PEG-based thermosensitive and biodegradable hydrogels

Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing rese...

Full description

Saved in:
Bibliographic Details
Published inActa biomaterialia Vol. 128; pp. 42 - 59
Main Authors Shi, Jiayue, Yu, Lin, Ding, Jiandong
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted. Thermosensitive hydrogels undergoing reversible sol-to-gel phase transitions in response to temperature variations are a class of promising biomaterials that can serve as minimally invasive injectable systems for various biomedical applications. Hydrophilic PEG is a main component in the design and fabrication of thermoresponsive hydrogels due to its excellent biocompatibility. By incorporating hydrophobic segments, such as polyesters and polypeptides, into PEG-based systems, biodegradable and thermosensitive hydrogels with adjustable properties in vitro and in vivo have been developed and have recently become a research hotspot of biomaterials. The summary and discussion on molecular design, performance regulation, thermogelation and degradation mechanisms, and biomedical applications of PEG-based thermosensitive hydrogels may offer a demonstration of blueprint for designing new thermogelling systems and expanding their application scope. [Display omitted]
AbstractList Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted. Thermosensitive hydrogels undergoing reversible sol-to-gel phase transitions in response to temperature variations are a class of promising biomaterials that can serve as minimally invasive injectable systems for various biomedical applications. Hydrophilic PEG is a main component in the design and fabrication of thermoresponsive hydrogels due to its excellent biocompatibility. By incorporating hydrophobic segments, such as polyesters and polypeptides, into PEG-based systems, biodegradable and thermosensitive hydrogels with adjustable properties in vitro and in vivo have been developed and have recently become a research hotspot of biomaterials. The summary and discussion on molecular design, performance regulation, thermogelation and degradation mechanisms, and biomedical applications of PEG-based thermosensitive hydrogels may offer a demonstration of blueprint for designing new thermogelling systems and expanding their application scope. [Display omitted]
Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted.
Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted. STATEMENT OF SIGNIFICANCE: Thermosensitive hydrogels undergoing reversible sol-to-gel phase transitions in response to temperature variations are a class of promising biomaterials that can serve as minimally invasive injectable systems for various biomedical applications. Hydrophilic PEG is a main component in the design and fabrication of thermoresponsive hydrogels due to its excellent biocompatibility. By incorporating hydrophobic segments, such as polyesters and polypeptides, into PEG-based systems, biodegradable and thermosensitive hydrogels with adjustable properties in vitro and in vivo have been developed and have recently become a research hotspot of biomaterials. The summary and discussion on molecular design, performance regulation, thermogelation and degradation mechanisms, and biomedical applications of PEG-based thermosensitive hydrogels may offer a demonstration of blueprint for designing new thermogelling systems and expanding their application scope.Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted. STATEMENT OF SIGNIFICANCE: Thermosensitive hydrogels undergoing reversible sol-to-gel phase transitions in response to temperature variations are a class of promising biomaterials that can serve as minimally invasive injectable systems for various biomedical applications. Hydrophilic PEG is a main component in the design and fabrication of thermoresponsive hydrogels due to its excellent biocompatibility. By incorporating hydrophobic segments, such as polyesters and polypeptides, into PEG-based systems, biodegradable and thermosensitive hydrogels with adjustable properties in vitro and in vivo have been developed and have recently become a research hotspot of biomaterials. The summary and discussion on molecular design, performance regulation, thermogelation and degradation mechanisms, and biomedical applications of PEG-based thermosensitive hydrogels may offer a demonstration of blueprint for designing new thermogelling systems and expanding their application scope.
Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted. STATEMENT OF SIGNIFICANCE: Thermosensitive hydrogels undergoing reversible sol-to-gel phase transitions in response to temperature variations are a class of promising biomaterials that can serve as minimally invasive injectable systems for various biomedical applications. Hydrophilic PEG is a main component in the design and fabrication of thermoresponsive hydrogels due to its excellent biocompatibility. By incorporating hydrophobic segments, such as polyesters and polypeptides, into PEG-based systems, biodegradable and thermosensitive hydrogels with adjustable properties in vitro and in vivo have been developed and have recently become a research hotspot of biomaterials. The summary and discussion on molecular design, performance regulation, thermogelation and degradation mechanisms, and biomedical applications of PEG-based thermosensitive hydrogels may offer a demonstration of blueprint for designing new thermogelling systems and expanding their application scope.
Author Ding, Jiandong
Yu, Lin
Shi, Jiayue
Author_xml – sequence: 1
  givenname: Jiayue
  surname: Shi
  fullname: Shi, Jiayue
  organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
– sequence: 2
  givenname: Lin
  orcidid: 0000-0001-7660-3367
  surname: Yu
  fullname: Yu, Lin
  email: yu_lin@fudan.edu.cn
  organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
– sequence: 3
  givenname: Jiandong
  surname: Ding
  fullname: Ding, Jiandong
  organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33857694$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LAzEQhoMofv8DkYIXL7smu0k260GQUj9A0IOeQzaZ1JTtpiap4L83pe2lBz3NHJ73ZeY5QfuDHwChC4JLggm_mZVKp875ssIVKTEtMW730DERjSgaxsV-3htaFQ3m5AidxDjDuBakEofoqK4Fa3hLjxF7mzwWnYpgRukTwtxHGKJL7htGajCj3G9gGpRRXQ-jzx8T_BT6eIYOrOojnG_mKfp4mLyPn4qX18fn8f1LoSnjqSBgqNCN1dbU-TpGcNvyrgFLsOatoKpqleGUUItJRzUXFhTtrFG27pitcH2Krte9i-C_lhCTnLuooe_VAH4ZZcUIZW1Fhcjo1Q4688sw5OsyxfK_ddOyTF1uqGU3ByMXwc1V-JFbIRm4XQM6-BgDWKldUsn5IQXlekmwXNmXM7m2L1f2JaYy_5fDdCe87f8ndreOZbPw7SDIqB0MGowLoJM03v1d8Asi3p8A
CitedBy_id crossref_primary_10_31857_S0023291223600554
crossref_primary_10_1208_s12249_024_02894_8
crossref_primary_10_1002_smll_202201300
crossref_primary_10_1021_acs_macromol_1c00959
crossref_primary_10_1016_j_eurpolymj_2024_113158
crossref_primary_10_1021_acs_macromol_4c02171
crossref_primary_10_1002_asia_202200621
crossref_primary_10_1002_adhm_202401227
crossref_primary_10_1002_adhm_202400811
crossref_primary_10_37155_2972_449X_vol2_1__102
crossref_primary_10_1021_acs_chemmater_4c03077
crossref_primary_10_1016_j_bioactmat_2022_05_008
crossref_primary_10_1021_cbe_4c00079
crossref_primary_10_3390_gels8110741
crossref_primary_10_1016_j_bioactmat_2022_09_002
crossref_primary_10_1016_j_eurpolymj_2023_112214
crossref_primary_10_1039_D2PY01574A
crossref_primary_10_34133_bmef_0006
crossref_primary_10_1016_j_bbrc_2024_151215
crossref_primary_10_1016_j_cclet_2024_109736
crossref_primary_10_1186_s12951_023_01996_y
crossref_primary_10_1021_acs_biomac_4c01676
crossref_primary_10_1007_s10118_022_2741_1
crossref_primary_10_1007_s13770_024_00671_z
crossref_primary_10_1002_asia_202200081
crossref_primary_10_1039_D3LP00136A
crossref_primary_10_3389_fbioe_2022_902894
crossref_primary_10_1016_j_ijbiomac_2023_128288
crossref_primary_10_1002_adfm_202400585
crossref_primary_10_1016_j_apsb_2024_08_027
crossref_primary_10_1016_j_progpolymsci_2023_101752
crossref_primary_10_1186_s40824_022_00316_z
crossref_primary_10_1021_acsabm_4c01427
crossref_primary_10_1016_j_ijbiomac_2024_135858
crossref_primary_10_3389_fbioe_2022_954501
crossref_primary_10_1002_admi_202300391
crossref_primary_10_1002_sstr_202400560
crossref_primary_10_1002_pat_6406
crossref_primary_10_1021_acs_jafc_4c05903
crossref_primary_10_1021_acs_biomac_4c00376
crossref_primary_10_1016_j_polymer_2022_125093
crossref_primary_10_1021_acs_langmuir_3c01576
crossref_primary_10_3390_gels9040301
crossref_primary_10_1016_j_ensm_2024_103707
crossref_primary_10_1021_acsami_3c03149
crossref_primary_10_1039_D4TB00771A
crossref_primary_10_1021_acsnano_3c07638
crossref_primary_10_1016_j_jmps_2022_105016
crossref_primary_10_1021_acs_biomac_3c00382
crossref_primary_10_1016_j_mtcomm_2022_104369
crossref_primary_10_1016_j_jconrel_2022_08_040
crossref_primary_10_1002_pol_20210955
crossref_primary_10_1016_j_ajps_2024_100911
crossref_primary_10_1016_j_bioactmat_2024_05_032
crossref_primary_10_1016_j_matt_2023_05_030
crossref_primary_10_3389_fphar_2024_1499742
crossref_primary_10_1016_j_ijbiomac_2023_127654
crossref_primary_10_3390_gels9030245
crossref_primary_10_1039_D1TB01554K
crossref_primary_10_1039_D4BM01629G
crossref_primary_10_1016_j_carbpol_2024_122128
crossref_primary_10_1021_acs_biomac_3c01285
crossref_primary_10_1016_j_ijpharm_2022_122484
crossref_primary_10_3390_gels8050316
crossref_primary_10_1186_s12951_024_02306_w
crossref_primary_10_3390_polym17060780
crossref_primary_10_1002_adhm_202101809
crossref_primary_10_1002_adhm_202302626
crossref_primary_10_3390_gels11010072
crossref_primary_10_1186_s40779_023_00448_w
crossref_primary_10_1007_s11517_024_03141_9
crossref_primary_10_1002_pol_20220337
crossref_primary_10_1016_j_actbio_2022_04_020
crossref_primary_10_3390_polym16091221
crossref_primary_10_1002_adtp_202300128
crossref_primary_10_1002_asia_202200797
crossref_primary_10_1002_macp_202400163
crossref_primary_10_1016_j_biomaterials_2023_122139
crossref_primary_10_1021_acs_biomac_4c00389
crossref_primary_10_1021_acsmacrolett_4c00448
crossref_primary_10_3390_ma17184472
crossref_primary_10_1016_j_mtbio_2024_101266
crossref_primary_10_1002_adfm_202206554
crossref_primary_10_1016_j_bioactmat_2022_10_004
crossref_primary_10_1021_acsabm_4c01348
crossref_primary_10_3390_polym14163368
crossref_primary_10_1016_j_colsurfb_2023_113392
crossref_primary_10_1016_j_xphs_2023_05_018
crossref_primary_10_1016_j_eurpolymj_2025_113816
crossref_primary_10_3390_gels10100614
crossref_primary_10_1016_j_ccr_2024_216207
crossref_primary_10_3390_ma15155290
crossref_primary_10_1016_j_engreg_2022_02_003
crossref_primary_10_1016_j_mtbio_2022_100238
crossref_primary_10_1016_j_actbio_2022_04_005
crossref_primary_10_1177_08853282221123452
crossref_primary_10_1186_s12951_024_02780_2
crossref_primary_10_1016_j_cej_2025_159621
crossref_primary_10_1021_acsami_3c18306
crossref_primary_10_1002_advs_202306152
crossref_primary_10_1016_j_actbio_2022_12_070
crossref_primary_10_56294_mw2023146
crossref_primary_10_1016_j_actbio_2022_03_033
crossref_primary_10_1016_j_cej_2023_143128
crossref_primary_10_1021_acs_langmuir_4c04515
crossref_primary_10_1016_j_cobme_2022_100412
crossref_primary_10_1002_adhm_202102654
crossref_primary_10_1039_D3TB03070A
crossref_primary_10_1016_j_compositesb_2023_111162
crossref_primary_10_3389_fbioe_2023_1296531
crossref_primary_10_3390_gels11030178
crossref_primary_10_1038_s41598_024_68840_7
crossref_primary_10_1039_D4TB00887A
crossref_primary_10_3390_polym14245368
crossref_primary_10_1016_j_fuel_2023_130751
crossref_primary_10_3390_ma16165532
crossref_primary_10_1021_acsami_4c05836
crossref_primary_10_1002_adfm_202405966
crossref_primary_10_1021_acsami_3c07008
crossref_primary_10_1039_D2BM01036D
crossref_primary_10_1021_acsami_4c15889
crossref_primary_10_1016_j_bprint_2024_e00355
crossref_primary_10_1016_j_cej_2024_152238
crossref_primary_10_1016_j_eurpolymj_2023_112294
crossref_primary_10_1039_D1BM01280K
crossref_primary_10_1016_j_ijbiomac_2023_125055
crossref_primary_10_1002_macp_202100316
crossref_primary_10_1208_s12249_024_02960_1
crossref_primary_10_1016_j_polymer_2022_125499
crossref_primary_10_1016_j_mtbio_2024_101297
crossref_primary_10_1039_D4BM00643G
crossref_primary_10_1002_adfm_202418941
crossref_primary_10_1038_s41536_022_00274_z
crossref_primary_10_2147_IJN_S495971
crossref_primary_10_1134_S1061933X23600756
crossref_primary_10_1021_acsami_1c08855
crossref_primary_10_3390_polym14081555
crossref_primary_10_1021_acsapm_4c01716
crossref_primary_10_1016_j_bioactmat_2022_08_024
crossref_primary_10_1039_D4BM00241E
crossref_primary_10_3390_pharmaceutics14122622
crossref_primary_10_1016_j_cej_2022_138889
crossref_primary_10_1016_j_jconrel_2024_06_001
crossref_primary_10_1021_acsabm_2c00755
crossref_primary_10_1007_s10973_023_12636_w
crossref_primary_10_3390_gels11020120
crossref_primary_10_1126_sciadv_adl0165
crossref_primary_10_1039_D2TB02703H
crossref_primary_10_1093_rb_rbad039
crossref_primary_10_1016_j_apmt_2025_102602
crossref_primary_10_1016_j_cis_2023_103035
crossref_primary_10_20883_medical_e712
crossref_primary_10_1039_D4PY01316F
crossref_primary_10_1039_D4TB00761A
crossref_primary_10_1016_j_mtbio_2024_101308
crossref_primary_10_1002_adma_202201651
crossref_primary_10_1016_j_smaim_2023_06_001
crossref_primary_10_15212_AMM_2024_0017
crossref_primary_10_1002_pat_5844
crossref_primary_10_1016_j_mtadv_2024_100490
crossref_primary_10_1002_jbm_a_37754
crossref_primary_10_1002_adma_202406604
crossref_primary_10_1039_D2TB00983H
crossref_primary_10_3390_polym16050584
crossref_primary_10_1021_acs_chemmater_3c03321
crossref_primary_10_3390_pharmaceutics16080979
crossref_primary_10_1208_s12249_023_02705_6
crossref_primary_10_1016_j_eng_2021_11_025
crossref_primary_10_1016_j_eurpolymj_2023_112526
crossref_primary_10_3390_gels8100683
crossref_primary_10_1093_rb_rbad064
crossref_primary_10_1093_rb_rbae031
crossref_primary_10_1002_pol_20240646
crossref_primary_10_1016_j_xphs_2023_02_004
crossref_primary_10_1039_D4TA02586E
crossref_primary_10_3389_fchem_2022_946183
crossref_primary_10_1002_cjoc_202400475
crossref_primary_10_1039_D2TA06822B
crossref_primary_10_1093_rb_rbac098
crossref_primary_10_1016_j_jddst_2023_104698
crossref_primary_10_1039_D4TB00805G
crossref_primary_10_3390_biom13020280
crossref_primary_10_1016_j_eurpolymj_2024_113226
crossref_primary_10_1039_D3MA00341H
crossref_primary_10_1016_j_eurpolymj_2025_113887
crossref_primary_10_3390_polym14224953
crossref_primary_10_1016_j_carbpol_2025_123360
crossref_primary_10_1007_s40843_024_3095_8
crossref_primary_10_1016_j_biopha_2024_116238
crossref_primary_10_1021_acsapm_3c01649
crossref_primary_10_1002_adhm_202201714
crossref_primary_10_1007_s11427_023_2394_3
crossref_primary_10_1016_j_cis_2024_103207
crossref_primary_10_1016_j_reactfunctpolym_2022_105222
crossref_primary_10_1021_acsami_4c06156
crossref_primary_10_1002_macp_202300365
crossref_primary_10_13005_ojc_400310
Cites_doi 10.1016/j.biomaterials.2013.02.050
10.1016/j.actbio.2018.07.021
10.1002/adhm.201500224
10.1002/smll.201603404
10.1016/j.biomaterials.2013.05.005
10.1021/bm025536m
10.1016/j.biomaterials.2014.05.064
10.1038/nrcardio.2014.28
10.1016/j.actbio.2016.02.028
10.1093/rb/rbz039
10.1039/C7PY01411B
10.1039/C8TB01949E
10.1016/j.actbio.2020.09.013
10.1021/nn300842a
10.1038/natrevmats.2016.71
10.1016/j.biomaterials.2013.01.013
10.1021/ma8014504
10.1016/j.jconrel.2017.08.006
10.1039/b713009k
10.1021/acs.macromol.5b00168
10.1016/j.actbio.2020.09.018
10.1039/C1SM06693E
10.1016/j.jconrel.2015.12.015
10.1039/C5CC00049A
10.1021/ma100606a
10.1021/ma7026484
10.1002/mabi.201400426
10.1021/acsami.9b10346
10.1016/j.biomaterials.2020.120327
10.1021/acs.biomac.6b01604
10.1021/acsami.7b05740
10.1039/C5RA22307E
10.1038/s41467-017-00583-8
10.1021/acs.biomac.0c00623
10.1007/s13770-018-0148-4
10.1002/adhm.201400140
10.1007/s13233-013-1021-x
10.1021/ma060153s
10.1002/chem.201700947
10.1039/c3tb20105h
10.1002/pi.1702
10.1021/acs.macromol.9b00534
10.1002/smtd.201800313
10.1038/srep05473
10.1245/s10434-013-3284-z
10.1016/j.polymer.2009.10.036
10.1007/s10965-010-9466-5
10.1016/j.biomaterials.2018.08.044
10.1021/ma050489m
10.1016/j.biomaterials.2014.06.045
10.1016/j.jconrel.2009.03.008
10.1021/acsami.8b13548
10.1021/ar200162j
10.1016/j.actbio.2020.04.034
10.1166/jbn.2017.2464
10.1016/j.msec.2018.02.028
10.1021/ma9908999
10.1002/jps.2600810718
10.1016/j.jconrel.2015.04.023
10.1038/srep19077
10.1021/acsami.8b17125
10.1002/jps.23735
10.1016/j.biomaterials.2018.04.021
10.1007/s10118-019-2212-5
10.1039/C7TB01556A
10.1002/mabi.201600001
10.1016/j.actbio.2020.07.033
10.1016/j.jconrel.2011.07.008
10.1023/A:1011074915438
10.1021/acsami.5b12212
10.1002/mabi.201600299
10.1021/ma202809c
10.1016/j.biomaterials.2018.01.001
10.1002/jps.21780
10.1021/bm500342r
10.1016/S0168-3659(01)00276-0
10.1021/acsami.7b11998
10.1038/42218
10.1016/j.actbio.2017.03.042
10.1093/rb/rbz023
10.1021/acsami.5b09112
10.1039/b922956f
10.1016/j.biomaterials.2018.07.051
10.1021/acsami.7b15206
10.1002/anie.200503575
10.1007/s10118-014-1551-5
10.1039/C7PY00232G
10.1039/C6CS00052E
10.1021/bm101572j
10.1021/acs.macromol.0c02488
10.1021/acs.macromol.8b01014
10.1023/B:PHAM.0000026435.27086.94
10.1021/acs.biomac.7b01374
10.1016/j.biomaterials.2013.10.016
10.1016/j.biomaterials.2009.05.031
10.1002/pola.27254
10.1021/bm0600062
10.1039/b809116a
10.1021/acsbiomaterials.5b00516
10.1016/j.actbio.2020.10.025
10.1021/ma501110p
10.1021/bm400868j
10.1021/acsami.5b12324
10.1002/jbm.10164
10.1016/j.actbio.2019.07.024
10.1021/acsami.7b02488
10.1039/C4BM00029C
10.1093/rb/rbaa018
10.1021/bm049347a
10.1093/rb/rbz022
10.1016/j.jconrel.2017.04.011
10.1002/pola.21193
10.1021/bm0156431
10.1002/adfm.201403550
10.1016/j.biomaterials.2011.03.046
10.1093/rb/rbz027
10.1021/ma0305838
10.1016/j.actbio.2015.05.005
10.1016/j.jconrel.2014.09.014
10.1021/acs.biomac.9b01096
10.1002/adma.201301762
10.1093/rb/rbz028
10.1016/j.clinthera.2011.06.004
10.3390/ijms17071001
10.1002/adhm.201600723
10.1021/acsami.9b01872
10.1016/j.biomaterials.2012.03.040
10.1177/8755122517711958
10.1021/bm900145g
10.1093/rb/rbz050
10.1039/C4TB01705F
10.1016/j.actbio.2020.07.032
10.1039/C8BM01442F
10.1039/C6BM00408C
10.1002/adhm.201500558
10.1002/pola.22222
10.1039/c1sm05977g
10.1039/D0BM00278J
10.1007/s00198-007-0490-1
10.1016/j.actbio.2020.06.006
10.1016/j.biomaterials.2010.03.027
10.1016/j.polymdegradstab.2010.03.024
10.1007/s11095-006-9104-4
10.1021/bm501220a
10.1016/j.cej.2020.125320
10.1021/acsami.0c05024
10.1093/rb/rbz025
10.1021/acsami.8b19669
10.1023/B:PHAM.0000008050.99985.5c
10.1002/pola.21876
10.1016/j.actbio.2021.01.014
10.1016/S0140-6736(06)69705-5
10.1016/j.actbio.2020.04.003
10.1016/j.addr.2009.04.010
10.1016/j.polymer.2005.04.024
10.3389/fendo.2019.00155
10.1016/j.jconrel.2015.04.032
10.1016/j.actbio.2012.07.044
10.1039/C6TB02019D
10.1039/C6TB01690A
10.1021/ma000638v
10.1021/ma012093q
10.1016/j.biomaterials.2017.03.049
10.1016/j.biomaterials.2019.119338
10.1007/s10118-016-1740-5
10.1016/j.actbio.2013.12.007
10.1093/rb/rbz029
10.1039/c2jm15419f
10.1097/BSD.0000000000000221
10.1039/C9TB02523E
10.1021/bm2018596
10.1016/j.actbio.2020.03.039
10.1021/acsami.6b09415
10.1038/srep31593
10.1016/j.ijpharm.2007.07.026
10.1016/j.biomaterials.2009.11.115
10.1016/j.jconrel.2017.10.022
10.3109/1061186X.2014.931406
10.7150/thno.36514
10.1016/j.actbio.2019.01.001
10.1016/j.biomaterials.2017.01.016
10.1016/j.polymer.2007.06.003
10.1021/bm100549q
10.1021/acs.langmuir.8b03452
10.1016/j.biomaterials.2016.10.025
10.1002/smtd.202000310
10.1016/j.biomaterials.2018.03.023
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Ltd.
Copyright Elsevier BV Jul 1, 2021
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Ltd.
– notice: Copyright Elsevier BV Jul 1, 2021
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1016/j.actbio.2021.04.009
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-7568
EndPage 59
ExternalDocumentID 33857694
10_1016_j_actbio_2021_04_009
S1742706121002464
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXRA
ACDAQ
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSU
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
SEW
SSH
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c456t-1ed48c7fcfd3009510996b7ef10c6984a29ad6414f01b4c68fea4bfdaf3b5f203
IEDL.DBID .~1
ISSN 1742-7061
1878-7568
IngestDate Fri Jul 11 02:25:27 EDT 2025
Wed Aug 13 04:27:27 EDT 2025
Thu Apr 03 07:06:51 EDT 2025
Tue Jul 01 01:17:33 EDT 2025
Thu Apr 24 23:03:47 EDT 2025
Sat Aug 24 15:40:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Polyester
Poly(organophosphazene)
PEG
Polypeptide
Thermosensitive hydrogel
Language English
License Copyright © 2021. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-1ed48c7fcfd3009510996b7ef10c6984a29ad6414f01b4c68fea4bfdaf3b5f203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7660-3367
PMID 33857694
PQID 2553853795
PQPubID 2045286
PageCount 18
ParticipantIDs proquest_miscellaneous_2514592488
proquest_journals_2553853795
pubmed_primary_33857694
crossref_citationtrail_10_1016_j_actbio_2021_04_009
crossref_primary_10_1016_j_actbio_2021_04_009
elsevier_sciencedirect_doi_10_1016_j_actbio_2021_04_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Kidlington
PublicationTitle Acta biomaterialia
PublicationTitleAlternate Acta Biomater
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Xu, Xu, Bi, Hou, Yao, Du, He, Liu, Miao, Liang, Jiang, Zhou, Cao (bib0012) 2020; 108
Liu, Chen, Li, Guo, Xie, Yu, Xu, Ding, Li, Ding (bib0162) 2017; 9
Patel, Park, Lee, Jeong (bib0020) 2018; 15
Dumortier, Grossiord, Agnely, Chaumeil (bib0023) 2006; 23
Qi, Li, He, Zhang, Ding (bib0169) 2019; 11
Yu, Zhang, Zhang, Ding (bib0085) 2009; 10
Chen, Ci, Li, Yu, Ding (bib0077) 2014; 47
Choi, Joo, Sohn, Jeong (bib0096) 2008; 4
Kye, Kim, Park, Moon, Ryu, Jeong (bib0193) 2014; 15
Yu, Xu, Shen, Cao, Liu, Li, Ding (bib0117) 2014; 10
Zhang, Ni, Chen, Yu, Xu, Ding (bib0056) 2011; 32
Zhou, Zhuang, Li, Agren, Yu, Ding, Zhu (bib0105) 2017; 23
Chesnut, Azria, Silverman, Engelhardt, Olson, Mindeholm (bib0161) 2008; 19
Elstad, Fowers (bib0129) 2009; 61
Newsome (bib0154) 2017; 33
Jeong, Bae, Kim (bib0060) 1999; 32
Cui, Yu, Ding (bib0025) 2018
Sun, Liu, Lei, Tang, Dai, Yang, Yu, Yu, Sun, Ding (bib0157) 2017; 5
Yan, Xu, Xu, Sun, Jiang, Shi (bib0014) 2020; 7
Cao, Li, Zuo, Gao (bib0029) 2019; 6
Qu, Zhao, Liang, Zhang, Ma, Guo (bib0008) 2018; 183
Chang, Yu, Yang, Ding (bib0082) 2009; 50
Ci, Shen, Cui, Liu, Yu, Ding (bib0133) 2017; 17
Momoh, Ahmed, Kelley, Aliu, Kidwell, Kozlow, Chung (bib0159) 2014; 21
Lei, Ma, Yu, Ding (bib0104) 2016; 4
Cui, Yu, Ding (bib0092) 2018; 51
Ma, He, Cheng, Yang, Zang, Liu, Chen (bib0124) 2015; 7
Liu, Guo, Ruan, Hu, Jiang, Liang, Shen (bib0006) 2019; 96
Fu, Ni, Wang, Chu, Zheng, Luo, Luo, Qian (bib0178) 2012; 33
Peng, Chen, Chu, Li, Hsu, Hsu, Chang (bib0051) 2010; 31
Xu, Gu, Chen, Shi, Liu, Liu, Wang, Sun, Zhang, Liu, Shen, Lin, Yang, Sun (bib0007) 2019; 86
Patel, Lee, Park, Kim, Jeong (bib0019) 2018; 159
Petit, Muller, Bruin, Meyboom, Piest, Kroon-Batenburg, de Leede, Hennink, Vermonden (bib0088) 2012; 8
D'Amora, Ronca, Raucci, Dozio, Lin, Fan, Zhang, Ambrosio (bib0036) 2019; 6
Cho, Kwon (bib0140) 2014; 22
Lin, Zhang, Zhang, Qi, Zhang, Qian, Li, Qin, Li, Wang, Qiu, Shi, Zheng, Zhang, Gao, Ding (bib0168) 2021; 6
Cipriani, Arino Palao, Gonzalez de Torre, Vega Castrillo, Aguado Hernandez, Alonso Rodrigo, Alvarez Barcia, Sanchez, Garcia Diaz, Lopez Pena, Rodriguez-Cabello (bib0038) 2019; 6
Zhang, Xu, Ning, Li, Zhao, Jiang, Ding, Chen (bib0160) 2018; 181
Zhang, Zhang, Xu, Xiao, Ding, Chen (bib0145) 2018; 77
Shen, Chen, Luan, Wang, Yu, Ding (bib0106) 2017; 9
Lee, Bae, Sohn, Jeong (bib0061) 2006; 7
Patel, Moon, Jung, Jeong (bib0194) 2015; 4
Shinde, Joo, Moon, Jeong, solution, release (bib0093) 2012; 22
Ni, Ding, Fan, Liao, Qian, Luo, Li, Luo, Yang, Wei (bib0179) 2014; 35
Shen, Luan, Cao, Sun, Yu, Ding (bib0143) 2015; 16
Jiang, You, Deng, Hao (bib0055) 2007; 48
Liu, Zheng, Ye, He, Shen, Cui, Huang, Gu, Ding (bib0164) 2020; 263
Yu, Chang, Zhang, Ding (bib0131) 2008; 348
Chen, Luan, Shen, Lei, Yu, Ding (bib0128) 2016; 8
Kim, Yoo, Cha, Kim (bib0044) 2014; 194
Yu, Li, Liu, Chen, Bao, Ci, Chen, Ding (bib0151) 2013; 102
Knudsen, Lau (bib0152) 2019; 10
Alsaykhan, Paxton (bib0022) 2020; 7
Feng, Zhao, Li, Xu, Zhou, Zhang, Deng, Dong (bib0089) 2016; 4
Chung, Simmons, Gutowska, Jeong (bib0065) 2002; 3
Cho, Gao, Kwon (bib0048) 2016; 240
Wang, Yang, Liu, Yu, Ding (bib0033) 2018; 6
Li, Liu, Chen (bib0112) 2020; 110
Choi, Kim (bib0122) 2003; 20
Wang, Chang, Li, Wu, Xing, Deng, Dong (bib0090) 2012; 8
Yao, Peng, Ding (bib0167) 2013; 25
Yu, Chang, Zhang, Ding (bib0080) 2007; 45
Choi, Jang, Park, Choi, Chi, Jeong (bib0095) 2010; 20
Ma, He, Cheng, Li, Gong, Liu, Tian, Chen (bib0141) 2014; 35
Zhang, Shen, Luan, Yang, Wei, Yu, Lu, Ding (bib0155) 2015; 23
Yu, Wei, Liu, Qi, Wang, Chen, He, He, Chen, Gu (bib0125) 2019; 7
Yu, Zhang, Zhang, Ding (bib0086) 2010; 11
Petit, Sandker, Muller, Meyboom, van Midwoud, Bruin, Redout, Versluijs-Helder, van der Lest, Buwalda, de Leede, Vermonden, Kok, Weinans, Hennink (bib0003) 2014; 35
Yao, Ding (bib0165) 2020; 12
Nguyen, Lee, Lym, Kim, Jae, Lee (bib0026) 2016; 4
Lee, Lee, Sohn, Song (bib0073) 2002; 35
Ci, Chen, Yu, Ding (bib0132) 2014; 4
Lee, Song (bib0097) 2005; 54
Chen, Wang, Yang, Wang, Yu, Sun, Ding (bib0135) 2019; 9
Park, Park, Ji, Ju, Min, Kim (bib0011) 2020; 117
Kang, Yeon, Moon, Jeong (bib0069) 2012; 45
Kim, Park, Song (bib0137) 2013; 34
Jeong, Bae, Lee, Kim (bib0058) 1997; 388
Kang, Lee, Lee, Son, Kim, Lee, Chun, Min, Kim, Kim (bib0103) 2010; 31
Liu, Zhang, Li, Feng, Huang, Wang, Liu (bib0046) 2020; 114
Chen, Zhang, Wu, Wu, Tang, Cui, Cao, Liu, Peng, Yu, Ding (bib0098) 2020; 4
Liu, Yao, Liu, Ding (bib0166) 2019; 35
Gu, Li, Song, Yang, Li, Chen, Liu, Gong, Chen, Sun (bib0177) 2020; 7
Liow, Dou, Kai, Li, Sugiarto, Yu, Kwok, Chen, Wu, Ong, Kizhakeyil, Verma, Tang, Loh (bib0042) 2017; 13
Li, Chen, Xu, Abdou, Jiang, Shi, Gu (bib0015) 2019; 6
Hong, Song (bib0196) 2019; 218
Huang, Zou, Arno, Chen, Wang, Gao, Dove, Du (bib0002) 2017; 46
Patel, Lee, Son, Kim, Kim, Jeong (bib0191) 2020; 21
Shi, Wang, Qu, Liao, Chu, Zhang, Luo, Qian (bib0102) 2016; 6
Kwon, Yoon, Kwon, Kim, Tai, Jin, Song, Lee, Kim, Han, Min, Kim (bib0183) 2013; 1
Jung, Park, Moon, Ko, Jeong (bib0072) 2014; 52
Chen, Li, Feng, Yu, Ding (bib0163) 2017; 13
Lei, Chen, Wang, Peng, Yu, Ding (bib0100) 2017; 55
Luan, Shen, Chen, Lei, Yu, Ding (bib0142) 2015; 5
Lee, Song (bib0094) 2004; 37
Park, Moon, Park, Shinde, Ko, Jeong (bib0189) 2015; 15
Ozawa, Saita, Sakaue, Okada, Sato, Kawamata, Sakurai, Hamada, Kimoto, Nagasaki (bib0017) 2020; 110
Park, Yu, Moon, Ko, Kim, Lee, Ryu, Jeong (bib0188) 2014; 3
Zhuang, Yang, Li, Chen, Peng, Yu, Ding (bib0126) 2019; 11
Jeong, Lee, Gutowska, An (bib0063) 2002; 3
Peng, Liu, He, Ye, Yao, Ding (bib0170) 2018; 178
Bae, Joo, Jeong, Kim, Lee, Sohn, Jeong (bib0062) 2006; 39
Jang, Park, Park, Lee, Yun, Lee, Kim, Min, Kim (bib0184) 2016; 16
Buwalda, Vermonden, Hennink (bib0004) 2017; 18
Zhang, Yu, Ding (bib0091) 2008; 41
Vong, Bui, Tomita, Sakamoto, Hiramatsu, Nagasaki (bib0041) 2018; 167
Hwang, Suh, Bae, Kim, Jeong (bib0059) 2005; 6
Loh, Chee, Owh (bib0047) 2019; 3
Wang, Chen, Wu, Wu, Wei, He, Lu, Wang (bib0034) 2018; 30
Kim, Park, Song (bib0136) 2012; 6
Lee, Han, Park, Han, Kim (bib0066) 2006; 44
Jeong, Joo, Bahk, Choi, Kim, Kim, Lee, Sohn, Jeong (bib0067) 2009; 137
Moon, Patel, Chung, Jeong (bib0192) 2016; 5
Park, Joo, Choi, Jeong (bib0040) 2012; 45
Chang, Ci, Yu, Ding (bib0130) 2011; 156
Li, Yu, Liu, Chen, Chen, Ding (bib0123) 2013; 34
Kim, Lee, Kang, Kwon, Kim, Kang, Kim, Kim (bib0083) 2011; 7
Frangogiannis (bib0158) 2014; 11
Drucker, Nauck (bib0147) 2006; 368
Weizel, Distler, Schneidereit, Friedrich, Brauer, Paulsen, Detsch, Boccaccini, Budday, Seitz (bib0037) 2020; 118
Akash, Rehman (bib0045) 2015; 209
Chun, Lee, Kim, Hong, Kim, Yang, Song (bib0144) 2009; 30
Wu, Wu, Ye, Yu, He, Chen (bib0071) 2017; 255
Li, Ding, Zhang, Yang, Yu, Wang, Chang, Chen (bib0099) 2016; 8
Seo, Park, Song (bib0150) 2019; 11
Zhang, Zhang, Chang, Xu, Ding (bib0182) 2018; 88
Luan, Zhang, Shen, Chen, Yang, Chen, Yu, Sun, Ding (bib0120) 2018; 10
Wang, Booij-Vrieling, Bronkhorst, Shao, Kouwer, Jansen, Walboomers, Yang (bib0005) 2020; 116
Liu, Liu, Qi, Fang, Zhang, Zhuo, Jiang (bib0021) 2016; 35
Zhao, Zhu, Wu, Yang, Xu, Liang (bib0010) 2020; 7
Yang, Gong, Zhao, Zhou, Li, Qi, Zhong, Luo, Qian (bib0113) 2012; 7
Cui, Yu, Ding (bib0087) 2020; 53
Shin, Kwon (bib0139) 2017; 268
Lu, Guan, Cui, Sun, Zhao, Wang, Wang (bib0018) 2019; 6
Zhuang, Yang, Yu, Ding (bib0148) 2019; 32
Yu, Zhang, Ding (bib0081) 2006; 45
Zhang, Song (bib0127) 2017; 132
Kim, Potta, Park, Song (bib0028) 2017; 112
Kim, Lee, Lee, Lee, Park (bib0035) 2021; 123
Cao, Cao, Lu, Wang, Yu, Ding (bib0032) 2015; 3
Shim, Lee, Shim, Park, Lee, Chang, Kim, Lee (bib0050) 2002; 61
Fassberg, Stella (bib0134) 1992; 81
Zhang, Ding, Xu, Wu, Chang, Zhuang, Chen, Wang (bib0185) 2014; 32
Cao, Li, Zhang, Wu, Yao, Xu, Yu, Ding (bib0118) 2016; 2
Luan, Cui, Wang, Shen, Yu, Ding (bib0084) 2017; 8
Yu, Ding (bib0039) 2008; 37
Chen, Li, Shen, Li, Yu, Chen, Ding (bib0076) 2016; 6
Al Habash, Aljasim, Owaidhah, Edward (bib0156) 2015; 9
Lv, Yu, Quan, He, Chen (bib0138) 2020; 3
Yun, Yon, Joo, Jeong (bib0175) 2012; 13
Censi, Fieten, di Martino, Hennink, Vermonden (bib0030) 2010; 43
Yu, Zhang, He, Sun, Cao, Cui, Deng, Gu, Chen (bib0070) 2017; 18
Seong, Jun, Jeong, Sohn (bib0074) 2005; 46
Li, Feng, Song, Zhang, Dong, Kong, Wang, Huang (bib0109) 2020; 8
Patel, Moon, Ko du, Jeong (bib0195) 2016; 8
Chen, Li, Cao, Li, Meng, Dong, Yu, Ding (bib0115) 2015; 34
Ma, Lei, Ding, Yu, Ding (bib0108) 2017; 8
Kim, Choi, Koh, Lee, Ko, Kim (bib0146) 2001; 18
Zentner, Rathi, Shih, McRea, Seo, Oh, Rhee, Mestecky, Moldoveanu, Morgan, Weitman (bib0049) 2001; 72
Jeon, Joo, Cha (bib0013) 2020; 114
Wu, Wang, Qiu, Liow, Li, Loh (bib0043) 2016; 5
Gong, Shi, Dong, Yang, Qi, Guo, Gu, Zhao, Wei, Qian (bib0053) 2009; 98
Choi, Baudys, Kim (bib0149) 2004; 21
Hong, Lee, Jeong (bib0190) 2017; 9
Jeong, Kibbey, Birnbaum, Won, Gutowska (bib0064) 2000; 33
Chen, Shi, Zhang, Miao, Zhao, Jin, Liu, Yu, Shen, Ding (bib0101) 2020; 8
Qiu, Chen, Shen, Shen, Zhao, He (bib0174) 2016; 17
Yu, Sheng, Yang, Ding (bib0054) 2012; 21
Kim, Woo, Patel, Jeong (bib0187) 2020; 21
Gao, Ding, Yu, Chen, Zhang, Cui, Shi, Chen, Yu, Chen, Ding (bib0016) 2020
Wang, Jiang, Xu, Yang, Zhuang, Ding, Chen (bib0110) 2019; 11
Ryan, Foster, Jobe (bib0153) 2011; 33
Yeon, Park, Moon, Kim, Cheon, Jeong (bib0186) 2013; 14
Cai, Wang, Xu, Yao, Liu, Li, Sun, Liang, Fan, Zhang (bib0176) 2020; 7
Xu, Tang, Yuan, Cai, Chen, Cui, Liu, Yu, Cai, Ding (bib0173) 2019; 37
Park, Cho, Song (bib0111) 2010; 95
Chen, Ci, Yu, Ding (bib0078) 2015; 48
Bae, Suh, Sohn, Bae, Kim, Jeong (bib0052) 2005; 38
Qi, Qi, He, Lin, Li, Qin, Hu, Chen, Liu, Sun, Liu, Zhang, Cui, Hu, Yu, Zhang, Ding (bib0171) 2018; 10
Gong, Wu, Wang, Zhang, Luo, Zhao, Wei, Qian (bib0172) 2013; 34
Yu, Zhang, Ding (bib0079) 2011; 12
Jiang, Deng, Hao (bib0057) 2007; 45
Li, Mooney (bib0001) 2016; 1
Cho, Lee, Kim, Song (bib0075) 2010; 18
Hong, Kim, Park, Hwang, Cui, Lee, Yahn, Lee, Song, Kim (bib0119) 2017; 8
Li, Chen, Lin, Cao, Cheng, Dong, Yu, Ding (bib0116) 2017; 30
Lei, Shen, Cao, Yu, Ding (bib0107) 2015; 51
Thambi, Li, Lee (bib0027) 2017; 267
Rodell, MacArthur, Dorsey, Wade, Wang, Woo, Burdick (bib0031) 2015; 25
Seo, Koh, Song (bib0180) 2017; 122
Oh, Joo, Sohn, Jeong (bib0068) 2008; 41
Yu, Hu, Chen, Bao, Li, Chen, Xu, Ye, Ding (bib0114) 2014;
Yang (10.1016/j.actbio.2021.04.009_bib0121) 2020; 396
Park (10.1016/j.actbio.2021.04.009_bib0011) 2020; 117
Oh (10.1016/j.actbio.2021.04.009_bib0068) 2008; 41
Zhang (10.1016/j.actbio.2021.04.009_bib0160) 2018; 181
Liu (10.1016/j.actbio.2021.04.009_bib0046) 2020; 114
Zhuang (10.1016/j.actbio.2021.04.009_bib0126) 2019; 11
Drucker (10.1016/j.actbio.2021.04.009_bib0147) 2006; 368
Sun (10.1016/j.actbio.2021.04.009_bib0157) 2017; 5
Seo (10.1016/j.actbio.2021.04.009_bib0180) 2017; 122
Wang (10.1016/j.actbio.2021.04.009_bib0005) 2020; 116
Lee (10.1016/j.actbio.2021.04.009_bib0066) 2006; 44
Vong (10.1016/j.actbio.2021.04.009_bib0041) 2018; 167
Li (10.1016/j.actbio.2021.04.009_bib0001) 2016; 1
Wang (10.1016/j.actbio.2021.04.009_bib0034) 2018; 30
Yu (10.1016/j.actbio.2021.04.009_bib0081) 2006; 45
Shen (10.1016/j.actbio.2021.04.009_bib0143) 2015; 16
Lu (10.1016/j.actbio.2021.04.009_bib0018) 2019; 6
Momoh (10.1016/j.actbio.2021.04.009_bib0159) 2014; 21
Rodell (10.1016/j.actbio.2021.04.009_bib0031) 2015; 25
Cho (10.1016/j.actbio.2021.04.009_bib0075) 2010; 18
Park (10.1016/j.actbio.2021.04.009_bib0040) 2012; 45
Ma (10.1016/j.actbio.2021.04.009_bib0108) 2017; 8
Liow (10.1016/j.actbio.2021.04.009_bib0042) 2017; 13
Ci (10.1016/j.actbio.2021.04.009_bib0133) 2017; 17
Wu (10.1016/j.actbio.2021.04.009_bib0071) 2017; 255
Patel (10.1016/j.actbio.2021.04.009_bib0020) 2018; 15
Thambi (10.1016/j.actbio.2021.04.009_bib0027) 2017; 267
Chen (10.1016/j.actbio.2021.04.009_bib0163) 2017; 13
Zhang (10.1016/j.actbio.2021.04.009_bib0185) 2014; 32
Chun (10.1016/j.actbio.2021.04.009_bib0144) 2009; 30
Jeong (10.1016/j.actbio.2021.04.009_bib0067) 2009; 137
Seo (10.1016/j.actbio.2021.04.009_bib0150) 2019; 11
Akash (10.1016/j.actbio.2021.04.009_bib0045) 2015; 209
Hong (10.1016/j.actbio.2021.04.009_bib0196) 2019; 218
Yu (10.1016/j.actbio.2021.04.009_bib0080) 2007; 45
Yao (10.1016/j.actbio.2021.04.009_bib0167) 2013; 25
Cui (10.1016/j.actbio.2021.04.009_bib0087) 2020; 53
Liu (10.1016/j.actbio.2021.04.009_bib0021) 2016; 35
Xu (10.1016/j.actbio.2021.04.009_bib0012) 2020; 108
Patel (10.1016/j.actbio.2021.04.009_bib0194) 2015; 4
Kye (10.1016/j.actbio.2021.04.009_bib0193) 2014; 15
Lee (10.1016/j.actbio.2021.04.009_bib0097) 2005; 54
Johnson (10.1016/j.actbio.2021.04.009_bib0009) 2020; 112
Nguyen (10.1016/j.actbio.2021.04.009_bib0026) 2016; 4
Hong (10.1016/j.actbio.2021.04.009_bib0190) 2017; 9
Chen (10.1016/j.actbio.2021.04.009_bib0115) 2015; 34
Li (10.1016/j.actbio.2021.04.009_bib0116) 2017; 30
Frangogiannis (10.1016/j.actbio.2021.04.009_bib0158) 2014; 11
Chen (10.1016/j.actbio.2021.04.009_bib0098) 2020; 4
Yu (10.1016/j.actbio.2021.04.009_bib0054) 2012; 21
Liu (10.1016/j.actbio.2021.04.009_bib0166) 2019; 35
Yao (10.1016/j.actbio.2021.04.009_bib0165) 2020; 12
Yu (10.1016/j.actbio.2021.04.009_bib0085) 2009; 10
Yu (10.1016/j.actbio.2021.04.009_bib0114) 2014; 2
Li (10.1016/j.actbio.2021.04.009_bib0099) 2016; 8
Wang (10.1016/j.actbio.2021.04.009_bib0110) 2019; 11
Jang (10.1016/j.actbio.2021.04.009_bib0184) 2016; 16
Choi (10.1016/j.actbio.2021.04.009_bib0096) 2008; 4
Zhang (10.1016/j.actbio.2021.04.009_bib0155) 2015; 23
Buwalda (10.1016/j.actbio.2021.04.009_bib0004) 2017; 18
Huang (10.1016/j.actbio.2021.04.009_bib0002) 2017; 46
Kim (10.1016/j.actbio.2021.04.009_bib0187) 2020; 21
Kang (10.1016/j.actbio.2021.04.009_bib0069) 2012; 45
Cao (10.1016/j.actbio.2021.04.009_bib0029) 2019; 6
Jiang (10.1016/j.actbio.2021.04.009_bib0057) 2007; 45
Park (10.1016/j.actbio.2021.04.009_bib0111) 2010; 95
Patel (10.1016/j.actbio.2021.04.009_bib0019) 2018; 159
Wang (10.1016/j.actbio.2021.04.009_bib0033) 2018; 6
Jeong (10.1016/j.actbio.2021.04.009_bib0058) 1997; 388
Ma (10.1016/j.actbio.2021.04.009_bib0141) 2014; 35
Chen (10.1016/j.actbio.2021.04.009_bib0135) 2019; 9
Fu (10.1016/j.actbio.2021.04.009_bib0178) 2012; 33
D'Amora (10.1016/j.actbio.2021.04.009_bib0036) 2019; 6
Cipriani (10.1016/j.actbio.2021.04.009_bib0038) 2019; 6
Chang (10.1016/j.actbio.2021.04.009_bib0130) 2011; 156
Lee (10.1016/j.actbio.2021.04.009_bib0073) 2002; 35
Shi (10.1016/j.actbio.2021.04.009_bib0102) 2016; 6
Yang (10.1016/j.actbio.2021.04.009_bib0113) 2012; 7
Loh (10.1016/j.actbio.2021.04.009_bib0047) 2019; 3
Petit (10.1016/j.actbio.2021.04.009_bib0088) 2012; 8
Jeong (10.1016/j.actbio.2021.04.009_bib0063) 2002; 3
Hwang (10.1016/j.actbio.2021.04.009_bib0059) 2005; 6
Liu (10.1016/j.actbio.2021.04.009_bib0164) 2020; 263
Qu (10.1016/j.actbio.2021.04.009_bib0008) 2018; 183
Jeong (10.1016/j.actbio.2021.04.009_bib0064) 2000; 33
Kim (10.1016/j.actbio.2021.04.009_bib0028) 2017; 112
Zhang (10.1016/j.actbio.2021.04.009_bib0145) 2018; 77
Li (10.1016/j.actbio.2021.04.009_bib0109) 2020; 8
Kim (10.1016/j.actbio.2021.04.009_bib0044) 2014; 194
Chen (10.1016/j.actbio.2021.04.009_bib0101) 2020; 8
Yeon (10.1016/j.actbio.2021.04.009_bib0186) 2013; 14
Shinde (10.1016/j.actbio.2021.04.009_bib0093) 2012; 22
Cao (10.1016/j.actbio.2021.04.009_bib0032) 2015; 3
Chen (10.1016/j.actbio.2021.04.009_bib0076) 2016; 6
Chung (10.1016/j.actbio.2021.04.009_bib0065) 2002; 3
Knudsen (10.1016/j.actbio.2021.04.009_bib0152) 2019; 10
Kwon (10.1016/j.actbio.2021.04.009_bib0183) 2013; 1
Lee (10.1016/j.actbio.2021.04.009_bib0061) 2006; 7
Luan (10.1016/j.actbio.2021.04.009_bib0084) 2017; 8
Chen (10.1016/j.actbio.2021.04.009_bib0078) 2015; 48
Yu (10.1016/j.actbio.2021.04.009_bib0125) 2019; 7
Newsome (10.1016/j.actbio.2021.04.009_bib0154) 2017; 33
Jung (10.1016/j.actbio.2021.04.009_bib0072) 2014; 52
Cui (10.1016/j.actbio.2021.04.009_bib0025) 2018
Cho (10.1016/j.actbio.2021.04.009_bib0048) 2016; 240
Censi (10.1016/j.actbio.2021.04.009_bib0030) 2010; 43
Al Habash (10.1016/j.actbio.2021.04.009_bib0156) 2015; 9
Qiu (10.1016/j.actbio.2021.04.009_bib0174) 2016; 17
Zhang (10.1016/j.actbio.2021.04.009_bib0182) 2018; 88
Elstad (10.1016/j.actbio.2021.04.009_bib0129) 2009; 61
Wang (10.1016/j.actbio.2021.04.009_bib0090) 2012; 8
Xu (10.1016/j.actbio.2021.04.009_bib0007) 2019; 86
Seong (10.1016/j.actbio.2021.04.009_bib0074) 2005; 46
Lin (10.1016/j.actbio.2021.04.009_bib0168) 2021; 6
Chen (10.1016/j.actbio.2021.04.009_bib0077) 2014; 47
Peng (10.1016/j.actbio.2021.04.009_bib0170) 2018; 178
Cui (10.1016/j.actbio.2021.04.009_bib0092) 2018; 51
Choi (10.1016/j.actbio.2021.04.009_bib0122) 2003; 20
Park (10.1016/j.actbio.2021.04.009_bib0188) 2014; 3
Chen (10.1016/j.actbio.2021.04.009_bib0128) 2016; 8
Kim (10.1016/j.actbio.2021.04.009_bib0035) 2021; 123
Patel (10.1016/j.actbio.2021.04.009_bib0191) 2020; 21
Qi (10.1016/j.actbio.2021.04.009_bib0169) 2019; 11
Ryan (10.1016/j.actbio.2021.04.009_bib0153) 2011; 33
Park (10.1016/j.actbio.2021.04.009_bib0189) 2015; 15
Zhang (10.1016/j.actbio.2021.04.009_bib0056) 2011; 32
Chesnut (10.1016/j.actbio.2021.04.009_bib0161) 2008; 19
Lei (10.1016/j.actbio.2021.04.009_bib0107) 2015; 51
Lei (10.1016/j.actbio.2021.04.009_bib0104) 2016; 4
Moon (10.1016/j.actbio.2021.04.009_bib0192) 2016; 5
Zhao (10.1016/j.actbio.2021.04.009_bib0010) 2020; 7
Seo (10.1016/j.actbio.2021.04.009_bib0181) 2015; 209
Li (10.1016/j.actbio.2021.04.009_bib0123) 2013; 34
Yu (10.1016/j.actbio.2021.04.009_bib0039) 2008; 37
Patel (10.1016/j.actbio.2021.04.009_bib0195) 2016; 8
Ozawa (10.1016/j.actbio.2021.04.009_bib0017) 2020; 110
Chang (10.1016/j.actbio.2021.04.009_bib0082) 2009; 50
Choi (10.1016/j.actbio.2021.04.009_bib0149) 2004; 21
Yu (10.1016/j.actbio.2021.04.009_bib0131) 2008; 348
Jiang (10.1016/j.actbio.2021.04.009_bib0055) 2007; 48
Zentner (10.1016/j.actbio.2021.04.009_bib0049) 2001; 72
Yun (10.1016/j.actbio.2021.04.009_bib0175) 2012; 13
Yu (10.1016/j.actbio.2021.04.009_bib0070) 2017; 18
Kim (10.1016/j.actbio.2021.04.009_bib0083) 2011; 7
Wu (10.1016/j.actbio.2021.04.009_bib0043) 2016; 5
Weizel (10.1016/j.actbio.2021.04.009_bib0037) 2020; 118
Yu (10.1016/j.actbio.2021.04.009_bib0086) 2010; 11
Luan (10.1016/j.actbio.2021.04.009_bib0120) 2018; 10
Ma (10.1016/j.actbio.2021.04.009_bib0124) 2015; 7
Peng (10.1016/j.actbio.2021.04.009_bib0051) 2010; 31
Kim (10.1016/j.actbio.2021.04.009_bib0146) 2001; 18
Fassberg (10.1016/j.actbio.2021.04.009_bib0134) 1992; 81
Cho (10.1016/j.actbio.2021.04.009_bib0140) 2014; 22
Bae (10.1016/j.actbio.2021.04.009_bib0052) 2005; 38
Hong (10.1016/j.actbio.2021.04.009_bib0119) 2017; 8
Liu (10.1016/j.actbio.2021.04.009_bib0162) 2017; 9
Li (10.1016/j.actbio.2021.04.009_bib0015) 2019; 6
Jeon (10.1016/j.actbio.2021.04.009_bib0013) 2020; 114
Zhou (10.1016/j.actbio.2021.04.009_bib0105) 2017; 23
Qi (10.1016/j.actbio.2021.04.009_bib0171) 2018; 10
Gong (10.1016/j.actbio.2021.04.009_bib0172) 2013; 34
Zhang (10.1016/j.actbio.2021.04.009_bib0091) 2008; 41
Luan (10.1016/j.actbio.2021.04.009_bib0142) 2015; 5
Cao (10.1016/j.actbio.2021.04.009_bib0118) 2016; 2
Gong (10.1016/j.actbio.2021.04.009_bib0053) 2009; 98
Petit (10.1016/j.actbio.2021.04.009_bib0003) 2014; 35
Lee (10.1016/j.actbio.2021.04.009_bib0094) 2004; 37
Bae (10.1016/j.actbio.2021.04.009_bib0062) 2006; 39
Kang (10.1016/j.actbio.2021.04.009_bib0103) 2010; 31
Shen (10.1016/j.actbio.2021.04.009_bib0106) 2017; 9
Kim (10.1016/j.actbio.2021.04.009_bib0137) 2013; 34
Cui (10.1016/j.actbio.2021.04.009_bib0024) 2019; 52
Feng (10.1016/j.actbio.2021.04.009_bib0089) 2016; 4
Ni (10.1016/j.actbio.2021.04.009_bib0179) 2014; 35
Choi (10.1016/j.actbio.2021.04.009_bib0095) 2010; 20
Gao (10.1016/j.actbio.2021.04.009_bib0016) 2020
Cai (10.1016/j.actbio.2021.04.009_bib0176) 2020; 7
Zhang (10.1016/j.actbio.2021.04.009_bib0127) 2017; 132
Zhuang (10.1016/j.actbio.2021.04.009_bib0148) 2019; 32
Kim (10.1016/j.actbio.2021.04.009_bib0136) 2012; 6
Jeong (10.1016/j.actbio.2021.04.009_bib0060) 1999; 32
Liu (10.1016/j.actbio.2021.04.009_bib0006) 2019; 96
Gu (10.1016/j.actbio.2021.04.009_bib0177) 2020; 7
Alsaykhan (10.1016/j.actbio.2021.04.009_bib0022) 2020; 7
Yan (10.1016/j.actbio.2021.04.009_bib0014) 2020; 7
Dumortier (10.1016/j.actbio.2021.04.009_bib0023) 2006; 23
Yu (10.1016/j.actbio.2021.04.009_bib0117) 2014; 10
Yu (10.1016/j.actbio.2021.04.009_bib0079) 2011; 12
Lei (10.1016/j.actbio.2021.04.009_bib0100) 2017; 55
Shin (10.1016/j.actbio.2021.04.009_bib0139) 2017; 268
Shim (10.1016/j.actbio.2021.04.009_bib0050) 2002; 61
Xu (10.1016/j.actbio.2021.04.009_bib0173) 2019; 37
Ci (10.1016/j.actbio.2021.04.009_bib0132) 2014; 4
Yu (10.1016/j
References_xml – volume: 21
  start-page: 827
  year: 2004
  end-page: 831
  ident: bib0149
  article-title: Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats
  publication-title: Pharm. Res.
– volume: 37
  start-page: 1473
  year: 2008
  end-page: 1481
  ident: bib0039
  article-title: Injectable hydrogels as unique biomedical materials
  publication-title: Chem. Soc. Rev.
– volume: 18
  start-page: 701
  year: 2010
  end-page: 713
  ident: bib0075
  article-title: Synthesis and characterization of biodegradable thermosensitive neutral and acidic poly(organophosphazene) gels bearing carboxylic acid group
  publication-title: J. Polym. Res.
– volume: 33
  start-page: 195
  year: 2017
  end-page: 203
  ident: bib0154
  article-title: Lixisenatide: a new option for managing type 2 diabetes
  publication-title: J. Pharm. Technol.
– volume: 35
  start-page: 228
  year: 2016
  end-page: 237
  ident: bib0021
  article-title: Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture
  publication-title: Acta Biomater
– volume: 15
  start-page: 464
  year: 2015
  end-page: 472
  ident: bib0189
  article-title: PEG-poly(l-alanine) thermogel as a 3D scaffold of bone-marrow-derived mesenchymal stem cells
  publication-title: Macromol. Biosci.
– volume: 1
  start-page: 3314
  year: 2013
  end-page: 3321
  ident: bib0183
  article-title: Injectable in situ-forming hydrogel for cartilage tissue engineering
  publication-title: J. Mater. Chem. B
– volume: 218
  year: 2019
  ident: bib0196
  article-title: 3D hydrogel stem cell niche controlled by host-guest interaction affects stem cell fate and survival rate
  publication-title: Biomaterials
– volume: 112
  start-page: 248
  year: 2017
  end-page: 256
  ident: bib0028
  article-title: Temperature responsive chemical crosslinkable UV pretreated hydrogel for application to injectable tissue regeneration system via differentiations of encapsulated hMSCs
  publication-title: Biomaterials
– volume: 54
  start-page: 1225
  year: 2005
  end-page: 1232
  ident: bib0097
  article-title: Hydrolysis-improved thermosensitive polyorganophosphazenes with α-amino-ω-methoxy-poly(ethylene glycol) and amino acid esters as side groups
  publication-title: Polym. Int.
– volume: 8
  start-page: 6665
  year: 2017
  end-page: 6674
  ident: bib0108
  article-title: Design, synthesis and ring-opening polymerization of a new iodinated carbonate monomer: a universal route towards ultrahigh radiopaque aliphatic polycarbonates
  publication-title: Polym. Chem.
– volume: 95
  start-page: 935
  year: 2010
  end-page: 944
  ident: bib0111
  article-title: In vitro and in vivo degradation behaviors of thermosensitive poly(organophosphazene) hydrogels
  publication-title: Polym. Degrad. Stab.
– volume: 10
  start-page: 1251
  year: 2014
  end-page: 1258
  ident: bib0117
  article-title: Poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) thermogel as a novel submucosal cushion for endoscopic submucosal dissection
  publication-title: Acta Biomater.
– volume: 21
  start-page: 3176
  year: 2020
  end-page: 3185
  ident: bib0187
  article-title: Thermogelling inclusion complex system for fine-tuned osteochondral differentiation of mesenchymal stem cells
  publication-title: Biomacromolecules
– volume: 37
  start-page: 548
  year: 2019
  end-page: 559
  ident: bib0173
  article-title: Accelerated cutaneous wound healing using an injectable teicoplanin-loaded PLGA-PEG-PLGA thermogel dressing
  publication-title: Chin. J. Polym. Sci.
– volume: 6
  start-page: 885
  year: 2005
  end-page: 890
  ident: bib0059
  article-title: Caprolactonic poloxamer analog: PEG-PCL-PEG
  publication-title: Biomacromolecules
– volume: 181
  start-page: 378
  year: 2018
  end-page: 391
  ident: bib0160
  article-title: Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia
  publication-title: Biomaterials
– volume: 118
  start-page: 113
  year: 2020
  end-page: 128
  ident: bib0037
  article-title: Complex mechanical behavior of human articular cartilage and hydrogels for cartilage repair
  publication-title: Acta Biomater.
– volume: 8
  start-page: 533
  year: 2017
  ident: bib0119
  article-title: An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling
  publication-title: Nat. Commun.
– volume: 6
  start-page: 19077
  year: 2016
  ident: bib0102
  article-title: Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo
  publication-title: Sci. Rep.
– volume: 35
  start-page: 236
  year: 2014
  end-page: 248
  ident: bib0179
  article-title: Injectable thermosensitive PEG-PCL-PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects
  publication-title: Biomaterials
– volume: 48
  start-page: 4786
  year: 2007
  end-page: 4792
  ident: bib0055
  article-title: Injectable hydrogels of poly(ɛ-caprolactone-co-glycolide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-glycolide) triblock copolymer aqueous solutions
  publication-title: Polymer
– volume: 46
  start-page: 5075
  year: 2005
  end-page: 5081
  ident: bib0074
  article-title: New thermogelling poly(organophosphazenes) with methoxypoly(ethylene glycol) and oligopeptide as side groups
  publication-title: Polymer
– volume: 112
  start-page: 101
  year: 2020
  end-page: 111
  ident: bib0009
  article-title: Drug-impregnated, pressurized gas expanded liquid-processed alginate hydrogel scaffolds for accelerated burn wound healing
  publication-title: Acta Biomater.
– volume: 11
  start-page: 255
  year: 2014
  end-page: 265
  ident: bib0158
  article-title: The inflammatory response in myocardial injury, repair, and remodelling
  publication-title: Nat. Rev. Cardiol.
– volume: 35
  start-page: 3876
  year: 2002
  end-page: 3879
  ident: bib0073
  article-title: A thermosensitive poly(organophosphazene) gel
  publication-title: Macromolecules
– volume: 32
  start-page: 1590
  year: 2014
  end-page: 1601
  ident: bib0185
  article-title: Biodegradable thermogel as culture matrix of bone marrow mesenchymal stem cells for potential cartilage tissue engineering
  publication-title: Chin. J. Polym. Sci.
– volume: 9
  start-page: 11568
  year: 2017
  end-page: 11576
  ident: bib0190
  article-title: Injectable polypeptide thermogel as a tissue engineering system for hepatogenic differentiation of tonsil-derived mesenchymal stem Cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 116
  start-page: 259
  year: 2020
  end-page: 267
  ident: bib0005
  article-title: Antimicrobial and anti-inflammatory thermo-reversible hydrogel for periodontal delivery
  publication-title: Acta Biomater.
– volume: 267
  start-page: 57
  year: 2017
  end-page: 66
  ident: bib0027
  article-title: Injectable hydrogels for sustained release of therapeutic agents
  publication-title: J. Control. Release
– start-page: 997
  year: 2018
  end-page: 1015
  ident: bib0025
  article-title: Injectable thermogels based on block copolymers of appropriate amphiphilicity
  publication-title: Acta Polym. Sin.
– volume: 10
  start-page: 182
  year: 2018
  end-page: 192
  ident: bib0171
  article-title: Strategy of metal-polymer composite stent to accelerate biodegradation of iron-based biomaterials
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  start-page: 888
  year: 2006
  end-page: 899
  ident: bib0066
  article-title: Sol-gel transition behavior of biodegradable three-arm and four-arm star-shaped PLGA-PEG block copolymer aqueous solution
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 41
  start-page: 6493
  year: 2008
  end-page: 6499
  ident: bib0091
  article-title: Roles of hydrophilic homopolymers on the hydrophobic-association-induced physical gelling of amphiphilic block copolymers in water
  publication-title: Macromolecules
– volume: 55
  start-page: 396
  year: 2017
  end-page: 409
  ident: bib0100
  article-title: Non-invasive monitoring of in vivo degradation of a radiopaque thermoreversible hydrogel and its efficacy in preventing post-operative adhesions
  publication-title: Acta Biomater.
– volume: 13
  start-page: 1106
  year: 2012
  end-page: 1111
  ident: bib0175
  article-title: Cell therapy for skin wound using fibroblast encapsulated poly(ethylene glycol)-poly(L-alanine) thermogel
  publication-title: Biomacromolecules
– volume: 21
  start-page: 207
  year: 2012
  end-page: 215
  ident: bib0054
  article-title: Design of molecular parameters to achieve block copolymers with a powder form at dry state and a temperature-induced sol-gel transition in water without unexpected gelling prior to heating
  publication-title: Macromol. Res.
– volume: 32
  start-page: 126
  year: 2019
  end-page: 139
  ident: bib0148
  article-title: Progress of GLP-1 receptor agonists and their delivery systems for the treatment of type Ⅱ diabetes
  publication-title: J. Funct. Polym.
– volume: 23
  start-page: 271
  year: 2015
  end-page: 281
  ident: bib0155
  article-title: Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel
  publication-title: Acta Biomater.
– volume: 167
  start-page: 143
  year: 2018
  end-page: 152
  ident: bib0041
  article-title: Novel angiogenesis therapeutics by redox injectable hydrogel - Regulation of local nitric oxide generation for effective cardiovascular therapy
  publication-title: Biomaterials
– volume: 11
  start-page: 2169
  year: 2010
  end-page: 2178
  ident: bib0086
  article-title: Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water
  publication-title: Biomacromolecules
– volume: 52
  start-page: 2434
  year: 2014
  end-page: 2441
  ident: bib0072
  article-title: Thermal gelation or gel melting: (ethylene glycol)113-(l-alanine)12and (ethylene glycol)113-(l-lactic acid)12
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 8
  start-page: 5148
  year: 2016
  end-page: 5159
  ident: bib0099
  article-title: Kartogenin-incorporated thermogel supports stem cells for significant cartilage regeneration
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 5757
  year: 2012
  end-page: 5766
  ident: bib0136
  article-title: Injectable polyplex hydrogel for localized and long-term delivery of siRNA
  publication-title: ACS Nano
– volume: 117
  start-page: 108
  year: 2020
  end-page: 120
  ident: bib0011
  article-title: An injectable click-crosslinked hyaluronic acid hydrogel modified with a BMP-2 mimetic peptide as a bone tissue engineering scaffold
  publication-title: Acta Biomater.
– volume: 11
  start-page: 8725
  year: 2019
  end-page: 8730
  ident: bib0110
  article-title: Chiral polypeptide thermogels induce controlled inflammatory response as potential immunoadjuvants
  publication-title: ACS Appl. Mater. Interfaces
– volume: 123
  start-page: 254
  year: 2021
  end-page: 262
  ident: bib0035
  article-title: Mussel-inspired poly(gamma-gl utamic acid)/nanosilicate composite hydrogels with enhanced mechanical properties, tissue adhesive properties, and skin tissue regeneration
  publication-title: Acta Biomater.
– volume: 45
  start-page: 1122
  year: 2007
  end-page: 1133
  ident: bib0080
  article-title: Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 7
  start-page: 547
  year: 2012
  end-page: 557
  ident: bib0113
  article-title: Preventing postoperative abdominal adhesions in a rat model with PEG-PCL-PEG hydrogel
  publication-title: Int. J. Nanomedicine
– volume: 16
  start-page: 1158
  year: 2016
  end-page: 1169
  ident: bib0184
  article-title: In vivo osteogenic differentiation of human dental pulp stem cells embedded in an injectable in vivo-forming hydrogel
  publication-title: Macromol. Biosci.
– volume: 1
  start-page: 16071
  year: 2016
  ident: bib0001
  article-title: Designing hydrogels for controlled drug delivery
  publication-title: Nat. Rev. Mater.
– volume: 110
  start-page: 82
  year: 2020
  end-page: 94
  ident: bib0017
  article-title: Redox injectable gel protects osteoblastic function against oxidative stress and suppresses alveolar bone loss in a rat peri-implantitis model
  publication-title: Acta Biomater.
– volume: 114
  start-page: 244
  year: 2020
  end-page: 255
  ident: bib0013
  article-title: Body temperature-activated protein-based injectable adhesive hydrogel incorporated with decellularized adipose extracellular matrix for tissue-specific regenerative stem cell therapy
  publication-title: Acta Biomater.
– volume: 7
  start-page: 195
  year: 2020
  end-page: 202
  ident: bib0177
  article-title: Preparation and characterization of methacrylated gelatin/bacterial cellulose composite hydrogels for cartilage tissue engineering
  publication-title: Regen. Biomater.
– volume: 114
  start-page: 133
  year: 2020
  end-page: 145
  ident: bib0046
  article-title: Development of injectable thermosensitive polypeptide hydrogel as facile radioisotope and radiosensitizer hotspot for synergistic brachytherapy
  publication-title: Acta Biomater.
– volume: 348
  start-page: 95
  year: 2008
  end-page: 106
  ident: bib0131
  article-title: Injectable block copolymer hydrogels for sustained release of a PEGylated drug
  publication-title: Int. J. Pharm.
– volume: 137
  start-page: 25
  year: 2009
  end-page: 30
  ident: bib0067
  article-title: Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial
  publication-title: J. Control. Release
– volume: 22
  start-page: 669
  year: 2014
  end-page: 677
  ident: bib0140
  article-title: Thermosensitive poly-(d,l-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(d,l-lactide-co-glycolide) hydrogels for multi-drug delivery
  publication-title: J. Drug Target.
– volume: 132
  start-page: 16
  year: 2017
  end-page: 27
  ident: bib0127
  article-title: Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy
  publication-title: Biomaterials
– volume: 3
  year: 2019
  ident: bib0047
  article-title: Biodegradable thermogelling polymers
  publication-title: Small Methods
– volume: 17
  start-page: 1001
  year: 2016
  ident: bib0174
  article-title: Platelet-rich plasma-loaded poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) hydrogel dressing promotes full-thickness skin wound healing in a rodent model
  publication-title: Int. J. Mol. Sci.
– volume: 14
  start-page: 3256
  year: 2013
  end-page: 3266
  ident: bib0186
  article-title: 3D culture of adipose-tissue-derived stem cells mainly leads to chondrogenesis in poly(ethylene glycol)-poly(L-alanine) diblock copolymer thermogel
  publication-title: Biomacromolecules
– volume: 15
  start-page: 521
  year: 2018
  end-page: 530
  ident: bib0020
  article-title: Polypeptide thermogels as three-dimensional scaffolds for cells
  publication-title: Tissue Eng. Regen. Med.
– volume: 6
  start-page: 325
  year: 2019
  end-page: 334
  ident: bib0018
  article-title: Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats
  publication-title: Regen. Biomater.
– volume: 7
  start-page: 413
  year: 2020
  end-page: 425
  ident: bib0022
  article-title: Investigating materials and orientation parameters for the creation of a 3D musculoskeletal interface co-culture model
  publication-title: Regen. Biomater.
– volume: 8
  start-page: 1575
  year: 2012
  end-page: 1583
  ident: bib0090
  article-title: Controlled thermal gelation of poly(ε-caprolactone)/poly(ethylene glycol) block copolymers by modifying cyclic ether pendant groups on poly(ε-caprolactone)
  publication-title: Soft Matter
– volume: 5
  start-page: 2679
  year: 2016
  end-page: 2685
  ident: bib0043
  article-title: PHB-based gels as delivery agents of chemotherapeutics for the effective shrinkage of tumors
  publication-title: Adv. Healthc. Mater.
– volume: 20
  start-page: 3416
  year: 2010
  end-page: 3421
  ident: bib0095
  article-title: Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(l-alanine) block copolymers
  publication-title: J. Mater. Chem.
– volume: 18
  start-page: 4341
  year: 2017
  end-page: 4348
  ident: bib0070
  article-title: Injectable thermosensitive polypeptide-based CDDP-complexed hydrogel for improving localized antitumor efficacy
  publication-title: Biomacromolecules
– volume: 7
  start-page: 27040
  year: 2015
  end-page: 27048
  ident: bib0124
  article-title: Localized co-delivery of doxorubicin, cisplatin, and methotrexate by thermosensitive hydrogels for enhanced osteosarcoma treatment
  publication-title: ACS Appl. Mater. Interfaces
– volume: 159
  start-page: 91
  year: 2018
  end-page: 107
  ident: bib0019
  article-title: Injectable thermogel for 3D culture of stem cells
  publication-title: Biomaterials
– volume: 41
  start-page: 8204
  year: 2008
  end-page: 8209
  ident: bib0068
  article-title: Secondary structure effect of polypeptide on reverse thermal gelation and degradation of l/dl-poly(alanine)–poloxamer–l/dl-Poly(alanine) copolymers
  publication-title: Macromolecules
– volume: 194
  start-page: 316
  year: 2014
  end-page: 322
  ident: bib0044
  article-title: Thermo-reversible injectable gel based on enzymatically-chopped low molecular weight methylcellulose for exenatide and FGF 21 delivery to treat types 1 and 2 diabetes
  publication-title: J. Control. Release
– volume: 16
  start-page: 105
  year: 2015
  end-page: 115
  ident: bib0143
  article-title: Thermogelling polymer-platinum(IV) conjugates for long-term delivery of cisplatin
  publication-title: Biomacromolecules
– volume: 6
  start-page: 335
  year: 2019
  end-page: 347
  ident: bib0038
  article-title: An elastin-like recombinamer-based bioactive hydrogel embedded with mesenchymal stromal cells as an injectable scaffold for osteochondral repair
  publication-title: Regen. Biomater.
– volume: 9
  start-page: 40031
  year: 2017
  end-page: 40046
  ident: bib0106
  article-title: Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 5771
  year: 2010
  end-page: 5778
  ident: bib0030
  article-title: In situ forming hydrogels by tandem thermal gelling and michael addition reaction between thermosensitive triblock copolymers and thiolated hyaluronan
  publication-title: Macromolecules
– volume: 48
  start-page: 3662
  year: 2015
  end-page: 3671
  ident: bib0078
  article-title: Effects of molecular weight and its distribution of PEG block on micellization and thermogellability of PLGA–PEG–PLGA copolymer aqueous solutions
  publication-title: Macromolecules
– volume: 7
  start-page: 1729
  year: 2006
  end-page: 1734
  ident: bib0061
  article-title: Thermogelling aqueous solutions of alternating multiblock copolymers of poly(L-lactic acid) and poly(ethylene glycol)
  publication-title: Biomacromolecules
– volume: 15
  start-page: 2180
  year: 2014
  end-page: 2187
  ident: bib0193
  article-title: Differentiation of tonsil-tissue-derived mesenchymal stem cells controlled by surface-functionalized microspheres in PEG-polypeptide thermogels
  publication-title: Biomacromolecules
– volume: 61
  start-page: 188
  year: 2002
  end-page: 196
  ident: bib0050
  article-title: Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water
  publication-title: J. Biomed. Mater. Res.
– volume: 12
  start-page: 27971
  year: 2020
  end-page: 27983
  ident: bib0165
  article-title: Effects of microstripe geometry on guided cell migration
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 3697
  year: 2019
  end-page: 3715
  ident: bib0024
  article-title: Thermogelling of amphiphilic block copolymers in water: ABA type versus AB or BAB type
  publication-title: Macromolecules
– volume: 98
  start-page: 4684
  year: 2009
  end-page: 4694
  ident: bib0053
  article-title: Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel: part 1-synthesis, characterization, and acute toxicity evaluation
  publication-title: J. Pharm. Sci.
– volume: 6
  start-page: 1028
  year: 2021
  end-page: 1039
  ident: bib0168
  article-title: In vivo degradation and endothelialization of an iron bioresorbable scaffold
  publication-title: Bioact. Mater.
– volume: 51
  start-page: 6080
  year: 2015
  end-page: 6083
  ident: bib0107
  article-title: An injectable thermogel with high radiopacity
  publication-title: Chem. Commun.
– volume: 156
  start-page: 21
  year: 2011
  end-page: 27
  ident: bib0130
  article-title: Enhancement of the fraction of the active form of an antitumor drug topotecan via an injectable hydrogel
  publication-title: J. Control. Release
– volume: 2
  start-page: 1100
  year: 2014
  end-page: 1109
  ident: bib0114
  article-title: Comparative studies of thermogels in preventing post-operative adhesions and corresponding mechanisms
  publication-title: Biomater. Sci.
– volume: 23
  start-page: 2709
  year: 2006
  end-page: 2728
  ident: bib0023
  article-title: A review of poloxamer 407 pharmaceutical and pharmacological characteristics
  publication-title: Pharm. Res.
– volume: 6
  start-page: 31593
  year: 2016
  ident: bib0076
  article-title: Controlled release of liraglutide using thermogelling polymers in treatment of diabetes
  publication-title: Sci. Rep.
– volume: 4
  start-page: 1565
  year: 2015
  end-page: 1574
  ident: bib0194
  article-title: Microsphere-incorporated hybrid thermogel for neuronal differentiation of tonsil derived mesenchymal stem cells
  publication-title: Adv. Healthc. Mater.
– volume: 30
  start-page: E283
  year: 2017
  end-page: E290
  ident: bib0116
  article-title: Efficacy of poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) thermogel as a barrier to prevent spinal epidural fibrosis in a postlaminectomy rat model
  publication-title: Clin. Spine Surg.
– volume: 388
  start-page: 860
  year: 1997
  end-page: 862
  ident: bib0058
  article-title: Biodegradable block copolymers as injectable drug-delivery systems
  publication-title: Nature
– volume: 21
  start-page: 143
  year: 2020
  end-page: 151
  ident: bib0191
  article-title: Iron ion-releasing polypeptide thermogel for neuronal differentiation of mesenchymal stem cells
  publication-title: Biomacromolecules
– volume: 6
  start-page: 129
  year: 2019
  end-page: 140
  ident: bib0015
  article-title: Advances of injectable hydrogel-based scaffolds for cartilage regeneration
  publication-title: Regen. Biomater.
– volume: 72
  start-page: 203
  year: 2001
  end-page: 215
  ident: bib0049
  article-title: Biodegradable block copolymers for delivery of proteins and water-insoluble drugs
  publication-title: J. Control. Release
– volume: 8
  start-page: 4260
  year: 2012
  end-page: 4267
  ident: bib0088
  article-title: Modulating rheological and degradation properties of temperature-responsive gelling systems composed of blends of PCLA-PEG-PCLA triblock copolymers and their fully hexanoyl-capped derivatives
  publication-title: Acta Biomater.
– volume: 5
  start-page: 353
  year: 2016
  end-page: 363
  ident: bib0192
  article-title: Nanocomposite versus mesocomposite for osteogenic differentiation of tonsil-derived mesenchymal stem cells
  publication-title: Adv. Healthc. Mater.
– volume: 88
  start-page: 79
  year: 2018
  end-page: 87
  ident: bib0182
  article-title: Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel
  publication-title: Mater. Sci. Eng. C
– volume: 3
  start-page: 511
  year: 2002
  end-page: 516
  ident: bib0065
  article-title: Sol-gel transition temperature of PLGA-g-PEG aqueous solutions
  publication-title: Biomacromolecules
– volume: 209
  start-page: 120
  year: 2015
  end-page: 138
  ident: bib0045
  article-title: Recent progress in biomedical applications of Pluronic (PF127): pharmaceutical perspectives
  publication-title: J. Control. Release
– volume: 45
  start-page: 2232
  year: 2006
  end-page: 2235
  ident: bib0081
  article-title: A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions
  publication-title: Angew. Chem. Int. Ed.
– volume: 32
  start-page: 4725
  year: 2011
  end-page: 4736
  ident: bib0056
  article-title: Biodegradable and thermoreversible PCLA-PEG-PCLA hydrogel as a barrier for prevention of post-operative adhesion
  publication-title: Biomaterials
– volume: 3
  year: 2020
  ident: bib0138
  article-title: Thermosensitive polypeptide hydrogels co-loaded with two anti-tumor agents to reduce multi-drug resistance and enhance local tumor treatment
  publication-title: Adv. Ther.
– volume: 7
  start-page: 77
  year: 2020
  end-page: 90
  ident: bib0014
  article-title: Platelet-rich plasma combined with injectable hyaluronic acid hydrogel for porcine cartilage regeneration: a 6-month follow-up
  publication-title: Regen. Biomater.
– volume: 8
  start-page: 5160
  year: 2016
  end-page: 5169
  ident: bib0195
  article-title: Composite system of graphene oxide and polypeptide thermogel as an injectable 3D scaffold for adipogenic differentiation of tonsil-derived mesenchymal stem cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 23
  start-page: 7642
  year: 2017
  end-page: 7647
  ident: bib0105
  article-title: Selective dual-channel imaging on cyanostyryl-modified azulene systems with unimolecularly tunable visible-near infrared luminescence
  publication-title: Chem. Eur. J.
– volume: 396
  year: 2020
  ident: bib0121
  article-title: Sustained release of lipophilic gemcitabine from an injectable polymeric hydrogel for synergistically enhancing tumor chemoradiotherapy
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 1493
  year: 2016
  end-page: 1502
  ident: bib0089
  article-title: Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG-PCL-PEG
  publication-title: Biomater. Sci.
– volume: 5
  start-page: 97975
  year: 2015
  end-page: 97981
  ident: bib0142
  article-title: Selenium-containing thermogel for controlled drug delivery by coordination competition
  publication-title: RSC Adv.
– volume: 263
  year: 2020
  ident: bib0164
  article-title: Cell migration regulated by RGD nanospacing and enhanced under moderate cell adhesion on biomaterials
  publication-title: Biomaterials
– volume: 86
  start-page: 235
  year: 2019
  end-page: 246
  ident: bib0007
  article-title: An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin
  publication-title: Acta Biomater.
– volume: 35
  start-page: 284
  year: 2019
  end-page: 299
  ident: bib0166
  article-title: Proliferation of cells with severe nuclear deformation on a micropillar array
  publication-title: Langmuir
– volume: 96
  start-page: 281
  year: 2019
  end-page: 294
  ident: bib0006
  article-title: An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy
  publication-title: Acta Biomater.
– volume: 7
  start-page: 99
  year: 2020
  end-page: 107
  ident: bib0010
  article-title: Resveratrol-loaded peptide-hydrogels inhibit scar formation in wound healing through suppressing inflammation
  publication-title: Regen. Biomater.
– volume: 30
  start-page: 4752
  year: 2009
  end-page: 4762
  ident: bib0144
  article-title: Doxorubicin-polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics
  publication-title: Biomaterials
– volume: 31
  start-page: 2453
  year: 2010
  end-page: 2460
  ident: bib0103
  article-title: A biodegradable, injectable, gel system based on MPEG-b-(PCL-ran-PLLA) diblock copolymers with an adjustable therapeutic window
  publication-title: Biomaterials
– volume: 11
  start-page: 202
  year: 2019
  end-page: 218
  ident: bib0169
  article-title: Mechanism of acceleration of iron corrosion by a polylactide coating
  publication-title: ACS Appl. Mater. Interfaces
– volume: 33
  start-page: 4801
  year: 2012
  end-page: 4809
  ident: bib0178
  article-title: Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration
  publication-title: Biomaterials
– volume: 45
  start-page: 4091
  year: 2007
  end-page: 4099
  ident: bib0057
  article-title: Thermogelling hydrogels of poly(ɛ-caprolactone-co-D,L-lactide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-D,L-lactide) and poly(ɛ-caprolactone-co-L-lactide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-L-lactide) aqueous solutions
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 45
  start-page: 2007
  year: 2012
  end-page: 2013
  ident: bib0069
  article-title: PEG-l-PAF and PEG-d-PAF: comparative study on thermogellation and biodegradation
  publication-title: Macromolecules
– volume: 110
  start-page: 119
  year: 2020
  end-page: 128
  ident: bib0112
  article-title: Dual dynamically crosslinked thermosensitive hydrogel with self-fixing as a postoperative anti-adhesion barrier
  publication-title: Acta Biomater
– volume: 183
  start-page: 185
  year: 2018
  end-page: 199
  ident: bib0008
  article-title: Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing
  publication-title: Biomaterials
– volume: 50
  start-page: 6111
  year: 2009
  end-page: 6120
  ident: bib0082
  article-title: A delicate ionizable-group effect on self-assembly and thermogelling of amphiphilic block copolymers in water
  publication-title: Polymer
– volume: 51
  start-page: 6405
  year: 2018
  end-page: 6420
  ident: bib0092
  article-title: Semi-bald micelles and corresponding percolated micelle networks of thermogels
  publication-title: Macromolecules
– volume: 122
  start-page: 91
  year: 2017
  end-page: 104
  ident: bib0180
  article-title: Tuning physical properties and BMP-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect
  publication-title: Biomaterials
– volume: 21
  start-page: 118
  year: 2014
  end-page: 124
  ident: bib0159
  article-title: A systematic review of complications of implant-based breast reconstruction with prereconstruction and postreconstruction radiotherapy
  publication-title: Ann. Surg. Oncol.
– volume: 31
  start-page: 5227
  year: 2010
  end-page: 5236
  ident: bib0051
  article-title: Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles
  publication-title: Biomaterials
– volume: 34
  start-page: 2834
  year: 2013
  end-page: 2842
  ident: bib0123
  article-title: A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel
  publication-title: Biomaterials
– year: 2020
  ident: bib0016
  article-title: Cell-free bilayered porous scaffolds for osteochondral regeneration fabricated by continuous 3D-printing using nascent physical hydrogel as ink
  publication-title: Adv. Healthc. Mater.
– volume: 32
  start-page: 7064
  year: 1999
  end-page: 7069
  ident: bib0060
  article-title: Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions
  publication-title: Macromolecules
– volume: 25
  start-page: 636
  year: 2015
  end-page: 644
  ident: bib0031
  article-title: Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo
  publication-title: Adv. Funct. Mater.
– volume: 33
  start-page: 793
  year: 2011
  end-page: 811
  ident: bib0153
  article-title: Review of the therapeutic uses of liraglutide
  publication-title: Clin. Ther.
– volume: 6
  start-page: 259
  year: 2019
  end-page: 267
  ident: bib0029
  article-title: Migration of endothelial cells into photo-responsive hydrogels with tunable modulus under the presence of pro-inflammatory macrophages
  publication-title: Regen. Biomater.
– volume: 4
  start-page: 6524
  year: 2016
  end-page: 6533
  ident: bib0026
  article-title: pH-Sensitive sulfamethazine-based hydrogels as potential embolic agents for transcatheter vascular embolization
  publication-title: J. Mater. Chem. B
– volume: 4
  start-page: 7793
  year: 2016
  end-page: 7812
  ident: bib0104
  article-title: Functional biomedical hydrogels for in vivo imaging
  publication-title: J. Mater. Chem. B
– volume: 37
  start-page: 4533
  year: 2004
  end-page: 4537
  ident: bib0094
  article-title: Synthesis and characterization of biodegradable thermosensitive poly(organophosphazene) gels
  publication-title: Macromolecules
– volume: 19
  start-page: 479
  year: 2008
  end-page: 491
  ident: bib0161
  article-title: Salmon calcitonin: a review of current and future therapeutic indications
  publication-title: Osteoporos. Int.
– volume: 8
  start-page: 980
  year: 2020
  end-page: 992
  ident: bib0101
  article-title: An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction
  publication-title: J. Mater. Chem. B
– volume: 33
  start-page: 8317
  year: 2000
  end-page: 8322
  ident: bib0064
  article-title: Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA
  publication-title: Macromolecules
– volume: 35
  start-page: 8723
  year: 2014
  end-page: 8734
  ident: bib0141
  article-title: PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for osteosarcoma treatment
  publication-title: Biomaterials
– volume: 209
  start-page: 67
  year: 2015
  end-page: 76
  ident: bib0181
  article-title: Sustained BMP-2 delivery and injectable bone regeneration using thermosensitive polymeric nanoparticle hydrogel bearing dual interactions with BMP-2
  publication-title: J. Control. Release
– volume: 18
  start-page: 316
  year: 2017
  end-page: 330
  ident: bib0004
  article-title: Hydrogels for therapeutic delivery: current developments and future directions
  publication-title: Biomacromolecules
– volume: 34
  start-page: 4493
  year: 2013
  end-page: 4500
  ident: bib0137
  article-title: An injectable cell penetrable nano-polyplex hydrogel for localized siRNA delivery
  publication-title: Biomaterials
– volume: 7
  start-page: 860
  year: 2019
  end-page: 866
  ident: bib0125
  article-title: Enhanced local cancer therapy using a CA4P and CDDP co-loaded polypeptide gel depot
  publication-title: Biomater. Sci.
– volume: 9
  start-page: 6080
  year: 2019
  end-page: 6098
  ident: bib0135
  article-title: Injectable hydrogels for the sustained delivery of a HER2-targeted antibody for preventing local relapse of HER2+breast cancer after breast-conserving surgery
  publication-title: Theranostics
– volume: 3
  start-page: 865
  year: 2002
  end-page: 868
  ident: bib0063
  article-title: Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering
  publication-title: Biomacromolecules
– volume: 34
  start-page: 6377
  year: 2013
  end-page: 6387
  ident: bib0172
  article-title: A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing
  publication-title: Biomaterials
– volume: 6
  start-page: 249
  year: 2019
  end-page: 258
  ident: bib0036
  article-title: In situ sol-gel synthesis of hyaluronan derivatives bio-nanocomposite hydrogels
  publication-title: Regen. Biomater.
– volume: 4
  start-page: 5473
  year: 2014
  ident: bib0132
  article-title: Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel
  publication-title: Sci. Rep.
– volume: 10
  start-page: 155
  year: 2019
  ident: bib0152
  article-title: The discovery and development of liraglutide and semaglutide
  publication-title: Front. Endocrinol.
– volume: 3
  start-page: 1268
  year: 2015
  end-page: 1280
  ident: bib0032
  article-title: An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering
  publication-title: J. Mater. Chem. B
– volume: 2
  start-page: 393
  year: 2016
  end-page: 402
  ident: bib0118
  article-title: Safe and efficient colonic endoscopic submucosal dissection using an injectable hydrogel
  publication-title: ACS Biomater. Sci. Eng.
– volume: 5
  start-page: 6400
  year: 2017
  end-page: 6411
  ident: bib0157
  article-title: Sustained subconjunctival delivery of cyclosporine A using thermogelling polymers for glaucoma filtration surgery
  publication-title: J. Mater. Chem. B
– volume: 13
  year: 2017
  ident: bib0042
  article-title: Long-term real-time in vivo drug release monitoring with AIE thermogelling polymer
  publication-title: Small
– volume: 39
  start-page: 4873
  year: 2006
  end-page: 4879
  ident: bib0062
  article-title: Gelation behavior of poly(ethylene glycol) and polycaprolactone triblock and multiblock copolymer aqueous solutions
  publication-title: Macromolecules
– volume: 7
  start-page: 35
  year: 2020
  end-page: 45
  ident: bib0176
  article-title: BMSCs-assisted injectable Col I hydrogel-regenerated cartilage defect by reconstructing superficial and calcified cartilage
  publication-title: Regen. Biomater.
– volume: 11
  start-page: 15201
  year: 2019
  end-page: 15211
  ident: bib0150
  article-title: Sustained release of Exendin 4 using injectable and lonic-nano-complex forming polymer hydrogel system for long-term treatment of type 2 diabetes mellitus
  publication-title: ACS Appl. Mater. Interfaces
– volume: 178
  start-page: 467
  year: 2018
  end-page: 480
  ident: bib0170
  article-title: Degradation rate affords a dynamic cue to regulate stem cells beyond varied matrix stiffness
  publication-title: Biomaterials
– volume: 8
  start-page: 3301
  year: 2020
  end-page: 3309
  ident: bib0109
  article-title: (19)F magnetic resonance imaging enabled real-time, non-invasive and precise localization and quantification of the degradation rate of hydrogel scaffolds in vivo
  publication-title: Biomater. Sci.
– volume: 45
  start-page: 424
  year: 2012
  end-page: 433
  ident: bib0040
  article-title: Biodegradable Thermogels
  publication-title: Acc. Chem. Res.
– volume: 102
  start-page: 4140
  year: 2013
  end-page: 4149
  ident: bib0151
  article-title: In vitro and in vivo evaluation of a once-weekly formulation of an antidiabetic peptide drug exenatide in an injectable thermogel
  publication-title: J. Pharm. Sci.
– volume: 34
  start-page: 147
  year: 2015
  end-page: 163
  ident: bib0115
  article-title: An injectable hydrogel with or without drugs for prevention of epidural scar adhesion after laminectomy in rats
  publication-title: Chin. J. Polym. Sci.
– volume: 20
  start-page: 2008
  year: 2003
  end-page: 2010
  ident: bib0122
  article-title: Controlled release of insulin from injectable biodegradable triblock copolymer depot in ZDF rats
  publication-title: Pharm. Res.
– volume: 46
  start-page: 6255
  year: 2017
  end-page: 6275
  ident: bib0002
  article-title: Hydrogel scaffolds for differentiation of adipose-derived stem cells
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 30703
  year: 2016
  end-page: 30713
  ident: bib0128
  article-title: Injectable and thermosensitive hydrogel containing liraglutide as a long-acting antidiabetic system
  publication-title: ACS Appl. Mater. Interfaces
– volume: 108
  start-page: 87
  year: 2020
  end-page: 96
  ident: bib0012
  article-title: A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivo
  publication-title: Acta Biomater.
– volume: 35
  start-page: 7919
  year: 2014
  end-page: 7928
  ident: bib0003
  article-title: Release behavior and intra-articular biocompatibility of celecoxib-loaded acetyl-capped PCLA-PEG-PCLA thermogels
  publication-title: Biomaterials
– volume: 38
  start-page: 5260
  year: 2005
  end-page: 5265
  ident: bib0052
  article-title: Thermogelling poly(caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions
  publication-title: Macromolecules
– volume: 11
  start-page: 29604
  year: 2019
  end-page: 29618
  ident: bib0126
  article-title: Sustained release strategy designed for lixisenatide delivery to synchronously treat diabetes and associated complications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 23428
  year: 2017
  end-page: 23440
  ident: bib0162
  article-title: Calcitonin-loaded thermosensitive hydrogel for long-term antiosteopenia therapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2018
  ident: bib0034
  article-title: Oxidoreductase-initiated radical polymerizations to design hydrogels and micro/nanogels: mechanism, molding, and applications
  publication-title: Adv. Mater.
– volume: 7
  start-page: 8650
  year: 2011
  end-page: 8656
  ident: bib0083
  article-title: Examination of phase transition behavior of ion group functionalized MPEG-b-PCL diblock copolymers
  publication-title: Soft Matter
– volume: 4
  start-page: 2383
  year: 2008
  end-page: 2387
  ident: bib0096
  article-title: Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers
  publication-title: Soft Matter
– volume: 61
  start-page: 785
  year: 2009
  end-page: 794
  ident: bib0129
  article-title: OncoGel (ReGel/paclitaxel) - clinical applications for a novel paclitaxel delivery system
  publication-title: Adv. Drug Deliver. Rev.
– volume: 12
  start-page: 1290
  year: 2011
  end-page: 1297
  ident: bib0079
  article-title: Influence of LA and GA sequence in the PLGA block on the properties of thermogelling PLGA-PEG-PLGA block copolymers
  publication-title: Biomacromolecules
– volume: 10
  start-page: 1547
  year: 2009
  end-page: 1553
  ident: bib0085
  article-title: Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel
  publication-title: Biomacromolecules
– volume: 255
  start-page: 81
  year: 2017
  end-page: 93
  ident: bib0071
  article-title: Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy
  publication-title: J. Control. Release
– volume: 8
  start-page: 2586
  year: 2017
  end-page: 2597
  ident: bib0084
  article-title: Positional isomeric effects of coupling agents on the temperature-induced gelation of triblock copolymer aqueous solutions
  publication-title: Polym. Chem.
– volume: 81
  start-page: 676
  year: 1992
  end-page: 684
  ident: bib0134
  article-title: A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogs
  publication-title: J. Pharm. Sci.
– volume: 368
  start-page: 1696
  year: 2006
  end-page: 1705
  ident: bib0147
  article-title: The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes
  publication-title: Lancet
– volume: 6
  start-page: 6067
  year: 2018
  end-page: 6079
  ident: bib0033
  article-title: Enzymatically cross-linked hydrogels based on a linear poly(ethylene glycol) analogue for controlled protein release and 3D cell culture
  publication-title: J. Mater. Chem. B
– volume: 18
  start-page: 548
  year: 2001
  end-page: 550
  ident: bib0146
  article-title: Controlled release of insulin from injectable biodegradable triblock copolymer
  publication-title: Pharm. Res.
– volume: 10
  start-page: 30235
  year: 2018
  end-page: 30246
  ident: bib0120
  article-title: Thermogel loaded with low-dose paclitaxel as a facile coating to alleviate periprosthetic fibrous capsule formation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 268
  start-page: 176
  year: 2017
  end-page: 183
  ident: bib0139
  article-title: Pre-clinical evaluation of a themosensitive gel containing epothilone B and mTOR/Hsp90 targeted agents in an ovarian tumor model
  publication-title: J. Control. Release
– volume: 9
  start-page: 1945
  year: 2015
  end-page: 1951
  ident: bib0156
  article-title: A review of the efficacy of mitomycin C in glaucoma filtration surgery
  publication-title: Clin. Ophthalmol.
– volume: 77
  start-page: 63
  year: 2018
  end-page: 73
  ident: bib0145
  article-title: Tumor microenvironment-labile polymer-doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma
  publication-title: Acta Biomater.
– volume: 3
  start-page: 1782
  year: 2014
  end-page: 1791
  ident: bib0188
  article-title: 3D culture of tonsil-derived mesenchymal stem cells in poly(ethylene glycol)-poly(l-alanine-co-l-phenyl alanine) thermogel
  publication-title: Adv. Healthc. Mater.
– volume: 4
  year: 2020
  ident: bib0098
  article-title: Visualizing the in vivo evolution of an injectable and thermosensitive hydrogel using tri-modal bioimaging
  publication-title: Small Methods
– volume: 47
  start-page: 5895
  year: 2014
  end-page: 5903
  ident: bib0077
  article-title: Effects of molecular weight distribution of amphiphilic block copolymers on their solubility, micellization, and temperature-induced Sol–Gel transition in water
  publication-title: Macromolecules
– volume: 13
  start-page: 1357
  year: 2017
  end-page: 1368
  ident: bib0163
  article-title: An injectable thermogel containing levonorgestrel for long-acting contraception and fertility control of animals
  publication-title: J. Biomed. Nanotechnol.
– volume: 53
  start-page: 11051
  year: 2020
  end-page: 11064
  ident: bib0087
  article-title: Strategy of “block blends” to generate polymeric thermogels versus that of one-component block copolymer
  publication-title: Macromolecules
– volume: 25
  start-page: 5257
  year: 2013
  end-page: 5286
  ident: bib0167
  article-title: Cell-material interactions revealed via material techniques of surface patterning
  publication-title: Adv. Mater.
– volume: 17
  year: 2017
  ident: bib0133
  article-title: Achieving high drug loading and sustained release of hydrophobic drugs in hydrogels through in situ crystallization
  publication-title: Macromol. Biosci.
– volume: 22
  start-page: 6072
  year: 2012
  end-page: 6079
  ident: bib0093
  publication-title: J. Mater. Chem.
– volume: 240
  start-page: 191
  year: 2016
  end-page: 201
  ident: bib0048
  article-title: PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery
  publication-title: J. Control. Release
– volume: 34
  start-page: 4493
  year: 2013
  ident: 10.1016/j.actbio.2021.04.009_bib0137
  article-title: An injectable cell penetrable nano-polyplex hydrogel for localized siRNA delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.02.050
– volume: 77
  start-page: 63
  year: 2018
  ident: 10.1016/j.actbio.2021.04.009_bib0145
  article-title: Tumor microenvironment-labile polymer-doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.07.021
– volume: 7
  start-page: 547
  year: 2012
  ident: 10.1016/j.actbio.2021.04.009_bib0113
  article-title: Preventing postoperative abdominal adhesions in a rat model with PEG-PCL-PEG hydrogel
  publication-title: Int. J. Nanomedicine
– volume: 4
  start-page: 1565
  year: 2015
  ident: 10.1016/j.actbio.2021.04.009_bib0194
  article-title: Microsphere-incorporated hybrid thermogel for neuronal differentiation of tonsil derived mesenchymal stem cells
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201500224
– volume: 13
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0042
  article-title: Long-term real-time in vivo drug release monitoring with AIE thermogelling polymer
  publication-title: Small
  doi: 10.1002/smll.201603404
– volume: 34
  start-page: 6377
  year: 2013
  ident: 10.1016/j.actbio.2021.04.009_bib0172
  article-title: A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.05.005
– volume: 3
  start-page: 865
  year: 2002
  ident: 10.1016/j.actbio.2021.04.009_bib0063
  article-title: Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering
  publication-title: Biomacromolecules
  doi: 10.1021/bm025536m
– volume: 35
  start-page: 7919
  year: 2014
  ident: 10.1016/j.actbio.2021.04.009_bib0003
  article-title: Release behavior and intra-articular biocompatibility of celecoxib-loaded acetyl-capped PCLA-PEG-PCLA thermogels
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.05.064
– volume: 11
  start-page: 255
  year: 2014
  ident: 10.1016/j.actbio.2021.04.009_bib0158
  article-title: The inflammatory response in myocardial injury, repair, and remodelling
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2014.28
– volume: 35
  start-page: 228
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0021
  article-title: Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2016.02.028
– volume: 7
  start-page: 77
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0014
  article-title: Platelet-rich plasma combined with injectable hyaluronic acid hydrogel for porcine cartilage regeneration: a 6-month follow-up
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbz039
– volume: 8
  start-page: 6665
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0108
  article-title: Design, synthesis and ring-opening polymerization of a new iodinated carbonate monomer: a universal route towards ultrahigh radiopaque aliphatic polycarbonates
  publication-title: Polym. Chem.
  doi: 10.1039/C7PY01411B
– volume: 6
  start-page: 6067
  year: 2018
  ident: 10.1016/j.actbio.2021.04.009_bib0033
  article-title: Enzymatically cross-linked hydrogels based on a linear poly(ethylene glycol) analogue for controlled protein release and 3D cell culture
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB01949E
– volume: 117
  start-page: 108
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0011
  article-title: An injectable click-crosslinked hyaluronic acid hydrogel modified with a BMP-2 mimetic peptide as a bone tissue engineering scaffold
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.09.013
– volume: 6
  start-page: 5757
  year: 2012
  ident: 10.1016/j.actbio.2021.04.009_bib0136
  article-title: Injectable polyplex hydrogel for localized and long-term delivery of siRNA
  publication-title: ACS Nano
  doi: 10.1021/nn300842a
– volume: 1
  start-page: 16071
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0001
  article-title: Designing hydrogels for controlled drug delivery
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.71
– volume: 34
  start-page: 2834
  year: 2013
  ident: 10.1016/j.actbio.2021.04.009_bib0123
  article-title: A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.01.013
– volume: 41
  start-page: 8204
  year: 2008
  ident: 10.1016/j.actbio.2021.04.009_bib0068
  article-title: Secondary structure effect of polypeptide on reverse thermal gelation and degradation of l/dl-poly(alanine)–poloxamer–l/dl-Poly(alanine) copolymers
  publication-title: Macromolecules
  doi: 10.1021/ma8014504
– volume: 267
  start-page: 57
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0027
  article-title: Injectable hydrogels for sustained release of therapeutic agents
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.08.006
– volume: 37
  start-page: 1473
  year: 2008
  ident: 10.1016/j.actbio.2021.04.009_bib0039
  article-title: Injectable hydrogels as unique biomedical materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b713009k
– volume: 48
  start-page: 3662
  year: 2015
  ident: 10.1016/j.actbio.2021.04.009_bib0078
  article-title: Effects of molecular weight and its distribution of PEG block on micellization and thermogellability of PLGA–PEG–PLGA copolymer aqueous solutions
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b00168
– volume: 116
  start-page: 259
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0005
  article-title: Antimicrobial and anti-inflammatory thermo-reversible hydrogel for periodontal delivery
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.09.018
– volume: 8
  start-page: 1575
  year: 2012
  ident: 10.1016/j.actbio.2021.04.009_bib0090
  article-title: Controlled thermal gelation of poly(ε-caprolactone)/poly(ethylene glycol) block copolymers by modifying cyclic ether pendant groups on poly(ε-caprolactone)
  publication-title: Soft Matter
  doi: 10.1039/C1SM06693E
– volume: 240
  start-page: 191
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0048
  article-title: PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.12.015
– volume: 51
  start-page: 6080
  year: 2015
  ident: 10.1016/j.actbio.2021.04.009_bib0107
  article-title: An injectable thermogel with high radiopacity
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00049A
– volume: 43
  start-page: 5771
  year: 2010
  ident: 10.1016/j.actbio.2021.04.009_bib0030
  article-title: In situ forming hydrogels by tandem thermal gelling and michael addition reaction between thermosensitive triblock copolymers and thiolated hyaluronan
  publication-title: Macromolecules
  doi: 10.1021/ma100606a
– volume: 41
  start-page: 6493
  year: 2008
  ident: 10.1016/j.actbio.2021.04.009_bib0091
  article-title: Roles of hydrophilic homopolymers on the hydrophobic-association-induced physical gelling of amphiphilic block copolymers in water
  publication-title: Macromolecules
  doi: 10.1021/ma7026484
– volume: 15
  start-page: 464
  year: 2015
  ident: 10.1016/j.actbio.2021.04.009_bib0189
  article-title: PEG-poly(l-alanine) thermogel as a 3D scaffold of bone-marrow-derived mesenchymal stem cells
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201400426
– volume: 11
  start-page: 29604
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0126
  article-title: Sustained release strategy designed for lixisenatide delivery to synchronously treat diabetes and associated complications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10346
– volume: 263
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0164
  article-title: Cell migration regulated by RGD nanospacing and enhanced under moderate cell adhesion on biomaterials
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120327
– volume: 6
  start-page: 1028
  year: 2021
  ident: 10.1016/j.actbio.2021.04.009_bib0168
  article-title: In vivo degradation and endothelialization of an iron bioresorbable scaffold
  publication-title: Bioact. Mater.
– volume: 18
  start-page: 316
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0004
  article-title: Hydrogels for therapeutic delivery: current developments and future directions
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.6b01604
– volume: 9
  start-page: 23428
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0162
  article-title: Calcitonin-loaded thermosensitive hydrogel for long-term antiosteopenia therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05740
– volume: 5
  start-page: 97975
  year: 2015
  ident: 10.1016/j.actbio.2021.04.009_bib0142
  article-title: Selenium-containing thermogel for controlled drug delivery by coordination competition
  publication-title: RSC Adv.
  doi: 10.1039/C5RA22307E
– volume: 8
  start-page: 533
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0119
  article-title: An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00583-8
– volume: 21
  start-page: 3176
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0187
  article-title: Thermogelling inclusion complex system for fine-tuned osteochondral differentiation of mesenchymal stem cells
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.0c00623
– volume: 15
  start-page: 521
  year: 2018
  ident: 10.1016/j.actbio.2021.04.009_bib0020
  article-title: Polypeptide thermogels as three-dimensional scaffolds for cells
  publication-title: Tissue Eng. Regen. Med.
  doi: 10.1007/s13770-018-0148-4
– volume: 3
  start-page: 1782
  year: 2014
  ident: 10.1016/j.actbio.2021.04.009_bib0188
  article-title: 3D culture of tonsil-derived mesenchymal stem cells in poly(ethylene glycol)-poly(l-alanine-co-l-phenyl alanine) thermogel
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201400140
– volume: 21
  start-page: 207
  year: 2012
  ident: 10.1016/j.actbio.2021.04.009_bib0054
  article-title: Design of molecular parameters to achieve block copolymers with a powder form at dry state and a temperature-induced sol-gel transition in water without unexpected gelling prior to heating
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-013-1021-x
– volume: 39
  start-page: 4873
  year: 2006
  ident: 10.1016/j.actbio.2021.04.009_bib0062
  article-title: Gelation behavior of poly(ethylene glycol) and polycaprolactone triblock and multiblock copolymer aqueous solutions
  publication-title: Macromolecules
  doi: 10.1021/ma060153s
– volume: 23
  start-page: 7642
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0105
  article-title: Selective dual-channel imaging on cyanostyryl-modified azulene systems with unimolecularly tunable visible-near infrared luminescence
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201700947
– volume: 1
  start-page: 3314
  year: 2013
  ident: 10.1016/j.actbio.2021.04.009_bib0183
  article-title: Injectable in situ-forming hydrogel for cartilage tissue engineering
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb20105h
– volume: 54
  start-page: 1225
  year: 2005
  ident: 10.1016/j.actbio.2021.04.009_bib0097
  article-title: Hydrolysis-improved thermosensitive polyorganophosphazenes with α-amino-ω-methoxy-poly(ethylene glycol) and amino acid esters as side groups
  publication-title: Polym. Int.
  doi: 10.1002/pi.1702
– volume: 52
  start-page: 3697
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0024
  article-title: Thermogelling of amphiphilic block copolymers in water: ABA type versus AB or BAB type
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b00534
– volume: 3
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0047
  article-title: Biodegradable thermogelling polymers
  publication-title: Small Methods
  doi: 10.1002/smtd.201800313
– volume: 4
  start-page: 5473
  year: 2014
  ident: 10.1016/j.actbio.2021.04.009_bib0132
  article-title: Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel
  publication-title: Sci. Rep.
  doi: 10.1038/srep05473
– volume: 21
  start-page: 118
  year: 2014
  ident: 10.1016/j.actbio.2021.04.009_bib0159
  article-title: A systematic review of complications of implant-based breast reconstruction with prereconstruction and postreconstruction radiotherapy
  publication-title: Ann. Surg. Oncol.
  doi: 10.1245/s10434-013-3284-z
– volume: 50
  start-page: 6111
  year: 2009
  ident: 10.1016/j.actbio.2021.04.009_bib0082
  article-title: A delicate ionizable-group effect on self-assembly and thermogelling of amphiphilic block copolymers in water
  publication-title: Polymer
  doi: 10.1016/j.polymer.2009.10.036
– volume: 18
  start-page: 701
  year: 2010
  ident: 10.1016/j.actbio.2021.04.009_bib0075
  article-title: Synthesis and characterization of biodegradable thermosensitive neutral and acidic poly(organophosphazene) gels bearing carboxylic acid group
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-010-9466-5
– volume: 183
  start-page: 185
  year: 2018
  ident: 10.1016/j.actbio.2021.04.009_bib0008
  article-title: Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.08.044
– volume: 30
  year: 2018
  ident: 10.1016/j.actbio.2021.04.009_bib0034
  article-title: Oxidoreductase-initiated radical polymerizations to design hydrogels and micro/nanogels: mechanism, molding, and applications
  publication-title: Adv. Mater.
– volume: 38
  start-page: 5260
  year: 2005
  ident: 10.1016/j.actbio.2021.04.009_bib0052
  article-title: Thermogelling poly(caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions
  publication-title: Macromolecules
  doi: 10.1021/ma050489m
– volume: 35
  start-page: 8723
  year: 2014
  ident: 10.1016/j.actbio.2021.04.009_bib0141
  article-title: PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for osteosarcoma treatment
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.06.045
– volume: 137
  start-page: 25
  year: 2009
  ident: 10.1016/j.actbio.2021.04.009_bib0067
  article-title: Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2009.03.008
– volume: 10
  start-page: 30235
  year: 2018
  ident: 10.1016/j.actbio.2021.04.009_bib0120
  article-title: Thermogel loaded with low-dose paclitaxel as a facile coating to alleviate periprosthetic fibrous capsule formation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b13548
– volume: 45
  start-page: 424
  year: 2012
  ident: 10.1016/j.actbio.2021.04.009_bib0040
  article-title: Biodegradable Thermogels
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200162j
– volume: 110
  start-page: 119
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0112
  article-title: Dual dynamically crosslinked thermosensitive hydrogel with self-fixing as a postoperative anti-adhesion barrier
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2020.04.034
– volume: 13
  start-page: 1357
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0163
  article-title: An injectable thermogel containing levonorgestrel for long-acting contraception and fertility control of animals
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2017.2464
– volume: 88
  start-page: 79
  year: 2018
  ident: 10.1016/j.actbio.2021.04.009_bib0182
  article-title: Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2018.02.028
– volume: 32
  start-page: 7064
  year: 1999
  ident: 10.1016/j.actbio.2021.04.009_bib0060
  article-title: Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions
  publication-title: Macromolecules
  doi: 10.1021/ma9908999
– volume: 81
  start-page: 676
  year: 1992
  ident: 10.1016/j.actbio.2021.04.009_bib0134
  article-title: A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogs
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.2600810718
– volume: 209
  start-page: 67
  year: 2015
  ident: 10.1016/j.actbio.2021.04.009_bib0181
  article-title: Sustained BMP-2 delivery and injectable bone regeneration using thermosensitive polymeric nanoparticle hydrogel bearing dual interactions with BMP-2
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.04.023
– volume: 6
  start-page: 19077
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0102
  article-title: Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo
  publication-title: Sci. Rep.
  doi: 10.1038/srep19077
– volume: 9
  start-page: 1945
  year: 2015
  ident: 10.1016/j.actbio.2021.04.009_bib0156
  article-title: A review of the efficacy of mitomycin C in glaucoma filtration surgery
  publication-title: Clin. Ophthalmol.
– volume: 11
  start-page: 202
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0169
  article-title: Mechanism of acceleration of iron corrosion by a polylactide coating
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b17125
– volume: 32
  start-page: 126
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0148
  article-title: Progress of GLP-1 receptor agonists and their delivery systems for the treatment of type Ⅱ diabetes
  publication-title: J. Funct. Polym.
– volume: 102
  start-page: 4140
  year: 2013
  ident: 10.1016/j.actbio.2021.04.009_bib0151
  article-title: In vitro and in vivo evaluation of a once-weekly formulation of an antidiabetic peptide drug exenatide in an injectable thermogel
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.23735
– volume: 178
  start-page: 467
  year: 2018
  ident: 10.1016/j.actbio.2021.04.009_bib0170
  article-title: Degradation rate affords a dynamic cue to regulate stem cells beyond varied matrix stiffness
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.04.021
– volume: 37
  start-page: 548
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0173
  article-title: Accelerated cutaneous wound healing using an injectable teicoplanin-loaded PLGA-PEG-PLGA thermogel dressing
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-019-2212-5
– volume: 5
  start-page: 6400
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0157
  article-title: Sustained subconjunctival delivery of cyclosporine A using thermogelling polymers for glaucoma filtration surgery
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB01556A
– volume: 16
  start-page: 1158
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0184
  article-title: In vivo osteogenic differentiation of human dental pulp stem cells embedded in an injectable in vivo-forming hydrogel
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201600001
– volume: 114
  start-page: 244
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0013
  article-title: Body temperature-activated protein-based injectable adhesive hydrogel incorporated with decellularized adipose extracellular matrix for tissue-specific regenerative stem cell therapy
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.07.033
– volume: 156
  start-page: 21
  year: 2011
  ident: 10.1016/j.actbio.2021.04.009_bib0130
  article-title: Enhancement of the fraction of the active form of an antitumor drug topotecan via an injectable hydrogel
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2011.07.008
– volume: 18
  start-page: 548
  year: 2001
  ident: 10.1016/j.actbio.2021.04.009_bib0146
  article-title: Controlled release of insulin from injectable biodegradable triblock copolymer
  publication-title: Pharm. Res.
  doi: 10.1023/A:1011074915438
– volume: 8
  start-page: 5148
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0099
  article-title: Kartogenin-incorporated thermogel supports stem cells for significant cartilage regeneration
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12212
– volume: 17
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0133
  article-title: Achieving high drug loading and sustained release of hydrophobic drugs in hydrogels through in situ crystallization
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201600299
– volume: 45
  start-page: 2007
  year: 2012
  ident: 10.1016/j.actbio.2021.04.009_bib0069
  article-title: PEG-l-PAF and PEG-d-PAF: comparative study on thermogellation and biodegradation
  publication-title: Macromolecules
  doi: 10.1021/ma202809c
– volume: 159
  start-page: 91
  year: 2018
  ident: 10.1016/j.actbio.2021.04.009_bib0019
  article-title: Injectable thermogel for 3D culture of stem cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.01.001
– volume: 98
  start-page: 4684
  year: 2009
  ident: 10.1016/j.actbio.2021.04.009_bib0053
  article-title: Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel: part 1-synthesis, characterization, and acute toxicity evaluation
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.21780
– volume: 15
  start-page: 2180
  year: 2014
  ident: 10.1016/j.actbio.2021.04.009_bib0193
  article-title: Differentiation of tonsil-tissue-derived mesenchymal stem cells controlled by surface-functionalized microspheres in PEG-polypeptide thermogels
  publication-title: Biomacromolecules
  doi: 10.1021/bm500342r
– volume: 72
  start-page: 203
  year: 2001
  ident: 10.1016/j.actbio.2021.04.009_bib0049
  article-title: Biodegradable block copolymers for delivery of proteins and water-insoluble drugs
  publication-title: J. Control. Release
  doi: 10.1016/S0168-3659(01)00276-0
– volume: 9
  start-page: 40031
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0106
  article-title: Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11998
– volume: 388
  start-page: 860
  year: 1997
  ident: 10.1016/j.actbio.2021.04.009_bib0058
  article-title: Biodegradable block copolymers as injectable drug-delivery systems
  publication-title: Nature
  doi: 10.1038/42218
– volume: 55
  start-page: 396
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0100
  article-title: Non-invasive monitoring of in vivo degradation of a radiopaque thermoreversible hydrogel and its efficacy in preventing post-operative adhesions
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.03.042
– volume: 6
  start-page: 335
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0038
  article-title: An elastin-like recombinamer-based bioactive hydrogel embedded with mesenchymal stromal cells as an injectable scaffold for osteochondral repair
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbz023
– volume: 7
  start-page: 27040
  year: 2015
  ident: 10.1016/j.actbio.2021.04.009_bib0124
  article-title: Localized co-delivery of doxorubicin, cisplatin, and methotrexate by thermosensitive hydrogels for enhanced osteosarcoma treatment
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09112
– volume: 20
  start-page: 3416
  year: 2010
  ident: 10.1016/j.actbio.2021.04.009_bib0095
  article-title: Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(l-alanine) block copolymers
  publication-title: J. Mater. Chem.
  doi: 10.1039/b922956f
– volume: 181
  start-page: 378
  year: 2018
  ident: 10.1016/j.actbio.2021.04.009_bib0160
  article-title: Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.07.051
– volume: 10
  start-page: 182
  year: 2018
  ident: 10.1016/j.actbio.2021.04.009_bib0171
  article-title: Strategy of metal-polymer composite stent to accelerate biodegradation of iron-based biomaterials
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b15206
– volume: 45
  start-page: 2232
  year: 2006
  ident: 10.1016/j.actbio.2021.04.009_bib0081
  article-title: A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200503575
– volume: 32
  start-page: 1590
  year: 2014
  ident: 10.1016/j.actbio.2021.04.009_bib0185
  article-title: Biodegradable thermogel as culture matrix of bone marrow mesenchymal stem cells for potential cartilage tissue engineering
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-014-1551-5
– volume: 8
  start-page: 2586
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0084
  article-title: Positional isomeric effects of coupling agents on the temperature-induced gelation of triblock copolymer aqueous solutions
  publication-title: Polym. Chem.
  doi: 10.1039/C7PY00232G
– volume: 46
  start-page: 6255
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0002
  article-title: Hydrogel scaffolds for differentiation of adipose-derived stem cells
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00052E
– volume: 3
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0138
  article-title: Thermosensitive polypeptide hydrogels co-loaded with two anti-tumor agents to reduce multi-drug resistance and enhance local tumor treatment
  publication-title: Adv. Ther.
– volume: 12
  start-page: 1290
  year: 2011
  ident: 10.1016/j.actbio.2021.04.009_bib0079
  article-title: Influence of LA and GA sequence in the PLGA block on the properties of thermogelling PLGA-PEG-PLGA block copolymers
  publication-title: Biomacromolecules
  doi: 10.1021/bm101572j
– volume: 53
  start-page: 11051
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0087
  article-title: Strategy of “block blends” to generate polymeric thermogels versus that of one-component block copolymer
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c02488
– volume: 51
  start-page: 6405
  year: 2018
  ident: 10.1016/j.actbio.2021.04.009_bib0092
  article-title: Semi-bald micelles and corresponding percolated micelle networks of thermogels
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b01014
– volume: 21
  start-page: 827
  year: 2004
  ident: 10.1016/j.actbio.2021.04.009_bib0149
  article-title: Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats
  publication-title: Pharm. Res.
  doi: 10.1023/B:PHAM.0000026435.27086.94
– volume: 18
  start-page: 4341
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0070
  article-title: Injectable thermosensitive polypeptide-based CDDP-complexed hydrogel for improving localized antitumor efficacy
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01374
– volume: 35
  start-page: 236
  year: 2014
  ident: 10.1016/j.actbio.2021.04.009_bib0179
  article-title: Injectable thermosensitive PEG-PCL-PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.10.016
– volume: 30
  start-page: 4752
  year: 2009
  ident: 10.1016/j.actbio.2021.04.009_bib0144
  article-title: Doxorubicin-polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.05.031
– volume: 52
  start-page: 2434
  year: 2014
  ident: 10.1016/j.actbio.2021.04.009_bib0072
  article-title: Thermal gelation or gel melting: (ethylene glycol)113-(l-alanine)12and (ethylene glycol)113-(l-lactic acid)12
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.27254
– volume: 7
  start-page: 1729
  year: 2006
  ident: 10.1016/j.actbio.2021.04.009_bib0061
  article-title: Thermogelling aqueous solutions of alternating multiblock copolymers of poly(L-lactic acid) and poly(ethylene glycol)
  publication-title: Biomacromolecules
  doi: 10.1021/bm0600062
– volume: 4
  start-page: 2383
  year: 2008
  ident: 10.1016/j.actbio.2021.04.009_bib0096
  article-title: Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers
  publication-title: Soft Matter
  doi: 10.1039/b809116a
– volume: 2
  start-page: 393
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0118
  article-title: Safe and efficient colonic endoscopic submucosal dissection using an injectable hydrogel
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.5b00516
– volume: 118
  start-page: 113
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0037
  article-title: Complex mechanical behavior of human articular cartilage and hydrogels for cartilage repair
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.10.025
– volume: 47
  start-page: 5895
  year: 2014
  ident: 10.1016/j.actbio.2021.04.009_bib0077
  article-title: Effects of molecular weight distribution of amphiphilic block copolymers on their solubility, micellization, and temperature-induced Sol–Gel transition in water
  publication-title: Macromolecules
  doi: 10.1021/ma501110p
– volume: 14
  start-page: 3256
  year: 2013
  ident: 10.1016/j.actbio.2021.04.009_bib0186
  article-title: 3D culture of adipose-tissue-derived stem cells mainly leads to chondrogenesis in poly(ethylene glycol)-poly(L-alanine) diblock copolymer thermogel
  publication-title: Biomacromolecules
  doi: 10.1021/bm400868j
– volume: 8
  start-page: 5160
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0195
  article-title: Composite system of graphene oxide and polypeptide thermogel as an injectable 3D scaffold for adipogenic differentiation of tonsil-derived mesenchymal stem cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12324
– volume: 61
  start-page: 188
  year: 2002
  ident: 10.1016/j.actbio.2021.04.009_bib0050
  article-title: Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.10164
– volume: 96
  start-page: 281
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0006
  article-title: An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.07.024
– volume: 9
  start-page: 11568
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0190
  article-title: Injectable polypeptide thermogel as a tissue engineering system for hepatogenic differentiation of tonsil-derived mesenchymal stem Cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02488
– volume: 2
  start-page: 1100
  year: 2014
  ident: 10.1016/j.actbio.2021.04.009_bib0114
  article-title: Comparative studies of thermogels in preventing post-operative adhesions and corresponding mechanisms
  publication-title: Biomater. Sci.
  doi: 10.1039/C4BM00029C
– volume: 7
  start-page: 413
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0022
  article-title: Investigating materials and orientation parameters for the creation of a 3D musculoskeletal interface co-culture model
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbaa018
– volume: 6
  start-page: 885
  year: 2005
  ident: 10.1016/j.actbio.2021.04.009_bib0059
  article-title: Caprolactonic poloxamer analog: PEG-PCL-PEG
  publication-title: Biomacromolecules
  doi: 10.1021/bm049347a
– volume: 6
  start-page: 129
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0015
  article-title: Advances of injectable hydrogel-based scaffolds for cartilage regeneration
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbz022
– volume: 255
  start-page: 81
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0071
  article-title: Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.04.011
– volume: 44
  start-page: 888
  year: 2006
  ident: 10.1016/j.actbio.2021.04.009_bib0066
  article-title: Sol-gel transition behavior of biodegradable three-arm and four-arm star-shaped PLGA-PEG block copolymer aqueous solution
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.21193
– volume: 3
  start-page: 511
  year: 2002
  ident: 10.1016/j.actbio.2021.04.009_bib0065
  article-title: Sol-gel transition temperature of PLGA-g-PEG aqueous solutions
  publication-title: Biomacromolecules
  doi: 10.1021/bm0156431
– volume: 25
  start-page: 636
  year: 2015
  ident: 10.1016/j.actbio.2021.04.009_bib0031
  article-title: Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201403550
– volume: 32
  start-page: 4725
  year: 2011
  ident: 10.1016/j.actbio.2021.04.009_bib0056
  article-title: Biodegradable and thermoreversible PCLA-PEG-PCLA hydrogel as a barrier for prevention of post-operative adhesion
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.03.046
– volume: 6
  start-page: 325
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0018
  article-title: Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbz027
– volume: 37
  start-page: 4533
  year: 2004
  ident: 10.1016/j.actbio.2021.04.009_bib0094
  article-title: Synthesis and characterization of biodegradable thermosensitive poly(organophosphazene) gels
  publication-title: Macromolecules
  doi: 10.1021/ma0305838
– volume: 23
  start-page: 271
  year: 2015
  ident: 10.1016/j.actbio.2021.04.009_bib0155
  article-title: Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.05.005
– volume: 194
  start-page: 316
  year: 2014
  ident: 10.1016/j.actbio.2021.04.009_bib0044
  article-title: Thermo-reversible injectable gel based on enzymatically-chopped low molecular weight methylcellulose for exenatide and FGF 21 delivery to treat types 1 and 2 diabetes
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.09.014
– volume: 21
  start-page: 143
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0191
  article-title: Iron ion-releasing polypeptide thermogel for neuronal differentiation of mesenchymal stem cells
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.9b01096
– volume: 25
  start-page: 5257
  year: 2013
  ident: 10.1016/j.actbio.2021.04.009_bib0167
  article-title: Cell-material interactions revealed via material techniques of surface patterning
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301762
– volume: 7
  start-page: 35
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0176
  article-title: BMSCs-assisted injectable Col I hydrogel-regenerated cartilage defect by reconstructing superficial and calcified cartilage
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbz028
– volume: 33
  start-page: 793
  year: 2011
  ident: 10.1016/j.actbio.2021.04.009_bib0153
  article-title: Review of the therapeutic uses of liraglutide
  publication-title: Clin. Ther.
  doi: 10.1016/j.clinthera.2011.06.004
– volume: 17
  start-page: 1001
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0174
  article-title: Platelet-rich plasma-loaded poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) hydrogel dressing promotes full-thickness skin wound healing in a rodent model
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17071001
– volume: 5
  start-page: 2679
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0043
  article-title: PHB-based gels as delivery agents of chemotherapeutics for the effective shrinkage of tumors
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201600723
– volume: 11
  start-page: 8725
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0110
  article-title: Chiral polypeptide thermogels induce controlled inflammatory response as potential immunoadjuvants
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01872
– volume: 33
  start-page: 4801
  year: 2012
  ident: 10.1016/j.actbio.2021.04.009_bib0178
  article-title: Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.03.040
– volume: 33
  start-page: 195
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0154
  article-title: Lixisenatide: a new option for managing type 2 diabetes
  publication-title: J. Pharm. Technol.
  doi: 10.1177/8755122517711958
– volume: 10
  start-page: 1547
  year: 2009
  ident: 10.1016/j.actbio.2021.04.009_bib0085
  article-title: Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel
  publication-title: Biomacromolecules
  doi: 10.1021/bm900145g
– volume: 7
  start-page: 195
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0177
  article-title: Preparation and characterization of methacrylated gelatin/bacterial cellulose composite hydrogels for cartilage tissue engineering
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbz050
– volume: 3
  start-page: 1268
  year: 2015
  ident: 10.1016/j.actbio.2021.04.009_bib0032
  article-title: An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB01705F
– volume: 114
  start-page: 133
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0046
  article-title: Development of injectable thermosensitive polypeptide hydrogel as facile radioisotope and radiosensitizer hotspot for synergistic brachytherapy
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.07.032
– volume: 7
  start-page: 860
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0125
  article-title: Enhanced local cancer therapy using a CA4P and CDDP co-loaded polypeptide gel depot
  publication-title: Biomater. Sci.
  doi: 10.1039/C8BM01442F
– volume: 4
  start-page: 1493
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0089
  article-title: Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG-PCL-PEG
  publication-title: Biomater. Sci.
  doi: 10.1039/C6BM00408C
– volume: 5
  start-page: 353
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0192
  article-title: Nanocomposite versus mesocomposite for osteogenic differentiation of tonsil-derived mesenchymal stem cells
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201500558
– volume: 7
  start-page: 99
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0010
  article-title: Resveratrol-loaded peptide-hydrogels inhibit scar formation in wound healing through suppressing inflammation
  publication-title: Regen. Biomater.
– volume: 45
  start-page: 4091
  year: 2007
  ident: 10.1016/j.actbio.2021.04.009_bib0057
  article-title: Thermogelling hydrogels of poly(ɛ-caprolactone-co-D,L-lactide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-D,L-lactide) and poly(ɛ-caprolactone-co-L-lactide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-L-lactide) aqueous solutions
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.22222
– volume: 7
  start-page: 8650
  year: 2011
  ident: 10.1016/j.actbio.2021.04.009_bib0083
  article-title: Examination of phase transition behavior of ion group functionalized MPEG-b-PCL diblock copolymers
  publication-title: Soft Matter
  doi: 10.1039/c1sm05977g
– volume: 8
  start-page: 3301
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0109
  article-title: (19)F magnetic resonance imaging enabled real-time, non-invasive and precise localization and quantification of the degradation rate of hydrogel scaffolds in vivo
  publication-title: Biomater. Sci.
  doi: 10.1039/D0BM00278J
– volume: 19
  start-page: 479
  year: 2008
  ident: 10.1016/j.actbio.2021.04.009_bib0161
  article-title: Salmon calcitonin: a review of current and future therapeutic indications
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-007-0490-1
– volume: 112
  start-page: 101
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0009
  article-title: Drug-impregnated, pressurized gas expanded liquid-processed alginate hydrogel scaffolds for accelerated burn wound healing
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.06.006
– volume: 31
  start-page: 5227
  year: 2010
  ident: 10.1016/j.actbio.2021.04.009_bib0051
  article-title: Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.03.027
– volume: 95
  start-page: 935
  year: 2010
  ident: 10.1016/j.actbio.2021.04.009_bib0111
  article-title: In vitro and in vivo degradation behaviors of thermosensitive poly(organophosphazene) hydrogels
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2010.03.024
– volume: 23
  start-page: 2709
  year: 2006
  ident: 10.1016/j.actbio.2021.04.009_bib0023
  article-title: A review of poloxamer 407 pharmaceutical and pharmacological characteristics
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-006-9104-4
– volume: 16
  start-page: 105
  year: 2015
  ident: 10.1016/j.actbio.2021.04.009_bib0143
  article-title: Thermogelling polymer-platinum(IV) conjugates for long-term delivery of cisplatin
  publication-title: Biomacromolecules
  doi: 10.1021/bm501220a
– year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0016
  article-title: Cell-free bilayered porous scaffolds for osteochondral regeneration fabricated by continuous 3D-printing using nascent physical hydrogel as ink
  publication-title: Adv. Healthc. Mater.
– volume: 396
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0121
  article-title: Sustained release of lipophilic gemcitabine from an injectable polymeric hydrogel for synergistically enhancing tumor chemoradiotherapy
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125320
– volume: 12
  start-page: 27971
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0165
  article-title: Effects of microstripe geometry on guided cell migration
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c05024
– volume: 6
  start-page: 259
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0029
  article-title: Migration of endothelial cells into photo-responsive hydrogels with tunable modulus under the presence of pro-inflammatory macrophages
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbz025
– volume: 11
  start-page: 15201
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0150
  article-title: Sustained release of Exendin 4 using injectable and lonic-nano-complex forming polymer hydrogel system for long-term treatment of type 2 diabetes mellitus
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b19669
– volume: 20
  start-page: 2008
  year: 2003
  ident: 10.1016/j.actbio.2021.04.009_bib0122
  article-title: Controlled release of insulin from injectable biodegradable triblock copolymer depot in ZDF rats
  publication-title: Pharm. Res.
  doi: 10.1023/B:PHAM.0000008050.99985.5c
– volume: 45
  start-page: 1122
  year: 2007
  ident: 10.1016/j.actbio.2021.04.009_bib0080
  article-title: Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.21876
– volume: 123
  start-page: 254
  year: 2021
  ident: 10.1016/j.actbio.2021.04.009_bib0035
  article-title: Mussel-inspired poly(gamma-gl utamic acid)/nanosilicate composite hydrogels with enhanced mechanical properties, tissue adhesive properties, and skin tissue regeneration
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.01.014
– volume: 368
  start-page: 1696
  year: 2006
  ident: 10.1016/j.actbio.2021.04.009_bib0147
  article-title: The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)69705-5
– volume: 110
  start-page: 82
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0017
  article-title: Redox injectable gel protects osteoblastic function against oxidative stress and suppresses alveolar bone loss in a rat peri-implantitis model
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.04.003
– volume: 61
  start-page: 785
  year: 2009
  ident: 10.1016/j.actbio.2021.04.009_bib0129
  article-title: OncoGel (ReGel/paclitaxel) - clinical applications for a novel paclitaxel delivery system
  publication-title: Adv. Drug Deliver. Rev.
  doi: 10.1016/j.addr.2009.04.010
– volume: 46
  start-page: 5075
  year: 2005
  ident: 10.1016/j.actbio.2021.04.009_bib0074
  article-title: New thermogelling poly(organophosphazenes) with methoxypoly(ethylene glycol) and oligopeptide as side groups
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.04.024
– volume: 10
  start-page: 155
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0152
  article-title: The discovery and development of liraglutide and semaglutide
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2019.00155
– volume: 209
  start-page: 120
  year: 2015
  ident: 10.1016/j.actbio.2021.04.009_bib0045
  article-title: Recent progress in biomedical applications of Pluronic (PF127): pharmaceutical perspectives
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.04.032
– volume: 8
  start-page: 4260
  year: 2012
  ident: 10.1016/j.actbio.2021.04.009_bib0088
  article-title: Modulating rheological and degradation properties of temperature-responsive gelling systems composed of blends of PCLA-PEG-PCLA triblock copolymers and their fully hexanoyl-capped derivatives
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.07.044
– volume: 4
  start-page: 7793
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0104
  article-title: Functional biomedical hydrogels for in vivo imaging
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB02019D
– volume: 4
  start-page: 6524
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0026
  article-title: pH-Sensitive sulfamethazine-based hydrogels as potential embolic agents for transcatheter vascular embolization
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB01690A
– volume: 33
  start-page: 8317
  year: 2000
  ident: 10.1016/j.actbio.2021.04.009_bib0064
  article-title: Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA
  publication-title: Macromolecules
  doi: 10.1021/ma000638v
– volume: 35
  start-page: 3876
  year: 2002
  ident: 10.1016/j.actbio.2021.04.009_bib0073
  article-title: A thermosensitive poly(organophosphazene) gel
  publication-title: Macromolecules
  doi: 10.1021/ma012093q
– volume: 132
  start-page: 16
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0127
  article-title: Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.03.049
– volume: 218
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0196
  article-title: 3D hydrogel stem cell niche controlled by host-guest interaction affects stem cell fate and survival rate
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119338
– volume: 34
  start-page: 147
  year: 2015
  ident: 10.1016/j.actbio.2021.04.009_bib0115
  article-title: An injectable hydrogel with or without drugs for prevention of epidural scar adhesion after laminectomy in rats
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-016-1740-5
– volume: 10
  start-page: 1251
  year: 2014
  ident: 10.1016/j.actbio.2021.04.009_bib0117
  article-title: Poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) thermogel as a novel submucosal cushion for endoscopic submucosal dissection
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.12.007
– volume: 6
  start-page: 249
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0036
  article-title: In situ sol-gel synthesis of hyaluronan derivatives bio-nanocomposite hydrogels
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbz029
– volume: 22
  start-page: 6072
  year: 2012
  ident: 10.1016/j.actbio.2021.04.009_bib0093
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm15419f
– volume: 30
  start-page: E283
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0116
  article-title: Efficacy of poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) thermogel as a barrier to prevent spinal epidural fibrosis in a postlaminectomy rat model
  publication-title: Clin. Spine Surg.
  doi: 10.1097/BSD.0000000000000221
– volume: 8
  start-page: 980
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0101
  article-title: An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB02523E
– volume: 13
  start-page: 1106
  year: 2012
  ident: 10.1016/j.actbio.2021.04.009_bib0175
  article-title: Cell therapy for skin wound using fibroblast encapsulated poly(ethylene glycol)-poly(L-alanine) thermogel
  publication-title: Biomacromolecules
  doi: 10.1021/bm2018596
– volume: 108
  start-page: 87
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0012
  article-title: A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivo
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.03.039
– volume: 8
  start-page: 30703
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0128
  article-title: Injectable and thermosensitive hydrogel containing liraglutide as a long-acting antidiabetic system
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09415
– volume: 6
  start-page: 31593
  year: 2016
  ident: 10.1016/j.actbio.2021.04.009_bib0076
  article-title: Controlled release of liraglutide using thermogelling polymers in treatment of diabetes
  publication-title: Sci. Rep.
  doi: 10.1038/srep31593
– volume: 348
  start-page: 95
  year: 2008
  ident: 10.1016/j.actbio.2021.04.009_bib0131
  article-title: Injectable block copolymer hydrogels for sustained release of a PEGylated drug
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2007.07.026
– start-page: 997
  year: 2018
  ident: 10.1016/j.actbio.2021.04.009_bib0025
  article-title: Injectable thermogels based on block copolymers of appropriate amphiphilicity
  publication-title: Acta Polym. Sin.
– volume: 31
  start-page: 2453
  year: 2010
  ident: 10.1016/j.actbio.2021.04.009_bib0103
  article-title: A biodegradable, injectable, gel system based on MPEG-b-(PCL-ran-PLLA) diblock copolymers with an adjustable therapeutic window
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.11.115
– volume: 268
  start-page: 176
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0139
  article-title: Pre-clinical evaluation of a themosensitive gel containing epothilone B and mTOR/Hsp90 targeted agents in an ovarian tumor model
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.10.022
– volume: 22
  start-page: 669
  year: 2014
  ident: 10.1016/j.actbio.2021.04.009_bib0140
  article-title: Thermosensitive poly-(d,l-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(d,l-lactide-co-glycolide) hydrogels for multi-drug delivery
  publication-title: J. Drug Target.
  doi: 10.3109/1061186X.2014.931406
– volume: 9
  start-page: 6080
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0135
  article-title: Injectable hydrogels for the sustained delivery of a HER2-targeted antibody for preventing local relapse of HER2+breast cancer after breast-conserving surgery
  publication-title: Theranostics
  doi: 10.7150/thno.36514
– volume: 86
  start-page: 235
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0007
  article-title: An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.01.001
– volume: 122
  start-page: 91
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0180
  article-title: Tuning physical properties and BMP-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.01.016
– volume: 48
  start-page: 4786
  year: 2007
  ident: 10.1016/j.actbio.2021.04.009_bib0055
  article-title: Injectable hydrogels of poly(ɛ-caprolactone-co-glycolide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-glycolide) triblock copolymer aqueous solutions
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.06.003
– volume: 11
  start-page: 2169
  year: 2010
  ident: 10.1016/j.actbio.2021.04.009_bib0086
  article-title: Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water
  publication-title: Biomacromolecules
  doi: 10.1021/bm100549q
– volume: 35
  start-page: 284
  year: 2019
  ident: 10.1016/j.actbio.2021.04.009_bib0166
  article-title: Proliferation of cells with severe nuclear deformation on a micropillar array
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b03452
– volume: 112
  start-page: 248
  year: 2017
  ident: 10.1016/j.actbio.2021.04.009_bib0028
  article-title: Temperature responsive chemical crosslinkable UV pretreated hydrogel for application to injectable tissue regeneration system via differentiations of encapsulated hMSCs
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.10.025
– volume: 4
  year: 2020
  ident: 10.1016/j.actbio.2021.04.009_bib0098
  article-title: Visualizing the in vivo evolution of an injectable and thermosensitive hydrogel using tri-modal bioimaging
  publication-title: Small Methods
  doi: 10.1002/smtd.202000310
– volume: 167
  start-page: 143
  year: 2018
  ident: 10.1016/j.actbio.2021.04.009_bib0041
  article-title: Novel angiogenesis therapeutics by redox injectable hydrogel - Regulation of local nitric oxide generation for effective cardiovascular therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.03.023
SSID ssj0038128
Score 2.6720083
SecondaryResourceType review_article
Snippet Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 42
SubjectTerms Biodegradability
Biodegradation
Biomedical materials
Body temperature
Copolymers
Hydrogels
PEG
Poly(organophosphazene)
Polyester
Polyethylene glycol
Polymers
Polypeptide
Polypeptides
Room temperature
Scaffolds
Thermosensitive hydrogel
Title PEG-based thermosensitive and biodegradable hydrogels
URI https://dx.doi.org/10.1016/j.actbio.2021.04.009
https://www.ncbi.nlm.nih.gov/pubmed/33857694
https://www.proquest.com/docview/2553853795
https://www.proquest.com/docview/2514592488
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EL3oQ364vKniN20fSdI8i6qooggreQp66ot1F14MXf7szfSwKiuCx7QSGSTLfN3TyBWAvIKSKYArmpbaMI-CywqaYDJ3IHGKS95VI0sVl3r_lZ3fibgoO27Mw1FbZ5P46p1fZunnTbaLZHQ0G3Wvk0qmMKwUsBJqcNEE5l7TK9z8mbR4ISNX9qmTMyLo9Plf1eGk7NgM6ApgmleAptSX-DE-_0c8Kho4XYL7hj9FB7eIiTPlyCea-qAoug7g6OmGETi4idvc8fKUmdUprkS5dhK44UohwdGgqenh3L8N79GAFbo-Pbg77rLkdgVkkPWOWeMcLK4MNLquJEpYuRvqQxDbvFVynPe1ynvAQJ4bbvAhecxOcDpkRIY2zVZguh6Vfh8gK73ObS-mM45k1xvMsD85KLjTyB9-BrA2Kso10ON1g8aTaHrFHVYdSUShVzBV61AE2GTWqpTP-sJdtvNW3JaAwu_8xcqudHtVswVeFtVKGXET2RAd2J59x89AfEV364RvZJFxgBVoUHVirp3XiKtbuWIv1-Ma_3dqEWXqqm3u3YHr88ua3kcKMzU61Rndg5uD0vH_5CYN-75o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6lyYFyqIC2kJbHInG1sg97vTkiBCQEIiRA4mb5CUHtBkE49N93Zh9RkYqQuK5taTS25_tGO_MZ4CAgpIpgCualtowj4LLCphgMncgcYpL3lUjSxTQf3fCzW3HbgaO2F4bKKpvYX8f0Klo3XwaNNwePs9ngCrl0KuNKAQuBJuefoEfqVKILvcPxZDRtAzJiUvXEKs1ntKDtoKvKvLRdmBl1AaZJpXlKlYn_R6i3GGiFRCdr8KWhkNFhbeU6dHy5Aav_CAt-BXF5fMoIoFxEBO_3_Jnq1CmyRbp0EZriSCTCUd9UdP_HPc3v0IJvcHNyfH00Ys0DCcwi71mwxDteWBlscFnNlTB7MdKHJLb5sOA6HWqX84SHODHc5kXwmpvgdMiMCGmcfYduOS_9FkRWeJ_bXEpnHM-sMZ5neXBWcqGRQvg-ZK1TlG3Uw-kRi1-qLRN7ULUrFblSxVyhRX1gy1WPtXrGO_Nl62_16hQoDPDvrNxut0c1t_BZYbqUIR2RQ9GH_eUw3h_6KaJLP3-hOQkXmIQWRR82621dmorpO6ZjQ_7jw2btwcro-uJcnY-nk5_wmUbqWt9t6C6eXvwOMpqF2W1O7F-9ZPJL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PEG-based+thermosensitive+and+biodegradable+hydrogels&rft.jtitle=Acta+biomaterialia&rft.au=Shi%2C+Jiayue&rft.au=Yu%2C+Lin&rft.au=Ding%2C+Jiandong&rft.date=2021-07-01&rft.issn=1878-7568&rft.eissn=1878-7568&rft.volume=128&rft.spage=42&rft_id=info:doi/10.1016%2Fj.actbio.2021.04.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon