Membrane-confined liquid-liquid phase separation toward artificial organelles
A synthetic protocell with subcompartments was designed to mimic cellular signal processing. As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin inspires the design of synthetic analogs to mimic thei...
Saved in:
Published in | Science advances Vol. 7; no. 22 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A synthetic protocell with subcompartments was designed to mimic cellular signal processing.
As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin inspires the design of synthetic analogs to mimic their functionality and structural complexity. In this work, we integrate membraneless coacervate microdroplets, a prototype of artificial organelles, into a proteinosome to build hierarchical protocells that may serve as a more realistic model of cellular organization. The protocell subcompartments can sense extracellular signals, take actions in response to these stimuli, and adapt their physicochemical behaviors. The tiered protocells are also capable of enriching biomolecular reactants within the confined organelles, thereby accelerating enzymatic reactions. The ability of signal processing inside protocells allows us to design the Boolean logic gates (NOR and NAND) using biochemical inputs. Our results highlight possible exploration of protocell-community signaling and render a flexible synthetic platform to study complex metabolic reaction networks and embodied chemical computation. |
---|---|
AbstractList | As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin inspires the design of synthetic analogs to mimic their functionality and structural complexity. In this work, we integrate membraneless coacervate microdroplets, a prototype of artificial organelles, into a proteinosome to build hierarchical protocells that may serve as a more realistic model of cellular organization. The protocell subcompartments can sense extracellular signals, take actions in response to these stimuli, and adapt their physicochemical behaviors. The tiered protocells are also capable of enriching biomolecular reactants within the confined organelles, thereby accelerating enzymatic reactions. The ability of signal processing inside protocells allows us to design the Boolean logic gates (NOR and NAND) using biochemical inputs. Our results highlight possible exploration of protocell-community signaling and render a flexible synthetic platform to study complex metabolic reaction networks and embodied chemical computation.As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin inspires the design of synthetic analogs to mimic their functionality and structural complexity. In this work, we integrate membraneless coacervate microdroplets, a prototype of artificial organelles, into a proteinosome to build hierarchical protocells that may serve as a more realistic model of cellular organization. The protocell subcompartments can sense extracellular signals, take actions in response to these stimuli, and adapt their physicochemical behaviors. The tiered protocells are also capable of enriching biomolecular reactants within the confined organelles, thereby accelerating enzymatic reactions. The ability of signal processing inside protocells allows us to design the Boolean logic gates (NOR and NAND) using biochemical inputs. Our results highlight possible exploration of protocell-community signaling and render a flexible synthetic platform to study complex metabolic reaction networks and embodied chemical computation. A synthetic protocell with subcompartments was designed to mimic cellular signal processing. As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin inspires the design of synthetic analogs to mimic their functionality and structural complexity. In this work, we integrate membraneless coacervate microdroplets, a prototype of artificial organelles, into a proteinosome to build hierarchical protocells that may serve as a more realistic model of cellular organization. The protocell subcompartments can sense extracellular signals, take actions in response to these stimuli, and adapt their physicochemical behaviors. The tiered protocells are also capable of enriching biomolecular reactants within the confined organelles, thereby accelerating enzymatic reactions. The ability of signal processing inside protocells allows us to design the Boolean logic gates (NOR and NAND) using biochemical inputs. Our results highlight possible exploration of protocell-community signaling and render a flexible synthetic platform to study complex metabolic reaction networks and embodied chemical computation. As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin inspires the design of synthetic analogs to mimic their functionality and structural complexity. In this work, we integrate membraneless coacervate microdroplets, a prototype of artificial organelles, into a proteinosome to build hierarchical protocells that may serve as a more realistic model of cellular organization. The protocell subcompartments can sense extracellular signals, take actions in response to these stimuli, and adapt their physicochemical behaviors. The tiered protocells are also capable of enriching biomolecular reactants within the confined organelles, thereby accelerating enzymatic reactions. The ability of signal processing inside protocells allows us to design the Boolean logic gates (NOR and NAND) using biochemical inputs. Our results highlight possible exploration of protocell-community signaling and render a flexible synthetic platform to study complex metabolic reaction networks and embodied chemical computation. |
Author | Lin, Yiyang Qiao, Yan Ji, Zhen Wu, Jianzhong Mu, Wenjing Zhou, Musen |
Author_xml | – sequence: 1 givenname: Wenjing orcidid: 0000-0001-9263-2301 surname: Mu fullname: Mu, Wenjing organization: Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China., University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 2 givenname: Zhen orcidid: 0000-0003-4282-9434 surname: Ji fullname: Ji, Zhen organization: Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China., University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 3 givenname: Musen orcidid: 0000-0002-2848-8939 surname: Zhou fullname: Zhou, Musen organization: Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA – sequence: 4 givenname: Jianzhong orcidid: 0000-0002-4582-5941 surname: Wu fullname: Wu, Jianzhong organization: Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA – sequence: 5 givenname: Yiyang orcidid: 0000-0001-8572-649X surname: Lin fullname: Lin, Yiyang organization: State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 6 givenname: Yan orcidid: 0000-0003-1069-7756 surname: Qiao fullname: Qiao, Yan organization: Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China., University of Chinese Academy of Sciences, Beijing 100049, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34049872$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtPAjEUhRuDEUS2Ls0s3Qz2MdMZNiaG-EogbnTd3OkDaoYptAPGf28RJGji6jbpd859nHPUaVyjEbokeEgI5TdBWlCbIVRmhDE-QT3KijyleVZ2jt5dNAjhPQIk4zwnozPUZRnORmVBe2g61YvKQ6NT6RpjG62S2q7WVqW7kiznEHQS9BI8tNY1Ses-wKsEfGuNjQPUifOzaFDXOlygUwN10IN97aO3h_vX8VM6eXl8Ht9NUpnlvE2ZqlRJoeJaG0VzrkpgwApSEJVranDOKiqNGpEtwg1UksqKSCOxzECXhvXR7c53ua4WWkndtB5qsfR2Af5TOLDi909j52LmNqIknOGCRYPrvYF3q7UOrVjYIOMOcRG3DoLmLOOk4BRH9Oq416HJzw0jMNwB0rsQvDYHhGCxzUnschL7nKIg-yOQtv0-bpzV1v_JvgBBfJ2R |
CitedBy_id | crossref_primary_10_1002_smll_202206437 crossref_primary_10_1021_jacs_3c03793 crossref_primary_10_1016_j_copbio_2021_08_014 crossref_primary_10_1016_j_jcis_2024_03_155 crossref_primary_10_1021_jacs_3c04886 crossref_primary_10_1002_admi_202300898 crossref_primary_10_1126_sciadv_adm7315 crossref_primary_10_1002_adma_202301856 crossref_primary_10_1002_smtd_202300496 crossref_primary_10_1021_acs_langmuir_4c04114 crossref_primary_10_1021_acs_macromol_3c01157 crossref_primary_10_1002_smll_202409601 crossref_primary_10_1002_anie_202218507 crossref_primary_10_1126_sciadv_ade5853 crossref_primary_10_1021_acs_biomac_4c01201 crossref_primary_10_1002_ejoc_202300529 crossref_primary_10_1007_s12551_024_01223_4 crossref_primary_10_1039_D4CC04533E crossref_primary_10_1038_s41467_021_26381_x crossref_primary_10_1039_D4SM01477D crossref_primary_10_1002_marc_202400626 crossref_primary_10_1039_D2SC01164F crossref_primary_10_1021_jacs_3c07748 crossref_primary_10_1002_advs_202101187 crossref_primary_10_1002_advs_202305837 crossref_primary_10_1039_D3MA00307H crossref_primary_10_1021_acsnano_4c11349 crossref_primary_10_1039_D2NR05101J crossref_primary_10_1016_j_actbio_2024_05_024 crossref_primary_10_1021_acsami_3c00727 crossref_primary_10_1016_j_supmat_2022_100019 crossref_primary_10_1021_acs_biomac_3c00717 crossref_primary_10_1002_ange_202418431 crossref_primary_10_1021_acs_biomac_4c00623 crossref_primary_10_1038_s41467_022_30973_6 crossref_primary_10_1039_D3SM00816A crossref_primary_10_1002_adma_202202913 crossref_primary_10_1039_D4SC04925J crossref_primary_10_1002_pol_20210714 crossref_primary_10_1038_s41467_022_28100_6 crossref_primary_10_1016_j_jcis_2022_12_132 crossref_primary_10_1016_j_isci_2023_106537 crossref_primary_10_1007_s10118_024_3096_6 crossref_primary_10_1021_acs_biomac_3c00010 crossref_primary_10_1002_syst_202300040 crossref_primary_10_1021_acs_jpclett_4c00460 crossref_primary_10_1021_acs_biomac_4c00814 crossref_primary_10_1002_adma_202413385 crossref_primary_10_1002_smtd_202301724 crossref_primary_10_1016_j_cej_2022_140276 crossref_primary_10_1002_pep2_24331 crossref_primary_10_1002_agt2_363 crossref_primary_10_1021_acsmacrolett_2c00327 crossref_primary_10_1002_smll_202201790 crossref_primary_10_1002_anie_202205266 crossref_primary_10_1016_j_jconrel_2023_11_030 crossref_primary_10_1002_smll_202308390 crossref_primary_10_1002_smll_202403243 crossref_primary_10_1002_anie_202204611 crossref_primary_10_1021_acs_biomac_2c00546 crossref_primary_10_1002_adhm_202403561 crossref_primary_10_1021_acsnano_3c04259 crossref_primary_10_1038_s41467_025_57608_w crossref_primary_10_1002_adfm_202104819 crossref_primary_10_1039_D1CC07113K crossref_primary_10_1002_ange_202218507 crossref_primary_10_1021_acsami_3c10222 crossref_primary_10_1002_cplu_202400483 crossref_primary_10_1016_j_supmat_2023_100049 crossref_primary_10_1039_D2CC03541C crossref_primary_10_1002_ange_202204611 crossref_primary_10_1002_ange_202205266 crossref_primary_10_1016_j_tplants_2022_08_023 crossref_primary_10_3389_fbioe_2022_972790 crossref_primary_10_3390_biology12020181 crossref_primary_10_1039_D1RA06474F crossref_primary_10_3389_fmolb_2022_880525 crossref_primary_10_1021_jacs_4c05624 crossref_primary_10_1039_D1CC05098B crossref_primary_10_1038_s41467_024_51299_5 crossref_primary_10_1002_syst_202400071 crossref_primary_10_1038_s41467_022_31898_w crossref_primary_10_1039_D2BM00713D crossref_primary_10_1002_anie_202421620 crossref_primary_10_1038_s42004_024_01168_5 crossref_primary_10_1021_jacs_3c01326 crossref_primary_10_1016_j_jcis_2023_10_015 crossref_primary_10_1039_D2SC03838B crossref_primary_10_1021_acs_langmuir_2c00580 crossref_primary_10_1038_s41598_023_48483_w crossref_primary_10_1021_acsmacrolett_3c00341 crossref_primary_10_1002_tcr_202300126 crossref_primary_10_1038_s41557_023_01356_1 crossref_primary_10_1002_bmm2_12058 crossref_primary_10_1039_D1CS01025E crossref_primary_10_1038_s43246_023_00394_z crossref_primary_10_1039_D2TB01688E crossref_primary_10_1002_advs_202102508 crossref_primary_10_1016_j_chempr_2021_11_011 crossref_primary_10_1016_j_cej_2023_147112 crossref_primary_10_3390_membranes12010017 crossref_primary_10_1021_acsami_2c05268 crossref_primary_10_1007_s12274_023_6108_x crossref_primary_10_1002_admt_202301804 crossref_primary_10_1002_ange_202421620 crossref_primary_10_1002_smll_202311890 crossref_primary_10_1126_sciadv_abo1626 crossref_primary_10_1007_s10118_022_2763_8 crossref_primary_10_1002_smtd_202201712 crossref_primary_10_1021_acs_analchem_2c04199 crossref_primary_10_1002_adfm_202412408 crossref_primary_10_1002_anie_202418431 crossref_primary_10_1002_syst_202400056 crossref_primary_10_1039_D4CS01203H crossref_primary_10_1016_j_jbc_2025_108188 crossref_primary_10_1073_pnas_2419507122 crossref_primary_10_1002_marc_202100926 crossref_primary_10_1002_adma_202300636 crossref_primary_10_1038_s41467_023_44278_9 crossref_primary_10_1002_smtd_202300042 crossref_primary_10_1021_acs_biomac_4c00445 crossref_primary_10_1016_j_trechm_2022_09_011 crossref_primary_10_1021_acs_biomac_4c00200 crossref_primary_10_1038_s42004_024_01193_4 crossref_primary_10_1360_TB_2024_0937 |
Cites_doi | 10.1038/s41557-020-00559-0 10.1016/0032-9592(95)00076-3 10.1021/jacs.8b07980 10.1038/s41565-020-0761-y 10.1002/anie.201206531 10.1002/anie.201909228 10.1016/j.chempr.2020.09.022 10.1038/nchem.1110 10.1016/j.cell.2018.10.048 10.1038/s41467-019-09855-x 10.1126/science.1083653 10.1016/j.jphotochem.2018.09.023 10.1126/science.aaf4382 10.1016/S0968-0004(01)01938-7 10.1039/C4TC01205D 10.1021/acs.jpcc.8b11057 10.1038/nmat4916 10.1021/jacs.7b03567 10.1016/j.carbpol.2019.05.070 10.1021/jacs.8b09388 10.1002/anie.201308141 10.1016/j.bmc.2010.01.075 10.1021/acsnano.9b10167 10.1242/dev.01074 10.1177/1469066717700643 10.1002/anie.201703145 10.1038/ncomms10658 10.1002/anie.201903756 10.1146/annurev.cellbio.21.012704.131001 10.1038/s41467-018-05403-1 10.3389/fmolb.2019.00021 10.1038/nchem.2617 10.1016/j.cpc.2010.04.018 10.1038/s41565-018-0168-1 10.1128/JB.00615-07 10.1002/anie.201914893 10.1002/cbic.201900183 10.1021/acs.accounts.6b00512 10.1038/nchem.1644 10.1021/acssynbio.7b00306 10.1021/jacs.8b03123 10.1016/j.cell.2016.11.054 10.1021/ja504213m 10.1126/sciadv.abb4920 10.1083/jcb.201302044 10.1021/jacs.8b04557 10.1021/acs.langmuir.0c01864 10.1038/ncomms3239 10.1039/P29930000799 10.1038/nrm.2017.7 10.1002/anie.201909313 10.1038/srep41327 10.1016/0009-2614(95)00898-E |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1126/sciadv.abf9000 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Chemistry |
EISSN | 2375-2548 |
ExternalDocumentID | PMC8163073 34049872 10_1126_sciadv_abf9000 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 22072159 |
GroupedDBID | 53G 5VS AAFWJ AAYXX ACGFS ADAXU ADBBV ADPDF AENVI AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCGUY BCNDV BKF CITATION EBS FRP GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 OVD OVEED RHI RPM TEORI ADRAZ BBORY EJD NPM RHF 7X8 5PM |
ID | FETCH-LOGICAL-c456t-3dbd82ab6eefd256d8a3a37171d5e2f053b2cfd91ab6e6fabc2cb1cfc0c4ae8f3 |
IEDL.DBID | M48 |
ISSN | 2375-2548 |
IngestDate | Thu Aug 21 18:16:12 EDT 2025 Fri Jul 11 03:23:33 EDT 2025 Thu Jan 02 22:33:41 EST 2025 Tue Jul 01 03:53:21 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://creativecommons.org/licenses/by-nc/4.0 Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-3dbd82ab6eefd256d8a3a37171d5e2f053b2cfd91ab6e6fabc2cb1cfc0c4ae8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8572-649X 0000-0003-4282-9434 0000-0001-9263-2301 0000-0003-1069-7756 0000-0002-2848-8939 0000-0002-4582-5941 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.abf9000 |
PMID | 34049872 |
PQID | 2534617620 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163073 proquest_miscellaneous_2534617620 pubmed_primary_34049872 crossref_primary_10_1126_sciadv_abf9000 crossref_citationtrail_10_1126_sciadv_abf9000 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science advances |
PublicationTitleAlternate | Sci Adv |
PublicationYear | 2021 |
Publisher | American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 Jia L. (e_1_3_2_22_2) 2020; 2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_10_2 doi: 10.1038/s41557-020-00559-0 – ident: e_1_3_2_46_2 doi: 10.1016/0032-9592(95)00076-3 – ident: e_1_3_2_18_2 doi: 10.1021/jacs.8b07980 – ident: e_1_3_2_28_2 doi: 10.1038/s41565-020-0761-y – ident: e_1_3_2_13_2 doi: 10.1002/anie.201206531 – ident: e_1_3_2_21_2 doi: 10.1002/anie.201909228 – ident: e_1_3_2_47_2 doi: 10.1016/j.chempr.2020.09.022 – ident: e_1_3_2_43_2 doi: 10.1038/nchem.1110 – ident: e_1_3_2_42_2 doi: 10.1016/j.cell.2018.10.048 – ident: e_1_3_2_41_2 doi: 10.1038/s41467-019-09855-x – ident: e_1_3_2_31_2 doi: 10.1126/science.1083653 – ident: e_1_3_2_51_2 doi: 10.1016/j.jphotochem.2018.09.023 – ident: e_1_3_2_3_2 doi: 10.1126/science.aaf4382 – ident: e_1_3_2_48_2 doi: 10.1016/S0968-0004(01)01938-7 – ident: e_1_3_2_54_2 doi: 10.1039/C4TC01205D – ident: e_1_3_2_50_2 doi: 10.1021/acs.jpcc.8b11057 – ident: e_1_3_2_16_2 doi: 10.1038/nmat4916 – ident: e_1_3_2_19_2 doi: 10.1021/jacs.7b03567 – ident: e_1_3_2_45_2 doi: 10.1016/j.carbpol.2019.05.070 – ident: e_1_3_2_8_2 doi: 10.1021/jacs.8b09388 – ident: e_1_3_2_12_2 doi: 10.1002/anie.201308141 – ident: e_1_3_2_55_2 doi: 10.1016/j.bmc.2010.01.075 – ident: e_1_3_2_25_2 doi: 10.1021/acsnano.9b10167 – ident: e_1_3_2_29_2 doi: 10.1242/dev.01074 – ident: e_1_3_2_44_2 doi: 10.1177/1469066717700643 – ident: e_1_3_2_23_2 doi: 10.1002/anie.201703145 – ident: e_1_3_2_6_2 doi: 10.1038/ncomms10658 – ident: e_1_3_2_24_2 doi: 10.1002/anie.201903756 – ident: e_1_3_2_30_2 doi: 10.1146/annurev.cellbio.21.012704.131001 – ident: e_1_3_2_20_2 doi: 10.1038/s41467-018-05403-1 – ident: e_1_3_2_4_2 doi: 10.3389/fmolb.2019.00021 – ident: e_1_3_2_37_2 doi: 10.1038/nchem.2617 – ident: e_1_3_2_49_2 doi: 10.1016/j.cpc.2010.04.018 – ident: e_1_3_2_27_2 doi: 10.1038/s41565-018-0168-1 – ident: e_1_3_2_34_2 doi: 10.1128/JB.00615-07 – ident: e_1_3_2_40_2 doi: 10.1002/anie.201914893 – ident: e_1_3_2_7_2 doi: 10.1002/cbic.201900183 – ident: e_1_3_2_5_2 doi: 10.1021/acs.accounts.6b00512 – ident: e_1_3_2_17_2 doi: 10.1038/nchem.1644 – ident: e_1_3_2_36_2 doi: 10.1021/acssynbio.7b00306 – ident: e_1_3_2_9_2 doi: 10.1021/jacs.8b03123 – ident: e_1_3_2_33_2 doi: 10.1016/j.cell.2016.11.054 – ident: e_1_3_2_15_2 doi: 10.1021/ja504213m – ident: e_1_3_2_35_2 doi: 10.1126/sciadv.abb4920 – ident: e_1_3_2_32_2 doi: 10.1083/jcb.201302044 – ident: e_1_3_2_11_2 doi: 10.1021/jacs.8b04557 – ident: e_1_3_2_26_2 doi: 10.1021/acs.langmuir.0c01864 – ident: e_1_3_2_14_2 doi: 10.1038/ncomms3239 – ident: e_1_3_2_52_2 doi: 10.1039/P29930000799 – volume: 2 start-page: e2000044 year: 2020 ident: e_1_3_2_22_2 article-title: Design and fluorescence localization of lipid-rich domains in multiphase coacervate droplets based on AIE-active molecules publication-title: ChemSystemsChem – ident: e_1_3_2_2_2 doi: 10.1038/nrm.2017.7 – ident: e_1_3_2_38_2 doi: 10.1002/anie.201909313 – ident: e_1_3_2_39_2 doi: 10.1038/srep41327 – ident: e_1_3_2_53_2 doi: 10.1016/0009-2614(95)00898-E |
SSID | ssj0001466519 |
Score | 2.5158708 |
Snippet | A synthetic protocell with subcompartments was designed to mimic cellular signal processing.
As the basic unit of life, cells are compartmentalized... As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Chemistry Materials Science SciAdv r-articles |
Title | Membrane-confined liquid-liquid phase separation toward artificial organelles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34049872 https://www.proquest.com/docview/2534617620 https://pubmed.ncbi.nlm.nih.gov/PMC8163073 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xkIDLijfdBeSVkBYORo3jOulhhRDiIaTuiUq9RX6KSiUF0iL494wdt9AFLlySQ8aR8o2d-caZfANwILJMSKRDVLZ1m3KmmzT3RY7OOqnbWWKTIJnf-Seuuvy61-q91T9FAKtPUzvfT6r7ODh-fng5wQX_990PMNI8HUvlfAfMeVjEqJT5bgadSPXDfgsXAtlK1G38OGwFllKOdDnP2GyI-sA7_y-ffBePLlbhRySS5LT2_BrM2XIdls8m_dvWYS0u24ocRm3pow3odOwd5selpZgHO2SYhgz6D-O-ofWJ3N9iWCOVrSXBhyUZhbpa4mdYLTZBQiMov99fbUL34vzm7IrGjgpUI1Ea0dQokzOphLXOINkxuUxlihldYlqWOVyQimln2ok3EU4qzbRKtNNNzaXNXboFC-WwtDtAuFaYuiB4vOm4FnmuRaYRY6GEMy2XNIBOQCx0lBv3XS8GRUg7mChq_IuIfwP-TO3va6GNLy1_T3xSIKT-Awc-9XBcFayVcmRkgqHNdu2j6b0mzm1ANuO9qYHX2Z69UvZvg952jpwV34Q_vz3yF6wwXwoT6iR3YWH0OLZ7yGVGaj_sAeDxspfshwn7Co1c_YM |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Membrane-confined+liquid-liquid+phase+separation+toward+artificial+organelles&rft.jtitle=Science+advances&rft.au=Mu%2C+Wenjing&rft.au=Ji%2C+Zhen&rft.au=Zhou%2C+Musen&rft.au=Wu%2C+Jianzhong&rft.date=2021-05-01&rft.pub=American+Association+for+the+Advancement+of+Science&rft.eissn=2375-2548&rft.volume=7&rft.issue=22&rft_id=info:doi/10.1126%2Fsciadv.abf9000&rft_id=info%3Apmid%2F34049872&rft.externalDocID=PMC8163073 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon |