Complex formation dynamics in a single-molecule electronic device
The formation dynamics of a host-guest complex is successfully investigated in graphene-based single-molecule electronic devices. Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble exper...
Saved in:
Published in | Science advances Vol. 2; no. 11; p. e1601113 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
01.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The formation dynamics of a host-guest complex is successfully investigated in graphene-based single-molecule electronic devices.
Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble experiments. However, these investigations remain challenging because they require (i) highly precise device fabrication to incorporate single molecules and (ii) sufficient time resolution to be able to make fast molecular dynamic measurements. We demonstrate a graphene-molecule single-molecule junction that is capable of probing the thermodynamic and kinetic parameters of a host-guest complex. By covalently integrating a conjugated molecular wire with a pendent crown ether into graphene point contacts, we can transduce the physical [2]pseudorotaxane (de)formation processes between the electron-rich crown ether and a dicationic guest into real-time electrical signals. The conductance of the single-molecule junction reveals two-level fluctuations that are highly dependent on temperature and solvent environments, affording a nondestructive means of quantitatively determining the binding and rate constants, as well as the activation energies, for host-guest complexes. The thermodynamic processes reveal the host-guest binding to be enthalpy-driven and are consistent with conventional
1
H nuclear magnetic resonance titration experiments. This electronic device opens up a new route to developing single-molecule dynamics investigations with microsecond resolution for a broad range of chemical and biochemical applications. |
---|---|
AbstractList | Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble experiments. However, these investigations remain challenging because they require (i) highly precise device fabrication to incorporate single molecules and (ii) sufficient time resolution to be able to make fast molecular dynamic measurements. We demonstrate a graphene-molecule single-molecule junction that is capable of probing the thermodynamic and kinetic parameters of a host-guest complex. By covalently integrating a conjugated molecular wire with a pendent crown ether into graphene point contacts, we can transduce the physical [2]pseudorotaxane (de)formation processes between the electron-rich crown ether and a dicationic guest into real-time electrical signals. The conductance of the single-molecule junction reveals two-level fluctuations that are highly dependent on temperature and solvent environments, affording a nondestructive means of quantitatively determining the binding and rate constants, as well as the activation energies, for host-guest complexes. The thermodynamic processes reveal the host-guest binding to be enthalpy-driven and are consistent with conventional
H nuclear magnetic resonance titration experiments. This electronic device opens up a new route to developing single-molecule dynamics investigations with microsecond resolution for a broad range of chemical and biochemical applications. Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble experiments. However, these investigations remain challenging because they require (i) highly precise device fabrication to incorporate single molecules and (ii) sufficient time resolution to be able to make fast molecular dynamic measurements. We demonstrate a graphene-molecule single-molecule junction that is capable of probing the thermodynamic and kinetic parameters of a host-guest complex. By covalently integrating a conjugated molecular wire with a pendent crown ether into graphene point contacts, we can transduce the physical [2]pseudorotaxane (de)formation processes between the electron-rich crown ether and a dicationic guest into real-time electrical signals. The conductance of the single-molecule junction reveals two-level fluctuations that are highly dependent on temperature and solvent environments, affording a nondestructive means of quantitatively determining the binding and rate constants, as well as the activation energies, for host-guest complexes. The thermodynamic processes reveal the host-guest binding to be enthalpy-driven and are consistent with conventional 1H nuclear magnetic resonance titration experiments. This electronic device opens up a new route to developing single-molecule dynamics investigations with microsecond resolution for a broad range of chemical and biochemical applications.Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble experiments. However, these investigations remain challenging because they require (i) highly precise device fabrication to incorporate single molecules and (ii) sufficient time resolution to be able to make fast molecular dynamic measurements. We demonstrate a graphene-molecule single-molecule junction that is capable of probing the thermodynamic and kinetic parameters of a host-guest complex. By covalently integrating a conjugated molecular wire with a pendent crown ether into graphene point contacts, we can transduce the physical [2]pseudorotaxane (de)formation processes between the electron-rich crown ether and a dicationic guest into real-time electrical signals. The conductance of the single-molecule junction reveals two-level fluctuations that are highly dependent on temperature and solvent environments, affording a nondestructive means of quantitatively determining the binding and rate constants, as well as the activation energies, for host-guest complexes. The thermodynamic processes reveal the host-guest binding to be enthalpy-driven and are consistent with conventional 1H nuclear magnetic resonance titration experiments. This electronic device opens up a new route to developing single-molecule dynamics investigations with microsecond resolution for a broad range of chemical and biochemical applications. The formation dynamics of a host-guest complex is successfully investigated in graphene-based single-molecule electronic devices. Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble experiments. However, these investigations remain challenging because they require (i) highly precise device fabrication to incorporate single molecules and (ii) sufficient time resolution to be able to make fast molecular dynamic measurements. We demonstrate a graphene-molecule single-molecule junction that is capable of probing the thermodynamic and kinetic parameters of a host-guest complex. By covalently integrating a conjugated molecular wire with a pendent crown ether into graphene point contacts, we can transduce the physical [2]pseudorotaxane (de)formation processes between the electron-rich crown ether and a dicationic guest into real-time electrical signals. The conductance of the single-molecule junction reveals two-level fluctuations that are highly dependent on temperature and solvent environments, affording a nondestructive means of quantitatively determining the binding and rate constants, as well as the activation energies, for host-guest complexes. The thermodynamic processes reveal the host-guest binding to be enthalpy-driven and are consistent with conventional 1 H nuclear magnetic resonance titration experiments. This electronic device opens up a new route to developing single-molecule dynamics investigations with microsecond resolution for a broad range of chemical and biochemical applications. |
Author | Li, Wengang Olson, Mark A. Stoddart, J. Fraser Chen, Jiewei Li, Longhua Sue, Andrew C.-H. He, Gen Wen, Huimin Guo, Xuefeng |
Author_xml | – sequence: 1 givenname: Huimin surname: Wen fullname: Wen, Huimin organization: Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China – sequence: 2 givenname: Wengang surname: Li fullname: Li, Wengang organization: Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China – sequence: 3 givenname: Jiewei surname: Chen fullname: Chen, Jiewei organization: Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China – sequence: 4 givenname: Gen surname: He fullname: He, Gen organization: Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China – sequence: 5 givenname: Longhua surname: Li fullname: Li, Longhua organization: Scientific Research Academy, Jiangsu University, Zhenjiang 212013, China – sequence: 6 givenname: Mark A. surname: Olson fullname: Olson, Mark A. organization: Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China – sequence: 7 givenname: Andrew C.-H. surname: Sue fullname: Sue, Andrew C.-H. organization: Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China., Department of Chemistry, Northwestern University, Evanston, IL 60208–3113, USA – sequence: 8 givenname: J. Fraser surname: Stoddart fullname: Stoddart, J. Fraser organization: Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China., Department of Chemistry, Northwestern University, Evanston, IL 60208–3113, USA – sequence: 9 givenname: Xuefeng surname: Guo fullname: Guo, Xuefeng organization: Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China., Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28138528$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uc9LwzAYDaI4nbt6lB69dPZLmrS9CDL8BQMveg5Z8nVG0mQ27dD_3uqmTMHT--B7P-C9Y7Lvg0dCTiGbAlBxEbVVZj0FkQEA2yNHlBU8pTwv93fuEZnE-JJlGeRCcKgOyYiWwEpOyyNyNQvNyuFbUoe2UZ0NPjHvXjVWx8T6RCXR-qXDtAkOde8wwQG7NnirE4Nrq_GEHNTKRZxscUyebq4fZ3fp_OH2fnY1T3XORZdS0Cyr8sqo2mgDOuMMKDBWUQ68XBiTIxWFUJQqzvhC50ZDWZeAqijqWik2Jpcb31W_aNBo9F2rnFy1tlHtuwzKyt8fb5_lMqwlp4LmohgMzrcGbXjtMXaysVGjc8pj6KOEUjAKFTA-UM92s35CvnsbCPmGoNsQY4u11Lb7qm-Itk5CJj8XkpuF5HahQTb9I_t2_kfwARYOlO8 |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_8b00171 crossref_primary_10_1021_jacs_7b05850 crossref_primary_10_1039_D0NR07844A crossref_primary_10_1002_anie_202309605 crossref_primary_10_1063_1_5144275 crossref_primary_10_1021_jacs_4c09504 crossref_primary_10_1360_TB_2022_1153 crossref_primary_10_3390_pr10122574 crossref_primary_10_1002_admt_201800358 crossref_primary_10_1016_j_jelechem_2020_114070 crossref_primary_10_1002_chem_201803944 crossref_primary_10_1002_anie_201813137 crossref_primary_10_1016_j_chempr_2021_08_014 crossref_primary_10_1126_sciadv_aba6714 crossref_primary_10_1021_acsnano_1c11433 crossref_primary_10_1002_ange_201903717 crossref_primary_10_1021_acsaelm_4c00415 crossref_primary_10_3390_s23031687 crossref_primary_10_1002_cjoc_202000420 crossref_primary_10_1002_ange_202100168 crossref_primary_10_1021_acs_jpcc_9b11908 crossref_primary_10_1002_ange_202203830 crossref_primary_10_2139_ssrn_3809994 crossref_primary_10_1039_D4NR05242K crossref_primary_10_1002_ange_201807465 crossref_primary_10_1016_j_apmt_2024_102377 crossref_primary_10_1002_adma_202209088 crossref_primary_10_1002_advs_202200022 crossref_primary_10_1002_cjoc_202000529 crossref_primary_10_1016_j_chempr_2018_07_010 crossref_primary_10_1038_s41596_023_00822_x crossref_primary_10_1021_acsnano_8b04713 crossref_primary_10_1021_acs_nanolett_7b01745 crossref_primary_10_1002_anie_202216819 crossref_primary_10_1002_cjoc_202300259 crossref_primary_10_1002_smtd_202001034 crossref_primary_10_1126_sciadv_aar2177 crossref_primary_10_1016_j_chempr_2021_11_012 crossref_primary_10_1002_ange_202216987 crossref_primary_10_1016_j_mtchem_2024_102259 crossref_primary_10_1038_s42254_019_0022_x crossref_primary_10_1021_jacs_1c12741 crossref_primary_10_1002_marc_201700388 crossref_primary_10_1080_02670836_2018_1449178 crossref_primary_10_1126_sciadv_aaw3072 crossref_primary_10_1016_j_jorganchem_2024_123234 crossref_primary_10_1039_D1QM00790D crossref_primary_10_1002_ange_202216819 crossref_primary_10_1016_j_bios_2022_114486 crossref_primary_10_1016_j_cclet_2017_08_034 crossref_primary_10_1038_s41467_018_03203_1 crossref_primary_10_1002_ange_201813137 crossref_primary_10_1002_anie_202203830 crossref_primary_10_1039_D2TC01155G crossref_primary_10_1002_smtd_202001064 crossref_primary_10_1039_D3QM00210A crossref_primary_10_1021_acs_accounts_9b00347 crossref_primary_10_1126_sciadv_adf0425 crossref_primary_10_1002_smll_202104554 crossref_primary_10_1021_acsanm_2c01880 crossref_primary_10_1002_ange_202309605 crossref_primary_10_1021_acsnano_4c10389 crossref_primary_10_1002_anie_202216987 crossref_primary_10_1039_C7DT00722A crossref_primary_10_3390_nano12040698 crossref_primary_10_1021_acs_chemrev_4c00327 crossref_primary_10_1021_acs_chemrev_1c00497 crossref_primary_10_1039_C8CP02322K crossref_primary_10_1021_acs_langmuir_4c04865 crossref_primary_10_1038_s41377_019_0213_3 crossref_primary_10_1039_C9PY00848A crossref_primary_10_1039_C9CC03165K crossref_primary_10_1002_anie_201903717 crossref_primary_10_1021_jacsau_3c00845 crossref_primary_10_1002_chem_202303919 crossref_primary_10_1016_j_coelec_2022_101032 crossref_primary_10_1002_anie_202100168 crossref_primary_10_1038_s41578_021_00302_2 crossref_primary_10_1002_smtd_201900464 crossref_primary_10_1126_sciadv_abf0689 crossref_primary_10_1021_jacs_1c12490 crossref_primary_10_1039_C9NR08574B crossref_primary_10_1002_advs_202306032 crossref_primary_10_1002_anie_201807465 crossref_primary_10_1016_j_chempr_2017_08_006 crossref_primary_10_1021_acs_nanolett_8b00949 crossref_primary_10_1002_biot_201800354 crossref_primary_10_1039_D2CC02755K crossref_primary_10_1088_1361_6633_ac7401 |
Cites_doi | 10.1021/ol300911a 10.1039/c1cs15047b 10.1038/nature00790 10.1002/adma.201004291 10.1039/b813796j 10.1002/anie.201205607 10.1002/adma.200900864 10.1002/smll.201201993 10.1038/nnano.2013.91 10.1038/nature05741 10.1073/pnas.0709416105 10.1103/RevModPhys.71.S306 10.1038/nnano.2012.37 10.1039/c39870001064 10.1039/C0CS00062K 10.1002/anie.199114171 10.1103/PhysRevB.65.165401 10.1126/science.1087481 10.1038/nnano.2014.54 10.1038/30211 10.1021/cr500459d 10.1016/0009-2614(74)85031-1 10.1063/1.464913 10.1038/nature05462 10.1073/pnas.0406159101 10.1126/science.1064354 10.1103/PhysRevB.63.245407 10.1038/nnano.2010.275 10.1021/jp506078a 10.1002/anie.201309438 10.1002/chem.200902350 10.1021/ar8000266 10.1039/C4CS00143E 10.1023/A:1011117412693 10.1126/science.1175441 10.1126/science.1214824 10.1126/science.1112666 10.1126/science.1081572 10.1002/anie.201208210 10.1126/science.1181799 10.1021/cr030413t 10.1016/j.saa.2005.03.021 10.1038/nnano.2012.147 10.1038/nnano.2014.209 10.1126/science.278.5336.252 10.1021/acs.accounts.5b00133 10.1038/nnano.2015.255 10.1529/biophysj.105.079541 10.1002/adma.201301219 10.1038/nnano.2010.230 10.1038/nnano.2015.97 |
ContentType | Journal Article |
Copyright | Copyright © 2016, The Authors 2016 The Authors |
Copyright_xml | – notice: Copyright © 2016, The Authors 2016 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1126/sciadv.1601113 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2375-2548 |
ExternalDocumentID | PMC5262467 28138528 10_1126_sciadv_1601113 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: ID0EARBI11661; 21225311, 51121091, 91333102 and 21373014 – fundername: ; grantid: ID0EJYBI11662; 2014M550548 – fundername: ; grantid: ID0EXJBI11660; 2012CB921404 |
GroupedDBID | 53G 5VS AAFWJ AAYXX ACGFS ADAXU ADBBV ADRAZ AENVI AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BKF CITATION EBS EJD FRP GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 OVD RHI RPM TEORI ADPDF BCGUY NPM OVEED 7X8 5PM |
ID | FETCH-LOGICAL-c456t-21c30949dafdcd1c05312133925158bdd4e2676a22a535bc4dc18f81ea77ffaa3 |
IEDL.DBID | M48 |
ISSN | 2375-2548 |
IngestDate | Thu Aug 21 18:33:04 EDT 2025 Thu Jul 10 23:00:31 EDT 2025 Mon Jul 21 05:42:01 EDT 2025 Tue Jul 01 03:52:36 EDT 2025 Thu Apr 24 23:05:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | single-molecule detection Molecular electronics single-molecule device host-guest chemistry |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-21c30949dafdcd1c05312133925158bdd4e2676a22a535bc4dc18f81ea77ffaa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.1601113 |
PMID | 28138528 |
PQID | 1863219135 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5262467 proquest_miscellaneous_1863219135 pubmed_primary_28138528 crossref_citationtrail_10_1126_sciadv_1601113 crossref_primary_10_1126_sciadv_1601113 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science advances |
PublicationTitleAlternate | Sci Adv |
PublicationYear | 2016 |
Publisher | American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science |
References | e_1_3_2_26_2 Li T. (e_1_3_2_31_2) 2010; 22 e_1_3_2_28_2 e_1_3_2_20_2 e_1_3_2_22_2 Patolsky F. (e_1_3_2_18_2) 2004; 101 e_1_3_2_47_2 Gao F. (e_1_3_2_35_2) 2005; 62 Schmucker A. L. (e_1_3_2_38_2) 2013; 9 Douglas T. (e_1_3_2_49_2) 1998; 393 Gong P. (e_1_3_2_50_2) 2008; 105 Jia C. (e_1_3_2_7_2) 2015; 48 e_1_3_2_9_2 Cao Y. (e_1_3_2_33_2) 2012; 51 e_1_3_2_39_2 Li Q. (e_1_3_2_46_2) 2009; 325 Hirose K. (e_1_3_2_37_2) 2001; 39 e_1_3_2_10_2 Wang J. (e_1_3_2_19_2) 2014; 53 Schneider H.-J. (e_1_3_2_48_2) 1991; 30 e_1_3_2_3_2 Marquardt C. W. (e_1_3_2_13_2) 2010; 5 González M. T. (e_1_3_2_41_2) 2014; 118 Vazquez H. (e_1_3_2_11_2) 2012; 7 Allwood B. L. (e_1_3_2_52_2) 1987 e_1_3_2_27_2 Imry Y. (e_1_3_2_43_2) 1999; 71 e_1_3_2_29_2 Burg T. P. (e_1_3_2_23_2) 2007; 446 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_44_2 Feldman A. K. (e_1_3_2_32_2) 2008; 41 e_1_3_2_25_2 Zhao Y.-L. (e_1_3_2_45_2) 2009; 15 Howorka S. (e_1_3_2_24_2) 2009; 38 Song H. (e_1_3_2_8_2) 2011; 23 Kalmár J. (e_1_3_2_36_2) 2012; 14 Kim Y. (e_1_3_2_14_2) 2014; 9 Guo X. (e_1_3_2_16_2) 2013; 25 Cao Y. (e_1_3_2_34_2) 2013; 52 e_1_3_2_15_2 e_1_3_2_17_2 e_1_3_2_6_2 Thordarson P. (e_1_3_2_40_2) 2011; 40 e_1_3_2_30_2 e_1_3_2_51_2 e_1_3_2_4_2 e_1_3_2_2_2 Guédon C. M. (e_1_3_2_12_2) 2012; 7 Sun L. (e_1_3_2_5_2) 2014; 43 12775831 - Science. 2003 May 30;300(5624):1384-9 15303831 - Chem Rev. 2004 Aug;104(8):3623-40 26571004 - Nat Nanotechnol. 2016 Feb;11(2):170-6 23696446 - Adv Mater. 2013 Jul 5;25(25):3397-408 26005998 - Nat Nanotechnol. 2015 Jun;10(6):522-7 23460546 - Angew Chem Int Ed Engl. 2013 Apr 2;52(14):3906-10 15994551 - Science. 2005 Jul 1;309(5731):113-5 22941403 - Nat Nanotechnol. 2012 Oct;7(10):663-7 19946906 - Chemistry. 2009 Dec 14;15(48):13356-80 22447160 - Nat Nanotechnol. 2012 Mar 25;7(5):305-9 25950274 - Chem Rev. 2015 Jun 10;115(11):5056-115 21113158 - Nat Nanotechnol. 2010 Dec;5(12):863-7 19679809 - Science. 2009 Aug 14;325(5942):855-9 24668898 - Angew Chem Int Ed Engl. 2014 May 12;53(20):5038-43 25099384 - Chem Soc Rev. 2014 Nov 7;43(21):7378-411 11641492 - Science. 2001 Oct 19;294(5542):571-4 22690827 - Org Lett. 2012 Jul 6;14 (13):3248-51 21552606 - Chem Soc Rev. 2011 Jun;40(6):3336-55 20217688 - Adv Mater. 2010 Jan 12;22(2):286-300 21258331 - Nat Nanotechnol. 2011 Feb;6(2):126-32 17460669 - Nature. 2007 Apr 26;446(7139):1066-9 12066180 - Nature. 2002 Jun 13;417(6890):725-9 15897004 - Spectrochim Acta A Mol Biomol Spectrosc. 2005 Dec;62(4-5):886-95 22267809 - Science. 2012 Jan 20;335(6066):319-24 24705512 - Nat Nanotechnol. 2014 Jun;9(6):466-73 16679362 - Biophys J. 2006 Aug 15;91(4):1156-68 26190024 - Acc Chem Res. 2015 Sep 15;48(9):2565-75 25282046 - Nat Nanotechnol. 2014 Nov;9(11):881-5 23125110 - Angew Chem Int Ed Engl. 2012 Dec 3;51(49):12228-32 23736215 - Nat Nanotechnol. 2013 Jun;8(6):399-410 18798657 - Acc Chem Res. 2008 Dec;41(12):1731-41 21290434 - Adv Mater. 2011 Apr 12;23(14):1583-608 21125111 - Chem Soc Rev. 2011 Mar;40(3):1305-23 23129396 - Small. 2013 Jun 10;9(11):1900-3 20044570 - Science. 2010 Jan 1;327(5961):64-7 18381819 - Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5301-6 19623355 - Chem Soc Rev. 2009 Aug;38(8):2360-84 12947193 - Science. 2003 Aug 29;301(5637):1221-3 17251976 - Nature. 2007 Jan 25;445(7126):414-7 15365183 - Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14017-22 |
References_xml | – volume: 14 start-page: 3248 year: 2012 ident: e_1_3_2_36_2 article-title: Kinetics of formation of the host-guest complex of a viologen with cucurbit[7]uril publication-title: Org. Lett. doi: 10.1021/ol300911a – ident: e_1_3_2_15_2 doi: 10.1039/c1cs15047b – ident: e_1_3_2_29_2 doi: 10.1038/nature00790 – volume: 23 start-page: 1583 year: 2011 ident: e_1_3_2_8_2 article-title: Single molecule electronic devices publication-title: Adv. Mater. doi: 10.1002/adma.201004291 – volume: 38 start-page: 2360 year: 2009 ident: e_1_3_2_24_2 article-title: Nanopore analytics: Sensing of single molecules publication-title: Chem. Soc. Rev. doi: 10.1039/b813796j – volume: 51 start-page: 12228 year: 2012 ident: e_1_3_2_33_2 article-title: Building high-throughput molecular junctions using indented graphene point contacts publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201205607 – volume: 22 start-page: 286 year: 2010 ident: e_1_3_2_31_2 article-title: Nanogap electrodes publication-title: Adv. Mater. doi: 10.1002/adma.200900864 – volume: 9 start-page: 1900 year: 2013 ident: e_1_3_2_38_2 article-title: Electronic and optical vibrational spectroscopy of molecular transport junctions created by on-wire lithography publication-title: Small doi: 10.1002/smll.201201993 – ident: e_1_3_2_4_2 doi: 10.1038/nnano.2013.91 – volume: 446 start-page: 1066 year: 2007 ident: e_1_3_2_23_2 article-title: Weighing of biomolecules, single cells and single nanoparticles in fluid publication-title: Nature doi: 10.1038/nature05741 – volume: 105 start-page: 5301 year: 2008 ident: e_1_3_2_50_2 article-title: DNA surface hybridization regimes publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0709416105 – volume: 71 start-page: S306 year: 1999 ident: e_1_3_2_43_2 article-title: Conductance viewed as transmission publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.71.S306 – volume: 7 start-page: 305 year: 2012 ident: e_1_3_2_12_2 article-title: Observation of quantum interference in molecular charge transport publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.37 – start-page: 1064 year: 1987 ident: e_1_3_2_52_2 article-title: Complexation of paraquat by a bisparaphenylene-34-crown-10 derivative publication-title: J. Chem. Soc. Chem. Commun. doi: 10.1039/c39870001064 – volume: 40 start-page: 1305 year: 2011 ident: e_1_3_2_40_2 article-title: Determining association constants from titration experiments in supramolecular chemistry publication-title: Chem. Soc. Rev. doi: 10.1039/C0CS00062K – volume: 30 start-page: 1417 year: 1991 ident: e_1_3_2_48_2 article-title: Mechanisms of molecular recognition: Investigations of organic host–guest complexes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.199114171 – ident: e_1_3_2_44_2 doi: 10.1103/PhysRevB.65.165401 – ident: e_1_3_2_28_2 doi: 10.1126/science.1087481 – ident: e_1_3_2_25_2 doi: 10.1038/nnano.2014.54 – volume: 393 start-page: 152 year: 1998 ident: e_1_3_2_49_2 article-title: Host-guest encapsulation of materials by assembled virus protein cages publication-title: Nature doi: 10.1038/30211 – ident: e_1_3_2_6_2 doi: 10.1021/cr500459d – ident: e_1_3_2_2_2 doi: 10.1016/0009-2614(74)85031-1 – ident: e_1_3_2_42_2 doi: 10.1063/1.464913 – ident: e_1_3_2_17_2 doi: 10.1038/nature05462 – volume: 101 start-page: 14017 year: 2004 ident: e_1_3_2_18_2 article-title: Electrical detection of single viruses publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0406159101 – ident: e_1_3_2_27_2 doi: 10.1126/science.1064354 – ident: e_1_3_2_47_2 doi: 10.1103/PhysRevB.63.245407 – ident: e_1_3_2_21_2 doi: 10.1038/nnano.2010.275 – volume: 118 start-page: 21655 year: 2014 ident: e_1_3_2_41_2 article-title: Structural versus electrical functionalization of oligo(phenyleneethynylene) diamine molecular junctions publication-title: J. Phys. Chem. C doi: 10.1021/jp506078a – volume: 53 start-page: 5038 year: 2014 ident: e_1_3_2_19_2 article-title: Point decoration of silicon nanowires: An approach toward single-molecule electrical detection publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201309438 – volume: 15 start-page: 13356 year: 2009 ident: e_1_3_2_45_2 article-title: Rigid-strut-containing crown ethers and [2]catenanes for incorporation into metal–organic frameworks publication-title: Chem. Eur. J. doi: 10.1002/chem.200902350 – volume: 41 start-page: 1731 year: 2008 ident: e_1_3_2_32_2 article-title: Molecular electronic devices based on single-walled carbon nanotube electrodes publication-title: Acc. Chem. Res. doi: 10.1021/ar8000266 – volume: 43 start-page: 7378 year: 2014 ident: e_1_3_2_5_2 article-title: Single-molecule electronics: From chemical design to functional devices publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00143E – volume: 39 start-page: 193 year: 2001 ident: e_1_3_2_37_2 article-title: A practical guide for the determination of binding constants publication-title: J. Incl. Phenom. Macrocycl. Chem. doi: 10.1023/A:1011117412693 – volume: 325 start-page: 855 year: 2009 ident: e_1_3_2_46_2 article-title: Docking in metal-organic frameworks publication-title: Science doi: 10.1126/science.1175441 – ident: e_1_3_2_20_2 doi: 10.1126/science.1214824 – ident: e_1_3_2_30_2 doi: 10.1126/science.1112666 – ident: e_1_3_2_3_2 doi: 10.1126/science.1081572 – volume: 52 start-page: 3906 year: 2013 ident: e_1_3_2_34_2 article-title: Toward functional molecular devices based on graphene–molecule junctions publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201208210 – ident: e_1_3_2_22_2 doi: 10.1126/science.1181799 – ident: e_1_3_2_39_2 doi: 10.1021/cr030413t – volume: 62 start-page: 886 year: 2005 ident: e_1_3_2_35_2 article-title: Spectroscopy, NMR and DFT studies on molecular recognition of crown ether bridged chiral heterotrinuclear salen Zn(II) complex publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2005.03.021 – volume: 7 start-page: 663 year: 2012 ident: e_1_3_2_11_2 article-title: Probing the conductance superposition law in single-molecule circuits with parallel paths publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.147 – volume: 9 start-page: 881 year: 2014 ident: e_1_3_2_14_2 article-title: Electrostatic control of thermoelectricity in molecular junctions publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.209 – ident: e_1_3_2_26_2 doi: 10.1126/science.278.5336.252 – volume: 48 start-page: 2565 year: 2015 ident: e_1_3_2_7_2 article-title: Carbon electrode–molecule junctions: A reliable platform for molecular electronics publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00133 – ident: e_1_3_2_9_2 doi: 10.1038/nnano.2015.255 – ident: e_1_3_2_51_2 doi: 10.1529/biophysj.105.079541 – volume: 25 start-page: 3397 year: 2013 ident: e_1_3_2_16_2 article-title: Single-molecule electrical biosensors based on single-walled carbon nanotubes publication-title: Adv. Mater. doi: 10.1002/adma.201301219 – volume: 5 start-page: 863 year: 2010 ident: e_1_3_2_13_2 article-title: Electroluminescence from a single nanotube-molecule-nanotube junction publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.230 – ident: e_1_3_2_10_2 doi: 10.1038/nnano.2015.97 – reference: 26571004 - Nat Nanotechnol. 2016 Feb;11(2):170-6 – reference: 21125111 - Chem Soc Rev. 2011 Mar;40(3):1305-23 – reference: 15365183 - Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14017-22 – reference: 21113158 - Nat Nanotechnol. 2010 Dec;5(12):863-7 – reference: 22690827 - Org Lett. 2012 Jul 6;14 (13):3248-51 – reference: 19623355 - Chem Soc Rev. 2009 Aug;38(8):2360-84 – reference: 22941403 - Nat Nanotechnol. 2012 Oct;7(10):663-7 – reference: 20217688 - Adv Mater. 2010 Jan 12;22(2):286-300 – reference: 12947193 - Science. 2003 Aug 29;301(5637):1221-3 – reference: 17251976 - Nature. 2007 Jan 25;445(7126):414-7 – reference: 15994551 - Science. 2005 Jul 1;309(5731):113-5 – reference: 23736215 - Nat Nanotechnol. 2013 Jun;8(6):399-410 – reference: 16679362 - Biophys J. 2006 Aug 15;91(4):1156-68 – reference: 18381819 - Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5301-6 – reference: 12066180 - Nature. 2002 Jun 13;417(6890):725-9 – reference: 23460546 - Angew Chem Int Ed Engl. 2013 Apr 2;52(14):3906-10 – reference: 15303831 - Chem Rev. 2004 Aug;104(8):3623-40 – reference: 22447160 - Nat Nanotechnol. 2012 Mar 25;7(5):305-9 – reference: 19946906 - Chemistry. 2009 Dec 14;15(48):13356-80 – reference: 25282046 - Nat Nanotechnol. 2014 Nov;9(11):881-5 – reference: 22267809 - Science. 2012 Jan 20;335(6066):319-24 – reference: 23129396 - Small. 2013 Jun 10;9(11):1900-3 – reference: 23125110 - Angew Chem Int Ed Engl. 2012 Dec 3;51(49):12228-32 – reference: 26005998 - Nat Nanotechnol. 2015 Jun;10(6):522-7 – reference: 21258331 - Nat Nanotechnol. 2011 Feb;6(2):126-32 – reference: 26190024 - Acc Chem Res. 2015 Sep 15;48(9):2565-75 – reference: 19679809 - Science. 2009 Aug 14;325(5942):855-9 – reference: 24668898 - Angew Chem Int Ed Engl. 2014 May 12;53(20):5038-43 – reference: 23696446 - Adv Mater. 2013 Jul 5;25(25):3397-408 – reference: 21552606 - Chem Soc Rev. 2011 Jun;40(6):3336-55 – reference: 21290434 - Adv Mater. 2011 Apr 12;23(14):1583-608 – reference: 24705512 - Nat Nanotechnol. 2014 Jun;9(6):466-73 – reference: 12775831 - Science. 2003 May 30;300(5624):1384-9 – reference: 25099384 - Chem Soc Rev. 2014 Nov 7;43(21):7378-411 – reference: 18798657 - Acc Chem Res. 2008 Dec;41(12):1731-41 – reference: 17460669 - Nature. 2007 Apr 26;446(7139):1066-9 – reference: 11641492 - Science. 2001 Oct 19;294(5542):571-4 – reference: 20044570 - Science. 2010 Jan 1;327(5961):64-7 – reference: 25950274 - Chem Rev. 2015 Jun 10;115(11):5056-115 – reference: 15897004 - Spectrochim Acta A Mol Biomol Spectrosc. 2005 Dec;62(4-5):886-95 |
SSID | ssj0001466519 |
Score | 2.324686 |
Snippet | The formation dynamics of a host-guest complex is successfully investigated in graphene-based single-molecule electronic devices.
Single-molecule electronic... Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1601113 |
SubjectTerms | Molecular Physics SciAdv r-articles |
Title | Complex formation dynamics in a single-molecule electronic device |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28138528 https://www.proquest.com/docview/1863219135 https://pubmed.ncbi.nlm.nih.gov/PMC5262467 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66XryI63N9EUFQDxHzbHoQEfGBoCcX9lbSPFBY62NX0X_vpI2r6wO89NKQlplM5ptJZj6EtmheeuW4ImE_Zqs8D6TUwpK8DKBjnwOIjvmOyyt13hUXPdn7vP-UBDj4NbSLfFLdp_7e6-PbIRj8wZcCGONeYp4k8qZPoinwSllkM7hMUL_OtwilZM3zwXgmCcRFOvVw_DnFuI_6ATy_35_84pBOZ9FMQpL4qFF9G034ag61k60O8E5qKL07j46i0ff9Kx5VKmLXENEP8G2FDY75gr4ndw1Vrsef3DjY-biVLKDu6cn18TlJ1AnEAiIaEkYth8AtdyY466iNpsYgHM0BzkhdOic8U5kyjBnJZWmFs1QHTb3JshCM4YuoVd1Xfhnhku17neVWMuOEY6IMViiqdRCANLyTHUQ-hFXY1Fc80lv0izq-YKpohFsk4XbQ9mj8Q9NR48-Rmx-yL2DRx5MMU_n750FBteKw1VIOX19qdDGai2nKtWS6g7IxLY0GxIba42-q25u6sbZkioHjWPn3H66iaQBQqqlNXEOt4dOzXweQMiw36uAenmc9ulGvxHdYBehn |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+formation+dynamics+in+a+single-molecule+electronic+device&rft.jtitle=Science+advances&rft.au=Wen%2C+Huimin&rft.au=Li%2C+Wengang&rft.au=Chen%2C+Jiewei&rft.au=He%2C+Gen&rft.date=2016-11-01&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=2&rft.issue=11&rft_id=info:doi/10.1126%2Fsciadv.1601113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_sciadv_1601113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon |