Algorithmic clustering of LiDAR point cloud data for textural damage identifications of structural elements

•KM/FCM performed better than SC/DBSCAN for the cases in this study.•Intensity PCD was shown to be more appropriate for detecting metal rusting.•Intensity PCD was less affected by environmental factors.•Intensity PCD can more accurately reflect the textural changes.•The best clustering number for da...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 108; pp. 77 - 90
Main Authors Hou, Tsung-Chin, Liu, Jen-Wei, Liu, Yu-Wei
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.10.2017
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0263-2241
1873-412X
DOI10.1016/j.measurement.2017.05.032

Cover

Loading…
Abstract •KM/FCM performed better than SC/DBSCAN for the cases in this study.•Intensity PCD was shown to be more appropriate for detecting metal rusting.•Intensity PCD was less affected by environmental factors.•Intensity PCD can more accurately reflect the textural changes.•The best clustering number for damage detections are subjected to the cases. This study explored the potential of combining point cloud data (PCD) and data clustering algorithms for textural damage detection of commonly seen structural elements in Taiwan. Intensity and RGB (red, green, and blue color model) information acquired by ground LiDAR (light detection and ranging) were used for clustering analysis. Four data clustering algorithms, k-means (KM), fuzzy c-means (FCM), subtractive clustering (SC), and density-based spatial clustering of applications with noise (DBSCAN) were employed to detect the textural damages and to compare the corresponding efficiency and accuracy. The structural elements being studied were rusted rolling doors representing general metal materials with corrosion, walls with tile spall off representing structural elements with erosions and physical damages, and washing finish walls with water staining representing the aging and lichen covering of structural elements. Our study results suggested that both KM and FCM gave preferable clustering performance than SC and DBSCAN. They exhibited desired accuracy for the damage/anomaly identification as well as computational efficiency, suggesting that KM and FCM were more appropriate for these types of application when PCD was used. It was also concluded that intensity rather than RGB data was more appropriate for reflecting the damaged areas. Intensity data was less interfered by environmental effects such as sunlight and rainwater when used to detect the textural changes. The clustering results were also shown to be associated with the clustering number and with the nature of the textural damage type.
AbstractList •KM/FCM performed better than SC/DBSCAN for the cases in this study.•Intensity PCD was shown to be more appropriate for detecting metal rusting.•Intensity PCD was less affected by environmental factors.•Intensity PCD can more accurately reflect the textural changes.•The best clustering number for damage detections are subjected to the cases. This study explored the potential of combining point cloud data (PCD) and data clustering algorithms for textural damage detection of commonly seen structural elements in Taiwan. Intensity and RGB (red, green, and blue color model) information acquired by ground LiDAR (light detection and ranging) were used for clustering analysis. Four data clustering algorithms, k-means (KM), fuzzy c-means (FCM), subtractive clustering (SC), and density-based spatial clustering of applications with noise (DBSCAN) were employed to detect the textural damages and to compare the corresponding efficiency and accuracy. The structural elements being studied were rusted rolling doors representing general metal materials with corrosion, walls with tile spall off representing structural elements with erosions and physical damages, and washing finish walls with water staining representing the aging and lichen covering of structural elements. Our study results suggested that both KM and FCM gave preferable clustering performance than SC and DBSCAN. They exhibited desired accuracy for the damage/anomaly identification as well as computational efficiency, suggesting that KM and FCM were more appropriate for these types of application when PCD was used. It was also concluded that intensity rather than RGB data was more appropriate for reflecting the damaged areas. Intensity data was less interfered by environmental effects such as sunlight and rainwater when used to detect the textural changes. The clustering results were also shown to be associated with the clustering number and with the nature of the textural damage type.
This study explored the potential of combining point cloud data (PCD) and data clustering algorithms for textural damage detection of commonly seen structural elements in Taiwan. Intensity and RGB (red, green, and blue color model) information acquired by ground LiDAR (light detection and ranging) were used for clustering analysis. Four data clustering algorithms, k-means (KM), fuzzy c-means (FCM), subtractive clustering (SC), and density-based spatial clustering of applications with noise (DBSCAN) were employed to detect the textural damages and to compare the corresponding efficiency and accuracy. The structural elements being studied were rusted rolling doors representing general metal materials with corrosion, walls with tile spall off representing structural elements with erosions and physical damages, and washing finish walls with water staining representing the aging and lichen covering of structural elements. Our study results suggested that both KM and FCM gave preferable clustering performance than SC and DBSCAN. They exhibited desired accuracy for the damage/anomaly identification as well as computational efficiency, suggesting that KM and FCM were more appropriate for these types of application when PCD was used. It was also concluded that intensity rather than RGB data was more appropriate for reflecting the damaged areas. Intensity data was less interfered by environmental effects such as sunlight and rainwater when used to detect the textural changes. The clustering results were also shown to be associated with the clustering number and with the nature of the textural damage type.
Author Hou, Tsung-Chin
Liu, Yu-Wei
Liu, Jen-Wei
Author_xml – sequence: 1
  givenname: Tsung-Chin
  orcidid: 0000-0002-1854-7595
  surname: Hou
  fullname: Hou, Tsung-Chin
  email: tchou@mail.ncku.edu.tw
– sequence: 2
  givenname: Jen-Wei
  surname: Liu
  fullname: Liu, Jen-Wei
– sequence: 3
  givenname: Yu-Wei
  orcidid: 0000-0002-5418-7523
  surname: Liu
  fullname: Liu, Yu-Wei
BookMark eNqNkM1OwzAQhC1UJNrCOwRxTrCd2ElOqCq_UiUk1AM3y3E2xSGJi-0geHvclgPi1MNqpd2Z2dU3Q5PBDIDQJcEJwYRft0kP0o0Wehh8QjHJE8wSnNITNCVFnsYZoa8TNMWUpzGlGTlDM-dajDFPSz5F74tuY6z2b71WkepG58HqYROZJlrp28VLtDV68GFjxjqqpZdRY2zk4cuPVnZh0ssNRLoO13WjlfTaDG7ndt6O6iCCbv-dO0enjewcXPz2OVrf362Xj_Hq-eFpuVjFKmPcx2lJJUtryXJWN4rwquIcCs4lVBmUpORUKprzsiqqrMxwVjZ1TgmkOaUFZiqdo6tD7NaajxGcF60Z7RAuCooZC0VoHlQ3B5WyxjkLjVDa79_3VupOECx2gEUr_gAWO8ACMxEAh4TyX8LW6l7a76O8y4MXAodPDVY4pWFQUGsLyova6CNSfgDwl6HD
CitedBy_id crossref_primary_10_1016_j_resconrec_2022_106261
crossref_primary_10_3390_electronics13234850
crossref_primary_10_1002_stc_2616
crossref_primary_10_3390_s19143191
crossref_primary_10_1016_j_aei_2021_101501
crossref_primary_10_1016_j_measurement_2019_107293
crossref_primary_10_1016_j_measurement_2023_112801
crossref_primary_10_1016_j_aei_2024_102936
crossref_primary_10_1016_j_autcon_2025_106098
crossref_primary_10_1016_j_oceaneng_2024_116770
crossref_primary_10_1016_j_jasrep_2022_103441
crossref_primary_10_1016_j_tust_2023_105430
crossref_primary_10_3390_ijgi8120527
crossref_primary_10_3390_app142210559
crossref_primary_10_1109_TIM_2022_3193970
crossref_primary_10_3390_app10134440
crossref_primary_10_1061__ASCE_CP_1943_5487_0000993
crossref_primary_10_3390_heritage4020043
crossref_primary_10_3788_LOP231735
crossref_primary_10_1061_JCCEE5_CPENG_5009
crossref_primary_10_1016_j_jrmge_2024_04_039
crossref_primary_10_1088_1755_1315_1240_1_012001
crossref_primary_10_1007_s11069_020_04124_3
crossref_primary_10_3390_rs15030548
crossref_primary_10_1016_j_ijrmhm_2019_03_016
crossref_primary_10_1639_0007_2745_121_1_117
crossref_primary_10_3390_rs13183738
crossref_primary_10_3390_s22124610
crossref_primary_10_1080_15732479_2021_1875488
crossref_primary_10_20965_jrm_2023_p1655
Cites_doi 10.1177/0583102406065898
10.1007/s10921-016-0351-y
10.1016/j.jas.2006.12.008
10.1080/01969727308546046
10.1177/1475921703036169
10.1016/j.conbuildmat.2011.12.053
10.1137/0140029
10.3390/s8095866
10.3141/2459-14
10.1177/0583102406061499
10.1007/s11431-008-6014-1
10.1098/rsta.2006.1925
10.1016/j.jas.2010.06.031
10.3233/IFS-1994-2306
10.1061/(ASCE)CP.1943-5487.0000073
10.1098/rsta.2000.0717
10.1061/(ASCE)CP.1943-5487.0000028
10.1016/j.jas.2008.10.009
10.1109/21.299710
10.1098/rsta.2006.1928
10.1117/12.2222298
10.1193/1.2173020
10.1016/j.autcon.2015.07.007
10.1016/j.measurement.2014.11.004
10.1193/1.4000113
10.1002/eqe.2185
10.1016/j.conbuildmat.2014.04.103
10.1002/stc.1876
10.1111/j.1467-8667.2006.00466.x
10.1080/10589750802259000
10.1061/(ASCE)CP.1943-5487.0000389
10.1193/1.4000021
10.1016/j.conbuildmat.2015.12.113
10.1016/j.optlastec.2015.09.017
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier Science Ltd. Oct 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Oct 2017
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2017.05.032
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
EndPage 90
ExternalDocumentID 10_1016_j_measurement_2017_05_032
S026322411730310X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c456t-392a53da575dfc16bb66e866aeb4e91962ac2769b8b494049fd721e3722805c3
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Wed Aug 13 02:35:57 EDT 2025
Tue Jul 01 04:37:13 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
Fri Feb 23 02:27:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Structural health monitoring
Damage detection
Point cloud data
RGB
Intensity
Data clustering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-392a53da575dfc16bb66e866aeb4e91962ac2769b8b494049fd721e3722805c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5418-7523
0000-0002-1854-7595
PQID 2055205127
PQPubID 2047460
PageCount 14
ParticipantIDs proquest_journals_2055205127
crossref_citationtrail_10_1016_j_measurement_2017_05_032
crossref_primary_10_1016_j_measurement_2017_05_032
elsevier_sciencedirect_doi_10_1016_j_measurement_2017_05_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Lambers, Eisenbeiss, Sauerbier, Kupferschmidt, Gaisecker, Sotoodeh, Hanusch (b0085) 2007; 34
Chock, Carden, Robertson, Olsen, Yu (b0145) 2013; 29
Chang, Flatau, Liu (b0075) 2003; 2
Farrar, Worden (b0030) 2007; 365
Loh, Loh, Yang, Hsiung, Huang (b0060) 2016; 24
Gonzalez-Aguilera, Gomez-Lahoz, Munoz-Nieto, Herrero-Pascual (b0095) 2008; 23
González-Jorge, Gonzalez-Aguilera, Rodriguez-Gonzalvez, Arias (b0135) 2012; 31
Kashani, Graettinger (b0165) 2015; 58
Chiu (b0215) 1994; 2
Dunn (b0200) 1973; 3
Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, 2016, pp. 98041A–98041A-9.
Olsen, Kuester, Chang, Hutchinson (b0115) 2009; 24
T.-C. Hou, Y.-W. Liu, Y.-M. Su, Geometric identification and damage detection of structural elements by terrestrial laser scanner, in: SPIE Smart Structures and Materials
Montalvao, Maia, Ribeiro (b0065) 2006; 38
Armesto-González, Riveiro-Rodríguez, González-Aguilera, Rivas-Brea (b0120) 2010; 37
Gong (b0155) 2014
Tang, Huber, Akinci (b0130) 2010; 25
M. Bizjak, 3D reconstruction of buildings from LiDAR data, in: CESCG 2015: The 19th Central European Seminar on Computer Graphics, 2015.
Sohn, Farrar, Hemez, Shunk, Stinemates, Nadler, Czarnecki (b0020) 2003
Bezdek, Coray, Gunderson, Watson (b0205) 1981; 40
Zou, Schmitt, Perloff, Wu, Yu, Wang (b0045) 2015; 62
Qiu, Lau (b0055) 2016; 35
Moss, Matthews (b0005) 1995; 73
Kim, Lynch (b0035) 2012; 41
Moertini (b0180) 2002; 7
Ester, Kriegel, Sander, Xu (b0220) 1996
Brownjohn (b0025) 2007; 365
Olsen, Cheung, Yamazaki, Butcher, Garlock, Yim, McGarity, Robertson, Burgos, Young (b0140) 2012; 28
+
Lynch, Loh (b0070) 2006; 38
Gong, Maher (b0160) 2014
A. Mita, Emerging needs in Japan for health monitoring technologies in civil and building structures, in: Proc. Second International Workshop on Structural Health Monitoring, 1999, pp. 56–67.
J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 1967, pp. 281–297.
Yu, Cheng, Zhou, Lau (b0050) 2016; 109
González-Aguilera, Gómez-Lahoz, Sánchez (b0100) 2008; 8
Crespo, Armesto, González-Aguilera, Arias (b0125) 2010; XXXVIII
Park, Lee, Adeli, Lee (b0090) 2007; 22
Kashani, Crawford, Biswas, Graettinger, Grau (b0150) 2014; 29
Kashani, Graettinger, Dao (b0170) 2016; 04016006
Yan, Morsy, Shaker, Tulloch (b0190) 2016; 77
Farrar, Doebling, Nix (b0015) 2001; 359
Yager, Filev (b0210) 1994; 24
Li, Cheng, Gong, Liu, Chen, Li, Chen, Chen, Song (b0105) 2008; 51
Behnia, Chai, Shiotani (b0040) 2014; 65
Al-Kheder, Al-Shawabkeh, Haala (b0110) 2009; 36
Kayen, Pack, Bay, Sugimoto, Tanaka (b0080) 2006; 22
Farrar (10.1016/j.measurement.2017.05.032_b0030) 2007; 365
Moertini (10.1016/j.measurement.2017.05.032_b0180) 2002; 7
Al-Kheder (10.1016/j.measurement.2017.05.032_b0110) 2009; 36
Gonzalez-Aguilera (10.1016/j.measurement.2017.05.032_b0095) 2008; 23
Yu (10.1016/j.measurement.2017.05.032_b0050) 2016; 109
Loh (10.1016/j.measurement.2017.05.032_b0060) 2016; 24
Zou (10.1016/j.measurement.2017.05.032_b0045) 2015; 62
Crespo (10.1016/j.measurement.2017.05.032_b0125) 2010; XXXVIII
Ester (10.1016/j.measurement.2017.05.032_b0220) 1996
Qiu (10.1016/j.measurement.2017.05.032_b0055) 2016; 35
Park (10.1016/j.measurement.2017.05.032_b0090) 2007; 22
10.1016/j.measurement.2017.05.032_b0010
10.1016/j.measurement.2017.05.032_b0175
Li (10.1016/j.measurement.2017.05.032_b0105) 2008; 51
Chiu (10.1016/j.measurement.2017.05.032_b0215) 1994; 2
Lambers (10.1016/j.measurement.2017.05.032_b0085) 2007; 34
Kim (10.1016/j.measurement.2017.05.032_b0035) 2012; 41
González-Aguilera (10.1016/j.measurement.2017.05.032_b0100) 2008; 8
Chock (10.1016/j.measurement.2017.05.032_b0145) 2013; 29
Tang (10.1016/j.measurement.2017.05.032_b0130) 2010; 25
10.1016/j.measurement.2017.05.032_b0185
Olsen (10.1016/j.measurement.2017.05.032_b0115) 2009; 24
Lynch (10.1016/j.measurement.2017.05.032_b0070) 2006; 38
Bezdek (10.1016/j.measurement.2017.05.032_b0205) 1981; 40
Gong (10.1016/j.measurement.2017.05.032_b0160) 2014
González-Jorge (10.1016/j.measurement.2017.05.032_b0135) 2012; 31
Kashani (10.1016/j.measurement.2017.05.032_b0165) 2015; 58
Kashani (10.1016/j.measurement.2017.05.032_b0170) 2016; 04016006
Dunn (10.1016/j.measurement.2017.05.032_b0200) 1973; 3
Brownjohn (10.1016/j.measurement.2017.05.032_b0025) 2007; 365
Yan (10.1016/j.measurement.2017.05.032_b0190) 2016; 77
Yager (10.1016/j.measurement.2017.05.032_b0210) 1994; 24
Farrar (10.1016/j.measurement.2017.05.032_b0015) 2001; 359
Montalvao (10.1016/j.measurement.2017.05.032_b0065) 2006; 38
Chang (10.1016/j.measurement.2017.05.032_b0075) 2003; 2
Kayen (10.1016/j.measurement.2017.05.032_b0080) 2006; 22
Behnia (10.1016/j.measurement.2017.05.032_b0040) 2014; 65
Sohn (10.1016/j.measurement.2017.05.032_b0020) 2003
Armesto-González (10.1016/j.measurement.2017.05.032_b0120) 2010; 37
10.1016/j.measurement.2017.05.032_b0195
Gong (10.1016/j.measurement.2017.05.032_b0155) 2014
Moss (10.1016/j.measurement.2017.05.032_b0005) 1995; 73
Olsen (10.1016/j.measurement.2017.05.032_b0140) 2012; 28
Kashani (10.1016/j.measurement.2017.05.032_b0150) 2014; 29
References_xml – start-page: 119
  year: 2014
  end-page: 126
  ident: b0160
  article-title: Use of mobile lidar data to assess hurricane damage and visualize community vulnerability
  publication-title: Trans. Res. Rec.: J. Transport. Res. Board
– volume: 65
  start-page: 282
  year: 2014
  end-page: 302
  ident: b0040
  article-title: Advanced structural health monitoring of concrete structures with the aid of acoustic emission
  publication-title: Constr. Build. Mater.
– volume: 38
  start-page: 91
  year: 2006
  end-page: 130
  ident: b0070
  article-title: A summary review of wireless sensors and sensor networks for structural health monitoring
  publication-title: Shock Vib. Digest
– reference: T.-C. Hou, Y.-W. Liu, Y.-M. Su, Geometric identification and damage detection of structural elements by terrestrial laser scanner, in: SPIE Smart Structures and Materials
– volume: 77
  start-page: 162
  year: 2016
  end-page: 168
  ident: b0190
  article-title: Automatic extraction of highway light poles and towers from mobile LiDAR data
  publication-title: Opt. Laser Technol.
– reference: Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, 2016, pp. 98041A–98041A-9.
– volume: 22
  start-page: 147
  year: 2006
  end-page: 162
  ident: b0080
  article-title: Terrestrial-LIDAR visualization of surface and structural deformations of the 2004 Niigata Ken Chuetsu, Japan, earthquake
  publication-title: Earthquake Spectra
– start-page: 1259
  year: 2014
  end-page: 1268
  ident: b0155
  article-title: A remote sensing-based approach for assessing and visualizing post-Sandy damage and resiliency rebuilding needs
  publication-title: Const. Res. Congr.
– reference: +
– volume: 41
  start-page: 2253
  year: 2012
  end-page: 2271
  ident: b0035
  article-title: Subspace system identification of support excited structures—part II: gray-box interpretations and damage detection
  publication-title: Earthquake Eng. Struct. Dynam.
– reference: A. Mita, Emerging needs in Japan for health monitoring technologies in civil and building structures, in: Proc. Second International Workshop on Structural Health Monitoring, 1999, pp. 56–67.
– volume: 40
  start-page: 339
  year: 1981
  end-page: 357
  ident: b0205
  article-title: Detection and characterization of cluster substructure i. linear structure: Fuzzy c-lines
  publication-title: SIAM J. Appl. Math.
– volume: 365
  start-page: 303
  year: 2007
  end-page: 315
  ident: b0030
  article-title: An introduction to structural health monitoring
  publication-title: Philos. Trans. Roy. Soc. Lond. A: Math. Phys. Eng. Sci.
– volume: 38
  start-page: 295
  year: 2006
  end-page: 326
  ident: b0065
  article-title: A review of vibration-based structural health monitoring with special emphasis on composite materials
  publication-title: Shock Vib. Digest
– volume: 359
  start-page: 131
  year: 2001
  end-page: 149
  ident: b0015
  article-title: Vibration–based structural damage identification
  publication-title: Philos. Trans. Roy. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
– volume: 8
  start-page: 5866
  year: 2008
  end-page: 5883
  ident: b0100
  article-title: A new approach for structural monitoring of large dams with a three-dimensional laser scanner
  publication-title: Sensors
– volume: 36
  start-page: 537
  year: 2009
  end-page: 546
  ident: b0110
  article-title: Developing a documentation system for desert palaces in Jordan using 3D laser scanning and digital photogrammetry
  publication-title: J. Archaeol. Sci.
– volume: 109
  start-page: 146
  year: 2016
  end-page: 155
  ident: b0050
  article-title: Remote defect detection of FRP-bonded concrete system using acoustic-laser and imaging radar techniques
  publication-title: Constr. Build. Mater.
– volume: 365
  start-page: 589
  year: 2007
  end-page: 622
  ident: b0025
  article-title: Structural health monitoring of civil infrastructure
  publication-title: Philos. Trans. Roy. Soc. Lond. A: Math. Phys. Eng. Sci.
– volume: 34
  start-page: 1702
  year: 2007
  end-page: 1712
  ident: b0085
  article-title: Combining photogrammetry and laser scanning for the recording and modelling of the Late Intermediate Period site of Pinchango Alto, Palpa, Peru
  publication-title: J. Archaeol. Sci.
– volume: 2
  start-page: 267
  year: 1994
  end-page: 278
  ident: b0215
  article-title: Fuzzy model identification based on cluster estimation
  publication-title: J. Intell. Fuzzy Syst.
– volume: 37
  start-page: 3037
  year: 2010
  end-page: 3047
  ident: b0120
  article-title: Terrestrial laser scanning intensity data applied to damage detection for historical buildings
  publication-title: J. Archaeol. Sci.
– volume: 35
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0055
  article-title: The sensitivity of acoustic-laser technique for detecting the defects in CFRP-bonded concrete systems
  publication-title: J. Nondestr. Eval.
– volume: 28
  start-page: S179
  year: 2012
  end-page: S197
  ident: b0140
  article-title: Damage assessment of the 2010 Chile earthquake and tsunami using terrestrial laser scanning
  publication-title: Earthquake Spectra
– volume: 31
  start-page: 119
  year: 2012
  end-page: 128
  ident: b0135
  article-title: Monitoring biological crusts in civil engineering structures using intensity data from terrestrial laser scanners
  publication-title: Constr. Build. Mater.
– volume: 29
  start-page: 04014051
  year: 2014
  ident: b0150
  article-title: Automated tornado damage assessment and wind speed estimation based on terrestrial laser scanning
  publication-title: J. Comput. Civil Eng.
– volume: 23
  start-page: 301
  year: 2008
  end-page: 315
  ident: b0095
  article-title: Monitoring the health of an emblematic monument from terrestrial laser scanner
  publication-title: Nondestruct. Test. Eval.
– volume: 7
  start-page: 87
  year: 2002
  end-page: 96
  ident: b0180
  article-title: Introduction to five data clustering algorithm
  publication-title: Integral
– volume: 24
  start-page: 1279
  year: 1994
  end-page: 1284
  ident: b0210
  article-title: Approximate clustering via the mountain method
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 62
  start-page: 74
  year: 2015
  end-page: 80
  ident: b0045
  article-title: Nondestructive corrosion detection using fiber optic photoacoustic ultrasound generator
  publication-title: Measurement
– volume: 2
  start-page: 257
  year: 2003
  end-page: 267
  ident: b0075
  article-title: Review paper: health monitoring of civil infrastructure
  publication-title: Struct. Health Monit.
– reference: M. Bizjak, 3D reconstruction of buildings from LiDAR data, in: CESCG 2015: The 19th Central European Seminar on Computer Graphics, 2015.
– volume: 51
  start-page: 133
  year: 2008
  end-page: 143
  ident: b0105
  article-title: Post-earthquake assessment of building damage degree using LiDAR data and imagery
  publication-title: Sci. China Ser. E: Technol. Sci.
– volume: 25
  start-page: 31
  year: 2010
  end-page: 42
  ident: b0130
  article-title: Characterization of laser scanners and algorithms for detecting flatness defects on concrete surfaces
  publication-title: J. Comput. Civil Eng.
– volume: 22
  start-page: 19
  year: 2007
  end-page: 30
  ident: b0090
  article-title: A new approach for health monitoring of structures: terrestrial laser scanning
  publication-title: Comput.-Aid. Civil Infrastruct. Eng.
– volume: XXXVIII
  start-page: 184
  year: 2010
  end-page: 188
  ident: b0125
  article-title: Damage detection on historical buildings using unsupervised classification techniques
  publication-title: ISPRS-Int. Arch. Photogram.
– volume: 04016006
  year: 2016
  ident: b0170
  article-title: Lidar-based methodology to evaluate fragility models for tornado-induced roof damage
  publication-title: Nat. Hazards Rev.
– year: 2003
  ident: b0020
  article-title: A Review of Structural Health Monitoring Literature: 1996–2001
– volume: 29
  start-page: S99
  year: 2013
  end-page: S126
  ident: b0145
  article-title: Tohoku tsunami-induced building failure analysis with implications for US tsunami and seismic design codes
  publication-title: Earthquake Spectra
– volume: 58
  start-page: 19
  year: 2015
  end-page: 27
  ident: b0165
  article-title: Cluster-based roof covering damage detection in ground-based lidar data
  publication-title: Autom. Constr.
– reference: J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 1967, pp. 281–297.
– volume: 3
  start-page: 32
  year: 1973
  end-page: 57
  ident: b0200
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybern.
– start-page: 226
  year: 1996
  end-page: 231
  ident: b0220
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Kdd
– volume: 24
  year: 2016
  ident: b0060
  article-title: Vibration-based system identification of wind turbine system
  publication-title: Struct. Control Health Monit.
– volume: 73
  year: 1995
  ident: b0005
  article-title: In-service structural monitoring. a state of the art review
  publication-title: Struct. Eng.
– volume: 24
  start-page: 264
  year: 2009
  end-page: 272
  ident: b0115
  article-title: Terrestrial laser scanning-based structural damage assessment
  publication-title: J. Comput. Civil Eng.
– volume: 38
  start-page: 295
  issue: 4
  year: 2006
  ident: 10.1016/j.measurement.2017.05.032_b0065
  article-title: A review of vibration-based structural health monitoring with special emphasis on composite materials
  publication-title: Shock Vib. Digest
  doi: 10.1177/0583102406065898
– volume: 35
  start-page: 1
  issue: 2
  year: 2016
  ident: 10.1016/j.measurement.2017.05.032_b0055
  article-title: The sensitivity of acoustic-laser technique for detecting the defects in CFRP-bonded concrete systems
  publication-title: J. Nondestr. Eval.
  doi: 10.1007/s10921-016-0351-y
– volume: 34
  start-page: 1702
  issue: 10
  year: 2007
  ident: 10.1016/j.measurement.2017.05.032_b0085
  article-title: Combining photogrammetry and laser scanning for the recording and modelling of the Late Intermediate Period site of Pinchango Alto, Palpa, Peru
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2006.12.008
– volume: 3
  start-page: 32
  issue: 3
  year: 1973
  ident: 10.1016/j.measurement.2017.05.032_b0200
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybern.
  doi: 10.1080/01969727308546046
– volume: 2
  start-page: 257
  issue: 3
  year: 2003
  ident: 10.1016/j.measurement.2017.05.032_b0075
  article-title: Review paper: health monitoring of civil infrastructure
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921703036169
– volume: 31
  start-page: 119
  year: 2012
  ident: 10.1016/j.measurement.2017.05.032_b0135
  article-title: Monitoring biological crusts in civil engineering structures using intensity data from terrestrial laser scanners
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.12.053
– volume: 40
  start-page: 339
  issue: 2
  year: 1981
  ident: 10.1016/j.measurement.2017.05.032_b0205
  article-title: Detection and characterization of cluster substructure i. linear structure: Fuzzy c-lines
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0140029
– volume: 8
  start-page: 5866
  issue: 9
  year: 2008
  ident: 10.1016/j.measurement.2017.05.032_b0100
  article-title: A new approach for structural monitoring of large dams with a three-dimensional laser scanner
  publication-title: Sensors
  doi: 10.3390/s8095866
– start-page: 119
  issue: 2459
  year: 2014
  ident: 10.1016/j.measurement.2017.05.032_b0160
  article-title: Use of mobile lidar data to assess hurricane damage and visualize community vulnerability
  publication-title: Trans. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/2459-14
– volume: 38
  start-page: 91
  issue: 2
  year: 2006
  ident: 10.1016/j.measurement.2017.05.032_b0070
  article-title: A summary review of wireless sensors and sensor networks for structural health monitoring
  publication-title: Shock Vib. Digest
  doi: 10.1177/0583102406061499
– volume: 51
  start-page: 133
  issue: 2
  year: 2008
  ident: 10.1016/j.measurement.2017.05.032_b0105
  article-title: Post-earthquake assessment of building damage degree using LiDAR data and imagery
  publication-title: Sci. China Ser. E: Technol. Sci.
  doi: 10.1007/s11431-008-6014-1
– volume: 365
  start-page: 589
  issue: 1851
  year: 2007
  ident: 10.1016/j.measurement.2017.05.032_b0025
  article-title: Structural health monitoring of civil infrastructure
  publication-title: Philos. Trans. Roy. Soc. Lond. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2006.1925
– volume: 37
  start-page: 3037
  issue: 12
  year: 2010
  ident: 10.1016/j.measurement.2017.05.032_b0120
  article-title: Terrestrial laser scanning intensity data applied to damage detection for historical buildings
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2010.06.031
– volume: 2
  start-page: 267
  issue: 3
  year: 1994
  ident: 10.1016/j.measurement.2017.05.032_b0215
  article-title: Fuzzy model identification based on cluster estimation
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/IFS-1994-2306
– volume: 73
  issue: 2
  year: 1995
  ident: 10.1016/j.measurement.2017.05.032_b0005
  article-title: In-service structural monitoring. a state of the art review
  publication-title: Struct. Eng.
– volume: 25
  start-page: 31
  issue: 1
  year: 2010
  ident: 10.1016/j.measurement.2017.05.032_b0130
  article-title: Characterization of laser scanners and algorithms for detecting flatness defects on concrete surfaces
  publication-title: J. Comput. Civil Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000073
– volume: 359
  start-page: 131
  issue: 1778
  year: 2001
  ident: 10.1016/j.measurement.2017.05.032_b0015
  article-title: Vibration–based structural damage identification
  publication-title: Philos. Trans. Roy. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2000.0717
– volume: 24
  start-page: 264
  issue: 3
  year: 2009
  ident: 10.1016/j.measurement.2017.05.032_b0115
  article-title: Terrestrial laser scanning-based structural damage assessment
  publication-title: J. Comput. Civil Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000028
– ident: 10.1016/j.measurement.2017.05.032_b0010
– volume: 36
  start-page: 537
  issue: 2
  year: 2009
  ident: 10.1016/j.measurement.2017.05.032_b0110
  article-title: Developing a documentation system for desert palaces in Jordan using 3D laser scanning and digital photogrammetry
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2008.10.009
– volume: 24
  start-page: 1279
  issue: 8
  year: 1994
  ident: 10.1016/j.measurement.2017.05.032_b0210
  article-title: Approximate clustering via the mountain method
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.299710
– volume: 365
  start-page: 303
  issue: 1851
  year: 2007
  ident: 10.1016/j.measurement.2017.05.032_b0030
  article-title: An introduction to structural health monitoring
  publication-title: Philos. Trans. Roy. Soc. Lond. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2006.1928
– ident: 10.1016/j.measurement.2017.05.032_b0175
  doi: 10.1117/12.2222298
– volume: 22
  start-page: 147
  issue: S1
  year: 2006
  ident: 10.1016/j.measurement.2017.05.032_b0080
  article-title: Terrestrial-LIDAR visualization of surface and structural deformations of the 2004 Niigata Ken Chuetsu, Japan, earthquake
  publication-title: Earthquake Spectra
  doi: 10.1193/1.2173020
– volume: 58
  start-page: 19
  year: 2015
  ident: 10.1016/j.measurement.2017.05.032_b0165
  article-title: Cluster-based roof covering damage detection in ground-based lidar data
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2015.07.007
– volume: 62
  start-page: 74
  year: 2015
  ident: 10.1016/j.measurement.2017.05.032_b0045
  article-title: Nondestructive corrosion detection using fiber optic photoacoustic ultrasound generator
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.11.004
– volume: 29
  start-page: S99
  issue: s1
  year: 2013
  ident: 10.1016/j.measurement.2017.05.032_b0145
  article-title: Tohoku tsunami-induced building failure analysis with implications for US tsunami and seismic design codes
  publication-title: Earthquake Spectra
  doi: 10.1193/1.4000113
– volume: 41
  start-page: 2253
  issue: 15
  year: 2012
  ident: 10.1016/j.measurement.2017.05.032_b0035
  article-title: Subspace system identification of support excited structures—part II: gray-box interpretations and damage detection
  publication-title: Earthquake Eng. Struct. Dynam.
  doi: 10.1002/eqe.2185
– volume: XXXVIII
  start-page: 184
  year: 2010
  ident: 10.1016/j.measurement.2017.05.032_b0125
  article-title: Damage detection on historical buildings using unsupervised classification techniques
  publication-title: ISPRS-Int. Arch. Photogram.
– volume: 65
  start-page: 282
  year: 2014
  ident: 10.1016/j.measurement.2017.05.032_b0040
  article-title: Advanced structural health monitoring of concrete structures with the aid of acoustic emission
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.04.103
– volume: 24
  issue: 3
  year: 2016
  ident: 10.1016/j.measurement.2017.05.032_b0060
  article-title: Vibration-based system identification of wind turbine system
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.1876
– volume: 22
  start-page: 19
  issue: 1
  year: 2007
  ident: 10.1016/j.measurement.2017.05.032_b0090
  article-title: A new approach for health monitoring of structures: terrestrial laser scanning
  publication-title: Comput.-Aid. Civil Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2006.00466.x
– volume: 23
  start-page: 301
  issue: 4
  year: 2008
  ident: 10.1016/j.measurement.2017.05.032_b0095
  article-title: Monitoring the health of an emblematic monument from terrestrial laser scanner
  publication-title: Nondestruct. Test. Eval.
  doi: 10.1080/10589750802259000
– year: 2003
  ident: 10.1016/j.measurement.2017.05.032_b0020
– volume: 29
  start-page: 04014051
  issue: 3
  year: 2014
  ident: 10.1016/j.measurement.2017.05.032_b0150
  article-title: Automated tornado damage assessment and wind speed estimation based on terrestrial laser scanning
  publication-title: J. Comput. Civil Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000389
– volume: 28
  start-page: S179
  issue: S1
  year: 2012
  ident: 10.1016/j.measurement.2017.05.032_b0140
  article-title: Damage assessment of the 2010 Chile earthquake and tsunami using terrestrial laser scanning
  publication-title: Earthquake Spectra
  doi: 10.1193/1.4000021
– volume: 04016006
  year: 2016
  ident: 10.1016/j.measurement.2017.05.032_b0170
  article-title: Lidar-based methodology to evaluate fragility models for tornado-induced roof damage
  publication-title: Nat. Hazards Rev.
– volume: 7
  start-page: 87
  issue: 2
  year: 2002
  ident: 10.1016/j.measurement.2017.05.032_b0180
  article-title: Introduction to five data clustering algorithm
  publication-title: Integral
– ident: 10.1016/j.measurement.2017.05.032_b0185
– ident: 10.1016/j.measurement.2017.05.032_b0195
– volume: 109
  start-page: 146
  year: 2016
  ident: 10.1016/j.measurement.2017.05.032_b0050
  article-title: Remote defect detection of FRP-bonded concrete system using acoustic-laser and imaging radar techniques
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.12.113
– start-page: 226
  year: 1996
  ident: 10.1016/j.measurement.2017.05.032_b0220
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Kdd
– start-page: 1259
  year: 2014
  ident: 10.1016/j.measurement.2017.05.032_b0155
  article-title: A remote sensing-based approach for assessing and visualizing post-Sandy damage and resiliency rebuilding needs
  publication-title: Const. Res. Congr.
– volume: 77
  start-page: 162
  year: 2016
  ident: 10.1016/j.measurement.2017.05.032_b0190
  article-title: Automatic extraction of highway light poles and towers from mobile LiDAR data
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2015.09.017
SSID ssj0006396
Score 2.3067925
Snippet •KM/FCM performed better than SC/DBSCAN for the cases in this study.•Intensity PCD was shown to be more appropriate for detecting metal rusting.•Intensity PCD...
This study explored the potential of combining point cloud data (PCD) and data clustering algorithms for textural damage detection of commonly seen structural...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 77
SubjectTerms Accuracy
Algorithms
Change detection
Cluster analysis
Clustering
Computing time
Damage detection
Data clustering
Data mining
Environmental effects
Intensity
Lidar
Point cloud data
Rain water
RGB
Sensors
Structural damage
Structural health monitoring
Structural members
Three dimensional models
Title Algorithmic clustering of LiDAR point cloud data for textural damage identifications of structural elements
URI https://dx.doi.org/10.1016/j.measurement.2017.05.032
https://www.proquest.com/docview/2055205127
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IouiDeMXpHBF8rVvbpN3Al-GFeX3wAnsLSZpqdVsHm6_-ds9pWqeCIPjQh-ZSSk5yzpfDly8Ah0GoeMKNIKaa9TgGAE-ZsOWplkA86vvGKkro39xGvUd-2Rf9OTipzsIQrbL0_c6nF966LGmWo9kcZ1nzvkVS4xiAfJykCFL6dIKdx0TrO3qf0TwwAkcuzxJ61HoJDmYcr-EsD0csLyfiGQa_xagf3roIQedrsFpiR9Z1v7cOc3a0AStfFAU3YLFgdJrJJrx2B0857vyfh5lhZvBGggjYhOUpu85Ou3dsnGejKdbkbwkjnihD-MqIB0JCHFgyRE_DsqRkE7nEHvV2irNFI-u455MteDg_ezjpeeXNCp5BwDT1EBQpESYKsVqSGj_SOopsO4qU1dx2cFEGygRx1NFtzTscjZYmuFO0YUziOcKE2zA_ykd2Bxha2miENdoYy4XVKk2tn3YEIscY3YWpQbsaSmlK1XG6_GIgK3rZi_xiBUlWkC0h0Qo1CD67jp30xl86HVf2kt_mkcQQ8Zfu9crGslzME6wXAh8_iHf_9_U9WKY3xwWswzzay-4jppnqRjFpG7DQvbjq3X4A-B_5-w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4gxNfBKGp8oNbE6wZ2t10g8UJUggocFBNuTdvt6iqwJMD_d0q7vhITEw97aTubTaed-Tr59ivARRAKGlPFDFNNexQTgCdUWPNEjSEe9X2lhSno9_pR54neDdmwAFf5vzCGVuliv43py2jtWqpuNqvTNK0-1ozUOCYgHxcpgpThCpSMOhUtQql1e9_pfwRkTMKRLbWEnjFYg_NPmtf4sxRniF5WxzMMfktTPwL2Mgu1t2HLwUfSsl-4AwU9KcPmF1HBMqwuSZ1qtgtvrdFzhof_l3GqiBotjCYCDiFZQrrpdeuBTLN0MseebBETQxUliGCJoYIYLQ5sGWOwIWnsCEW2tmesrejscpC29PPZHgzaN4OrjucuV_AUYqa5h7hIsDAWCNfiRPmRlFGkG1EktKS6ifsyECqoR03ZkLRJ0W9JjIdFHdaNfg5T4T4UJ9lEHwBBZyuJyEYqpSnTUiSJ9pMmQ_BYx4ihDqGRTyVXTnjc3H8x4jnD7JV_8QI3XuA1xtELhxB8mE6t-sZfjC5zf_FvS4ljlviLeSX3MXf7eYb9jOHjB_Wj_739DNY7g16Xd2_798ewYXosNbACRfSdPkGIM5enbgm_A3zX_Kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithmic+clustering+of+LiDAR+point+cloud+data+for+textural+damage+identifications+of+structural+elements&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Hou%2C+Tsung-Chin&rft.au=Liu%2C+Jen-Wei&rft.au=Liu%2C+Yu-Wei&rft.date=2017-10-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=108&rft.spage=77&rft_id=info:doi/10.1016%2Fj.measurement.2017.05.032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon