Algorithmic clustering of LiDAR point cloud data for textural damage identifications of structural elements
•KM/FCM performed better than SC/DBSCAN for the cases in this study.•Intensity PCD was shown to be more appropriate for detecting metal rusting.•Intensity PCD was less affected by environmental factors.•Intensity PCD can more accurately reflect the textural changes.•The best clustering number for da...
Saved in:
Published in | Measurement : journal of the International Measurement Confederation Vol. 108; pp. 77 - 90 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
01.10.2017
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0263-2241 1873-412X |
DOI | 10.1016/j.measurement.2017.05.032 |
Cover
Loading…
Abstract | •KM/FCM performed better than SC/DBSCAN for the cases in this study.•Intensity PCD was shown to be more appropriate for detecting metal rusting.•Intensity PCD was less affected by environmental factors.•Intensity PCD can more accurately reflect the textural changes.•The best clustering number for damage detections are subjected to the cases.
This study explored the potential of combining point cloud data (PCD) and data clustering algorithms for textural damage detection of commonly seen structural elements in Taiwan. Intensity and RGB (red, green, and blue color model) information acquired by ground LiDAR (light detection and ranging) were used for clustering analysis. Four data clustering algorithms, k-means (KM), fuzzy c-means (FCM), subtractive clustering (SC), and density-based spatial clustering of applications with noise (DBSCAN) were employed to detect the textural damages and to compare the corresponding efficiency and accuracy. The structural elements being studied were rusted rolling doors representing general metal materials with corrosion, walls with tile spall off representing structural elements with erosions and physical damages, and washing finish walls with water staining representing the aging and lichen covering of structural elements. Our study results suggested that both KM and FCM gave preferable clustering performance than SC and DBSCAN. They exhibited desired accuracy for the damage/anomaly identification as well as computational efficiency, suggesting that KM and FCM were more appropriate for these types of application when PCD was used. It was also concluded that intensity rather than RGB data was more appropriate for reflecting the damaged areas. Intensity data was less interfered by environmental effects such as sunlight and rainwater when used to detect the textural changes. The clustering results were also shown to be associated with the clustering number and with the nature of the textural damage type. |
---|---|
AbstractList | •KM/FCM performed better than SC/DBSCAN for the cases in this study.•Intensity PCD was shown to be more appropriate for detecting metal rusting.•Intensity PCD was less affected by environmental factors.•Intensity PCD can more accurately reflect the textural changes.•The best clustering number for damage detections are subjected to the cases.
This study explored the potential of combining point cloud data (PCD) and data clustering algorithms for textural damage detection of commonly seen structural elements in Taiwan. Intensity and RGB (red, green, and blue color model) information acquired by ground LiDAR (light detection and ranging) were used for clustering analysis. Four data clustering algorithms, k-means (KM), fuzzy c-means (FCM), subtractive clustering (SC), and density-based spatial clustering of applications with noise (DBSCAN) were employed to detect the textural damages and to compare the corresponding efficiency and accuracy. The structural elements being studied were rusted rolling doors representing general metal materials with corrosion, walls with tile spall off representing structural elements with erosions and physical damages, and washing finish walls with water staining representing the aging and lichen covering of structural elements. Our study results suggested that both KM and FCM gave preferable clustering performance than SC and DBSCAN. They exhibited desired accuracy for the damage/anomaly identification as well as computational efficiency, suggesting that KM and FCM were more appropriate for these types of application when PCD was used. It was also concluded that intensity rather than RGB data was more appropriate for reflecting the damaged areas. Intensity data was less interfered by environmental effects such as sunlight and rainwater when used to detect the textural changes. The clustering results were also shown to be associated with the clustering number and with the nature of the textural damage type. This study explored the potential of combining point cloud data (PCD) and data clustering algorithms for textural damage detection of commonly seen structural elements in Taiwan. Intensity and RGB (red, green, and blue color model) information acquired by ground LiDAR (light detection and ranging) were used for clustering analysis. Four data clustering algorithms, k-means (KM), fuzzy c-means (FCM), subtractive clustering (SC), and density-based spatial clustering of applications with noise (DBSCAN) were employed to detect the textural damages and to compare the corresponding efficiency and accuracy. The structural elements being studied were rusted rolling doors representing general metal materials with corrosion, walls with tile spall off representing structural elements with erosions and physical damages, and washing finish walls with water staining representing the aging and lichen covering of structural elements. Our study results suggested that both KM and FCM gave preferable clustering performance than SC and DBSCAN. They exhibited desired accuracy for the damage/anomaly identification as well as computational efficiency, suggesting that KM and FCM were more appropriate for these types of application when PCD was used. It was also concluded that intensity rather than RGB data was more appropriate for reflecting the damaged areas. Intensity data was less interfered by environmental effects such as sunlight and rainwater when used to detect the textural changes. The clustering results were also shown to be associated with the clustering number and with the nature of the textural damage type. |
Author | Hou, Tsung-Chin Liu, Yu-Wei Liu, Jen-Wei |
Author_xml | – sequence: 1 givenname: Tsung-Chin orcidid: 0000-0002-1854-7595 surname: Hou fullname: Hou, Tsung-Chin email: tchou@mail.ncku.edu.tw – sequence: 2 givenname: Jen-Wei surname: Liu fullname: Liu, Jen-Wei – sequence: 3 givenname: Yu-Wei orcidid: 0000-0002-5418-7523 surname: Liu fullname: Liu, Yu-Wei |
BookMark | eNqNkM1OwzAQhC1UJNrCOwRxTrCd2ElOqCq_UiUk1AM3y3E2xSGJi-0geHvclgPi1MNqpd2Z2dU3Q5PBDIDQJcEJwYRft0kP0o0Wehh8QjHJE8wSnNITNCVFnsYZoa8TNMWUpzGlGTlDM-dajDFPSz5F74tuY6z2b71WkepG58HqYROZJlrp28VLtDV68GFjxjqqpZdRY2zk4cuPVnZh0ssNRLoO13WjlfTaDG7ndt6O6iCCbv-dO0enjewcXPz2OVrf362Xj_Hq-eFpuVjFKmPcx2lJJUtryXJWN4rwquIcCs4lVBmUpORUKprzsiqqrMxwVjZ1TgmkOaUFZiqdo6tD7NaajxGcF60Z7RAuCooZC0VoHlQ3B5WyxjkLjVDa79_3VupOECx2gEUr_gAWO8ACMxEAh4TyX8LW6l7a76O8y4MXAodPDVY4pWFQUGsLyova6CNSfgDwl6HD |
CitedBy_id | crossref_primary_10_1016_j_resconrec_2022_106261 crossref_primary_10_3390_electronics13234850 crossref_primary_10_1002_stc_2616 crossref_primary_10_3390_s19143191 crossref_primary_10_1016_j_aei_2021_101501 crossref_primary_10_1016_j_measurement_2019_107293 crossref_primary_10_1016_j_measurement_2023_112801 crossref_primary_10_1016_j_aei_2024_102936 crossref_primary_10_1016_j_autcon_2025_106098 crossref_primary_10_1016_j_oceaneng_2024_116770 crossref_primary_10_1016_j_jasrep_2022_103441 crossref_primary_10_1016_j_tust_2023_105430 crossref_primary_10_3390_ijgi8120527 crossref_primary_10_3390_app142210559 crossref_primary_10_1109_TIM_2022_3193970 crossref_primary_10_3390_app10134440 crossref_primary_10_1061__ASCE_CP_1943_5487_0000993 crossref_primary_10_3390_heritage4020043 crossref_primary_10_3788_LOP231735 crossref_primary_10_1061_JCCEE5_CPENG_5009 crossref_primary_10_1016_j_jrmge_2024_04_039 crossref_primary_10_1088_1755_1315_1240_1_012001 crossref_primary_10_1007_s11069_020_04124_3 crossref_primary_10_3390_rs15030548 crossref_primary_10_1016_j_ijrmhm_2019_03_016 crossref_primary_10_1639_0007_2745_121_1_117 crossref_primary_10_3390_rs13183738 crossref_primary_10_3390_s22124610 crossref_primary_10_1080_15732479_2021_1875488 crossref_primary_10_20965_jrm_2023_p1655 |
Cites_doi | 10.1177/0583102406065898 10.1007/s10921-016-0351-y 10.1016/j.jas.2006.12.008 10.1080/01969727308546046 10.1177/1475921703036169 10.1016/j.conbuildmat.2011.12.053 10.1137/0140029 10.3390/s8095866 10.3141/2459-14 10.1177/0583102406061499 10.1007/s11431-008-6014-1 10.1098/rsta.2006.1925 10.1016/j.jas.2010.06.031 10.3233/IFS-1994-2306 10.1061/(ASCE)CP.1943-5487.0000073 10.1098/rsta.2000.0717 10.1061/(ASCE)CP.1943-5487.0000028 10.1016/j.jas.2008.10.009 10.1109/21.299710 10.1098/rsta.2006.1928 10.1117/12.2222298 10.1193/1.2173020 10.1016/j.autcon.2015.07.007 10.1016/j.measurement.2014.11.004 10.1193/1.4000113 10.1002/eqe.2185 10.1016/j.conbuildmat.2014.04.103 10.1002/stc.1876 10.1111/j.1467-8667.2006.00466.x 10.1080/10589750802259000 10.1061/(ASCE)CP.1943-5487.0000389 10.1193/1.4000021 10.1016/j.conbuildmat.2015.12.113 10.1016/j.optlastec.2015.09.017 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier Science Ltd. Oct 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Oct 2017 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.measurement.2017.05.032 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-412X |
EndPage | 90 |
ExternalDocumentID | 10_1016_j_measurement_2017_05_032 S026322411730310X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c456t-392a53da575dfc16bb66e866aeb4e91962ac2769b8b494049fd721e3722805c3 |
IEDL.DBID | .~1 |
ISSN | 0263-2241 |
IngestDate | Wed Aug 13 02:35:57 EDT 2025 Tue Jul 01 04:37:13 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 Fri Feb 23 02:27:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Structural health monitoring Damage detection Point cloud data RGB Intensity Data clustering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-392a53da575dfc16bb66e866aeb4e91962ac2769b8b494049fd721e3722805c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5418-7523 0000-0002-1854-7595 |
PQID | 2055205127 |
PQPubID | 2047460 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2055205127 crossref_citationtrail_10_1016_j_measurement_2017_05_032 crossref_primary_10_1016_j_measurement_2017_05_032 elsevier_sciencedirect_doi_10_1016_j_measurement_2017_05_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Measurement : journal of the International Measurement Confederation |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Lambers, Eisenbeiss, Sauerbier, Kupferschmidt, Gaisecker, Sotoodeh, Hanusch (b0085) 2007; 34 Chock, Carden, Robertson, Olsen, Yu (b0145) 2013; 29 Chang, Flatau, Liu (b0075) 2003; 2 Farrar, Worden (b0030) 2007; 365 Loh, Loh, Yang, Hsiung, Huang (b0060) 2016; 24 Gonzalez-Aguilera, Gomez-Lahoz, Munoz-Nieto, Herrero-Pascual (b0095) 2008; 23 González-Jorge, Gonzalez-Aguilera, Rodriguez-Gonzalvez, Arias (b0135) 2012; 31 Kashani, Graettinger (b0165) 2015; 58 Chiu (b0215) 1994; 2 Dunn (b0200) 1973; 3 Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, 2016, pp. 98041A–98041A-9. Olsen, Kuester, Chang, Hutchinson (b0115) 2009; 24 T.-C. Hou, Y.-W. Liu, Y.-M. Su, Geometric identification and damage detection of structural elements by terrestrial laser scanner, in: SPIE Smart Structures and Materials Montalvao, Maia, Ribeiro (b0065) 2006; 38 Armesto-González, Riveiro-Rodríguez, González-Aguilera, Rivas-Brea (b0120) 2010; 37 Gong (b0155) 2014 Tang, Huber, Akinci (b0130) 2010; 25 M. Bizjak, 3D reconstruction of buildings from LiDAR data, in: CESCG 2015: The 19th Central European Seminar on Computer Graphics, 2015. Sohn, Farrar, Hemez, Shunk, Stinemates, Nadler, Czarnecki (b0020) 2003 Bezdek, Coray, Gunderson, Watson (b0205) 1981; 40 Zou, Schmitt, Perloff, Wu, Yu, Wang (b0045) 2015; 62 Qiu, Lau (b0055) 2016; 35 Moss, Matthews (b0005) 1995; 73 Kim, Lynch (b0035) 2012; 41 Moertini (b0180) 2002; 7 Ester, Kriegel, Sander, Xu (b0220) 1996 Brownjohn (b0025) 2007; 365 Olsen, Cheung, Yamazaki, Butcher, Garlock, Yim, McGarity, Robertson, Burgos, Young (b0140) 2012; 28 + Lynch, Loh (b0070) 2006; 38 Gong, Maher (b0160) 2014 A. Mita, Emerging needs in Japan for health monitoring technologies in civil and building structures, in: Proc. Second International Workshop on Structural Health Monitoring, 1999, pp. 56–67. J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 1967, pp. 281–297. Yu, Cheng, Zhou, Lau (b0050) 2016; 109 González-Aguilera, Gómez-Lahoz, Sánchez (b0100) 2008; 8 Crespo, Armesto, González-Aguilera, Arias (b0125) 2010; XXXVIII Park, Lee, Adeli, Lee (b0090) 2007; 22 Kashani, Crawford, Biswas, Graettinger, Grau (b0150) 2014; 29 Kashani, Graettinger, Dao (b0170) 2016; 04016006 Yan, Morsy, Shaker, Tulloch (b0190) 2016; 77 Farrar, Doebling, Nix (b0015) 2001; 359 Yager, Filev (b0210) 1994; 24 Li, Cheng, Gong, Liu, Chen, Li, Chen, Chen, Song (b0105) 2008; 51 Behnia, Chai, Shiotani (b0040) 2014; 65 Al-Kheder, Al-Shawabkeh, Haala (b0110) 2009; 36 Kayen, Pack, Bay, Sugimoto, Tanaka (b0080) 2006; 22 Farrar (10.1016/j.measurement.2017.05.032_b0030) 2007; 365 Moertini (10.1016/j.measurement.2017.05.032_b0180) 2002; 7 Al-Kheder (10.1016/j.measurement.2017.05.032_b0110) 2009; 36 Gonzalez-Aguilera (10.1016/j.measurement.2017.05.032_b0095) 2008; 23 Yu (10.1016/j.measurement.2017.05.032_b0050) 2016; 109 Loh (10.1016/j.measurement.2017.05.032_b0060) 2016; 24 Zou (10.1016/j.measurement.2017.05.032_b0045) 2015; 62 Crespo (10.1016/j.measurement.2017.05.032_b0125) 2010; XXXVIII Ester (10.1016/j.measurement.2017.05.032_b0220) 1996 Qiu (10.1016/j.measurement.2017.05.032_b0055) 2016; 35 Park (10.1016/j.measurement.2017.05.032_b0090) 2007; 22 10.1016/j.measurement.2017.05.032_b0010 10.1016/j.measurement.2017.05.032_b0175 Li (10.1016/j.measurement.2017.05.032_b0105) 2008; 51 Chiu (10.1016/j.measurement.2017.05.032_b0215) 1994; 2 Lambers (10.1016/j.measurement.2017.05.032_b0085) 2007; 34 Kim (10.1016/j.measurement.2017.05.032_b0035) 2012; 41 González-Aguilera (10.1016/j.measurement.2017.05.032_b0100) 2008; 8 Chock (10.1016/j.measurement.2017.05.032_b0145) 2013; 29 Tang (10.1016/j.measurement.2017.05.032_b0130) 2010; 25 10.1016/j.measurement.2017.05.032_b0185 Olsen (10.1016/j.measurement.2017.05.032_b0115) 2009; 24 Lynch (10.1016/j.measurement.2017.05.032_b0070) 2006; 38 Bezdek (10.1016/j.measurement.2017.05.032_b0205) 1981; 40 Gong (10.1016/j.measurement.2017.05.032_b0160) 2014 González-Jorge (10.1016/j.measurement.2017.05.032_b0135) 2012; 31 Kashani (10.1016/j.measurement.2017.05.032_b0165) 2015; 58 Kashani (10.1016/j.measurement.2017.05.032_b0170) 2016; 04016006 Dunn (10.1016/j.measurement.2017.05.032_b0200) 1973; 3 Brownjohn (10.1016/j.measurement.2017.05.032_b0025) 2007; 365 Yan (10.1016/j.measurement.2017.05.032_b0190) 2016; 77 Yager (10.1016/j.measurement.2017.05.032_b0210) 1994; 24 Farrar (10.1016/j.measurement.2017.05.032_b0015) 2001; 359 Montalvao (10.1016/j.measurement.2017.05.032_b0065) 2006; 38 Chang (10.1016/j.measurement.2017.05.032_b0075) 2003; 2 Kayen (10.1016/j.measurement.2017.05.032_b0080) 2006; 22 Behnia (10.1016/j.measurement.2017.05.032_b0040) 2014; 65 Sohn (10.1016/j.measurement.2017.05.032_b0020) 2003 Armesto-González (10.1016/j.measurement.2017.05.032_b0120) 2010; 37 10.1016/j.measurement.2017.05.032_b0195 Gong (10.1016/j.measurement.2017.05.032_b0155) 2014 Moss (10.1016/j.measurement.2017.05.032_b0005) 1995; 73 Olsen (10.1016/j.measurement.2017.05.032_b0140) 2012; 28 Kashani (10.1016/j.measurement.2017.05.032_b0150) 2014; 29 |
References_xml | – start-page: 119 year: 2014 end-page: 126 ident: b0160 article-title: Use of mobile lidar data to assess hurricane damage and visualize community vulnerability publication-title: Trans. Res. Rec.: J. Transport. Res. Board – volume: 65 start-page: 282 year: 2014 end-page: 302 ident: b0040 article-title: Advanced structural health monitoring of concrete structures with the aid of acoustic emission publication-title: Constr. Build. Mater. – volume: 38 start-page: 91 year: 2006 end-page: 130 ident: b0070 article-title: A summary review of wireless sensors and sensor networks for structural health monitoring publication-title: Shock Vib. Digest – reference: T.-C. Hou, Y.-W. Liu, Y.-M. Su, Geometric identification and damage detection of structural elements by terrestrial laser scanner, in: SPIE Smart Structures and Materials – volume: 77 start-page: 162 year: 2016 end-page: 168 ident: b0190 article-title: Automatic extraction of highway light poles and towers from mobile LiDAR data publication-title: Opt. Laser Technol. – reference: Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, 2016, pp. 98041A–98041A-9. – volume: 22 start-page: 147 year: 2006 end-page: 162 ident: b0080 article-title: Terrestrial-LIDAR visualization of surface and structural deformations of the 2004 Niigata Ken Chuetsu, Japan, earthquake publication-title: Earthquake Spectra – start-page: 1259 year: 2014 end-page: 1268 ident: b0155 article-title: A remote sensing-based approach for assessing and visualizing post-Sandy damage and resiliency rebuilding needs publication-title: Const. Res. Congr. – reference: + – volume: 41 start-page: 2253 year: 2012 end-page: 2271 ident: b0035 article-title: Subspace system identification of support excited structures—part II: gray-box interpretations and damage detection publication-title: Earthquake Eng. Struct. Dynam. – reference: A. Mita, Emerging needs in Japan for health monitoring technologies in civil and building structures, in: Proc. Second International Workshop on Structural Health Monitoring, 1999, pp. 56–67. – volume: 40 start-page: 339 year: 1981 end-page: 357 ident: b0205 article-title: Detection and characterization of cluster substructure i. linear structure: Fuzzy c-lines publication-title: SIAM J. Appl. Math. – volume: 365 start-page: 303 year: 2007 end-page: 315 ident: b0030 article-title: An introduction to structural health monitoring publication-title: Philos. Trans. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. – volume: 38 start-page: 295 year: 2006 end-page: 326 ident: b0065 article-title: A review of vibration-based structural health monitoring with special emphasis on composite materials publication-title: Shock Vib. Digest – volume: 359 start-page: 131 year: 2001 end-page: 149 ident: b0015 article-title: Vibration–based structural damage identification publication-title: Philos. Trans. Roy. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. – volume: 8 start-page: 5866 year: 2008 end-page: 5883 ident: b0100 article-title: A new approach for structural monitoring of large dams with a three-dimensional laser scanner publication-title: Sensors – volume: 36 start-page: 537 year: 2009 end-page: 546 ident: b0110 article-title: Developing a documentation system for desert palaces in Jordan using 3D laser scanning and digital photogrammetry publication-title: J. Archaeol. Sci. – volume: 109 start-page: 146 year: 2016 end-page: 155 ident: b0050 article-title: Remote defect detection of FRP-bonded concrete system using acoustic-laser and imaging radar techniques publication-title: Constr. Build. Mater. – volume: 365 start-page: 589 year: 2007 end-page: 622 ident: b0025 article-title: Structural health monitoring of civil infrastructure publication-title: Philos. Trans. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. – volume: 34 start-page: 1702 year: 2007 end-page: 1712 ident: b0085 article-title: Combining photogrammetry and laser scanning for the recording and modelling of the Late Intermediate Period site of Pinchango Alto, Palpa, Peru publication-title: J. Archaeol. Sci. – volume: 2 start-page: 267 year: 1994 end-page: 278 ident: b0215 article-title: Fuzzy model identification based on cluster estimation publication-title: J. Intell. Fuzzy Syst. – volume: 37 start-page: 3037 year: 2010 end-page: 3047 ident: b0120 article-title: Terrestrial laser scanning intensity data applied to damage detection for historical buildings publication-title: J. Archaeol. Sci. – volume: 35 start-page: 1 year: 2016 end-page: 10 ident: b0055 article-title: The sensitivity of acoustic-laser technique for detecting the defects in CFRP-bonded concrete systems publication-title: J. Nondestr. Eval. – volume: 28 start-page: S179 year: 2012 end-page: S197 ident: b0140 article-title: Damage assessment of the 2010 Chile earthquake and tsunami using terrestrial laser scanning publication-title: Earthquake Spectra – volume: 31 start-page: 119 year: 2012 end-page: 128 ident: b0135 article-title: Monitoring biological crusts in civil engineering structures using intensity data from terrestrial laser scanners publication-title: Constr. Build. Mater. – volume: 29 start-page: 04014051 year: 2014 ident: b0150 article-title: Automated tornado damage assessment and wind speed estimation based on terrestrial laser scanning publication-title: J. Comput. Civil Eng. – volume: 23 start-page: 301 year: 2008 end-page: 315 ident: b0095 article-title: Monitoring the health of an emblematic monument from terrestrial laser scanner publication-title: Nondestruct. Test. Eval. – volume: 7 start-page: 87 year: 2002 end-page: 96 ident: b0180 article-title: Introduction to five data clustering algorithm publication-title: Integral – volume: 24 start-page: 1279 year: 1994 end-page: 1284 ident: b0210 article-title: Approximate clustering via the mountain method publication-title: IEEE Trans. Syst. Man Cybern. – volume: 62 start-page: 74 year: 2015 end-page: 80 ident: b0045 article-title: Nondestructive corrosion detection using fiber optic photoacoustic ultrasound generator publication-title: Measurement – volume: 2 start-page: 257 year: 2003 end-page: 267 ident: b0075 article-title: Review paper: health monitoring of civil infrastructure publication-title: Struct. Health Monit. – reference: M. Bizjak, 3D reconstruction of buildings from LiDAR data, in: CESCG 2015: The 19th Central European Seminar on Computer Graphics, 2015. – volume: 51 start-page: 133 year: 2008 end-page: 143 ident: b0105 article-title: Post-earthquake assessment of building damage degree using LiDAR data and imagery publication-title: Sci. China Ser. E: Technol. Sci. – volume: 25 start-page: 31 year: 2010 end-page: 42 ident: b0130 article-title: Characterization of laser scanners and algorithms for detecting flatness defects on concrete surfaces publication-title: J. Comput. Civil Eng. – volume: 22 start-page: 19 year: 2007 end-page: 30 ident: b0090 article-title: A new approach for health monitoring of structures: terrestrial laser scanning publication-title: Comput.-Aid. Civil Infrastruct. Eng. – volume: XXXVIII start-page: 184 year: 2010 end-page: 188 ident: b0125 article-title: Damage detection on historical buildings using unsupervised classification techniques publication-title: ISPRS-Int. Arch. Photogram. – volume: 04016006 year: 2016 ident: b0170 article-title: Lidar-based methodology to evaluate fragility models for tornado-induced roof damage publication-title: Nat. Hazards Rev. – year: 2003 ident: b0020 article-title: A Review of Structural Health Monitoring Literature: 1996–2001 – volume: 29 start-page: S99 year: 2013 end-page: S126 ident: b0145 article-title: Tohoku tsunami-induced building failure analysis with implications for US tsunami and seismic design codes publication-title: Earthquake Spectra – volume: 58 start-page: 19 year: 2015 end-page: 27 ident: b0165 article-title: Cluster-based roof covering damage detection in ground-based lidar data publication-title: Autom. Constr. – reference: J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 1967, pp. 281–297. – volume: 3 start-page: 32 year: 1973 end-page: 57 ident: b0200 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J. Cybern. – start-page: 226 year: 1996 end-page: 231 ident: b0220 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Kdd – volume: 24 year: 2016 ident: b0060 article-title: Vibration-based system identification of wind turbine system publication-title: Struct. Control Health Monit. – volume: 73 year: 1995 ident: b0005 article-title: In-service structural monitoring. a state of the art review publication-title: Struct. Eng. – volume: 24 start-page: 264 year: 2009 end-page: 272 ident: b0115 article-title: Terrestrial laser scanning-based structural damage assessment publication-title: J. Comput. Civil Eng. – volume: 38 start-page: 295 issue: 4 year: 2006 ident: 10.1016/j.measurement.2017.05.032_b0065 article-title: A review of vibration-based structural health monitoring with special emphasis on composite materials publication-title: Shock Vib. Digest doi: 10.1177/0583102406065898 – volume: 35 start-page: 1 issue: 2 year: 2016 ident: 10.1016/j.measurement.2017.05.032_b0055 article-title: The sensitivity of acoustic-laser technique for detecting the defects in CFRP-bonded concrete systems publication-title: J. Nondestr. Eval. doi: 10.1007/s10921-016-0351-y – volume: 34 start-page: 1702 issue: 10 year: 2007 ident: 10.1016/j.measurement.2017.05.032_b0085 article-title: Combining photogrammetry and laser scanning for the recording and modelling of the Late Intermediate Period site of Pinchango Alto, Palpa, Peru publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2006.12.008 – volume: 3 start-page: 32 issue: 3 year: 1973 ident: 10.1016/j.measurement.2017.05.032_b0200 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J. Cybern. doi: 10.1080/01969727308546046 – volume: 2 start-page: 257 issue: 3 year: 2003 ident: 10.1016/j.measurement.2017.05.032_b0075 article-title: Review paper: health monitoring of civil infrastructure publication-title: Struct. Health Monit. doi: 10.1177/1475921703036169 – volume: 31 start-page: 119 year: 2012 ident: 10.1016/j.measurement.2017.05.032_b0135 article-title: Monitoring biological crusts in civil engineering structures using intensity data from terrestrial laser scanners publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.12.053 – volume: 40 start-page: 339 issue: 2 year: 1981 ident: 10.1016/j.measurement.2017.05.032_b0205 article-title: Detection and characterization of cluster substructure i. linear structure: Fuzzy c-lines publication-title: SIAM J. Appl. Math. doi: 10.1137/0140029 – volume: 8 start-page: 5866 issue: 9 year: 2008 ident: 10.1016/j.measurement.2017.05.032_b0100 article-title: A new approach for structural monitoring of large dams with a three-dimensional laser scanner publication-title: Sensors doi: 10.3390/s8095866 – start-page: 119 issue: 2459 year: 2014 ident: 10.1016/j.measurement.2017.05.032_b0160 article-title: Use of mobile lidar data to assess hurricane damage and visualize community vulnerability publication-title: Trans. Res. Rec.: J. Transport. Res. Board doi: 10.3141/2459-14 – volume: 38 start-page: 91 issue: 2 year: 2006 ident: 10.1016/j.measurement.2017.05.032_b0070 article-title: A summary review of wireless sensors and sensor networks for structural health monitoring publication-title: Shock Vib. Digest doi: 10.1177/0583102406061499 – volume: 51 start-page: 133 issue: 2 year: 2008 ident: 10.1016/j.measurement.2017.05.032_b0105 article-title: Post-earthquake assessment of building damage degree using LiDAR data and imagery publication-title: Sci. China Ser. E: Technol. Sci. doi: 10.1007/s11431-008-6014-1 – volume: 365 start-page: 589 issue: 1851 year: 2007 ident: 10.1016/j.measurement.2017.05.032_b0025 article-title: Structural health monitoring of civil infrastructure publication-title: Philos. Trans. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. doi: 10.1098/rsta.2006.1925 – volume: 37 start-page: 3037 issue: 12 year: 2010 ident: 10.1016/j.measurement.2017.05.032_b0120 article-title: Terrestrial laser scanning intensity data applied to damage detection for historical buildings publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2010.06.031 – volume: 2 start-page: 267 issue: 3 year: 1994 ident: 10.1016/j.measurement.2017.05.032_b0215 article-title: Fuzzy model identification based on cluster estimation publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/IFS-1994-2306 – volume: 73 issue: 2 year: 1995 ident: 10.1016/j.measurement.2017.05.032_b0005 article-title: In-service structural monitoring. a state of the art review publication-title: Struct. Eng. – volume: 25 start-page: 31 issue: 1 year: 2010 ident: 10.1016/j.measurement.2017.05.032_b0130 article-title: Characterization of laser scanners and algorithms for detecting flatness defects on concrete surfaces publication-title: J. Comput. Civil Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000073 – volume: 359 start-page: 131 issue: 1778 year: 2001 ident: 10.1016/j.measurement.2017.05.032_b0015 article-title: Vibration–based structural damage identification publication-title: Philos. Trans. Roy. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. doi: 10.1098/rsta.2000.0717 – volume: 24 start-page: 264 issue: 3 year: 2009 ident: 10.1016/j.measurement.2017.05.032_b0115 article-title: Terrestrial laser scanning-based structural damage assessment publication-title: J. Comput. Civil Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000028 – ident: 10.1016/j.measurement.2017.05.032_b0010 – volume: 36 start-page: 537 issue: 2 year: 2009 ident: 10.1016/j.measurement.2017.05.032_b0110 article-title: Developing a documentation system for desert palaces in Jordan using 3D laser scanning and digital photogrammetry publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2008.10.009 – volume: 24 start-page: 1279 issue: 8 year: 1994 ident: 10.1016/j.measurement.2017.05.032_b0210 article-title: Approximate clustering via the mountain method publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.299710 – volume: 365 start-page: 303 issue: 1851 year: 2007 ident: 10.1016/j.measurement.2017.05.032_b0030 article-title: An introduction to structural health monitoring publication-title: Philos. Trans. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. doi: 10.1098/rsta.2006.1928 – ident: 10.1016/j.measurement.2017.05.032_b0175 doi: 10.1117/12.2222298 – volume: 22 start-page: 147 issue: S1 year: 2006 ident: 10.1016/j.measurement.2017.05.032_b0080 article-title: Terrestrial-LIDAR visualization of surface and structural deformations of the 2004 Niigata Ken Chuetsu, Japan, earthquake publication-title: Earthquake Spectra doi: 10.1193/1.2173020 – volume: 58 start-page: 19 year: 2015 ident: 10.1016/j.measurement.2017.05.032_b0165 article-title: Cluster-based roof covering damage detection in ground-based lidar data publication-title: Autom. Constr. doi: 10.1016/j.autcon.2015.07.007 – volume: 62 start-page: 74 year: 2015 ident: 10.1016/j.measurement.2017.05.032_b0045 article-title: Nondestructive corrosion detection using fiber optic photoacoustic ultrasound generator publication-title: Measurement doi: 10.1016/j.measurement.2014.11.004 – volume: 29 start-page: S99 issue: s1 year: 2013 ident: 10.1016/j.measurement.2017.05.032_b0145 article-title: Tohoku tsunami-induced building failure analysis with implications for US tsunami and seismic design codes publication-title: Earthquake Spectra doi: 10.1193/1.4000113 – volume: 41 start-page: 2253 issue: 15 year: 2012 ident: 10.1016/j.measurement.2017.05.032_b0035 article-title: Subspace system identification of support excited structures—part II: gray-box interpretations and damage detection publication-title: Earthquake Eng. Struct. Dynam. doi: 10.1002/eqe.2185 – volume: XXXVIII start-page: 184 year: 2010 ident: 10.1016/j.measurement.2017.05.032_b0125 article-title: Damage detection on historical buildings using unsupervised classification techniques publication-title: ISPRS-Int. Arch. Photogram. – volume: 65 start-page: 282 year: 2014 ident: 10.1016/j.measurement.2017.05.032_b0040 article-title: Advanced structural health monitoring of concrete structures with the aid of acoustic emission publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.04.103 – volume: 24 issue: 3 year: 2016 ident: 10.1016/j.measurement.2017.05.032_b0060 article-title: Vibration-based system identification of wind turbine system publication-title: Struct. Control Health Monit. doi: 10.1002/stc.1876 – volume: 22 start-page: 19 issue: 1 year: 2007 ident: 10.1016/j.measurement.2017.05.032_b0090 article-title: A new approach for health monitoring of structures: terrestrial laser scanning publication-title: Comput.-Aid. Civil Infrastruct. Eng. doi: 10.1111/j.1467-8667.2006.00466.x – volume: 23 start-page: 301 issue: 4 year: 2008 ident: 10.1016/j.measurement.2017.05.032_b0095 article-title: Monitoring the health of an emblematic monument from terrestrial laser scanner publication-title: Nondestruct. Test. Eval. doi: 10.1080/10589750802259000 – year: 2003 ident: 10.1016/j.measurement.2017.05.032_b0020 – volume: 29 start-page: 04014051 issue: 3 year: 2014 ident: 10.1016/j.measurement.2017.05.032_b0150 article-title: Automated tornado damage assessment and wind speed estimation based on terrestrial laser scanning publication-title: J. Comput. Civil Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000389 – volume: 28 start-page: S179 issue: S1 year: 2012 ident: 10.1016/j.measurement.2017.05.032_b0140 article-title: Damage assessment of the 2010 Chile earthquake and tsunami using terrestrial laser scanning publication-title: Earthquake Spectra doi: 10.1193/1.4000021 – volume: 04016006 year: 2016 ident: 10.1016/j.measurement.2017.05.032_b0170 article-title: Lidar-based methodology to evaluate fragility models for tornado-induced roof damage publication-title: Nat. Hazards Rev. – volume: 7 start-page: 87 issue: 2 year: 2002 ident: 10.1016/j.measurement.2017.05.032_b0180 article-title: Introduction to five data clustering algorithm publication-title: Integral – ident: 10.1016/j.measurement.2017.05.032_b0185 – ident: 10.1016/j.measurement.2017.05.032_b0195 – volume: 109 start-page: 146 year: 2016 ident: 10.1016/j.measurement.2017.05.032_b0050 article-title: Remote defect detection of FRP-bonded concrete system using acoustic-laser and imaging radar techniques publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.12.113 – start-page: 226 year: 1996 ident: 10.1016/j.measurement.2017.05.032_b0220 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Kdd – start-page: 1259 year: 2014 ident: 10.1016/j.measurement.2017.05.032_b0155 article-title: A remote sensing-based approach for assessing and visualizing post-Sandy damage and resiliency rebuilding needs publication-title: Const. Res. Congr. – volume: 77 start-page: 162 year: 2016 ident: 10.1016/j.measurement.2017.05.032_b0190 article-title: Automatic extraction of highway light poles and towers from mobile LiDAR data publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2015.09.017 |
SSID | ssj0006396 |
Score | 2.3067925 |
Snippet | •KM/FCM performed better than SC/DBSCAN for the cases in this study.•Intensity PCD was shown to be more appropriate for detecting metal rusting.•Intensity PCD... This study explored the potential of combining point cloud data (PCD) and data clustering algorithms for textural damage detection of commonly seen structural... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 77 |
SubjectTerms | Accuracy Algorithms Change detection Cluster analysis Clustering Computing time Damage detection Data clustering Data mining Environmental effects Intensity Lidar Point cloud data Rain water RGB Sensors Structural damage Structural health monitoring Structural members Three dimensional models |
Title | Algorithmic clustering of LiDAR point cloud data for textural damage identifications of structural elements |
URI | https://dx.doi.org/10.1016/j.measurement.2017.05.032 https://www.proquest.com/docview/2055205127 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IouiDeMXpHBF8rVvbpN3Al-GFeX3wAnsLSZpqdVsHm6_-ds9pWqeCIPjQh-ZSSk5yzpfDly8Ah0GoeMKNIKaa9TgGAE-ZsOWplkA86vvGKkro39xGvUd-2Rf9OTipzsIQrbL0_c6nF966LGmWo9kcZ1nzvkVS4xiAfJykCFL6dIKdx0TrO3qf0TwwAkcuzxJ61HoJDmYcr-EsD0csLyfiGQa_xagf3roIQedrsFpiR9Z1v7cOc3a0AStfFAU3YLFgdJrJJrx2B0857vyfh5lhZvBGggjYhOUpu85Ou3dsnGejKdbkbwkjnihD-MqIB0JCHFgyRE_DsqRkE7nEHvV2irNFI-u455MteDg_ezjpeeXNCp5BwDT1EBQpESYKsVqSGj_SOopsO4qU1dx2cFEGygRx1NFtzTscjZYmuFO0YUziOcKE2zA_ykd2Bxha2miENdoYy4XVKk2tn3YEIscY3YWpQbsaSmlK1XG6_GIgK3rZi_xiBUlWkC0h0Qo1CD67jp30xl86HVf2kt_mkcQQ8Zfu9crGslzME6wXAh8_iHf_9_U9WKY3xwWswzzay-4jppnqRjFpG7DQvbjq3X4A-B_5-w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4gxNfBKGp8oNbE6wZ2t10g8UJUggocFBNuTdvt6iqwJMD_d0q7vhITEw97aTubTaed-Tr59ivARRAKGlPFDFNNexQTgCdUWPNEjSEe9X2lhSno9_pR54neDdmwAFf5vzCGVuliv43py2jtWqpuNqvTNK0-1ozUOCYgHxcpgpThCpSMOhUtQql1e9_pfwRkTMKRLbWEnjFYg_NPmtf4sxRniF5WxzMMfktTPwL2Mgu1t2HLwUfSsl-4AwU9KcPmF1HBMqwuSZ1qtgtvrdFzhof_l3GqiBotjCYCDiFZQrrpdeuBTLN0MseebBETQxUliGCJoYIYLQ5sGWOwIWnsCEW2tmesrejscpC29PPZHgzaN4OrjucuV_AUYqa5h7hIsDAWCNfiRPmRlFGkG1EktKS6ifsyECqoR03ZkLRJ0W9JjIdFHdaNfg5T4T4UJ9lEHwBBZyuJyEYqpSnTUiSJ9pMmQ_BYx4ihDqGRTyVXTnjc3H8x4jnD7JV_8QI3XuA1xtELhxB8mE6t-sZfjC5zf_FvS4ljlviLeSX3MXf7eYb9jOHjB_Wj_739DNY7g16Xd2_798ewYXosNbACRfSdPkGIM5enbgm_A3zX_Kw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithmic+clustering+of+LiDAR+point+cloud+data+for+textural+damage+identifications+of+structural+elements&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Hou%2C+Tsung-Chin&rft.au=Liu%2C+Jen-Wei&rft.au=Liu%2C+Yu-Wei&rft.date=2017-10-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=108&rft.spage=77&rft_id=info:doi/10.1016%2Fj.measurement.2017.05.032&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |