_H8a5jf1qcg4_-HiOlfQTusREf32b0OQsJh-84fsFu2fsh2Dxva1PaLH_AGwnG7Z9E8Yj-nXdIgqPlqK7UB1LuL0hph2Yq-NuAdhI56aH-poCunsgYoN34OEyoKVusoh2QICyDL6ZePJ2eA8AbPKdW0e3IREjQtdB0p5uBrQJwJx97PcRYj9NZv0Aohwv7xaHQA-spvTBgyVH7S9BBJhzRP2KrMNrB_Np01B3BZQ7NZEnGgKTvvW9PvCJtX0HQN-R6z86PR7MM46ro9RBpB3DpKLJL8uEq5Ic1CmSHO4BoJq0qrNKkqnUlS58qFLQrnqtRk3Gmkd4lwmqeqUMkTtlP72u4ykIUaJoqKjpUTZigLaRTnBbqlUQWy8gET_TsudSeFTh05rsq4U0ztXaMk1yg71xiwt1uzZasFcpPBe3Kg7cMk5R0u-NW87CJDyVOtrIkzUykpqiKppKHWG7YwwmS5SQesuO5-5Trs5Li27UqZ3DCBV72vlhg26F-Qqq3fNCWiSsF5jMvL3n-M_5LdGc-mk3Jycvr5KbtLt1oRzGdsZ73a2OcI2NbVi_BF_gIUDjP9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hIiEuvFHDc5AQag8Oydpex8dCk7bQBKS2Ejdrn6GisaPYEYL_zZ2Z9TqCItRDb07sWa21s7vfrL_5hrHXFAMowXWk4sxFScZFlFu8GgidWD10nFtPkJ2Jw7Pkw5e0YxPWgVZJMbRrhSL8Wk2Te2lcx4h7SyibqiNjdMcpl2o0EpREfVMgPCFWXzyYdYsxfSZLvWRqgsES2nRJPP9r5q_tyav4X9Iw_WfN9hvR5C5T3Su0_JNv_XWj-vrnJXXHa73jPXYnwFTYa_3qPrthywdse6-mg_Nq8QPegL9uz0Xqh-zXNBATQc5XGzkPoPpgRJ2EZSssW0PlwFftQ_tzCSFlyxog_v0cjinxWDbRCOIBLIAsp5_2j04AIRT-JjpreHLhSaAWQtWLOVQlIJaFg6qaYy_GOCO-Qiu2CDsH4_Eu6ItqbXyTPruUuodo3VNJYaNkW8POyfS03oXzEur1koIT6rKrqtb0O0LzFdSh6N8jdjYZn74_jEJFiUgjUGyi2FrFhyrlhnQRRYZYhmsMimWq0lgpnQlSABslNs-dU6nJuNMYQsaJ0zyVuYwfs62yKu02A5HLQSwpsVm6xAxELozkPEfXNzLHyL_Hks6RCh3k1qnqx0UxDKqs3RAXNMRFGOIe62_Mlq3eyFUG78hLNw-TXLj_o1rNi7D6FDzV0pphZpQUicpjJQyV97C5SUw2MmmP5X_6eNH40yLXlnYp4is68KqbEAUuTfS9SZa2WtcFIteE8yFuYU-u0f5Lduvz_qQ4Ppp9fMpu051WZ_MZ22pWa_scMWGjXvhZ_xvG6FKl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+agricultural+cropland+products+of+South+Asia+developed+using+Landsat-8+30+m+and+MODIS+250+m+data+using+machine+learning+on+the+Google+Earth+Engine+%28GEE%29+cloud+and+spectral+matching+techniques+%28SMTs%29+in+support+of+food+and+water+security&rft.jtitle=GIScience+and+remote+sensing&rft.au=Gumma%2C+Murali+Krishna&rft.au=Thenkabail%2C+Prasad+S&rft.au=Panjala%2C+Pranay&rft.au=Teluguntla%2C+Pardhasaradhi&rft.date=2022-12-31&rft.pub=Taylor+%26+Francis&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=59&rft.issue=1&rft.spage=1048&rft.epage=1077&rft_id=info:doi/10.1080%2F15481603.2022.2088651&rft.externalDBID=0YH&rft.externalDocID=2088651 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon |