Root acid phosphatases and rhizobacteria synergistically enhance white lupin and rice phosphorus acquisition

The rhizosheath is a belowground area that acts as a communication hub at the root–soil interface to promote water and nutrient acquisition. Certain crops, such as white lupin (Lupinus albus), acquire large amounts of phosphorus (P), owing partially to exudation of acid phosphatases (APases). Plant...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 190; no. 4; pp. 2449 - 2465
Main Authors Aslam, Mehtab Muhammad, Pueyo, José J, Pang, Jiayin, Yang, Jinyong, Chen, Weiguo, Chen, Hao, Waseem, Muhammad, Li, Ying, Zhang, Jianhua, Xu, Weifeng
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 28.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rhizosheath is a belowground area that acts as a communication hub at the root–soil interface to promote water and nutrient acquisition. Certain crops, such as white lupin (Lupinus albus), acquire large amounts of phosphorus (P), owing partially to exudation of acid phosphatases (APases). Plant growth-promoting rhizobacteria also increase soil P availability. However, potential synergistic effects of root APases and rhizosheath-associated microbiota on P acquisition require further research. In this study, we investigated the roles of root purple APases (PAPs) and plant growth-promoting rhizobacteria in rhizosheath formation and P acquisition under conditions of soil drying (SD) and P treatment (+P: soil with P fertilizer; –P: soil without fertilizer). We expressed purple acid phosphatase12 (LaPAP12) in white lupin and rice (Oryza sativa) plants and analyzed the rhizosheath-associated microbiome. Increased or heterologous LaPAP12 expression promoted APase activity and rhizosheath formation, resulting in increased P acquisition mainly under SD–P conditions. It also increased the abundance of members of the genus Bacillus in the rhizosheath-associated microbial communities of white lupin and rice. We isolated a phosphate-solubilizing, auxin-producing Bacillus megaterium strain from the rhizosheath of white lupin and used this to inoculate white lupin and rice plants. Inoculation promoted rhizosheath formation and P acquisition, especially in plants with increased LaPAP12 expression and under SD–P conditions, suggesting a functional role of the bacteria in alleviating P deficit stress via rhizosheath formation. Together, our results suggest a synergistic enhancing effect of LaPAP12 and plant growth-promoting rhizobacteria on rhizosheath formation and P acquisition under SD–P conditions.
AbstractList The rhizosheath is a belowground area that acts as a communication hub at the root-soil interface to promote water and nutrient acquisition. Certain crops, such as white lupin (Lupinus albus), acquire large amounts of phosphorus (P), owing partially to exudation of acid phosphatases (APases). Plant growth-promoting rhizobacteria also increase soil P availability. However, potential synergistic effects of root APases and rhizosheath-associated microbiota on P acquisition require further research. In this study, we investigated the roles of root purple APases (PAPs) and plant growth-promoting rhizobacteria in rhizosheath formation and P acquisition under conditions of soil drying (SD) and P treatment (+P: soil with P fertilizer; -P: soil without fertilizer). We expressed purple acid phosphatase12 (LaPAP12) in white lupin and rice (Oryza sativa) plants and analyzed the rhizosheath-associated microbiome. Increased or heterologous LaPAP12 expression promoted APase activity and rhizosheath formation, resulting in increased P acquisition mainly under SD-P conditions. It also increased the abundance of members of the genus Bacillus in the rhizosheath-associated microbial communities of white lupin and rice. We isolated a phosphate-solubilizing, auxin-producing Bacillus megaterium strain from the rhizosheath of white lupin and used this to inoculate white lupin and rice plants. Inoculation promoted rhizosheath formation and P acquisition, especially in plants with increased LaPAP12 expression and under SD-P conditions, suggesting a functional role of the bacteria in alleviating P deficit stress via rhizosheath formation. Together, our results suggest a synergistic enhancing effect of LaPAP12 and plant growth-promoting rhizobacteria on rhizosheath formation and P acquisition under SD-P conditions.The rhizosheath is a belowground area that acts as a communication hub at the root-soil interface to promote water and nutrient acquisition. Certain crops, such as white lupin (Lupinus albus), acquire large amounts of phosphorus (P), owing partially to exudation of acid phosphatases (APases). Plant growth-promoting rhizobacteria also increase soil P availability. However, potential synergistic effects of root APases and rhizosheath-associated microbiota on P acquisition require further research. In this study, we investigated the roles of root purple APases (PAPs) and plant growth-promoting rhizobacteria in rhizosheath formation and P acquisition under conditions of soil drying (SD) and P treatment (+P: soil with P fertilizer; -P: soil without fertilizer). We expressed purple acid phosphatase12 (LaPAP12) in white lupin and rice (Oryza sativa) plants and analyzed the rhizosheath-associated microbiome. Increased or heterologous LaPAP12 expression promoted APase activity and rhizosheath formation, resulting in increased P acquisition mainly under SD-P conditions. It also increased the abundance of members of the genus Bacillus in the rhizosheath-associated microbial communities of white lupin and rice. We isolated a phosphate-solubilizing, auxin-producing Bacillus megaterium strain from the rhizosheath of white lupin and used this to inoculate white lupin and rice plants. Inoculation promoted rhizosheath formation and P acquisition, especially in plants with increased LaPAP12 expression and under SD-P conditions, suggesting a functional role of the bacteria in alleviating P deficit stress via rhizosheath formation. Together, our results suggest a synergistic enhancing effect of LaPAP12 and plant growth-promoting rhizobacteria on rhizosheath formation and P acquisition under SD-P conditions.
The rhizosheath is a belowground area that acts as a communication hub at the root–soil interface to promote water and nutrient acquisition. Certain crops, such as white lupin (Lupinus albus), acquire large amounts of phosphorus (P), owing partially to exudation of acid phosphatases (APases). Plant growth-promoting rhizobacteria also increase soil P availability. However, potential synergistic effects of root APases and rhizosheath-associated microbiota on P acquisition require further research. In this study, we investigated the roles of root purple APases (PAPs) and plant growth-promoting rhizobacteria in rhizosheath formation and P acquisition under conditions of soil drying (SD) and P treatment (+P: soil with P fertilizer; –P: soil without fertilizer). We expressed purple acid phosphatase12 (LaPAP12) in white lupin and rice (Oryza sativa) plants and analyzed the rhizosheath-associated microbiome. Increased or heterologous LaPAP12 expression promoted APase activity and rhizosheath formation, resulting in increased P acquisition mainly under SD–P conditions. It also increased the abundance of members of the genus Bacillus in the rhizosheath-associated microbial communities of white lupin and rice. We isolated a phosphate-solubilizing, auxin-producing Bacillus megaterium strain from the rhizosheath of white lupin and used this to inoculate white lupin and rice plants. Inoculation promoted rhizosheath formation and P acquisition, especially in plants with increased LaPAP12 expression and under SD–P conditions, suggesting a functional role of the bacteria in alleviating P deficit stress via rhizosheath formation. Together, our results suggest a synergistic enhancing effect of LaPAP12 and plant growth-promoting rhizobacteria on rhizosheath formation and P acquisition under SD–P conditions.
The rhizosheath is a belowground area that acts as a communication hub at the root–soil interface to promote water and nutrient acquisition. Certain crops, such as white lupin ( Lupinus albus ), acquire large amounts of phosphorus (P), owing partially to exudation of acid phosphatases (APases). Plant growth-promoting rhizobacteria also increase soil P availability. However, potential synergistic effects of root APases and rhizosheath-associated microbiota on P acquisition require further research. In this study, we investigated the roles of root purple APases (PAPs) and plant growth-promoting rhizobacteria in rhizosheath formation and P acquisition under conditions of soil drying (SD) and P treatment (+P: soil with P fertilizer; –P: soil without fertilizer). We expressed purple acid phosphatase12 ( LaPAP12 ) in white lupin and rice ( Oryza sativa ) plants and analyzed the rhizosheath-associated microbiome. Increased or heterologous LaPAP12 expression promoted APase activity and rhizosheath formation, resulting in increased P acquisition mainly under SD–P conditions. It also increased the abundance of members of the genus Bacillus in the rhizosheath-associated microbial communities of white lupin and rice. We isolated a phosphate-solubilizing, auxin-producing Bacillus megaterium strain from the rhizosheath of white lupin and used this to inoculate white lupin and rice plants. Inoculation promoted rhizosheath formation and P acquisition, especially in plants with increased LaPAP12 expression and under SD–P conditions, suggesting a functional role of the bacteria in alleviating P deficit stress via rhizosheath formation. Together, our results suggest a synergistic enhancing effect of LaPAP12 and plant growth-promoting rhizobacteria on rhizosheath formation and P acquisition under SD–P conditions. Phosphorus-responsive PURPLE ACID PHOSPHATASE12 and auxin-producing Bacillus spp. promote rhizosheath formation in Lupinus albus under soil drying conditions, enhancing phosphorus acquisition.
Author Chen, Weiguo
Pang, Jiayin
Li, Ying
Xu, Weifeng
Aslam, Mehtab Muhammad
Zhang, Jianhua
Pueyo, José J
Chen, Hao
Yang, Jinyong
Waseem, Muhammad
Author_xml – sequence: 1
  givenname: Mehtab Muhammad
  orcidid: 0000-0002-0890-4819
  surname: Aslam
  fullname: Aslam, Mehtab Muhammad
– sequence: 2
  givenname: José J
  orcidid: 0000-0003-0337-4078
  surname: Pueyo
  fullname: Pueyo, José J
– sequence: 3
  givenname: Jiayin
  orcidid: 0000-0002-8127-645X
  surname: Pang
  fullname: Pang, Jiayin
– sequence: 4
  givenname: Jinyong
  orcidid: 0000-0002-7455-5768
  surname: Yang
  fullname: Yang, Jinyong
– sequence: 5
  givenname: Weiguo
  orcidid: 0000-0001-7400-5515
  surname: Chen
  fullname: Chen, Weiguo
– sequence: 6
  givenname: Hao
  orcidid: 0000-0002-1544-4152
  surname: Chen
  fullname: Chen, Hao
– sequence: 7
  givenname: Muhammad
  surname: Waseem
  fullname: Waseem, Muhammad
– sequence: 8
  givenname: Ying
  orcidid: 0000-0002-7835-3135
  surname: Li
  fullname: Li, Ying
– sequence: 9
  givenname: Jianhua
  orcidid: 0000-0002-3819-2437
  surname: Zhang
  fullname: Zhang, Jianhua
– sequence: 10
  givenname: Weifeng
  orcidid: 0000-0002-9424-991X
  surname: Xu
  fullname: Xu, Weifeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36066452$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1rFTEUDdJiX6tblzJLN69NJpmPbAQp2goFobTrcCfJdK7mJdMkozx_vSnzLCq4urn3nnNuOOeUHPngLSFvGD1nVPKL2c3TPl18Q9CC9S_IhjW83taN6I_IhtLypn0vT8hpSl8ppYwz8ZKc8Ja2rWjqDXG3IeQKNJpqnkKaJ8iQbKrAmypO-DMMoLONCFXaexsfMGXU4Ny-sn4Cr231Y8JsK7fM6FcWluGqFeJSlPTjggkzBv-KHI_gkn19qGfk_tPHu8vr7c2Xq8-XH262WjRt3rJxlLKnA5W1gUEbanrBjTCd0QIYjKVjGswgmekt77vOdBbAlF3LOW8lPyPvV915GXbWaOtzBKfmiDuIexUA1d8bj5N6CN-V7GixpSkC7w4CMTwuNmW1w6Stc-BtWJKqu2J-KxveFejbP289H_ltcQGcrwAdQ0rRjs8QRtVThmrNUB0yLATxD0Fjhif_yl_R_Y_2C4pnqRs
CitedBy_id crossref_primary_10_1007_s11104_024_06702_x
crossref_primary_10_3390_agronomy14081621
crossref_primary_10_3389_fpls_2022_1088211
crossref_primary_10_3390_ijms232315194
crossref_primary_10_3390_agronomy14112735
crossref_primary_10_1111_ppl_14105
crossref_primary_10_1007_s11104_023_06374_z
crossref_primary_10_1007_s00425_023_04307_9
crossref_primary_10_3390_ijms242417191
crossref_primary_10_3390_agronomy14102368
crossref_primary_10_1111_tpj_16184
crossref_primary_10_1007_s11756_024_01607_7
crossref_primary_10_1007_s10722_024_02321_8
crossref_primary_10_1007_s11104_024_06883_5
crossref_primary_10_3390_microorganisms11020326
crossref_primary_10_1093_plphys_kiae290
crossref_primary_10_3390_soilsystems7040106
crossref_primary_10_1016_j_soilbio_2023_109039
crossref_primary_10_1111_ppl_13962
crossref_primary_10_1021_acs_jafc_3c04637
crossref_primary_10_1007_s00344_023_11011_1
crossref_primary_10_3390_f15020328
crossref_primary_10_1007_s10725_022_00917_7
crossref_primary_10_1007_s11104_023_06133_0
crossref_primary_10_1007_s11104_024_07126_3
Cites_doi 10.1111/j.1365-313X.2005.02573.x
10.5194/bg-13-341-2016
10.3389/fpls.2021.644218
10.3389/fpls.2021.810692
10.3389/fpls.2017.00141
10.1155/2019/4917256
10.1111/1365-2435.13823
10.1146/annurev.arplant.57.032905.105159
10.1111/nph.12786
10.1071/BT06118
10.1104/pp.19.01020
10.1007/s00299-014-1588-5
10.1186/s40168-018-0597-y
10.1046/j.1365-313X.2003.01860.x
10.1016/j.envexpbot.2010.11.007
10.1016/j.plantsci.2010.04.005
10.1007/s11104-013-1910-y
10.1111/jipb.12184
10.1093/jxb/ert200
10.1007/s00709-017-1109-9
10.3390/agriculture11060485
10.1111/aab.12420
10.1093/jxb/ers309
10.1111/pce.12794
10.1016/j.tplants.2017.09.003
10.1007/s11104-017-3227-8
10.1007/s00425-019-03228-w
10.1104/pp.109.147918
10.1007/s11104-009-0071-5
10.1016/j.pbi.2012.08.010
10.3389/fpls.2021.658787
10.1186/s12864-018-5022-1
10.3390/horticulturae7090302
10.1007/s11104-017-3362-2
10.1016/j.agee.2020.107236
10.1016/j.pbi.2015.04.002
10.1007/978-981-15-6125-2_3
10.4014/jmb.1712.12038
10.1016/j.plantsci.2018.03.013
10.1093/aob/mcs217
10.1104/pp.125.2.728
10.1038/s41396-021-01133-3
10.1023/A:1004871704173
10.3389/fmicb.2017.02552
10.1186/1471-2229-14-51
10.1038/ismej.2008.80
10.1104/pp.111.175448
10.1016/j.tree.2007.10.008
10.3923/ajbs.2012.294.303
10.1111/j.1469-8137.2010.03323.x
10.1104/pp.111.183723
10.1016/j.cell.2016.02.028
10.1016/j.plaphy.2021.06.022
10.1094/MPMI-10-15-0239-R
10.1007/s11104-021-05055-z
10.1104/pp.109.138891
10.1111/pbi.12699
10.1071/CP07125
10.1101/cshperspect.a001438
10.1111/pce.14237
10.1126/sciadv.aaw0759
10.3389/fmicb.2019.02171
10.1104/pp.111.175281
10.1016/j.plantsci.2005.08.001
10.1111/ele.12530
10.1007/s11274-011-0819-y
10.1111/1462-2920.12439
10.1093/jxb/erw035
10.1016/S1002-0160(20)60057-1
10.1006/meth.2001.1262
10.1111/j.1747-0765.2008.00329.x
10.1007/s11104-010-0433-z
10.3389/fpls.2017.01288
10.1111/j.1365-3040.2010.02184.x
10.1093/jxb/eraa021
10.1016/j.jare.2011.11.003
10.1111/nph.15213
10.1093/jxb/eraa179
10.1111/j.1744-7909.2006.00189.x
10.1038/nature21417
10.1016/j.tplants.2004.09.003
10.1074/jbc.M204183200
10.1007/s11104-018-3701-y
ContentType Journal Article
Copyright American Society of Plant Biologists 2022. All rights reserved. For permissions, please email: journals.permissions@oup.com.
American Society of Plant Biologists 2022. All rights reserved. For permissions, please email: journals.permissions@oup.com 2022
Copyright_xml – notice: American Society of Plant Biologists 2022. All rights reserved. For permissions, please email: journals.permissions@oup.com.
– notice: American Society of Plant Biologists 2022. All rights reserved. For permissions, please email: journals.permissions@oup.com 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/plphys/kiac418
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1532-2548
EndPage 2465
ExternalDocumentID PMC9706455
36066452
10_1093_plphys_kiac418
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 31761130073; 31872169
– fundername: ;
  grantid: AGL2017-88381-R; PID2021-125371OB-I00
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2WC
4.4
5VS
5WD
85S
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAXTN
AAYXX
ABDFA
ABEJV
ABGNP
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABVGC
ABXVV
ABXZS
ACBTR
ACGOD
ACIPB
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADVEK
AEEJZ
AENEX
AFAZZ
AFFZL
AFGWE
AFRAH
AGORE
AHGBF
AHMBA
AJBYB
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ATGXG
BAWUL
BCRHZ
BEYMZ
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
ECGQY
F5P
FLUFQ
FOEOM
H13
JBS
JLS
JST
JXSIZ
KOP
KQ8
KSI
KSN
MV1
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P2P
Q2X
RHI
ROX
RPB
RWL
RXW
TAE
TN5
TR2
W8F
WH7
WOQ
XSW
YBU
YKV
YNT
YSK
YZZ
ZCA
~02
~KM
ADYWZ
CGR
CUY
CVF
ECM
EIF
NPM
RHF
RPM
VQA
7X8
5PM
ID FETCH-LOGICAL-c456t-1ff9980b092dabcd0d843d4d7dc4a1af8431cadb91d8e3877d7eaad4a16333693
ISSN 0032-0889
1532-2548
IngestDate Thu Aug 21 18:36:45 EDT 2025
Fri Jul 11 09:28:38 EDT 2025
Wed Feb 19 02:26:12 EST 2025
Tue Jul 01 02:23:34 EDT 2025
Thu Apr 24 22:55:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
American Society of Plant Biologists 2022. All rights reserved. For permissions, please email: journals.permissions@oup.com.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c456t-1ff9980b092dabcd0d843d4d7dc4a1af8431cadb91d8e3877d7eaad4a16333693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9424-991X
0000-0002-7455-5768
0000-0002-7835-3135
0000-0002-1544-4152
0000-0002-8127-645X
0000-0001-7400-5515
0000-0003-0337-4078
0000-0002-3819-2437
0000-0002-0890-4819
OpenAccessLink https://academic.oup.com/plphys/article-pdf/190/4/2449/47382354/kiac418.pdf
PMID 36066452
PQID 2710969537
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9706455
proquest_miscellaneous_2710969537
pubmed_primary_36066452
crossref_primary_10_1093_plphys_kiac418
crossref_citationtrail_10_1093_plphys_kiac418
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-28
PublicationDateYYYYMMDD 2022-11-28
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Richardson (2022112910525893000_kiac418-B55) 2001; 229
Wang (2022112910525893000_kiac418-B74) 2011; 157
Menezes-Blackburn (2022112910525893000_kiac418-B45) 2018; 427
Deng (2022112910525893000_kiac418-B11) 2020; 71
Lambers (2022112910525893000_kiac418-B31) 2008; 23
Uhde-Stone (2022112910525893000_kiac418-B71) 2005; 44
Xu (2022112910525893000_kiac418-B85) 2020; 11
Honvault (2022112910525893000_kiac418-B21) 2021; 35
Harrison (2022112910525893000_kiac418-B19) 2012; 15
Livak (2022112910525893000_kiac418-B39) 2001; 25
Richardson (2022112910525893000_kiac418-B56) 2009; 60
Zhang (2022112910525893000_kiac418-B87) 2020; 71
Tran (2022112910525893000_kiac418-B67) 2010; 179
Albalasmeh (2022112910525893000_kiac418-B1) 2014; 374
Ticconi (2022112910525893000_kiac418-B66) 2004; 9
Wang (2022112910525893000_kiac418-B75) 2018; 271
Aslam (2022112910525893000_kiac418-B2) 2021; 166
Paterson (2022112910525893000_kiac418-B47) 2021
Karanja (2022112910525893000_kiac418-B26) 2021; 12
George (2022112910525893000_kiac418-B14) 2014; 203
Lynch (2022112910525893000_kiac418-B42) 2007; 55
Richardson (2022112910525893000_kiac418-B54) 2009; 322
Chen (2022112910525893000_kiac418-B9) 2003; 36
Lambers (2022112910525893000_kiac418-B30) 2015; 25
Li (2022112910525893000_kiac418-B33) 2002; 277
Lu (2022112910525893000_kiac418-B40) 2016; 39
Sweeney (2022112910525893000_kiac418-B63) 2020
Kong (2022112910525893000_kiac418-B28) 2014; 33
Lavakush (2022112910525893000_kiac418-B32) 2012; 5
Quiñones (2022112910525893000_kiac418-B51) 2021; 7
Yahaghi (2022112910525893000_kiac418-B86) 2018; 28
Divjot (2022112910525893000_kiac418-B12) 2021; 31
u Rahman (2022112910525893000_kiac418-B69) 2021
Haling (2022112910525893000_kiac418-B17) 2010; 335
Robinson (2022112910525893000_kiac418-B58) 2012; 63
Xie (2022112910525893000_kiac418-B83) 2018; 19
Pueyo (2022112910525893000_kiac418-B50) 2021; 12
Liang (2022112910525893000_kiac418-B35) 2010; 152
Xiao (2022112910525893000_kiac418-B82) 2006; 48
Wang (2022112910525893000_kiac418-B78) 2009; 151
Marasco (2022112910525893000_kiac418-B43) 2018; 6
Tian (2022112910525893000_kiac418-B65) 2021
Wang (2022112910525893000_kiac418-B77) 2021; 466
Sasse (2022112910525893000_kiac418-B61) 2018; 23
Rabbi (2022112910525893000_kiac418-B53) 2018; 219
Ji (2022112910525893000_kiac418-B23) 2012; 28
Kalayu (2022112910525893000_kiac418-B24) 2019; 2019
Carminati (2022112910525893000_kiac418-B6) 2017; 417
Liu (2022112910525893000_kiac418-B38) 2016; 29
Hanna (2022112910525893000_kiac418-B18) 2013; 4
Ndour (2022112910525893000_kiac418-B46) 2017; 8
Wei (2022112910525893000_kiac418-B80) 2019; 5
Talboys (2022112910525893000_kiac418-B64) 2014; 14
Tran (2022112910525893000_kiac418-B68) 2010; 33
Mehra (2022112910525893000_kiac418-B44) 2017; 15
Chinnaswamy (2022112910525893000_kiac418-B10) 2018; 172
Kang (2022112910525893000_kiac418-B25) 2021; 11
Vinci (2022112910525893000_kiac418-B72) 2018; 429
Korir (2022112910525893000_kiac418-B29) 2017; 8
Quiñones (2022112910525893000_kiac418-B52) 2022; 12
Hiruma (2022112910525893000_kiac418-B20) 2016; 165
Richardson (2022112910525893000_kiac418-B57) 2011; 156
Chen (2022112910525893000_kiac418-B8) 2019; 10
Rose (2022112910525893000_kiac418-B60) 2013; 112
Wasaki (2022112910525893000_kiac418-B79) 2009; 55
Liu (2022112910525893000_kiac418-B37) 2019; 250
Haling (2022112910525893000_kiac418-B16) 2013; 64
Baldwin (2022112910525893000_kiac418-B4) 2001; 125
James (2022112910525893000_kiac418-B22) 2016; 67
Rolli (2022112910525893000_kiac418-B59) 2015; 17
el Zahar Haichar (2022112910525893000_kiac418-B13) 2008; 2
Bais (2022112910525893000_kiac418-B3) 2006; 57
Zhao (2022112910525893000_kiac418-B89) 2021; 307
Castrillo (2022112910525893000_kiac418-B7) 2017; 543
Xiao (2022112910525893000_kiac418-B81) 2006; 170
Zhang (2022112910525893000_kiac418-B88) 2020; 183
Li (2022112910525893000_kiac418-B34) 2011; 71
Xu (2022112910525893000_kiac418-B84) 2021; 16
Liu (2022112910525893000_kiac418-B36) 2017; 8
Kohli (2022112910525893000_kiac418-B27) 2021; 45
Lynch (2022112910525893000_kiac418-B41) 2012
Bhadouria (2022112910525893000_kiac418-B5) 2021
Plaxton (2022112910525893000_kiac418-B49) 2011; 156
Pérez-Flores (2022112910525893000_kiac418-B48) 2017; 254
Spaepen (2022112910525893000_kiac418-B62) 2011; 3
Hacker (2022112910525893000_kiac418-B15) 2015; 18
Zhu (2022112910525893000_kiac418-B90) 2016; 13
Uhde-Stone (2022112910525893000_kiac418-B70) 2017
Wang (2022112910525893000_kiac418-B73) 2010; 187
Wang (2022112910525893000_kiac418-B76) 2014; 56
References_xml – volume: 44
  start-page: 840
  year: 2005
  ident: 2022112910525893000_kiac418-B71
  article-title: Transgenic proteoid roots of white lupin: a vehicle for characterizing and silencing root genes involved in adaptation to P stress
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02573.x
– volume: 13
  start-page: 341
  year: 2016
  ident: 2022112910525893000_kiac418-B90
  article-title: Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-341-2016
– volume: 12
  year: 2021
  ident: 2022112910525893000_kiac418-B50
  article-title: Nitrogen and phosphorus interplay in lupin root nodules and cluster roots
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.644218
– volume: 12
  year: 2022
  ident: 2022112910525893000_kiac418-B52
  article-title: Adaptive mechanisms make lupin a choice crop for acidic soils affected by aluminum toxicity
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.810692
– start-page: 1
  year: 2021
  ident: 2022112910525893000_kiac418-B65
  article-title: Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant
  publication-title: ISME J
– volume: 8
  start-page: 141
  year: 2017
  ident: 2022112910525893000_kiac418-B29
  article-title: Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.00141
– volume: 2019
  year: 2019
  ident: 2022112910525893000_kiac418-B24
  article-title: Phosphate solubilizing microorganisms: promising approach as biofertilizers
  publication-title: Int J Agron
  doi: 10.1155/2019/4917256
– volume: 35
  start-page: 1603
  year: 2021
  ident: 2022112910525893000_kiac418-B21
  article-title: Interactions between belowground traits and rhizosheath fungal and bacterial communities for phosphorus acquisition
  publication-title: Funct Ecol
  doi: 10.1111/1365-2435.13823
– volume: 57
  start-page: 233
  year: 2006
  ident: 2022112910525893000_kiac418-B3
  article-title: The role of root exudates in rhizosphere interactions with plants and other organisms
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.57.032905.105159
– volume: 203
  start-page: 195
  year: 2014
  ident: 2022112910525893000_kiac418-B14
  article-title: Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare)
  publication-title: New Phytol
  doi: 10.1111/nph.12786
– volume: 55
  start-page: 493
  year: 2007
  ident: 2022112910525893000_kiac418-B42
  article-title: Roots of the second green revolution
  publication-title: Aust J Bot
  doi: 10.1071/BT06118
– start-page: 243
  volume-title: Legume Nitrogen Fixation in Soils with Low Phosphorus Availability
  year: 2017
  ident: 2022112910525893000_kiac418-B70
– volume: 183
  start-page: 780
  year: 2020
  ident: 2022112910525893000_kiac418-B88
  article-title: Root–bacteria associations boost rhizosheath formation in moderately dry soil through ethylene responses
  publication-title: Plant Physiol
  doi: 10.1104/pp.19.01020
– volume: 33
  start-page: 655
  year: 2014
  ident: 2022112910525893000_kiac418-B28
  article-title: GmPAP4, a novel purple acid phosphatase gene isolated from soybean (Glycine max), enhanced extracellular phytate utilization in Arabidopsis thaliana
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-014-1588-5
– volume: 6
  start-page: 1
  year: 2018
  ident: 2022112910525893000_kiac418-B43
  article-title: Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0597-y
– volume: 36
  start-page: 105
  year: 2003
  ident: 2022112910525893000_kiac418-B9
  article-title: Distribution and characterization of over 1000 T-DNA tags in rice genome
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2003.01860.x
– volume: 71
  start-page: 114
  year: 2011
  ident: 2022112910525893000_kiac418-B34
  article-title: Stimulation of root acid phosphatase by phosphorus deficiency is regulated by ethylene in Medicago falcata
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2010.11.007
– volume: 179
  start-page: 14
  year: 2010
  ident: 2022112910525893000_kiac418-B67
  article-title: Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2010.04.005
– volume: 374
  start-page: 739
  year: 2014
  ident: 2022112910525893000_kiac418-B1
  article-title: Interplay between soil drying and root exudation in rhizosheath development
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1910-y
– volume: 56
  start-page: 299
  year: 2014
  ident: 2022112910525893000_kiac418-B76
  article-title: Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation
  publication-title: J Integr Plant Biol
  doi: 10.1111/jipb.12184
– volume: 64
  start-page: 3711
  year: 2013
  ident: 2022112910525893000_kiac418-B16
  article-title: Root hairs improve root penetration, root–soil contact, and phosphorus acquisition in soils of different strength
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert200
– volume: 254
  start-page: 2201
  year: 2017
  ident: 2022112910525893000_kiac418-B48
  article-title: Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles
  publication-title: Protoplasma
  doi: 10.1007/s00709-017-1109-9
– volume: 11
  start-page: 485
  year: 2021
  ident: 2022112910525893000_kiac418-B25
  article-title: Phosphate-solubilizing Enterobacter ludwigii AFFR02 and Bacillus megaterium Mj1212 rescues alfalfa’s growth under post-drought stress
  publication-title: Agriculture
  doi: 10.3390/agriculture11060485
– volume: 172
  start-page: 295
  year: 2018
  ident: 2022112910525893000_kiac418-B10
  article-title: A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants
  publication-title: Ann Appl Biol
  doi: 10.1111/aab.12420
– volume: 63
  start-page: 6531
  year: 2012
  ident: 2022112910525893000_kiac418-B58
  article-title: The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ers309
– volume: 39
  start-page: 2247
  year: 2016
  ident: 2022112910525893000_kiac418-B40
  article-title: OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12794
– volume: 23
  start-page: 25
  year: 2018
  ident: 2022112910525893000_kiac418-B61
  article-title: Feed your friends: do plant exudates shape the root microbiome?
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2017.09.003
– volume: 417
  start-page: 1
  year: 2017
  ident: 2022112910525893000_kiac418-B6
  article-title: Liquid bridges at the root–soil interface
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3227-8
– volume: 250
  start-page: 1355
  year: 2019
  ident: 2022112910525893000_kiac418-B37
  article-title: Comparative metabolite profiling of two switchgrass ecotypes reveals differences in drought stress responses and rhizosheath weight
  publication-title: Planta
  doi: 10.1007/s00425-019-03228-w
– volume: 152
  start-page: 854
  year: 2010
  ident: 2022112910525893000_kiac418-B35
  article-title: Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.147918
– volume: 322
  start-page: 17
  year: 2009
  ident: 2022112910525893000_kiac418-B54
  article-title: Regulating the phosphorus nutrition of plants: molecular biology meeting agronomic needs
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0071-5
– volume: 15
  start-page: 691
  year: 2012
  ident: 2022112910525893000_kiac418-B19
  article-title: Cellular programs for arbuscular mycorrhizal symbiosis
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2012.08.010
– volume: 12
  start-page: 658787
  year: 2021
  ident: 2022112910525893000_kiac418-B26
  article-title: Abscisic acid mediates drought-enhanced rhizosheath formation in tomato
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.658787
– volume: 19
  start-page: 1
  year: 2018
  ident: 2022112910525893000_kiac418-B83
  article-title: Genome-wide analysis of purple acid phosphatase structure and expression in ten vegetable species
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-5022-1
– volume: 7
  start-page: 302
  year: 2021
  ident: 2022112910525893000_kiac418-B51
  article-title: Nodulated white lupin plants growing in contaminated soils accumulate unusually high mercury concentrations in their nodules, roots and especially cluster roots
  publication-title: Horticulturae
  doi: 10.3390/horticulturae7090302
– volume: 427
  start-page: 5
  year: 2018
  ident: 2022112910525893000_kiac418-B45
  article-title: Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3362-2
– volume: 307
  start-page: 107236
  year: 2021
  ident: 2022112910525893000_kiac418-B89
  article-title: The application of Bacillus megaterium alters soil microbial community composition, bioavailability of soil phosphorus and potassium, and cucumber growth in the plastic shed system of North China
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2020.107236
– volume: 25
  start-page: 23
  year: 2015
  ident: 2022112910525893000_kiac418-B30
  article-title: Plant adaptations to severely phosphorus-impoverished soils
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2015.04.002
– start-page: 75
  volume-title: Rhizosphere Biology: Interactions Between Microbes and Plants
  year: 2021
  ident: 2022112910525893000_kiac418-B47
  doi: 10.1007/978-981-15-6125-2_3
– volume: 28
  start-page: 1156
  year: 2018
  ident: 2022112910525893000_kiac418-B86
  article-title: Isolation and characterization of Pb-solubilizing bacteria and their effects on Pb uptake by Brassica juncea: implications for microbe-assisted phytoremediation
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/jmb.1712.12038
– volume: 271
  start-page: 108
  year: 2018
  ident: 2022112910525893000_kiac418-B75
  article-title: Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2018.03.013
– volume: 112
  start-page: 331
  year: 2013
  ident: 2022112910525893000_kiac418-B60
  article-title: Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding
  publication-title: Ann Bot
  doi: 10.1093/aob/mcs217
– volume: 125
  start-page: 728
  year: 2001
  ident: 2022112910525893000_kiac418-B4
  article-title: LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato
  publication-title: Plant Physiol
  doi: 10.1104/pp.125.2.728
– volume: 16
  start-page: 801
  year: 2021
  ident: 2022112910525893000_kiac418-B84
  article-title: Coordination of root auxin with the fungus Piriformospora indica and bacterium Bacillus cereus enhances rice rhizosheath formation under soil drying
  publication-title: ISME J
  doi: 10.1038/s41396-021-01133-3
– volume: 229
  start-page: 47
  year: 2001
  ident: 2022112910525893000_kiac418-B55
  article-title: Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms
  publication-title: Plant Soil
  doi: 10.1023/A:1004871704173
– volume: 8
  start-page: 2552
  year: 2017
  ident: 2022112910525893000_kiac418-B36
  article-title: Inner plant values: diversity, colonization and benefits from endophytic bacteria
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.02552
– volume: 14
  start-page: 51
  year: 2014
  ident: 2022112910525893000_kiac418-B64
  article-title: Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivium
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-14-51
– volume: 2
  start-page: 1221
  year: 2008
  ident: 2022112910525893000_kiac418-B13
  article-title: Plant host habitat and root exudates shape soil bacterial community structure
  publication-title: ISME J
  doi: 10.1038/ismej.2008.80
– volume: 156
  start-page: 989
  year: 2011
  ident: 2022112910525893000_kiac418-B57
  article-title: Soil microorganisms mediating phosphorus availability update on microbial phosphorus
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175448
– start-page: 1
  year: 2021
  ident: 2022112910525893000_kiac418-B5
  article-title: Purple acid phosphatases: roles in phosphate utilization and new emerging functions
  publication-title: Plant Cell Rep
– volume: 23
  start-page: 95
  year: 2008
  ident: 2022112910525893000_kiac418-B31
  article-title: Plant nutrient-acquisition strategies change with soil age
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2007.10.008
– volume: 5
  start-page: 294
  year: 2012
  ident: 2022112910525893000_kiac418-B32
  article-title: Isolation and characterization of effective plant growth promoting rhizobacteria from rice rhizosphere of Indian soil
  publication-title: Asian J Biol Sci
  doi: 10.3923/ajbs.2012.294.303
– volume: 187
  start-page: 1112
  year: 2010
  ident: 2022112910525893000_kiac418-B73
  article-title: Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03323.x
– volume: 157
  start-page: 1283
  year: 2011
  ident: 2022112910525893000_kiac418-B74
  article-title: The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.183723
– volume: 165
  start-page: 464
  year: 2016
  ident: 2022112910525893000_kiac418-B20
  article-title: Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.028
– volume: 166
  start-page: 531
  year: 2021
  ident: 2022112910525893000_kiac418-B2
  article-title: Phosphorus uptake is associated with the rhizosheath formation of mature cluster roots in white lupin under soil drying and phosphorus deficiency
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2021.06.022
– volume: 29
  start-page: 324
  year: 2016
  ident: 2022112910525893000_kiac418-B38
  article-title: Plant–microbe communication enhances auxin biosynthesis by a root-associated bacterium, Bacillus amyloliquefaciens SQR9
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-10-15-0239-R
– volume: 466
  start-page: 491
  year: 2021
  ident: 2022112910525893000_kiac418-B77
  article-title: Bacillus megaterium strain WW1211 promotes plant growth and lateral root initiation via regulation of auxin biosynthesis and redistribution
  publication-title: Plant Soil
  doi: 10.1007/s11104-021-05055-z
– volume: 151
  start-page: 233
  year: 2009
  ident: 2022112910525893000_kiac418-B78
  article-title: Overexpressing AtPAP15 enhances phosphorus efficiency in soybean
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.138891
– start-page: 0
  year: 2020
  ident: 2022112910525893000_kiac418-B63
  article-title: Root traits explain rhizosphere fungal community composition among temperate grassland plant species
  publication-title: New Phytol
– volume: 15
  start-page: 1054
  year: 2017
  ident: 2022112910525893000_kiac418-B44
  article-title: Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.12699
– volume: 60
  start-page: 124
  year: 2009
  ident: 2022112910525893000_kiac418-B56
  article-title: Plant mechanisms to optimise access to soil phosphorus
  publication-title: Crop Pasture Sci
  doi: 10.1071/CP07125
– volume: 3
  year: 2011
  ident: 2022112910525893000_kiac418-B62
  article-title: Auxin and plant–microbe interactions
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a001438
– volume: 45
  start-page: 677
  year: 2021
  ident: 2022112910525893000_kiac418-B27
  article-title: Significance of root hairs in developing stress-resilient plants for sustainable crop production
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.14237
– volume: 5
  start-page: eaaw0759
  year: 2019
  ident: 2022112910525893000_kiac418-B80
  article-title: Initial soil microbiome composition and functioning predetermine future plant health
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aaw0759
– volume: 10
  year: 2019
  ident: 2022112910525893000_kiac418-B8
  article-title: Identification and characterization of the phosphate-solubilizing bacterium Pantoea sp. S32 in reclamation soil in Shanxi, China
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.02171
– volume: 156
  start-page: 1006
  year: 2011
  ident: 2022112910525893000_kiac418-B49
  article-title: Metabolic adaptations of phosphate-starved plants
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175281
– volume: 170
  start-page: 191
  year: 2006
  ident: 2022112910525893000_kiac418-B81
  article-title: Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatase gene from M. truncatula
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2005.08.001
– volume: 18
  start-page: 1356
  year: 2015
  ident: 2022112910525893000_kiac418-B15
  article-title: Plant diversity shapes microbe–rhizosphere effects on P mobilisation from organic matter in soil
  publication-title: Ecol Lett
  doi: 10.1111/ele.12530
– volume: 28
  start-page: 293
  year: 2012
  ident: 2022112910525893000_kiac418-B23
  article-title: Effect of heavy metal-solubilizing microorganisms on zinc and cadmium extractions from heavy metal contaminated soil with Tricholoma lobynsis
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-011-0819-y
– volume: 11
  start-page: 1
  year: 2020
  ident: 2022112910525893000_kiac418-B85
  article-title: The genome evolution and low-phosphorus adaptation in white lupin
  publication-title: Nat Commun
– volume: 17
  start-page: 316
  year: 2015
  ident: 2022112910525893000_kiac418-B59
  article-title: Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.12439
– volume: 67
  start-page: 3709
  year: 2016
  ident: 2022112910525893000_kiac418-B22
  article-title: Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erw035
– volume: 31
  start-page: 43
  year: 2021
  ident: 2022112910525893000_kiac418-B12
  article-title: Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and-mobilizing microbes: a review
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(20)60057-1
– volume: 25
  start-page: 402
  year: 2001
  ident: 2022112910525893000_kiac418-B39
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 55
  start-page: 107
  year: 2009
  ident: 2022112910525893000_kiac418-B79
  article-title: Overexpression of the LASAP2 gene for secretory acid phosphatase in white lupin improves the phosphorus uptake and growth of tobacco plants
  publication-title: Soil Sci Plant Nutr
  doi: 10.1111/j.1747-0765.2008.00329.x
– volume: 335
  start-page: 457
  year: 2010
  ident: 2022112910525893000_kiac418-B17
  article-title: Root morphology, root-hair development and rhizosheath formation on perennial grass seedlings is influenced by soil acidity
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0433-z
– start-page: 1
  year: 2021
  ident: 2022112910525893000_kiac418-B69
  article-title: Root exudates increase phosphorus availability in the tomato/potato onion intercropping system
  publication-title: Plant Soil
– volume: 8
  start-page: 1288
  year: 2017
  ident: 2022112910525893000_kiac418-B46
  article-title: Pearl millet genetic traits shape rhizobacterial diversity and modulate rhizosphere aggregation
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.01288
– volume: 33
  start-page: 1789
  year: 2010
  ident: 2022112910525893000_kiac418-B68
  article-title: Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2010.02184.x
– volume: 71
  start-page: 2740
  year: 2020
  ident: 2022112910525893000_kiac418-B87
  article-title: Moderate water stress in rice induces rhizosheath formation associated with abscisic acid and auxin responses
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eraa021
– volume: 4
  start-page: 13
  year: 2013
  ident: 2022112910525893000_kiac418-B18
  article-title: Diversity of bacteria nesting the plant cover of north Sinai deserts, Egypt
  publication-title: J Adv Res
  doi: 10.1016/j.jare.2011.11.003
– volume: 219
  start-page: 542
  year: 2018
  ident: 2022112910525893000_kiac418-B53
  article-title: Plant roots redesign the rhizosphere to alter the three-dimensional physical architecture and water dynamics
  publication-title: New Phytol
  doi: 10.1111/nph.15213
– volume: 71
  start-page: 4321
  year: 2020
  ident: 2022112910525893000_kiac418-B11
  article-title: Purple acid phosphatase 10c (OsPAP10c) encodes a major acid phosphatase and regulates the plant growth under phosphate deficient condition in rice
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eraa179
– volume: 48
  start-page: 35
  year: 2006
  ident: 2022112910525893000_kiac418-B82
  article-title: Ectopic expression of a phytase gene from Medicago truncatula barrel medic enhances phosphorus absorption in plants
  publication-title: J Integr Plant Biol
  doi: 10.1111/j.1744-7909.2006.00189.x
– volume: 543
  start-page: 513
  year: 2017
  ident: 2022112910525893000_kiac418-B7
  article-title: Root microbiota drive direct integration of phosphate stress and immunity
  publication-title: Nature
  doi: 10.1038/nature21417
– volume: 9
  start-page: 548
  year: 2004
  ident: 2022112910525893000_kiac418-B66
  article-title: Short on phosphate: plant surveillance and countermeasures
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2004.09.003
– volume: 277
  start-page: 27772
  year: 2002
  ident: 2022112910525893000_kiac418-B33
  article-title: Purple acid phosphatases of Arabidopsis thaliana: comparative analysis and differential regulation by phosphate deprivation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M204183200
– year: 2012
  ident: 2022112910525893000_kiac418-B41
– volume: 429
  start-page: 437
  year: 2018
  ident: 2022112910525893000_kiac418-B72
  article-title: Effects of Bacillus amyloliquefaciens and different phosphorus sources on Maize plants as revealed by NMR and GC-MS based metabolomics
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3701-y
SSID ssj0001314
Score 2.5328217
Snippet The rhizosheath is a belowground area that acts as a communication hub at the root–soil interface to promote water and nutrient acquisition. Certain crops,...
The rhizosheath is a belowground area that acts as a communication hub at the root-soil interface to promote water and nutrient acquisition. Certain crops,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2449
SubjectTerms Acid Phosphatase - genetics
Acid Phosphatase - metabolism
Fertilizers
Lupinus - genetics
Oryza - genetics
Oryza - metabolism
Phosphorus - metabolism
Plant Roots - metabolism
Soil
Title Root acid phosphatases and rhizobacteria synergistically enhance white lupin and rice phosphorus acquisition
URI https://www.ncbi.nlm.nih.gov/pubmed/36066452
https://www.proquest.com/docview/2710969537
https://pubmed.ncbi.nlm.nih.gov/PMC9706455
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKwoEL4k15yUhIHKqwTey8jiwPLYuKENqVllPkVzYR2SS0iVD5UfxGxrGbJt1FWrhEqRNbSebrjMee-QahlzFPZZxS6qg4ZA5NXddhMReOYq7HhQpUFOkE58Xn4PCEHp36p5PJ70HUUtvw1-LXpXkl_yNVaAO56izZf5BsPyg0wDnIF44gYTheScZfq6qZMZHLWZ1VqzpjDdgkQ7q81LF03FAxM81LoJZnHSczK4r1TJVZlyrwU28izIq2zksbaA6NZqxq2cJI4kebm6iu4SxWVzpqzKKIoXCCaeqBzhxeSTZcWtjAbaGyhvHZos3Y-TmTvTpu1bqy2xBmw367SfXFrmMf5Wyd9wD-1reW68raXLtkAd4uIMCLhmqYeI6OrzJGaKN5PQe81Wikmk0pUYtBOlS0lMYDo-1RU3HigkEwZFl1oT8JnHzPmaBW4Y-4t3dsYh-paPboSWJGSGz_a-i6B26Jrpjx7uOn3vK7xHDJb16vJwkl-6b_vu0_ngRd8Gx2A3QHM57j2-iWdVXwG4O7O2iiyrvoxkEF7sT6Hio0-LAGHx6CDwOM8Ah8eAd82IIPd-DDHfhMLwAf3oIPD8B3H518eH_89tCxpTscATPyxnHTFPz4OZ_HnmRcyLmMKJFUhlJQ5rIUfrmCSR67MlIkCkMZKsYkXAsIIUFMHqC9sirVI4R94clAhDop2gXvgkQKnG4_5QxMI7gz6RQ5m2-ZCMtrr8urFMnlspuiV_39tWF0-eudLzaiSUDp6p00VqqqXSWejmAOYp-EU_TQiKofi-glAep7UxSOhNjfoAndx1fKPOuI3WP9lr7_-MpP-ATd3P6_nqK9ZtmqZzBJbvjzDpl_AHTlyq8
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+acid+phosphatases+and+rhizobacteria+synergistically+enhance+white+lupin+and+rice+phosphorus+acquisition&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Aslam%2C+Mehtab+Muhammad&rft.au=Pueyo%2C+Jos%C3%A9+J&rft.au=Pang%2C+Jiayin&rft.au=Yang%2C+Jinyong&rft.date=2022-11-28&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=190&rft.issue=4&rft.spage=2449&rft.epage=2465&rft_id=info:doi/10.1093%2Fplphys%2Fkiac418&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_plphys_kiac418
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon