Post-transcriptional regulation of mouse neurogenesis by Pumilio proteins

Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the p...

Full description

Saved in:
Bibliographic Details
Published inGenes & development Vol. 31; no. 13; pp. 1354 - 1369
Main Authors Zhang, Meng, Chen, Dong, Xia, Jing, Han, Wenqi, Cui, Xiekui, Neuenkirchen, Nils, Hermes, Gretchen, Sestan, Nenad, Lin, Haifan
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the postnatal dentate gyrus (DG), drastically increased perinatal apoptosis, altered DG cell composition, and impaired learning and memory. Consistently, the mutant DG neurospheres generated fewer NSCs with defects in proliferation, survival, and differentiation, supporting a major role of Pum1 and Pum2 in hippocampal neurogenesis and function. Cross-linking immunoprecipitation revealed that Pum1 and Pum2 bind to thousands of mRNAs, with at least 694 common targets in multiple neurogenic pathways. Depleting Pum1 and/or Pum2 did not change the abundance of most target mRNAs but up-regulated their proteins, indicating that Pum1 and Pum2 regulate the translation of their target mRNAs. Moreover, Pum1 and Pum2 display RNA-dependent interaction with fragile X mental retardation protein (FMRP) and bind to one another's mRNA. This indicates that Pum proteins might form collaborative networks with FMRP and possibly other post-transcriptional regulators to regulate neurogenesis.
AbstractList Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the postnatal dentate gyrus (DG), drastically increased perinatal apoptosis, altered DG cell composition, and impaired learning and memory. Consistently, the mutant DG neurospheres generated fewer NSCs with defects in proliferation, survival, and differentiation, supporting a major role of Pum1 and Pum2 in hippocampal neurogenesis and function. Cross-linking immunoprecipitation revealed that Pum1 and Pum2 bind to thousands of mRNAs, with at least 694 common targets in multiple neurogenic pathways. Depleting Pum1 and/or Pum2 did not change the abundance of most target mRNAs but up-regulated their proteins, indicating that Pum1 and Pum2 regulate the translation of their target mRNAs. Moreover, Pum1 and Pum2 display RNA-dependent interaction with fragile X mental retardation protein (FMRP) and bind to one another's mRNA. This indicates that Pum proteins might form collaborative networks with FMRP and possibly other post-transcriptional regulators to regulate neurogenesis.
Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the postnatal dentate gyrus (DG), drastically increased perinatal apoptosis, altered DG cell composition, and impaired learning and memory. Consistently, the mutant DG neurospheres generated fewer NSCs with defects in proliferation, survival, and differentiation, supporting a major role of Pum1 and Pum2 in hippocampal neurogenesis and function. Cross-linking immunoprecipitation revealed that Pum1 and Pum2 bind to thousands of mRNAs, with at least 694 common targets in multiple neurogenic pathways. Depleting Pum1 and/or Pum2 did not change the abundance of most target mRNAs but up-regulated their proteins, indicating that Pum1 and Pum2 regulate the translation of their target mRNAs. Moreover, Pum1 and Pum2 display RNA-dependent interaction with fragile X mental retardation protein (FMRP) and bind to one another's mRNA. This indicates that Pum proteins might form collaborative networks with FMRP and possibly other post-transcriptional regulators to regulate neurogenesis.Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the postnatal dentate gyrus (DG), drastically increased perinatal apoptosis, altered DG cell composition, and impaired learning and memory. Consistently, the mutant DG neurospheres generated fewer NSCs with defects in proliferation, survival, and differentiation, supporting a major role of Pum1 and Pum2 in hippocampal neurogenesis and function. Cross-linking immunoprecipitation revealed that Pum1 and Pum2 bind to thousands of mRNAs, with at least 694 common targets in multiple neurogenic pathways. Depleting Pum1 and/or Pum2 did not change the abundance of most target mRNAs but up-regulated their proteins, indicating that Pum1 and Pum2 regulate the translation of their target mRNAs. Moreover, Pum1 and Pum2 display RNA-dependent interaction with fragile X mental retardation protein (FMRP) and bind to one another's mRNA. This indicates that Pum proteins might form collaborative networks with FMRP and possibly other post-transcriptional regulators to regulate neurogenesis.
In this study, Zhang et al. investigated post-transcriptional regulation during mammalian neurogenesis. They demonstrate that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the postnatal dentate gyrus (DG), drastically increased perinatal apoptosis, altered DG cell composition, and impaired learning and memory, and their data further suggest that PUM2 facilitates FMRP function and that Pum1 and Pum2 have different roles in neurogenesis. Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the postnatal dentate gyrus (DG), drastically increased perinatal apoptosis, altered DG cell composition, and impaired learning and memory. Consistently, the mutant DG neurospheres generated fewer NSCs with defects in proliferation, survival, and differentiation, supporting a major role of Pum1 and Pum2 in hippocampal neurogenesis and function. Cross-linking immunoprecipitation revealed that Pum1 and Pum2 bind to thousands of mRNAs, with at least 694 common targets in multiple neurogenic pathways. Depleting Pum1 and/or Pum2 did not change the abundance of most target mRNAs but up-regulated their proteins, indicating that Pum1 and Pum2 regulate the translation of their target mRNAs. Moreover, Pum1 and Pum2 display RNA-dependent interaction with fragile X mental retardation protein (FMRP) and bind to one another's mRNA. This indicates that Pum proteins might form collaborative networks with FMRP and possibly other post-transcriptional regulators to regulate neurogenesis.
Author Han, Wenqi
Chen, Dong
Lin, Haifan
Xia, Jing
Sestan, Nenad
Zhang, Meng
Hermes, Gretchen
Neuenkirchen, Nils
Cui, Xiekui
AuthorAffiliation 3 Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA
4 Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut 06510, USA
2 Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
9 Department of Obstetrics and Gynecology, Yale School of Medicine, New Haven, Connecticut 06520, USA
5 Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511, USA
7 Section of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, Connecticut 06520, USA
1 Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
8 Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut 06519, USA
6 Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA
AuthorAffiliation_xml – name: 9 Department of Obstetrics and Gynecology, Yale School of Medicine, New Haven, Connecticut 06520, USA
– name: 6 Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA
– name: 5 Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511, USA
– name: 2 Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
– name: 4 Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut 06510, USA
– name: 8 Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut 06519, USA
– name: 1 Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
– name: 3 Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA
– name: 7 Section of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, Connecticut 06520, USA
Author_xml – sequence: 1
  givenname: Meng
  surname: Zhang
  fullname: Zhang, Meng
– sequence: 2
  givenname: Dong
  surname: Chen
  fullname: Chen, Dong
– sequence: 3
  givenname: Jing
  surname: Xia
  fullname: Xia, Jing
– sequence: 4
  givenname: Wenqi
  surname: Han
  fullname: Han, Wenqi
– sequence: 5
  givenname: Xiekui
  surname: Cui
  fullname: Cui, Xiekui
– sequence: 6
  givenname: Nils
  surname: Neuenkirchen
  fullname: Neuenkirchen, Nils
– sequence: 7
  givenname: Gretchen
  surname: Hermes
  fullname: Hermes, Gretchen
– sequence: 8
  givenname: Nenad
  surname: Sestan
  fullname: Sestan, Nenad
– sequence: 9
  givenname: Haifan
  surname: Lin
  fullname: Lin, Haifan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28794184$$D View this record in MEDLINE/PubMed
BookMark eNp1Uc9LHDEUDrKlrtqrR5mjl9m-zOTnpVAW2wpCPdRzyGTerpGZZJvMCPvfG7sqtlAIhI98P17ed0IWIQYk5JzCilKgn7e2XzVaSd4ULI_IknKma86kXJAlKA21boU-Jic5PwCAACE-kuNGSc2oYktyfRvzVE_JhuyS300-BjtUCbfzYJ9BFTfVGOeMVcA5xS0GzD5X3b66nUc_-FjtUpzQh3xGPmzskPHTy31K7r5d_Vr_qG9-fr9ef72pHeNiqhvFGaPMCq5B9trSriunpW5Dy1CyF6JHJYXtOmDMogKF1GlntVISOOPtKfly8N3N3Yi9w1CmH8wu-dGmvYnWm79fgr832_hoOFcguCgGly8GKf6eMU9m9NnhMNiA5aeG6kaqFkBBoV68z3oLed1fIbADwaWYc8KNcX76s7gS7QdDwTzXZEpN5lBTwbLIVv_IXp3_I3gCxwKWEw
CitedBy_id crossref_primary_10_1261_rna_077362_120
crossref_primary_10_1534_genetics_119_302772
crossref_primary_10_1242_dmm_049703
crossref_primary_10_7554_eLife_55199
crossref_primary_10_1002_jez_2671
crossref_primary_10_1038_s41418_023_01199_w
crossref_primary_10_3390_cells12030434
crossref_primary_10_1002_wrna_1724
crossref_primary_10_3389_fmolb_2021_699613
crossref_primary_10_1016_j_celrep_2019_01_111
crossref_primary_10_1177_09603271221149656
crossref_primary_10_1186_s12859_022_05037_7
crossref_primary_10_3389_fcell_2021_710186
crossref_primary_10_3389_fnagi_2017_00384
crossref_primary_10_1093_nar_gkae929
crossref_primary_10_1038_s41598_018_33596_4
crossref_primary_10_1038_s41586_025_08622_x
crossref_primary_10_1038_s44319_025_00401_z
crossref_primary_10_1016_j_ydbio_2020_03_017
crossref_primary_10_1016_j_jbc_2024_105646
crossref_primary_10_1093_oons_kvac011
crossref_primary_10_1248_bpb_b22_00569
crossref_primary_10_1038_s41467_022_29309_1
crossref_primary_10_1038_s41598_019_56908_8
crossref_primary_10_1261_rna_078436_120
crossref_primary_10_3389_fnmol_2019_00152
crossref_primary_10_18632_oncotarget_24345
crossref_primary_10_1186_s41065_019_0101_0
crossref_primary_10_12677_acm_2024_1492524
crossref_primary_10_1152_physrev_00047_2019
crossref_primary_10_1534_g3_118_200300
crossref_primary_10_7555_JBR_35_20210067
crossref_primary_10_1007_s00436_019_06467_8
crossref_primary_10_1186_s12929_023_00920_8
crossref_primary_10_1002_1873_3468_14624
crossref_primary_10_1007_s00018_022_04254_w
crossref_primary_10_1016_j_celrep_2024_114747
crossref_primary_10_1038_s41418_019_0411_9
crossref_primary_10_1038_s41598_023_30004_4
crossref_primary_10_1007_s10528_022_10230_7
crossref_primary_10_3390_ijms23116315
crossref_primary_10_3389_fcell_2020_00029
crossref_primary_10_1093_nar_gkz1187
crossref_primary_10_1016_j_celrep_2021_109279
crossref_primary_10_3390_ijms19082280
crossref_primary_10_3390_biom10020167
crossref_primary_10_1093_hmg_ddy193
crossref_primary_10_7554_eLife_42650
crossref_primary_10_1073_pnas_1916471117
crossref_primary_10_1042_EBC20210024
crossref_primary_10_1101_gad_351337_123
crossref_primary_10_1093_nar_gkac499
crossref_primary_10_1007_s11033_019_05142_6
crossref_primary_10_3389_fevo_2020_00215
crossref_primary_10_3390_ijms22168998
crossref_primary_10_1002_cbf_3656
crossref_primary_10_1017_S0967199418000369
crossref_primary_10_1007_s10565_025_09986_6
crossref_primary_10_1016_j_cell_2018_02_006
crossref_primary_10_1016_j_tig_2018_09_006
crossref_primary_10_1186_s13059_020_02247_1
crossref_primary_10_15252_embj_2022112721
crossref_primary_10_1093_nar_gkx1120
crossref_primary_10_1139_bcb_2021_0044
crossref_primary_10_1016_j_ydbio_2022_02_013
crossref_primary_10_1242_dev_200045
crossref_primary_10_1091_mbc_E18_06_0369
crossref_primary_10_1002_wrna_1751
crossref_primary_10_1016_j_celrep_2018_12_007
crossref_primary_10_1017_S0967199423000205
crossref_primary_10_3390_cells9040984
crossref_primary_10_1186_s13578_018_0251_1
crossref_primary_10_1038_s41467_023_39054_8
crossref_primary_10_1016_j_omtn_2021_12_012
crossref_primary_10_1016_j_neuron_2019_08_035
Cites_doi 10.1523/JNEUROSCI.21-10-03503.2001
10.1016/j.neuroscience.2013.05.042
10.1016/j.celrep.2015.01.049
10.1016/j.neuron.2011.05.001
10.1126/science.3975601
10.1385/MN:32:2:113
10.1038/ncomms12209
10.1016/j.cell.2015.12.017
10.1371/journal.pone.0003164
10.1002/dvg.20310
10.1371/journal.pone.0025932
10.1371/journal.pbio.0020079
10.1146/annurev-pathol-011811-132457
10.1073/pnas.0907128107
10.1146/annurev-cellbio-092910-154026
10.1016/S0092-8674(01)00568-2
10.1038/nsmb.2214
10.1016/j.cell.2010.03.009
10.1095/biolreprod.115.137497
10.1242/dev.01785
10.1261/rna.1884610
10.1523/JNEUROSCI.0921-13.2013
10.1371/journal.pgen.1000898
10.1080/15216540310001603093
10.1101/cshperspect.a018812
10.3791/2638
10.1016/j.tig.2014.12.004
10.1073/pnas.0605177103
10.7554/elife.13374
10.1126/science.287.5457.1433
10.1016/j.neuron.2015.12.008
10.1523/JNEUROSCI.4854-10.2011
10.1101/cshperspect.a018820
10.1242/dev.140921
10.1038/15666
10.7554/eLife.14997
10.1016/j.cell.2011.06.030
10.1002/wrna.1289
10.1016/0092-8674(94)90569-X
10.1038/nm.2336
10.1242/dev.124.12.2463
10.1016/j.tibs.2012.02.005
10.1038/12703
10.1128/MCB.14.11.7219
10.1016/j.cell.2005.02.024
10.1038/nrg2111
10.1016/S1079-9796(03)00003-2
10.1038/nsmb1100
10.1016/j.tcb.2010.09.013
10.1016/j.cell.2011.06.013
10.1523/JNEUROSCI.1860-14.2014
10.1523/JNEUROSCI.0649-06.2006
10.1038/nature754
10.4161/cam.3.4.8803
10.1016/0092-8674(91)90368-9
10.1016/j.neuron.2016.05.034
10.1016/j.neuron.2014.11.011
10.3791/1786
10.1016/j.abb.2013.02.004
10.1038/37297
10.1016/S0960-9822(00)00283-9
10.1016/j.cell.2015.02.012
10.1038/nrn2822
10.1111/j.1440-169X.2010.01175.x
10.1038/329167a0
10.1016/j.cub.2012.01.039
10.1016/S0168-9525(01)02616-6
10.1002/dvg.20226
10.1038/nprot.2014.012
10.1093/genetics/153.1.235
10.1126/science.286.5440.741
10.1016/j.devcel.2016.02.010
ContentType Journal Article
Copyright 2017 Zhang et al.; Published by Cold Spring Harbor Laboratory Press.
2017
Copyright_xml – notice: 2017 Zhang et al.; Published by Cold Spring Harbor Laboratory Press.
– notice: 2017
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1101/gad.298752.117
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Zhang et al
EISSN 1549-5477
EndPage 1369
ExternalDocumentID PMC5580656
28794184
10_1101_gad_298752_117
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: P50 MH106934
– fundername: NIGMS NIH HHS
  grantid: R01 GM121386
– fundername: NIMH NIH HHS
  grantid: U01 MH103339
– fundername: NIMH NIH HHS
  grantid: R01 MH109904
– fundername: NIMH NIH HHS
  grantid: R01 MH110926
– fundername: ;
  grantid: R01GM121386; MH103339; MH106934; MH109904; MH110926
– fundername: G. Harold and Leila Y. Mathers
– fundername: K.S. and Feli Lo Graduate Fellowship for Excellence in Stem Cell Research
GroupedDBID ---
-DZ
-~X
.55
18M
29H
2WC
39C
4.4
53G
5RE
5VS
85S
AAYXX
ABCQX
ABDIX
ACGFO
ACLKE
ACNCT
ADBBV
ADIYS
ADXHL
AECCQ
AENEX
AETEA
AFFNX
AFOSN
AHPUY
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
H~9
IH2
KQ8
L7B
MV1
N9A
OK1
P2P
R.V
RCX
RHI
RPM
SJN
TAE
TN5
TR2
UHB
W8F
WH7
WOQ
X7M
XSW
YBU
YHG
YKV
YSK
NPM
7X8
5PM
ID FETCH-LOGICAL-c456t-2854414a65907d9a1bb1bb31cf18797d66de876abb044ae808e1c9ca988705453
ISSN 0890-9369
1549-5477
IngestDate Thu Aug 21 13:53:16 EDT 2025
Fri Jul 11 04:20:08 EDT 2025
Mon Jul 21 06:02:57 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
Tue Jul 01 01:12:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords mouse
neural stem cell
hippocampus
FMRP
post-transcriptional regulation
mRNA
Pumilio
Language English
License 2017 Zhang et al.; Published by Cold Spring Harbor Laboratory Press.
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c456t-2854414a65907d9a1bb1bb31cf18797d66de876abb044ae808e1c9ca988705453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5580656
PMID 28794184
PQID 1927830080
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5580656
proquest_miscellaneous_1927830080
pubmed_primary_28794184
crossref_citationtrail_10_1101_gad_298752_117
crossref_primary_10_1101_gad_298752_117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genes & development
PublicationTitleAlternate Genes Dev
PublicationYear 2017
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References (2021111620013655000_31.13.1354.73) 1997; 3
2021111620013655000_31.13.1354.16
2021111620013655000_31.13.1354.15
2021111620013655000_31.13.1354.59
2021111620013655000_31.13.1354.14
2021111620013655000_31.13.1354.58
2021111620013655000_31.13.1354.13
2021111620013655000_31.13.1354.57
2021111620013655000_31.13.1354.19
2021111620013655000_31.13.1354.18
2021111620013655000_31.13.1354.17
(2021111620013655000_31.13.1354.45) 2001; 8
2021111620013655000_31.13.1354.63
2021111620013655000_31.13.1354.62
2021111620013655000_31.13.1354.60
2021111620013655000_31.13.1354.23
2021111620013655000_31.13.1354.67
2021111620013655000_31.13.1354.22
2021111620013655000_31.13.1354.66
2021111620013655000_31.13.1354.21
2021111620013655000_31.13.1354.65
2021111620013655000_31.13.1354.20
2021111620013655000_31.13.1354.64
(2021111620013655000_31.13.1354.51) 2015; 6
(2021111620013655000_31.13.1354.49) 1999; 153
(2021111620013655000_31.13.1354.41) 2001; 21
2021111620013655000_31.13.1354.48
2021111620013655000_31.13.1354.47
2021111620013655000_31.13.1354.46
2021111620013655000_31.13.1354.52
2021111620013655000_31.13.1354.50
2021111620013655000_31.13.1354.9
2021111620013655000_31.13.1354.12
2021111620013655000_31.13.1354.56
2021111620013655000_31.13.1354.8
2021111620013655000_31.13.1354.11
2021111620013655000_31.13.1354.55
2021111620013655000_31.13.1354.7
2021111620013655000_31.13.1354.10
2021111620013655000_31.13.1354.54
2021111620013655000_31.13.1354.6
2021111620013655000_31.13.1354.53
2021111620013655000_31.13.1354.5
2021111620013655000_31.13.1354.4
2021111620013655000_31.13.1354.3
2021111620013655000_31.13.1354.2
2021111620013655000_31.13.1354.1
(2021111620013655000_31.13.1354.61) 2016; 89
(2021111620013655000_31.13.1354.29) 2015; 10
2021111620013655000_31.13.1354.38
(2021111620013655000_31.13.1354.31) 2015; 9
2021111620013655000_31.13.1354.37
2021111620013655000_31.13.1354.36
2021111620013655000_31.13.1354.35
2021111620013655000_31.13.1354.39
2021111620013655000_31.13.1354.44
(2021111620013655000_31.13.1354.40) 1997; 124
2021111620013655000_31.13.1354.43
2021111620013655000_31.13.1354.42
2021111620013655000_31.13.1354.27
2021111620013655000_31.13.1354.26
2021111620013655000_31.13.1354.25
2021111620013655000_31.13.1354.69
2021111620013655000_31.13.1354.24
2021111620013655000_31.13.1354.68
2021111620013655000_31.13.1354.28
2021111620013655000_31.13.1354.74
2021111620013655000_31.13.1354.72
2021111620013655000_31.13.1354.71
2021111620013655000_31.13.1354.34
2021111620013655000_31.13.1354.33
2021111620013655000_31.13.1354.32
2021111620013655000_31.13.1354.76
2021111620013655000_31.13.1354.75
2021111620013655000_31.13.1354.70
(2021111620013655000_31.13.1354.30) 2016; 91
7523861 - Mol Cell Biol. 1994 Nov;14(11):7219-25
1720354 - Cell. 1991 Nov 29;67(5):955-67
16715093 - Nat Struct Mol Biol. 2006 Jun;13(6):533-9
27282387 - Elife. 2016 Jun 10;5:null
10559987 - Nat Cell Biol. 1999 Nov;1(7):431-7
18228314 - Curr Protoc Cell Biol. 2001 May;Chapter 11:Unit 11.9
16847871 - Genesis. 2006 Aug;44(8):355-60
21609825 - Neuron. 2011 May 26;70(4):687-702
26954550 - Dev Cell. 2016 Mar 7;36(5):562-71
19535895 - Cell Adh Migr. 2009 Oct-Dec;3(4):412-24
25624274 - Trends Genet. 2015 Feb;31(2):77-87
15772127 - Development. 2005 Apr;132(8):1863-74
19933321 - RNA. 2010 Jan;16(1):221-7
20354534 - Nat Rev Neurosci. 2010 May;11(5):339-50
25186741 - J Neurosci. 2014 Sep 3;34(36):11929-47
17551945 - Genesis. 2007 Jun;45(6):413-7
25768905 - Cell. 2015 Mar 12;160(6):1087-98
23470250 - Arch Biochem Biophys. 2013 Jun;534(1-2):71-87
21729779 - Cell. 2011 Jul 8;146(1):18-36
25964735 - Front Neurosci. 2015 Apr 24;9:135
10688783 - Science. 2000 Feb 25;287(5457):1433-8
21559008 - J Vis Exp. 2011 Apr 30;(50):null
16215276 - Mol Neurobiol. 2005 Oct;32(2):113-21
20608952 - Dev Growth Differ. 2010 Aug;52(6):493-504
16901981 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12564-8
18776931 - PLoS One. 2008 Sep 08;3(9):e3164
22016787 - PLoS One. 2011;6(10):e25932
16775137 - J Neurosci. 2006 Jun 14;26(24):6496-508
22425269 - Trends Biochem Sci. 2012 Jul;37(7):255-62
25704818 - Cell Rep. 2015 Feb 24;10(7):1158-72
26796689 - Neuron. 2016 Jan 20;89(2):248-68
27048191 - Cold Spring Harb Perspect Biol. 2016 May 02;8(5)
23739961 - J Neurosci. 2013 Jun 5;33(23):9644-54
3975601 - Science. 1985 Mar 1;227(4690):1054-6
21784246 - Cell. 2011 Jul 22;146(2):247-61
22017584 - Annu Rev Pathol. 2012;7:219-45
10662662 - Curr Biol. 2000 Jan 27;10(2):R81-3
11858839 - Trends Genet. 2002 Mar;18(3):150-7
24407355 - Nat Protoc. 2014 Feb;9(2):263-93
9404893 - RNA. 1997 Dec;3(12):1421-33
22231398 - Nat Struct Mol Biol. 2012 Jan 08;19(2):176-83
20133610 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3222-7
23727006 - Neuroscience. 2013 Sep 17;248:499-528
10531053 - Science. 1999 Oct 22;286(5440):741-6
11331379 - J Neurosci. 2001 May 15;21(10):3503-14
27113915 - Elife. 2016 Apr 26;5:e14997
27170441 - Biol Reprod. 2016 Jun;94(6):134
20386739 - PLoS Genet. 2010 Apr 08;6(4):e1000898
27864381 - Development. 2016 Dec 15;143(24):4643-4653
22342750 - Curr Biol. 2012 Mar 6;22(5):420-5
15882623 - Cell. 2005 May 6;121(3):411-23
14584586 - IUBMB Life. 2003 Jul;55(7):359-66
21115348 - Trends Cell Biol. 2011 Feb;21(2):104-12
26330519 - Cold Spring Harb Perspect Biol. 2015 Sep 01;7(9):a018812
11719188 - Cell. 2001 Nov 16;107(4):477-87
21801012 - Annu Rev Cell Dev Biol. 2011;27:653-79
27406171 - Nat Commun. 2016 Jul 13;7:12209
21516088 - Nat Med. 2011 May;17(5):559-65
12667987 - Blood Cells Mol Dis. 2003 Jan-Feb;30(1):55-69
9199372 - Development. 1997 Jun;124(12):2463-76
27387650 - Neuron. 2016 Jul 6;91(1):79-89
9393998 - Nature. 1997 Dec 4;390(6659):477-84
20371350 - Cell. 2010 Apr 2;141(1):129-41
20495528 - J Vis Exp. 2010 May 22;(39):null
10471709 - Genetics. 1999 Sep;153(1):235-50
10471508 - Nat Genet. 1999 Sep;23(1):99-103
25569346 - Neuron. 2015 Jan 7;85(1):27-47
17572691 - Nat Rev Genet. 2007 Jul;8(7):533-43
15024427 - PLoS Biol. 2004 Mar;2(3):E79
26088328 - Wiley Interdiscip Rev RNA. 2015 Sep-Oct;6(5):501-15
12050669 - Nature. 2002 Jun 6;417(6889):660-3
21273427 - J Neurosci. 2011 Jan 26;31(4):1427-39
26724866 - Cell. 2016 Jan 14;164(1-2):69-80
References_xml – volume: 21
  start-page: 3503
  year: 2001
  ident: 2021111620013655000_31.13.1354.41
  article-title: Complex trait analysis of the hippocampus: mapping and biometric analysis of two novel gene loci with specific effects on hippocampal structure in mice
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-10-03503.2001
– ident: 2021111620013655000_31.13.1354.16
  doi: 10.1016/j.neuroscience.2013.05.042
– volume: 10
  start-page: 1158
  year: 2015
  ident: 2021111620013655000_31.13.1354.29
  article-title: Vascular endothelial growth factor receptor 3 controls neural stem cell activation in mice and humans
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.01.049
– ident: 2021111620013655000_31.13.1354.46
  doi: 10.1016/j.neuron.2011.05.001
– ident: 2021111620013655000_31.13.1354.53
  doi: 10.1126/science.3975601
– ident: 2021111620013655000_31.13.1354.4
  doi: 10.1385/MN:32:2:113
– ident: 2021111620013655000_31.13.1354.64
  doi: 10.1038/ncomms12209
– ident: 2021111620013655000_31.13.1354.36
  doi: 10.1016/j.cell.2015.12.017
– ident: 2021111620013655000_31.13.1354.22
  doi: 10.1371/journal.pone.0003164
– ident: 2021111620013655000_31.13.1354.23
  doi: 10.1002/dvg.20310
– ident: 2021111620013655000_31.13.1354.60
  doi: 10.1371/journal.pone.0025932
– ident: 2021111620013655000_31.13.1354.25
  doi: 10.1371/journal.pbio.0020079
– ident: 2021111620013655000_31.13.1354.57
  doi: 10.1146/annurev-pathol-011811-132457
– ident: 2021111620013655000_31.13.1354.68
  doi: 10.1073/pnas.0907128107
– ident: 2021111620013655000_31.13.1354.38
  doi: 10.1146/annurev-cellbio-092910-154026
– ident: 2021111620013655000_31.13.1354.8
  doi: 10.1016/S0092-8674(01)00568-2
– ident: 2021111620013655000_31.13.1354.20
  doi: 10.1038/nsmb.2214
– ident: 2021111620013655000_31.13.1354.28
  doi: 10.1016/j.cell.2010.03.009
– ident: 2021111620013655000_31.13.1354.44
  doi: 10.1095/biolreprod.115.137497
– ident: 2021111620013655000_31.13.1354.56
  doi: 10.1242/dev.01785
– ident: 2021111620013655000_31.13.1354.9
  doi: 10.1261/rna.1884610
– ident: 2021111620013655000_31.13.1354.18
  doi: 10.1523/JNEUROSCI.0921-13.2013
– ident: 2021111620013655000_31.13.1354.43
  doi: 10.1371/journal.pgen.1000898
– ident: 2021111620013655000_31.13.1354.63
  doi: 10.1080/15216540310001603093
– ident: 2021111620013655000_31.13.1354.34
  doi: 10.1101/cshperspect.a018812
– ident: 2021111620013655000_31.13.1354.35
  doi: 10.3791/2638
– ident: 2021111620013655000_31.13.1354.59
  doi: 10.1016/j.tig.2014.12.004
– ident: 2021111620013655000_31.13.1354.6
  doi: 10.1073/pnas.0605177103
– ident: 2021111620013655000_31.13.1354.76
  doi: 10.7554/elife.13374
– ident: 2021111620013655000_31.13.1354.21
  doi: 10.1126/science.287.5457.1433
– volume: 89
  start-page: 248
  year: 2016
  ident: 2021111620013655000_31.13.1354.61
  article-title: The cellular and molecular landscapes of the developing human central nervous system
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.12.008
– ident: 2021111620013655000_31.13.1354.55
  doi: 10.1523/JNEUROSCI.4854-10.2011
– ident: 2021111620013655000_31.13.1354.66
– ident: 2021111620013655000_31.13.1354.39
  doi: 10.1101/cshperspect.a018820
– ident: 2021111620013655000_31.13.1354.69
  doi: 10.1242/dev.140921
– ident: 2021111620013655000_31.13.1354.3
  doi: 10.1038/15666
– ident: 2021111620013655000_31.13.1354.11
  doi: 10.7554/eLife.14997
– ident: 2021111620013655000_31.13.1354.42
  doi: 10.1016/j.cell.2011.06.030
– volume: 6
  start-page: 501
  year: 2015
  ident: 2021111620013655000_31.13.1354.51
  article-title: Post-transcriptional regulation in corticogenesis: how RNA-binding proteins help build the brain
  publication-title: Wiley Interdiscipl Rev RNA
  doi: 10.1002/wrna.1289
– ident: 2021111620013655000_31.13.1354.5
  doi: 10.1016/0092-8674(94)90569-X
– ident: 2021111620013655000_31.13.1354.27
  doi: 10.1038/nm.2336
– volume: 124
  start-page: 2463
  year: 1997
  ident: 2021111620013655000_31.13.1354.40
  article-title: A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary
  publication-title: Development
  doi: 10.1242/dev.124.12.2463
– ident: 2021111620013655000_31.13.1354.2
  doi: 10.1016/j.tibs.2012.02.005
– ident: 2021111620013655000_31.13.1354.65
  doi: 10.1038/12703
– ident: 2021111620013655000_31.13.1354.72
  doi: 10.1128/MCB.14.11.7219
– ident: 2021111620013655000_31.13.1354.13
  doi: 10.1016/j.cell.2005.02.024
– ident: 2021111620013655000_31.13.1354.33
  doi: 10.1038/nrg2111
– ident: 2021111620013655000_31.13.1354.62
  doi: 10.1016/S1079-9796(03)00003-2
– ident: 2021111620013655000_31.13.1354.26
  doi: 10.1038/nsmb1100
– ident: 2021111620013655000_31.13.1354.52
  doi: 10.1016/j.tcb.2010.09.013
– ident: 2021111620013655000_31.13.1354.15
  doi: 10.1016/j.cell.2011.06.013
– volume: 3
  start-page: 1421
  year: 1997
  ident: 2021111620013655000_31.13.1354.73
  article-title: The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins
  publication-title: RNA (New York, NY)
– volume: 8
  start-page: 11.9.1
  year: 2001
  ident: 2021111620013655000_31.13.1354.45
  article-title: Analysis of eukaryotic translation in purified and semipurified systems
  publication-title: Curr Protoc Cell Biol
– ident: 2021111620013655000_31.13.1354.75
  doi: 10.1523/JNEUROSCI.1860-14.2014
– ident: 2021111620013655000_31.13.1354.67
  doi: 10.1523/JNEUROSCI.0649-06.2006
– ident: 2021111620013655000_31.13.1354.14
  doi: 10.1038/nature754
– ident: 2021111620013655000_31.13.1354.1
  doi: 10.4161/cam.3.4.8803
– ident: 2021111620013655000_31.13.1354.70
  doi: 10.1016/0092-8674(91)90368-9
– volume: 91
  start-page: 79
  year: 2016
  ident: 2021111620013655000_31.13.1354.30
  article-title: Functional implications of miR-19 in the migration of newborn neurons in the adult brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.05.034
– ident: 2021111620013655000_31.13.1354.48
  doi: 10.1016/j.neuron.2014.11.011
– ident: 2021111620013655000_31.13.1354.7
  doi: 10.3791/1786
– ident: 2021111620013655000_31.13.1354.54
  doi: 10.1016/j.abb.2013.02.004
– ident: 2021111620013655000_31.13.1354.74
  doi: 10.1038/37297
– ident: 2021111620013655000_31.13.1354.50
  doi: 10.1016/S0960-9822(00)00283-9
– ident: 2021111620013655000_31.13.1354.24
  doi: 10.1016/j.cell.2015.02.012
– ident: 2021111620013655000_31.13.1354.17
  doi: 10.1038/nrn2822
– ident: 2021111620013655000_31.13.1354.32
  doi: 10.1111/j.1440-169X.2010.01175.x
– ident: 2021111620013655000_31.13.1354.37
  doi: 10.1038/329167a0
– ident: 2021111620013655000_31.13.1354.12
  doi: 10.1016/j.cub.2012.01.039
– ident: 2021111620013655000_31.13.1354.71
  doi: 10.1016/S0168-9525(01)02616-6
– ident: 2021111620013655000_31.13.1354.19
  doi: 10.1002/dvg.20226
– ident: 2021111620013655000_31.13.1354.47
  doi: 10.1038/nprot.2014.012
– volume: 153
  start-page: 235
  year: 1999
  ident: 2021111620013655000_31.13.1354.49
  article-title: The Drosophila pumilio gene encodes two functional protein isoforms that play multiple roles in germline development, gonadogenesis, oogenesis and embryogenesis
  publication-title: Genetics
  doi: 10.1093/genetics/153.1.235
– volume: 9
  start-page: 135
  year: 2015
  ident: 2021111620013655000_31.13.1354.31
  article-title: Cellular dynamics of neuronal migration in the hippocampus
  publication-title: Front Neurosci
– ident: 2021111620013655000_31.13.1354.58
  doi: 10.1126/science.286.5440.741
– ident: 2021111620013655000_31.13.1354.10
  doi: 10.1016/j.devcel.2016.02.010
– reference: 27406171 - Nat Commun. 2016 Jul 13;7:12209
– reference: 1720354 - Cell. 1991 Nov 29;67(5):955-67
– reference: 17551945 - Genesis. 2007 Jun;45(6):413-7
– reference: 11719188 - Cell. 2001 Nov 16;107(4):477-87
– reference: 21729779 - Cell. 2011 Jul 8;146(1):18-36
– reference: 21516088 - Nat Med. 2011 May;17(5):559-65
– reference: 26330519 - Cold Spring Harb Perspect Biol. 2015 Sep 01;7(9):a018812
– reference: 25186741 - J Neurosci. 2014 Sep 3;34(36):11929-47
– reference: 25569346 - Neuron. 2015 Jan 7;85(1):27-47
– reference: 21273427 - J Neurosci. 2011 Jan 26;31(4):1427-39
– reference: 12667987 - Blood Cells Mol Dis. 2003 Jan-Feb;30(1):55-69
– reference: 26724866 - Cell. 2016 Jan 14;164(1-2):69-80
– reference: 25964735 - Front Neurosci. 2015 Apr 24;9:135
– reference: 21784246 - Cell. 2011 Jul 22;146(2):247-61
– reference: 16847871 - Genesis. 2006 Aug;44(8):355-60
– reference: 20371350 - Cell. 2010 Apr 2;141(1):129-41
– reference: 21609825 - Neuron. 2011 May 26;70(4):687-702
– reference: 27048191 - Cold Spring Harb Perspect Biol. 2016 May 02;8(5):
– reference: 21559008 - J Vis Exp. 2011 Apr 30;(50):null
– reference: 12050669 - Nature. 2002 Jun 6;417(6889):660-3
– reference: 21115348 - Trends Cell Biol. 2011 Feb;21(2):104-12
– reference: 11331379 - J Neurosci. 2001 May 15;21(10):3503-14
– reference: 10531053 - Science. 1999 Oct 22;286(5440):741-6
– reference: 27113915 - Elife. 2016 Apr 26;5:e14997
– reference: 27170441 - Biol Reprod. 2016 Jun;94(6):134
– reference: 15024427 - PLoS Biol. 2004 Mar;2(3):E79
– reference: 15882623 - Cell. 2005 May 6;121(3):411-23
– reference: 20386739 - PLoS Genet. 2010 Apr 08;6(4):e1000898
– reference: 22016787 - PLoS One. 2011;6(10):e25932
– reference: 20354534 - Nat Rev Neurosci. 2010 May;11(5):339-50
– reference: 14584586 - IUBMB Life. 2003 Jul;55(7):359-66
– reference: 22231398 - Nat Struct Mol Biol. 2012 Jan 08;19(2):176-83
– reference: 10471508 - Nat Genet. 1999 Sep;23(1):99-103
– reference: 10559987 - Nat Cell Biol. 1999 Nov;1(7):431-7
– reference: 9404893 - RNA. 1997 Dec;3(12):1421-33
– reference: 20495528 - J Vis Exp. 2010 May 22;(39):null
– reference: 16215276 - Mol Neurobiol. 2005 Oct;32(2):113-21
– reference: 27387650 - Neuron. 2016 Jul 6;91(1):79-89
– reference: 25768905 - Cell. 2015 Mar 12;160(6):1087-98
– reference: 25624274 - Trends Genet. 2015 Feb;31(2):77-87
– reference: 15772127 - Development. 2005 Apr;132(8):1863-74
– reference: 16775137 - J Neurosci. 2006 Jun 14;26(24):6496-508
– reference: 22342750 - Curr Biol. 2012 Mar 6;22(5):420-5
– reference: 20133610 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3222-7
– reference: 18776931 - PLoS One. 2008 Sep 08;3(9):e3164
– reference: 26796689 - Neuron. 2016 Jan 20;89(2):248-68
– reference: 9393998 - Nature. 1997 Dec 4;390(6659):477-84
– reference: 24407355 - Nat Protoc. 2014 Feb;9(2):263-93
– reference: 10688783 - Science. 2000 Feb 25;287(5457):1433-8
– reference: 19535895 - Cell Adh Migr. 2009 Oct-Dec;3(4):412-24
– reference: 10471709 - Genetics. 1999 Sep;153(1):235-50
– reference: 23739961 - J Neurosci. 2013 Jun 5;33(23):9644-54
– reference: 27282387 - Elife. 2016 Jun 10;5:null
– reference: 7523861 - Mol Cell Biol. 1994 Nov;14(11):7219-25
– reference: 22425269 - Trends Biochem Sci. 2012 Jul;37(7):255-62
– reference: 22017584 - Annu Rev Pathol. 2012;7:219-45
– reference: 19933321 - RNA. 2010 Jan;16(1):221-7
– reference: 23727006 - Neuroscience. 2013 Sep 17;248:499-528
– reference: 10662662 - Curr Biol. 2000 Jan 27;10(2):R81-3
– reference: 23470250 - Arch Biochem Biophys. 2013 Jun;534(1-2):71-87
– reference: 25704818 - Cell Rep. 2015 Feb 24;10(7):1158-72
– reference: 3975601 - Science. 1985 Mar 1;227(4690):1054-6
– reference: 16715093 - Nat Struct Mol Biol. 2006 Jun;13(6):533-9
– reference: 27864381 - Development. 2016 Dec 15;143(24):4643-4653
– reference: 17572691 - Nat Rev Genet. 2007 Jul;8(7):533-43
– reference: 26954550 - Dev Cell. 2016 Mar 7;36(5):562-71
– reference: 18228314 - Curr Protoc Cell Biol. 2001 May;Chapter 11:Unit 11.9
– reference: 20608952 - Dev Growth Differ. 2010 Aug;52(6):493-504
– reference: 21801012 - Annu Rev Cell Dev Biol. 2011;27:653-79
– reference: 11858839 - Trends Genet. 2002 Mar;18(3):150-7
– reference: 16901981 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12564-8
– reference: 9199372 - Development. 1997 Jun;124(12):2463-76
– reference: 26088328 - Wiley Interdiscip Rev RNA. 2015 Sep-Oct;6(5):501-15
SSID ssj0006066
Score 2.5118067
Snippet Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific...
In this study, Zhang et al. investigated post-transcriptional regulation during mammalian neurogenesis. They demonstrate that neural-specific inactivation of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1354
SubjectTerms Research Paper
Title Post-transcriptional regulation of mouse neurogenesis by Pumilio proteins
URI https://www.ncbi.nlm.nih.gov/pubmed/28794184
https://www.proquest.com/docview/1927830080
https://pubmed.ncbi.nlm.nih.gov/PMC5580656
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3_a9QwFA86EfxFnF9Pp1QQ_GFkNr2kSX6U4TgVRWHD-60kaXorbL3puh_mX-97adre7TZQ4ShHmkvhfXov75O8fB4hbzKprMm4palQjgL_YlQJl1Ihp5VipjIsJGN--ZrPjvinuZiP9RzD6ZLW7rnf154r-R9UoQ1wxVOy_4DsMCg0wHfAF66AMFz_CmOstEtbnG36_36Q6V_Eklxh7xyYvd8NqpULdGv1OQac3y5O65N6uRtUGuq4YBdDVBSiPg9vRDkmFG2sL2M27JgaEH3XcmybxyTcemyadWutP3zzs15dbGBySEyFuSI6SK6p4F3plU33G2T_F6bcyzQQoQy3hFc7gvnOTgMYQNQ0Z111uCuC1_2t2-ROBrE_Oq_P30cJeGRcUX0THvdu_WGo7Rx_vh5obLCHq0mwK1HF4QNyP9KB5H2H7Ta55ZuH5G5XIPTyEfl4HcLJiHCyrJKAcLKKcGIvk4hw0iP8mBwdfDjcn9FY_II6iGlbiidbOeMmFzqVpTbMWvhMmauwPrws87z0MJMZa1POjVep8sxpZzTMGhCGi-kTstUsG_-MJMprneXeQOTnuUydSq00mWZWWlXpyk8I7S1VuKgMjwVKTorAEFNWgJGLzsgoDj8hb4f-Z50myo09X_eGL8Bt4V6UaTyYpQBiIdUU-cqEPO2AGMbqEZwQuQbR0AEl0dfvNPVxkEYXAhMF8uc3jvmC3Bvf6x2y1f668C8hrGztq_Ca_QHHfXhF
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-transcriptional+regulation+of+mouse+neurogenesis+by+Pumilio+proteins&rft.jtitle=Genes+%26+development&rft.au=Zhang%2C+Meng&rft.au=Chen%2C+Dong&rft.au=Xia%2C+Jing&rft.au=Han%2C+Wenqi&rft.date=2017-07-01&rft.eissn=1549-5477&rft_id=info:doi/10.1101%2Fgad.298752.117&rft_id=info%3Apmid%2F28794184&rft.externalDocID=28794184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon