Membrane-confined liquid-liquid phase separation toward artificial organelles

A synthetic protocell with subcompartments was designed to mimic cellular signal processing. As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin inspires the design of synthetic analogs to mimic thei...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 7; no. 22
Main Authors Mu, Wenjing, Ji, Zhen, Zhou, Musen, Wu, Jianzhong, Lin, Yiyang, Qiao, Yan
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A synthetic protocell with subcompartments was designed to mimic cellular signal processing. As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin inspires the design of synthetic analogs to mimic their functionality and structural complexity. In this work, we integrate membraneless coacervate microdroplets, a prototype of artificial organelles, into a proteinosome to build hierarchical protocells that may serve as a more realistic model of cellular organization. The protocell subcompartments can sense extracellular signals, take actions in response to these stimuli, and adapt their physicochemical behaviors. The tiered protocells are also capable of enriching biomolecular reactants within the confined organelles, thereby accelerating enzymatic reactions. The ability of signal processing inside protocells allows us to design the Boolean logic gates (NOR and NAND) using biochemical inputs. Our results highlight possible exploration of protocell-community signaling and render a flexible synthetic platform to study complex metabolic reaction networks and embodied chemical computation.
AbstractList As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin inspires the design of synthetic analogs to mimic their functionality and structural complexity. In this work, we integrate membraneless coacervate microdroplets, a prototype of artificial organelles, into a proteinosome to build hierarchical protocells that may serve as a more realistic model of cellular organization. The protocell subcompartments can sense extracellular signals, take actions in response to these stimuli, and adapt their physicochemical behaviors. The tiered protocells are also capable of enriching biomolecular reactants within the confined organelles, thereby accelerating enzymatic reactions. The ability of signal processing inside protocells allows us to design the Boolean logic gates (NOR and NAND) using biochemical inputs. Our results highlight possible exploration of protocell-community signaling and render a flexible synthetic platform to study complex metabolic reaction networks and embodied chemical computation.As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin inspires the design of synthetic analogs to mimic their functionality and structural complexity. In this work, we integrate membraneless coacervate microdroplets, a prototype of artificial organelles, into a proteinosome to build hierarchical protocells that may serve as a more realistic model of cellular organization. The protocell subcompartments can sense extracellular signals, take actions in response to these stimuli, and adapt their physicochemical behaviors. The tiered protocells are also capable of enriching biomolecular reactants within the confined organelles, thereby accelerating enzymatic reactions. The ability of signal processing inside protocells allows us to design the Boolean logic gates (NOR and NAND) using biochemical inputs. Our results highlight possible exploration of protocell-community signaling and render a flexible synthetic platform to study complex metabolic reaction networks and embodied chemical computation.
A synthetic protocell with subcompartments was designed to mimic cellular signal processing. As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin inspires the design of synthetic analogs to mimic their functionality and structural complexity. In this work, we integrate membraneless coacervate microdroplets, a prototype of artificial organelles, into a proteinosome to build hierarchical protocells that may serve as a more realistic model of cellular organization. The protocell subcompartments can sense extracellular signals, take actions in response to these stimuli, and adapt their physicochemical behaviors. The tiered protocells are also capable of enriching biomolecular reactants within the confined organelles, thereby accelerating enzymatic reactions. The ability of signal processing inside protocells allows us to design the Boolean logic gates (NOR and NAND) using biochemical inputs. Our results highlight possible exploration of protocell-community signaling and render a flexible synthetic platform to study complex metabolic reaction networks and embodied chemical computation.
As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin inspires the design of synthetic analogs to mimic their functionality and structural complexity. In this work, we integrate membraneless coacervate microdroplets, a prototype of artificial organelles, into a proteinosome to build hierarchical protocells that may serve as a more realistic model of cellular organization. The protocell subcompartments can sense extracellular signals, take actions in response to these stimuli, and adapt their physicochemical behaviors. The tiered protocells are also capable of enriching biomolecular reactants within the confined organelles, thereby accelerating enzymatic reactions. The ability of signal processing inside protocells allows us to design the Boolean logic gates (NOR and NAND) using biochemical inputs. Our results highlight possible exploration of protocell-community signaling and render a flexible synthetic platform to study complex metabolic reaction networks and embodied chemical computation.
Author Lin, Yiyang
Qiao, Yan
Ji, Zhen
Wu, Jianzhong
Mu, Wenjing
Zhou, Musen
Author_xml – sequence: 1
  givenname: Wenjing
  orcidid: 0000-0001-9263-2301
  surname: Mu
  fullname: Mu, Wenjing
  organization: Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China., University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 2
  givenname: Zhen
  orcidid: 0000-0003-4282-9434
  surname: Ji
  fullname: Ji, Zhen
  organization: Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China., University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 3
  givenname: Musen
  orcidid: 0000-0002-2848-8939
  surname: Zhou
  fullname: Zhou, Musen
  organization: Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
– sequence: 4
  givenname: Jianzhong
  orcidid: 0000-0002-4582-5941
  surname: Wu
  fullname: Wu, Jianzhong
  organization: Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
– sequence: 5
  givenname: Yiyang
  orcidid: 0000-0001-8572-649X
  surname: Lin
  fullname: Lin, Yiyang
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 6
  givenname: Yan
  orcidid: 0000-0003-1069-7756
  surname: Qiao
  fullname: Qiao, Yan
  organization: Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China., University of Chinese Academy of Sciences, Beijing 100049, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34049872$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtPAjEUhRuDEUS2Ls0s3Qz2MdMZNiaG-EogbnTd3OkDaoYptAPGf28RJGji6jbpd859nHPUaVyjEbokeEgI5TdBWlCbIVRmhDE-QT3KijyleVZ2jt5dNAjhPQIk4zwnozPUZRnORmVBe2g61YvKQ6NT6RpjG62S2q7WVqW7kiznEHQS9BI8tNY1Ses-wKsEfGuNjQPUifOzaFDXOlygUwN10IN97aO3h_vX8VM6eXl8Ht9NUpnlvE2ZqlRJoeJaG0VzrkpgwApSEJVranDOKiqNGpEtwg1UksqKSCOxzECXhvXR7c53ua4WWkndtB5qsfR2Af5TOLDi909j52LmNqIknOGCRYPrvYF3q7UOrVjYIOMOcRG3DoLmLOOk4BRH9Oq416HJzw0jMNwB0rsQvDYHhGCxzUnschL7nKIg-yOQtv0-bpzV1v_JvgBBfJ2R
CitedBy_id crossref_primary_10_1002_smll_202206437
crossref_primary_10_1021_jacs_3c03793
crossref_primary_10_1016_j_copbio_2021_08_014
crossref_primary_10_1016_j_jcis_2024_03_155
crossref_primary_10_1021_jacs_3c04886
crossref_primary_10_1002_admi_202300898
crossref_primary_10_1126_sciadv_adm7315
crossref_primary_10_1002_adma_202301856
crossref_primary_10_1002_smtd_202300496
crossref_primary_10_1021_acs_langmuir_4c04114
crossref_primary_10_1021_acs_macromol_3c01157
crossref_primary_10_1002_smll_202409601
crossref_primary_10_1002_anie_202218507
crossref_primary_10_1126_sciadv_ade5853
crossref_primary_10_1021_acs_biomac_4c01201
crossref_primary_10_1002_ejoc_202300529
crossref_primary_10_1007_s12551_024_01223_4
crossref_primary_10_1039_D4CC04533E
crossref_primary_10_1038_s41467_021_26381_x
crossref_primary_10_1039_D4SM01477D
crossref_primary_10_1002_marc_202400626
crossref_primary_10_1039_D2SC01164F
crossref_primary_10_1021_jacs_3c07748
crossref_primary_10_1002_advs_202101187
crossref_primary_10_1002_advs_202305837
crossref_primary_10_1039_D3MA00307H
crossref_primary_10_1021_acsnano_4c11349
crossref_primary_10_1039_D2NR05101J
crossref_primary_10_1016_j_actbio_2024_05_024
crossref_primary_10_1021_acsami_3c00727
crossref_primary_10_1016_j_supmat_2022_100019
crossref_primary_10_1021_acs_biomac_3c00717
crossref_primary_10_1002_ange_202418431
crossref_primary_10_1021_acs_biomac_4c00623
crossref_primary_10_1038_s41467_022_30973_6
crossref_primary_10_1039_D3SM00816A
crossref_primary_10_1002_adma_202202913
crossref_primary_10_1039_D4SC04925J
crossref_primary_10_1002_pol_20210714
crossref_primary_10_1038_s41467_022_28100_6
crossref_primary_10_1016_j_jcis_2022_12_132
crossref_primary_10_1016_j_isci_2023_106537
crossref_primary_10_1007_s10118_024_3096_6
crossref_primary_10_1021_acs_biomac_3c00010
crossref_primary_10_1002_syst_202300040
crossref_primary_10_1021_acs_jpclett_4c00460
crossref_primary_10_1021_acs_biomac_4c00814
crossref_primary_10_1002_adma_202413385
crossref_primary_10_1002_smtd_202301724
crossref_primary_10_1016_j_cej_2022_140276
crossref_primary_10_1002_pep2_24331
crossref_primary_10_1002_agt2_363
crossref_primary_10_1021_acsmacrolett_2c00327
crossref_primary_10_1002_smll_202201790
crossref_primary_10_1002_anie_202205266
crossref_primary_10_1016_j_jconrel_2023_11_030
crossref_primary_10_1002_smll_202308390
crossref_primary_10_1002_smll_202403243
crossref_primary_10_1002_anie_202204611
crossref_primary_10_1021_acs_biomac_2c00546
crossref_primary_10_1002_adhm_202403561
crossref_primary_10_1021_acsnano_3c04259
crossref_primary_10_1038_s41467_025_57608_w
crossref_primary_10_1002_adfm_202104819
crossref_primary_10_1039_D1CC07113K
crossref_primary_10_1002_ange_202218507
crossref_primary_10_1021_acsami_3c10222
crossref_primary_10_1002_cplu_202400483
crossref_primary_10_1016_j_supmat_2023_100049
crossref_primary_10_1039_D2CC03541C
crossref_primary_10_1002_ange_202204611
crossref_primary_10_1002_ange_202205266
crossref_primary_10_1016_j_tplants_2022_08_023
crossref_primary_10_3389_fbioe_2022_972790
crossref_primary_10_3390_biology12020181
crossref_primary_10_1039_D1RA06474F
crossref_primary_10_3389_fmolb_2022_880525
crossref_primary_10_1021_jacs_4c05624
crossref_primary_10_1039_D1CC05098B
crossref_primary_10_1038_s41467_024_51299_5
crossref_primary_10_1002_syst_202400071
crossref_primary_10_1038_s41467_022_31898_w
crossref_primary_10_1039_D2BM00713D
crossref_primary_10_1002_anie_202421620
crossref_primary_10_1038_s42004_024_01168_5
crossref_primary_10_1021_jacs_3c01326
crossref_primary_10_1016_j_jcis_2023_10_015
crossref_primary_10_1039_D2SC03838B
crossref_primary_10_1021_acs_langmuir_2c00580
crossref_primary_10_1038_s41598_023_48483_w
crossref_primary_10_1021_acsmacrolett_3c00341
crossref_primary_10_1002_tcr_202300126
crossref_primary_10_1038_s41557_023_01356_1
crossref_primary_10_1002_bmm2_12058
crossref_primary_10_1039_D1CS01025E
crossref_primary_10_1038_s43246_023_00394_z
crossref_primary_10_1039_D2TB01688E
crossref_primary_10_1002_advs_202102508
crossref_primary_10_1016_j_chempr_2021_11_011
crossref_primary_10_1016_j_cej_2023_147112
crossref_primary_10_3390_membranes12010017
crossref_primary_10_1021_acsami_2c05268
crossref_primary_10_1007_s12274_023_6108_x
crossref_primary_10_1002_admt_202301804
crossref_primary_10_1002_ange_202421620
crossref_primary_10_1002_smll_202311890
crossref_primary_10_1126_sciadv_abo1626
crossref_primary_10_1007_s10118_022_2763_8
crossref_primary_10_1002_smtd_202201712
crossref_primary_10_1021_acs_analchem_2c04199
crossref_primary_10_1002_adfm_202412408
crossref_primary_10_1002_anie_202418431
crossref_primary_10_1002_syst_202400056
crossref_primary_10_1039_D4CS01203H
crossref_primary_10_1016_j_jbc_2025_108188
crossref_primary_10_1073_pnas_2419507122
crossref_primary_10_1002_marc_202100926
crossref_primary_10_1002_adma_202300636
crossref_primary_10_1038_s41467_023_44278_9
crossref_primary_10_1002_smtd_202300042
crossref_primary_10_1021_acs_biomac_4c00445
crossref_primary_10_1016_j_trechm_2022_09_011
crossref_primary_10_1021_acs_biomac_4c00200
crossref_primary_10_1038_s42004_024_01193_4
crossref_primary_10_1360_TB_2024_0937
Cites_doi 10.1038/s41557-020-00559-0
10.1016/0032-9592(95)00076-3
10.1021/jacs.8b07980
10.1038/s41565-020-0761-y
10.1002/anie.201206531
10.1002/anie.201909228
10.1016/j.chempr.2020.09.022
10.1038/nchem.1110
10.1016/j.cell.2018.10.048
10.1038/s41467-019-09855-x
10.1126/science.1083653
10.1016/j.jphotochem.2018.09.023
10.1126/science.aaf4382
10.1016/S0968-0004(01)01938-7
10.1039/C4TC01205D
10.1021/acs.jpcc.8b11057
10.1038/nmat4916
10.1021/jacs.7b03567
10.1016/j.carbpol.2019.05.070
10.1021/jacs.8b09388
10.1002/anie.201308141
10.1016/j.bmc.2010.01.075
10.1021/acsnano.9b10167
10.1242/dev.01074
10.1177/1469066717700643
10.1002/anie.201703145
10.1038/ncomms10658
10.1002/anie.201903756
10.1146/annurev.cellbio.21.012704.131001
10.1038/s41467-018-05403-1
10.3389/fmolb.2019.00021
10.1038/nchem.2617
10.1016/j.cpc.2010.04.018
10.1038/s41565-018-0168-1
10.1128/JB.00615-07
10.1002/anie.201914893
10.1002/cbic.201900183
10.1021/acs.accounts.6b00512
10.1038/nchem.1644
10.1021/acssynbio.7b00306
10.1021/jacs.8b03123
10.1016/j.cell.2016.11.054
10.1021/ja504213m
10.1126/sciadv.abb4920
10.1083/jcb.201302044
10.1021/jacs.8b04557
10.1021/acs.langmuir.0c01864
10.1038/ncomms3239
10.1039/P29930000799
10.1038/nrm.2017.7
10.1002/anie.201909313
10.1038/srep41327
10.1016/0009-2614(95)00898-E
ContentType Journal Article
Copyright Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors
Copyright_xml – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
– notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1126/sciadv.abf9000
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Chemistry
EISSN 2375-2548
ExternalDocumentID PMC8163073
34049872
10_1126_sciadv_abf9000
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 22072159
GroupedDBID 53G
5VS
AAFWJ
AAYXX
ACGFS
ADAXU
ADBBV
ADPDF
AENVI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCGUY
BCNDV
BKF
CITATION
EBS
FRP
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
OVD
OVEED
RHI
RPM
TEORI
ADRAZ
BBORY
EJD
NPM
RHF
7X8
5PM
ID FETCH-LOGICAL-c456t-3dbd82ab6eefd256d8a3a37171d5e2f053b2cfd91ab6e6fabc2cb1cfc0c4ae8f3
IEDL.DBID M48
ISSN 2375-2548
IngestDate Thu Aug 21 18:16:12 EDT 2025
Fri Jul 11 03:23:33 EDT 2025
Thu Jan 02 22:33:41 EST 2025
Tue Jul 01 03:53:21 EDT 2025
Thu Apr 24 23:09:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://creativecommons.org/licenses/by-nc/4.0
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-3dbd82ab6eefd256d8a3a37171d5e2f053b2cfd91ab6e6fabc2cb1cfc0c4ae8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8572-649X
0000-0003-4282-9434
0000-0001-9263-2301
0000-0003-1069-7756
0000-0002-2848-8939
0000-0002-4582-5941
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.abf9000
PMID 34049872
PQID 2534617620
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163073
proquest_miscellaneous_2534617620
pubmed_primary_34049872
crossref_primary_10_1126_sciadv_abf9000
crossref_citationtrail_10_1126_sciadv_abf9000
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science advances
PublicationTitleAlternate Sci Adv
PublicationYear 2021
Publisher American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
Jia L. (e_1_3_2_22_2) 2020; 2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_10_2
  doi: 10.1038/s41557-020-00559-0
– ident: e_1_3_2_46_2
  doi: 10.1016/0032-9592(95)00076-3
– ident: e_1_3_2_18_2
  doi: 10.1021/jacs.8b07980
– ident: e_1_3_2_28_2
  doi: 10.1038/s41565-020-0761-y
– ident: e_1_3_2_13_2
  doi: 10.1002/anie.201206531
– ident: e_1_3_2_21_2
  doi: 10.1002/anie.201909228
– ident: e_1_3_2_47_2
  doi: 10.1016/j.chempr.2020.09.022
– ident: e_1_3_2_43_2
  doi: 10.1038/nchem.1110
– ident: e_1_3_2_42_2
  doi: 10.1016/j.cell.2018.10.048
– ident: e_1_3_2_41_2
  doi: 10.1038/s41467-019-09855-x
– ident: e_1_3_2_31_2
  doi: 10.1126/science.1083653
– ident: e_1_3_2_51_2
  doi: 10.1016/j.jphotochem.2018.09.023
– ident: e_1_3_2_3_2
  doi: 10.1126/science.aaf4382
– ident: e_1_3_2_48_2
  doi: 10.1016/S0968-0004(01)01938-7
– ident: e_1_3_2_54_2
  doi: 10.1039/C4TC01205D
– ident: e_1_3_2_50_2
  doi: 10.1021/acs.jpcc.8b11057
– ident: e_1_3_2_16_2
  doi: 10.1038/nmat4916
– ident: e_1_3_2_19_2
  doi: 10.1021/jacs.7b03567
– ident: e_1_3_2_45_2
  doi: 10.1016/j.carbpol.2019.05.070
– ident: e_1_3_2_8_2
  doi: 10.1021/jacs.8b09388
– ident: e_1_3_2_12_2
  doi: 10.1002/anie.201308141
– ident: e_1_3_2_55_2
  doi: 10.1016/j.bmc.2010.01.075
– ident: e_1_3_2_25_2
  doi: 10.1021/acsnano.9b10167
– ident: e_1_3_2_29_2
  doi: 10.1242/dev.01074
– ident: e_1_3_2_44_2
  doi: 10.1177/1469066717700643
– ident: e_1_3_2_23_2
  doi: 10.1002/anie.201703145
– ident: e_1_3_2_6_2
  doi: 10.1038/ncomms10658
– ident: e_1_3_2_24_2
  doi: 10.1002/anie.201903756
– ident: e_1_3_2_30_2
  doi: 10.1146/annurev.cellbio.21.012704.131001
– ident: e_1_3_2_20_2
  doi: 10.1038/s41467-018-05403-1
– ident: e_1_3_2_4_2
  doi: 10.3389/fmolb.2019.00021
– ident: e_1_3_2_37_2
  doi: 10.1038/nchem.2617
– ident: e_1_3_2_49_2
  doi: 10.1016/j.cpc.2010.04.018
– ident: e_1_3_2_27_2
  doi: 10.1038/s41565-018-0168-1
– ident: e_1_3_2_34_2
  doi: 10.1128/JB.00615-07
– ident: e_1_3_2_40_2
  doi: 10.1002/anie.201914893
– ident: e_1_3_2_7_2
  doi: 10.1002/cbic.201900183
– ident: e_1_3_2_5_2
  doi: 10.1021/acs.accounts.6b00512
– ident: e_1_3_2_17_2
  doi: 10.1038/nchem.1644
– ident: e_1_3_2_36_2
  doi: 10.1021/acssynbio.7b00306
– ident: e_1_3_2_9_2
  doi: 10.1021/jacs.8b03123
– ident: e_1_3_2_33_2
  doi: 10.1016/j.cell.2016.11.054
– ident: e_1_3_2_15_2
  doi: 10.1021/ja504213m
– ident: e_1_3_2_35_2
  doi: 10.1126/sciadv.abb4920
– ident: e_1_3_2_32_2
  doi: 10.1083/jcb.201302044
– ident: e_1_3_2_11_2
  doi: 10.1021/jacs.8b04557
– ident: e_1_3_2_26_2
  doi: 10.1021/acs.langmuir.0c01864
– ident: e_1_3_2_14_2
  doi: 10.1038/ncomms3239
– ident: e_1_3_2_52_2
  doi: 10.1039/P29930000799
– volume: 2
  start-page: e2000044
  year: 2020
  ident: e_1_3_2_22_2
  article-title: Design and fluorescence localization of lipid-rich domains in multiphase coacervate droplets based on AIE-active molecules
  publication-title: ChemSystemsChem
– ident: e_1_3_2_2_2
  doi: 10.1038/nrm.2017.7
– ident: e_1_3_2_38_2
  doi: 10.1002/anie.201909313
– ident: e_1_3_2_39_2
  doi: 10.1038/srep41327
– ident: e_1_3_2_53_2
  doi: 10.1016/0009-2614(95)00898-E
SSID ssj0001466519
Score 2.5158708
Snippet A synthetic protocell with subcompartments was designed to mimic cellular signal processing. As the basic unit of life, cells are compartmentalized...
As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Chemistry
Materials Science
SciAdv r-articles
Title Membrane-confined liquid-liquid phase separation toward artificial organelles
URI https://www.ncbi.nlm.nih.gov/pubmed/34049872
https://www.proquest.com/docview/2534617620
https://pubmed.ncbi.nlm.nih.gov/PMC8163073
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xkIDLijfdBeSVkBYORo3jOulhhRDiIaTuiUq9RX6KSiUF0iL494wdt9AFLlySQ8aR8o2d-caZfANwILJMSKRDVLZ1m3KmmzT3RY7OOqnbWWKTIJnf-Seuuvy61-q91T9FAKtPUzvfT6r7ODh-fng5wQX_990PMNI8HUvlfAfMeVjEqJT5bgadSPXDfgsXAtlK1G38OGwFllKOdDnP2GyI-sA7_y-ffBePLlbhRySS5LT2_BrM2XIdls8m_dvWYS0u24ocRm3pow3odOwd5selpZgHO2SYhgz6D-O-ofWJ3N9iWCOVrSXBhyUZhbpa4mdYLTZBQiMov99fbUL34vzm7IrGjgpUI1Ea0dQokzOphLXOINkxuUxlihldYlqWOVyQimln2ok3EU4qzbRKtNNNzaXNXboFC-WwtDtAuFaYuiB4vOm4FnmuRaYRY6GEMy2XNIBOQCx0lBv3XS8GRUg7mChq_IuIfwP-TO3va6GNLy1_T3xSIKT-Awc-9XBcFayVcmRkgqHNdu2j6b0mzm1ANuO9qYHX2Z69UvZvg952jpwV34Q_vz3yF6wwXwoT6iR3YWH0OLZ7yGVGaj_sAeDxspfshwn7Co1c_YM
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Membrane-confined+liquid-liquid+phase+separation+toward+artificial+organelles&rft.jtitle=Science+advances&rft.au=Mu%2C+Wenjing&rft.au=Ji%2C+Zhen&rft.au=Zhou%2C+Musen&rft.au=Wu%2C+Jianzhong&rft.date=2021-05-01&rft.pub=American+Association+for+the+Advancement+of+Science&rft.eissn=2375-2548&rft.volume=7&rft.issue=22&rft_id=info:doi/10.1126%2Fsciadv.abf9000&rft_id=info%3Apmid%2F34049872&rft.externalDocID=PMC8163073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon