Multiple agricultural cropland products of South Asia developed using Landsat-8 30 m and MODIS 250 m data using machine learning on the Google Earth Engine (GEE) cloud and spectral matching techniques (SMTs) in support of food and water security

Cropland products are of great importance in water and food security assessments, especially in South Asia, which is home to nearly 2 billion people and 230 million hectares of net cropland area. In South Asia, croplands account for about 90% of all human water use. Cropland extent, cropping intensi...

Full description

Saved in:
Bibliographic Details
Published inGIScience and remote sensing Vol. 59; no. 1; pp. 1048 - 1077
Main Authors Gumma, Murali Krishna, Thenkabail, Prasad S, Panjala, Pranay, Teluguntla, Pardhasaradhi, Yamano, Takashi, Mohammed, Ismail
Format Journal Article
LanguageEnglish
Published Taylor & Francis 31.12.2022
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1548-1603
1943-7226
1943-7226
DOI10.1080/15481603.2022.2088651

Cover

Abstract Cropland products are of great importance in water and food security assessments, especially in South Asia, which is home to nearly 2 billion people and 230 million hectares of net cropland area. In South Asia, croplands account for about 90% of all human water use. Cropland extent, cropping intensity, crop watering methods, and crop types are important factors that have a bearing on the quantity, quality, and location of production. Currently, cropland products are produced using mainly coarse-resolution (250-1000 m) remote sensing data. As multiple cropland products are needed to address food and water security challenges, our study was aimed at producing three distinct products that would be useful overall in South Asia. The first of these, Product 1, was meant to assess irrigated versus rainfed croplands in South Asia using Landsat 30 m data on the Google Earth Engine (GEE) platform. The second, Product 2, was tailored for major crop types using Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m data. The third, Product 3, was designed for cropping intensity (single, double, and triple cropping) using MODIS 250 m data. For the kharif season (the main cropping season in South Asia, Jun-Oct), 10 major crops (5 irrigated crops: rice, soybean, maize, sugarcane, cotton; and 5 rainfed crops: pulses, rice, sorghum, millet, groundnut) were mapped. For the rabi season (post-rainy season, Nov-Feb), five major crops (three irrigated crops: rice, wheat, maize; and two rainfed crops: chickpea, pulses) were mapped. The irrigated versus rainfed 30 m product showed an overall accuracy of 79.8% with the irrigated cropland class providing a producer's accuracy of 79% and the rainfed cropland class 74%. The overall accuracy demonstrated by the cropping intensity product was 85.3% with the producer's accuracies of 88%, 85%, and 67% for single, double, and triple cropping, respectively. Crop types were mapped to accuracy levels ranging from 72% to 97%. A comparison of the crop-type area statistics with national statistics explained 63-98% variability. The study produced multiple-cropland products that are crucial for food and water security assessments, modeling, mapping, and monitoring using multiple-satellite sensor big-data, and Random Forest (RF) machine learning algorithms by coding, processing, and computing on the GEE cloud.
AbstractList Cropland products are of great importance in water and food security assessments, especially in South Asia, which is home to nearly 2 billion people and 230 million hectares of net cropland area. In South Asia, croplands account for about 90% of all human water use. Cropland extent, cropping intensity, crop watering methods, and crop types are important factors that have a bearing on the quantity, quality, and location of production. Currently, cropland products are produced using mainly coarse-resolution (250-1000 m) remote sensing data. As multiple cropland products are needed to address food and water security challenges, our study was aimed at producing three distinct products that would be useful overall in South Asia. The first of these, Product 1, was meant to assess irrigated versus rainfed croplands in South Asia using Landsat 30 m data on the Google Earth Engine (GEE) platform. The second, Product 2, was tailored for major crop types using Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m data. The third, Product 3, was designed for cropping intensity (single, double, and triple cropping) using MODIS 250 m data. For the kharif season (the main cropping season in South Asia, Jun-Oct), 10 major crops (5 irrigated crops: rice, soybean, maize, sugarcane, cotton; and 5 rainfed crops: pulses, rice, sorghum, millet, groundnut) were mapped. For the rabi season (post-rainy season, Nov-Feb), five major crops (three irrigated crops: rice, wheat, maize; and two rainfed crops: chickpea, pulses) were mapped. The irrigated versus rainfed 30 m product showed an overall accuracy of 79.8% with the irrigated cropland class providing a producer's accuracy of 79% and the rainfed cropland class 74%. The overall accuracy demonstrated by the cropping intensity product was 85.3% with the producer's accuracies of 88%, 85%, and 67% for single, double, and triple cropping, respectively. Crop types were mapped to accuracy levels ranging from 72% to 97%. A comparison of the crop-type area statistics with national statistics explained 63-98% variability. The study produced multiple-cropland products that are crucial for food and water security assessments, modeling, mapping, and monitoring using multiple-satellite sensor big-data, and Random Forest (RF) machine learning algorithms by coding, processing, and computing on the GEE cloud.
Author Mohammed, Ismail
Gumma, Murali Krishna
Yamano, Takashi
Thenkabail, Prasad S
Teluguntla, Pardhasaradhi
Panjala, Pranay
Author_xml – sequence: 1
  givenname: Murali Krishna
  orcidid: 0000-0002-3760-3935
  surname: Gumma
  fullname: Gumma, Murali Krishna
  email: gummamk@gmail.com
  organization: International Crops Research Institute for the Semi-Arid Tropics
– sequence: 2
  givenname: Prasad S
  orcidid: 0000-0002-2182-8822
  surname: Thenkabail
  fullname: Thenkabail, Prasad S
  email: pthenkabail@usgs.gov
  organization: Western Geographic Science Center
– sequence: 3
  givenname: Pranay
  orcidid: 0000-0002-2111-6550
  surname: Panjala
  fullname: Panjala, Pranay
  organization: International Crops Research Institute for the Semi-Arid Tropics
– sequence: 4
  givenname: Pardhasaradhi
  orcidid: 0000-0001-8060-9841
  surname: Teluguntla
  fullname: Teluguntla, Pardhasaradhi
  organization: Bay Area Environmental Research Institute (BAERI)
– sequence: 5
  givenname: Takashi
  orcidid: 0000-0001-6202-1956
  surname: Yamano
  fullname: Yamano, Takashi
  organization: Asian Development Bank (ADB)
– sequence: 6
  givenname: Ismail
  orcidid: 0000-0002-4197-8326
  surname: Mohammed
  fullname: Mohammed, Ismail
  organization: International Crops Research Institute for the Semi-Arid Tropics
BookMark eNqFUk1vGyEUXFWp1CTtT6jE0Tk4XWDZD_XSKHVdS7ZycHpGb4FdE7GwBbaRf3jvZWPn0kN7AR6aGebx5iq7sM6qLPuI81uc1_knzIoalzm9JTkhaanrkuE32SVuCrqsCCkv0jlhljPoXXYVwlOeU4Yxu8x-7yYT9WgUgt5rkYrJg0HCu9GAlWj0Tk4iBuQ6tHdTPKC7oAFJ9UsZNyqJpqBtj7YJGyAua0RzNKCZuXv4utkjwuZaQoQzcgBx0FYho8Db-cJZFA8KrZ3rk4sV-PTGyvYzZrFerW6QMG6SL5JhVCLO9gaIs0qPohIHq39OKqDFfvcYbpC2KEzj6HycLXfOnajPEJVHQYnJ63h8n73twAT14bxfZz--rR7vvy-3D-vN_d12KQpWxiVVqiW4ZURWRZGXVYkpETgvgbWMtq2oyqrGRV2opum6lsmKdAIXDS06QRg0QK-zzUlXOnjio9cD-CN3oPnLhfM9T_1qYRQnTICSuJItlEXb0LaUOKdYNbKQVS1Z0lqctNJI5oYjH3QQyqQxKTcFTmpaEIJpVSbo5xM0jTEErzoudISonU2_pw3HOZ-Dw1-Dw-fg8HNwEpv9xX41_j_elxNP2875AZ6dN5JHOBrnOw9W6MDpvyX-APNR3cQ
CitedBy_id crossref_primary_10_1016_j_ejrh_2024_101935
crossref_primary_10_1016_j_jafr_2024_101593
crossref_primary_10_3389_frsen_2024_1451594
crossref_primary_10_14358_PERS_24_00072R3
crossref_primary_10_3390_rs16061035
crossref_primary_10_1029_2023EF003872
crossref_primary_10_3390_rs16081362
crossref_primary_10_1080_10106049_2024_2356841
crossref_primary_10_1016_j_isprsjprs_2024_10_015
crossref_primary_10_1080_09640568_2024_2337855
crossref_primary_10_1080_10106049_2024_2387786
crossref_primary_10_1080_15481603_2023_2233756
crossref_primary_10_3390_rs15030763
crossref_primary_10_1080_17538947_2024_2398068
crossref_primary_10_1016_j_isprsjprs_2023_08_007
crossref_primary_10_3390_agronomy13092302
crossref_primary_10_3390_ijgi12020050
crossref_primary_10_1016_j_compag_2025_110184
crossref_primary_10_3390_s23156932
crossref_primary_10_3390_su17062508
crossref_primary_10_1016_j_cj_2023_12_010
crossref_primary_10_1016_j_atech_2022_100149
crossref_primary_10_3390_data10010008
crossref_primary_10_1038_s43247_023_01078_9
crossref_primary_10_1016_j_heliyon_2024_e40836
crossref_primary_10_1186_s12284_024_00700_4
crossref_primary_10_3390_land12091764
crossref_primary_10_1016_j_scitotenv_2024_176188
crossref_primary_10_1080_10106049_2023_2186493
crossref_primary_10_3390_rs16173180
crossref_primary_10_1007_s12665_024_11991_7
crossref_primary_10_3390_rs16173280
crossref_primary_10_1016_j_atech_2023_100374
crossref_primary_10_1080_19475705_2023_2290350
crossref_primary_10_1016_j_rsase_2025_101524
crossref_primary_10_3390_agriengineering6010045
crossref_primary_10_1109_JSTARS_2023_3290677
Cites_doi 10.1016/0034-4257(91)90048-B
10.1029/2007WR006331
10.1002/sd.2145
10.1016/j.isprsjprs.2018.07.017
10.3389/fenvs.2020.00086
10.1016/j.ijpe.2019.107599
10.5194/hess-19-1521-2015
10.3390/land10080861
10.1080/01431161.2012.657366
10.1016/j.isprsjprs.2020.11.022
10.3133/ofr20161032
10.1016/j.jag.2020.102198
10.1117/1.JRS.11.026005
10.1016/j.rse.2005.10.004
10.1016/j.rse.2020.112095
10.1061/(ASCE)EE.1943-7870.0001693
10.1016/j.rse.2020.111946
10.1016/j.landusepol.2019.104190
10.1080/10106049.2020.1805029
10.3133/pp1868
10.1016/j.isprsjprs.2009.08.004
10.1016/j.scitotenv.2016.10.223
10.1016/j.rse.2004.12.009
10.1080/10106049.2011.562309
10.1080/17538947.2016.1168489
10.1080/09640568.2014.958609
10.1016/j.isprsjprs.2016.05.010
10.1080/10408398.2020.1754161
10.3390/rs11080920
10.1016/j.jag.2021.102561
10.1080/01431161.2016.1151572
10.1117/1.3619838
10.3390/rs9101065
10.1029/2001GB001425
10.3390/ijgi8100463
10.1016/j.rse.2017.04.026
10.1631/jzus.A0820536
10.3390/rs12182957
10.3390/rs12223688
10.1007/978-1-4613-8982-8_1
10.1016/j.agsy.2020.102792
10.1016/j.seps.2020.100938
10.1016/j.compag.2020.105595
10.1080/01431160802698919
10.1016/j.scitotenv.2020.141035
10.1016/j.isprsjprs.2017.01.019
10.1080/014311698214451
10.1038/35087589
10.1016/j.jag.2008.11.002
10.1016/j.isprsjprs.2014.02.007
10.1016/j.oneear.2020.09.006
10.5067/MEaSUREs/GFSAD/GFSAD30SAAFGIRCE.001
10.3390/rs8110954
10.1080/15481603.2019.1690780
10.1016/j.envint.2019.104945
10.1080/1747423X.2020.1858198
10.1080/07352689.2020.1782069
10.1016/j.gloenvcha.2020.102131
10.1016/j.agee.2019.03.007
10.1111/gcb.12838
10.1007/s12524-020-01282-6
10.1016/j.scitotenv.2019.04.365
10.1016/j.jclepro.2019.118982
10.1016/j.isprsjprs.2011.11.002
10.1080/17538947.2019.1654274
10.3390/rs2010211
10.1201/9781420055139
10.3390/rs2071844
10.1016/j.jag.2018.11.014
10.1073/pnas.0605739104
10.1016/j.isprsjprs.2020.06.022
10.1109/JSTARS.2014.2344630
10.14358/PERS.75.12.1383
10.1016/j.envsci.2014.01.010
10.1016/j.foodpol.2018.10.012
10.1007/BF00052709
10.1007/s10653-018-00239-6
10.1016/j.fcr.2006.01.004
10.1016/j.ecoenv.2020.111601
10.5337/2011.0024
10.1016/j.rse.2017.06.033
ContentType Journal Article
Copyright This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC 105, no copyright protection is available for such works under US Law.
Copyright_xml – notice: This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC 105, no copyright protection is available for such works under US Law.
DBID 0YH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1080/15481603.2022.2088651
DatabaseName Taylor & Francis Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ) (Open Access)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Statistics
EISSN 1943-7226
EndPage 1077
ExternalDocumentID oai_doaj_org_article_25caed17dba64b93b6d1031e9d4d78d5
10_1080_15481603_2022_2088651
2088651
Genre Research Article
GeographicLocations South Asia
GeographicLocations_xml – name: South Asia
GroupedDBID 0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ACTIO
ADCVX
AEISY
AENEX
AEYOC
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GROUPED_DOAJ
GTTXZ
H13
HZ~
H~P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
RIG
S-T
SNACF
TDBHL
TEI
TFL
TFT
TFW
TTHFI
UT5
~02
AAYXX
AIYEW
CITATION
7S9
L.6
ID FETCH-LOGICAL-c456t-3eeb21b52d7440676132c106a5b53bbc76781484e99ffb5d72fc14934fc25a9a3
IEDL.DBID 0YH
ISSN 1548-1603
1943-7226
IngestDate Wed Aug 27 01:25:43 EDT 2025
Mon May 05 21:31:35 EDT 2025
Tue Jul 01 02:27:28 EDT 2025
Thu Apr 24 23:04:55 EDT 2025
Wed Dec 25 09:04:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: https://creativecommons.org/publicdomain/mark/1.0/: https://creativecommons.org/publicdomain/mark/1.0/: This is an Open Access article that has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights (https://creativecommons.org/publicdomain/mark/1.0/). You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-3eeb21b52d7440676132c106a5b53bbc76781484e99ffb5d72fc14934fc25a9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2111-6550
0000-0002-4197-8326
0000-0001-6202-1956
0000-0002-3760-3935
0000-0002-2182-8822
0000-0001-8060-9841
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/15481603.2022.2088651
PQID 2834221376
PQPubID 24069
PageCount 30
ParticipantIDs crossref_citationtrail_10_1080_15481603_2022_2088651
crossref_primary_10_1080_15481603_2022_2088651
doaj_primary_oai_doaj_org_article_25caed17dba64b93b6d1031e9d4d78d5
proquest_miscellaneous_2834221376
informaworld_taylorfrancis_310_1080_15481603_2022_2088651
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-31
PublicationDateYYYYMMDD 2022-12-31
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-31
  day: 31
PublicationDecade 2020
PublicationTitle GIScience and remote sensing
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References cit0077
cit0110
cit0111
cit0075
cit0076
Thenkabail P. S. (cit0092) 2011
cit0072
cit0070
Sebby K (cit0073) 2010; 10
cit0079
cit0112
cit0066
cit0067
cit0100
cit0064
cit0065
cit0062
cit0063
Huke R. E (cit0038) 1982
cit0060
cit0061
cit0109
cit0107
cit0108
cit0105
cit0106
cit0103
cit0104
cit0101
cit0069
cit0102
cit0011
cit0099
cit0012
cit0097
cit0010
Santana M. S. (cit0071) 2020; 143829
cit0098
cit0095
cit0096
cit0094
cit0091
cit0090
Thenkabail P. (cit0088) 2007; 73
cit0019
cit0017
cit0018
cit0015
cit0013
cit0014
cit0001
cit0089
cit0086
Rouse J. W. (cit0068) 1974
cit0087
cit0084
Siebert S. (cit0078) 2007
cit0082
cit0083
cit0080
cit0081
cit0008
cit0009
cit0006
cit0007
cit0004
Seinn S. (cit0074) 2015; 6
cit0005
cit0002
cit0003
cit0033
cit0034
cit0031
cit0032
cit0030
cit0037
Takeuchi W. (cit0085) 2009
cit0035
Döll P. (cit0016) 2000; 49
cit0022
cit0023
cit0020
cit0021
Maiorano G (cit0049) 2020; 10
cit0028
cit0029
cit0026
cit0027
cit0024
cit0025
cit0055
cit0056
cit0053
cit0054
cit0051
cit0052
cit0050
Homayouni S. (cit0036) 2003
Huke R. E. (cit0039) 1997
Thenkabail P. S. (cit0093) 2012; 78
cit0059
cit0057
cit0058
cit0044
cit0045
cit0042
cit0043
cit0040
cit0041
cit0048
cit0046
cit0047
References_xml – ident: cit0012
  doi: 10.1016/0034-4257(91)90048-B
– ident: cit0009
– start-page: 281
  volume-title: Remote Sensing of Global Croplands for Food Security (Remote Sensing Applications Series)
  year: 2009
  ident: cit0085
– ident: cit0067
  doi: 10.1029/2007WR006331
– ident: cit0103
  doi: 10.1002/sd.2145
– ident: cit0087
  doi: 10.1016/j.isprsjprs.2018.07.017
– ident: cit0005
  doi: 10.3389/fenvs.2020.00086
– ident: cit0018
  doi: 10.1016/j.ijpe.2019.107599
– start-page: 383
  year: 2011
  ident: cit0092
  publication-title: Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications
– ident: cit0006
– ident: cit0080
  doi: 10.5194/hess-19-1521-2015
– ident: cit0021
– ident: cit0096
– ident: cit0045
  doi: 10.3390/land10080861
– volume-title: Rice Area by Type of Culture: South, Southeast, and East Asia, a Revised and Updated Data Base
  year: 1997
  ident: cit0039
– ident: cit0084
  doi: 10.1080/01431161.2012.657366
– ident: cit0110
  doi: 10.1016/j.isprsjprs.2020.11.022
– ident: cit0053
  doi: 10.3133/ofr20161032
– ident: cit0041
– ident: cit0010
– ident: cit0050
  doi: 10.1016/j.jag.2020.102198
– ident: cit0076
  doi: 10.1117/1.JRS.11.026005
– ident: cit0106
  doi: 10.1016/j.rse.2005.10.004
– ident: cit0046
  doi: 10.1016/j.rse.2020.112095
– ident: cit0003
– ident: cit0035
  doi: 10.1061/(ASCE)EE.1943-7870.0001693
– ident: cit0109
  doi: 10.1016/j.rse.2020.111946
– ident: cit0101
  doi: 10.1016/j.landusepol.2019.104190
– ident: cit0034
  doi: 10.1080/10106049.2020.1805029
– volume-title: Rice Area by Type of Culture: South, Southeast, and East Asia
  year: 1982
  ident: cit0038
– ident: cit0094
  doi: 10.3133/pp1868
– ident: cit0015
  doi: 10.1016/j.isprsjprs.2009.08.004
– ident: cit0111
  doi: 10.1016/j.scitotenv.2016.10.223
– ident: cit0105
  doi: 10.1016/j.rse.2004.12.009
– ident: cit0008
  doi: 10.1080/10106049.2011.562309
– ident: cit0031
  doi: 10.1080/17538947.2016.1168489
– ident: cit0070
  doi: 10.1080/09640568.2014.958609
– ident: cit0017
  doi: 10.1016/j.isprsjprs.2016.05.010
– ident: cit0055
  doi: 10.1080/10408398.2020.1754161
– volume: 73
  start-page: 1029
  issue: 10
  year: 2007
  ident: cit0088
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: cit0079
– ident: cit0075
  doi: 10.3390/rs11080920
– ident: cit0072
  doi: 10.1016/j.jag.2021.102561
– ident: cit0043
  doi: 10.1080/01431161.2016.1151572
– ident: cit0029
  doi: 10.1117/1.3619838
– ident: cit0108
  doi: 10.3390/rs9101065
– ident: cit0024
  doi: 10.1029/2001GB001425
– ident: cit0044
  doi: 10.3390/ijgi8100463
– ident: cit0081
  doi: 10.1016/j.rse.2017.04.026
– ident: cit0083
  doi: 10.1631/jzus.A0820536
– volume: 6
  start-page: 2157
  year: 2015
  ident: cit0074
  publication-title: Journal of Earth Science & Climatic Change
– ident: cit0102
  doi: 10.3390/rs12182957
– ident: cit0042
  doi: 10.3390/rs12223688
– start-page: d.C., 309
  volume-title: Third Earth Resources Technology Satellite–1 Syposium. Volume I: Technical Presentations
  year: 1974
  ident: cit0068
– ident: cit0086
– ident: cit0059
  doi: 10.1007/978-1-4613-8982-8_1
– ident: cit0040
– ident: cit0098
  doi: 10.1016/j.agsy.2020.102792
– ident: cit0052
  doi: 10.1016/j.seps.2020.100938
– ident: cit0022
  doi: 10.1016/j.compag.2020.105595
– ident: cit0090
  doi: 10.1080/01431160802698919
– ident: cit0002
– ident: cit0037
  doi: 10.1016/j.scitotenv.2020.141035
– volume: 49
  start-page: 55
  issue: 2
  year: 2000
  ident: cit0016
  publication-title: Icid Journal
– ident: cit0054
– ident: cit0107
  doi: 10.1016/j.isprsjprs.2017.01.019
– ident: cit0011
  doi: 10.1080/014311698214451
– ident: cit0048
  doi: 10.1038/35087589
– ident: cit0077
– ident: cit0007
  doi: 10.1016/j.jag.2008.11.002
– ident: cit0030
  doi: 10.1016/j.isprsjprs.2014.02.007
– ident: cit0019
  doi: 10.1016/j.oneear.2020.09.006
– start-page: 2003
  volume-title: IEEE Workshop in honour of Prof. Landgrebe
  year: 2003
  ident: cit0036
– ident: cit0032
  doi: 10.5067/MEaSUREs/GFSAD/GFSAD30SAAFGIRCE.001
– ident: cit0095
  doi: 10.3390/rs8110954
– ident: cit0033
  doi: 10.1080/15481603.2019.1690780
– ident: cit0057
  doi: 10.1016/j.envint.2019.104945
– ident: cit0069
  doi: 10.1080/1747423X.2020.1858198
– ident: cit0020
– ident: cit0082
  doi: 10.1080/07352689.2020.1782069
– ident: cit0100
  doi: 10.1016/j.gloenvcha.2020.102131
– volume-title: Global Map of Irrigation Areas
  year: 2007
  ident: cit0078
– volume: 143829
  year: 2020
  ident: cit0071
  publication-title: Science of the Total Environment
– ident: cit0064
  doi: 10.1016/j.agee.2019.03.007
– ident: cit0023
  doi: 10.1111/gcb.12838
– ident: cit0063
  doi: 10.1007/s12524-020-01282-6
– ident: cit0112
  doi: 10.1016/j.scitotenv.2019.04.365
– ident: cit0026
  doi: 10.1016/j.jclepro.2019.118982
– volume: 78
  start-page: 773
  issue: 8
  year: 2012
  ident: cit0093
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: cit0066
  doi: 10.1016/j.isprsjprs.2011.11.002
– ident: cit0097
  doi: 10.1080/17538947.2019.1654274
– ident: cit0091
  doi: 10.3390/rs2010211
– ident: cit0013
  doi: 10.1201/9781420055139
– ident: cit0056
– ident: cit0061
  doi: 10.3390/rs2071844
– ident: cit0058
  doi: 10.1016/j.jag.2018.11.014
– ident: cit0065
  doi: 10.1073/pnas.0605739104
– ident: cit0104
– ident: cit0060
  doi: 10.1016/j.isprsjprs.2020.06.022
– ident: cit0028
  doi: 10.1109/JSTARS.2014.2344630
– volume: 10
  start-page: 34
  issue: 1
  year: 2020
  ident: cit0049
  publication-title: Journal of Microbiology, Biotechnology and Food Sciences
– ident: cit0099
  doi: 10.14358/PERS.75.12.1383
– ident: cit0062
  doi: 10.1016/j.envsci.2014.01.010
– ident: cit0027
  doi: 10.1016/j.foodpol.2018.10.012
– ident: cit0047
– ident: cit0004
  doi: 10.1007/BF00052709
– ident: cit0001
  doi: 10.1007/s10653-018-00239-6
– ident: cit0025
  doi: 10.1016/j.fcr.2006.01.004
– ident: cit0014
  doi: 10.1016/j.ecoenv.2020.111601
– ident: cit0089
  doi: 10.5337/2011.0024
– ident: cit0051
  doi: 10.1016/j.rse.2017.06.033
– volume: 10
  start-page: 1
  year: 2010
  ident: cit0073
  publication-title: Environmental Studies Undergraduate Student Theses
SSID ssj0035115
Score 2.4509113
Snippet Cropland products are of great importance in water and food security assessments, especially in South Asia, which is home to nearly 2 billion people and 230...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1048
SubjectTerms chickpeas
corn
cotton
Crop types
cropland
cropping intensities
food security
humans
Internet
irrigated crop
irrigated farming
irrigation
Landsat
millets
MODIS
peanuts
rainfed crop
remote sensing
rice
South Asia
soybeans
spectroradiometers
statistics
sugarcane
water security
wheat
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQn-rypUFCqD2EJo7jxMcC2xbEwqGt1Ftkx862UjdZbbJC_HDuzNjeVYHDXrglVmZ3lLzYb5yZN4y9pRjASN4kJi_bRJRcJsrhUSob4Zqs5dz5BNlv8uxSfLkqru60-qKcsCAPHG7cES8a7WxWWqOlMCo30lJnAqessGVlvXppqtJNMBXmYPo6VnilVIExkkzzTe1OlR7RGA1hbMipEquqZJH9sSp58f6_pEv_mar9-nPykD2IxBGOg8OP2D3XPWb7xwNtZfeLn_AO_HHYqRiesF-zmCoIer7aCmwAdeyiZEZYBqnXAfoWfB89tL_REIuonAXKiJ_DVyoF1mNSQZ7CAshy9v3T53NAUoPnlGAar1z4tEwHsQ_FHPoOkF3Cad_P0Ysp3uprCPKHcHA6nR5Cc9uvrf9JX-9J7iF_9smdsNWWHeDgfHYxHMJNB8N6SeECudz2fTD9gWR5BUNsw_eUXZ5MLz6eJbHHQ9IgdRuT3GFon5mCW1IqlCWyC95gmKoLU-TGNKUkTa5KOKXa1hS25G2DQV0u2oYXWun8Gdvr-s7tM5BKp7mmUmPdCptKJa3mXCEYrVYYi0-Y2DzjuokC6NSH47bOok7qBho1QaOO0Jiw91uzZVAA2WXwgQC0vZgEvP0AwrqOsK53wXrC1F341aPfv2lDs5U63-HAmw1Wa5ws6AuQ7ly_HmrkkoLzDBeV5__DyRfsPv1v0L18yfbG1dq9Qo42mtf-dfwNEvU0iw
  priority: 102
  providerName: Directory of Open Access Journals
Title Multiple agricultural cropland products of South Asia developed using Landsat-8 30 m and MODIS 250 m data using machine learning on the Google Earth Engine (GEE) cloud and spectral matching techniques (SMTs) in support of food and water security
URI https://www.tandfonline.com/doi/abs/10.1080/15481603.2022.2088651
https://www.proquest.com/docview/2834221376
https://doaj.org/article/25caed17dba64b93b6d1031e9d4d78d5
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQuXBBPNXlUQ0SQu0hsOs4zvpYYNsFsXBoK8EpsmM7VOrGq82uED-cOzOOs-Ih1AO3JMpYljIZf2N_8w1jzykHMJLXmclLn4mSy0w5vBrLWrh64jl3kSD7Uc4vxPvPxcAm7BKtknJo3wtFxFhNP7c23cCIe0Uom7ojY3bHqZZqOpVURH2TI1AkVt_4y3wIxnRMVkTJVIHJEtoMRTz_Gua35Smq-P-hYfpXzI4L0ckddjshSDjuP_lddsO199j-cUd72mH5HV5AvO63LLr77McicQZBN-ud0gZQ6y5iNcKq13ztIHiIDfXQ_lJDqqZyFoga38AHqgnWm2wK-RiWQJaLT2_fnQGiG7wnpml6cxn5mQ5SQ4oGQgsIM-E0hAZnMUNn_Qq9DiIcns5mR1Bfha2NQ8bCT5oeAunI8oSdyGwHh2eL8-4ILlvotivKG2jKPoTe9Bui5jV0qR_fA3ZxMjt_M89Ss4esRgy3yXKHOf7EFNySZKEsEWbwGvNVXZgiN6YuJYlzTYVTyntT2JL7GrO7XPiaF1rp_CHba0Pr9hlIpce5pppj7YUdSyWt5lyhV1qtMCkfMTF846pOSujUkOOqmiTB1ME1KnKNKrnGiL3cma16KZDrDF6TA-1eJiXv-CCsmyoFhooXtXZ2UlqjpTAqN9JS5w2nrLDl1BYjpn51v2oTN3J833Wlyq-ZwLPBVyuMGnQUpFsXtl2FoFJwPsHV5dF_jP-Y3aLbXvfyCdvbrLfuKWK0jTmIf-FB3OH4CdRfMYc
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hcoAL4qmmvAYJofZgiNfrtX0skDaFpByaSuVkrfcRKjXeKE6E-OHcmVnbUQGhHrj5NauVPJ79vvXMN4y9Jg5QSa6jKslcJDIuo8Li0VBqYXXsOLchQfZUjs_Fp4v04lotDKVVEod2rVBEiNX0cdNmdJ8S945gNrVHRnrHqZgqzyVVUd9Oc2QT6NPDr-M-GtN_sjRopgpkS2jTV_H8a5jf1qcg4_-HiOlfQTusREf32b0OQsJh-84fsFu2fsh2Dxva1PaLH_AGwnG7Z9E8Yj-nXdIgqPlqK7UB1LuL0hph2Yq-NuAdhI56aH-poCunsgYoN34OEyoKVusoh2QICyDL6ZePJ2eA8AbPKdW0e3IREjQtdB0p5uBrQJwJx97PcRYj9NZv0Aohwv7xaHQA-spvTBgyVH7S9BBJhzRP2KrMNrB_Np01B3BZQ7NZEnGgKTvvW9PvCJtX0HQN-R6z86PR7MM46ro9RBpB3DpKLJL8uEq5Ic1CmSHO4BoJq0qrNKkqnUlS58qFLQrnqtRk3Gmkd4lwmqeqUMkTtlP72u4ykIUaJoqKjpUTZigLaRTnBbqlUQWy8gET_TsudSeFTh05rsq4U0ztXaMk1yg71xiwt1uzZasFcpPBe3Kg7cMk5R0u-NW87CJDyVOtrIkzUykpqiKppKHWG7YwwmS5SQesuO5-5Trs5Li27UqZ3DCBV72vlhg26F-Qqq3fNCWiSsF5jMvL3n-M_5LdGc-mk3Jycvr5KbtLt1oRzGdsZ73a2OcI2NbVi_BF_gIUDjP9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hIiEuvFHDc5AQag8Oydpex8dCk7bQBKS2Ejdrn6GisaPYEYL_zZ2Z9TqCItRDb07sWa21s7vfrL_5hrHXFAMowXWk4sxFScZFlFu8GgidWD10nFtPkJ2Jw7Pkw5e0YxPWgVZJMbRrhSL8Wk2Te2lcx4h7SyibqiNjdMcpl2o0EpREfVMgPCFWXzyYdYsxfSZLvWRqgsES2nRJPP9r5q_tyav4X9Iw_WfN9hvR5C5T3Su0_JNv_XWj-vrnJXXHa73jPXYnwFTYa_3qPrthywdse6-mg_Nq8QPegL9uz0Xqh-zXNBATQc5XGzkPoPpgRJ2EZSssW0PlwFftQ_tzCSFlyxog_v0cjinxWDbRCOIBLIAsp5_2j04AIRT-JjpreHLhSaAWQtWLOVQlIJaFg6qaYy_GOCO-Qiu2CDsH4_Eu6ItqbXyTPruUuodo3VNJYaNkW8POyfS03oXzEur1koIT6rKrqtb0O0LzFdSh6N8jdjYZn74_jEJFiUgjUGyi2FrFhyrlhnQRRYZYhmsMimWq0lgpnQlSABslNs-dU6nJuNMYQsaJ0zyVuYwfs62yKu02A5HLQSwpsVm6xAxELozkPEfXNzLHyL_Hks6RCh3k1qnqx0UxDKqs3RAXNMRFGOIe62_Mlq3eyFUG78hLNw-TXLj_o1rNi7D6FDzV0pphZpQUicpjJQyV97C5SUw2MmmP5X_6eNH40yLXlnYp4is68KqbEAUuTfS9SZa2WtcFIteE8yFuYU-u0f5Lduvz_qQ4Ppp9fMpu051WZ_MZ22pWa_scMWGjXvhZ_xvG6FKl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+agricultural+cropland+products+of+South+Asia+developed+using+Landsat-8+30+m+and+MODIS+250+m+data+using+machine+learning+on+the+Google+Earth+Engine+%28GEE%29+cloud+and+spectral+matching+techniques+%28SMTs%29+in+support+of+food+and+water+security&rft.jtitle=GIScience+and+remote+sensing&rft.au=Gumma%2C+Murali+Krishna&rft.au=Thenkabail%2C+Prasad+S&rft.au=Panjala%2C+Pranay&rft.au=Teluguntla%2C+Pardhasaradhi&rft.date=2022-12-31&rft.pub=Taylor+%26+Francis&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=59&rft.issue=1&rft.spage=1048&rft.epage=1077&rft_id=info:doi/10.1080%2F15481603.2022.2088651&rft.externalDBID=0YH&rft.externalDocID=2088651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon