Post-transcriptional regulation of mouse neurogenesis by Pumilio proteins
Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the p...
Saved in:
Published in | Genes & development Vol. 31; no. 13; pp. 1354 - 1369 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the postnatal dentate gyrus (DG), drastically increased perinatal apoptosis, altered DG cell composition, and impaired learning and memory. Consistently, the mutant DG neurospheres generated fewer NSCs with defects in proliferation, survival, and differentiation, supporting a major role of Pum1 and Pum2 in hippocampal neurogenesis and function. Cross-linking immunoprecipitation revealed that Pum1 and Pum2 bind to thousands of mRNAs, with at least 694 common targets in multiple neurogenic pathways. Depleting Pum1 and/or Pum2 did not change the abundance of most target mRNAs but up-regulated their proteins, indicating that Pum1 and Pum2 regulate the translation of their target mRNAs. Moreover, Pum1 and Pum2 display RNA-dependent interaction with fragile X mental retardation protein (FMRP) and bind to one another's mRNA. This indicates that Pum proteins might form collaborative networks with FMRP and possibly other post-transcriptional regulators to regulate neurogenesis. |
---|---|
AbstractList | Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the postnatal dentate gyrus (DG), drastically increased perinatal apoptosis, altered DG cell composition, and impaired learning and memory. Consistently, the mutant DG neurospheres generated fewer NSCs with defects in proliferation, survival, and differentiation, supporting a major role of Pum1 and Pum2 in hippocampal neurogenesis and function. Cross-linking immunoprecipitation revealed that Pum1 and Pum2 bind to thousands of mRNAs, with at least 694 common targets in multiple neurogenic pathways. Depleting Pum1 and/or Pum2 did not change the abundance of most target mRNAs but up-regulated their proteins, indicating that Pum1 and Pum2 regulate the translation of their target mRNAs. Moreover, Pum1 and Pum2 display RNA-dependent interaction with fragile X mental retardation protein (FMRP) and bind to one another's mRNA. This indicates that Pum proteins might form collaborative networks with FMRP and possibly other post-transcriptional regulators to regulate neurogenesis. Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the postnatal dentate gyrus (DG), drastically increased perinatal apoptosis, altered DG cell composition, and impaired learning and memory. Consistently, the mutant DG neurospheres generated fewer NSCs with defects in proliferation, survival, and differentiation, supporting a major role of Pum1 and Pum2 in hippocampal neurogenesis and function. Cross-linking immunoprecipitation revealed that Pum1 and Pum2 bind to thousands of mRNAs, with at least 694 common targets in multiple neurogenic pathways. Depleting Pum1 and/or Pum2 did not change the abundance of most target mRNAs but up-regulated their proteins, indicating that Pum1 and Pum2 regulate the translation of their target mRNAs. Moreover, Pum1 and Pum2 display RNA-dependent interaction with fragile X mental retardation protein (FMRP) and bind to one another's mRNA. This indicates that Pum proteins might form collaborative networks with FMRP and possibly other post-transcriptional regulators to regulate neurogenesis.Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the postnatal dentate gyrus (DG), drastically increased perinatal apoptosis, altered DG cell composition, and impaired learning and memory. Consistently, the mutant DG neurospheres generated fewer NSCs with defects in proliferation, survival, and differentiation, supporting a major role of Pum1 and Pum2 in hippocampal neurogenesis and function. Cross-linking immunoprecipitation revealed that Pum1 and Pum2 bind to thousands of mRNAs, with at least 694 common targets in multiple neurogenic pathways. Depleting Pum1 and/or Pum2 did not change the abundance of most target mRNAs but up-regulated their proteins, indicating that Pum1 and Pum2 regulate the translation of their target mRNAs. Moreover, Pum1 and Pum2 display RNA-dependent interaction with fragile X mental retardation protein (FMRP) and bind to one another's mRNA. This indicates that Pum proteins might form collaborative networks with FMRP and possibly other post-transcriptional regulators to regulate neurogenesis. In this study, Zhang et al. investigated post-transcriptional regulation during mammalian neurogenesis. They demonstrate that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the postnatal dentate gyrus (DG), drastically increased perinatal apoptosis, altered DG cell composition, and impaired learning and memory, and their data further suggest that PUM2 facilitates FMRP function and that Pum1 and Pum2 have different roles in neurogenesis. Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the postnatal dentate gyrus (DG), drastically increased perinatal apoptosis, altered DG cell composition, and impaired learning and memory. Consistently, the mutant DG neurospheres generated fewer NSCs with defects in proliferation, survival, and differentiation, supporting a major role of Pum1 and Pum2 in hippocampal neurogenesis and function. Cross-linking immunoprecipitation revealed that Pum1 and Pum2 bind to thousands of mRNAs, with at least 694 common targets in multiple neurogenic pathways. Depleting Pum1 and/or Pum2 did not change the abundance of most target mRNAs but up-regulated their proteins, indicating that Pum1 and Pum2 regulate the translation of their target mRNAs. Moreover, Pum1 and Pum2 display RNA-dependent interaction with fragile X mental retardation protein (FMRP) and bind to one another's mRNA. This indicates that Pum proteins might form collaborative networks with FMRP and possibly other post-transcriptional regulators to regulate neurogenesis. |
Author | Han, Wenqi Chen, Dong Lin, Haifan Xia, Jing Sestan, Nenad Zhang, Meng Hermes, Gretchen Neuenkirchen, Nils Cui, Xiekui |
AuthorAffiliation | 3 Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA 4 Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut 06510, USA 2 Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA 9 Department of Obstetrics and Gynecology, Yale School of Medicine, New Haven, Connecticut 06520, USA 5 Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511, USA 7 Section of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, Connecticut 06520, USA 1 Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA 8 Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut 06519, USA 6 Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA |
AuthorAffiliation_xml | – name: 9 Department of Obstetrics and Gynecology, Yale School of Medicine, New Haven, Connecticut 06520, USA – name: 6 Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA – name: 5 Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511, USA – name: 2 Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA – name: 4 Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut 06510, USA – name: 8 Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut 06519, USA – name: 1 Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA – name: 3 Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA – name: 7 Section of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, Connecticut 06520, USA |
Author_xml | – sequence: 1 givenname: Meng surname: Zhang fullname: Zhang, Meng – sequence: 2 givenname: Dong surname: Chen fullname: Chen, Dong – sequence: 3 givenname: Jing surname: Xia fullname: Xia, Jing – sequence: 4 givenname: Wenqi surname: Han fullname: Han, Wenqi – sequence: 5 givenname: Xiekui surname: Cui fullname: Cui, Xiekui – sequence: 6 givenname: Nils surname: Neuenkirchen fullname: Neuenkirchen, Nils – sequence: 7 givenname: Gretchen surname: Hermes fullname: Hermes, Gretchen – sequence: 8 givenname: Nenad surname: Sestan fullname: Sestan, Nenad – sequence: 9 givenname: Haifan surname: Lin fullname: Lin, Haifan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28794184$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uc9LHDEUDrKlrtqrR5mjl9m-zOTnpVAW2wpCPdRzyGTerpGZZJvMCPvfG7sqtlAIhI98P17ed0IWIQYk5JzCilKgn7e2XzVaSd4ULI_IknKma86kXJAlKA21boU-Jic5PwCAACE-kuNGSc2oYktyfRvzVE_JhuyS300-BjtUCbfzYJ9BFTfVGOeMVcA5xS0GzD5X3b66nUc_-FjtUpzQh3xGPmzskPHTy31K7r5d_Vr_qG9-fr9ef72pHeNiqhvFGaPMCq5B9trSriunpW5Dy1CyF6JHJYXtOmDMogKF1GlntVISOOPtKfly8N3N3Yi9w1CmH8wu-dGmvYnWm79fgr832_hoOFcguCgGly8GKf6eMU9m9NnhMNiA5aeG6kaqFkBBoV68z3oLed1fIbADwaWYc8KNcX76s7gS7QdDwTzXZEpN5lBTwbLIVv_IXp3_I3gCxwKWEw |
CitedBy_id | crossref_primary_10_1261_rna_077362_120 crossref_primary_10_1534_genetics_119_302772 crossref_primary_10_1242_dmm_049703 crossref_primary_10_7554_eLife_55199 crossref_primary_10_1002_jez_2671 crossref_primary_10_1038_s41418_023_01199_w crossref_primary_10_3390_cells12030434 crossref_primary_10_1002_wrna_1724 crossref_primary_10_3389_fmolb_2021_699613 crossref_primary_10_1016_j_celrep_2019_01_111 crossref_primary_10_1177_09603271221149656 crossref_primary_10_1186_s12859_022_05037_7 crossref_primary_10_3389_fcell_2021_710186 crossref_primary_10_3389_fnagi_2017_00384 crossref_primary_10_1093_nar_gkae929 crossref_primary_10_1038_s41598_018_33596_4 crossref_primary_10_1038_s41586_025_08622_x crossref_primary_10_1038_s44319_025_00401_z crossref_primary_10_1016_j_ydbio_2020_03_017 crossref_primary_10_1016_j_jbc_2024_105646 crossref_primary_10_1093_oons_kvac011 crossref_primary_10_1248_bpb_b22_00569 crossref_primary_10_1038_s41467_022_29309_1 crossref_primary_10_1038_s41598_019_56908_8 crossref_primary_10_1261_rna_078436_120 crossref_primary_10_3389_fnmol_2019_00152 crossref_primary_10_18632_oncotarget_24345 crossref_primary_10_1186_s41065_019_0101_0 crossref_primary_10_12677_acm_2024_1492524 crossref_primary_10_1152_physrev_00047_2019 crossref_primary_10_1534_g3_118_200300 crossref_primary_10_7555_JBR_35_20210067 crossref_primary_10_1007_s00436_019_06467_8 crossref_primary_10_1186_s12929_023_00920_8 crossref_primary_10_1002_1873_3468_14624 crossref_primary_10_1007_s00018_022_04254_w crossref_primary_10_1016_j_celrep_2024_114747 crossref_primary_10_1038_s41418_019_0411_9 crossref_primary_10_1038_s41598_023_30004_4 crossref_primary_10_1007_s10528_022_10230_7 crossref_primary_10_3390_ijms23116315 crossref_primary_10_3389_fcell_2020_00029 crossref_primary_10_1093_nar_gkz1187 crossref_primary_10_1016_j_celrep_2021_109279 crossref_primary_10_3390_ijms19082280 crossref_primary_10_3390_biom10020167 crossref_primary_10_1093_hmg_ddy193 crossref_primary_10_7554_eLife_42650 crossref_primary_10_1073_pnas_1916471117 crossref_primary_10_1042_EBC20210024 crossref_primary_10_1101_gad_351337_123 crossref_primary_10_1093_nar_gkac499 crossref_primary_10_1007_s11033_019_05142_6 crossref_primary_10_3389_fevo_2020_00215 crossref_primary_10_3390_ijms22168998 crossref_primary_10_1002_cbf_3656 crossref_primary_10_1017_S0967199418000369 crossref_primary_10_1007_s10565_025_09986_6 crossref_primary_10_1016_j_cell_2018_02_006 crossref_primary_10_1016_j_tig_2018_09_006 crossref_primary_10_1186_s13059_020_02247_1 crossref_primary_10_15252_embj_2022112721 crossref_primary_10_1093_nar_gkx1120 crossref_primary_10_1139_bcb_2021_0044 crossref_primary_10_1016_j_ydbio_2022_02_013 crossref_primary_10_1242_dev_200045 crossref_primary_10_1091_mbc_E18_06_0369 crossref_primary_10_1002_wrna_1751 crossref_primary_10_1016_j_celrep_2018_12_007 crossref_primary_10_1017_S0967199423000205 crossref_primary_10_3390_cells9040984 crossref_primary_10_1186_s13578_018_0251_1 crossref_primary_10_1038_s41467_023_39054_8 crossref_primary_10_1016_j_omtn_2021_12_012 crossref_primary_10_1016_j_neuron_2019_08_035 |
Cites_doi | 10.1523/JNEUROSCI.21-10-03503.2001 10.1016/j.neuroscience.2013.05.042 10.1016/j.celrep.2015.01.049 10.1016/j.neuron.2011.05.001 10.1126/science.3975601 10.1385/MN:32:2:113 10.1038/ncomms12209 10.1016/j.cell.2015.12.017 10.1371/journal.pone.0003164 10.1002/dvg.20310 10.1371/journal.pone.0025932 10.1371/journal.pbio.0020079 10.1146/annurev-pathol-011811-132457 10.1073/pnas.0907128107 10.1146/annurev-cellbio-092910-154026 10.1016/S0092-8674(01)00568-2 10.1038/nsmb.2214 10.1016/j.cell.2010.03.009 10.1095/biolreprod.115.137497 10.1242/dev.01785 10.1261/rna.1884610 10.1523/JNEUROSCI.0921-13.2013 10.1371/journal.pgen.1000898 10.1080/15216540310001603093 10.1101/cshperspect.a018812 10.3791/2638 10.1016/j.tig.2014.12.004 10.1073/pnas.0605177103 10.7554/elife.13374 10.1126/science.287.5457.1433 10.1016/j.neuron.2015.12.008 10.1523/JNEUROSCI.4854-10.2011 10.1101/cshperspect.a018820 10.1242/dev.140921 10.1038/15666 10.7554/eLife.14997 10.1016/j.cell.2011.06.030 10.1002/wrna.1289 10.1016/0092-8674(94)90569-X 10.1038/nm.2336 10.1242/dev.124.12.2463 10.1016/j.tibs.2012.02.005 10.1038/12703 10.1128/MCB.14.11.7219 10.1016/j.cell.2005.02.024 10.1038/nrg2111 10.1016/S1079-9796(03)00003-2 10.1038/nsmb1100 10.1016/j.tcb.2010.09.013 10.1016/j.cell.2011.06.013 10.1523/JNEUROSCI.1860-14.2014 10.1523/JNEUROSCI.0649-06.2006 10.1038/nature754 10.4161/cam.3.4.8803 10.1016/0092-8674(91)90368-9 10.1016/j.neuron.2016.05.034 10.1016/j.neuron.2014.11.011 10.3791/1786 10.1016/j.abb.2013.02.004 10.1038/37297 10.1016/S0960-9822(00)00283-9 10.1016/j.cell.2015.02.012 10.1038/nrn2822 10.1111/j.1440-169X.2010.01175.x 10.1038/329167a0 10.1016/j.cub.2012.01.039 10.1016/S0168-9525(01)02616-6 10.1002/dvg.20226 10.1038/nprot.2014.012 10.1093/genetics/153.1.235 10.1126/science.286.5440.741 10.1016/j.devcel.2016.02.010 |
ContentType | Journal Article |
Copyright | 2017 Zhang et al.; Published by Cold Spring Harbor Laboratory Press. 2017 |
Copyright_xml | – notice: 2017 Zhang et al.; Published by Cold Spring Harbor Laboratory Press. – notice: 2017 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1101/gad.298752.117 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Zhang et al |
EISSN | 1549-5477 |
EndPage | 1369 |
ExternalDocumentID | PMC5580656 28794184 10_1101_gad_298752_117 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: P50 MH106934 – fundername: NIGMS NIH HHS grantid: R01 GM121386 – fundername: NIMH NIH HHS grantid: U01 MH103339 – fundername: NIMH NIH HHS grantid: R01 MH109904 – fundername: NIMH NIH HHS grantid: R01 MH110926 – fundername: ; grantid: R01GM121386; MH103339; MH106934; MH109904; MH110926 – fundername: G. Harold and Leila Y. Mathers – fundername: K.S. and Feli Lo Graduate Fellowship for Excellence in Stem Cell Research |
GroupedDBID | --- -DZ -~X .55 18M 29H 2WC 39C 4.4 53G 5RE 5VS 85S AAYXX ABCQX ABDIX ACGFO ACLKE ACNCT ADBBV ADIYS ADXHL AECCQ AENEX AETEA AFFNX AFOSN AHPUY ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE H~9 IH2 KQ8 L7B MV1 N9A OK1 P2P R.V RCX RHI RPM SJN TAE TN5 TR2 UHB W8F WH7 WOQ X7M XSW YBU YHG YKV YSK NPM 7X8 5PM |
ID | FETCH-LOGICAL-c456t-2854414a65907d9a1bb1bb31cf18797d66de876abb044ae808e1c9ca988705453 |
ISSN | 0890-9369 1549-5477 |
IngestDate | Thu Aug 21 13:53:16 EDT 2025 Fri Jul 11 04:20:08 EDT 2025 Mon Jul 21 06:02:57 EDT 2025 Thu Apr 24 22:56:12 EDT 2025 Tue Jul 01 01:12:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | mouse neural stem cell hippocampus FMRP post-transcriptional regulation mRNA Pumilio |
Language | English |
License | 2017 Zhang et al.; Published by Cold Spring Harbor Laboratory Press. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c456t-2854414a65907d9a1bb1bb31cf18797d66de876abb044ae808e1c9ca988705453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5580656 |
PMID | 28794184 |
PQID | 1927830080 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5580656 proquest_miscellaneous_1927830080 pubmed_primary_28794184 crossref_citationtrail_10_1101_gad_298752_117 crossref_primary_10_1101_gad_298752_117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genes & development |
PublicationTitleAlternate | Genes Dev |
PublicationYear | 2017 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | (2021111620013655000_31.13.1354.73) 1997; 3 2021111620013655000_31.13.1354.16 2021111620013655000_31.13.1354.15 2021111620013655000_31.13.1354.59 2021111620013655000_31.13.1354.14 2021111620013655000_31.13.1354.58 2021111620013655000_31.13.1354.13 2021111620013655000_31.13.1354.57 2021111620013655000_31.13.1354.19 2021111620013655000_31.13.1354.18 2021111620013655000_31.13.1354.17 (2021111620013655000_31.13.1354.45) 2001; 8 2021111620013655000_31.13.1354.63 2021111620013655000_31.13.1354.62 2021111620013655000_31.13.1354.60 2021111620013655000_31.13.1354.23 2021111620013655000_31.13.1354.67 2021111620013655000_31.13.1354.22 2021111620013655000_31.13.1354.66 2021111620013655000_31.13.1354.21 2021111620013655000_31.13.1354.65 2021111620013655000_31.13.1354.20 2021111620013655000_31.13.1354.64 (2021111620013655000_31.13.1354.51) 2015; 6 (2021111620013655000_31.13.1354.49) 1999; 153 (2021111620013655000_31.13.1354.41) 2001; 21 2021111620013655000_31.13.1354.48 2021111620013655000_31.13.1354.47 2021111620013655000_31.13.1354.46 2021111620013655000_31.13.1354.52 2021111620013655000_31.13.1354.50 2021111620013655000_31.13.1354.9 2021111620013655000_31.13.1354.12 2021111620013655000_31.13.1354.56 2021111620013655000_31.13.1354.8 2021111620013655000_31.13.1354.11 2021111620013655000_31.13.1354.55 2021111620013655000_31.13.1354.7 2021111620013655000_31.13.1354.10 2021111620013655000_31.13.1354.54 2021111620013655000_31.13.1354.6 2021111620013655000_31.13.1354.53 2021111620013655000_31.13.1354.5 2021111620013655000_31.13.1354.4 2021111620013655000_31.13.1354.3 2021111620013655000_31.13.1354.2 2021111620013655000_31.13.1354.1 (2021111620013655000_31.13.1354.61) 2016; 89 (2021111620013655000_31.13.1354.29) 2015; 10 2021111620013655000_31.13.1354.38 (2021111620013655000_31.13.1354.31) 2015; 9 2021111620013655000_31.13.1354.37 2021111620013655000_31.13.1354.36 2021111620013655000_31.13.1354.35 2021111620013655000_31.13.1354.39 2021111620013655000_31.13.1354.44 (2021111620013655000_31.13.1354.40) 1997; 124 2021111620013655000_31.13.1354.43 2021111620013655000_31.13.1354.42 2021111620013655000_31.13.1354.27 2021111620013655000_31.13.1354.26 2021111620013655000_31.13.1354.25 2021111620013655000_31.13.1354.69 2021111620013655000_31.13.1354.24 2021111620013655000_31.13.1354.68 2021111620013655000_31.13.1354.28 2021111620013655000_31.13.1354.74 2021111620013655000_31.13.1354.72 2021111620013655000_31.13.1354.71 2021111620013655000_31.13.1354.34 2021111620013655000_31.13.1354.33 2021111620013655000_31.13.1354.32 2021111620013655000_31.13.1354.76 2021111620013655000_31.13.1354.75 2021111620013655000_31.13.1354.70 (2021111620013655000_31.13.1354.30) 2016; 91 7523861 - Mol Cell Biol. 1994 Nov;14(11):7219-25 1720354 - Cell. 1991 Nov 29;67(5):955-67 16715093 - Nat Struct Mol Biol. 2006 Jun;13(6):533-9 27282387 - Elife. 2016 Jun 10;5:null 10559987 - Nat Cell Biol. 1999 Nov;1(7):431-7 18228314 - Curr Protoc Cell Biol. 2001 May;Chapter 11:Unit 11.9 16847871 - Genesis. 2006 Aug;44(8):355-60 21609825 - Neuron. 2011 May 26;70(4):687-702 26954550 - Dev Cell. 2016 Mar 7;36(5):562-71 19535895 - Cell Adh Migr. 2009 Oct-Dec;3(4):412-24 25624274 - Trends Genet. 2015 Feb;31(2):77-87 15772127 - Development. 2005 Apr;132(8):1863-74 19933321 - RNA. 2010 Jan;16(1):221-7 20354534 - Nat Rev Neurosci. 2010 May;11(5):339-50 25186741 - J Neurosci. 2014 Sep 3;34(36):11929-47 17551945 - Genesis. 2007 Jun;45(6):413-7 25768905 - Cell. 2015 Mar 12;160(6):1087-98 23470250 - Arch Biochem Biophys. 2013 Jun;534(1-2):71-87 21729779 - Cell. 2011 Jul 8;146(1):18-36 25964735 - Front Neurosci. 2015 Apr 24;9:135 10688783 - Science. 2000 Feb 25;287(5457):1433-8 21559008 - J Vis Exp. 2011 Apr 30;(50):null 16215276 - Mol Neurobiol. 2005 Oct;32(2):113-21 20608952 - Dev Growth Differ. 2010 Aug;52(6):493-504 16901981 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12564-8 18776931 - PLoS One. 2008 Sep 08;3(9):e3164 22016787 - PLoS One. 2011;6(10):e25932 16775137 - J Neurosci. 2006 Jun 14;26(24):6496-508 22425269 - Trends Biochem Sci. 2012 Jul;37(7):255-62 25704818 - Cell Rep. 2015 Feb 24;10(7):1158-72 26796689 - Neuron. 2016 Jan 20;89(2):248-68 27048191 - Cold Spring Harb Perspect Biol. 2016 May 02;8(5) 23739961 - J Neurosci. 2013 Jun 5;33(23):9644-54 3975601 - Science. 1985 Mar 1;227(4690):1054-6 21784246 - Cell. 2011 Jul 22;146(2):247-61 22017584 - Annu Rev Pathol. 2012;7:219-45 10662662 - Curr Biol. 2000 Jan 27;10(2):R81-3 11858839 - Trends Genet. 2002 Mar;18(3):150-7 24407355 - Nat Protoc. 2014 Feb;9(2):263-93 9404893 - RNA. 1997 Dec;3(12):1421-33 22231398 - Nat Struct Mol Biol. 2012 Jan 08;19(2):176-83 20133610 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3222-7 23727006 - Neuroscience. 2013 Sep 17;248:499-528 10531053 - Science. 1999 Oct 22;286(5440):741-6 11331379 - J Neurosci. 2001 May 15;21(10):3503-14 27113915 - Elife. 2016 Apr 26;5:e14997 27170441 - Biol Reprod. 2016 Jun;94(6):134 20386739 - PLoS Genet. 2010 Apr 08;6(4):e1000898 27864381 - Development. 2016 Dec 15;143(24):4643-4653 22342750 - Curr Biol. 2012 Mar 6;22(5):420-5 15882623 - Cell. 2005 May 6;121(3):411-23 14584586 - IUBMB Life. 2003 Jul;55(7):359-66 21115348 - Trends Cell Biol. 2011 Feb;21(2):104-12 26330519 - Cold Spring Harb Perspect Biol. 2015 Sep 01;7(9):a018812 11719188 - Cell. 2001 Nov 16;107(4):477-87 21801012 - Annu Rev Cell Dev Biol. 2011;27:653-79 27406171 - Nat Commun. 2016 Jul 13;7:12209 21516088 - Nat Med. 2011 May;17(5):559-65 12667987 - Blood Cells Mol Dis. 2003 Jan-Feb;30(1):55-69 9199372 - Development. 1997 Jun;124(12):2463-76 27387650 - Neuron. 2016 Jul 6;91(1):79-89 9393998 - Nature. 1997 Dec 4;390(6659):477-84 20371350 - Cell. 2010 Apr 2;141(1):129-41 20495528 - J Vis Exp. 2010 May 22;(39):null 10471709 - Genetics. 1999 Sep;153(1):235-50 10471508 - Nat Genet. 1999 Sep;23(1):99-103 25569346 - Neuron. 2015 Jan 7;85(1):27-47 17572691 - Nat Rev Genet. 2007 Jul;8(7):533-43 15024427 - PLoS Biol. 2004 Mar;2(3):E79 26088328 - Wiley Interdiscip Rev RNA. 2015 Sep-Oct;6(5):501-15 12050669 - Nature. 2002 Jun 6;417(6889):660-3 21273427 - J Neurosci. 2011 Jan 26;31(4):1427-39 26724866 - Cell. 2016 Jan 14;164(1-2):69-80 |
References_xml | – volume: 21 start-page: 3503 year: 2001 ident: 2021111620013655000_31.13.1354.41 article-title: Complex trait analysis of the hippocampus: mapping and biometric analysis of two novel gene loci with specific effects on hippocampal structure in mice publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-10-03503.2001 – ident: 2021111620013655000_31.13.1354.16 doi: 10.1016/j.neuroscience.2013.05.042 – volume: 10 start-page: 1158 year: 2015 ident: 2021111620013655000_31.13.1354.29 article-title: Vascular endothelial growth factor receptor 3 controls neural stem cell activation in mice and humans publication-title: Cell Rep doi: 10.1016/j.celrep.2015.01.049 – ident: 2021111620013655000_31.13.1354.46 doi: 10.1016/j.neuron.2011.05.001 – ident: 2021111620013655000_31.13.1354.53 doi: 10.1126/science.3975601 – ident: 2021111620013655000_31.13.1354.4 doi: 10.1385/MN:32:2:113 – ident: 2021111620013655000_31.13.1354.64 doi: 10.1038/ncomms12209 – ident: 2021111620013655000_31.13.1354.36 doi: 10.1016/j.cell.2015.12.017 – ident: 2021111620013655000_31.13.1354.22 doi: 10.1371/journal.pone.0003164 – ident: 2021111620013655000_31.13.1354.23 doi: 10.1002/dvg.20310 – ident: 2021111620013655000_31.13.1354.60 doi: 10.1371/journal.pone.0025932 – ident: 2021111620013655000_31.13.1354.25 doi: 10.1371/journal.pbio.0020079 – ident: 2021111620013655000_31.13.1354.57 doi: 10.1146/annurev-pathol-011811-132457 – ident: 2021111620013655000_31.13.1354.68 doi: 10.1073/pnas.0907128107 – ident: 2021111620013655000_31.13.1354.38 doi: 10.1146/annurev-cellbio-092910-154026 – ident: 2021111620013655000_31.13.1354.8 doi: 10.1016/S0092-8674(01)00568-2 – ident: 2021111620013655000_31.13.1354.20 doi: 10.1038/nsmb.2214 – ident: 2021111620013655000_31.13.1354.28 doi: 10.1016/j.cell.2010.03.009 – ident: 2021111620013655000_31.13.1354.44 doi: 10.1095/biolreprod.115.137497 – ident: 2021111620013655000_31.13.1354.56 doi: 10.1242/dev.01785 – ident: 2021111620013655000_31.13.1354.9 doi: 10.1261/rna.1884610 – ident: 2021111620013655000_31.13.1354.18 doi: 10.1523/JNEUROSCI.0921-13.2013 – ident: 2021111620013655000_31.13.1354.43 doi: 10.1371/journal.pgen.1000898 – ident: 2021111620013655000_31.13.1354.63 doi: 10.1080/15216540310001603093 – ident: 2021111620013655000_31.13.1354.34 doi: 10.1101/cshperspect.a018812 – ident: 2021111620013655000_31.13.1354.35 doi: 10.3791/2638 – ident: 2021111620013655000_31.13.1354.59 doi: 10.1016/j.tig.2014.12.004 – ident: 2021111620013655000_31.13.1354.6 doi: 10.1073/pnas.0605177103 – ident: 2021111620013655000_31.13.1354.76 doi: 10.7554/elife.13374 – ident: 2021111620013655000_31.13.1354.21 doi: 10.1126/science.287.5457.1433 – volume: 89 start-page: 248 year: 2016 ident: 2021111620013655000_31.13.1354.61 article-title: The cellular and molecular landscapes of the developing human central nervous system publication-title: Neuron doi: 10.1016/j.neuron.2015.12.008 – ident: 2021111620013655000_31.13.1354.55 doi: 10.1523/JNEUROSCI.4854-10.2011 – ident: 2021111620013655000_31.13.1354.66 – ident: 2021111620013655000_31.13.1354.39 doi: 10.1101/cshperspect.a018820 – ident: 2021111620013655000_31.13.1354.69 doi: 10.1242/dev.140921 – ident: 2021111620013655000_31.13.1354.3 doi: 10.1038/15666 – ident: 2021111620013655000_31.13.1354.11 doi: 10.7554/eLife.14997 – ident: 2021111620013655000_31.13.1354.42 doi: 10.1016/j.cell.2011.06.030 – volume: 6 start-page: 501 year: 2015 ident: 2021111620013655000_31.13.1354.51 article-title: Post-transcriptional regulation in corticogenesis: how RNA-binding proteins help build the brain publication-title: Wiley Interdiscipl Rev RNA doi: 10.1002/wrna.1289 – ident: 2021111620013655000_31.13.1354.5 doi: 10.1016/0092-8674(94)90569-X – ident: 2021111620013655000_31.13.1354.27 doi: 10.1038/nm.2336 – volume: 124 start-page: 2463 year: 1997 ident: 2021111620013655000_31.13.1354.40 article-title: A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary publication-title: Development doi: 10.1242/dev.124.12.2463 – ident: 2021111620013655000_31.13.1354.2 doi: 10.1016/j.tibs.2012.02.005 – ident: 2021111620013655000_31.13.1354.65 doi: 10.1038/12703 – ident: 2021111620013655000_31.13.1354.72 doi: 10.1128/MCB.14.11.7219 – ident: 2021111620013655000_31.13.1354.13 doi: 10.1016/j.cell.2005.02.024 – ident: 2021111620013655000_31.13.1354.33 doi: 10.1038/nrg2111 – ident: 2021111620013655000_31.13.1354.62 doi: 10.1016/S1079-9796(03)00003-2 – ident: 2021111620013655000_31.13.1354.26 doi: 10.1038/nsmb1100 – ident: 2021111620013655000_31.13.1354.52 doi: 10.1016/j.tcb.2010.09.013 – ident: 2021111620013655000_31.13.1354.15 doi: 10.1016/j.cell.2011.06.013 – volume: 3 start-page: 1421 year: 1997 ident: 2021111620013655000_31.13.1354.73 article-title: The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins publication-title: RNA (New York, NY) – volume: 8 start-page: 11.9.1 year: 2001 ident: 2021111620013655000_31.13.1354.45 article-title: Analysis of eukaryotic translation in purified and semipurified systems publication-title: Curr Protoc Cell Biol – ident: 2021111620013655000_31.13.1354.75 doi: 10.1523/JNEUROSCI.1860-14.2014 – ident: 2021111620013655000_31.13.1354.67 doi: 10.1523/JNEUROSCI.0649-06.2006 – ident: 2021111620013655000_31.13.1354.14 doi: 10.1038/nature754 – ident: 2021111620013655000_31.13.1354.1 doi: 10.4161/cam.3.4.8803 – ident: 2021111620013655000_31.13.1354.70 doi: 10.1016/0092-8674(91)90368-9 – volume: 91 start-page: 79 year: 2016 ident: 2021111620013655000_31.13.1354.30 article-title: Functional implications of miR-19 in the migration of newborn neurons in the adult brain publication-title: Neuron doi: 10.1016/j.neuron.2016.05.034 – ident: 2021111620013655000_31.13.1354.48 doi: 10.1016/j.neuron.2014.11.011 – ident: 2021111620013655000_31.13.1354.7 doi: 10.3791/1786 – ident: 2021111620013655000_31.13.1354.54 doi: 10.1016/j.abb.2013.02.004 – ident: 2021111620013655000_31.13.1354.74 doi: 10.1038/37297 – ident: 2021111620013655000_31.13.1354.50 doi: 10.1016/S0960-9822(00)00283-9 – ident: 2021111620013655000_31.13.1354.24 doi: 10.1016/j.cell.2015.02.012 – ident: 2021111620013655000_31.13.1354.17 doi: 10.1038/nrn2822 – ident: 2021111620013655000_31.13.1354.32 doi: 10.1111/j.1440-169X.2010.01175.x – ident: 2021111620013655000_31.13.1354.37 doi: 10.1038/329167a0 – ident: 2021111620013655000_31.13.1354.12 doi: 10.1016/j.cub.2012.01.039 – ident: 2021111620013655000_31.13.1354.71 doi: 10.1016/S0168-9525(01)02616-6 – ident: 2021111620013655000_31.13.1354.19 doi: 10.1002/dvg.20226 – ident: 2021111620013655000_31.13.1354.47 doi: 10.1038/nprot.2014.012 – volume: 153 start-page: 235 year: 1999 ident: 2021111620013655000_31.13.1354.49 article-title: The Drosophila pumilio gene encodes two functional protein isoforms that play multiple roles in germline development, gonadogenesis, oogenesis and embryogenesis publication-title: Genetics doi: 10.1093/genetics/153.1.235 – volume: 9 start-page: 135 year: 2015 ident: 2021111620013655000_31.13.1354.31 article-title: Cellular dynamics of neuronal migration in the hippocampus publication-title: Front Neurosci – ident: 2021111620013655000_31.13.1354.58 doi: 10.1126/science.286.5440.741 – ident: 2021111620013655000_31.13.1354.10 doi: 10.1016/j.devcel.2016.02.010 – reference: 27406171 - Nat Commun. 2016 Jul 13;7:12209 – reference: 1720354 - Cell. 1991 Nov 29;67(5):955-67 – reference: 17551945 - Genesis. 2007 Jun;45(6):413-7 – reference: 11719188 - Cell. 2001 Nov 16;107(4):477-87 – reference: 21729779 - Cell. 2011 Jul 8;146(1):18-36 – reference: 21516088 - Nat Med. 2011 May;17(5):559-65 – reference: 26330519 - Cold Spring Harb Perspect Biol. 2015 Sep 01;7(9):a018812 – reference: 25186741 - J Neurosci. 2014 Sep 3;34(36):11929-47 – reference: 25569346 - Neuron. 2015 Jan 7;85(1):27-47 – reference: 21273427 - J Neurosci. 2011 Jan 26;31(4):1427-39 – reference: 12667987 - Blood Cells Mol Dis. 2003 Jan-Feb;30(1):55-69 – reference: 26724866 - Cell. 2016 Jan 14;164(1-2):69-80 – reference: 25964735 - Front Neurosci. 2015 Apr 24;9:135 – reference: 21784246 - Cell. 2011 Jul 22;146(2):247-61 – reference: 16847871 - Genesis. 2006 Aug;44(8):355-60 – reference: 20371350 - Cell. 2010 Apr 2;141(1):129-41 – reference: 21609825 - Neuron. 2011 May 26;70(4):687-702 – reference: 27048191 - Cold Spring Harb Perspect Biol. 2016 May 02;8(5): – reference: 21559008 - J Vis Exp. 2011 Apr 30;(50):null – reference: 12050669 - Nature. 2002 Jun 6;417(6889):660-3 – reference: 21115348 - Trends Cell Biol. 2011 Feb;21(2):104-12 – reference: 11331379 - J Neurosci. 2001 May 15;21(10):3503-14 – reference: 10531053 - Science. 1999 Oct 22;286(5440):741-6 – reference: 27113915 - Elife. 2016 Apr 26;5:e14997 – reference: 27170441 - Biol Reprod. 2016 Jun;94(6):134 – reference: 15024427 - PLoS Biol. 2004 Mar;2(3):E79 – reference: 15882623 - Cell. 2005 May 6;121(3):411-23 – reference: 20386739 - PLoS Genet. 2010 Apr 08;6(4):e1000898 – reference: 22016787 - PLoS One. 2011;6(10):e25932 – reference: 20354534 - Nat Rev Neurosci. 2010 May;11(5):339-50 – reference: 14584586 - IUBMB Life. 2003 Jul;55(7):359-66 – reference: 22231398 - Nat Struct Mol Biol. 2012 Jan 08;19(2):176-83 – reference: 10471508 - Nat Genet. 1999 Sep;23(1):99-103 – reference: 10559987 - Nat Cell Biol. 1999 Nov;1(7):431-7 – reference: 9404893 - RNA. 1997 Dec;3(12):1421-33 – reference: 20495528 - J Vis Exp. 2010 May 22;(39):null – reference: 16215276 - Mol Neurobiol. 2005 Oct;32(2):113-21 – reference: 27387650 - Neuron. 2016 Jul 6;91(1):79-89 – reference: 25768905 - Cell. 2015 Mar 12;160(6):1087-98 – reference: 25624274 - Trends Genet. 2015 Feb;31(2):77-87 – reference: 15772127 - Development. 2005 Apr;132(8):1863-74 – reference: 16775137 - J Neurosci. 2006 Jun 14;26(24):6496-508 – reference: 22342750 - Curr Biol. 2012 Mar 6;22(5):420-5 – reference: 20133610 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3222-7 – reference: 18776931 - PLoS One. 2008 Sep 08;3(9):e3164 – reference: 26796689 - Neuron. 2016 Jan 20;89(2):248-68 – reference: 9393998 - Nature. 1997 Dec 4;390(6659):477-84 – reference: 24407355 - Nat Protoc. 2014 Feb;9(2):263-93 – reference: 10688783 - Science. 2000 Feb 25;287(5457):1433-8 – reference: 19535895 - Cell Adh Migr. 2009 Oct-Dec;3(4):412-24 – reference: 10471709 - Genetics. 1999 Sep;153(1):235-50 – reference: 23739961 - J Neurosci. 2013 Jun 5;33(23):9644-54 – reference: 27282387 - Elife. 2016 Jun 10;5:null – reference: 7523861 - Mol Cell Biol. 1994 Nov;14(11):7219-25 – reference: 22425269 - Trends Biochem Sci. 2012 Jul;37(7):255-62 – reference: 22017584 - Annu Rev Pathol. 2012;7:219-45 – reference: 19933321 - RNA. 2010 Jan;16(1):221-7 – reference: 23727006 - Neuroscience. 2013 Sep 17;248:499-528 – reference: 10662662 - Curr Biol. 2000 Jan 27;10(2):R81-3 – reference: 23470250 - Arch Biochem Biophys. 2013 Jun;534(1-2):71-87 – reference: 25704818 - Cell Rep. 2015 Feb 24;10(7):1158-72 – reference: 3975601 - Science. 1985 Mar 1;227(4690):1054-6 – reference: 16715093 - Nat Struct Mol Biol. 2006 Jun;13(6):533-9 – reference: 27864381 - Development. 2016 Dec 15;143(24):4643-4653 – reference: 17572691 - Nat Rev Genet. 2007 Jul;8(7):533-43 – reference: 26954550 - Dev Cell. 2016 Mar 7;36(5):562-71 – reference: 18228314 - Curr Protoc Cell Biol. 2001 May;Chapter 11:Unit 11.9 – reference: 20608952 - Dev Growth Differ. 2010 Aug;52(6):493-504 – reference: 21801012 - Annu Rev Cell Dev Biol. 2011;27:653-79 – reference: 11858839 - Trends Genet. 2002 Mar;18(3):150-7 – reference: 16901981 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12564-8 – reference: 9199372 - Development. 1997 Jun;124(12):2463-76 – reference: 26088328 - Wiley Interdiscip Rev RNA. 2015 Sep-Oct;6(5):501-15 |
SSID | ssj0006066 |
Score | 2.5118067 |
Snippet | Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific... In this study, Zhang et al. investigated post-transcriptional regulation during mammalian neurogenesis. They demonstrate that neural-specific inactivation of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1354 |
SubjectTerms | Research Paper |
Title | Post-transcriptional regulation of mouse neurogenesis by Pumilio proteins |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28794184 https://www.proquest.com/docview/1927830080 https://pubmed.ncbi.nlm.nih.gov/PMC5580656 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3_a9QwFA86EfxFnF9Pp1QQ_GFkNr2kSX6U4TgVRWHD-60kaXorbL3puh_mX-97adre7TZQ4ShHmkvhfXov75O8fB4hbzKprMm4palQjgL_YlQJl1Ihp5VipjIsJGN--ZrPjvinuZiP9RzD6ZLW7rnf154r-R9UoQ1wxVOy_4DsMCg0wHfAF66AMFz_CmOstEtbnG36_36Q6V_Eklxh7xyYvd8NqpULdGv1OQac3y5O65N6uRtUGuq4YBdDVBSiPg9vRDkmFG2sL2M27JgaEH3XcmybxyTcemyadWutP3zzs15dbGBySEyFuSI6SK6p4F3plU33G2T_F6bcyzQQoQy3hFc7gvnOTgMYQNQ0Z111uCuC1_2t2-ROBrE_Oq_P30cJeGRcUX0THvdu_WGo7Rx_vh5obLCHq0mwK1HF4QNyP9KB5H2H7Ta55ZuH5G5XIPTyEfl4HcLJiHCyrJKAcLKKcGIvk4hw0iP8mBwdfDjcn9FY_II6iGlbiidbOeMmFzqVpTbMWvhMmauwPrws87z0MJMZa1POjVep8sxpZzTMGhCGi-kTstUsG_-MJMprneXeQOTnuUydSq00mWZWWlXpyk8I7S1VuKgMjwVKTorAEFNWgJGLzsgoDj8hb4f-Z50myo09X_eGL8Bt4V6UaTyYpQBiIdUU-cqEPO2AGMbqEZwQuQbR0AEl0dfvNPVxkEYXAhMF8uc3jvmC3Bvf6x2y1f668C8hrGztq_Ca_QHHfXhF |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-transcriptional+regulation+of+mouse+neurogenesis+by+Pumilio+proteins&rft.jtitle=Genes+%26+development&rft.au=Zhang%2C+Meng&rft.au=Chen%2C+Dong&rft.au=Xia%2C+Jing&rft.au=Han%2C+Wenqi&rft.date=2017-07-01&rft.eissn=1549-5477&rft_id=info:doi/10.1101%2Fgad.298752.117&rft_id=info%3Apmid%2F28794184&rft.externalDocID=28794184 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon |