Complex formation dynamics in a single-molecule electronic device

The formation dynamics of a host-guest complex is successfully investigated in graphene-based single-molecule electronic devices. Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble exper...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 2; no. 11; p. e1601113
Main Authors Wen, Huimin, Li, Wengang, Chen, Jiewei, He, Gen, Li, Longhua, Olson, Mark A., Sue, Andrew C.-H., Stoddart, J. Fraser, Guo, Xuefeng
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 01.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The formation dynamics of a host-guest complex is successfully investigated in graphene-based single-molecule electronic devices. Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble experiments. However, these investigations remain challenging because they require (i) highly precise device fabrication to incorporate single molecules and (ii) sufficient time resolution to be able to make fast molecular dynamic measurements. We demonstrate a graphene-molecule single-molecule junction that is capable of probing the thermodynamic and kinetic parameters of a host-guest complex. By covalently integrating a conjugated molecular wire with a pendent crown ether into graphene point contacts, we can transduce the physical [2]pseudorotaxane (de)formation processes between the electron-rich crown ether and a dicationic guest into real-time electrical signals. The conductance of the single-molecule junction reveals two-level fluctuations that are highly dependent on temperature and solvent environments, affording a nondestructive means of quantitatively determining the binding and rate constants, as well as the activation energies, for host-guest complexes. The thermodynamic processes reveal the host-guest binding to be enthalpy-driven and are consistent with conventional 1 H nuclear magnetic resonance titration experiments. This electronic device opens up a new route to developing single-molecule dynamics investigations with microsecond resolution for a broad range of chemical and biochemical applications.
AbstractList Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble experiments. However, these investigations remain challenging because they require (i) highly precise device fabrication to incorporate single molecules and (ii) sufficient time resolution to be able to make fast molecular dynamic measurements. We demonstrate a graphene-molecule single-molecule junction that is capable of probing the thermodynamic and kinetic parameters of a host-guest complex. By covalently integrating a conjugated molecular wire with a pendent crown ether into graphene point contacts, we can transduce the physical [2]pseudorotaxane (de)formation processes between the electron-rich crown ether and a dicationic guest into real-time electrical signals. The conductance of the single-molecule junction reveals two-level fluctuations that are highly dependent on temperature and solvent environments, affording a nondestructive means of quantitatively determining the binding and rate constants, as well as the activation energies, for host-guest complexes. The thermodynamic processes reveal the host-guest binding to be enthalpy-driven and are consistent with conventional H nuclear magnetic resonance titration experiments. This electronic device opens up a new route to developing single-molecule dynamics investigations with microsecond resolution for a broad range of chemical and biochemical applications.
Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble experiments. However, these investigations remain challenging because they require (i) highly precise device fabrication to incorporate single molecules and (ii) sufficient time resolution to be able to make fast molecular dynamic measurements. We demonstrate a graphene-molecule single-molecule junction that is capable of probing the thermodynamic and kinetic parameters of a host-guest complex. By covalently integrating a conjugated molecular wire with a pendent crown ether into graphene point contacts, we can transduce the physical [2]pseudorotaxane (de)formation processes between the electron-rich crown ether and a dicationic guest into real-time electrical signals. The conductance of the single-molecule junction reveals two-level fluctuations that are highly dependent on temperature and solvent environments, affording a nondestructive means of quantitatively determining the binding and rate constants, as well as the activation energies, for host-guest complexes. The thermodynamic processes reveal the host-guest binding to be enthalpy-driven and are consistent with conventional 1H nuclear magnetic resonance titration experiments. This electronic device opens up a new route to developing single-molecule dynamics investigations with microsecond resolution for a broad range of chemical and biochemical applications.Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble experiments. However, these investigations remain challenging because they require (i) highly precise device fabrication to incorporate single molecules and (ii) sufficient time resolution to be able to make fast molecular dynamic measurements. We demonstrate a graphene-molecule single-molecule junction that is capable of probing the thermodynamic and kinetic parameters of a host-guest complex. By covalently integrating a conjugated molecular wire with a pendent crown ether into graphene point contacts, we can transduce the physical [2]pseudorotaxane (de)formation processes between the electron-rich crown ether and a dicationic guest into real-time electrical signals. The conductance of the single-molecule junction reveals two-level fluctuations that are highly dependent on temperature and solvent environments, affording a nondestructive means of quantitatively determining the binding and rate constants, as well as the activation energies, for host-guest complexes. The thermodynamic processes reveal the host-guest binding to be enthalpy-driven and are consistent with conventional 1H nuclear magnetic resonance titration experiments. This electronic device opens up a new route to developing single-molecule dynamics investigations with microsecond resolution for a broad range of chemical and biochemical applications.
The formation dynamics of a host-guest complex is successfully investigated in graphene-based single-molecule electronic devices. Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble experiments. However, these investigations remain challenging because they require (i) highly precise device fabrication to incorporate single molecules and (ii) sufficient time resolution to be able to make fast molecular dynamic measurements. We demonstrate a graphene-molecule single-molecule junction that is capable of probing the thermodynamic and kinetic parameters of a host-guest complex. By covalently integrating a conjugated molecular wire with a pendent crown ether into graphene point contacts, we can transduce the physical [2]pseudorotaxane (de)formation processes between the electron-rich crown ether and a dicationic guest into real-time electrical signals. The conductance of the single-molecule junction reveals two-level fluctuations that are highly dependent on temperature and solvent environments, affording a nondestructive means of quantitatively determining the binding and rate constants, as well as the activation energies, for host-guest complexes. The thermodynamic processes reveal the host-guest binding to be enthalpy-driven and are consistent with conventional 1 H nuclear magnetic resonance titration experiments. This electronic device opens up a new route to developing single-molecule dynamics investigations with microsecond resolution for a broad range of chemical and biochemical applications.
Author Li, Wengang
Olson, Mark A.
Stoddart, J. Fraser
Chen, Jiewei
Li, Longhua
Sue, Andrew C.-H.
He, Gen
Wen, Huimin
Guo, Xuefeng
Author_xml – sequence: 1
  givenname: Huimin
  surname: Wen
  fullname: Wen, Huimin
  organization: Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
– sequence: 2
  givenname: Wengang
  surname: Li
  fullname: Li, Wengang
  organization: Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
– sequence: 3
  givenname: Jiewei
  surname: Chen
  fullname: Chen, Jiewei
  organization: Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
– sequence: 4
  givenname: Gen
  surname: He
  fullname: He, Gen
  organization: Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
– sequence: 5
  givenname: Longhua
  surname: Li
  fullname: Li, Longhua
  organization: Scientific Research Academy, Jiangsu University, Zhenjiang 212013, China
– sequence: 6
  givenname: Mark A.
  surname: Olson
  fullname: Olson, Mark A.
  organization: Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
– sequence: 7
  givenname: Andrew C.-H.
  surname: Sue
  fullname: Sue, Andrew C.-H.
  organization: Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China., Department of Chemistry, Northwestern University, Evanston, IL 60208–3113, USA
– sequence: 8
  givenname: J. Fraser
  surname: Stoddart
  fullname: Stoddart, J. Fraser
  organization: Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China., Department of Chemistry, Northwestern University, Evanston, IL 60208–3113, USA
– sequence: 9
  givenname: Xuefeng
  surname: Guo
  fullname: Guo, Xuefeng
  organization: Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China., Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28138528$$D View this record in MEDLINE/PubMed
BookMark eNp1Uc9LwzAYDaI4nbt6lB69dPZLmrS9CDL8BQMveg5Z8nVG0mQ27dD_3uqmTMHT--B7P-C9Y7Lvg0dCTiGbAlBxEbVVZj0FkQEA2yNHlBU8pTwv93fuEZnE-JJlGeRCcKgOyYiWwEpOyyNyNQvNyuFbUoe2UZ0NPjHvXjVWx8T6RCXR-qXDtAkOde8wwQG7NnirE4Nrq_GEHNTKRZxscUyebq4fZ3fp_OH2fnY1T3XORZdS0Cyr8sqo2mgDOuMMKDBWUQ68XBiTIxWFUJQqzvhC50ZDWZeAqijqWik2Jpcb31W_aNBo9F2rnFy1tlHtuwzKyt8fb5_lMqwlp4LmohgMzrcGbXjtMXaysVGjc8pj6KOEUjAKFTA-UM92s35CvnsbCPmGoNsQY4u11Lb7qm-Itk5CJj8XkpuF5HahQTb9I_t2_kfwARYOlO8
CitedBy_id crossref_primary_10_1021_acs_nanolett_8b00171
crossref_primary_10_1021_jacs_7b05850
crossref_primary_10_1039_D0NR07844A
crossref_primary_10_1002_anie_202309605
crossref_primary_10_1063_1_5144275
crossref_primary_10_1021_jacs_4c09504
crossref_primary_10_1360_TB_2022_1153
crossref_primary_10_3390_pr10122574
crossref_primary_10_1002_admt_201800358
crossref_primary_10_1016_j_jelechem_2020_114070
crossref_primary_10_1002_chem_201803944
crossref_primary_10_1002_anie_201813137
crossref_primary_10_1016_j_chempr_2021_08_014
crossref_primary_10_1126_sciadv_aba6714
crossref_primary_10_1021_acsnano_1c11433
crossref_primary_10_1002_ange_201903717
crossref_primary_10_1021_acsaelm_4c00415
crossref_primary_10_3390_s23031687
crossref_primary_10_1002_cjoc_202000420
crossref_primary_10_1002_ange_202100168
crossref_primary_10_1021_acs_jpcc_9b11908
crossref_primary_10_1002_ange_202203830
crossref_primary_10_2139_ssrn_3809994
crossref_primary_10_1039_D4NR05242K
crossref_primary_10_1002_ange_201807465
crossref_primary_10_1016_j_apmt_2024_102377
crossref_primary_10_1002_adma_202209088
crossref_primary_10_1002_advs_202200022
crossref_primary_10_1002_cjoc_202000529
crossref_primary_10_1016_j_chempr_2018_07_010
crossref_primary_10_1038_s41596_023_00822_x
crossref_primary_10_1021_acsnano_8b04713
crossref_primary_10_1021_acs_nanolett_7b01745
crossref_primary_10_1002_anie_202216819
crossref_primary_10_1002_cjoc_202300259
crossref_primary_10_1002_smtd_202001034
crossref_primary_10_1126_sciadv_aar2177
crossref_primary_10_1016_j_chempr_2021_11_012
crossref_primary_10_1002_ange_202216987
crossref_primary_10_1016_j_mtchem_2024_102259
crossref_primary_10_1038_s42254_019_0022_x
crossref_primary_10_1021_jacs_1c12741
crossref_primary_10_1002_marc_201700388
crossref_primary_10_1080_02670836_2018_1449178
crossref_primary_10_1126_sciadv_aaw3072
crossref_primary_10_1016_j_jorganchem_2024_123234
crossref_primary_10_1039_D1QM00790D
crossref_primary_10_1002_ange_202216819
crossref_primary_10_1016_j_bios_2022_114486
crossref_primary_10_1016_j_cclet_2017_08_034
crossref_primary_10_1038_s41467_018_03203_1
crossref_primary_10_1002_ange_201813137
crossref_primary_10_1002_anie_202203830
crossref_primary_10_1039_D2TC01155G
crossref_primary_10_1002_smtd_202001064
crossref_primary_10_1039_D3QM00210A
crossref_primary_10_1021_acs_accounts_9b00347
crossref_primary_10_1126_sciadv_adf0425
crossref_primary_10_1002_smll_202104554
crossref_primary_10_1021_acsanm_2c01880
crossref_primary_10_1002_ange_202309605
crossref_primary_10_1021_acsnano_4c10389
crossref_primary_10_1002_anie_202216987
crossref_primary_10_1039_C7DT00722A
crossref_primary_10_3390_nano12040698
crossref_primary_10_1021_acs_chemrev_4c00327
crossref_primary_10_1021_acs_chemrev_1c00497
crossref_primary_10_1039_C8CP02322K
crossref_primary_10_1021_acs_langmuir_4c04865
crossref_primary_10_1038_s41377_019_0213_3
crossref_primary_10_1039_C9PY00848A
crossref_primary_10_1039_C9CC03165K
crossref_primary_10_1002_anie_201903717
crossref_primary_10_1021_jacsau_3c00845
crossref_primary_10_1002_chem_202303919
crossref_primary_10_1016_j_coelec_2022_101032
crossref_primary_10_1002_anie_202100168
crossref_primary_10_1038_s41578_021_00302_2
crossref_primary_10_1002_smtd_201900464
crossref_primary_10_1126_sciadv_abf0689
crossref_primary_10_1021_jacs_1c12490
crossref_primary_10_1039_C9NR08574B
crossref_primary_10_1002_advs_202306032
crossref_primary_10_1002_anie_201807465
crossref_primary_10_1016_j_chempr_2017_08_006
crossref_primary_10_1021_acs_nanolett_8b00949
crossref_primary_10_1002_biot_201800354
crossref_primary_10_1039_D2CC02755K
crossref_primary_10_1088_1361_6633_ac7401
Cites_doi 10.1021/ol300911a
10.1039/c1cs15047b
10.1038/nature00790
10.1002/adma.201004291
10.1039/b813796j
10.1002/anie.201205607
10.1002/adma.200900864
10.1002/smll.201201993
10.1038/nnano.2013.91
10.1038/nature05741
10.1073/pnas.0709416105
10.1103/RevModPhys.71.S306
10.1038/nnano.2012.37
10.1039/c39870001064
10.1039/C0CS00062K
10.1002/anie.199114171
10.1103/PhysRevB.65.165401
10.1126/science.1087481
10.1038/nnano.2014.54
10.1038/30211
10.1021/cr500459d
10.1016/0009-2614(74)85031-1
10.1063/1.464913
10.1038/nature05462
10.1073/pnas.0406159101
10.1126/science.1064354
10.1103/PhysRevB.63.245407
10.1038/nnano.2010.275
10.1021/jp506078a
10.1002/anie.201309438
10.1002/chem.200902350
10.1021/ar8000266
10.1039/C4CS00143E
10.1023/A:1011117412693
10.1126/science.1175441
10.1126/science.1214824
10.1126/science.1112666
10.1126/science.1081572
10.1002/anie.201208210
10.1126/science.1181799
10.1021/cr030413t
10.1016/j.saa.2005.03.021
10.1038/nnano.2012.147
10.1038/nnano.2014.209
10.1126/science.278.5336.252
10.1021/acs.accounts.5b00133
10.1038/nnano.2015.255
10.1529/biophysj.105.079541
10.1002/adma.201301219
10.1038/nnano.2010.230
10.1038/nnano.2015.97
ContentType Journal Article
Copyright Copyright © 2016, The Authors 2016 The Authors
Copyright_xml – notice: Copyright © 2016, The Authors 2016 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1126/sciadv.1601113
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2375-2548
ExternalDocumentID PMC5262467
28138528
10_1126_sciadv_1601113
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: ID0EARBI11661; 21225311, 51121091, 91333102 and 21373014
– fundername: ;
  grantid: ID0EJYBI11662; 2014M550548
– fundername: ;
  grantid: ID0EXJBI11660; 2012CB921404
GroupedDBID 53G
5VS
AAFWJ
AAYXX
ACGFS
ADAXU
ADBBV
ADRAZ
AENVI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BKF
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
OVD
RHI
RPM
TEORI
ADPDF
BCGUY
NPM
OVEED
7X8
5PM
ID FETCH-LOGICAL-c456t-21c30949dafdcd1c05312133925158bdd4e2676a22a535bc4dc18f81ea77ffaa3
IEDL.DBID M48
ISSN 2375-2548
IngestDate Thu Aug 21 18:33:04 EDT 2025
Thu Jul 10 23:00:31 EDT 2025
Mon Jul 21 05:42:01 EDT 2025
Tue Jul 01 03:52:36 EDT 2025
Thu Apr 24 23:05:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords single-molecule detection
Molecular electronics
single-molecule device
host-guest chemistry
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-21c30949dafdcd1c05312133925158bdd4e2676a22a535bc4dc18f81ea77ffaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.1601113
PMID 28138528
PQID 1863219135
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5262467
proquest_miscellaneous_1863219135
pubmed_primary_28138528
crossref_citationtrail_10_1126_sciadv_1601113
crossref_primary_10_1126_sciadv_1601113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science advances
PublicationTitleAlternate Sci Adv
PublicationYear 2016
Publisher American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
References e_1_3_2_26_2
Li T. (e_1_3_2_31_2) 2010; 22
e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_22_2
Patolsky F. (e_1_3_2_18_2) 2004; 101
e_1_3_2_47_2
Gao F. (e_1_3_2_35_2) 2005; 62
Schmucker A. L. (e_1_3_2_38_2) 2013; 9
Douglas T. (e_1_3_2_49_2) 1998; 393
Gong P. (e_1_3_2_50_2) 2008; 105
Jia C. (e_1_3_2_7_2) 2015; 48
e_1_3_2_9_2
Cao Y. (e_1_3_2_33_2) 2012; 51
e_1_3_2_39_2
Li Q. (e_1_3_2_46_2) 2009; 325
Hirose K. (e_1_3_2_37_2) 2001; 39
e_1_3_2_10_2
Wang J. (e_1_3_2_19_2) 2014; 53
Schneider H.-J. (e_1_3_2_48_2) 1991; 30
e_1_3_2_3_2
Marquardt C. W. (e_1_3_2_13_2) 2010; 5
González M. T. (e_1_3_2_41_2) 2014; 118
Vazquez H. (e_1_3_2_11_2) 2012; 7
Allwood B. L. (e_1_3_2_52_2) 1987
e_1_3_2_27_2
Imry Y. (e_1_3_2_43_2) 1999; 71
e_1_3_2_29_2
Burg T. P. (e_1_3_2_23_2) 2007; 446
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_44_2
Feldman A. K. (e_1_3_2_32_2) 2008; 41
e_1_3_2_25_2
Zhao Y.-L. (e_1_3_2_45_2) 2009; 15
Howorka S. (e_1_3_2_24_2) 2009; 38
Song H. (e_1_3_2_8_2) 2011; 23
Kalmár J. (e_1_3_2_36_2) 2012; 14
Kim Y. (e_1_3_2_14_2) 2014; 9
Guo X. (e_1_3_2_16_2) 2013; 25
Cao Y. (e_1_3_2_34_2) 2013; 52
e_1_3_2_15_2
e_1_3_2_17_2
e_1_3_2_6_2
Thordarson P. (e_1_3_2_40_2) 2011; 40
e_1_3_2_30_2
e_1_3_2_51_2
e_1_3_2_4_2
e_1_3_2_2_2
Guédon C. M. (e_1_3_2_12_2) 2012; 7
Sun L. (e_1_3_2_5_2) 2014; 43
12775831 - Science. 2003 May 30;300(5624):1384-9
15303831 - Chem Rev. 2004 Aug;104(8):3623-40
26571004 - Nat Nanotechnol. 2016 Feb;11(2):170-6
23696446 - Adv Mater. 2013 Jul 5;25(25):3397-408
26005998 - Nat Nanotechnol. 2015 Jun;10(6):522-7
23460546 - Angew Chem Int Ed Engl. 2013 Apr 2;52(14):3906-10
15994551 - Science. 2005 Jul 1;309(5731):113-5
22941403 - Nat Nanotechnol. 2012 Oct;7(10):663-7
19946906 - Chemistry. 2009 Dec 14;15(48):13356-80
22447160 - Nat Nanotechnol. 2012 Mar 25;7(5):305-9
25950274 - Chem Rev. 2015 Jun 10;115(11):5056-115
21113158 - Nat Nanotechnol. 2010 Dec;5(12):863-7
19679809 - Science. 2009 Aug 14;325(5942):855-9
24668898 - Angew Chem Int Ed Engl. 2014 May 12;53(20):5038-43
25099384 - Chem Soc Rev. 2014 Nov 7;43(21):7378-411
11641492 - Science. 2001 Oct 19;294(5542):571-4
22690827 - Org Lett. 2012 Jul 6;14 (13):3248-51
21552606 - Chem Soc Rev. 2011 Jun;40(6):3336-55
20217688 - Adv Mater. 2010 Jan 12;22(2):286-300
21258331 - Nat Nanotechnol. 2011 Feb;6(2):126-32
17460669 - Nature. 2007 Apr 26;446(7139):1066-9
12066180 - Nature. 2002 Jun 13;417(6890):725-9
15897004 - Spectrochim Acta A Mol Biomol Spectrosc. 2005 Dec;62(4-5):886-95
22267809 - Science. 2012 Jan 20;335(6066):319-24
24705512 - Nat Nanotechnol. 2014 Jun;9(6):466-73
16679362 - Biophys J. 2006 Aug 15;91(4):1156-68
26190024 - Acc Chem Res. 2015 Sep 15;48(9):2565-75
25282046 - Nat Nanotechnol. 2014 Nov;9(11):881-5
23125110 - Angew Chem Int Ed Engl. 2012 Dec 3;51(49):12228-32
23736215 - Nat Nanotechnol. 2013 Jun;8(6):399-410
18798657 - Acc Chem Res. 2008 Dec;41(12):1731-41
21290434 - Adv Mater. 2011 Apr 12;23(14):1583-608
21125111 - Chem Soc Rev. 2011 Mar;40(3):1305-23
23129396 - Small. 2013 Jun 10;9(11):1900-3
20044570 - Science. 2010 Jan 1;327(5961):64-7
18381819 - Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5301-6
19623355 - Chem Soc Rev. 2009 Aug;38(8):2360-84
12947193 - Science. 2003 Aug 29;301(5637):1221-3
17251976 - Nature. 2007 Jan 25;445(7126):414-7
15365183 - Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14017-22
References_xml – volume: 14
  start-page: 3248
  year: 2012
  ident: e_1_3_2_36_2
  article-title: Kinetics of formation of the host-guest complex of a viologen with cucurbit[7]uril
  publication-title: Org. Lett.
  doi: 10.1021/ol300911a
– ident: e_1_3_2_15_2
  doi: 10.1039/c1cs15047b
– ident: e_1_3_2_29_2
  doi: 10.1038/nature00790
– volume: 23
  start-page: 1583
  year: 2011
  ident: e_1_3_2_8_2
  article-title: Single molecule electronic devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004291
– volume: 38
  start-page: 2360
  year: 2009
  ident: e_1_3_2_24_2
  article-title: Nanopore analytics: Sensing of single molecules
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b813796j
– volume: 51
  start-page: 12228
  year: 2012
  ident: e_1_3_2_33_2
  article-title: Building high-throughput molecular junctions using indented graphene point contacts
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201205607
– volume: 22
  start-page: 286
  year: 2010
  ident: e_1_3_2_31_2
  article-title: Nanogap electrodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900864
– volume: 9
  start-page: 1900
  year: 2013
  ident: e_1_3_2_38_2
  article-title: Electronic and optical vibrational spectroscopy of molecular transport junctions created by on-wire lithography
  publication-title: Small
  doi: 10.1002/smll.201201993
– ident: e_1_3_2_4_2
  doi: 10.1038/nnano.2013.91
– volume: 446
  start-page: 1066
  year: 2007
  ident: e_1_3_2_23_2
  article-title: Weighing of biomolecules, single cells and single nanoparticles in fluid
  publication-title: Nature
  doi: 10.1038/nature05741
– volume: 105
  start-page: 5301
  year: 2008
  ident: e_1_3_2_50_2
  article-title: DNA surface hybridization regimes
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0709416105
– volume: 71
  start-page: S306
  year: 1999
  ident: e_1_3_2_43_2
  article-title: Conductance viewed as transmission
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.71.S306
– volume: 7
  start-page: 305
  year: 2012
  ident: e_1_3_2_12_2
  article-title: Observation of quantum interference in molecular charge transport
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.37
– start-page: 1064
  year: 1987
  ident: e_1_3_2_52_2
  article-title: Complexation of paraquat by a bisparaphenylene-34-crown-10 derivative
  publication-title: J. Chem. Soc. Chem. Commun.
  doi: 10.1039/c39870001064
– volume: 40
  start-page: 1305
  year: 2011
  ident: e_1_3_2_40_2
  article-title: Determining association constants from titration experiments in supramolecular chemistry
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C0CS00062K
– volume: 30
  start-page: 1417
  year: 1991
  ident: e_1_3_2_48_2
  article-title: Mechanisms of molecular recognition: Investigations of organic host–guest complexes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.199114171
– ident: e_1_3_2_44_2
  doi: 10.1103/PhysRevB.65.165401
– ident: e_1_3_2_28_2
  doi: 10.1126/science.1087481
– ident: e_1_3_2_25_2
  doi: 10.1038/nnano.2014.54
– volume: 393
  start-page: 152
  year: 1998
  ident: e_1_3_2_49_2
  article-title: Host-guest encapsulation of materials by assembled virus protein cages
  publication-title: Nature
  doi: 10.1038/30211
– ident: e_1_3_2_6_2
  doi: 10.1021/cr500459d
– ident: e_1_3_2_2_2
  doi: 10.1016/0009-2614(74)85031-1
– ident: e_1_3_2_42_2
  doi: 10.1063/1.464913
– ident: e_1_3_2_17_2
  doi: 10.1038/nature05462
– volume: 101
  start-page: 14017
  year: 2004
  ident: e_1_3_2_18_2
  article-title: Electrical detection of single viruses
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0406159101
– ident: e_1_3_2_27_2
  doi: 10.1126/science.1064354
– ident: e_1_3_2_47_2
  doi: 10.1103/PhysRevB.63.245407
– ident: e_1_3_2_21_2
  doi: 10.1038/nnano.2010.275
– volume: 118
  start-page: 21655
  year: 2014
  ident: e_1_3_2_41_2
  article-title: Structural versus electrical functionalization of oligo(phenyleneethynylene) diamine molecular junctions
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp506078a
– volume: 53
  start-page: 5038
  year: 2014
  ident: e_1_3_2_19_2
  article-title: Point decoration of silicon nanowires: An approach toward single-molecule electrical detection
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201309438
– volume: 15
  start-page: 13356
  year: 2009
  ident: e_1_3_2_45_2
  article-title: Rigid-strut-containing crown ethers and [2]catenanes for incorporation into metal–organic frameworks
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200902350
– volume: 41
  start-page: 1731
  year: 2008
  ident: e_1_3_2_32_2
  article-title: Molecular electronic devices based on single-walled carbon nanotube electrodes
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar8000266
– volume: 43
  start-page: 7378
  year: 2014
  ident: e_1_3_2_5_2
  article-title: Single-molecule electronics: From chemical design to functional devices
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00143E
– volume: 39
  start-page: 193
  year: 2001
  ident: e_1_3_2_37_2
  article-title: A practical guide for the determination of binding constants
  publication-title: J. Incl. Phenom. Macrocycl. Chem.
  doi: 10.1023/A:1011117412693
– volume: 325
  start-page: 855
  year: 2009
  ident: e_1_3_2_46_2
  article-title: Docking in metal-organic frameworks
  publication-title: Science
  doi: 10.1126/science.1175441
– ident: e_1_3_2_20_2
  doi: 10.1126/science.1214824
– ident: e_1_3_2_30_2
  doi: 10.1126/science.1112666
– ident: e_1_3_2_3_2
  doi: 10.1126/science.1081572
– volume: 52
  start-page: 3906
  year: 2013
  ident: e_1_3_2_34_2
  article-title: Toward functional molecular devices based on graphene–molecule junctions
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201208210
– ident: e_1_3_2_22_2
  doi: 10.1126/science.1181799
– ident: e_1_3_2_39_2
  doi: 10.1021/cr030413t
– volume: 62
  start-page: 886
  year: 2005
  ident: e_1_3_2_35_2
  article-title: Spectroscopy, NMR and DFT studies on molecular recognition of crown ether bridged chiral heterotrinuclear salen Zn(II) complex
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2005.03.021
– volume: 7
  start-page: 663
  year: 2012
  ident: e_1_3_2_11_2
  article-title: Probing the conductance superposition law in single-molecule circuits with parallel paths
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.147
– volume: 9
  start-page: 881
  year: 2014
  ident: e_1_3_2_14_2
  article-title: Electrostatic control of thermoelectricity in molecular junctions
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.209
– ident: e_1_3_2_26_2
  doi: 10.1126/science.278.5336.252
– volume: 48
  start-page: 2565
  year: 2015
  ident: e_1_3_2_7_2
  article-title: Carbon electrode–molecule junctions: A reliable platform for molecular electronics
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00133
– ident: e_1_3_2_9_2
  doi: 10.1038/nnano.2015.255
– ident: e_1_3_2_51_2
  doi: 10.1529/biophysj.105.079541
– volume: 25
  start-page: 3397
  year: 2013
  ident: e_1_3_2_16_2
  article-title: Single-molecule electrical biosensors based on single-walled carbon nanotubes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301219
– volume: 5
  start-page: 863
  year: 2010
  ident: e_1_3_2_13_2
  article-title: Electroluminescence from a single nanotube-molecule-nanotube junction
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.230
– ident: e_1_3_2_10_2
  doi: 10.1038/nnano.2015.97
– reference: 26571004 - Nat Nanotechnol. 2016 Feb;11(2):170-6
– reference: 21125111 - Chem Soc Rev. 2011 Mar;40(3):1305-23
– reference: 15365183 - Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14017-22
– reference: 21113158 - Nat Nanotechnol. 2010 Dec;5(12):863-7
– reference: 22690827 - Org Lett. 2012 Jul 6;14 (13):3248-51
– reference: 19623355 - Chem Soc Rev. 2009 Aug;38(8):2360-84
– reference: 22941403 - Nat Nanotechnol. 2012 Oct;7(10):663-7
– reference: 20217688 - Adv Mater. 2010 Jan 12;22(2):286-300
– reference: 12947193 - Science. 2003 Aug 29;301(5637):1221-3
– reference: 17251976 - Nature. 2007 Jan 25;445(7126):414-7
– reference: 15994551 - Science. 2005 Jul 1;309(5731):113-5
– reference: 23736215 - Nat Nanotechnol. 2013 Jun;8(6):399-410
– reference: 16679362 - Biophys J. 2006 Aug 15;91(4):1156-68
– reference: 18381819 - Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5301-6
– reference: 12066180 - Nature. 2002 Jun 13;417(6890):725-9
– reference: 23460546 - Angew Chem Int Ed Engl. 2013 Apr 2;52(14):3906-10
– reference: 15303831 - Chem Rev. 2004 Aug;104(8):3623-40
– reference: 22447160 - Nat Nanotechnol. 2012 Mar 25;7(5):305-9
– reference: 19946906 - Chemistry. 2009 Dec 14;15(48):13356-80
– reference: 25282046 - Nat Nanotechnol. 2014 Nov;9(11):881-5
– reference: 22267809 - Science. 2012 Jan 20;335(6066):319-24
– reference: 23129396 - Small. 2013 Jun 10;9(11):1900-3
– reference: 23125110 - Angew Chem Int Ed Engl. 2012 Dec 3;51(49):12228-32
– reference: 26005998 - Nat Nanotechnol. 2015 Jun;10(6):522-7
– reference: 21258331 - Nat Nanotechnol. 2011 Feb;6(2):126-32
– reference: 26190024 - Acc Chem Res. 2015 Sep 15;48(9):2565-75
– reference: 19679809 - Science. 2009 Aug 14;325(5942):855-9
– reference: 24668898 - Angew Chem Int Ed Engl. 2014 May 12;53(20):5038-43
– reference: 23696446 - Adv Mater. 2013 Jul 5;25(25):3397-408
– reference: 21552606 - Chem Soc Rev. 2011 Jun;40(6):3336-55
– reference: 21290434 - Adv Mater. 2011 Apr 12;23(14):1583-608
– reference: 24705512 - Nat Nanotechnol. 2014 Jun;9(6):466-73
– reference: 12775831 - Science. 2003 May 30;300(5624):1384-9
– reference: 25099384 - Chem Soc Rev. 2014 Nov 7;43(21):7378-411
– reference: 18798657 - Acc Chem Res. 2008 Dec;41(12):1731-41
– reference: 17460669 - Nature. 2007 Apr 26;446(7139):1066-9
– reference: 11641492 - Science. 2001 Oct 19;294(5542):571-4
– reference: 20044570 - Science. 2010 Jan 1;327(5961):64-7
– reference: 25950274 - Chem Rev. 2015 Jun 10;115(11):5056-115
– reference: 15897004 - Spectrochim Acta A Mol Biomol Spectrosc. 2005 Dec;62(4-5):886-95
SSID ssj0001466519
Score 2.324686
Snippet The formation dynamics of a host-guest complex is successfully investigated in graphene-based single-molecule electronic devices. Single-molecule electronic...
Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1601113
SubjectTerms Molecular Physics
SciAdv r-articles
Title Complex formation dynamics in a single-molecule electronic device
URI https://www.ncbi.nlm.nih.gov/pubmed/28138528
https://www.proquest.com/docview/1863219135
https://pubmed.ncbi.nlm.nih.gov/PMC5262467
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66XryI63N9EUFQDxHzbHoQEfGBoCcX9lbSPFBY62NX0X_vpI2r6wO89NKQlplM5ptJZj6EtmheeuW4ImE_Zqs8D6TUwpK8DKBjnwOIjvmOyyt13hUXPdn7vP-UBDj4NbSLfFLdp_7e6-PbIRj8wZcCGONeYp4k8qZPoinwSllkM7hMUL_OtwilZM3zwXgmCcRFOvVw_DnFuI_6ATy_35_84pBOZ9FMQpL4qFF9G034ag61k60O8E5qKL07j46i0ff9Kx5VKmLXENEP8G2FDY75gr4ndw1Vrsef3DjY-biVLKDu6cn18TlJ1AnEAiIaEkYth8AtdyY466iNpsYgHM0BzkhdOic8U5kyjBnJZWmFs1QHTb3JshCM4YuoVd1Xfhnhku17neVWMuOEY6IMViiqdRCANLyTHUQ-hFXY1Fc80lv0izq-YKpohFsk4XbQ9mj8Q9NR48-Rmx-yL2DRx5MMU_n750FBteKw1VIOX19qdDGai2nKtWS6g7IxLY0GxIba42-q25u6sbZkioHjWPn3H66iaQBQqqlNXEOt4dOzXweQMiw36uAenmc9ulGvxHdYBehn
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+formation+dynamics+in+a+single-molecule+electronic+device&rft.jtitle=Science+advances&rft.au=Wen%2C+Huimin&rft.au=Li%2C+Wengang&rft.au=Chen%2C+Jiewei&rft.au=He%2C+Gen&rft.date=2016-11-01&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=2&rft.issue=11&rft_id=info:doi/10.1126%2Fsciadv.1601113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_sciadv_1601113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon