Root acid phosphatases and rhizobacteria synergistically enhance white lupin and rice phosphorus acquisition
The rhizosheath is a belowground area that acts as a communication hub at the root–soil interface to promote water and nutrient acquisition. Certain crops, such as white lupin (Lupinus albus), acquire large amounts of phosphorus (P), owing partially to exudation of acid phosphatases (APases). Plant...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 190; no. 4; pp. 2449 - 2465 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
28.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rhizosheath is a belowground area that acts as a communication hub at the root–soil interface to promote water and nutrient acquisition. Certain crops, such as white lupin (Lupinus albus), acquire large amounts of phosphorus (P), owing partially to exudation of acid phosphatases (APases). Plant growth-promoting rhizobacteria also increase soil P availability. However, potential synergistic effects of root APases and rhizosheath-associated microbiota on P acquisition require further research. In this study, we investigated the roles of root purple APases (PAPs) and plant growth-promoting rhizobacteria in rhizosheath formation and P acquisition under conditions of soil drying (SD) and P treatment (+P: soil with P fertilizer; –P: soil without fertilizer). We expressed purple acid phosphatase12 (LaPAP12) in white lupin and rice (Oryza sativa) plants and analyzed the rhizosheath-associated microbiome. Increased or heterologous LaPAP12 expression promoted APase activity and rhizosheath formation, resulting in increased P acquisition mainly under SD–P conditions. It also increased the abundance of members of the genus Bacillus in the rhizosheath-associated microbial communities of white lupin and rice. We isolated a phosphate-solubilizing, auxin-producing Bacillus megaterium strain from the rhizosheath of white lupin and used this to inoculate white lupin and rice plants. Inoculation promoted rhizosheath formation and P acquisition, especially in plants with increased LaPAP12 expression and under SD–P conditions, suggesting a functional role of the bacteria in alleviating P deficit stress via rhizosheath formation. Together, our results suggest a synergistic enhancing effect of LaPAP12 and plant growth-promoting rhizobacteria on rhizosheath formation and P acquisition under SD–P conditions. |
---|---|
AbstractList | The rhizosheath is a belowground area that acts as a communication hub at the root-soil interface to promote water and nutrient acquisition. Certain crops, such as white lupin (Lupinus albus), acquire large amounts of phosphorus (P), owing partially to exudation of acid phosphatases (APases). Plant growth-promoting rhizobacteria also increase soil P availability. However, potential synergistic effects of root APases and rhizosheath-associated microbiota on P acquisition require further research. In this study, we investigated the roles of root purple APases (PAPs) and plant growth-promoting rhizobacteria in rhizosheath formation and P acquisition under conditions of soil drying (SD) and P treatment (+P: soil with P fertilizer; -P: soil without fertilizer). We expressed purple acid phosphatase12 (LaPAP12) in white lupin and rice (Oryza sativa) plants and analyzed the rhizosheath-associated microbiome. Increased or heterologous LaPAP12 expression promoted APase activity and rhizosheath formation, resulting in increased P acquisition mainly under SD-P conditions. It also increased the abundance of members of the genus Bacillus in the rhizosheath-associated microbial communities of white lupin and rice. We isolated a phosphate-solubilizing, auxin-producing Bacillus megaterium strain from the rhizosheath of white lupin and used this to inoculate white lupin and rice plants. Inoculation promoted rhizosheath formation and P acquisition, especially in plants with increased LaPAP12 expression and under SD-P conditions, suggesting a functional role of the bacteria in alleviating P deficit stress via rhizosheath formation. Together, our results suggest a synergistic enhancing effect of LaPAP12 and plant growth-promoting rhizobacteria on rhizosheath formation and P acquisition under SD-P conditions.The rhizosheath is a belowground area that acts as a communication hub at the root-soil interface to promote water and nutrient acquisition. Certain crops, such as white lupin (Lupinus albus), acquire large amounts of phosphorus (P), owing partially to exudation of acid phosphatases (APases). Plant growth-promoting rhizobacteria also increase soil P availability. However, potential synergistic effects of root APases and rhizosheath-associated microbiota on P acquisition require further research. In this study, we investigated the roles of root purple APases (PAPs) and plant growth-promoting rhizobacteria in rhizosheath formation and P acquisition under conditions of soil drying (SD) and P treatment (+P: soil with P fertilizer; -P: soil without fertilizer). We expressed purple acid phosphatase12 (LaPAP12) in white lupin and rice (Oryza sativa) plants and analyzed the rhizosheath-associated microbiome. Increased or heterologous LaPAP12 expression promoted APase activity and rhizosheath formation, resulting in increased P acquisition mainly under SD-P conditions. It also increased the abundance of members of the genus Bacillus in the rhizosheath-associated microbial communities of white lupin and rice. We isolated a phosphate-solubilizing, auxin-producing Bacillus megaterium strain from the rhizosheath of white lupin and used this to inoculate white lupin and rice plants. Inoculation promoted rhizosheath formation and P acquisition, especially in plants with increased LaPAP12 expression and under SD-P conditions, suggesting a functional role of the bacteria in alleviating P deficit stress via rhizosheath formation. Together, our results suggest a synergistic enhancing effect of LaPAP12 and plant growth-promoting rhizobacteria on rhizosheath formation and P acquisition under SD-P conditions. The rhizosheath is a belowground area that acts as a communication hub at the root–soil interface to promote water and nutrient acquisition. Certain crops, such as white lupin (Lupinus albus), acquire large amounts of phosphorus (P), owing partially to exudation of acid phosphatases (APases). Plant growth-promoting rhizobacteria also increase soil P availability. However, potential synergistic effects of root APases and rhizosheath-associated microbiota on P acquisition require further research. In this study, we investigated the roles of root purple APases (PAPs) and plant growth-promoting rhizobacteria in rhizosheath formation and P acquisition under conditions of soil drying (SD) and P treatment (+P: soil with P fertilizer; –P: soil without fertilizer). We expressed purple acid phosphatase12 (LaPAP12) in white lupin and rice (Oryza sativa) plants and analyzed the rhizosheath-associated microbiome. Increased or heterologous LaPAP12 expression promoted APase activity and rhizosheath formation, resulting in increased P acquisition mainly under SD–P conditions. It also increased the abundance of members of the genus Bacillus in the rhizosheath-associated microbial communities of white lupin and rice. We isolated a phosphate-solubilizing, auxin-producing Bacillus megaterium strain from the rhizosheath of white lupin and used this to inoculate white lupin and rice plants. Inoculation promoted rhizosheath formation and P acquisition, especially in plants with increased LaPAP12 expression and under SD–P conditions, suggesting a functional role of the bacteria in alleviating P deficit stress via rhizosheath formation. Together, our results suggest a synergistic enhancing effect of LaPAP12 and plant growth-promoting rhizobacteria on rhizosheath formation and P acquisition under SD–P conditions. The rhizosheath is a belowground area that acts as a communication hub at the root–soil interface to promote water and nutrient acquisition. Certain crops, such as white lupin ( Lupinus albus ), acquire large amounts of phosphorus (P), owing partially to exudation of acid phosphatases (APases). Plant growth-promoting rhizobacteria also increase soil P availability. However, potential synergistic effects of root APases and rhizosheath-associated microbiota on P acquisition require further research. In this study, we investigated the roles of root purple APases (PAPs) and plant growth-promoting rhizobacteria in rhizosheath formation and P acquisition under conditions of soil drying (SD) and P treatment (+P: soil with P fertilizer; –P: soil without fertilizer). We expressed purple acid phosphatase12 ( LaPAP12 ) in white lupin and rice ( Oryza sativa ) plants and analyzed the rhizosheath-associated microbiome. Increased or heterologous LaPAP12 expression promoted APase activity and rhizosheath formation, resulting in increased P acquisition mainly under SD–P conditions. It also increased the abundance of members of the genus Bacillus in the rhizosheath-associated microbial communities of white lupin and rice. We isolated a phosphate-solubilizing, auxin-producing Bacillus megaterium strain from the rhizosheath of white lupin and used this to inoculate white lupin and rice plants. Inoculation promoted rhizosheath formation and P acquisition, especially in plants with increased LaPAP12 expression and under SD–P conditions, suggesting a functional role of the bacteria in alleviating P deficit stress via rhizosheath formation. Together, our results suggest a synergistic enhancing effect of LaPAP12 and plant growth-promoting rhizobacteria on rhizosheath formation and P acquisition under SD–P conditions. Phosphorus-responsive PURPLE ACID PHOSPHATASE12 and auxin-producing Bacillus spp. promote rhizosheath formation in Lupinus albus under soil drying conditions, enhancing phosphorus acquisition. |
Author | Chen, Weiguo Pang, Jiayin Li, Ying Xu, Weifeng Aslam, Mehtab Muhammad Zhang, Jianhua Pueyo, José J Chen, Hao Yang, Jinyong Waseem, Muhammad |
Author_xml | – sequence: 1 givenname: Mehtab Muhammad orcidid: 0000-0002-0890-4819 surname: Aslam fullname: Aslam, Mehtab Muhammad – sequence: 2 givenname: José J orcidid: 0000-0003-0337-4078 surname: Pueyo fullname: Pueyo, José J – sequence: 3 givenname: Jiayin orcidid: 0000-0002-8127-645X surname: Pang fullname: Pang, Jiayin – sequence: 4 givenname: Jinyong orcidid: 0000-0002-7455-5768 surname: Yang fullname: Yang, Jinyong – sequence: 5 givenname: Weiguo orcidid: 0000-0001-7400-5515 surname: Chen fullname: Chen, Weiguo – sequence: 6 givenname: Hao orcidid: 0000-0002-1544-4152 surname: Chen fullname: Chen, Hao – sequence: 7 givenname: Muhammad surname: Waseem fullname: Waseem, Muhammad – sequence: 8 givenname: Ying orcidid: 0000-0002-7835-3135 surname: Li fullname: Li, Ying – sequence: 9 givenname: Jianhua orcidid: 0000-0002-3819-2437 surname: Zhang fullname: Zhang, Jianhua – sequence: 10 givenname: Weifeng orcidid: 0000-0002-9424-991X surname: Xu fullname: Xu, Weifeng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36066452$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1rFTEUDdJiX6tblzJLN69NJpmPbAQp2goFobTrcCfJdK7mJdMkozx_vSnzLCq4urn3nnNuOOeUHPngLSFvGD1nVPKL2c3TPl18Q9CC9S_IhjW83taN6I_IhtLypn0vT8hpSl8ppYwz8ZKc8Ja2rWjqDXG3IeQKNJpqnkKaJ8iQbKrAmypO-DMMoLONCFXaexsfMGXU4Ny-sn4Cr231Y8JsK7fM6FcWluGqFeJSlPTjggkzBv-KHI_gkn19qGfk_tPHu8vr7c2Xq8-XH262WjRt3rJxlLKnA5W1gUEbanrBjTCd0QIYjKVjGswgmekt77vOdBbAlF3LOW8lPyPvV915GXbWaOtzBKfmiDuIexUA1d8bj5N6CN-V7GixpSkC7w4CMTwuNmW1w6Stc-BtWJKqu2J-KxveFejbP289H_ltcQGcrwAdQ0rRjs8QRtVThmrNUB0yLATxD0Fjhif_yl_R_Y_2C4pnqRs |
CitedBy_id | crossref_primary_10_1007_s11104_024_06702_x crossref_primary_10_3390_agronomy14081621 crossref_primary_10_3389_fpls_2022_1088211 crossref_primary_10_3390_ijms232315194 crossref_primary_10_3390_agronomy14112735 crossref_primary_10_1111_ppl_14105 crossref_primary_10_1007_s11104_023_06374_z crossref_primary_10_1007_s00425_023_04307_9 crossref_primary_10_3390_ijms242417191 crossref_primary_10_3390_agronomy14102368 crossref_primary_10_1111_tpj_16184 crossref_primary_10_1007_s11756_024_01607_7 crossref_primary_10_1007_s10722_024_02321_8 crossref_primary_10_1007_s11104_024_06883_5 crossref_primary_10_3390_microorganisms11020326 crossref_primary_10_1093_plphys_kiae290 crossref_primary_10_3390_soilsystems7040106 crossref_primary_10_1016_j_soilbio_2023_109039 crossref_primary_10_1111_ppl_13962 crossref_primary_10_1021_acs_jafc_3c04637 crossref_primary_10_1007_s00344_023_11011_1 crossref_primary_10_3390_f15020328 crossref_primary_10_1007_s10725_022_00917_7 crossref_primary_10_1007_s11104_023_06133_0 crossref_primary_10_1007_s11104_024_07126_3 |
Cites_doi | 10.1111/j.1365-313X.2005.02573.x 10.5194/bg-13-341-2016 10.3389/fpls.2021.644218 10.3389/fpls.2021.810692 10.3389/fpls.2017.00141 10.1155/2019/4917256 10.1111/1365-2435.13823 10.1146/annurev.arplant.57.032905.105159 10.1111/nph.12786 10.1071/BT06118 10.1104/pp.19.01020 10.1007/s00299-014-1588-5 10.1186/s40168-018-0597-y 10.1046/j.1365-313X.2003.01860.x 10.1016/j.envexpbot.2010.11.007 10.1016/j.plantsci.2010.04.005 10.1007/s11104-013-1910-y 10.1111/jipb.12184 10.1093/jxb/ert200 10.1007/s00709-017-1109-9 10.3390/agriculture11060485 10.1111/aab.12420 10.1093/jxb/ers309 10.1111/pce.12794 10.1016/j.tplants.2017.09.003 10.1007/s11104-017-3227-8 10.1007/s00425-019-03228-w 10.1104/pp.109.147918 10.1007/s11104-009-0071-5 10.1016/j.pbi.2012.08.010 10.3389/fpls.2021.658787 10.1186/s12864-018-5022-1 10.3390/horticulturae7090302 10.1007/s11104-017-3362-2 10.1016/j.agee.2020.107236 10.1016/j.pbi.2015.04.002 10.1007/978-981-15-6125-2_3 10.4014/jmb.1712.12038 10.1016/j.plantsci.2018.03.013 10.1093/aob/mcs217 10.1104/pp.125.2.728 10.1038/s41396-021-01133-3 10.1023/A:1004871704173 10.3389/fmicb.2017.02552 10.1186/1471-2229-14-51 10.1038/ismej.2008.80 10.1104/pp.111.175448 10.1016/j.tree.2007.10.008 10.3923/ajbs.2012.294.303 10.1111/j.1469-8137.2010.03323.x 10.1104/pp.111.183723 10.1016/j.cell.2016.02.028 10.1016/j.plaphy.2021.06.022 10.1094/MPMI-10-15-0239-R 10.1007/s11104-021-05055-z 10.1104/pp.109.138891 10.1111/pbi.12699 10.1071/CP07125 10.1101/cshperspect.a001438 10.1111/pce.14237 10.1126/sciadv.aaw0759 10.3389/fmicb.2019.02171 10.1104/pp.111.175281 10.1016/j.plantsci.2005.08.001 10.1111/ele.12530 10.1007/s11274-011-0819-y 10.1111/1462-2920.12439 10.1093/jxb/erw035 10.1016/S1002-0160(20)60057-1 10.1006/meth.2001.1262 10.1111/j.1747-0765.2008.00329.x 10.1007/s11104-010-0433-z 10.3389/fpls.2017.01288 10.1111/j.1365-3040.2010.02184.x 10.1093/jxb/eraa021 10.1016/j.jare.2011.11.003 10.1111/nph.15213 10.1093/jxb/eraa179 10.1111/j.1744-7909.2006.00189.x 10.1038/nature21417 10.1016/j.tplants.2004.09.003 10.1074/jbc.M204183200 10.1007/s11104-018-3701-y |
ContentType | Journal Article |
Copyright | American Society of Plant Biologists 2022. All rights reserved. For permissions, please email: journals.permissions@oup.com. American Society of Plant Biologists 2022. All rights reserved. For permissions, please email: journals.permissions@oup.com 2022 |
Copyright_xml | – notice: American Society of Plant Biologists 2022. All rights reserved. For permissions, please email: journals.permissions@oup.com. – notice: American Society of Plant Biologists 2022. All rights reserved. For permissions, please email: journals.permissions@oup.com 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/plphys/kiac418 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 2465 |
ExternalDocumentID | PMC9706455 36066452 10_1093_plphys_kiac418 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 31761130073; 31872169 – fundername: ; grantid: AGL2017-88381-R; PID2021-125371OB-I00 |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2WC 4.4 5VS 5WD 85S 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN AAYXX ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABVGC ABXVV ABXZS ACBTR ACGOD ACIPB ACNCT ACPRK ACUFI ACUTJ ADBBV ADGKP ADIPN ADIYS ADQBN ADVEK AEEJZ AENEX AFAZZ AFFZL AFGWE AFRAH AGORE AHGBF AHMBA AJBYB AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX ATGXG BAWUL BCRHZ BEYMZ BTFSW CITATION CS3 DIK DU5 E3Z EBS ECGQY F5P FLUFQ FOEOM H13 JBS JLS JST JXSIZ KOP KQ8 KSI KSN MV1 NOMLY OBOKY OJZSN OK1 OWPYF P2P Q2X RHI ROX RPB RWL RXW TAE TN5 TR2 W8F WH7 WOQ XSW YBU YKV YNT YSK YZZ ZCA ~02 ~KM ADYWZ CGR CUY CVF ECM EIF NPM RHF RPM VQA 7X8 5PM |
ID | FETCH-LOGICAL-c456t-1ff9980b092dabcd0d843d4d7dc4a1af8431cadb91d8e3877d7eaad4a16333693 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Thu Aug 21 18:36:45 EDT 2025 Fri Jul 11 09:28:38 EDT 2025 Wed Feb 19 02:26:12 EST 2025 Tue Jul 01 02:23:34 EDT 2025 Thu Apr 24 22:55:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model American Society of Plant Biologists 2022. All rights reserved. For permissions, please email: journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c456t-1ff9980b092dabcd0d843d4d7dc4a1af8431cadb91d8e3877d7eaad4a16333693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9424-991X 0000-0002-7455-5768 0000-0002-7835-3135 0000-0002-1544-4152 0000-0002-8127-645X 0000-0001-7400-5515 0000-0003-0337-4078 0000-0002-3819-2437 0000-0002-0890-4819 |
OpenAccessLink | https://academic.oup.com/plphys/article-pdf/190/4/2449/47382354/kiac418.pdf |
PMID | 36066452 |
PQID | 2710969537 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9706455 proquest_miscellaneous_2710969537 pubmed_primary_36066452 crossref_primary_10_1093_plphys_kiac418 crossref_citationtrail_10_1093_plphys_kiac418 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-28 |
PublicationDateYYYYMMDD | 2022-11-28 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Richardson (2022112910525893000_kiac418-B55) 2001; 229 Wang (2022112910525893000_kiac418-B74) 2011; 157 Menezes-Blackburn (2022112910525893000_kiac418-B45) 2018; 427 Deng (2022112910525893000_kiac418-B11) 2020; 71 Lambers (2022112910525893000_kiac418-B31) 2008; 23 Uhde-Stone (2022112910525893000_kiac418-B71) 2005; 44 Xu (2022112910525893000_kiac418-B85) 2020; 11 Honvault (2022112910525893000_kiac418-B21) 2021; 35 Harrison (2022112910525893000_kiac418-B19) 2012; 15 Livak (2022112910525893000_kiac418-B39) 2001; 25 Richardson (2022112910525893000_kiac418-B56) 2009; 60 Zhang (2022112910525893000_kiac418-B87) 2020; 71 Tran (2022112910525893000_kiac418-B67) 2010; 179 Albalasmeh (2022112910525893000_kiac418-B1) 2014; 374 Ticconi (2022112910525893000_kiac418-B66) 2004; 9 Wang (2022112910525893000_kiac418-B75) 2018; 271 Aslam (2022112910525893000_kiac418-B2) 2021; 166 Paterson (2022112910525893000_kiac418-B47) 2021 Karanja (2022112910525893000_kiac418-B26) 2021; 12 George (2022112910525893000_kiac418-B14) 2014; 203 Lynch (2022112910525893000_kiac418-B42) 2007; 55 Richardson (2022112910525893000_kiac418-B54) 2009; 322 Chen (2022112910525893000_kiac418-B9) 2003; 36 Lambers (2022112910525893000_kiac418-B30) 2015; 25 Li (2022112910525893000_kiac418-B33) 2002; 277 Lu (2022112910525893000_kiac418-B40) 2016; 39 Sweeney (2022112910525893000_kiac418-B63) 2020 Kong (2022112910525893000_kiac418-B28) 2014; 33 Lavakush (2022112910525893000_kiac418-B32) 2012; 5 Quiñones (2022112910525893000_kiac418-B51) 2021; 7 Yahaghi (2022112910525893000_kiac418-B86) 2018; 28 Divjot (2022112910525893000_kiac418-B12) 2021; 31 u Rahman (2022112910525893000_kiac418-B69) 2021 Haling (2022112910525893000_kiac418-B17) 2010; 335 Robinson (2022112910525893000_kiac418-B58) 2012; 63 Xie (2022112910525893000_kiac418-B83) 2018; 19 Pueyo (2022112910525893000_kiac418-B50) 2021; 12 Liang (2022112910525893000_kiac418-B35) 2010; 152 Xiao (2022112910525893000_kiac418-B82) 2006; 48 Wang (2022112910525893000_kiac418-B78) 2009; 151 Marasco (2022112910525893000_kiac418-B43) 2018; 6 Tian (2022112910525893000_kiac418-B65) 2021 Wang (2022112910525893000_kiac418-B77) 2021; 466 Sasse (2022112910525893000_kiac418-B61) 2018; 23 Rabbi (2022112910525893000_kiac418-B53) 2018; 219 Ji (2022112910525893000_kiac418-B23) 2012; 28 Kalayu (2022112910525893000_kiac418-B24) 2019; 2019 Carminati (2022112910525893000_kiac418-B6) 2017; 417 Liu (2022112910525893000_kiac418-B38) 2016; 29 Hanna (2022112910525893000_kiac418-B18) 2013; 4 Ndour (2022112910525893000_kiac418-B46) 2017; 8 Wei (2022112910525893000_kiac418-B80) 2019; 5 Talboys (2022112910525893000_kiac418-B64) 2014; 14 Tran (2022112910525893000_kiac418-B68) 2010; 33 Mehra (2022112910525893000_kiac418-B44) 2017; 15 Chinnaswamy (2022112910525893000_kiac418-B10) 2018; 172 Kang (2022112910525893000_kiac418-B25) 2021; 11 Vinci (2022112910525893000_kiac418-B72) 2018; 429 Korir (2022112910525893000_kiac418-B29) 2017; 8 Quiñones (2022112910525893000_kiac418-B52) 2022; 12 Hiruma (2022112910525893000_kiac418-B20) 2016; 165 Richardson (2022112910525893000_kiac418-B57) 2011; 156 Chen (2022112910525893000_kiac418-B8) 2019; 10 Rose (2022112910525893000_kiac418-B60) 2013; 112 Wasaki (2022112910525893000_kiac418-B79) 2009; 55 Liu (2022112910525893000_kiac418-B37) 2019; 250 Haling (2022112910525893000_kiac418-B16) 2013; 64 Baldwin (2022112910525893000_kiac418-B4) 2001; 125 James (2022112910525893000_kiac418-B22) 2016; 67 Rolli (2022112910525893000_kiac418-B59) 2015; 17 el Zahar Haichar (2022112910525893000_kiac418-B13) 2008; 2 Bais (2022112910525893000_kiac418-B3) 2006; 57 Zhao (2022112910525893000_kiac418-B89) 2021; 307 Castrillo (2022112910525893000_kiac418-B7) 2017; 543 Xiao (2022112910525893000_kiac418-B81) 2006; 170 Zhang (2022112910525893000_kiac418-B88) 2020; 183 Li (2022112910525893000_kiac418-B34) 2011; 71 Xu (2022112910525893000_kiac418-B84) 2021; 16 Liu (2022112910525893000_kiac418-B36) 2017; 8 Kohli (2022112910525893000_kiac418-B27) 2021; 45 Lynch (2022112910525893000_kiac418-B41) 2012 Bhadouria (2022112910525893000_kiac418-B5) 2021 Plaxton (2022112910525893000_kiac418-B49) 2011; 156 Pérez-Flores (2022112910525893000_kiac418-B48) 2017; 254 Spaepen (2022112910525893000_kiac418-B62) 2011; 3 Hacker (2022112910525893000_kiac418-B15) 2015; 18 Zhu (2022112910525893000_kiac418-B90) 2016; 13 Uhde-Stone (2022112910525893000_kiac418-B70) 2017 Wang (2022112910525893000_kiac418-B73) 2010; 187 Wang (2022112910525893000_kiac418-B76) 2014; 56 |
References_xml | – volume: 44 start-page: 840 year: 2005 ident: 2022112910525893000_kiac418-B71 article-title: Transgenic proteoid roots of white lupin: a vehicle for characterizing and silencing root genes involved in adaptation to P stress publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02573.x – volume: 13 start-page: 341 year: 2016 ident: 2022112910525893000_kiac418-B90 article-title: Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests publication-title: Biogeosciences doi: 10.5194/bg-13-341-2016 – volume: 12 year: 2021 ident: 2022112910525893000_kiac418-B50 article-title: Nitrogen and phosphorus interplay in lupin root nodules and cluster roots publication-title: Front Plant Sci doi: 10.3389/fpls.2021.644218 – volume: 12 year: 2022 ident: 2022112910525893000_kiac418-B52 article-title: Adaptive mechanisms make lupin a choice crop for acidic soils affected by aluminum toxicity publication-title: Front Plant Sci doi: 10.3389/fpls.2021.810692 – start-page: 1 year: 2021 ident: 2022112910525893000_kiac418-B65 article-title: Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant publication-title: ISME J – volume: 8 start-page: 141 year: 2017 ident: 2022112910525893000_kiac418-B29 article-title: Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00141 – volume: 2019 year: 2019 ident: 2022112910525893000_kiac418-B24 article-title: Phosphate solubilizing microorganisms: promising approach as biofertilizers publication-title: Int J Agron doi: 10.1155/2019/4917256 – volume: 35 start-page: 1603 year: 2021 ident: 2022112910525893000_kiac418-B21 article-title: Interactions between belowground traits and rhizosheath fungal and bacterial communities for phosphorus acquisition publication-title: Funct Ecol doi: 10.1111/1365-2435.13823 – volume: 57 start-page: 233 year: 2006 ident: 2022112910525893000_kiac418-B3 article-title: The role of root exudates in rhizosphere interactions with plants and other organisms publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.57.032905.105159 – volume: 203 start-page: 195 year: 2014 ident: 2022112910525893000_kiac418-B14 article-title: Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare) publication-title: New Phytol doi: 10.1111/nph.12786 – volume: 55 start-page: 493 year: 2007 ident: 2022112910525893000_kiac418-B42 article-title: Roots of the second green revolution publication-title: Aust J Bot doi: 10.1071/BT06118 – start-page: 243 volume-title: Legume Nitrogen Fixation in Soils with Low Phosphorus Availability year: 2017 ident: 2022112910525893000_kiac418-B70 – volume: 183 start-page: 780 year: 2020 ident: 2022112910525893000_kiac418-B88 article-title: Root–bacteria associations boost rhizosheath formation in moderately dry soil through ethylene responses publication-title: Plant Physiol doi: 10.1104/pp.19.01020 – volume: 33 start-page: 655 year: 2014 ident: 2022112910525893000_kiac418-B28 article-title: GmPAP4, a novel purple acid phosphatase gene isolated from soybean (Glycine max), enhanced extracellular phytate utilization in Arabidopsis thaliana publication-title: Plant Cell Rep doi: 10.1007/s00299-014-1588-5 – volume: 6 start-page: 1 year: 2018 ident: 2022112910525893000_kiac418-B43 article-title: Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host publication-title: Microbiome doi: 10.1186/s40168-018-0597-y – volume: 36 start-page: 105 year: 2003 ident: 2022112910525893000_kiac418-B9 article-title: Distribution and characterization of over 1000 T-DNA tags in rice genome publication-title: Plant J doi: 10.1046/j.1365-313X.2003.01860.x – volume: 71 start-page: 114 year: 2011 ident: 2022112910525893000_kiac418-B34 article-title: Stimulation of root acid phosphatase by phosphorus deficiency is regulated by ethylene in Medicago falcata publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2010.11.007 – volume: 179 start-page: 14 year: 2010 ident: 2022112910525893000_kiac418-B67 article-title: Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition publication-title: Plant Sci doi: 10.1016/j.plantsci.2010.04.005 – volume: 374 start-page: 739 year: 2014 ident: 2022112910525893000_kiac418-B1 article-title: Interplay between soil drying and root exudation in rhizosheath development publication-title: Plant Soil doi: 10.1007/s11104-013-1910-y – volume: 56 start-page: 299 year: 2014 ident: 2022112910525893000_kiac418-B76 article-title: Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation publication-title: J Integr Plant Biol doi: 10.1111/jipb.12184 – volume: 64 start-page: 3711 year: 2013 ident: 2022112910525893000_kiac418-B16 article-title: Root hairs improve root penetration, root–soil contact, and phosphorus acquisition in soils of different strength publication-title: J Exp Bot doi: 10.1093/jxb/ert200 – volume: 254 start-page: 2201 year: 2017 ident: 2022112910525893000_kiac418-B48 article-title: Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles publication-title: Protoplasma doi: 10.1007/s00709-017-1109-9 – volume: 11 start-page: 485 year: 2021 ident: 2022112910525893000_kiac418-B25 article-title: Phosphate-solubilizing Enterobacter ludwigii AFFR02 and Bacillus megaterium Mj1212 rescues alfalfa’s growth under post-drought stress publication-title: Agriculture doi: 10.3390/agriculture11060485 – volume: 172 start-page: 295 year: 2018 ident: 2022112910525893000_kiac418-B10 article-title: A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants publication-title: Ann Appl Biol doi: 10.1111/aab.12420 – volume: 63 start-page: 6531 year: 2012 ident: 2022112910525893000_kiac418-B58 article-title: The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana publication-title: J Exp Bot doi: 10.1093/jxb/ers309 – volume: 39 start-page: 2247 year: 2016 ident: 2022112910525893000_kiac418-B40 article-title: OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus publication-title: Plant Cell Environ doi: 10.1111/pce.12794 – volume: 23 start-page: 25 year: 2018 ident: 2022112910525893000_kiac418-B61 article-title: Feed your friends: do plant exudates shape the root microbiome? publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2017.09.003 – volume: 417 start-page: 1 year: 2017 ident: 2022112910525893000_kiac418-B6 article-title: Liquid bridges at the root–soil interface publication-title: Plant Soil doi: 10.1007/s11104-017-3227-8 – volume: 250 start-page: 1355 year: 2019 ident: 2022112910525893000_kiac418-B37 article-title: Comparative metabolite profiling of two switchgrass ecotypes reveals differences in drought stress responses and rhizosheath weight publication-title: Planta doi: 10.1007/s00425-019-03228-w – volume: 152 start-page: 854 year: 2010 ident: 2022112910525893000_kiac418-B35 article-title: Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization publication-title: Plant Physiol doi: 10.1104/pp.109.147918 – volume: 322 start-page: 17 year: 2009 ident: 2022112910525893000_kiac418-B54 article-title: Regulating the phosphorus nutrition of plants: molecular biology meeting agronomic needs publication-title: Plant Soil doi: 10.1007/s11104-009-0071-5 – volume: 15 start-page: 691 year: 2012 ident: 2022112910525893000_kiac418-B19 article-title: Cellular programs for arbuscular mycorrhizal symbiosis publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2012.08.010 – volume: 12 start-page: 658787 year: 2021 ident: 2022112910525893000_kiac418-B26 article-title: Abscisic acid mediates drought-enhanced rhizosheath formation in tomato publication-title: Front Plant Sci doi: 10.3389/fpls.2021.658787 – volume: 19 start-page: 1 year: 2018 ident: 2022112910525893000_kiac418-B83 article-title: Genome-wide analysis of purple acid phosphatase structure and expression in ten vegetable species publication-title: BMC Genomics doi: 10.1186/s12864-018-5022-1 – volume: 7 start-page: 302 year: 2021 ident: 2022112910525893000_kiac418-B51 article-title: Nodulated white lupin plants growing in contaminated soils accumulate unusually high mercury concentrations in their nodules, roots and especially cluster roots publication-title: Horticulturae doi: 10.3390/horticulturae7090302 – volume: 427 start-page: 5 year: 2018 ident: 2022112910525893000_kiac418-B45 article-title: Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review publication-title: Plant Soil doi: 10.1007/s11104-017-3362-2 – volume: 307 start-page: 107236 year: 2021 ident: 2022112910525893000_kiac418-B89 article-title: The application of Bacillus megaterium alters soil microbial community composition, bioavailability of soil phosphorus and potassium, and cucumber growth in the plastic shed system of North China publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2020.107236 – volume: 25 start-page: 23 year: 2015 ident: 2022112910525893000_kiac418-B30 article-title: Plant adaptations to severely phosphorus-impoverished soils publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2015.04.002 – start-page: 75 volume-title: Rhizosphere Biology: Interactions Between Microbes and Plants year: 2021 ident: 2022112910525893000_kiac418-B47 doi: 10.1007/978-981-15-6125-2_3 – volume: 28 start-page: 1156 year: 2018 ident: 2022112910525893000_kiac418-B86 article-title: Isolation and characterization of Pb-solubilizing bacteria and their effects on Pb uptake by Brassica juncea: implications for microbe-assisted phytoremediation publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.1712.12038 – volume: 271 start-page: 108 year: 2018 ident: 2022112910525893000_kiac418-B75 article-title: Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants publication-title: Plant Sci doi: 10.1016/j.plantsci.2018.03.013 – volume: 112 start-page: 331 year: 2013 ident: 2022112910525893000_kiac418-B60 article-title: Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding publication-title: Ann Bot doi: 10.1093/aob/mcs217 – volume: 125 start-page: 728 year: 2001 ident: 2022112910525893000_kiac418-B4 article-title: LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato publication-title: Plant Physiol doi: 10.1104/pp.125.2.728 – volume: 16 start-page: 801 year: 2021 ident: 2022112910525893000_kiac418-B84 article-title: Coordination of root auxin with the fungus Piriformospora indica and bacterium Bacillus cereus enhances rice rhizosheath formation under soil drying publication-title: ISME J doi: 10.1038/s41396-021-01133-3 – volume: 229 start-page: 47 year: 2001 ident: 2022112910525893000_kiac418-B55 article-title: Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms publication-title: Plant Soil doi: 10.1023/A:1004871704173 – volume: 8 start-page: 2552 year: 2017 ident: 2022112910525893000_kiac418-B36 article-title: Inner plant values: diversity, colonization and benefits from endophytic bacteria publication-title: Front Microbiol doi: 10.3389/fmicb.2017.02552 – volume: 14 start-page: 51 year: 2014 ident: 2022112910525893000_kiac418-B64 article-title: Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivium publication-title: BMC Plant Biol doi: 10.1186/1471-2229-14-51 – volume: 2 start-page: 1221 year: 2008 ident: 2022112910525893000_kiac418-B13 article-title: Plant host habitat and root exudates shape soil bacterial community structure publication-title: ISME J doi: 10.1038/ismej.2008.80 – volume: 156 start-page: 989 year: 2011 ident: 2022112910525893000_kiac418-B57 article-title: Soil microorganisms mediating phosphorus availability update on microbial phosphorus publication-title: Plant Physiol doi: 10.1104/pp.111.175448 – start-page: 1 year: 2021 ident: 2022112910525893000_kiac418-B5 article-title: Purple acid phosphatases: roles in phosphate utilization and new emerging functions publication-title: Plant Cell Rep – volume: 23 start-page: 95 year: 2008 ident: 2022112910525893000_kiac418-B31 article-title: Plant nutrient-acquisition strategies change with soil age publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2007.10.008 – volume: 5 start-page: 294 year: 2012 ident: 2022112910525893000_kiac418-B32 article-title: Isolation and characterization of effective plant growth promoting rhizobacteria from rice rhizosphere of Indian soil publication-title: Asian J Biol Sci doi: 10.3923/ajbs.2012.294.303 – volume: 187 start-page: 1112 year: 2010 ident: 2022112910525893000_kiac418-B73 article-title: Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03323.x – volume: 157 start-page: 1283 year: 2011 ident: 2022112910525893000_kiac418-B74 article-title: The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation publication-title: Plant Physiol doi: 10.1104/pp.111.183723 – volume: 165 start-page: 464 year: 2016 ident: 2022112910525893000_kiac418-B20 article-title: Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent publication-title: Cell doi: 10.1016/j.cell.2016.02.028 – volume: 166 start-page: 531 year: 2021 ident: 2022112910525893000_kiac418-B2 article-title: Phosphorus uptake is associated with the rhizosheath formation of mature cluster roots in white lupin under soil drying and phosphorus deficiency publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2021.06.022 – volume: 29 start-page: 324 year: 2016 ident: 2022112910525893000_kiac418-B38 article-title: Plant–microbe communication enhances auxin biosynthesis by a root-associated bacterium, Bacillus amyloliquefaciens SQR9 publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-10-15-0239-R – volume: 466 start-page: 491 year: 2021 ident: 2022112910525893000_kiac418-B77 article-title: Bacillus megaterium strain WW1211 promotes plant growth and lateral root initiation via regulation of auxin biosynthesis and redistribution publication-title: Plant Soil doi: 10.1007/s11104-021-05055-z – volume: 151 start-page: 233 year: 2009 ident: 2022112910525893000_kiac418-B78 article-title: Overexpressing AtPAP15 enhances phosphorus efficiency in soybean publication-title: Plant Physiol doi: 10.1104/pp.109.138891 – start-page: 0 year: 2020 ident: 2022112910525893000_kiac418-B63 article-title: Root traits explain rhizosphere fungal community composition among temperate grassland plant species publication-title: New Phytol – volume: 15 start-page: 1054 year: 2017 ident: 2022112910525893000_kiac418-B44 article-title: Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice publication-title: Plant Biotechnol J doi: 10.1111/pbi.12699 – volume: 60 start-page: 124 year: 2009 ident: 2022112910525893000_kiac418-B56 article-title: Plant mechanisms to optimise access to soil phosphorus publication-title: Crop Pasture Sci doi: 10.1071/CP07125 – volume: 3 year: 2011 ident: 2022112910525893000_kiac418-B62 article-title: Auxin and plant–microbe interactions publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a001438 – volume: 45 start-page: 677 year: 2021 ident: 2022112910525893000_kiac418-B27 article-title: Significance of root hairs in developing stress-resilient plants for sustainable crop production publication-title: Plant Cell Environ doi: 10.1111/pce.14237 – volume: 5 start-page: eaaw0759 year: 2019 ident: 2022112910525893000_kiac418-B80 article-title: Initial soil microbiome composition and functioning predetermine future plant health publication-title: Sci Adv doi: 10.1126/sciadv.aaw0759 – volume: 10 year: 2019 ident: 2022112910525893000_kiac418-B8 article-title: Identification and characterization of the phosphate-solubilizing bacterium Pantoea sp. S32 in reclamation soil in Shanxi, China publication-title: Front Microbiol doi: 10.3389/fmicb.2019.02171 – volume: 156 start-page: 1006 year: 2011 ident: 2022112910525893000_kiac418-B49 article-title: Metabolic adaptations of phosphate-starved plants publication-title: Plant Physiol doi: 10.1104/pp.111.175281 – volume: 170 start-page: 191 year: 2006 ident: 2022112910525893000_kiac418-B81 article-title: Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatase gene from M. truncatula publication-title: Plant Sci doi: 10.1016/j.plantsci.2005.08.001 – volume: 18 start-page: 1356 year: 2015 ident: 2022112910525893000_kiac418-B15 article-title: Plant diversity shapes microbe–rhizosphere effects on P mobilisation from organic matter in soil publication-title: Ecol Lett doi: 10.1111/ele.12530 – volume: 28 start-page: 293 year: 2012 ident: 2022112910525893000_kiac418-B23 article-title: Effect of heavy metal-solubilizing microorganisms on zinc and cadmium extractions from heavy metal contaminated soil with Tricholoma lobynsis publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-011-0819-y – volume: 11 start-page: 1 year: 2020 ident: 2022112910525893000_kiac418-B85 article-title: The genome evolution and low-phosphorus adaptation in white lupin publication-title: Nat Commun – volume: 17 start-page: 316 year: 2015 ident: 2022112910525893000_kiac418-B59 article-title: Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait publication-title: Environ Microbiol doi: 10.1111/1462-2920.12439 – volume: 67 start-page: 3709 year: 2016 ident: 2022112910525893000_kiac418-B22 article-title: Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control publication-title: J Exp Bot doi: 10.1093/jxb/erw035 – volume: 31 start-page: 43 year: 2021 ident: 2022112910525893000_kiac418-B12 article-title: Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and-mobilizing microbes: a review publication-title: Pedosphere doi: 10.1016/S1002-0160(20)60057-1 – volume: 25 start-page: 402 year: 2001 ident: 2022112910525893000_kiac418-B39 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 55 start-page: 107 year: 2009 ident: 2022112910525893000_kiac418-B79 article-title: Overexpression of the LASAP2 gene for secretory acid phosphatase in white lupin improves the phosphorus uptake and growth of tobacco plants publication-title: Soil Sci Plant Nutr doi: 10.1111/j.1747-0765.2008.00329.x – volume: 335 start-page: 457 year: 2010 ident: 2022112910525893000_kiac418-B17 article-title: Root morphology, root-hair development and rhizosheath formation on perennial grass seedlings is influenced by soil acidity publication-title: Plant Soil doi: 10.1007/s11104-010-0433-z – start-page: 1 year: 2021 ident: 2022112910525893000_kiac418-B69 article-title: Root exudates increase phosphorus availability in the tomato/potato onion intercropping system publication-title: Plant Soil – volume: 8 start-page: 1288 year: 2017 ident: 2022112910525893000_kiac418-B46 article-title: Pearl millet genetic traits shape rhizobacterial diversity and modulate rhizosphere aggregation publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01288 – volume: 33 start-page: 1789 year: 2010 ident: 2022112910525893000_kiac418-B68 article-title: Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2010.02184.x – volume: 71 start-page: 2740 year: 2020 ident: 2022112910525893000_kiac418-B87 article-title: Moderate water stress in rice induces rhizosheath formation associated with abscisic acid and auxin responses publication-title: J Exp Bot doi: 10.1093/jxb/eraa021 – volume: 4 start-page: 13 year: 2013 ident: 2022112910525893000_kiac418-B18 article-title: Diversity of bacteria nesting the plant cover of north Sinai deserts, Egypt publication-title: J Adv Res doi: 10.1016/j.jare.2011.11.003 – volume: 219 start-page: 542 year: 2018 ident: 2022112910525893000_kiac418-B53 article-title: Plant roots redesign the rhizosphere to alter the three-dimensional physical architecture and water dynamics publication-title: New Phytol doi: 10.1111/nph.15213 – volume: 71 start-page: 4321 year: 2020 ident: 2022112910525893000_kiac418-B11 article-title: Purple acid phosphatase 10c (OsPAP10c) encodes a major acid phosphatase and regulates the plant growth under phosphate deficient condition in rice publication-title: J Exp Bot doi: 10.1093/jxb/eraa179 – volume: 48 start-page: 35 year: 2006 ident: 2022112910525893000_kiac418-B82 article-title: Ectopic expression of a phytase gene from Medicago truncatula barrel medic enhances phosphorus absorption in plants publication-title: J Integr Plant Biol doi: 10.1111/j.1744-7909.2006.00189.x – volume: 543 start-page: 513 year: 2017 ident: 2022112910525893000_kiac418-B7 article-title: Root microbiota drive direct integration of phosphate stress and immunity publication-title: Nature doi: 10.1038/nature21417 – volume: 9 start-page: 548 year: 2004 ident: 2022112910525893000_kiac418-B66 article-title: Short on phosphate: plant surveillance and countermeasures publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2004.09.003 – volume: 277 start-page: 27772 year: 2002 ident: 2022112910525893000_kiac418-B33 article-title: Purple acid phosphatases of Arabidopsis thaliana: comparative analysis and differential regulation by phosphate deprivation publication-title: J Biol Chem doi: 10.1074/jbc.M204183200 – year: 2012 ident: 2022112910525893000_kiac418-B41 – volume: 429 start-page: 437 year: 2018 ident: 2022112910525893000_kiac418-B72 article-title: Effects of Bacillus amyloliquefaciens and different phosphorus sources on Maize plants as revealed by NMR and GC-MS based metabolomics publication-title: Plant Soil doi: 10.1007/s11104-018-3701-y |
SSID | ssj0001314 |
Score | 2.5328217 |
Snippet | The rhizosheath is a belowground area that acts as a communication hub at the root–soil interface to promote water and nutrient acquisition. Certain crops,... The rhizosheath is a belowground area that acts as a communication hub at the root-soil interface to promote water and nutrient acquisition. Certain crops,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2449 |
SubjectTerms | Acid Phosphatase - genetics Acid Phosphatase - metabolism Fertilizers Lupinus - genetics Oryza - genetics Oryza - metabolism Phosphorus - metabolism Plant Roots - metabolism Soil |
Title | Root acid phosphatases and rhizobacteria synergistically enhance white lupin and rice phosphorus acquisition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36066452 https://www.proquest.com/docview/2710969537 https://pubmed.ncbi.nlm.nih.gov/PMC9706455 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKwoEL4k15yUhIHKqwTey8jiwPLYuKENqVllPkVzYR2SS0iVD5UfxGxrGbJt1FWrhEqRNbSebrjMee-QahlzFPZZxS6qg4ZA5NXddhMReOYq7HhQpUFOkE58Xn4PCEHp36p5PJ70HUUtvw1-LXpXkl_yNVaAO56izZf5BsPyg0wDnIF44gYTheScZfq6qZMZHLWZ1VqzpjDdgkQ7q81LF03FAxM81LoJZnHSczK4r1TJVZlyrwU28izIq2zksbaA6NZqxq2cJI4kebm6iu4SxWVzpqzKKIoXCCaeqBzhxeSTZcWtjAbaGyhvHZos3Y-TmTvTpu1bqy2xBmw367SfXFrmMf5Wyd9wD-1reW68raXLtkAd4uIMCLhmqYeI6OrzJGaKN5PQe81Wikmk0pUYtBOlS0lMYDo-1RU3HigkEwZFl1oT8JnHzPmaBW4Y-4t3dsYh-paPboSWJGSGz_a-i6B26Jrpjx7uOn3vK7xHDJb16vJwkl-6b_vu0_ngRd8Gx2A3QHM57j2-iWdVXwG4O7O2iiyrvoxkEF7sT6Hio0-LAGHx6CDwOM8Ah8eAd82IIPd-DDHfhMLwAf3oIPD8B3H518eH_89tCxpTscATPyxnHTFPz4OZ_HnmRcyLmMKJFUhlJQ5rIUfrmCSR67MlIkCkMZKsYkXAsIIUFMHqC9sirVI4R94clAhDop2gXvgkQKnG4_5QxMI7gz6RQ5m2-ZCMtrr8urFMnlspuiV_39tWF0-eudLzaiSUDp6p00VqqqXSWejmAOYp-EU_TQiKofi-glAep7UxSOhNjfoAndx1fKPOuI3WP9lr7_-MpP-ATd3P6_nqK9ZtmqZzBJbvjzDpl_AHTlyq8 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+acid+phosphatases+and+rhizobacteria+synergistically+enhance+white+lupin+and+rice+phosphorus+acquisition&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Aslam%2C+Mehtab+Muhammad&rft.au=Pueyo%2C+Jos%C3%A9+J&rft.au=Pang%2C+Jiayin&rft.au=Yang%2C+Jinyong&rft.date=2022-11-28&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=190&rft.issue=4&rft.spage=2449&rft.epage=2465&rft_id=info:doi/10.1093%2Fplphys%2Fkiac418&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_plphys_kiac418 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |