PEG-based thermosensitive and biodegradable hydrogels
Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing rese...
Saved in:
Published in | Acta biomaterialia Vol. 128; pp. 42 - 59 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted.
Thermosensitive hydrogels undergoing reversible sol-to-gel phase transitions in response to temperature variations are a class of promising biomaterials that can serve as minimally invasive injectable systems for various biomedical applications. Hydrophilic PEG is a main component in the design and fabrication of thermoresponsive hydrogels due to its excellent biocompatibility. By incorporating hydrophobic segments, such as polyesters and polypeptides, into PEG-based systems, biodegradable and thermosensitive hydrogels with adjustable properties in vitro and in vivo have been developed and have recently become a research hotspot of biomaterials. The summary and discussion on molecular design, performance regulation, thermogelation and degradation mechanisms, and biomedical applications of PEG-based thermosensitive hydrogels may offer a demonstration of blueprint for designing new thermogelling systems and expanding their application scope.
[Display omitted] |
---|---|
AbstractList | Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted.
Thermosensitive hydrogels undergoing reversible sol-to-gel phase transitions in response to temperature variations are a class of promising biomaterials that can serve as minimally invasive injectable systems for various biomedical applications. Hydrophilic PEG is a main component in the design and fabrication of thermoresponsive hydrogels due to its excellent biocompatibility. By incorporating hydrophobic segments, such as polyesters and polypeptides, into PEG-based systems, biodegradable and thermosensitive hydrogels with adjustable properties in vitro and in vivo have been developed and have recently become a research hotspot of biomaterials. The summary and discussion on molecular design, performance regulation, thermogelation and degradation mechanisms, and biomedical applications of PEG-based thermosensitive hydrogels may offer a demonstration of blueprint for designing new thermogelling systems and expanding their application scope.
[Display omitted] Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted. Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted. STATEMENT OF SIGNIFICANCE: Thermosensitive hydrogels undergoing reversible sol-to-gel phase transitions in response to temperature variations are a class of promising biomaterials that can serve as minimally invasive injectable systems for various biomedical applications. Hydrophilic PEG is a main component in the design and fabrication of thermoresponsive hydrogels due to its excellent biocompatibility. By incorporating hydrophobic segments, such as polyesters and polypeptides, into PEG-based systems, biodegradable and thermosensitive hydrogels with adjustable properties in vitro and in vivo have been developed and have recently become a research hotspot of biomaterials. The summary and discussion on molecular design, performance regulation, thermogelation and degradation mechanisms, and biomedical applications of PEG-based thermosensitive hydrogels may offer a demonstration of blueprint for designing new thermogelling systems and expanding their application scope.Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted. STATEMENT OF SIGNIFICANCE: Thermosensitive hydrogels undergoing reversible sol-to-gel phase transitions in response to temperature variations are a class of promising biomaterials that can serve as minimally invasive injectable systems for various biomedical applications. Hydrophilic PEG is a main component in the design and fabrication of thermoresponsive hydrogels due to its excellent biocompatibility. By incorporating hydrophobic segments, such as polyesters and polypeptides, into PEG-based systems, biodegradable and thermosensitive hydrogels with adjustable properties in vitro and in vivo have been developed and have recently become a research hotspot of biomaterials. The summary and discussion on molecular design, performance regulation, thermogelation and degradation mechanisms, and biomedical applications of PEG-based thermosensitive hydrogels may offer a demonstration of blueprint for designing new thermogelling systems and expanding their application scope. Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted. STATEMENT OF SIGNIFICANCE: Thermosensitive hydrogels undergoing reversible sol-to-gel phase transitions in response to temperature variations are a class of promising biomaterials that can serve as minimally invasive injectable systems for various biomedical applications. Hydrophilic PEG is a main component in the design and fabrication of thermoresponsive hydrogels due to its excellent biocompatibility. By incorporating hydrophobic segments, such as polyesters and polypeptides, into PEG-based systems, biodegradable and thermosensitive hydrogels with adjustable properties in vitro and in vivo have been developed and have recently become a research hotspot of biomaterials. The summary and discussion on molecular design, performance regulation, thermogelation and degradation mechanisms, and biomedical applications of PEG-based thermosensitive hydrogels may offer a demonstration of blueprint for designing new thermogelling systems and expanding their application scope. |
Author | Ding, Jiandong Yu, Lin Shi, Jiayue |
Author_xml | – sequence: 1 givenname: Jiayue surname: Shi fullname: Shi, Jiayue organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China – sequence: 2 givenname: Lin orcidid: 0000-0001-7660-3367 surname: Yu fullname: Yu, Lin email: yu_lin@fudan.edu.cn organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China – sequence: 3 givenname: Jiandong surname: Ding fullname: Ding, Jiandong organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33857694$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LAzEQhoMofv8DkYIXL7smu0k260GQUj9A0IOeQzaZ1JTtpiap4L83pe2lBz3NHJ73ZeY5QfuDHwChC4JLggm_mZVKp875ssIVKTEtMW730DERjSgaxsV-3htaFQ3m5AidxDjDuBakEofoqK4Fa3hLjxF7mzwWnYpgRukTwtxHGKJL7htGajCj3G9gGpRRXQ-jzx8T_BT6eIYOrOojnG_mKfp4mLyPn4qX18fn8f1LoSnjqSBgqNCN1dbU-TpGcNvyrgFLsOatoKpqleGUUItJRzUXFhTtrFG27pitcH2Krte9i-C_lhCTnLuooe_VAH4ZZcUIZW1Fhcjo1Q4688sw5OsyxfK_ddOyTF1uqGU3ByMXwc1V-JFbIRm4XQM6-BgDWKldUsn5IQXlekmwXNmXM7m2L1f2JaYy_5fDdCe87f8ndreOZbPw7SDIqB0MGowLoJM03v1d8Asi3p8A |
CitedBy_id | crossref_primary_10_31857_S0023291223600554 crossref_primary_10_1208_s12249_024_02894_8 crossref_primary_10_1002_smll_202201300 crossref_primary_10_1021_acs_macromol_1c00959 crossref_primary_10_1016_j_eurpolymj_2024_113158 crossref_primary_10_1021_acs_macromol_4c02171 crossref_primary_10_1002_asia_202200621 crossref_primary_10_1002_adhm_202401227 crossref_primary_10_1002_adhm_202400811 crossref_primary_10_37155_2972_449X_vol2_1__102 crossref_primary_10_1021_acs_chemmater_4c03077 crossref_primary_10_1016_j_bioactmat_2022_05_008 crossref_primary_10_1021_cbe_4c00079 crossref_primary_10_3390_gels8110741 crossref_primary_10_1016_j_bioactmat_2022_09_002 crossref_primary_10_1016_j_eurpolymj_2023_112214 crossref_primary_10_1039_D2PY01574A crossref_primary_10_34133_bmef_0006 crossref_primary_10_1016_j_bbrc_2024_151215 crossref_primary_10_1016_j_cclet_2024_109736 crossref_primary_10_1186_s12951_023_01996_y crossref_primary_10_1021_acs_biomac_4c01676 crossref_primary_10_1007_s10118_022_2741_1 crossref_primary_10_1007_s13770_024_00671_z crossref_primary_10_1002_asia_202200081 crossref_primary_10_1039_D3LP00136A crossref_primary_10_3389_fbioe_2022_902894 crossref_primary_10_1016_j_ijbiomac_2023_128288 crossref_primary_10_1002_adfm_202400585 crossref_primary_10_1016_j_apsb_2024_08_027 crossref_primary_10_1016_j_progpolymsci_2023_101752 crossref_primary_10_1186_s40824_022_00316_z crossref_primary_10_1021_acsabm_4c01427 crossref_primary_10_1016_j_ijbiomac_2024_135858 crossref_primary_10_3389_fbioe_2022_954501 crossref_primary_10_1002_admi_202300391 crossref_primary_10_1002_sstr_202400560 crossref_primary_10_1002_pat_6406 crossref_primary_10_1021_acs_jafc_4c05903 crossref_primary_10_1021_acs_biomac_4c00376 crossref_primary_10_1016_j_polymer_2022_125093 crossref_primary_10_1021_acs_langmuir_3c01576 crossref_primary_10_3390_gels9040301 crossref_primary_10_1016_j_ensm_2024_103707 crossref_primary_10_1021_acsami_3c03149 crossref_primary_10_1039_D4TB00771A crossref_primary_10_1021_acsnano_3c07638 crossref_primary_10_1016_j_jmps_2022_105016 crossref_primary_10_1021_acs_biomac_3c00382 crossref_primary_10_1016_j_mtcomm_2022_104369 crossref_primary_10_1016_j_jconrel_2022_08_040 crossref_primary_10_1002_pol_20210955 crossref_primary_10_1016_j_ajps_2024_100911 crossref_primary_10_1016_j_bioactmat_2024_05_032 crossref_primary_10_1016_j_matt_2023_05_030 crossref_primary_10_3389_fphar_2024_1499742 crossref_primary_10_1016_j_ijbiomac_2023_127654 crossref_primary_10_3390_gels9030245 crossref_primary_10_1039_D1TB01554K crossref_primary_10_1039_D4BM01629G crossref_primary_10_1016_j_carbpol_2024_122128 crossref_primary_10_1021_acs_biomac_3c01285 crossref_primary_10_1016_j_ijpharm_2022_122484 crossref_primary_10_3390_gels8050316 crossref_primary_10_1186_s12951_024_02306_w crossref_primary_10_3390_polym17060780 crossref_primary_10_1002_adhm_202101809 crossref_primary_10_1002_adhm_202302626 crossref_primary_10_3390_gels11010072 crossref_primary_10_1186_s40779_023_00448_w crossref_primary_10_1007_s11517_024_03141_9 crossref_primary_10_1002_pol_20220337 crossref_primary_10_1016_j_actbio_2022_04_020 crossref_primary_10_3390_polym16091221 crossref_primary_10_1002_adtp_202300128 crossref_primary_10_1002_asia_202200797 crossref_primary_10_1002_macp_202400163 crossref_primary_10_1016_j_biomaterials_2023_122139 crossref_primary_10_1021_acs_biomac_4c00389 crossref_primary_10_1021_acsmacrolett_4c00448 crossref_primary_10_3390_ma17184472 crossref_primary_10_1016_j_mtbio_2024_101266 crossref_primary_10_1002_adfm_202206554 crossref_primary_10_1016_j_bioactmat_2022_10_004 crossref_primary_10_1021_acsabm_4c01348 crossref_primary_10_3390_polym14163368 crossref_primary_10_1016_j_colsurfb_2023_113392 crossref_primary_10_1016_j_xphs_2023_05_018 crossref_primary_10_1016_j_eurpolymj_2025_113816 crossref_primary_10_3390_gels10100614 crossref_primary_10_1016_j_ccr_2024_216207 crossref_primary_10_3390_ma15155290 crossref_primary_10_1016_j_engreg_2022_02_003 crossref_primary_10_1016_j_mtbio_2022_100238 crossref_primary_10_1016_j_actbio_2022_04_005 crossref_primary_10_1177_08853282221123452 crossref_primary_10_1186_s12951_024_02780_2 crossref_primary_10_1016_j_cej_2025_159621 crossref_primary_10_1021_acsami_3c18306 crossref_primary_10_1002_advs_202306152 crossref_primary_10_1016_j_actbio_2022_12_070 crossref_primary_10_56294_mw2023146 crossref_primary_10_1016_j_actbio_2022_03_033 crossref_primary_10_1016_j_cej_2023_143128 crossref_primary_10_1021_acs_langmuir_4c04515 crossref_primary_10_1016_j_cobme_2022_100412 crossref_primary_10_1002_adhm_202102654 crossref_primary_10_1039_D3TB03070A crossref_primary_10_1016_j_compositesb_2023_111162 crossref_primary_10_3389_fbioe_2023_1296531 crossref_primary_10_3390_gels11030178 crossref_primary_10_1038_s41598_024_68840_7 crossref_primary_10_1039_D4TB00887A crossref_primary_10_3390_polym14245368 crossref_primary_10_1016_j_fuel_2023_130751 crossref_primary_10_3390_ma16165532 crossref_primary_10_1021_acsami_4c05836 crossref_primary_10_1002_adfm_202405966 crossref_primary_10_1021_acsami_3c07008 crossref_primary_10_1039_D2BM01036D crossref_primary_10_1021_acsami_4c15889 crossref_primary_10_1016_j_bprint_2024_e00355 crossref_primary_10_1016_j_cej_2024_152238 crossref_primary_10_1016_j_eurpolymj_2023_112294 crossref_primary_10_1039_D1BM01280K crossref_primary_10_1016_j_ijbiomac_2023_125055 crossref_primary_10_1002_macp_202100316 crossref_primary_10_1208_s12249_024_02960_1 crossref_primary_10_1016_j_polymer_2022_125499 crossref_primary_10_1016_j_mtbio_2024_101297 crossref_primary_10_1039_D4BM00643G crossref_primary_10_1002_adfm_202418941 crossref_primary_10_1038_s41536_022_00274_z crossref_primary_10_2147_IJN_S495971 crossref_primary_10_1134_S1061933X23600756 crossref_primary_10_1021_acsami_1c08855 crossref_primary_10_3390_polym14081555 crossref_primary_10_1021_acsapm_4c01716 crossref_primary_10_1016_j_bioactmat_2022_08_024 crossref_primary_10_1039_D4BM00241E crossref_primary_10_3390_pharmaceutics14122622 crossref_primary_10_1016_j_cej_2022_138889 crossref_primary_10_1016_j_jconrel_2024_06_001 crossref_primary_10_1021_acsabm_2c00755 crossref_primary_10_1007_s10973_023_12636_w crossref_primary_10_3390_gels11020120 crossref_primary_10_1126_sciadv_adl0165 crossref_primary_10_1039_D2TB02703H crossref_primary_10_1093_rb_rbad039 crossref_primary_10_1016_j_apmt_2025_102602 crossref_primary_10_1016_j_cis_2023_103035 crossref_primary_10_20883_medical_e712 crossref_primary_10_1039_D4PY01316F crossref_primary_10_1039_D4TB00761A crossref_primary_10_1016_j_mtbio_2024_101308 crossref_primary_10_1002_adma_202201651 crossref_primary_10_1016_j_smaim_2023_06_001 crossref_primary_10_15212_AMM_2024_0017 crossref_primary_10_1002_pat_5844 crossref_primary_10_1016_j_mtadv_2024_100490 crossref_primary_10_1002_jbm_a_37754 crossref_primary_10_1002_adma_202406604 crossref_primary_10_1039_D2TB00983H crossref_primary_10_3390_polym16050584 crossref_primary_10_1021_acs_chemmater_3c03321 crossref_primary_10_3390_pharmaceutics16080979 crossref_primary_10_1208_s12249_023_02705_6 crossref_primary_10_1016_j_eng_2021_11_025 crossref_primary_10_1016_j_eurpolymj_2023_112526 crossref_primary_10_3390_gels8100683 crossref_primary_10_1093_rb_rbad064 crossref_primary_10_1093_rb_rbae031 crossref_primary_10_1002_pol_20240646 crossref_primary_10_1016_j_xphs_2023_02_004 crossref_primary_10_1039_D4TA02586E crossref_primary_10_3389_fchem_2022_946183 crossref_primary_10_1002_cjoc_202400475 crossref_primary_10_1039_D2TA06822B crossref_primary_10_1093_rb_rbac098 crossref_primary_10_1016_j_jddst_2023_104698 crossref_primary_10_1039_D4TB00805G crossref_primary_10_3390_biom13020280 crossref_primary_10_1016_j_eurpolymj_2024_113226 crossref_primary_10_1039_D3MA00341H crossref_primary_10_1016_j_eurpolymj_2025_113887 crossref_primary_10_3390_polym14224953 crossref_primary_10_1016_j_carbpol_2025_123360 crossref_primary_10_1007_s40843_024_3095_8 crossref_primary_10_1016_j_biopha_2024_116238 crossref_primary_10_1021_acsapm_3c01649 crossref_primary_10_1002_adhm_202201714 crossref_primary_10_1007_s11427_023_2394_3 crossref_primary_10_1016_j_cis_2024_103207 crossref_primary_10_1016_j_reactfunctpolym_2022_105222 crossref_primary_10_1021_acsami_4c06156 crossref_primary_10_1002_macp_202300365 crossref_primary_10_13005_ojc_400310 |
Cites_doi | 10.1016/j.biomaterials.2013.02.050 10.1016/j.actbio.2018.07.021 10.1002/adhm.201500224 10.1002/smll.201603404 10.1016/j.biomaterials.2013.05.005 10.1021/bm025536m 10.1016/j.biomaterials.2014.05.064 10.1038/nrcardio.2014.28 10.1016/j.actbio.2016.02.028 10.1093/rb/rbz039 10.1039/C7PY01411B 10.1039/C8TB01949E 10.1016/j.actbio.2020.09.013 10.1021/nn300842a 10.1038/natrevmats.2016.71 10.1016/j.biomaterials.2013.01.013 10.1021/ma8014504 10.1016/j.jconrel.2017.08.006 10.1039/b713009k 10.1021/acs.macromol.5b00168 10.1016/j.actbio.2020.09.018 10.1039/C1SM06693E 10.1016/j.jconrel.2015.12.015 10.1039/C5CC00049A 10.1021/ma100606a 10.1021/ma7026484 10.1002/mabi.201400426 10.1021/acsami.9b10346 10.1016/j.biomaterials.2020.120327 10.1021/acs.biomac.6b01604 10.1021/acsami.7b05740 10.1039/C5RA22307E 10.1038/s41467-017-00583-8 10.1021/acs.biomac.0c00623 10.1007/s13770-018-0148-4 10.1002/adhm.201400140 10.1007/s13233-013-1021-x 10.1021/ma060153s 10.1002/chem.201700947 10.1039/c3tb20105h 10.1002/pi.1702 10.1021/acs.macromol.9b00534 10.1002/smtd.201800313 10.1038/srep05473 10.1245/s10434-013-3284-z 10.1016/j.polymer.2009.10.036 10.1007/s10965-010-9466-5 10.1016/j.biomaterials.2018.08.044 10.1021/ma050489m 10.1016/j.biomaterials.2014.06.045 10.1016/j.jconrel.2009.03.008 10.1021/acsami.8b13548 10.1021/ar200162j 10.1016/j.actbio.2020.04.034 10.1166/jbn.2017.2464 10.1016/j.msec.2018.02.028 10.1021/ma9908999 10.1002/jps.2600810718 10.1016/j.jconrel.2015.04.023 10.1038/srep19077 10.1021/acsami.8b17125 10.1002/jps.23735 10.1016/j.biomaterials.2018.04.021 10.1007/s10118-019-2212-5 10.1039/C7TB01556A 10.1002/mabi.201600001 10.1016/j.actbio.2020.07.033 10.1016/j.jconrel.2011.07.008 10.1023/A:1011074915438 10.1021/acsami.5b12212 10.1002/mabi.201600299 10.1021/ma202809c 10.1016/j.biomaterials.2018.01.001 10.1002/jps.21780 10.1021/bm500342r 10.1016/S0168-3659(01)00276-0 10.1021/acsami.7b11998 10.1038/42218 10.1016/j.actbio.2017.03.042 10.1093/rb/rbz023 10.1021/acsami.5b09112 10.1039/b922956f 10.1016/j.biomaterials.2018.07.051 10.1021/acsami.7b15206 10.1002/anie.200503575 10.1007/s10118-014-1551-5 10.1039/C7PY00232G 10.1039/C6CS00052E 10.1021/bm101572j 10.1021/acs.macromol.0c02488 10.1021/acs.macromol.8b01014 10.1023/B:PHAM.0000026435.27086.94 10.1021/acs.biomac.7b01374 10.1016/j.biomaterials.2013.10.016 10.1016/j.biomaterials.2009.05.031 10.1002/pola.27254 10.1021/bm0600062 10.1039/b809116a 10.1021/acsbiomaterials.5b00516 10.1016/j.actbio.2020.10.025 10.1021/ma501110p 10.1021/bm400868j 10.1021/acsami.5b12324 10.1002/jbm.10164 10.1016/j.actbio.2019.07.024 10.1021/acsami.7b02488 10.1039/C4BM00029C 10.1093/rb/rbaa018 10.1021/bm049347a 10.1093/rb/rbz022 10.1016/j.jconrel.2017.04.011 10.1002/pola.21193 10.1021/bm0156431 10.1002/adfm.201403550 10.1016/j.biomaterials.2011.03.046 10.1093/rb/rbz027 10.1021/ma0305838 10.1016/j.actbio.2015.05.005 10.1016/j.jconrel.2014.09.014 10.1021/acs.biomac.9b01096 10.1002/adma.201301762 10.1093/rb/rbz028 10.1016/j.clinthera.2011.06.004 10.3390/ijms17071001 10.1002/adhm.201600723 10.1021/acsami.9b01872 10.1016/j.biomaterials.2012.03.040 10.1177/8755122517711958 10.1021/bm900145g 10.1093/rb/rbz050 10.1039/C4TB01705F 10.1016/j.actbio.2020.07.032 10.1039/C8BM01442F 10.1039/C6BM00408C 10.1002/adhm.201500558 10.1002/pola.22222 10.1039/c1sm05977g 10.1039/D0BM00278J 10.1007/s00198-007-0490-1 10.1016/j.actbio.2020.06.006 10.1016/j.biomaterials.2010.03.027 10.1016/j.polymdegradstab.2010.03.024 10.1007/s11095-006-9104-4 10.1021/bm501220a 10.1016/j.cej.2020.125320 10.1021/acsami.0c05024 10.1093/rb/rbz025 10.1021/acsami.8b19669 10.1023/B:PHAM.0000008050.99985.5c 10.1002/pola.21876 10.1016/j.actbio.2021.01.014 10.1016/S0140-6736(06)69705-5 10.1016/j.actbio.2020.04.003 10.1016/j.addr.2009.04.010 10.1016/j.polymer.2005.04.024 10.3389/fendo.2019.00155 10.1016/j.jconrel.2015.04.032 10.1016/j.actbio.2012.07.044 10.1039/C6TB02019D 10.1039/C6TB01690A 10.1021/ma000638v 10.1021/ma012093q 10.1016/j.biomaterials.2017.03.049 10.1016/j.biomaterials.2019.119338 10.1007/s10118-016-1740-5 10.1016/j.actbio.2013.12.007 10.1093/rb/rbz029 10.1039/c2jm15419f 10.1097/BSD.0000000000000221 10.1039/C9TB02523E 10.1021/bm2018596 10.1016/j.actbio.2020.03.039 10.1021/acsami.6b09415 10.1038/srep31593 10.1016/j.ijpharm.2007.07.026 10.1016/j.biomaterials.2009.11.115 10.1016/j.jconrel.2017.10.022 10.3109/1061186X.2014.931406 10.7150/thno.36514 10.1016/j.actbio.2019.01.001 10.1016/j.biomaterials.2017.01.016 10.1016/j.polymer.2007.06.003 10.1021/bm100549q 10.1021/acs.langmuir.8b03452 10.1016/j.biomaterials.2016.10.025 10.1002/smtd.202000310 10.1016/j.biomaterials.2018.03.023 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Ltd. Copyright Elsevier BV Jul 1, 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Ltd. – notice: Copyright Elsevier BV Jul 1, 2021 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1016/j.actbio.2021.04.009 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-7568 |
EndPage | 59 |
ExternalDocumentID | 33857694 10_1016_j_actbio_2021_04_009 S1742706121002464 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABGSF ABJNI ABMAC ABNUV ABUDA ABXRA ACDAQ ACGFS ACIWK ACPRK ACRLP ADBBV ADEWK ADEZE ADUVX AEBSH AEHWI AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION EJD SEW SSH NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c456t-1ed48c7fcfd3009510996b7ef10c6984a29ad6414f01b4c68fea4bfdaf3b5f203 |
IEDL.DBID | .~1 |
ISSN | 1742-7061 1878-7568 |
IngestDate | Fri Jul 11 02:25:27 EDT 2025 Wed Aug 13 04:27:27 EDT 2025 Thu Apr 03 07:06:51 EDT 2025 Tue Jul 01 01:17:33 EDT 2025 Thu Apr 24 23:03:47 EDT 2025 Sat Aug 24 15:40:49 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polyester Poly(organophosphazene) PEG Polypeptide Thermosensitive hydrogel |
Language | English |
License | Copyright © 2021. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-1ed48c7fcfd3009510996b7ef10c6984a29ad6414f01b4c68fea4bfdaf3b5f203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7660-3367 |
PMID | 33857694 |
PQID | 2553853795 |
PQPubID | 2045286 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2514592488 proquest_journals_2553853795 pubmed_primary_33857694 crossref_citationtrail_10_1016_j_actbio_2021_04_009 crossref_primary_10_1016_j_actbio_2021_04_009 elsevier_sciencedirect_doi_10_1016_j_actbio_2021_04_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Kidlington |
PublicationTitle | Acta biomaterialia |
PublicationTitleAlternate | Acta Biomater |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Xu, Xu, Bi, Hou, Yao, Du, He, Liu, Miao, Liang, Jiang, Zhou, Cao (bib0012) 2020; 108 Liu, Chen, Li, Guo, Xie, Yu, Xu, Ding, Li, Ding (bib0162) 2017; 9 Patel, Park, Lee, Jeong (bib0020) 2018; 15 Dumortier, Grossiord, Agnely, Chaumeil (bib0023) 2006; 23 Qi, Li, He, Zhang, Ding (bib0169) 2019; 11 Yu, Zhang, Zhang, Ding (bib0085) 2009; 10 Chen, Ci, Li, Yu, Ding (bib0077) 2014; 47 Choi, Joo, Sohn, Jeong (bib0096) 2008; 4 Kye, Kim, Park, Moon, Ryu, Jeong (bib0193) 2014; 15 Yu, Xu, Shen, Cao, Liu, Li, Ding (bib0117) 2014; 10 Zhang, Ni, Chen, Yu, Xu, Ding (bib0056) 2011; 32 Zhou, Zhuang, Li, Agren, Yu, Ding, Zhu (bib0105) 2017; 23 Chesnut, Azria, Silverman, Engelhardt, Olson, Mindeholm (bib0161) 2008; 19 Elstad, Fowers (bib0129) 2009; 61 Newsome (bib0154) 2017; 33 Jeong, Bae, Kim (bib0060) 1999; 32 Cui, Yu, Ding (bib0025) 2018 Sun, Liu, Lei, Tang, Dai, Yang, Yu, Yu, Sun, Ding (bib0157) 2017; 5 Yan, Xu, Xu, Sun, Jiang, Shi (bib0014) 2020; 7 Cao, Li, Zuo, Gao (bib0029) 2019; 6 Qu, Zhao, Liang, Zhang, Ma, Guo (bib0008) 2018; 183 Chang, Yu, Yang, Ding (bib0082) 2009; 50 Ci, Shen, Cui, Liu, Yu, Ding (bib0133) 2017; 17 Momoh, Ahmed, Kelley, Aliu, Kidwell, Kozlow, Chung (bib0159) 2014; 21 Lei, Ma, Yu, Ding (bib0104) 2016; 4 Cui, Yu, Ding (bib0092) 2018; 51 Ma, He, Cheng, Yang, Zang, Liu, Chen (bib0124) 2015; 7 Liu, Guo, Ruan, Hu, Jiang, Liang, Shen (bib0006) 2019; 96 Fu, Ni, Wang, Chu, Zheng, Luo, Luo, Qian (bib0178) 2012; 33 Peng, Chen, Chu, Li, Hsu, Hsu, Chang (bib0051) 2010; 31 Xu, Gu, Chen, Shi, Liu, Liu, Wang, Sun, Zhang, Liu, Shen, Lin, Yang, Sun (bib0007) 2019; 86 Patel, Lee, Park, Kim, Jeong (bib0019) 2018; 159 Petit, Muller, Bruin, Meyboom, Piest, Kroon-Batenburg, de Leede, Hennink, Vermonden (bib0088) 2012; 8 D'Amora, Ronca, Raucci, Dozio, Lin, Fan, Zhang, Ambrosio (bib0036) 2019; 6 Cho, Kwon (bib0140) 2014; 22 Lin, Zhang, Zhang, Qi, Zhang, Qian, Li, Qin, Li, Wang, Qiu, Shi, Zheng, Zhang, Gao, Ding (bib0168) 2021; 6 Cipriani, Arino Palao, Gonzalez de Torre, Vega Castrillo, Aguado Hernandez, Alonso Rodrigo, Alvarez Barcia, Sanchez, Garcia Diaz, Lopez Pena, Rodriguez-Cabello (bib0038) 2019; 6 Zhang, Xu, Ning, Li, Zhao, Jiang, Ding, Chen (bib0160) 2018; 181 Zhang, Zhang, Xu, Xiao, Ding, Chen (bib0145) 2018; 77 Shen, Chen, Luan, Wang, Yu, Ding (bib0106) 2017; 9 Lee, Bae, Sohn, Jeong (bib0061) 2006; 7 Patel, Moon, Jung, Jeong (bib0194) 2015; 4 Shinde, Joo, Moon, Jeong, solution, release (bib0093) 2012; 22 Ni, Ding, Fan, Liao, Qian, Luo, Li, Luo, Yang, Wei (bib0179) 2014; 35 Shen, Luan, Cao, Sun, Yu, Ding (bib0143) 2015; 16 Jiang, You, Deng, Hao (bib0055) 2007; 48 Liu, Zheng, Ye, He, Shen, Cui, Huang, Gu, Ding (bib0164) 2020; 263 Yu, Chang, Zhang, Ding (bib0131) 2008; 348 Chen, Luan, Shen, Lei, Yu, Ding (bib0128) 2016; 8 Kim, Yoo, Cha, Kim (bib0044) 2014; 194 Yu, Li, Liu, Chen, Bao, Ci, Chen, Ding (bib0151) 2013; 102 Knudsen, Lau (bib0152) 2019; 10 Alsaykhan, Paxton (bib0022) 2020; 7 Feng, Zhao, Li, Xu, Zhou, Zhang, Deng, Dong (bib0089) 2016; 4 Chung, Simmons, Gutowska, Jeong (bib0065) 2002; 3 Cho, Gao, Kwon (bib0048) 2016; 240 Wang, Yang, Liu, Yu, Ding (bib0033) 2018; 6 Li, Liu, Chen (bib0112) 2020; 110 Choi, Kim (bib0122) 2003; 20 Wang, Chang, Li, Wu, Xing, Deng, Dong (bib0090) 2012; 8 Yao, Peng, Ding (bib0167) 2013; 25 Yu, Chang, Zhang, Ding (bib0080) 2007; 45 Choi, Jang, Park, Choi, Chi, Jeong (bib0095) 2010; 20 Ma, He, Cheng, Li, Gong, Liu, Tian, Chen (bib0141) 2014; 35 Zhang, Shen, Luan, Yang, Wei, Yu, Lu, Ding (bib0155) 2015; 23 Yu, Wei, Liu, Qi, Wang, Chen, He, He, Chen, Gu (bib0125) 2019; 7 Yu, Zhang, Zhang, Ding (bib0086) 2010; 11 Petit, Sandker, Muller, Meyboom, van Midwoud, Bruin, Redout, Versluijs-Helder, van der Lest, Buwalda, de Leede, Vermonden, Kok, Weinans, Hennink (bib0003) 2014; 35 Yao, Ding (bib0165) 2020; 12 Nguyen, Lee, Lym, Kim, Jae, Lee (bib0026) 2016; 4 Lee, Lee, Sohn, Song (bib0073) 2002; 35 Ci, Chen, Yu, Ding (bib0132) 2014; 4 Lee, Song (bib0097) 2005; 54 Chen, Wang, Yang, Wang, Yu, Sun, Ding (bib0135) 2019; 9 Park, Park, Ji, Ju, Min, Kim (bib0011) 2020; 117 Kang, Yeon, Moon, Jeong (bib0069) 2012; 45 Kim, Park, Song (bib0137) 2013; 34 Jeong, Bae, Lee, Kim (bib0058) 1997; 388 Kang, Lee, Lee, Son, Kim, Lee, Chun, Min, Kim, Kim (bib0103) 2010; 31 Liu, Zhang, Li, Feng, Huang, Wang, Liu (bib0046) 2020; 114 Chen, Zhang, Wu, Wu, Tang, Cui, Cao, Liu, Peng, Yu, Ding (bib0098) 2020; 4 Liu, Yao, Liu, Ding (bib0166) 2019; 35 Gu, Li, Song, Yang, Li, Chen, Liu, Gong, Chen, Sun (bib0177) 2020; 7 Liow, Dou, Kai, Li, Sugiarto, Yu, Kwok, Chen, Wu, Ong, Kizhakeyil, Verma, Tang, Loh (bib0042) 2017; 13 Li, Chen, Xu, Abdou, Jiang, Shi, Gu (bib0015) 2019; 6 Hong, Song (bib0196) 2019; 218 Huang, Zou, Arno, Chen, Wang, Gao, Dove, Du (bib0002) 2017; 46 Patel, Lee, Son, Kim, Kim, Jeong (bib0191) 2020; 21 Shi, Wang, Qu, Liao, Chu, Zhang, Luo, Qian (bib0102) 2016; 6 Kwon, Yoon, Kwon, Kim, Tai, Jin, Song, Lee, Kim, Han, Min, Kim (bib0183) 2013; 1 Jung, Park, Moon, Ko, Jeong (bib0072) 2014; 52 Chen, Li, Feng, Yu, Ding (bib0163) 2017; 13 Lei, Chen, Wang, Peng, Yu, Ding (bib0100) 2017; 55 Luan, Shen, Chen, Lei, Yu, Ding (bib0142) 2015; 5 Lee, Song (bib0094) 2004; 37 Park, Moon, Park, Shinde, Ko, Jeong (bib0189) 2015; 15 Ozawa, Saita, Sakaue, Okada, Sato, Kawamata, Sakurai, Hamada, Kimoto, Nagasaki (bib0017) 2020; 110 Park, Yu, Moon, Ko, Kim, Lee, Ryu, Jeong (bib0188) 2014; 3 Zhuang, Yang, Li, Chen, Peng, Yu, Ding (bib0126) 2019; 11 Jeong, Lee, Gutowska, An (bib0063) 2002; 3 Peng, Liu, He, Ye, Yao, Ding (bib0170) 2018; 178 Bae, Joo, Jeong, Kim, Lee, Sohn, Jeong (bib0062) 2006; 39 Jang, Park, Park, Lee, Yun, Lee, Kim, Min, Kim (bib0184) 2016; 16 Buwalda, Vermonden, Hennink (bib0004) 2017; 18 Zhang, Yu, Ding (bib0091) 2008; 41 Vong, Bui, Tomita, Sakamoto, Hiramatsu, Nagasaki (bib0041) 2018; 167 Hwang, Suh, Bae, Kim, Jeong (bib0059) 2005; 6 Loh, Chee, Owh (bib0047) 2019; 3 Wang, Chen, Wu, Wu, Wei, He, Lu, Wang (bib0034) 2018; 30 Kim, Park, Song (bib0136) 2012; 6 Lee, Han, Park, Han, Kim (bib0066) 2006; 44 Jeong, Joo, Bahk, Choi, Kim, Kim, Lee, Sohn, Jeong (bib0067) 2009; 137 Moon, Patel, Chung, Jeong (bib0192) 2016; 5 Park, Joo, Choi, Jeong (bib0040) 2012; 45 Chang, Ci, Yu, Ding (bib0130) 2011; 156 Li, Yu, Liu, Chen, Chen, Ding (bib0123) 2013; 34 Kim, Lee, Kang, Kwon, Kim, Kang, Kim, Kim (bib0083) 2011; 7 Frangogiannis (bib0158) 2014; 11 Drucker, Nauck (bib0147) 2006; 368 Weizel, Distler, Schneidereit, Friedrich, Brauer, Paulsen, Detsch, Boccaccini, Budday, Seitz (bib0037) 2020; 118 Akash, Rehman (bib0045) 2015; 209 Chun, Lee, Kim, Hong, Kim, Yang, Song (bib0144) 2009; 30 Wu, Wu, Ye, Yu, He, Chen (bib0071) 2017; 255 Li, Ding, Zhang, Yang, Yu, Wang, Chang, Chen (bib0099) 2016; 8 Seo, Park, Song (bib0150) 2019; 11 Zhang, Zhang, Chang, Xu, Ding (bib0182) 2018; 88 Luan, Zhang, Shen, Chen, Yang, Chen, Yu, Sun, Ding (bib0120) 2018; 10 Wang, Booij-Vrieling, Bronkhorst, Shao, Kouwer, Jansen, Walboomers, Yang (bib0005) 2020; 116 Liu, Liu, Qi, Fang, Zhang, Zhuo, Jiang (bib0021) 2016; 35 Zhao, Zhu, Wu, Yang, Xu, Liang (bib0010) 2020; 7 Yang, Gong, Zhao, Zhou, Li, Qi, Zhong, Luo, Qian (bib0113) 2012; 7 Cui, Yu, Ding (bib0087) 2020; 53 Shin, Kwon (bib0139) 2017; 268 Lu, Guan, Cui, Sun, Zhao, Wang, Wang (bib0018) 2019; 6 Zhuang, Yang, Yu, Ding (bib0148) 2019; 32 Yu, Zhang, Ding (bib0081) 2006; 45 Zhang, Song (bib0127) 2017; 132 Kim, Potta, Park, Song (bib0028) 2017; 112 Kim, Lee, Lee, Lee, Park (bib0035) 2021; 123 Cao, Cao, Lu, Wang, Yu, Ding (bib0032) 2015; 3 Shim, Lee, Shim, Park, Lee, Chang, Kim, Lee (bib0050) 2002; 61 Fassberg, Stella (bib0134) 1992; 81 Zhang, Ding, Xu, Wu, Chang, Zhuang, Chen, Wang (bib0185) 2014; 32 Cao, Li, Zhang, Wu, Yao, Xu, Yu, Ding (bib0118) 2016; 2 Luan, Cui, Wang, Shen, Yu, Ding (bib0084) 2017; 8 Yu, Ding (bib0039) 2008; 37 Chen, Li, Shen, Li, Yu, Chen, Ding (bib0076) 2016; 6 Al Habash, Aljasim, Owaidhah, Edward (bib0156) 2015; 9 Lv, Yu, Quan, He, Chen (bib0138) 2020; 3 Yun, Yon, Joo, Jeong (bib0175) 2012; 13 Censi, Fieten, di Martino, Hennink, Vermonden (bib0030) 2010; 43 Yu, Zhang, He, Sun, Cao, Cui, Deng, Gu, Chen (bib0070) 2017; 18 Seong, Jun, Jeong, Sohn (bib0074) 2005; 46 Li, Feng, Song, Zhang, Dong, Kong, Wang, Huang (bib0109) 2020; 8 Patel, Moon, Ko du, Jeong (bib0195) 2016; 8 Chen, Li, Cao, Li, Meng, Dong, Yu, Ding (bib0115) 2015; 34 Ma, Lei, Ding, Yu, Ding (bib0108) 2017; 8 Kim, Choi, Koh, Lee, Ko, Kim (bib0146) 2001; 18 Zentner, Rathi, Shih, McRea, Seo, Oh, Rhee, Mestecky, Moldoveanu, Morgan, Weitman (bib0049) 2001; 72 Jeon, Joo, Cha (bib0013) 2020; 114 Wu, Wang, Qiu, Liow, Li, Loh (bib0043) 2016; 5 Gong, Shi, Dong, Yang, Qi, Guo, Gu, Zhao, Wei, Qian (bib0053) 2009; 98 Choi, Baudys, Kim (bib0149) 2004; 21 Hong, Lee, Jeong (bib0190) 2017; 9 Jeong, Kibbey, Birnbaum, Won, Gutowska (bib0064) 2000; 33 Chen, Shi, Zhang, Miao, Zhao, Jin, Liu, Yu, Shen, Ding (bib0101) 2020; 8 Qiu, Chen, Shen, Shen, Zhao, He (bib0174) 2016; 17 Yu, Sheng, Yang, Ding (bib0054) 2012; 21 Kim, Woo, Patel, Jeong (bib0187) 2020; 21 Gao, Ding, Yu, Chen, Zhang, Cui, Shi, Chen, Yu, Chen, Ding (bib0016) 2020 Wang, Jiang, Xu, Yang, Zhuang, Ding, Chen (bib0110) 2019; 11 Ryan, Foster, Jobe (bib0153) 2011; 33 Yeon, Park, Moon, Kim, Cheon, Jeong (bib0186) 2013; 14 Cai, Wang, Xu, Yao, Liu, Li, Sun, Liang, Fan, Zhang (bib0176) 2020; 7 Xu, Tang, Yuan, Cai, Chen, Cui, Liu, Yu, Cai, Ding (bib0173) 2019; 37 Park, Cho, Song (bib0111) 2010; 95 Chen, Ci, Yu, Ding (bib0078) 2015; 48 Bae, Suh, Sohn, Bae, Kim, Jeong (bib0052) 2005; 38 Qi, Qi, He, Lin, Li, Qin, Hu, Chen, Liu, Sun, Liu, Zhang, Cui, Hu, Yu, Zhang, Ding (bib0171) 2018; 10 Gong, Wu, Wang, Zhang, Luo, Zhao, Wei, Qian (bib0172) 2013; 34 Yu, Zhang, Ding (bib0079) 2011; 12 Jiang, Deng, Hao (bib0057) 2007; 45 Li, Mooney (bib0001) 2016; 1 Cho, Lee, Kim, Song (bib0075) 2010; 18 Hong, Kim, Park, Hwang, Cui, Lee, Yahn, Lee, Song, Kim (bib0119) 2017; 8 Li, Chen, Lin, Cao, Cheng, Dong, Yu, Ding (bib0116) 2017; 30 Lei, Shen, Cao, Yu, Ding (bib0107) 2015; 51 Thambi, Li, Lee (bib0027) 2017; 267 Rodell, MacArthur, Dorsey, Wade, Wang, Woo, Burdick (bib0031) 2015; 25 Seo, Koh, Song (bib0180) 2017; 122 Oh, Joo, Sohn, Jeong (bib0068) 2008; 41 Yu, Hu, Chen, Bao, Li, Chen, Xu, Ye, Ding (bib0114) 2014; Yang (10.1016/j.actbio.2021.04.009_bib0121) 2020; 396 Park (10.1016/j.actbio.2021.04.009_bib0011) 2020; 117 Oh (10.1016/j.actbio.2021.04.009_bib0068) 2008; 41 Zhang (10.1016/j.actbio.2021.04.009_bib0160) 2018; 181 Liu (10.1016/j.actbio.2021.04.009_bib0046) 2020; 114 Zhuang (10.1016/j.actbio.2021.04.009_bib0126) 2019; 11 Drucker (10.1016/j.actbio.2021.04.009_bib0147) 2006; 368 Sun (10.1016/j.actbio.2021.04.009_bib0157) 2017; 5 Seo (10.1016/j.actbio.2021.04.009_bib0180) 2017; 122 Wang (10.1016/j.actbio.2021.04.009_bib0005) 2020; 116 Lee (10.1016/j.actbio.2021.04.009_bib0066) 2006; 44 Vong (10.1016/j.actbio.2021.04.009_bib0041) 2018; 167 Li (10.1016/j.actbio.2021.04.009_bib0001) 2016; 1 Wang (10.1016/j.actbio.2021.04.009_bib0034) 2018; 30 Yu (10.1016/j.actbio.2021.04.009_bib0081) 2006; 45 Shen (10.1016/j.actbio.2021.04.009_bib0143) 2015; 16 Lu (10.1016/j.actbio.2021.04.009_bib0018) 2019; 6 Momoh (10.1016/j.actbio.2021.04.009_bib0159) 2014; 21 Rodell (10.1016/j.actbio.2021.04.009_bib0031) 2015; 25 Cho (10.1016/j.actbio.2021.04.009_bib0075) 2010; 18 Park (10.1016/j.actbio.2021.04.009_bib0040) 2012; 45 Ma (10.1016/j.actbio.2021.04.009_bib0108) 2017; 8 Liow (10.1016/j.actbio.2021.04.009_bib0042) 2017; 13 Ci (10.1016/j.actbio.2021.04.009_bib0133) 2017; 17 Wu (10.1016/j.actbio.2021.04.009_bib0071) 2017; 255 Patel (10.1016/j.actbio.2021.04.009_bib0020) 2018; 15 Thambi (10.1016/j.actbio.2021.04.009_bib0027) 2017; 267 Chen (10.1016/j.actbio.2021.04.009_bib0163) 2017; 13 Zhang (10.1016/j.actbio.2021.04.009_bib0185) 2014; 32 Chun (10.1016/j.actbio.2021.04.009_bib0144) 2009; 30 Jeong (10.1016/j.actbio.2021.04.009_bib0067) 2009; 137 Seo (10.1016/j.actbio.2021.04.009_bib0150) 2019; 11 Akash (10.1016/j.actbio.2021.04.009_bib0045) 2015; 209 Hong (10.1016/j.actbio.2021.04.009_bib0196) 2019; 218 Yu (10.1016/j.actbio.2021.04.009_bib0080) 2007; 45 Yao (10.1016/j.actbio.2021.04.009_bib0167) 2013; 25 Cui (10.1016/j.actbio.2021.04.009_bib0087) 2020; 53 Liu (10.1016/j.actbio.2021.04.009_bib0021) 2016; 35 Xu (10.1016/j.actbio.2021.04.009_bib0012) 2020; 108 Patel (10.1016/j.actbio.2021.04.009_bib0194) 2015; 4 Kye (10.1016/j.actbio.2021.04.009_bib0193) 2014; 15 Lee (10.1016/j.actbio.2021.04.009_bib0097) 2005; 54 Johnson (10.1016/j.actbio.2021.04.009_bib0009) 2020; 112 Nguyen (10.1016/j.actbio.2021.04.009_bib0026) 2016; 4 Hong (10.1016/j.actbio.2021.04.009_bib0190) 2017; 9 Chen (10.1016/j.actbio.2021.04.009_bib0115) 2015; 34 Li (10.1016/j.actbio.2021.04.009_bib0116) 2017; 30 Frangogiannis (10.1016/j.actbio.2021.04.009_bib0158) 2014; 11 Chen (10.1016/j.actbio.2021.04.009_bib0098) 2020; 4 Yu (10.1016/j.actbio.2021.04.009_bib0054) 2012; 21 Liu (10.1016/j.actbio.2021.04.009_bib0166) 2019; 35 Yao (10.1016/j.actbio.2021.04.009_bib0165) 2020; 12 Yu (10.1016/j.actbio.2021.04.009_bib0085) 2009; 10 Yu (10.1016/j.actbio.2021.04.009_bib0114) 2014; 2 Li (10.1016/j.actbio.2021.04.009_bib0099) 2016; 8 Wang (10.1016/j.actbio.2021.04.009_bib0110) 2019; 11 Jang (10.1016/j.actbio.2021.04.009_bib0184) 2016; 16 Choi (10.1016/j.actbio.2021.04.009_bib0096) 2008; 4 Zhang (10.1016/j.actbio.2021.04.009_bib0155) 2015; 23 Buwalda (10.1016/j.actbio.2021.04.009_bib0004) 2017; 18 Huang (10.1016/j.actbio.2021.04.009_bib0002) 2017; 46 Kim (10.1016/j.actbio.2021.04.009_bib0187) 2020; 21 Kang (10.1016/j.actbio.2021.04.009_bib0069) 2012; 45 Cao (10.1016/j.actbio.2021.04.009_bib0029) 2019; 6 Jiang (10.1016/j.actbio.2021.04.009_bib0057) 2007; 45 Park (10.1016/j.actbio.2021.04.009_bib0111) 2010; 95 Patel (10.1016/j.actbio.2021.04.009_bib0019) 2018; 159 Wang (10.1016/j.actbio.2021.04.009_bib0033) 2018; 6 Jeong (10.1016/j.actbio.2021.04.009_bib0058) 1997; 388 Ma (10.1016/j.actbio.2021.04.009_bib0141) 2014; 35 Chen (10.1016/j.actbio.2021.04.009_bib0135) 2019; 9 Fu (10.1016/j.actbio.2021.04.009_bib0178) 2012; 33 D'Amora (10.1016/j.actbio.2021.04.009_bib0036) 2019; 6 Cipriani (10.1016/j.actbio.2021.04.009_bib0038) 2019; 6 Chang (10.1016/j.actbio.2021.04.009_bib0130) 2011; 156 Lee (10.1016/j.actbio.2021.04.009_bib0073) 2002; 35 Shi (10.1016/j.actbio.2021.04.009_bib0102) 2016; 6 Yang (10.1016/j.actbio.2021.04.009_bib0113) 2012; 7 Loh (10.1016/j.actbio.2021.04.009_bib0047) 2019; 3 Petit (10.1016/j.actbio.2021.04.009_bib0088) 2012; 8 Jeong (10.1016/j.actbio.2021.04.009_bib0063) 2002; 3 Hwang (10.1016/j.actbio.2021.04.009_bib0059) 2005; 6 Liu (10.1016/j.actbio.2021.04.009_bib0164) 2020; 263 Qu (10.1016/j.actbio.2021.04.009_bib0008) 2018; 183 Jeong (10.1016/j.actbio.2021.04.009_bib0064) 2000; 33 Kim (10.1016/j.actbio.2021.04.009_bib0028) 2017; 112 Zhang (10.1016/j.actbio.2021.04.009_bib0145) 2018; 77 Li (10.1016/j.actbio.2021.04.009_bib0109) 2020; 8 Kim (10.1016/j.actbio.2021.04.009_bib0044) 2014; 194 Chen (10.1016/j.actbio.2021.04.009_bib0101) 2020; 8 Yeon (10.1016/j.actbio.2021.04.009_bib0186) 2013; 14 Shinde (10.1016/j.actbio.2021.04.009_bib0093) 2012; 22 Cao (10.1016/j.actbio.2021.04.009_bib0032) 2015; 3 Chen (10.1016/j.actbio.2021.04.009_bib0076) 2016; 6 Chung (10.1016/j.actbio.2021.04.009_bib0065) 2002; 3 Knudsen (10.1016/j.actbio.2021.04.009_bib0152) 2019; 10 Kwon (10.1016/j.actbio.2021.04.009_bib0183) 2013; 1 Lee (10.1016/j.actbio.2021.04.009_bib0061) 2006; 7 Luan (10.1016/j.actbio.2021.04.009_bib0084) 2017; 8 Chen (10.1016/j.actbio.2021.04.009_bib0078) 2015; 48 Yu (10.1016/j.actbio.2021.04.009_bib0125) 2019; 7 Newsome (10.1016/j.actbio.2021.04.009_bib0154) 2017; 33 Jung (10.1016/j.actbio.2021.04.009_bib0072) 2014; 52 Cui (10.1016/j.actbio.2021.04.009_bib0025) 2018 Cho (10.1016/j.actbio.2021.04.009_bib0048) 2016; 240 Censi (10.1016/j.actbio.2021.04.009_bib0030) 2010; 43 Al Habash (10.1016/j.actbio.2021.04.009_bib0156) 2015; 9 Qiu (10.1016/j.actbio.2021.04.009_bib0174) 2016; 17 Zhang (10.1016/j.actbio.2021.04.009_bib0182) 2018; 88 Elstad (10.1016/j.actbio.2021.04.009_bib0129) 2009; 61 Wang (10.1016/j.actbio.2021.04.009_bib0090) 2012; 8 Xu (10.1016/j.actbio.2021.04.009_bib0007) 2019; 86 Seong (10.1016/j.actbio.2021.04.009_bib0074) 2005; 46 Lin (10.1016/j.actbio.2021.04.009_bib0168) 2021; 6 Chen (10.1016/j.actbio.2021.04.009_bib0077) 2014; 47 Peng (10.1016/j.actbio.2021.04.009_bib0170) 2018; 178 Cui (10.1016/j.actbio.2021.04.009_bib0092) 2018; 51 Choi (10.1016/j.actbio.2021.04.009_bib0122) 2003; 20 Park (10.1016/j.actbio.2021.04.009_bib0188) 2014; 3 Chen (10.1016/j.actbio.2021.04.009_bib0128) 2016; 8 Kim (10.1016/j.actbio.2021.04.009_bib0035) 2021; 123 Patel (10.1016/j.actbio.2021.04.009_bib0191) 2020; 21 Qi (10.1016/j.actbio.2021.04.009_bib0169) 2019; 11 Ryan (10.1016/j.actbio.2021.04.009_bib0153) 2011; 33 Park (10.1016/j.actbio.2021.04.009_bib0189) 2015; 15 Zhang (10.1016/j.actbio.2021.04.009_bib0056) 2011; 32 Chesnut (10.1016/j.actbio.2021.04.009_bib0161) 2008; 19 Lei (10.1016/j.actbio.2021.04.009_bib0107) 2015; 51 Lei (10.1016/j.actbio.2021.04.009_bib0104) 2016; 4 Moon (10.1016/j.actbio.2021.04.009_bib0192) 2016; 5 Zhao (10.1016/j.actbio.2021.04.009_bib0010) 2020; 7 Seo (10.1016/j.actbio.2021.04.009_bib0181) 2015; 209 Li (10.1016/j.actbio.2021.04.009_bib0123) 2013; 34 Yu (10.1016/j.actbio.2021.04.009_bib0039) 2008; 37 Patel (10.1016/j.actbio.2021.04.009_bib0195) 2016; 8 Ozawa (10.1016/j.actbio.2021.04.009_bib0017) 2020; 110 Chang (10.1016/j.actbio.2021.04.009_bib0082) 2009; 50 Choi (10.1016/j.actbio.2021.04.009_bib0149) 2004; 21 Yu (10.1016/j.actbio.2021.04.009_bib0131) 2008; 348 Jiang (10.1016/j.actbio.2021.04.009_bib0055) 2007; 48 Zentner (10.1016/j.actbio.2021.04.009_bib0049) 2001; 72 Yun (10.1016/j.actbio.2021.04.009_bib0175) 2012; 13 Yu (10.1016/j.actbio.2021.04.009_bib0070) 2017; 18 Kim (10.1016/j.actbio.2021.04.009_bib0083) 2011; 7 Wu (10.1016/j.actbio.2021.04.009_bib0043) 2016; 5 Weizel (10.1016/j.actbio.2021.04.009_bib0037) 2020; 118 Yu (10.1016/j.actbio.2021.04.009_bib0086) 2010; 11 Luan (10.1016/j.actbio.2021.04.009_bib0120) 2018; 10 Ma (10.1016/j.actbio.2021.04.009_bib0124) 2015; 7 Peng (10.1016/j.actbio.2021.04.009_bib0051) 2010; 31 Kim (10.1016/j.actbio.2021.04.009_bib0146) 2001; 18 Fassberg (10.1016/j.actbio.2021.04.009_bib0134) 1992; 81 Cho (10.1016/j.actbio.2021.04.009_bib0140) 2014; 22 Bae (10.1016/j.actbio.2021.04.009_bib0052) 2005; 38 Hong (10.1016/j.actbio.2021.04.009_bib0119) 2017; 8 Liu (10.1016/j.actbio.2021.04.009_bib0162) 2017; 9 Li (10.1016/j.actbio.2021.04.009_bib0015) 2019; 6 Jeon (10.1016/j.actbio.2021.04.009_bib0013) 2020; 114 Zhou (10.1016/j.actbio.2021.04.009_bib0105) 2017; 23 Qi (10.1016/j.actbio.2021.04.009_bib0171) 2018; 10 Gong (10.1016/j.actbio.2021.04.009_bib0172) 2013; 34 Zhang (10.1016/j.actbio.2021.04.009_bib0091) 2008; 41 Luan (10.1016/j.actbio.2021.04.009_bib0142) 2015; 5 Cao (10.1016/j.actbio.2021.04.009_bib0118) 2016; 2 Gong (10.1016/j.actbio.2021.04.009_bib0053) 2009; 98 Petit (10.1016/j.actbio.2021.04.009_bib0003) 2014; 35 Lee (10.1016/j.actbio.2021.04.009_bib0094) 2004; 37 Bae (10.1016/j.actbio.2021.04.009_bib0062) 2006; 39 Kang (10.1016/j.actbio.2021.04.009_bib0103) 2010; 31 Shen (10.1016/j.actbio.2021.04.009_bib0106) 2017; 9 Kim (10.1016/j.actbio.2021.04.009_bib0137) 2013; 34 Cui (10.1016/j.actbio.2021.04.009_bib0024) 2019; 52 Feng (10.1016/j.actbio.2021.04.009_bib0089) 2016; 4 Ni (10.1016/j.actbio.2021.04.009_bib0179) 2014; 35 Choi (10.1016/j.actbio.2021.04.009_bib0095) 2010; 20 Gao (10.1016/j.actbio.2021.04.009_bib0016) 2020 Cai (10.1016/j.actbio.2021.04.009_bib0176) 2020; 7 Zhang (10.1016/j.actbio.2021.04.009_bib0127) 2017; 132 Zhuang (10.1016/j.actbio.2021.04.009_bib0148) 2019; 32 Kim (10.1016/j.actbio.2021.04.009_bib0136) 2012; 6 Jeong (10.1016/j.actbio.2021.04.009_bib0060) 1999; 32 Liu (10.1016/j.actbio.2021.04.009_bib0006) 2019; 96 Gu (10.1016/j.actbio.2021.04.009_bib0177) 2020; 7 Alsaykhan (10.1016/j.actbio.2021.04.009_bib0022) 2020; 7 Yan (10.1016/j.actbio.2021.04.009_bib0014) 2020; 7 Dumortier (10.1016/j.actbio.2021.04.009_bib0023) 2006; 23 Yu (10.1016/j.actbio.2021.04.009_bib0117) 2014; 10 Yu (10.1016/j.actbio.2021.04.009_bib0079) 2011; 12 Lei (10.1016/j.actbio.2021.04.009_bib0100) 2017; 55 Shin (10.1016/j.actbio.2021.04.009_bib0139) 2017; 268 Shim (10.1016/j.actbio.2021.04.009_bib0050) 2002; 61 Xu (10.1016/j.actbio.2021.04.009_bib0173) 2019; 37 Ci (10.1016/j.actbio.2021.04.009_bib0132) 2014; 4 Yu (10.1016/j |
References_xml | – volume: 21 start-page: 827 year: 2004 end-page: 831 ident: bib0149 article-title: Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats publication-title: Pharm. Res. – volume: 37 start-page: 1473 year: 2008 end-page: 1481 ident: bib0039 article-title: Injectable hydrogels as unique biomedical materials publication-title: Chem. Soc. Rev. – volume: 18 start-page: 701 year: 2010 end-page: 713 ident: bib0075 article-title: Synthesis and characterization of biodegradable thermosensitive neutral and acidic poly(organophosphazene) gels bearing carboxylic acid group publication-title: J. Polym. Res. – volume: 33 start-page: 195 year: 2017 end-page: 203 ident: bib0154 article-title: Lixisenatide: a new option for managing type 2 diabetes publication-title: J. Pharm. Technol. – volume: 35 start-page: 228 year: 2016 end-page: 237 ident: bib0021 article-title: Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture publication-title: Acta Biomater – volume: 15 start-page: 464 year: 2015 end-page: 472 ident: bib0189 article-title: PEG-poly(l-alanine) thermogel as a 3D scaffold of bone-marrow-derived mesenchymal stem cells publication-title: Macromol. Biosci. – volume: 1 start-page: 3314 year: 2013 end-page: 3321 ident: bib0183 article-title: Injectable in situ-forming hydrogel for cartilage tissue engineering publication-title: J. Mater. Chem. B – volume: 218 year: 2019 ident: bib0196 article-title: 3D hydrogel stem cell niche controlled by host-guest interaction affects stem cell fate and survival rate publication-title: Biomaterials – volume: 112 start-page: 248 year: 2017 end-page: 256 ident: bib0028 article-title: Temperature responsive chemical crosslinkable UV pretreated hydrogel for application to injectable tissue regeneration system via differentiations of encapsulated hMSCs publication-title: Biomaterials – volume: 54 start-page: 1225 year: 2005 end-page: 1232 ident: bib0097 article-title: Hydrolysis-improved thermosensitive polyorganophosphazenes with α-amino-ω-methoxy-poly(ethylene glycol) and amino acid esters as side groups publication-title: Polym. Int. – volume: 8 start-page: 6665 year: 2017 end-page: 6674 ident: bib0108 article-title: Design, synthesis and ring-opening polymerization of a new iodinated carbonate monomer: a universal route towards ultrahigh radiopaque aliphatic polycarbonates publication-title: Polym. Chem. – volume: 95 start-page: 935 year: 2010 end-page: 944 ident: bib0111 article-title: In vitro and in vivo degradation behaviors of thermosensitive poly(organophosphazene) hydrogels publication-title: Polym. Degrad. Stab. – volume: 10 start-page: 1251 year: 2014 end-page: 1258 ident: bib0117 article-title: Poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) thermogel as a novel submucosal cushion for endoscopic submucosal dissection publication-title: Acta Biomater. – volume: 21 start-page: 3176 year: 2020 end-page: 3185 ident: bib0187 article-title: Thermogelling inclusion complex system for fine-tuned osteochondral differentiation of mesenchymal stem cells publication-title: Biomacromolecules – volume: 37 start-page: 548 year: 2019 end-page: 559 ident: bib0173 article-title: Accelerated cutaneous wound healing using an injectable teicoplanin-loaded PLGA-PEG-PLGA thermogel dressing publication-title: Chin. J. Polym. Sci. – volume: 6 start-page: 885 year: 2005 end-page: 890 ident: bib0059 article-title: Caprolactonic poloxamer analog: PEG-PCL-PEG publication-title: Biomacromolecules – volume: 181 start-page: 378 year: 2018 end-page: 391 ident: bib0160 article-title: Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia publication-title: Biomaterials – volume: 118 start-page: 113 year: 2020 end-page: 128 ident: bib0037 article-title: Complex mechanical behavior of human articular cartilage and hydrogels for cartilage repair publication-title: Acta Biomater. – volume: 8 start-page: 533 year: 2017 ident: bib0119 article-title: An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling publication-title: Nat. Commun. – volume: 6 start-page: 19077 year: 2016 ident: bib0102 article-title: Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo publication-title: Sci. Rep. – volume: 35 start-page: 236 year: 2014 end-page: 248 ident: bib0179 article-title: Injectable thermosensitive PEG-PCL-PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects publication-title: Biomaterials – volume: 48 start-page: 4786 year: 2007 end-page: 4792 ident: bib0055 article-title: Injectable hydrogels of poly(ɛ-caprolactone-co-glycolide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-glycolide) triblock copolymer aqueous solutions publication-title: Polymer – volume: 46 start-page: 5075 year: 2005 end-page: 5081 ident: bib0074 article-title: New thermogelling poly(organophosphazenes) with methoxypoly(ethylene glycol) and oligopeptide as side groups publication-title: Polymer – volume: 112 start-page: 101 year: 2020 end-page: 111 ident: bib0009 article-title: Drug-impregnated, pressurized gas expanded liquid-processed alginate hydrogel scaffolds for accelerated burn wound healing publication-title: Acta Biomater. – volume: 11 start-page: 255 year: 2014 end-page: 265 ident: bib0158 article-title: The inflammatory response in myocardial injury, repair, and remodelling publication-title: Nat. Rev. Cardiol. – volume: 35 start-page: 3876 year: 2002 end-page: 3879 ident: bib0073 article-title: A thermosensitive poly(organophosphazene) gel publication-title: Macromolecules – volume: 32 start-page: 1590 year: 2014 end-page: 1601 ident: bib0185 article-title: Biodegradable thermogel as culture matrix of bone marrow mesenchymal stem cells for potential cartilage tissue engineering publication-title: Chin. J. Polym. Sci. – volume: 9 start-page: 11568 year: 2017 end-page: 11576 ident: bib0190 article-title: Injectable polypeptide thermogel as a tissue engineering system for hepatogenic differentiation of tonsil-derived mesenchymal stem Cells publication-title: ACS Appl. Mater. Interfaces – volume: 116 start-page: 259 year: 2020 end-page: 267 ident: bib0005 article-title: Antimicrobial and anti-inflammatory thermo-reversible hydrogel for periodontal delivery publication-title: Acta Biomater. – volume: 267 start-page: 57 year: 2017 end-page: 66 ident: bib0027 article-title: Injectable hydrogels for sustained release of therapeutic agents publication-title: J. Control. Release – start-page: 997 year: 2018 end-page: 1015 ident: bib0025 article-title: Injectable thermogels based on block copolymers of appropriate amphiphilicity publication-title: Acta Polym. Sin. – volume: 10 start-page: 182 year: 2018 end-page: 192 ident: bib0171 article-title: Strategy of metal-polymer composite stent to accelerate biodegradation of iron-based biomaterials publication-title: ACS Appl. Mater. Interfaces – volume: 44 start-page: 888 year: 2006 end-page: 899 ident: bib0066 article-title: Sol-gel transition behavior of biodegradable three-arm and four-arm star-shaped PLGA-PEG block copolymer aqueous solution publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 41 start-page: 6493 year: 2008 end-page: 6499 ident: bib0091 article-title: Roles of hydrophilic homopolymers on the hydrophobic-association-induced physical gelling of amphiphilic block copolymers in water publication-title: Macromolecules – volume: 55 start-page: 396 year: 2017 end-page: 409 ident: bib0100 article-title: Non-invasive monitoring of in vivo degradation of a radiopaque thermoreversible hydrogel and its efficacy in preventing post-operative adhesions publication-title: Acta Biomater. – volume: 13 start-page: 1106 year: 2012 end-page: 1111 ident: bib0175 article-title: Cell therapy for skin wound using fibroblast encapsulated poly(ethylene glycol)-poly(L-alanine) thermogel publication-title: Biomacromolecules – volume: 21 start-page: 207 year: 2012 end-page: 215 ident: bib0054 article-title: Design of molecular parameters to achieve block copolymers with a powder form at dry state and a temperature-induced sol-gel transition in water without unexpected gelling prior to heating publication-title: Macromol. Res. – volume: 32 start-page: 126 year: 2019 end-page: 139 ident: bib0148 article-title: Progress of GLP-1 receptor agonists and their delivery systems for the treatment of type Ⅱ diabetes publication-title: J. Funct. Polym. – volume: 23 start-page: 271 year: 2015 end-page: 281 ident: bib0155 article-title: Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel publication-title: Acta Biomater. – volume: 167 start-page: 143 year: 2018 end-page: 152 ident: bib0041 article-title: Novel angiogenesis therapeutics by redox injectable hydrogel - Regulation of local nitric oxide generation for effective cardiovascular therapy publication-title: Biomaterials – volume: 11 start-page: 2169 year: 2010 end-page: 2178 ident: bib0086 article-title: Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water publication-title: Biomacromolecules – volume: 52 start-page: 2434 year: 2014 end-page: 2441 ident: bib0072 article-title: Thermal gelation or gel melting: (ethylene glycol)113-(l-alanine)12and (ethylene glycol)113-(l-lactic acid)12 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 8 start-page: 5148 year: 2016 end-page: 5159 ident: bib0099 article-title: Kartogenin-incorporated thermogel supports stem cells for significant cartilage regeneration publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 5757 year: 2012 end-page: 5766 ident: bib0136 article-title: Injectable polyplex hydrogel for localized and long-term delivery of siRNA publication-title: ACS Nano – volume: 117 start-page: 108 year: 2020 end-page: 120 ident: bib0011 article-title: An injectable click-crosslinked hyaluronic acid hydrogel modified with a BMP-2 mimetic peptide as a bone tissue engineering scaffold publication-title: Acta Biomater. – volume: 11 start-page: 8725 year: 2019 end-page: 8730 ident: bib0110 article-title: Chiral polypeptide thermogels induce controlled inflammatory response as potential immunoadjuvants publication-title: ACS Appl. Mater. Interfaces – volume: 123 start-page: 254 year: 2021 end-page: 262 ident: bib0035 article-title: Mussel-inspired poly(gamma-gl utamic acid)/nanosilicate composite hydrogels with enhanced mechanical properties, tissue adhesive properties, and skin tissue regeneration publication-title: Acta Biomater. – volume: 45 start-page: 1122 year: 2007 end-page: 1133 ident: bib0080 article-title: Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 7 start-page: 547 year: 2012 end-page: 557 ident: bib0113 article-title: Preventing postoperative abdominal adhesions in a rat model with PEG-PCL-PEG hydrogel publication-title: Int. J. Nanomedicine – volume: 16 start-page: 1158 year: 2016 end-page: 1169 ident: bib0184 article-title: In vivo osteogenic differentiation of human dental pulp stem cells embedded in an injectable in vivo-forming hydrogel publication-title: Macromol. Biosci. – volume: 1 start-page: 16071 year: 2016 ident: bib0001 article-title: Designing hydrogels for controlled drug delivery publication-title: Nat. Rev. Mater. – volume: 110 start-page: 82 year: 2020 end-page: 94 ident: bib0017 article-title: Redox injectable gel protects osteoblastic function against oxidative stress and suppresses alveolar bone loss in a rat peri-implantitis model publication-title: Acta Biomater. – volume: 114 start-page: 244 year: 2020 end-page: 255 ident: bib0013 article-title: Body temperature-activated protein-based injectable adhesive hydrogel incorporated with decellularized adipose extracellular matrix for tissue-specific regenerative stem cell therapy publication-title: Acta Biomater. – volume: 7 start-page: 195 year: 2020 end-page: 202 ident: bib0177 article-title: Preparation and characterization of methacrylated gelatin/bacterial cellulose composite hydrogels for cartilage tissue engineering publication-title: Regen. Biomater. – volume: 114 start-page: 133 year: 2020 end-page: 145 ident: bib0046 article-title: Development of injectable thermosensitive polypeptide hydrogel as facile radioisotope and radiosensitizer hotspot for synergistic brachytherapy publication-title: Acta Biomater. – volume: 348 start-page: 95 year: 2008 end-page: 106 ident: bib0131 article-title: Injectable block copolymer hydrogels for sustained release of a PEGylated drug publication-title: Int. J. Pharm. – volume: 137 start-page: 25 year: 2009 end-page: 30 ident: bib0067 article-title: Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial publication-title: J. Control. Release – volume: 22 start-page: 669 year: 2014 end-page: 677 ident: bib0140 article-title: Thermosensitive poly-(d,l-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(d,l-lactide-co-glycolide) hydrogels for multi-drug delivery publication-title: J. Drug Target. – volume: 132 start-page: 16 year: 2017 end-page: 27 ident: bib0127 article-title: Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy publication-title: Biomaterials – volume: 3 year: 2019 ident: bib0047 article-title: Biodegradable thermogelling polymers publication-title: Small Methods – volume: 17 start-page: 1001 year: 2016 ident: bib0174 article-title: Platelet-rich plasma-loaded poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) hydrogel dressing promotes full-thickness skin wound healing in a rodent model publication-title: Int. J. Mol. Sci. – volume: 14 start-page: 3256 year: 2013 end-page: 3266 ident: bib0186 article-title: 3D culture of adipose-tissue-derived stem cells mainly leads to chondrogenesis in poly(ethylene glycol)-poly(L-alanine) diblock copolymer thermogel publication-title: Biomacromolecules – volume: 15 start-page: 521 year: 2018 end-page: 530 ident: bib0020 article-title: Polypeptide thermogels as three-dimensional scaffolds for cells publication-title: Tissue Eng. Regen. Med. – volume: 6 start-page: 325 year: 2019 end-page: 334 ident: bib0018 article-title: Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats publication-title: Regen. Biomater. – volume: 7 start-page: 413 year: 2020 end-page: 425 ident: bib0022 article-title: Investigating materials and orientation parameters for the creation of a 3D musculoskeletal interface co-culture model publication-title: Regen. Biomater. – volume: 8 start-page: 1575 year: 2012 end-page: 1583 ident: bib0090 article-title: Controlled thermal gelation of poly(ε-caprolactone)/poly(ethylene glycol) block copolymers by modifying cyclic ether pendant groups on poly(ε-caprolactone) publication-title: Soft Matter – volume: 5 start-page: 2679 year: 2016 end-page: 2685 ident: bib0043 article-title: PHB-based gels as delivery agents of chemotherapeutics for the effective shrinkage of tumors publication-title: Adv. Healthc. Mater. – volume: 20 start-page: 3416 year: 2010 end-page: 3421 ident: bib0095 article-title: Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(l-alanine) block copolymers publication-title: J. Mater. Chem. – volume: 18 start-page: 4341 year: 2017 end-page: 4348 ident: bib0070 article-title: Injectable thermosensitive polypeptide-based CDDP-complexed hydrogel for improving localized antitumor efficacy publication-title: Biomacromolecules – volume: 7 start-page: 27040 year: 2015 end-page: 27048 ident: bib0124 article-title: Localized co-delivery of doxorubicin, cisplatin, and methotrexate by thermosensitive hydrogels for enhanced osteosarcoma treatment publication-title: ACS Appl. Mater. Interfaces – volume: 159 start-page: 91 year: 2018 end-page: 107 ident: bib0019 article-title: Injectable thermogel for 3D culture of stem cells publication-title: Biomaterials – volume: 41 start-page: 8204 year: 2008 end-page: 8209 ident: bib0068 article-title: Secondary structure effect of polypeptide on reverse thermal gelation and degradation of l/dl-poly(alanine)–poloxamer–l/dl-Poly(alanine) copolymers publication-title: Macromolecules – volume: 194 start-page: 316 year: 2014 end-page: 322 ident: bib0044 article-title: Thermo-reversible injectable gel based on enzymatically-chopped low molecular weight methylcellulose for exenatide and FGF 21 delivery to treat types 1 and 2 diabetes publication-title: J. Control. Release – volume: 16 start-page: 105 year: 2015 end-page: 115 ident: bib0143 article-title: Thermogelling polymer-platinum(IV) conjugates for long-term delivery of cisplatin publication-title: Biomacromolecules – volume: 6 start-page: 335 year: 2019 end-page: 347 ident: bib0038 article-title: An elastin-like recombinamer-based bioactive hydrogel embedded with mesenchymal stromal cells as an injectable scaffold for osteochondral repair publication-title: Regen. Biomater. – volume: 9 start-page: 40031 year: 2017 end-page: 40046 ident: bib0106 article-title: Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 5771 year: 2010 end-page: 5778 ident: bib0030 article-title: In situ forming hydrogels by tandem thermal gelling and michael addition reaction between thermosensitive triblock copolymers and thiolated hyaluronan publication-title: Macromolecules – volume: 48 start-page: 3662 year: 2015 end-page: 3671 ident: bib0078 article-title: Effects of molecular weight and its distribution of PEG block on micellization and thermogellability of PLGA–PEG–PLGA copolymer aqueous solutions publication-title: Macromolecules – volume: 7 start-page: 1729 year: 2006 end-page: 1734 ident: bib0061 article-title: Thermogelling aqueous solutions of alternating multiblock copolymers of poly(L-lactic acid) and poly(ethylene glycol) publication-title: Biomacromolecules – volume: 15 start-page: 2180 year: 2014 end-page: 2187 ident: bib0193 article-title: Differentiation of tonsil-tissue-derived mesenchymal stem cells controlled by surface-functionalized microspheres in PEG-polypeptide thermogels publication-title: Biomacromolecules – volume: 61 start-page: 188 year: 2002 end-page: 196 ident: bib0050 article-title: Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water publication-title: J. Biomed. Mater. Res. – volume: 12 start-page: 27971 year: 2020 end-page: 27983 ident: bib0165 article-title: Effects of microstripe geometry on guided cell migration publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 3697 year: 2019 end-page: 3715 ident: bib0024 article-title: Thermogelling of amphiphilic block copolymers in water: ABA type versus AB or BAB type publication-title: Macromolecules – volume: 98 start-page: 4684 year: 2009 end-page: 4694 ident: bib0053 article-title: Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel: part 1-synthesis, characterization, and acute toxicity evaluation publication-title: J. Pharm. Sci. – volume: 6 start-page: 1028 year: 2021 end-page: 1039 ident: bib0168 article-title: In vivo degradation and endothelialization of an iron bioresorbable scaffold publication-title: Bioact. Mater. – volume: 51 start-page: 6080 year: 2015 end-page: 6083 ident: bib0107 article-title: An injectable thermogel with high radiopacity publication-title: Chem. Commun. – volume: 156 start-page: 21 year: 2011 end-page: 27 ident: bib0130 article-title: Enhancement of the fraction of the active form of an antitumor drug topotecan via an injectable hydrogel publication-title: J. Control. Release – volume: 2 start-page: 1100 year: 2014 end-page: 1109 ident: bib0114 article-title: Comparative studies of thermogels in preventing post-operative adhesions and corresponding mechanisms publication-title: Biomater. Sci. – volume: 23 start-page: 2709 year: 2006 end-page: 2728 ident: bib0023 article-title: A review of poloxamer 407 pharmaceutical and pharmacological characteristics publication-title: Pharm. Res. – volume: 6 start-page: 31593 year: 2016 ident: bib0076 article-title: Controlled release of liraglutide using thermogelling polymers in treatment of diabetes publication-title: Sci. Rep. – volume: 4 start-page: 1565 year: 2015 end-page: 1574 ident: bib0194 article-title: Microsphere-incorporated hybrid thermogel for neuronal differentiation of tonsil derived mesenchymal stem cells publication-title: Adv. Healthc. Mater. – volume: 30 start-page: E283 year: 2017 end-page: E290 ident: bib0116 article-title: Efficacy of poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) thermogel as a barrier to prevent spinal epidural fibrosis in a postlaminectomy rat model publication-title: Clin. Spine Surg. – volume: 388 start-page: 860 year: 1997 end-page: 862 ident: bib0058 article-title: Biodegradable block copolymers as injectable drug-delivery systems publication-title: Nature – volume: 21 start-page: 143 year: 2020 end-page: 151 ident: bib0191 article-title: Iron ion-releasing polypeptide thermogel for neuronal differentiation of mesenchymal stem cells publication-title: Biomacromolecules – volume: 6 start-page: 129 year: 2019 end-page: 140 ident: bib0015 article-title: Advances of injectable hydrogel-based scaffolds for cartilage regeneration publication-title: Regen. Biomater. – volume: 72 start-page: 203 year: 2001 end-page: 215 ident: bib0049 article-title: Biodegradable block copolymers for delivery of proteins and water-insoluble drugs publication-title: J. Control. Release – volume: 8 start-page: 4260 year: 2012 end-page: 4267 ident: bib0088 article-title: Modulating rheological and degradation properties of temperature-responsive gelling systems composed of blends of PCLA-PEG-PCLA triblock copolymers and their fully hexanoyl-capped derivatives publication-title: Acta Biomater. – volume: 5 start-page: 353 year: 2016 end-page: 363 ident: bib0192 article-title: Nanocomposite versus mesocomposite for osteogenic differentiation of tonsil-derived mesenchymal stem cells publication-title: Adv. Healthc. Mater. – volume: 88 start-page: 79 year: 2018 end-page: 87 ident: bib0182 article-title: Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel publication-title: Mater. Sci. Eng. C – volume: 3 start-page: 511 year: 2002 end-page: 516 ident: bib0065 article-title: Sol-gel transition temperature of PLGA-g-PEG aqueous solutions publication-title: Biomacromolecules – volume: 209 start-page: 120 year: 2015 end-page: 138 ident: bib0045 article-title: Recent progress in biomedical applications of Pluronic (PF127): pharmaceutical perspectives publication-title: J. Control. Release – volume: 45 start-page: 2232 year: 2006 end-page: 2235 ident: bib0081 article-title: A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions publication-title: Angew. Chem. Int. Ed. – volume: 32 start-page: 4725 year: 2011 end-page: 4736 ident: bib0056 article-title: Biodegradable and thermoreversible PCLA-PEG-PCLA hydrogel as a barrier for prevention of post-operative adhesion publication-title: Biomaterials – volume: 3 year: 2020 ident: bib0138 article-title: Thermosensitive polypeptide hydrogels co-loaded with two anti-tumor agents to reduce multi-drug resistance and enhance local tumor treatment publication-title: Adv. Ther. – volume: 7 start-page: 77 year: 2020 end-page: 90 ident: bib0014 article-title: Platelet-rich plasma combined with injectable hyaluronic acid hydrogel for porcine cartilage regeneration: a 6-month follow-up publication-title: Regen. Biomater. – volume: 8 start-page: 5160 year: 2016 end-page: 5169 ident: bib0195 article-title: Composite system of graphene oxide and polypeptide thermogel as an injectable 3D scaffold for adipogenic differentiation of tonsil-derived mesenchymal stem cells publication-title: ACS Appl. Mater. Interfaces – volume: 23 start-page: 7642 year: 2017 end-page: 7647 ident: bib0105 article-title: Selective dual-channel imaging on cyanostyryl-modified azulene systems with unimolecularly tunable visible-near infrared luminescence publication-title: Chem. Eur. J. – volume: 396 year: 2020 ident: bib0121 article-title: Sustained release of lipophilic gemcitabine from an injectable polymeric hydrogel for synergistically enhancing tumor chemoradiotherapy publication-title: Chem. Eng. J. – volume: 4 start-page: 1493 year: 2016 end-page: 1502 ident: bib0089 article-title: Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG-PCL-PEG publication-title: Biomater. Sci. – volume: 5 start-page: 97975 year: 2015 end-page: 97981 ident: bib0142 article-title: Selenium-containing thermogel for controlled drug delivery by coordination competition publication-title: RSC Adv. – volume: 263 year: 2020 ident: bib0164 article-title: Cell migration regulated by RGD nanospacing and enhanced under moderate cell adhesion on biomaterials publication-title: Biomaterials – volume: 86 start-page: 235 year: 2019 end-page: 246 ident: bib0007 article-title: An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin publication-title: Acta Biomater. – volume: 35 start-page: 284 year: 2019 end-page: 299 ident: bib0166 article-title: Proliferation of cells with severe nuclear deformation on a micropillar array publication-title: Langmuir – volume: 96 start-page: 281 year: 2019 end-page: 294 ident: bib0006 article-title: An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy publication-title: Acta Biomater. – volume: 7 start-page: 99 year: 2020 end-page: 107 ident: bib0010 article-title: Resveratrol-loaded peptide-hydrogels inhibit scar formation in wound healing through suppressing inflammation publication-title: Regen. Biomater. – volume: 30 start-page: 4752 year: 2009 end-page: 4762 ident: bib0144 article-title: Doxorubicin-polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics publication-title: Biomaterials – volume: 31 start-page: 2453 year: 2010 end-page: 2460 ident: bib0103 article-title: A biodegradable, injectable, gel system based on MPEG-b-(PCL-ran-PLLA) diblock copolymers with an adjustable therapeutic window publication-title: Biomaterials – volume: 11 start-page: 202 year: 2019 end-page: 218 ident: bib0169 article-title: Mechanism of acceleration of iron corrosion by a polylactide coating publication-title: ACS Appl. Mater. Interfaces – volume: 33 start-page: 4801 year: 2012 end-page: 4809 ident: bib0178 article-title: Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration publication-title: Biomaterials – volume: 45 start-page: 4091 year: 2007 end-page: 4099 ident: bib0057 article-title: Thermogelling hydrogels of poly(ɛ-caprolactone-co-D,L-lactide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-D,L-lactide) and poly(ɛ-caprolactone-co-L-lactide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-L-lactide) aqueous solutions publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 45 start-page: 2007 year: 2012 end-page: 2013 ident: bib0069 article-title: PEG-l-PAF and PEG-d-PAF: comparative study on thermogellation and biodegradation publication-title: Macromolecules – volume: 110 start-page: 119 year: 2020 end-page: 128 ident: bib0112 article-title: Dual dynamically crosslinked thermosensitive hydrogel with self-fixing as a postoperative anti-adhesion barrier publication-title: Acta Biomater – volume: 183 start-page: 185 year: 2018 end-page: 199 ident: bib0008 article-title: Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing publication-title: Biomaterials – volume: 50 start-page: 6111 year: 2009 end-page: 6120 ident: bib0082 article-title: A delicate ionizable-group effect on self-assembly and thermogelling of amphiphilic block copolymers in water publication-title: Polymer – volume: 51 start-page: 6405 year: 2018 end-page: 6420 ident: bib0092 article-title: Semi-bald micelles and corresponding percolated micelle networks of thermogels publication-title: Macromolecules – volume: 122 start-page: 91 year: 2017 end-page: 104 ident: bib0180 article-title: Tuning physical properties and BMP-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect publication-title: Biomaterials – volume: 21 start-page: 118 year: 2014 end-page: 124 ident: bib0159 article-title: A systematic review of complications of implant-based breast reconstruction with prereconstruction and postreconstruction radiotherapy publication-title: Ann. Surg. Oncol. – volume: 31 start-page: 5227 year: 2010 end-page: 5236 ident: bib0051 article-title: Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles publication-title: Biomaterials – volume: 34 start-page: 2834 year: 2013 end-page: 2842 ident: bib0123 article-title: A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel publication-title: Biomaterials – year: 2020 ident: bib0016 article-title: Cell-free bilayered porous scaffolds for osteochondral regeneration fabricated by continuous 3D-printing using nascent physical hydrogel as ink publication-title: Adv. Healthc. Mater. – volume: 32 start-page: 7064 year: 1999 end-page: 7069 ident: bib0060 article-title: Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions publication-title: Macromolecules – volume: 25 start-page: 636 year: 2015 end-page: 644 ident: bib0031 article-title: Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo publication-title: Adv. Funct. Mater. – volume: 33 start-page: 793 year: 2011 end-page: 811 ident: bib0153 article-title: Review of the therapeutic uses of liraglutide publication-title: Clin. Ther. – volume: 6 start-page: 259 year: 2019 end-page: 267 ident: bib0029 article-title: Migration of endothelial cells into photo-responsive hydrogels with tunable modulus under the presence of pro-inflammatory macrophages publication-title: Regen. Biomater. – volume: 4 start-page: 6524 year: 2016 end-page: 6533 ident: bib0026 article-title: pH-Sensitive sulfamethazine-based hydrogels as potential embolic agents for transcatheter vascular embolization publication-title: J. Mater. Chem. B – volume: 4 start-page: 7793 year: 2016 end-page: 7812 ident: bib0104 article-title: Functional biomedical hydrogels for in vivo imaging publication-title: J. Mater. Chem. B – volume: 37 start-page: 4533 year: 2004 end-page: 4537 ident: bib0094 article-title: Synthesis and characterization of biodegradable thermosensitive poly(organophosphazene) gels publication-title: Macromolecules – volume: 19 start-page: 479 year: 2008 end-page: 491 ident: bib0161 article-title: Salmon calcitonin: a review of current and future therapeutic indications publication-title: Osteoporos. Int. – volume: 8 start-page: 980 year: 2020 end-page: 992 ident: bib0101 article-title: An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction publication-title: J. Mater. Chem. B – volume: 33 start-page: 8317 year: 2000 end-page: 8322 ident: bib0064 article-title: Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA publication-title: Macromolecules – volume: 35 start-page: 8723 year: 2014 end-page: 8734 ident: bib0141 article-title: PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for osteosarcoma treatment publication-title: Biomaterials – volume: 209 start-page: 67 year: 2015 end-page: 76 ident: bib0181 article-title: Sustained BMP-2 delivery and injectable bone regeneration using thermosensitive polymeric nanoparticle hydrogel bearing dual interactions with BMP-2 publication-title: J. Control. Release – volume: 18 start-page: 316 year: 2017 end-page: 330 ident: bib0004 article-title: Hydrogels for therapeutic delivery: current developments and future directions publication-title: Biomacromolecules – volume: 34 start-page: 4493 year: 2013 end-page: 4500 ident: bib0137 article-title: An injectable cell penetrable nano-polyplex hydrogel for localized siRNA delivery publication-title: Biomaterials – volume: 7 start-page: 860 year: 2019 end-page: 866 ident: bib0125 article-title: Enhanced local cancer therapy using a CA4P and CDDP co-loaded polypeptide gel depot publication-title: Biomater. Sci. – volume: 9 start-page: 6080 year: 2019 end-page: 6098 ident: bib0135 article-title: Injectable hydrogels for the sustained delivery of a HER2-targeted antibody for preventing local relapse of HER2+breast cancer after breast-conserving surgery publication-title: Theranostics – volume: 3 start-page: 865 year: 2002 end-page: 868 ident: bib0063 article-title: Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering publication-title: Biomacromolecules – volume: 34 start-page: 6377 year: 2013 end-page: 6387 ident: bib0172 article-title: A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing publication-title: Biomaterials – volume: 6 start-page: 249 year: 2019 end-page: 258 ident: bib0036 article-title: In situ sol-gel synthesis of hyaluronan derivatives bio-nanocomposite hydrogels publication-title: Regen. Biomater. – volume: 4 start-page: 5473 year: 2014 ident: bib0132 article-title: Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel publication-title: Sci. Rep. – volume: 10 start-page: 155 year: 2019 ident: bib0152 article-title: The discovery and development of liraglutide and semaglutide publication-title: Front. Endocrinol. – volume: 3 start-page: 1268 year: 2015 end-page: 1280 ident: bib0032 article-title: An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering publication-title: J. Mater. Chem. B – volume: 2 start-page: 393 year: 2016 end-page: 402 ident: bib0118 article-title: Safe and efficient colonic endoscopic submucosal dissection using an injectable hydrogel publication-title: ACS Biomater. Sci. Eng. – volume: 5 start-page: 6400 year: 2017 end-page: 6411 ident: bib0157 article-title: Sustained subconjunctival delivery of cyclosporine A using thermogelling polymers for glaucoma filtration surgery publication-title: J. Mater. Chem. B – volume: 13 year: 2017 ident: bib0042 article-title: Long-term real-time in vivo drug release monitoring with AIE thermogelling polymer publication-title: Small – volume: 39 start-page: 4873 year: 2006 end-page: 4879 ident: bib0062 article-title: Gelation behavior of poly(ethylene glycol) and polycaprolactone triblock and multiblock copolymer aqueous solutions publication-title: Macromolecules – volume: 7 start-page: 35 year: 2020 end-page: 45 ident: bib0176 article-title: BMSCs-assisted injectable Col I hydrogel-regenerated cartilage defect by reconstructing superficial and calcified cartilage publication-title: Regen. Biomater. – volume: 11 start-page: 15201 year: 2019 end-page: 15211 ident: bib0150 article-title: Sustained release of Exendin 4 using injectable and lonic-nano-complex forming polymer hydrogel system for long-term treatment of type 2 diabetes mellitus publication-title: ACS Appl. Mater. Interfaces – volume: 178 start-page: 467 year: 2018 end-page: 480 ident: bib0170 article-title: Degradation rate affords a dynamic cue to regulate stem cells beyond varied matrix stiffness publication-title: Biomaterials – volume: 8 start-page: 3301 year: 2020 end-page: 3309 ident: bib0109 article-title: (19)F magnetic resonance imaging enabled real-time, non-invasive and precise localization and quantification of the degradation rate of hydrogel scaffolds in vivo publication-title: Biomater. Sci. – volume: 45 start-page: 424 year: 2012 end-page: 433 ident: bib0040 article-title: Biodegradable Thermogels publication-title: Acc. Chem. Res. – volume: 102 start-page: 4140 year: 2013 end-page: 4149 ident: bib0151 article-title: In vitro and in vivo evaluation of a once-weekly formulation of an antidiabetic peptide drug exenatide in an injectable thermogel publication-title: J. Pharm. Sci. – volume: 34 start-page: 147 year: 2015 end-page: 163 ident: bib0115 article-title: An injectable hydrogel with or without drugs for prevention of epidural scar adhesion after laminectomy in rats publication-title: Chin. J. Polym. Sci. – volume: 20 start-page: 2008 year: 2003 end-page: 2010 ident: bib0122 article-title: Controlled release of insulin from injectable biodegradable triblock copolymer depot in ZDF rats publication-title: Pharm. Res. – volume: 46 start-page: 6255 year: 2017 end-page: 6275 ident: bib0002 article-title: Hydrogel scaffolds for differentiation of adipose-derived stem cells publication-title: Chem. Soc. Rev. – volume: 8 start-page: 30703 year: 2016 end-page: 30713 ident: bib0128 article-title: Injectable and thermosensitive hydrogel containing liraglutide as a long-acting antidiabetic system publication-title: ACS Appl. Mater. Interfaces – volume: 108 start-page: 87 year: 2020 end-page: 96 ident: bib0012 article-title: A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivo publication-title: Acta Biomater. – volume: 35 start-page: 7919 year: 2014 end-page: 7928 ident: bib0003 article-title: Release behavior and intra-articular biocompatibility of celecoxib-loaded acetyl-capped PCLA-PEG-PCLA thermogels publication-title: Biomaterials – volume: 38 start-page: 5260 year: 2005 end-page: 5265 ident: bib0052 article-title: Thermogelling poly(caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions publication-title: Macromolecules – volume: 11 start-page: 29604 year: 2019 end-page: 29618 ident: bib0126 article-title: Sustained release strategy designed for lixisenatide delivery to synchronously treat diabetes and associated complications publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 23428 year: 2017 end-page: 23440 ident: bib0162 article-title: Calcitonin-loaded thermosensitive hydrogel for long-term antiosteopenia therapy publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2018 ident: bib0034 article-title: Oxidoreductase-initiated radical polymerizations to design hydrogels and micro/nanogels: mechanism, molding, and applications publication-title: Adv. Mater. – volume: 7 start-page: 8650 year: 2011 end-page: 8656 ident: bib0083 article-title: Examination of phase transition behavior of ion group functionalized MPEG-b-PCL diblock copolymers publication-title: Soft Matter – volume: 4 start-page: 2383 year: 2008 end-page: 2387 ident: bib0096 article-title: Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers publication-title: Soft Matter – volume: 61 start-page: 785 year: 2009 end-page: 794 ident: bib0129 article-title: OncoGel (ReGel/paclitaxel) - clinical applications for a novel paclitaxel delivery system publication-title: Adv. Drug Deliver. Rev. – volume: 12 start-page: 1290 year: 2011 end-page: 1297 ident: bib0079 article-title: Influence of LA and GA sequence in the PLGA block on the properties of thermogelling PLGA-PEG-PLGA block copolymers publication-title: Biomacromolecules – volume: 10 start-page: 1547 year: 2009 end-page: 1553 ident: bib0085 article-title: Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel publication-title: Biomacromolecules – volume: 255 start-page: 81 year: 2017 end-page: 93 ident: bib0071 article-title: Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy publication-title: J. Control. Release – volume: 8 start-page: 2586 year: 2017 end-page: 2597 ident: bib0084 article-title: Positional isomeric effects of coupling agents on the temperature-induced gelation of triblock copolymer aqueous solutions publication-title: Polym. Chem. – volume: 81 start-page: 676 year: 1992 end-page: 684 ident: bib0134 article-title: A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogs publication-title: J. Pharm. Sci. – volume: 368 start-page: 1696 year: 2006 end-page: 1705 ident: bib0147 article-title: The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes publication-title: Lancet – volume: 6 start-page: 6067 year: 2018 end-page: 6079 ident: bib0033 article-title: Enzymatically cross-linked hydrogels based on a linear poly(ethylene glycol) analogue for controlled protein release and 3D cell culture publication-title: J. Mater. Chem. B – volume: 18 start-page: 548 year: 2001 end-page: 550 ident: bib0146 article-title: Controlled release of insulin from injectable biodegradable triblock copolymer publication-title: Pharm. Res. – volume: 10 start-page: 30235 year: 2018 end-page: 30246 ident: bib0120 article-title: Thermogel loaded with low-dose paclitaxel as a facile coating to alleviate periprosthetic fibrous capsule formation publication-title: ACS Appl. Mater. Interfaces – volume: 268 start-page: 176 year: 2017 end-page: 183 ident: bib0139 article-title: Pre-clinical evaluation of a themosensitive gel containing epothilone B and mTOR/Hsp90 targeted agents in an ovarian tumor model publication-title: J. Control. Release – volume: 9 start-page: 1945 year: 2015 end-page: 1951 ident: bib0156 article-title: A review of the efficacy of mitomycin C in glaucoma filtration surgery publication-title: Clin. Ophthalmol. – volume: 77 start-page: 63 year: 2018 end-page: 73 ident: bib0145 article-title: Tumor microenvironment-labile polymer-doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma publication-title: Acta Biomater. – volume: 3 start-page: 1782 year: 2014 end-page: 1791 ident: bib0188 article-title: 3D culture of tonsil-derived mesenchymal stem cells in poly(ethylene glycol)-poly(l-alanine-co-l-phenyl alanine) thermogel publication-title: Adv. Healthc. Mater. – volume: 4 year: 2020 ident: bib0098 article-title: Visualizing the in vivo evolution of an injectable and thermosensitive hydrogel using tri-modal bioimaging publication-title: Small Methods – volume: 47 start-page: 5895 year: 2014 end-page: 5903 ident: bib0077 article-title: Effects of molecular weight distribution of amphiphilic block copolymers on their solubility, micellization, and temperature-induced Sol–Gel transition in water publication-title: Macromolecules – volume: 13 start-page: 1357 year: 2017 end-page: 1368 ident: bib0163 article-title: An injectable thermogel containing levonorgestrel for long-acting contraception and fertility control of animals publication-title: J. Biomed. Nanotechnol. – volume: 53 start-page: 11051 year: 2020 end-page: 11064 ident: bib0087 article-title: Strategy of “block blends” to generate polymeric thermogels versus that of one-component block copolymer publication-title: Macromolecules – volume: 25 start-page: 5257 year: 2013 end-page: 5286 ident: bib0167 article-title: Cell-material interactions revealed via material techniques of surface patterning publication-title: Adv. Mater. – volume: 17 year: 2017 ident: bib0133 article-title: Achieving high drug loading and sustained release of hydrophobic drugs in hydrogels through in situ crystallization publication-title: Macromol. Biosci. – volume: 22 start-page: 6072 year: 2012 end-page: 6079 ident: bib0093 publication-title: J. Mater. Chem. – volume: 240 start-page: 191 year: 2016 end-page: 201 ident: bib0048 article-title: PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery publication-title: J. Control. Release – volume: 34 start-page: 4493 year: 2013 ident: 10.1016/j.actbio.2021.04.009_bib0137 article-title: An injectable cell penetrable nano-polyplex hydrogel for localized siRNA delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.02.050 – volume: 77 start-page: 63 year: 2018 ident: 10.1016/j.actbio.2021.04.009_bib0145 article-title: Tumor microenvironment-labile polymer-doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.07.021 – volume: 7 start-page: 547 year: 2012 ident: 10.1016/j.actbio.2021.04.009_bib0113 article-title: Preventing postoperative abdominal adhesions in a rat model with PEG-PCL-PEG hydrogel publication-title: Int. J. Nanomedicine – volume: 4 start-page: 1565 year: 2015 ident: 10.1016/j.actbio.2021.04.009_bib0194 article-title: Microsphere-incorporated hybrid thermogel for neuronal differentiation of tonsil derived mesenchymal stem cells publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201500224 – volume: 13 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0042 article-title: Long-term real-time in vivo drug release monitoring with AIE thermogelling polymer publication-title: Small doi: 10.1002/smll.201603404 – volume: 34 start-page: 6377 year: 2013 ident: 10.1016/j.actbio.2021.04.009_bib0172 article-title: A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.05.005 – volume: 3 start-page: 865 year: 2002 ident: 10.1016/j.actbio.2021.04.009_bib0063 article-title: Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering publication-title: Biomacromolecules doi: 10.1021/bm025536m – volume: 35 start-page: 7919 year: 2014 ident: 10.1016/j.actbio.2021.04.009_bib0003 article-title: Release behavior and intra-articular biocompatibility of celecoxib-loaded acetyl-capped PCLA-PEG-PCLA thermogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.05.064 – volume: 11 start-page: 255 year: 2014 ident: 10.1016/j.actbio.2021.04.009_bib0158 article-title: The inflammatory response in myocardial injury, repair, and remodelling publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2014.28 – volume: 35 start-page: 228 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0021 article-title: Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture publication-title: Acta Biomater doi: 10.1016/j.actbio.2016.02.028 – volume: 7 start-page: 77 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0014 article-title: Platelet-rich plasma combined with injectable hyaluronic acid hydrogel for porcine cartilage regeneration: a 6-month follow-up publication-title: Regen. Biomater. doi: 10.1093/rb/rbz039 – volume: 8 start-page: 6665 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0108 article-title: Design, synthesis and ring-opening polymerization of a new iodinated carbonate monomer: a universal route towards ultrahigh radiopaque aliphatic polycarbonates publication-title: Polym. Chem. doi: 10.1039/C7PY01411B – volume: 6 start-page: 6067 year: 2018 ident: 10.1016/j.actbio.2021.04.009_bib0033 article-title: Enzymatically cross-linked hydrogels based on a linear poly(ethylene glycol) analogue for controlled protein release and 3D cell culture publication-title: J. Mater. Chem. B doi: 10.1039/C8TB01949E – volume: 117 start-page: 108 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0011 article-title: An injectable click-crosslinked hyaluronic acid hydrogel modified with a BMP-2 mimetic peptide as a bone tissue engineering scaffold publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.09.013 – volume: 6 start-page: 5757 year: 2012 ident: 10.1016/j.actbio.2021.04.009_bib0136 article-title: Injectable polyplex hydrogel for localized and long-term delivery of siRNA publication-title: ACS Nano doi: 10.1021/nn300842a – volume: 1 start-page: 16071 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0001 article-title: Designing hydrogels for controlled drug delivery publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.71 – volume: 34 start-page: 2834 year: 2013 ident: 10.1016/j.actbio.2021.04.009_bib0123 article-title: A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.01.013 – volume: 41 start-page: 8204 year: 2008 ident: 10.1016/j.actbio.2021.04.009_bib0068 article-title: Secondary structure effect of polypeptide on reverse thermal gelation and degradation of l/dl-poly(alanine)–poloxamer–l/dl-Poly(alanine) copolymers publication-title: Macromolecules doi: 10.1021/ma8014504 – volume: 267 start-page: 57 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0027 article-title: Injectable hydrogels for sustained release of therapeutic agents publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.08.006 – volume: 37 start-page: 1473 year: 2008 ident: 10.1016/j.actbio.2021.04.009_bib0039 article-title: Injectable hydrogels as unique biomedical materials publication-title: Chem. Soc. Rev. doi: 10.1039/b713009k – volume: 48 start-page: 3662 year: 2015 ident: 10.1016/j.actbio.2021.04.009_bib0078 article-title: Effects of molecular weight and its distribution of PEG block on micellization and thermogellability of PLGA–PEG–PLGA copolymer aqueous solutions publication-title: Macromolecules doi: 10.1021/acs.macromol.5b00168 – volume: 116 start-page: 259 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0005 article-title: Antimicrobial and anti-inflammatory thermo-reversible hydrogel for periodontal delivery publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.09.018 – volume: 8 start-page: 1575 year: 2012 ident: 10.1016/j.actbio.2021.04.009_bib0090 article-title: Controlled thermal gelation of poly(ε-caprolactone)/poly(ethylene glycol) block copolymers by modifying cyclic ether pendant groups on poly(ε-caprolactone) publication-title: Soft Matter doi: 10.1039/C1SM06693E – volume: 240 start-page: 191 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0048 article-title: PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.12.015 – volume: 51 start-page: 6080 year: 2015 ident: 10.1016/j.actbio.2021.04.009_bib0107 article-title: An injectable thermogel with high radiopacity publication-title: Chem. Commun. doi: 10.1039/C5CC00049A – volume: 43 start-page: 5771 year: 2010 ident: 10.1016/j.actbio.2021.04.009_bib0030 article-title: In situ forming hydrogels by tandem thermal gelling and michael addition reaction between thermosensitive triblock copolymers and thiolated hyaluronan publication-title: Macromolecules doi: 10.1021/ma100606a – volume: 41 start-page: 6493 year: 2008 ident: 10.1016/j.actbio.2021.04.009_bib0091 article-title: Roles of hydrophilic homopolymers on the hydrophobic-association-induced physical gelling of amphiphilic block copolymers in water publication-title: Macromolecules doi: 10.1021/ma7026484 – volume: 15 start-page: 464 year: 2015 ident: 10.1016/j.actbio.2021.04.009_bib0189 article-title: PEG-poly(l-alanine) thermogel as a 3D scaffold of bone-marrow-derived mesenchymal stem cells publication-title: Macromol. Biosci. doi: 10.1002/mabi.201400426 – volume: 11 start-page: 29604 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0126 article-title: Sustained release strategy designed for lixisenatide delivery to synchronously treat diabetes and associated complications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10346 – volume: 263 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0164 article-title: Cell migration regulated by RGD nanospacing and enhanced under moderate cell adhesion on biomaterials publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120327 – volume: 6 start-page: 1028 year: 2021 ident: 10.1016/j.actbio.2021.04.009_bib0168 article-title: In vivo degradation and endothelialization of an iron bioresorbable scaffold publication-title: Bioact. Mater. – volume: 18 start-page: 316 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0004 article-title: Hydrogels for therapeutic delivery: current developments and future directions publication-title: Biomacromolecules doi: 10.1021/acs.biomac.6b01604 – volume: 9 start-page: 23428 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0162 article-title: Calcitonin-loaded thermosensitive hydrogel for long-term antiosteopenia therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05740 – volume: 5 start-page: 97975 year: 2015 ident: 10.1016/j.actbio.2021.04.009_bib0142 article-title: Selenium-containing thermogel for controlled drug delivery by coordination competition publication-title: RSC Adv. doi: 10.1039/C5RA22307E – volume: 8 start-page: 533 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0119 article-title: An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling publication-title: Nat. Commun. doi: 10.1038/s41467-017-00583-8 – volume: 21 start-page: 3176 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0187 article-title: Thermogelling inclusion complex system for fine-tuned osteochondral differentiation of mesenchymal stem cells publication-title: Biomacromolecules doi: 10.1021/acs.biomac.0c00623 – volume: 15 start-page: 521 year: 2018 ident: 10.1016/j.actbio.2021.04.009_bib0020 article-title: Polypeptide thermogels as three-dimensional scaffolds for cells publication-title: Tissue Eng. Regen. Med. doi: 10.1007/s13770-018-0148-4 – volume: 3 start-page: 1782 year: 2014 ident: 10.1016/j.actbio.2021.04.009_bib0188 article-title: 3D culture of tonsil-derived mesenchymal stem cells in poly(ethylene glycol)-poly(l-alanine-co-l-phenyl alanine) thermogel publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201400140 – volume: 21 start-page: 207 year: 2012 ident: 10.1016/j.actbio.2021.04.009_bib0054 article-title: Design of molecular parameters to achieve block copolymers with a powder form at dry state and a temperature-induced sol-gel transition in water without unexpected gelling prior to heating publication-title: Macromol. Res. doi: 10.1007/s13233-013-1021-x – volume: 39 start-page: 4873 year: 2006 ident: 10.1016/j.actbio.2021.04.009_bib0062 article-title: Gelation behavior of poly(ethylene glycol) and polycaprolactone triblock and multiblock copolymer aqueous solutions publication-title: Macromolecules doi: 10.1021/ma060153s – volume: 23 start-page: 7642 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0105 article-title: Selective dual-channel imaging on cyanostyryl-modified azulene systems with unimolecularly tunable visible-near infrared luminescence publication-title: Chem. Eur. J. doi: 10.1002/chem.201700947 – volume: 1 start-page: 3314 year: 2013 ident: 10.1016/j.actbio.2021.04.009_bib0183 article-title: Injectable in situ-forming hydrogel for cartilage tissue engineering publication-title: J. Mater. Chem. B doi: 10.1039/c3tb20105h – volume: 54 start-page: 1225 year: 2005 ident: 10.1016/j.actbio.2021.04.009_bib0097 article-title: Hydrolysis-improved thermosensitive polyorganophosphazenes with α-amino-ω-methoxy-poly(ethylene glycol) and amino acid esters as side groups publication-title: Polym. Int. doi: 10.1002/pi.1702 – volume: 52 start-page: 3697 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0024 article-title: Thermogelling of amphiphilic block copolymers in water: ABA type versus AB or BAB type publication-title: Macromolecules doi: 10.1021/acs.macromol.9b00534 – volume: 3 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0047 article-title: Biodegradable thermogelling polymers publication-title: Small Methods doi: 10.1002/smtd.201800313 – volume: 4 start-page: 5473 year: 2014 ident: 10.1016/j.actbio.2021.04.009_bib0132 article-title: Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel publication-title: Sci. Rep. doi: 10.1038/srep05473 – volume: 21 start-page: 118 year: 2014 ident: 10.1016/j.actbio.2021.04.009_bib0159 article-title: A systematic review of complications of implant-based breast reconstruction with prereconstruction and postreconstruction radiotherapy publication-title: Ann. Surg. Oncol. doi: 10.1245/s10434-013-3284-z – volume: 50 start-page: 6111 year: 2009 ident: 10.1016/j.actbio.2021.04.009_bib0082 article-title: A delicate ionizable-group effect on self-assembly and thermogelling of amphiphilic block copolymers in water publication-title: Polymer doi: 10.1016/j.polymer.2009.10.036 – volume: 18 start-page: 701 year: 2010 ident: 10.1016/j.actbio.2021.04.009_bib0075 article-title: Synthesis and characterization of biodegradable thermosensitive neutral and acidic poly(organophosphazene) gels bearing carboxylic acid group publication-title: J. Polym. Res. doi: 10.1007/s10965-010-9466-5 – volume: 183 start-page: 185 year: 2018 ident: 10.1016/j.actbio.2021.04.009_bib0008 article-title: Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.08.044 – volume: 30 year: 2018 ident: 10.1016/j.actbio.2021.04.009_bib0034 article-title: Oxidoreductase-initiated radical polymerizations to design hydrogels and micro/nanogels: mechanism, molding, and applications publication-title: Adv. Mater. – volume: 38 start-page: 5260 year: 2005 ident: 10.1016/j.actbio.2021.04.009_bib0052 article-title: Thermogelling poly(caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions publication-title: Macromolecules doi: 10.1021/ma050489m – volume: 35 start-page: 8723 year: 2014 ident: 10.1016/j.actbio.2021.04.009_bib0141 article-title: PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for osteosarcoma treatment publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.06.045 – volume: 137 start-page: 25 year: 2009 ident: 10.1016/j.actbio.2021.04.009_bib0067 article-title: Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial publication-title: J. Control. Release doi: 10.1016/j.jconrel.2009.03.008 – volume: 10 start-page: 30235 year: 2018 ident: 10.1016/j.actbio.2021.04.009_bib0120 article-title: Thermogel loaded with low-dose paclitaxel as a facile coating to alleviate periprosthetic fibrous capsule formation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b13548 – volume: 45 start-page: 424 year: 2012 ident: 10.1016/j.actbio.2021.04.009_bib0040 article-title: Biodegradable Thermogels publication-title: Acc. Chem. Res. doi: 10.1021/ar200162j – volume: 110 start-page: 119 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0112 article-title: Dual dynamically crosslinked thermosensitive hydrogel with self-fixing as a postoperative anti-adhesion barrier publication-title: Acta Biomater doi: 10.1016/j.actbio.2020.04.034 – volume: 13 start-page: 1357 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0163 article-title: An injectable thermogel containing levonorgestrel for long-acting contraception and fertility control of animals publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2017.2464 – volume: 88 start-page: 79 year: 2018 ident: 10.1016/j.actbio.2021.04.009_bib0182 article-title: Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.02.028 – volume: 32 start-page: 7064 year: 1999 ident: 10.1016/j.actbio.2021.04.009_bib0060 article-title: Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions publication-title: Macromolecules doi: 10.1021/ma9908999 – volume: 81 start-page: 676 year: 1992 ident: 10.1016/j.actbio.2021.04.009_bib0134 article-title: A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogs publication-title: J. Pharm. Sci. doi: 10.1002/jps.2600810718 – volume: 209 start-page: 67 year: 2015 ident: 10.1016/j.actbio.2021.04.009_bib0181 article-title: Sustained BMP-2 delivery and injectable bone regeneration using thermosensitive polymeric nanoparticle hydrogel bearing dual interactions with BMP-2 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.04.023 – volume: 6 start-page: 19077 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0102 article-title: Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo publication-title: Sci. Rep. doi: 10.1038/srep19077 – volume: 9 start-page: 1945 year: 2015 ident: 10.1016/j.actbio.2021.04.009_bib0156 article-title: A review of the efficacy of mitomycin C in glaucoma filtration surgery publication-title: Clin. Ophthalmol. – volume: 11 start-page: 202 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0169 article-title: Mechanism of acceleration of iron corrosion by a polylactide coating publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17125 – volume: 32 start-page: 126 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0148 article-title: Progress of GLP-1 receptor agonists and their delivery systems for the treatment of type Ⅱ diabetes publication-title: J. Funct. Polym. – volume: 102 start-page: 4140 year: 2013 ident: 10.1016/j.actbio.2021.04.009_bib0151 article-title: In vitro and in vivo evaluation of a once-weekly formulation of an antidiabetic peptide drug exenatide in an injectable thermogel publication-title: J. Pharm. Sci. doi: 10.1002/jps.23735 – volume: 178 start-page: 467 year: 2018 ident: 10.1016/j.actbio.2021.04.009_bib0170 article-title: Degradation rate affords a dynamic cue to regulate stem cells beyond varied matrix stiffness publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.04.021 – volume: 37 start-page: 548 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0173 article-title: Accelerated cutaneous wound healing using an injectable teicoplanin-loaded PLGA-PEG-PLGA thermogel dressing publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-019-2212-5 – volume: 5 start-page: 6400 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0157 article-title: Sustained subconjunctival delivery of cyclosporine A using thermogelling polymers for glaucoma filtration surgery publication-title: J. Mater. Chem. B doi: 10.1039/C7TB01556A – volume: 16 start-page: 1158 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0184 article-title: In vivo osteogenic differentiation of human dental pulp stem cells embedded in an injectable in vivo-forming hydrogel publication-title: Macromol. Biosci. doi: 10.1002/mabi.201600001 – volume: 114 start-page: 244 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0013 article-title: Body temperature-activated protein-based injectable adhesive hydrogel incorporated with decellularized adipose extracellular matrix for tissue-specific regenerative stem cell therapy publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.07.033 – volume: 156 start-page: 21 year: 2011 ident: 10.1016/j.actbio.2021.04.009_bib0130 article-title: Enhancement of the fraction of the active form of an antitumor drug topotecan via an injectable hydrogel publication-title: J. Control. Release doi: 10.1016/j.jconrel.2011.07.008 – volume: 18 start-page: 548 year: 2001 ident: 10.1016/j.actbio.2021.04.009_bib0146 article-title: Controlled release of insulin from injectable biodegradable triblock copolymer publication-title: Pharm. Res. doi: 10.1023/A:1011074915438 – volume: 8 start-page: 5148 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0099 article-title: Kartogenin-incorporated thermogel supports stem cells for significant cartilage regeneration publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12212 – volume: 17 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0133 article-title: Achieving high drug loading and sustained release of hydrophobic drugs in hydrogels through in situ crystallization publication-title: Macromol. Biosci. doi: 10.1002/mabi.201600299 – volume: 45 start-page: 2007 year: 2012 ident: 10.1016/j.actbio.2021.04.009_bib0069 article-title: PEG-l-PAF and PEG-d-PAF: comparative study on thermogellation and biodegradation publication-title: Macromolecules doi: 10.1021/ma202809c – volume: 159 start-page: 91 year: 2018 ident: 10.1016/j.actbio.2021.04.009_bib0019 article-title: Injectable thermogel for 3D culture of stem cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.01.001 – volume: 98 start-page: 4684 year: 2009 ident: 10.1016/j.actbio.2021.04.009_bib0053 article-title: Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel: part 1-synthesis, characterization, and acute toxicity evaluation publication-title: J. Pharm. Sci. doi: 10.1002/jps.21780 – volume: 15 start-page: 2180 year: 2014 ident: 10.1016/j.actbio.2021.04.009_bib0193 article-title: Differentiation of tonsil-tissue-derived mesenchymal stem cells controlled by surface-functionalized microspheres in PEG-polypeptide thermogels publication-title: Biomacromolecules doi: 10.1021/bm500342r – volume: 72 start-page: 203 year: 2001 ident: 10.1016/j.actbio.2021.04.009_bib0049 article-title: Biodegradable block copolymers for delivery of proteins and water-insoluble drugs publication-title: J. Control. Release doi: 10.1016/S0168-3659(01)00276-0 – volume: 9 start-page: 40031 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0106 article-title: Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11998 – volume: 388 start-page: 860 year: 1997 ident: 10.1016/j.actbio.2021.04.009_bib0058 article-title: Biodegradable block copolymers as injectable drug-delivery systems publication-title: Nature doi: 10.1038/42218 – volume: 55 start-page: 396 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0100 article-title: Non-invasive monitoring of in vivo degradation of a radiopaque thermoreversible hydrogel and its efficacy in preventing post-operative adhesions publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.03.042 – volume: 6 start-page: 335 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0038 article-title: An elastin-like recombinamer-based bioactive hydrogel embedded with mesenchymal stromal cells as an injectable scaffold for osteochondral repair publication-title: Regen. Biomater. doi: 10.1093/rb/rbz023 – volume: 7 start-page: 27040 year: 2015 ident: 10.1016/j.actbio.2021.04.009_bib0124 article-title: Localized co-delivery of doxorubicin, cisplatin, and methotrexate by thermosensitive hydrogels for enhanced osteosarcoma treatment publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09112 – volume: 20 start-page: 3416 year: 2010 ident: 10.1016/j.actbio.2021.04.009_bib0095 article-title: Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(l-alanine) block copolymers publication-title: J. Mater. Chem. doi: 10.1039/b922956f – volume: 181 start-page: 378 year: 2018 ident: 10.1016/j.actbio.2021.04.009_bib0160 article-title: Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.07.051 – volume: 10 start-page: 182 year: 2018 ident: 10.1016/j.actbio.2021.04.009_bib0171 article-title: Strategy of metal-polymer composite stent to accelerate biodegradation of iron-based biomaterials publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15206 – volume: 45 start-page: 2232 year: 2006 ident: 10.1016/j.actbio.2021.04.009_bib0081 article-title: A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503575 – volume: 32 start-page: 1590 year: 2014 ident: 10.1016/j.actbio.2021.04.009_bib0185 article-title: Biodegradable thermogel as culture matrix of bone marrow mesenchymal stem cells for potential cartilage tissue engineering publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-014-1551-5 – volume: 8 start-page: 2586 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0084 article-title: Positional isomeric effects of coupling agents on the temperature-induced gelation of triblock copolymer aqueous solutions publication-title: Polym. Chem. doi: 10.1039/C7PY00232G – volume: 46 start-page: 6255 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0002 article-title: Hydrogel scaffolds for differentiation of adipose-derived stem cells publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00052E – volume: 3 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0138 article-title: Thermosensitive polypeptide hydrogels co-loaded with two anti-tumor agents to reduce multi-drug resistance and enhance local tumor treatment publication-title: Adv. Ther. – volume: 12 start-page: 1290 year: 2011 ident: 10.1016/j.actbio.2021.04.009_bib0079 article-title: Influence of LA and GA sequence in the PLGA block on the properties of thermogelling PLGA-PEG-PLGA block copolymers publication-title: Biomacromolecules doi: 10.1021/bm101572j – volume: 53 start-page: 11051 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0087 article-title: Strategy of “block blends” to generate polymeric thermogels versus that of one-component block copolymer publication-title: Macromolecules doi: 10.1021/acs.macromol.0c02488 – volume: 51 start-page: 6405 year: 2018 ident: 10.1016/j.actbio.2021.04.009_bib0092 article-title: Semi-bald micelles and corresponding percolated micelle networks of thermogels publication-title: Macromolecules doi: 10.1021/acs.macromol.8b01014 – volume: 21 start-page: 827 year: 2004 ident: 10.1016/j.actbio.2021.04.009_bib0149 article-title: Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats publication-title: Pharm. Res. doi: 10.1023/B:PHAM.0000026435.27086.94 – volume: 18 start-page: 4341 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0070 article-title: Injectable thermosensitive polypeptide-based CDDP-complexed hydrogel for improving localized antitumor efficacy publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01374 – volume: 35 start-page: 236 year: 2014 ident: 10.1016/j.actbio.2021.04.009_bib0179 article-title: Injectable thermosensitive PEG-PCL-PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.10.016 – volume: 30 start-page: 4752 year: 2009 ident: 10.1016/j.actbio.2021.04.009_bib0144 article-title: Doxorubicin-polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.05.031 – volume: 52 start-page: 2434 year: 2014 ident: 10.1016/j.actbio.2021.04.009_bib0072 article-title: Thermal gelation or gel melting: (ethylene glycol)113-(l-alanine)12and (ethylene glycol)113-(l-lactic acid)12 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.27254 – volume: 7 start-page: 1729 year: 2006 ident: 10.1016/j.actbio.2021.04.009_bib0061 article-title: Thermogelling aqueous solutions of alternating multiblock copolymers of poly(L-lactic acid) and poly(ethylene glycol) publication-title: Biomacromolecules doi: 10.1021/bm0600062 – volume: 4 start-page: 2383 year: 2008 ident: 10.1016/j.actbio.2021.04.009_bib0096 article-title: Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers publication-title: Soft Matter doi: 10.1039/b809116a – volume: 2 start-page: 393 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0118 article-title: Safe and efficient colonic endoscopic submucosal dissection using an injectable hydrogel publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.5b00516 – volume: 118 start-page: 113 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0037 article-title: Complex mechanical behavior of human articular cartilage and hydrogels for cartilage repair publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.10.025 – volume: 47 start-page: 5895 year: 2014 ident: 10.1016/j.actbio.2021.04.009_bib0077 article-title: Effects of molecular weight distribution of amphiphilic block copolymers on their solubility, micellization, and temperature-induced Sol–Gel transition in water publication-title: Macromolecules doi: 10.1021/ma501110p – volume: 14 start-page: 3256 year: 2013 ident: 10.1016/j.actbio.2021.04.009_bib0186 article-title: 3D culture of adipose-tissue-derived stem cells mainly leads to chondrogenesis in poly(ethylene glycol)-poly(L-alanine) diblock copolymer thermogel publication-title: Biomacromolecules doi: 10.1021/bm400868j – volume: 8 start-page: 5160 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0195 article-title: Composite system of graphene oxide and polypeptide thermogel as an injectable 3D scaffold for adipogenic differentiation of tonsil-derived mesenchymal stem cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12324 – volume: 61 start-page: 188 year: 2002 ident: 10.1016/j.actbio.2021.04.009_bib0050 article-title: Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.10164 – volume: 96 start-page: 281 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0006 article-title: An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.07.024 – volume: 9 start-page: 11568 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0190 article-title: Injectable polypeptide thermogel as a tissue engineering system for hepatogenic differentiation of tonsil-derived mesenchymal stem Cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02488 – volume: 2 start-page: 1100 year: 2014 ident: 10.1016/j.actbio.2021.04.009_bib0114 article-title: Comparative studies of thermogels in preventing post-operative adhesions and corresponding mechanisms publication-title: Biomater. Sci. doi: 10.1039/C4BM00029C – volume: 7 start-page: 413 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0022 article-title: Investigating materials and orientation parameters for the creation of a 3D musculoskeletal interface co-culture model publication-title: Regen. Biomater. doi: 10.1093/rb/rbaa018 – volume: 6 start-page: 885 year: 2005 ident: 10.1016/j.actbio.2021.04.009_bib0059 article-title: Caprolactonic poloxamer analog: PEG-PCL-PEG publication-title: Biomacromolecules doi: 10.1021/bm049347a – volume: 6 start-page: 129 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0015 article-title: Advances of injectable hydrogel-based scaffolds for cartilage regeneration publication-title: Regen. Biomater. doi: 10.1093/rb/rbz022 – volume: 255 start-page: 81 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0071 article-title: Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.04.011 – volume: 44 start-page: 888 year: 2006 ident: 10.1016/j.actbio.2021.04.009_bib0066 article-title: Sol-gel transition behavior of biodegradable three-arm and four-arm star-shaped PLGA-PEG block copolymer aqueous solution publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.21193 – volume: 3 start-page: 511 year: 2002 ident: 10.1016/j.actbio.2021.04.009_bib0065 article-title: Sol-gel transition temperature of PLGA-g-PEG aqueous solutions publication-title: Biomacromolecules doi: 10.1021/bm0156431 – volume: 25 start-page: 636 year: 2015 ident: 10.1016/j.actbio.2021.04.009_bib0031 article-title: Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403550 – volume: 32 start-page: 4725 year: 2011 ident: 10.1016/j.actbio.2021.04.009_bib0056 article-title: Biodegradable and thermoreversible PCLA-PEG-PCLA hydrogel as a barrier for prevention of post-operative adhesion publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.03.046 – volume: 6 start-page: 325 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0018 article-title: Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats publication-title: Regen. Biomater. doi: 10.1093/rb/rbz027 – volume: 37 start-page: 4533 year: 2004 ident: 10.1016/j.actbio.2021.04.009_bib0094 article-title: Synthesis and characterization of biodegradable thermosensitive poly(organophosphazene) gels publication-title: Macromolecules doi: 10.1021/ma0305838 – volume: 23 start-page: 271 year: 2015 ident: 10.1016/j.actbio.2021.04.009_bib0155 article-title: Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.05.005 – volume: 194 start-page: 316 year: 2014 ident: 10.1016/j.actbio.2021.04.009_bib0044 article-title: Thermo-reversible injectable gel based on enzymatically-chopped low molecular weight methylcellulose for exenatide and FGF 21 delivery to treat types 1 and 2 diabetes publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.09.014 – volume: 21 start-page: 143 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0191 article-title: Iron ion-releasing polypeptide thermogel for neuronal differentiation of mesenchymal stem cells publication-title: Biomacromolecules doi: 10.1021/acs.biomac.9b01096 – volume: 25 start-page: 5257 year: 2013 ident: 10.1016/j.actbio.2021.04.009_bib0167 article-title: Cell-material interactions revealed via material techniques of surface patterning publication-title: Adv. Mater. doi: 10.1002/adma.201301762 – volume: 7 start-page: 35 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0176 article-title: BMSCs-assisted injectable Col I hydrogel-regenerated cartilage defect by reconstructing superficial and calcified cartilage publication-title: Regen. Biomater. doi: 10.1093/rb/rbz028 – volume: 33 start-page: 793 year: 2011 ident: 10.1016/j.actbio.2021.04.009_bib0153 article-title: Review of the therapeutic uses of liraglutide publication-title: Clin. Ther. doi: 10.1016/j.clinthera.2011.06.004 – volume: 17 start-page: 1001 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0174 article-title: Platelet-rich plasma-loaded poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) hydrogel dressing promotes full-thickness skin wound healing in a rodent model publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17071001 – volume: 5 start-page: 2679 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0043 article-title: PHB-based gels as delivery agents of chemotherapeutics for the effective shrinkage of tumors publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201600723 – volume: 11 start-page: 8725 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0110 article-title: Chiral polypeptide thermogels induce controlled inflammatory response as potential immunoadjuvants publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b01872 – volume: 33 start-page: 4801 year: 2012 ident: 10.1016/j.actbio.2021.04.009_bib0178 article-title: Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.03.040 – volume: 33 start-page: 195 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0154 article-title: Lixisenatide: a new option for managing type 2 diabetes publication-title: J. Pharm. Technol. doi: 10.1177/8755122517711958 – volume: 10 start-page: 1547 year: 2009 ident: 10.1016/j.actbio.2021.04.009_bib0085 article-title: Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel publication-title: Biomacromolecules doi: 10.1021/bm900145g – volume: 7 start-page: 195 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0177 article-title: Preparation and characterization of methacrylated gelatin/bacterial cellulose composite hydrogels for cartilage tissue engineering publication-title: Regen. Biomater. doi: 10.1093/rb/rbz050 – volume: 3 start-page: 1268 year: 2015 ident: 10.1016/j.actbio.2021.04.009_bib0032 article-title: An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering publication-title: J. Mater. Chem. B doi: 10.1039/C4TB01705F – volume: 114 start-page: 133 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0046 article-title: Development of injectable thermosensitive polypeptide hydrogel as facile radioisotope and radiosensitizer hotspot for synergistic brachytherapy publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.07.032 – volume: 7 start-page: 860 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0125 article-title: Enhanced local cancer therapy using a CA4P and CDDP co-loaded polypeptide gel depot publication-title: Biomater. Sci. doi: 10.1039/C8BM01442F – volume: 4 start-page: 1493 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0089 article-title: Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG-PCL-PEG publication-title: Biomater. Sci. doi: 10.1039/C6BM00408C – volume: 5 start-page: 353 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0192 article-title: Nanocomposite versus mesocomposite for osteogenic differentiation of tonsil-derived mesenchymal stem cells publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201500558 – volume: 7 start-page: 99 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0010 article-title: Resveratrol-loaded peptide-hydrogels inhibit scar formation in wound healing through suppressing inflammation publication-title: Regen. Biomater. – volume: 45 start-page: 4091 year: 2007 ident: 10.1016/j.actbio.2021.04.009_bib0057 article-title: Thermogelling hydrogels of poly(ɛ-caprolactone-co-D,L-lactide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-D,L-lactide) and poly(ɛ-caprolactone-co-L-lactide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-L-lactide) aqueous solutions publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.22222 – volume: 7 start-page: 8650 year: 2011 ident: 10.1016/j.actbio.2021.04.009_bib0083 article-title: Examination of phase transition behavior of ion group functionalized MPEG-b-PCL diblock copolymers publication-title: Soft Matter doi: 10.1039/c1sm05977g – volume: 8 start-page: 3301 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0109 article-title: (19)F magnetic resonance imaging enabled real-time, non-invasive and precise localization and quantification of the degradation rate of hydrogel scaffolds in vivo publication-title: Biomater. Sci. doi: 10.1039/D0BM00278J – volume: 19 start-page: 479 year: 2008 ident: 10.1016/j.actbio.2021.04.009_bib0161 article-title: Salmon calcitonin: a review of current and future therapeutic indications publication-title: Osteoporos. Int. doi: 10.1007/s00198-007-0490-1 – volume: 112 start-page: 101 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0009 article-title: Drug-impregnated, pressurized gas expanded liquid-processed alginate hydrogel scaffolds for accelerated burn wound healing publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.06.006 – volume: 31 start-page: 5227 year: 2010 ident: 10.1016/j.actbio.2021.04.009_bib0051 article-title: Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.03.027 – volume: 95 start-page: 935 year: 2010 ident: 10.1016/j.actbio.2021.04.009_bib0111 article-title: In vitro and in vivo degradation behaviors of thermosensitive poly(organophosphazene) hydrogels publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2010.03.024 – volume: 23 start-page: 2709 year: 2006 ident: 10.1016/j.actbio.2021.04.009_bib0023 article-title: A review of poloxamer 407 pharmaceutical and pharmacological characteristics publication-title: Pharm. Res. doi: 10.1007/s11095-006-9104-4 – volume: 16 start-page: 105 year: 2015 ident: 10.1016/j.actbio.2021.04.009_bib0143 article-title: Thermogelling polymer-platinum(IV) conjugates for long-term delivery of cisplatin publication-title: Biomacromolecules doi: 10.1021/bm501220a – year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0016 article-title: Cell-free bilayered porous scaffolds for osteochondral regeneration fabricated by continuous 3D-printing using nascent physical hydrogel as ink publication-title: Adv. Healthc. Mater. – volume: 396 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0121 article-title: Sustained release of lipophilic gemcitabine from an injectable polymeric hydrogel for synergistically enhancing tumor chemoradiotherapy publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125320 – volume: 12 start-page: 27971 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0165 article-title: Effects of microstripe geometry on guided cell migration publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c05024 – volume: 6 start-page: 259 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0029 article-title: Migration of endothelial cells into photo-responsive hydrogels with tunable modulus under the presence of pro-inflammatory macrophages publication-title: Regen. Biomater. doi: 10.1093/rb/rbz025 – volume: 11 start-page: 15201 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0150 article-title: Sustained release of Exendin 4 using injectable and lonic-nano-complex forming polymer hydrogel system for long-term treatment of type 2 diabetes mellitus publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b19669 – volume: 20 start-page: 2008 year: 2003 ident: 10.1016/j.actbio.2021.04.009_bib0122 article-title: Controlled release of insulin from injectable biodegradable triblock copolymer depot in ZDF rats publication-title: Pharm. Res. doi: 10.1023/B:PHAM.0000008050.99985.5c – volume: 45 start-page: 1122 year: 2007 ident: 10.1016/j.actbio.2021.04.009_bib0080 article-title: Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.21876 – volume: 123 start-page: 254 year: 2021 ident: 10.1016/j.actbio.2021.04.009_bib0035 article-title: Mussel-inspired poly(gamma-gl utamic acid)/nanosilicate composite hydrogels with enhanced mechanical properties, tissue adhesive properties, and skin tissue regeneration publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.01.014 – volume: 368 start-page: 1696 year: 2006 ident: 10.1016/j.actbio.2021.04.009_bib0147 article-title: The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes publication-title: Lancet doi: 10.1016/S0140-6736(06)69705-5 – volume: 110 start-page: 82 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0017 article-title: Redox injectable gel protects osteoblastic function against oxidative stress and suppresses alveolar bone loss in a rat peri-implantitis model publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.04.003 – volume: 61 start-page: 785 year: 2009 ident: 10.1016/j.actbio.2021.04.009_bib0129 article-title: OncoGel (ReGel/paclitaxel) - clinical applications for a novel paclitaxel delivery system publication-title: Adv. Drug Deliver. Rev. doi: 10.1016/j.addr.2009.04.010 – volume: 46 start-page: 5075 year: 2005 ident: 10.1016/j.actbio.2021.04.009_bib0074 article-title: New thermogelling poly(organophosphazenes) with methoxypoly(ethylene glycol) and oligopeptide as side groups publication-title: Polymer doi: 10.1016/j.polymer.2005.04.024 – volume: 10 start-page: 155 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0152 article-title: The discovery and development of liraglutide and semaglutide publication-title: Front. Endocrinol. doi: 10.3389/fendo.2019.00155 – volume: 209 start-page: 120 year: 2015 ident: 10.1016/j.actbio.2021.04.009_bib0045 article-title: Recent progress in biomedical applications of Pluronic (PF127): pharmaceutical perspectives publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.04.032 – volume: 8 start-page: 4260 year: 2012 ident: 10.1016/j.actbio.2021.04.009_bib0088 article-title: Modulating rheological and degradation properties of temperature-responsive gelling systems composed of blends of PCLA-PEG-PCLA triblock copolymers and their fully hexanoyl-capped derivatives publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.07.044 – volume: 4 start-page: 7793 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0104 article-title: Functional biomedical hydrogels for in vivo imaging publication-title: J. Mater. Chem. B doi: 10.1039/C6TB02019D – volume: 4 start-page: 6524 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0026 article-title: pH-Sensitive sulfamethazine-based hydrogels as potential embolic agents for transcatheter vascular embolization publication-title: J. Mater. Chem. B doi: 10.1039/C6TB01690A – volume: 33 start-page: 8317 year: 2000 ident: 10.1016/j.actbio.2021.04.009_bib0064 article-title: Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA publication-title: Macromolecules doi: 10.1021/ma000638v – volume: 35 start-page: 3876 year: 2002 ident: 10.1016/j.actbio.2021.04.009_bib0073 article-title: A thermosensitive poly(organophosphazene) gel publication-title: Macromolecules doi: 10.1021/ma012093q – volume: 132 start-page: 16 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0127 article-title: Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.03.049 – volume: 218 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0196 article-title: 3D hydrogel stem cell niche controlled by host-guest interaction affects stem cell fate and survival rate publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119338 – volume: 34 start-page: 147 year: 2015 ident: 10.1016/j.actbio.2021.04.009_bib0115 article-title: An injectable hydrogel with or without drugs for prevention of epidural scar adhesion after laminectomy in rats publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-016-1740-5 – volume: 10 start-page: 1251 year: 2014 ident: 10.1016/j.actbio.2021.04.009_bib0117 article-title: Poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) thermogel as a novel submucosal cushion for endoscopic submucosal dissection publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.12.007 – volume: 6 start-page: 249 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0036 article-title: In situ sol-gel synthesis of hyaluronan derivatives bio-nanocomposite hydrogels publication-title: Regen. Biomater. doi: 10.1093/rb/rbz029 – volume: 22 start-page: 6072 year: 2012 ident: 10.1016/j.actbio.2021.04.009_bib0093 publication-title: J. Mater. Chem. doi: 10.1039/c2jm15419f – volume: 30 start-page: E283 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0116 article-title: Efficacy of poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) thermogel as a barrier to prevent spinal epidural fibrosis in a postlaminectomy rat model publication-title: Clin. Spine Surg. doi: 10.1097/BSD.0000000000000221 – volume: 8 start-page: 980 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0101 article-title: An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction publication-title: J. Mater. Chem. B doi: 10.1039/C9TB02523E – volume: 13 start-page: 1106 year: 2012 ident: 10.1016/j.actbio.2021.04.009_bib0175 article-title: Cell therapy for skin wound using fibroblast encapsulated poly(ethylene glycol)-poly(L-alanine) thermogel publication-title: Biomacromolecules doi: 10.1021/bm2018596 – volume: 108 start-page: 87 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0012 article-title: A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivo publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.03.039 – volume: 8 start-page: 30703 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0128 article-title: Injectable and thermosensitive hydrogel containing liraglutide as a long-acting antidiabetic system publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09415 – volume: 6 start-page: 31593 year: 2016 ident: 10.1016/j.actbio.2021.04.009_bib0076 article-title: Controlled release of liraglutide using thermogelling polymers in treatment of diabetes publication-title: Sci. Rep. doi: 10.1038/srep31593 – volume: 348 start-page: 95 year: 2008 ident: 10.1016/j.actbio.2021.04.009_bib0131 article-title: Injectable block copolymer hydrogels for sustained release of a PEGylated drug publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2007.07.026 – start-page: 997 year: 2018 ident: 10.1016/j.actbio.2021.04.009_bib0025 article-title: Injectable thermogels based on block copolymers of appropriate amphiphilicity publication-title: Acta Polym. Sin. – volume: 31 start-page: 2453 year: 2010 ident: 10.1016/j.actbio.2021.04.009_bib0103 article-title: A biodegradable, injectable, gel system based on MPEG-b-(PCL-ran-PLLA) diblock copolymers with an adjustable therapeutic window publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.11.115 – volume: 268 start-page: 176 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0139 article-title: Pre-clinical evaluation of a themosensitive gel containing epothilone B and mTOR/Hsp90 targeted agents in an ovarian tumor model publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.10.022 – volume: 22 start-page: 669 year: 2014 ident: 10.1016/j.actbio.2021.04.009_bib0140 article-title: Thermosensitive poly-(d,l-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(d,l-lactide-co-glycolide) hydrogels for multi-drug delivery publication-title: J. Drug Target. doi: 10.3109/1061186X.2014.931406 – volume: 9 start-page: 6080 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0135 article-title: Injectable hydrogels for the sustained delivery of a HER2-targeted antibody for preventing local relapse of HER2+breast cancer after breast-conserving surgery publication-title: Theranostics doi: 10.7150/thno.36514 – volume: 86 start-page: 235 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0007 article-title: An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.01.001 – volume: 122 start-page: 91 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0180 article-title: Tuning physical properties and BMP-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.01.016 – volume: 48 start-page: 4786 year: 2007 ident: 10.1016/j.actbio.2021.04.009_bib0055 article-title: Injectable hydrogels of poly(ɛ-caprolactone-co-glycolide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-glycolide) triblock copolymer aqueous solutions publication-title: Polymer doi: 10.1016/j.polymer.2007.06.003 – volume: 11 start-page: 2169 year: 2010 ident: 10.1016/j.actbio.2021.04.009_bib0086 article-title: Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water publication-title: Biomacromolecules doi: 10.1021/bm100549q – volume: 35 start-page: 284 year: 2019 ident: 10.1016/j.actbio.2021.04.009_bib0166 article-title: Proliferation of cells with severe nuclear deformation on a micropillar array publication-title: Langmuir doi: 10.1021/acs.langmuir.8b03452 – volume: 112 start-page: 248 year: 2017 ident: 10.1016/j.actbio.2021.04.009_bib0028 article-title: Temperature responsive chemical crosslinkable UV pretreated hydrogel for application to injectable tissue regeneration system via differentiations of encapsulated hMSCs publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.10.025 – volume: 4 year: 2020 ident: 10.1016/j.actbio.2021.04.009_bib0098 article-title: Visualizing the in vivo evolution of an injectable and thermosensitive hydrogel using tri-modal bioimaging publication-title: Small Methods doi: 10.1002/smtd.202000310 – volume: 167 start-page: 143 year: 2018 ident: 10.1016/j.actbio.2021.04.009_bib0041 article-title: Novel angiogenesis therapeutics by redox injectable hydrogel - Regulation of local nitric oxide generation for effective cardiovascular therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.03.023 |
SSID | ssj0038128 |
Score | 2.6720083 |
SecondaryResourceType | review_article |
Snippet | Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 42 |
SubjectTerms | Biodegradability Biodegradation Biomedical materials Body temperature Copolymers Hydrogels PEG Poly(organophosphazene) Polyester Polyethylene glycol Polymers Polypeptide Polypeptides Room temperature Scaffolds Thermosensitive hydrogel |
Title | PEG-based thermosensitive and biodegradable hydrogels |
URI | https://dx.doi.org/10.1016/j.actbio.2021.04.009 https://www.ncbi.nlm.nih.gov/pubmed/33857694 https://www.proquest.com/docview/2553853795 https://www.proquest.com/docview/2514592488 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EL3oQ364vKniN20fSdI8i6qooggreQp66ot1F14MXf7szfSwKiuCx7QSGSTLfN3TyBWAvIKSKYArmpbaMI-CywqaYDJ3IHGKS95VI0sVl3r_lZ3fibgoO27Mw1FbZ5P46p1fZunnTbaLZHQ0G3Wvk0qmMKwUsBJqcNEE5l7TK9z8mbR4ISNX9qmTMyLo9Plf1eGk7NgM6ApgmleAptSX-DE-_0c8Kho4XYL7hj9FB7eIiTPlyCea-qAoug7g6OmGETi4idvc8fKUmdUprkS5dhK44UohwdGgqenh3L8N79GAFbo-Pbg77rLkdgVkkPWOWeMcLK4MNLquJEpYuRvqQxDbvFVynPe1ynvAQJ4bbvAhecxOcDpkRIY2zVZguh6Vfh8gK73ObS-mM45k1xvMsD85KLjTyB9-BrA2Kso10ON1g8aTaHrFHVYdSUShVzBV61AE2GTWqpTP-sJdtvNW3JaAwu_8xcqudHtVswVeFtVKGXET2RAd2J59x89AfEV364RvZJFxgBVoUHVirp3XiKtbuWIv1-Ma_3dqEWXqqm3u3YHr88ua3kcKMzU61Rndg5uD0vH_5CYN-75o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6lyYFyqIC2kJbHInG1sg97vTkiBCQEIiRA4mb5CUHtBkE49N93Zh9RkYqQuK5taTS25_tGO_MZ4CAgpIpgCualtowj4LLCphgMncgcYpL3lUjSxTQf3fCzW3HbgaO2F4bKKpvYX8f0Klo3XwaNNwePs9ngCrl0KuNKAQuBJuefoEfqVKILvcPxZDRtAzJiUvXEKs1ntKDtoKvKvLRdmBl1AaZJpXlKlYn_R6i3GGiFRCdr8KWhkNFhbeU6dHy5Aav_CAt-BXF5fMoIoFxEBO_3_Jnq1CmyRbp0EZriSCTCUd9UdP_HPc3v0IJvcHNyfH00Ys0DCcwi71mwxDteWBlscFnNlTB7MdKHJLb5sOA6HWqX84SHODHc5kXwmpvgdMiMCGmcfYduOS_9FkRWeJ_bXEpnHM-sMZ5neXBWcqGRQvg-ZK1TlG3Uw-kRi1-qLRN7ULUrFblSxVyhRX1gy1WPtXrGO_Nl62_16hQoDPDvrNxut0c1t_BZYbqUIR2RQ9GH_eUw3h_6KaJLP3-hOQkXmIQWRR82621dmorpO6ZjQ_7jw2btwcro-uJcnY-nk5_wmUbqWt9t6C6eXvwOMpqF2W1O7F-9ZPJL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PEG-based+thermosensitive+and+biodegradable+hydrogels&rft.jtitle=Acta+biomaterialia&rft.au=Shi%2C+Jiayue&rft.au=Yu%2C+Lin&rft.au=Ding%2C+Jiandong&rft.date=2021-07-01&rft.issn=1878-7568&rft.eissn=1878-7568&rft.volume=128&rft.spage=42&rft_id=info:doi/10.1016%2Fj.actbio.2021.04.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon |