A single-stranded coordination copolymer affords heterostructure observation and photoluminescence intensification
A single-stranded coordination copolymer is subject to copolymer structure visualization by ambient AFM and photoluminescence enhancement. Few artificial systems can be exfoliated into, and observed as, single wires with lengths of more than several micrometers, and no previous example features a co...
Saved in:
Published in | Science advances Vol. 5; no. 1; p. eaau0637 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
01.01.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2375-2548 2375-2548 |
DOI | 10.1126/sciadv.aau0637 |
Cover
Abstract | A single-stranded coordination copolymer is subject to copolymer structure visualization by ambient AFM and photoluminescence enhancement.
Few artificial systems can be exfoliated into, and observed as, single wires with lengths of more than several micrometers, and no previous example features a copolymer structure; this is in contrast with biopolymers such as single-strand DNAs. Here, we create a set of one-dimensional coordination copolymers featuring bis(dipyrrinato)zinc complex motifs in the main chain. A series of random copolymers is synthesized from two types of bridging dipyrrin proligand and zinc acetate, with various molar ratios between the proligands. Sonication of the bulk solid copolymer in organic solvent exfoliates single strands with lengths of 1.4 to 3.0 μm. Atomic force microscopy at ambient conditions visualizes the copolymer structure as height distributions. The copolymer structure improves its photoluminescence (up to 32%) relative to that of the corresponding homopolymers (3 and 10%). Numerical simulation based on a restricted random walk model reproduces the photoluminescence intensification, suggesting at the same time the existence of fast intrawire exciton hopping. |
---|---|
AbstractList | A single-stranded coordination copolymer is subject to copolymer structure visualization by ambient AFM and photoluminescence enhancement.
Few artificial systems can be exfoliated into, and observed as, single wires with lengths of more than several micrometers, and no previous example features a copolymer structure; this is in contrast with biopolymers such as single-strand DNAs. Here, we create a set of one-dimensional coordination copolymers featuring bis(dipyrrinato)zinc complex motifs in the main chain. A series of random copolymers is synthesized from two types of bridging dipyrrin proligand and zinc acetate, with various molar ratios between the proligands. Sonication of the bulk solid copolymer in organic solvent exfoliates single strands with lengths of 1.4 to 3.0 μm. Atomic force microscopy at ambient conditions visualizes the copolymer structure as height distributions. The copolymer structure improves its photoluminescence (up to 32%) relative to that of the corresponding homopolymers (3 and 10%). Numerical simulation based on a restricted random walk model reproduces the photoluminescence intensification, suggesting at the same time the existence of fast intrawire exciton hopping. Few artificial systems can be exfoliated into, and observed as, single wires with lengths of more than several micrometers, and no previous example features a copolymer structure; this is in contrast with biopolymers such as single-strand DNAs. Here, we create a set of one-dimensional coordination copolymers featuring bis(dipyrrinato)zinc complex motifs in the main chain. A series of random copolymers is synthesized from two types of bridging dipyrrin proligand and zinc acetate, with various molar ratios between the proligands. Sonication of the bulk solid copolymer in organic solvent exfoliates single strands with lengths of 1.4 to 3.0 μm. Atomic force microscopy at ambient conditions visualizes the copolymer structure as height distributions. The copolymer structure improves its photoluminescence (up to 32%) relative to that of the corresponding homopolymers (3 and 10%). Numerical simulation based on a restricted random walk model reproduces the photoluminescence intensification, suggesting at the same time the existence of fast intrawire exciton hopping.Few artificial systems can be exfoliated into, and observed as, single wires with lengths of more than several micrometers, and no previous example features a copolymer structure; this is in contrast with biopolymers such as single-strand DNAs. Here, we create a set of one-dimensional coordination copolymers featuring bis(dipyrrinato)zinc complex motifs in the main chain. A series of random copolymers is synthesized from two types of bridging dipyrrin proligand and zinc acetate, with various molar ratios between the proligands. Sonication of the bulk solid copolymer in organic solvent exfoliates single strands with lengths of 1.4 to 3.0 μm. Atomic force microscopy at ambient conditions visualizes the copolymer structure as height distributions. The copolymer structure improves its photoluminescence (up to 32%) relative to that of the corresponding homopolymers (3 and 10%). Numerical simulation based on a restricted random walk model reproduces the photoluminescence intensification, suggesting at the same time the existence of fast intrawire exciton hopping. Few artificial systems can be exfoliated into, and observed as, single wires with lengths of more than several micrometers, and no previous example features a copolymer structure; this is in contrast with biopolymers such as single-strand DNAs. Here, we create a set of one-dimensional coordination copolymers featuring bis(dipyrrinato)zinc complex motifs in the main chain. A series of random copolymers is synthesized from two types of bridging dipyrrin proligand and zinc acetate, with various molar ratios between the proligands. Sonication of the bulk solid copolymer in organic solvent exfoliates single strands with lengths of 1.4 to 3.0 μm. Atomic force microscopy at ambient conditions visualizes the copolymer structure as height distributions. The copolymer structure improves its photoluminescence (up to 32%) relative to that of the corresponding homopolymers (3 and 10%). Numerical simulation based on a restricted random walk model reproduces the photoluminescence intensification, suggesting at the same time the existence of fast intrawire exciton hopping. |
Author | Fukui, Naoya Tsuchiya, Mizuho Sakamoto, Ryota Matsuoka, Ryota Nishihara, Hiroshi Toyoda, Ryojun |
Author_xml | – sequence: 1 givenname: Ryojun orcidid: 0000-0002-0168-0533 surname: Toyoda fullname: Toyoda, Ryojun organization: Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 2 givenname: Ryota orcidid: 0000-0002-8702-1378 surname: Sakamoto fullname: Sakamoto, Ryota organization: Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan., JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan – sequence: 3 givenname: Naoya surname: Fukui fullname: Fukui, Naoya organization: Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 4 givenname: Ryota orcidid: 0000-0002-2658-9322 surname: Matsuoka fullname: Matsuoka, Ryota organization: Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 5 givenname: Mizuho surname: Tsuchiya fullname: Tsuchiya, Mizuho organization: Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 6 givenname: Hiroshi orcidid: 0000-0002-6568-5640 surname: Nishihara fullname: Nishihara, Hiroshi organization: Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30613768$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1r3DAQFSWl-WiuORYfe_FWsqTR-lIIoU0KgV7as5DlUVbBlraSvJB_HyW7CWmhJ33Mm_dm3jslRyEGJOSC0RVjHXzJ1ptxtzJmocDVO3LScSXbTor10Zv7MTnP-Z5SygSAZP0HcswpMK5gfULSZZN9uJuwzSWZMOLY2BjT6IMpPob62MbpYcbUGOfqf242WDDFil5sWRI2cciYdnt0JWi2m1jitMw-YLYYLDY-FAzZO2-fUR_Je2emjOeH84z8_v7t19VNe_vz-sfV5W1rhYTSctkP3BnFcYAerBt67ICDcHTgnVJO1apzzFJUIET1wziQUirXM8HAAT8jX_e822WYcayz1A0nvU1-NulBR-P135XgN_ou7jRwJtZKVoLPB4IU_yyYi559XWmaTMC4ZN0xEFICFU9an95qvYq8GF0Bqz3AVu9yQvcKYVQ_han3YepDmLVB_NNgfXn2r87qp_-1PQIS76r0 |
CitedBy_id | crossref_primary_10_1002_chem_201806330 crossref_primary_10_1038_s41467_025_56381_0 crossref_primary_10_1246_bcsj_20200362 crossref_primary_10_1016_j_ccr_2022_214735 crossref_primary_10_1515_ncrs_2022_0307 crossref_primary_10_1016_j_cocr_2025_100006 crossref_primary_10_1002_asia_202100670 crossref_primary_10_1016_j_ccr_2022_214787 crossref_primary_10_1038_s41467_022_33177_0 crossref_primary_10_1126_sciadv_abd9887 crossref_primary_10_1063_5_0197941 crossref_primary_10_1016_j_ccr_2020_213661 |
Cites_doi | 10.1002/chem.200900573 10.1021/jacs.7b02835 10.1021/cr990125q 10.1038/ncomms7713 10.1021/ja101544x 10.1039/C6SC02935C 10.1002/anie.201611785 10.1021/jacs.7b07077 10.1016/j.addr.2012.09.013 10.1038/pj.2016.9 10.1016/S0039-6028(03)00794-5 10.1002/anie.201408398 10.1021/ja0446247 10.1002/adma.200300382 10.1002/adma.200600124 10.1002/pola.28385 10.1038/nchem.2346 10.1038/s41467-017-01928-z 10.1038/ncomms13651 10.1038/nnano.2009.155 10.1039/c001965h 10.1039/c3py00132f 10.1002/chem.200401221 10.1002/adma.201705645 10.1002/anie.201509411 10.1002/(SICI)1521-4095(199809)10:13<993::AID-ADMA993>3.0.CO;2-2 10.1038/s41467-017-02736-1 10.1038/ncomms7460 10.1038/ncomms9127 10.1039/C5SC00273G 10.1039/C5DT00724K 10.1038/s41467-017-00683-5 10.1002/adma.201401203 10.1038/ncomms6709 10.1126/science.1261816 10.1039/C4CC01573H 10.1038/srep28638 10.1002/chem.201301450 10.1038/ncomms15862 10.1073/pnas.0506130103 10.1038/nchem.1850 10.1021/ja411665k 10.1021/ja0372715 10.1021/jacs.6b02128 10.1039/C5TA02040A 10.1039/c0dt01226b 10.1021/cr500633b 10.1021/ja203189h 10.1038/nmat1295 10.1126/science.1141382 |
ContentType | Journal Article |
Copyright | Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2019 The Authors |
Copyright_xml | – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2019 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1126/sciadv.aau0637 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Chemistry |
EISSN | 2375-2548 |
ExternalDocumentID | PMC6314875 30613768 10_1126_sciadv_aau0637 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: JPMJCR15F2 – fundername: ; grantid: 17H05354, 18K19094 |
GroupedDBID | 53G 5VS AAFWJ AAYXX ACGFS ADAXU ADBBV AENVI AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BKF CITATION EBS EJD FRP GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 OVD RHI RPM TEORI ADPDF ADRAZ BCGUY NPM OVEED 7X8 5PM |
ID | FETCH-LOGICAL-c456t-359b3fa73eb696cfb9e26364f0b3277f7b3fff1c0e7644112af65557f91416f63 |
IEDL.DBID | M48 |
ISSN | 2375-2548 |
IngestDate | Thu Aug 21 18:07:22 EDT 2025 Fri Jul 11 03:32:12 EDT 2025 Mon Jul 21 05:58:20 EDT 2025 Tue Jul 01 03:52:43 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-359b3fa73eb696cfb9e26364f0b3277f7b3fff1c0e7644112af65557f91416f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0168-0533 0000-0002-8702-1378 0000-0002-6568-5640 0000-0002-2658-9322 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.aau0637 |
PMID | 30613768 |
PQID | 2164556046 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6314875 proquest_miscellaneous_2164556046 pubmed_primary_30613768 crossref_primary_10_1126_sciadv_aau0637 crossref_citationtrail_10_1126_sciadv_aau0637 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science advances |
PublicationTitleAlternate | Sci Adv |
PublicationYear | 2019 |
Publisher | American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science |
References | Ruzette A.-V. (e_1_3_2_9_2) 2005; 4 Sakamoto R. (e_1_3_2_42_2) 2015; 3 Mas-Ballesté R. (e_1_3_2_33_2) 2010; 39 e_1_3_2_22_2 Jiang J.-M. (e_1_3_2_4_2) 2013; 4 Lazzari M. (e_1_3_2_8_2) 2003; 15 Kusaka S. (e_1_3_2_41_2) 2012; 7 Matsuoka R. (e_1_3_2_39_2) 2015; 6 Kim S. (e_1_3_2_5_2) 2016; 48 Lee J. (e_1_3_2_17_2) 2014; 26 Masai H. (e_1_3_2_35_2) 2014; 136 Bruhn T. (e_1_3_2_50_2) 2014; 53 Furuta P. T. (e_1_3_2_3_2) 2004; 126 Schweighöfer F. (e_1_3_2_52_2) 2016; 6 Toyoda R. (e_1_3_2_43_2) 2015; 44 Aoki R. (e_1_3_2_40_2) 2017; 139 Yang S. K. (e_1_3_2_25_2) 2009; 15 Telfer S. G. (e_1_3_2_49_2) 2011; 40 Langhals H. (e_1_3_2_51_2) 2010; 132 e_1_3_2_10_2 e_1_3_2_31_2 Hirao T. (e_1_3_2_28_2) 2017; 8 van Dijken D. J. (e_1_3_2_23_2) 2017; 8 Zhang F. (e_1_3_2_18_2) 2006; 18 Tanaka H. (e_1_3_2_37_2) 2009; 4 Bin H. (e_1_3_2_13_2) 2016; 7 Onoda M. (e_1_3_2_6_2) 2017; 8 Higley M. N. (e_1_3_2_26_2) 2006; 11 Klärner G. (e_1_3_2_2_2) 1998; 10 Roy P. (e_1_3_2_15_2) 2017; 8 Mochizuki S. (e_1_3_2_20_2) 2018; 9 Li X. (e_1_3_2_12_2) 2015; 6 Di Nuzzo D. (e_1_3_2_19_2) 2015; 6 Sakamoto R. (e_1_3_2_48_2) 2017; 56 Ohshiro T. (e_1_3_2_36_2) 2006; 103 Kögel J. F. (e_1_3_2_46_2) 2016; 55 Ares P. (e_1_3_2_32_2) 2018; 30 Sakamoto R. (e_1_3_2_45_2) 2016; 138 Kataoka K. (e_1_3_2_7_2) 2012; 64 Sakamoto R. (e_1_3_2_47_2) 2015; 6 Li C. (e_1_3_2_14_2) 2014; 5 Azani M.-R. (e_1_3_2_34_2) 2013; 19 Tanaka H. (e_1_3_2_38_2) 2003; 539 Besenius P. (e_1_3_2_24_2) 2017; 55 Pollino J. M. (e_1_3_2_27_2) 2004; 126 e_1_3_2_11_2 Ha J. S. (e_1_3_2_16_2) 2011; 133 Das A. (e_1_3_2_29_2) 2017; 139 Tsuchiya M. (e_1_3_2_44_2) 2014; 50 Kermagoret A. (e_1_3_2_21_2) 2014; 6 Brunsveld L. (e_1_3_2_30_2) 2001; 101 |
References_xml | – volume: 15 start-page: 6605 year: 2009 ident: e_1_3_2_25_2 article-title: Supramolecular alternating block copolymers via metal coordination publication-title: Chemistry doi: 10.1002/chem.200900573 – volume: 139 start-page: 7036 year: 2017 ident: e_1_3_2_29_2 article-title: Supramolecular copolymers: Structure and composition revealed by theoretical modeling publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02835 – volume: 101 start-page: 4071 year: 2001 ident: e_1_3_2_30_2 article-title: Supramolecular polymers publication-title: Chem. Rev. doi: 10.1021/cr990125q – volume: 6 start-page: 6713 year: 2015 ident: e_1_3_2_47_2 article-title: A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet publication-title: Nat. Commun. doi: 10.1038/ncomms7713 – volume: 132 start-page: 16777 year: 2010 ident: e_1_3_2_51_2 article-title: Förster resonant energy transfer in orthogonally arranged chromophores publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101544x – volume: 8 start-page: 1783 year: 2017 ident: e_1_3_2_23_2 article-title: Chirality controlled responsive self-assembled nanotubes in water publication-title: Chem. Sci. doi: 10.1039/C6SC02935C – volume: 56 start-page: 3526 year: 2017 ident: e_1_3_2_48_2 article-title: Photofunctionality in porphyrin-hybridized bis(dipyrrinato)zinc(II) complex micro- and nanosheets publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201611785 – volume: 139 start-page: 16024 year: 2017 ident: e_1_3_2_40_2 article-title: Bis(dipyrrinato)zinc(II) complex chiroptical wires: Exfoliation into single strands and intensification of circularly polarized luminescence publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07077 – volume: 64 start-page: 37 year: 2012 ident: e_1_3_2_7_2 article-title: Block copolymer micelles for drug delivery: Design, characterization and biological significance publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.09.013 – volume: 48 start-page: 333 year: 2016 ident: e_1_3_2_5_2 article-title: Controlling the microdomain orientation in block copolymer thin films via cross-linkable random copolymer neutral layer publication-title: Polym. J. doi: 10.1038/pj.2016.9 – volume: 539 start-page: L531 year: 2003 ident: e_1_3_2_38_2 article-title: Visualization of detailed structures within DNA publication-title: Surf. Sci. doi: 10.1016/S0039-6028(03)00794-5 – volume: 53 start-page: 14592 year: 2014 ident: e_1_3_2_50_2 article-title: Axially chiral BODIPY DYEmers: An apparent exception to the exciton chirality rule publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201408398 – volume: 126 start-page: 15388 year: 2004 ident: e_1_3_2_3_2 article-title: Platinum-functionalized random copolymers for use in solution-processible, efficient, near-white organic light-emitting diodes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0446247 – volume: 15 start-page: 1583 year: 2003 ident: e_1_3_2_8_2 article-title: Block copolymers as a tool for nanomaterial fabrication publication-title: Adv. Mater. doi: 10.1002/adma.200300382 – volume: 18 start-page: 2169 year: 2006 ident: e_1_3_2_18_2 article-title: Low-bandgap alternating fluorene copolymer/methanofullerene heterojunctions in efficient near-infrared polymer solar cells publication-title: Adv. Mater. doi: 10.1002/adma.200600124 – volume: 55 start-page: 34 year: 2017 ident: e_1_3_2_24_2 article-title: Controlling supramolecular polymerization through multicomponent self-assembly publication-title: J. Polym. Sci. A Polym. Chem. doi: 10.1002/pola.28385 – ident: e_1_3_2_22_2 doi: 10.1038/nchem.2346 – volume: 8 start-page: 1716 year: 2017 ident: e_1_3_2_15_2 article-title: Ultrafast bridge planarization in donor-π-acceptor copolymers drives intramolecular charge transfer publication-title: Nat. Commun. doi: 10.1038/s41467-017-01928-z – volume: 7 start-page: 13651 year: 2016 ident: e_1_3_2_13_2 article-title: 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor publication-title: Nat. Commun. doi: 10.1038/ncomms13651 – volume: 4 start-page: 518 year: 2009 ident: e_1_3_2_37_2 article-title: Partial sequencing of a single DNA molecule with a scanning tunnelling microscope publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.155 – volume: 39 start-page: 4220 year: 2010 ident: e_1_3_2_33_2 article-title: One-dimensional coordination polymers on surfaces: Towards single molecule devices publication-title: Chem. Soc. Rev. doi: 10.1039/c001965h – volume: 4 start-page: 5321 year: 2013 ident: e_1_3_2_4_2 article-title: Conjugated random copolymers of benzodithiophene–benzooxadiazole–diketopyrrolopyrrole with full visible light absorption for bulk heterojunction solar cells publication-title: Polym. Chem. doi: 10.1039/c3py00132f – volume: 11 start-page: 2946 year: 2006 ident: e_1_3_2_26_2 article-title: A modular approach toward block copolymers publication-title: Chemistry doi: 10.1002/chem.200401221 – volume: 30 start-page: 1705645 year: 2018 ident: e_1_3_2_32_2 article-title: High electrical conductivity of single metal–organic chains publication-title: Adv. Mater. doi: 10.1002/adma.201705645 – volume: 55 start-page: 1377 year: 2016 ident: e_1_3_2_46_2 article-title: Heteroleptic [bis(oxazoline)](dipyrrinato)zinc(II) complexes: Bright and circularly polarized luminescence from an originally achiral dipyrrinato ligand publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201509411 – volume: 10 start-page: 993 year: 1998 ident: e_1_3_2_2_2 article-title: Colorfast blue-light-emitting random copolymers derived from di-n-hexylfluorene and anthracene publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(199809)10:13<993::AID-ADMA993>3.0.CO;2-2 – volume: 9 start-page: 329 year: 2018 ident: e_1_3_2_20_2 article-title: Sequence-regulated copolymerization based on periodic covalent positioning of monomers along one-dimensional nanochannels publication-title: Nat. Commun. doi: 10.1038/s41467-017-02736-1 – volume: 6 start-page: 6460 year: 2015 ident: e_1_3_2_19_2 article-title: How intermolecular geometrical disorder affects the molecular doping of donor–acceptor copolymers publication-title: Nat. Commun. doi: 10.1038/ncomms7460 – volume: 6 start-page: 8127 year: 2015 ident: e_1_3_2_12_2 article-title: Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions publication-title: Nat. Commun. doi: 10.1038/ncomms9127 – volume: 6 start-page: 2853 year: 2015 ident: e_1_3_2_39_2 article-title: Bis(dipyrrinato)metal(II) coordination polymers: Crystallization, exfoliation into single wires, and electric conversion ability publication-title: Chem. Sci. doi: 10.1039/C5SC00273G – volume: 7 start-page: 907 year: 2012 ident: e_1_3_2_41_2 article-title: An extremely bright heteroleptic bis(dipyrrinato)zinc(II) complex publication-title: Chemistry – volume: 44 start-page: 15103 year: 2015 ident: e_1_3_2_43_2 article-title: Heteroleptic bis(dipyrrinato)copper(II) and nickel(II) complexes publication-title: Dalton Trans. doi: 10.1039/C5DT00724K – volume: 8 start-page: 634 year: 2017 ident: e_1_3_2_28_2 article-title: Sequence-controlled supramolecular terpolymerization directed by specific molecular recognitions publication-title: Nat. Commun. doi: 10.1038/s41467-017-00683-5 – volume: 26 start-page: 6706 year: 2014 ident: e_1_3_2_17_2 article-title: Donor–acceptor alternating copolymer nanowires for highly efficient organic solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201401203 – volume: 5 start-page: 5709 year: 2014 ident: e_1_3_2_14_2 article-title: A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio publication-title: Nat. Commun. doi: 10.1038/ncomms6709 – ident: e_1_3_2_11_2 doi: 10.1126/science.1261816 – volume: 50 start-page: 5881 year: 2014 ident: e_1_3_2_44_2 article-title: Asymmetric dinuclear bis(dipyrrinato)zinc(II) complexes: Broad absorption and unidirectional quantitative exciton transmission publication-title: Chem. Commun. doi: 10.1039/C4CC01573H – volume: 6 start-page: 28638 year: 2016 ident: e_1_3_2_52_2 article-title: Highly efficient modulation of FRET in an orthogonally arranged BODIPY–DTE dyad publication-title: Sci. Rep. doi: 10.1038/srep28638 – volume: 19 start-page: 15518 year: 2013 ident: e_1_3_2_34_2 article-title: The isolation of single MMX chains from solution: Unravelling the assembly-disassembly process publication-title: Chemistry doi: 10.1002/chem.201301450 – volume: 8 start-page: 15862 year: 2017 ident: e_1_3_2_6_2 article-title: Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition publication-title: Nat. Commun. doi: 10.1038/ncomms15862 – volume: 103 start-page: 10 year: 2006 ident: e_1_3_2_36_2 article-title: Complementary base-pair-facilitated electron tunneling for electrically pinpointing complementary nucleobases publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0506130103 – volume: 6 start-page: 179 year: 2014 ident: e_1_3_2_21_2 article-title: Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization publication-title: Nat. Chem. doi: 10.1038/nchem.1850 – volume: 136 start-page: 1742 year: 2014 ident: e_1_3_2_35_2 article-title: Synthesis of one-dimensional metal-containing insulated molecular wire with versatile properties directed toward molecular electronics materials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411665k – volume: 126 start-page: 563 year: 2004 ident: e_1_3_2_27_2 article-title: One-step multifunctionalization of random copolymers via self-assembly publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0372715 – volume: 138 start-page: 5666 year: 2016 ident: e_1_3_2_45_2 article-title: Dissymmetric bis(dipyrrinato)zinc(II) complexes: Rich variety and bright red to near-infrared luminescence with a large pseudo-stokes shift publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02128 – volume: 3 start-page: 15357 year: 2015 ident: e_1_3_2_42_2 article-title: New aspects in bis and tris(dipyrrinato)metal complexes: Bright luminescence, self-assembled nanoarchitectures, and materials applications publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02040A – volume: 40 start-page: 3097 year: 2011 ident: e_1_3_2_49_2 article-title: Exciton coupling in coordination compounds publication-title: Dalton Trans. doi: 10.1039/c0dt01226b – ident: e_1_3_2_31_2 doi: 10.1021/cr500633b – volume: 133 start-page: 10364 year: 2011 ident: e_1_3_2_16_2 article-title: 2,5-Bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione-based donor–acceptor alternating copolymer bearing 5,5′-Di(thiophen-2-yl)-2,2′-biselenophene exhibiting 1.5 cm2 V–1 s–1 hole mobility in thin-film transistors publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203189h – volume: 4 start-page: 19 year: 2005 ident: e_1_3_2_9_2 article-title: Block copolymers in tomorrow’s plastics publication-title: Nat. Mater. doi: 10.1038/nmat1295 – ident: e_1_3_2_10_2 doi: 10.1126/science.1141382 |
SSID | ssj0001466519 |
Score | 2.1427405 |
Snippet | A single-stranded coordination copolymer is subject to copolymer structure visualization by ambient AFM and photoluminescence enhancement.
Few artificial... Few artificial systems can be exfoliated into, and observed as, single wires with lengths of more than several micrometers, and no previous example features a... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | eaau0637 |
SubjectTerms | Chemistry SciAdv r-articles |
Title | A single-stranded coordination copolymer affords heterostructure observation and photoluminescence intensification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30613768 https://www.proquest.com/docview/2164556046 https://pubmed.ncbi.nlm.nih.gov/PMC6314875 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SBNpcSpI-sm0aVCi0PSisLVtaH0IIIQ8K6akLezOyrGEXtvZmHyH5952xtZtN015yMRg9DDOS5_s-j0cAX6Kyh96oTPYSZWWSYSltXHYlWkd4DmlvNjrk9U991U9-DNLBQ_5TMODsn9SOz5PqT8dHdzf3J7Thj9d-gLHl7ZG1C4q35gVsUVTSTMSuA9Rv9JZEa0IroW7j02Hb8FJxbDNcdHU9RD3BnX-nT67Fo4sdeB2ApDhtPb8LG77ag1dny_Pb9mA3bNuZ-BZqS39_A9NTweLA2EuWOFj9Fq4m_jlqRUG6mdTj-99-Kixy2vtMDDlfpm7LzC6mXtTFSscVNIGYDOs5v-E4fd7x88SozYrHoAa-hf7F-a-zKxmOXZCO0NRcqjQrFFqjfKEz7bDIfKyVTrBbqNgYNNSKGLmuNwymotiiTtPUYBaR3VGrd7BZ1ZXfB9Ej_pulqEqMMHGOuJXSPvY9Y1Xpuxh3QC4tnbtQk5yPxhjnDTeJdd46KQ9O6sDXVf9JW43jvz0_Lx2Xk935K4itfL2Y5TERxJRwXqI78L515Gqu5QrogHnk4lUHLsb9uKUaDZui3FpFzP0-PHvkR9gmMJa18s4BbJJf_ScCPPPisBEK6Ho5iA6bVf0Hm8oLFg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+single-stranded+coordination+copolymer+affords+heterostructure+observation+and+photoluminescence+intensification&rft.jtitle=Science+advances&rft.au=Toyoda%2C+Ryojun&rft.au=Sakamoto%2C+Ryota&rft.au=Fukui%2C+Naoya&rft.au=Matsuoka%2C+Ryota&rft.date=2019-01-01&rft.pub=American+Association+for+the+Advancement+of+Science&rft.eissn=2375-2548&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1126%2Fsciadv.aau0637&rft_id=info%3Apmid%2F30613768&rft.externalDocID=PMC6314875 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon |