Evaluation of fit for 3D-printed retainers compared with thermoform retainers
In the literature, there is little information available on 3D-printed orthodontic retainers. This study examined the accuracy of 3D-printed retainers compared with conventional vacuum-formed and commercially available vacuum-formed retainers. Three reference models (models 1, 2, and 3) were used to...
Saved in:
Published in | American journal of orthodontics and dentofacial orthopedics Vol. 155; no. 4; pp. 592 - 599 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the literature, there is little information available on 3D-printed orthodontic retainers. This study examined the accuracy of 3D-printed retainers compared with conventional vacuum-formed and commercially available vacuum-formed retainers.
Three reference models (models 1, 2, and 3) were used to fabricate traditional vacuum-formed, commercially available vacuum-formed, and 3D-printed retainers. For each model, retainers were made using the 3 methods (a total of 27 retainers). To determine the trueness, ie, closeness of a model to a true model, the distance between the retainer and its digital model at reference points were calculated with the use of engineering software. The measurements were reported as average absolute observed values and compared with those of the conventional vacuum-formed retainers.
Average differences of the conventional vacuum-formed retainers ranged from 0.10 to 0.20 mm. The commercially available and 3D-printed retainers had ranges of 0.10 to 0.30 mm and 0.10 to 0.40 mm, respectively.
The conventional vacuum-formed retainers showed the least amount of deviation from the original reference models and the 3D-printed retainers showed the greatest deviation. However, all 3 methods yielded measurements within 0.5 mm, which has previously been accepted to be clinically sufficient.
•The traditional vacuum-formed retainers had the least amount of deviation from the original model.•3D-printed retainers are good alternatives to the traditional vacuum-formed retainers.•Retainers may be successfully 3D printed with the use of stereolithography technology. |
---|---|
AbstractList | In the literature, there is little information available on 3D-printed orthodontic retainers. This study examined the accuracy of 3D-printed retainers compared with conventional vacuum-formed and commercially available vacuum-formed retainers.
Three reference models (models 1, 2, and 3) were used to fabricate traditional vacuum-formed, commercially available vacuum-formed, and 3D-printed retainers. For each model, retainers were made using the 3 methods (a total of 27 retainers). To determine the trueness, ie, closeness of a model to a true model, the distance between the retainer and its digital model at reference points were calculated with the use of engineering software. The measurements were reported as average absolute observed values and compared with those of the conventional vacuum-formed retainers.
Average differences of the conventional vacuum-formed retainers ranged from 0.10 to 0.20 mm. The commercially available and 3D-printed retainers had ranges of 0.10 to 0.30 mm and 0.10 to 0.40 mm, respectively.
The conventional vacuum-formed retainers showed the least amount of deviation from the original reference models and the 3D-printed retainers showed the greatest deviation. However, all 3 methods yielded measurements within 0.5 mm, which has previously been accepted to be clinically sufficient.
•The traditional vacuum-formed retainers had the least amount of deviation from the original model.•3D-printed retainers are good alternatives to the traditional vacuum-formed retainers.•Retainers may be successfully 3D printed with the use of stereolithography technology. In the literature, there is little information available on 3D-printed orthodontic retainers. This study examined the accuracy of 3D-printed retainers compared with conventional vacuum-formed and commercially available vacuum-formed retainers.INTRODUCTIONIn the literature, there is little information available on 3D-printed orthodontic retainers. This study examined the accuracy of 3D-printed retainers compared with conventional vacuum-formed and commercially available vacuum-formed retainers.Three reference models (models 1, 2, and 3) were used to fabricate traditional vacuum-formed, commercially available vacuum-formed, and 3D-printed retainers. For each model, retainers were made using the 3 methods (a total of 27 retainers). To determine the trueness, ie, closeness of a model to a true model, the distance between the retainer and its digital model at reference points were calculated with the use of engineering software. The measurements were reported as average absolute observed values and compared with those of the conventional vacuum-formed retainers.METHODSThree reference models (models 1, 2, and 3) were used to fabricate traditional vacuum-formed, commercially available vacuum-formed, and 3D-printed retainers. For each model, retainers were made using the 3 methods (a total of 27 retainers). To determine the trueness, ie, closeness of a model to a true model, the distance between the retainer and its digital model at reference points were calculated with the use of engineering software. The measurements were reported as average absolute observed values and compared with those of the conventional vacuum-formed retainers.Average differences of the conventional vacuum-formed retainers ranged from 0.10 to 0.20 mm. The commercially available and 3D-printed retainers had ranges of 0.10 to 0.30 mm and 0.10 to 0.40 mm, respectively.RESULTSAverage differences of the conventional vacuum-formed retainers ranged from 0.10 to 0.20 mm. The commercially available and 3D-printed retainers had ranges of 0.10 to 0.30 mm and 0.10 to 0.40 mm, respectively.The conventional vacuum-formed retainers showed the least amount of deviation from the original reference models and the 3D-printed retainers showed the greatest deviation. However, all 3 methods yielded measurements within 0.5 mm, which has previously been accepted to be clinically sufficient.CONCLUSIONSThe conventional vacuum-formed retainers showed the least amount of deviation from the original reference models and the 3D-printed retainers showed the greatest deviation. However, all 3 methods yielded measurements within 0.5 mm, which has previously been accepted to be clinically sufficient. In the literature, there is little information available on 3D-printed orthodontic retainers. This study examined the accuracy of 3D-printed retainers compared with conventional vacuum-formed and commercially available vacuum-formed retainers. Three reference models (models 1, 2, and 3) were used to fabricate traditional vacuum-formed, commercially available vacuum-formed, and 3D-printed retainers. For each model, retainers were made using the 3 methods (a total of 27 retainers). To determine the trueness, ie, closeness of a model to a true model, the distance between the retainer and its digital model at reference points were calculated with the use of engineering software. The measurements were reported as average absolute observed values and compared with those of the conventional vacuum-formed retainers. Average differences of the conventional vacuum-formed retainers ranged from 0.10 to 0.20 mm. The commercially available and 3D-printed retainers had ranges of 0.10 to 0.30 mm and 0.10 to 0.40 mm, respectively. The conventional vacuum-formed retainers showed the least amount of deviation from the original reference models and the 3D-printed retainers showed the greatest deviation. However, all 3 methods yielded measurements within 0.5 mm, which has previously been accepted to be clinically sufficient. |
Author | Arias, Andrew Tüfekçi, Eser Cole, David Bencharit, Sompop Carrico, Caroline K. |
Author_xml | – sequence: 1 givenname: David surname: Cole fullname: Cole, David organization: Department of Orthodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Va – sequence: 2 givenname: Sompop surname: Bencharit fullname: Bencharit, Sompop organization: Department of General Practice, School of Dentistry, Virginia Commonwealth University, Richmond, Va – sequence: 3 givenname: Caroline K. surname: Carrico fullname: Carrico, Caroline K. organization: Oral Health Promotion and Community Outreach, Oral Health Research Core, Virginia Commonwealth University, Richmond, Va – sequence: 4 givenname: Andrew surname: Arias fullname: Arias, Andrew organization: School of Dentistry, Virginia Commonwealth University, Richmond, Va – sequence: 5 givenname: Eser orcidid: 0000-0002-9379-7316 surname: Tüfekçi fullname: Tüfekçi, Eser email: etufekci@vcu.edu organization: Department of Orthodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Va |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30935614$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEFr2zAUgMXIWNNuv2BQfNzF7pNl2RKlh5Fm7SCll-0sFOmZKrOtVFJa-u9nN90KuQQED8T3PXjfKZkNfkBCvlIoKND6YlPojbe-KIGKAmQBlH4gcwqyyeuGlzMyByFkziuoT8hpjBsAkFUJn8gJA8l4Tas5uVs-6W6nk_ND5tusdSlrfcjYdb4Nbkhos4BJuwFDzIzvtzqMX88uPWTpAUPvR7h_Rz6Tj63uIn55m2fk94_lr8Vtvrq_-bn4vspNxeuUU6y0Zrzh0rJSWCZYqysj2zWrmwao1EI0DbdaGsvYWgLjXEBJGbYVa4Rm7Ix82-_dBv-4w5hU76LBrtMD-l1UZQnTq8WEnr-hu3WPVo1n9Tq8qH8JRoDtARN8jAHb_wgFNYVWG_UaWk2hFUg1hh4teWAZl14zpqBdd8S92rs4JnpyGFQ0DgeD1gU0SVnvjviXB77p3OCM7v7gy1H7L0k7rQo |
CitedBy_id | crossref_primary_10_1080_03091902_2025_2466198 crossref_primary_10_1177_03015742241253947 crossref_primary_10_3390_dj10070123 crossref_primary_10_1002_cre2_366 crossref_primary_10_1016_j_ajodo_2020_12_022 crossref_primary_10_3390_nano13192649 crossref_primary_10_3390_app14093837 crossref_primary_10_3390_polym13081236 crossref_primary_10_1007_s00784_023_04983_7 crossref_primary_10_1038_s41598_023_36851_5 crossref_primary_10_1177_1465312520936704 crossref_primary_10_3390_children10040676 crossref_primary_10_1016_j_ortho_2021_01_005 crossref_primary_10_1016_j_ajodo_2023_08_005 crossref_primary_10_1053_j_sodo_2019_10_006 crossref_primary_10_12968_ortu_2023_16_4_177 crossref_primary_10_1016_j_ajodo_2020_06_033 crossref_primary_10_4041_kjod21_269 crossref_primary_10_3390_biomedicines13010044 crossref_primary_10_1038_s41598_022_09831_4 crossref_primary_10_1007_s00056_024_00570_x crossref_primary_10_1038_s41598_025_86687_4 crossref_primary_10_18261_issn_2058_7538_2020_01_13 crossref_primary_10_2319_102622_734_1 crossref_primary_10_3390_polym15092164 crossref_primary_10_3390_app13148111 crossref_primary_10_1186_s12903_020_01338_6 crossref_primary_10_3389_fmats_2024_1438660 crossref_primary_10_2478_aoj_2024_0008 crossref_primary_10_1016_j_bioactmat_2022_10_006 crossref_primary_10_3390_app15031345 crossref_primary_10_1038_s41405_022_00108_6 crossref_primary_10_4103_jips_jips_41_21 crossref_primary_10_2186_ajps_15_64 crossref_primary_10_1016_j_ajodo_2020_09_027 crossref_primary_10_4274_TurkJOrthod_2022_2021_0074 crossref_primary_10_1007_s10853_021_06811_3 crossref_primary_10_3390_app132111952 crossref_primary_10_17533_udea_rfo_v33n1a1 crossref_primary_10_1016_j_ejwf_2022_10_001 crossref_primary_10_1016_j_ajodo_2022_12_008 crossref_primary_10_1016_j_ajodo_2024_06_010 crossref_primary_10_1016_j_ajodo_2020_07_029 crossref_primary_10_1007_s00056_022_00424_4 crossref_primary_10_7759_cureus_54740 crossref_primary_10_1016_j_jdent_2024_105108 crossref_primary_10_1016_j_ajodo_2021_01_020 crossref_primary_10_1088_1742_6596_2487_1_012020 crossref_primary_10_22974_jkda_2024_62_5_004 crossref_primary_10_1016_j_jpor_2019_07_010 crossref_primary_10_3390_ma16062166 crossref_primary_10_1002_cre2_827 crossref_primary_10_1111_jopr_13138 crossref_primary_10_1007_s40964_024_00706_w crossref_primary_10_1016_j_ajodo_2021_03_016 crossref_primary_10_25259_APOS_201_2023 crossref_primary_10_3390_ma13194419 crossref_primary_10_18231_j_jco_2024_062 crossref_primary_10_3889_oamjms_2022_7874 crossref_primary_10_1186_s12903_024_04522_0 crossref_primary_10_1016_j_ajodo_2023_10_006 crossref_primary_10_1080_13440241_2020_1814522 |
Cites_doi | 10.1186/1475-925X-12-49 10.1016/j.ajodo.2015.04.025 10.1016/j.bjoms.2014.04.010 10.1308/147363514X13990346756481 10.1080/03091900050163427 10.1016/j.ajodo.2013.04.024 10.1016/j.ajodo.2017.05.025 10.1007/s13191-011-0103-8 10.1016/j.ajodo.2013.05.011 10.1016/S0022-3913(13)60028-1 10.1093/ejo/cju075 10.1016/j.ajodo.2015.06.029 10.1016/j.joms.2017.08.001 10.1067/mod.2001.115459 10.2319/01091-727.1 10.1016/j.ajodo.2014.01.025 10.1016/j.ajodo.2005.10.005 10.4236/ojmi.2017.74017 10.11607/jomi.3265 |
ContentType | Journal Article |
Copyright | 2019 American Association of Orthodontists Copyright © 2019 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 American Association of Orthodontists – notice: Copyright © 2019 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.ajodo.2018.09.011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Dentistry |
EISSN | 1097-6752 |
EndPage | 599 |
ExternalDocumentID | 30935614 10_1016_j_ajodo_2018_09_011 S088954061831117X |
Genre | Journal Article Comparative Study |
GrantInformation_xml | – fundername: Southern Association of Orthodontists Research – fundername: Virginia Commonwealth University Alexander Research |
GroupedDBID | --- --K --M .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAGKA AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABLJU ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CAG COF CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDX HMK HMO HVGLF HZ~ IHE J1W KOM LH1 M29 M41 MO0 N9A O-L O9- OAUVE OB- OM. OVD OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SEL SES SEW SJN SPCBC SSH SSZ T5K TEORI UHS UV1 WUQ X7M Z5R ZGI ZXP ~G- AACTN AAIAV ABLVK ABYKQ AFKWA AHPSJ AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AFCTW AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c456t-1e4aa35759d328d383fa4c9fb3677019a88775da9cd33b9035580213ef4378a33 |
IEDL.DBID | .~1 |
ISSN | 0889-5406 1097-6752 |
IngestDate | Fri Jul 11 07:42:19 EDT 2025 Wed Feb 19 02:36:51 EST 2025 Tue Jul 01 00:35:51 EDT 2025 Thu Apr 24 22:56:03 EDT 2025 Fri Feb 23 02:21:44 EST 2024 Tue Aug 26 19:00:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2019 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-1e4aa35759d328d383fa4c9fb3677019a88775da9cd33b9035580213ef4378a33 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0002-9379-7316 |
OpenAccessLink | http://www.ajodo.org/article/S088954061831117X/pdf |
PMID | 30935614 |
PQID | 2202202683 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2202202683 pubmed_primary_30935614 crossref_primary_10_1016_j_ajodo_2018_09_011 crossref_citationtrail_10_1016_j_ajodo_2018_09_011 elsevier_sciencedirect_doi_10_1016_j_ajodo_2018_09_011 elsevier_clinicalkey_doi_10_1016_j_ajodo_2018_09_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2019 2019-04-00 2019-Apr 20190401 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of orthodontics and dentofacial orthopedics |
PublicationTitleAlternate | Am J Orthod Dentofacial Orthop |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Whitaker (bib10) 2014; 96 Nasef, El-Beialy, Eid, Mostafa (bib21) 2017; 7 Hazeveld, Huddleston Slater, Ren (bib13) 2014; 145 Webb (bib8) 2000; 24 Dietrich, Ender, Baumgartner, Mehl (bib15) 2017; 87 Ventola (bib11) 2014; 39 Johal, Sharma, McLaughlin, Zou (bib25) 2015; 37 Kravitz, Groth, Jones, Graham, Redmond (bib12) 2014; 48 Kasparova, Grafova, Dvorak (bib1) 2013; 12 Sweeney, Smith, Messersmith (bib17) 2015; 148 Saunders (bib26) 2018 Hull (bib9) 1986 Deeb, Allen, Hall, Whitley, Laskin, Bencharit (bib24) 2017; 75 Park, Yi, Koak, Kim, Park, Heo (bib5) 2014; 29 Ciuffolo, Epifania, Durant (bib23) 2006; 129 Ender, Mehl (bib27) 2013; 109 Nasef, El-Beialy, Mostafa (bib20) 2014; 145 Kabot (bib19) 2017 Groth, Neal, Shirck (bib4) 2018; 52 Halazonetis (bib16) 2001; 119 Kravitz, Groth, Shannon (bib7) 2018; 52 Akyalcin, Cozad, English, Colville, Laman (bib2) 2013; 144 Kim, Shin, Jung, Hwang, Baik, Cha (bib18) 2018; 153 Murugesan, Anandapandian, Sharma, Vasantha Kuma (bib14) 2012; 12 Groth, Kravitz, Jones, Graham, Redmond (bib6) 2014; 48 Rossini, Parrini, Castroflorio, Deregibus, Debernardi (bib3) 2016; 149 Shqaidef, Ayoub, Khambay (bib22) 2014; 52 Deeb (10.1016/j.ajodo.2018.09.011_bib24) 2017; 75 Sweeney (10.1016/j.ajodo.2018.09.011_bib17) 2015; 148 Murugesan (10.1016/j.ajodo.2018.09.011_bib14) 2012; 12 Ender (10.1016/j.ajodo.2018.09.011_bib27) 2013; 109 Kasparova (10.1016/j.ajodo.2018.09.011_bib1) 2013; 12 Webb (10.1016/j.ajodo.2018.09.011_bib8) 2000; 24 Saunders (10.1016/j.ajodo.2018.09.011_bib26) Halazonetis (10.1016/j.ajodo.2018.09.011_bib16) 2001; 119 Akyalcin (10.1016/j.ajodo.2018.09.011_bib2) 2013; 144 Ciuffolo (10.1016/j.ajodo.2018.09.011_bib23) 2006; 129 Nasef (10.1016/j.ajodo.2018.09.011_bib20) 2014; 145 Whitaker (10.1016/j.ajodo.2018.09.011_bib10) 2014; 96 Johal (10.1016/j.ajodo.2018.09.011_bib25) 2015; 37 Park (10.1016/j.ajodo.2018.09.011_bib5) 2014; 29 Hazeveld (10.1016/j.ajodo.2018.09.011_bib13) 2014; 145 Shqaidef (10.1016/j.ajodo.2018.09.011_bib22) 2014; 52 Kim (10.1016/j.ajodo.2018.09.011_bib18) 2018; 153 Kravitz (10.1016/j.ajodo.2018.09.011_bib7) 2018; 52 Hull (10.1016/j.ajodo.2018.09.011_bib9) Kabot (10.1016/j.ajodo.2018.09.011_bib19) 2017 Nasef (10.1016/j.ajodo.2018.09.011_bib21) 2017; 7 Rossini (10.1016/j.ajodo.2018.09.011_bib3) 2016; 149 Dietrich (10.1016/j.ajodo.2018.09.011_bib15) 2017; 87 Groth (10.1016/j.ajodo.2018.09.011_bib4) 2018; 52 Ventola (10.1016/j.ajodo.2018.09.011_bib11) 2014; 39 Kravitz (10.1016/j.ajodo.2018.09.011_bib12) 2014; 48 Groth (10.1016/j.ajodo.2018.09.011_bib6) 2014; 48 |
References_xml | – volume: 129 start-page: 75 year: 2006 end-page: 77 ident: bib23 article-title: Rapid prototyping: a new method of preparing trays for indirect bonding publication-title: Am J Orthod Dentofacial Orthop – volume: 52 start-page: 28 year: 2018 end-page: 33 ident: bib4 article-title: Incorporating three-dimensional printing in orthodontics publication-title: J Clin Orthod – volume: 48 start-page: 337 year: 2014 end-page: 347 ident: bib12 article-title: Intraoral digital scanners publication-title: J Clin Orthod – volume: 52 start-page: 609 year: 2014 end-page: 614 ident: bib22 article-title: How accurate are rapid prototyped (RP) final orthognathic surgical wafers? A pilot study publication-title: Br J Oral Maxillofac Surg – year: 1986 ident: bib9 article-title: Apparatus for production of three-dimensional objects by stereolithography. US4575330 A – volume: 109 start-page: 121 year: 2013 end-page: 128 ident: bib27 article-title: Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision publication-title: J Prosthet Dent – volume: 12 start-page: 49 year: 2013 ident: bib1 article-title: Possibility of reconstruction of dental plaster cast from 3D digital study models publication-title: Biomed Eng Online – volume: 29 start-page: 374 year: 2014 end-page: 383 ident: bib5 article-title: Comparison of five-axis milling and rapid prototyping for implant surgical templates publication-title: Int J Oral Maxillofac Implants – volume: 96 start-page: 228 year: 2014 end-page: 229 ident: bib10 article-title: The history of 3D printing in healthcare publication-title: Bull R Coll Surg Engl – volume: 7 start-page: 169 year: 2017 end-page: 179 ident: bib21 article-title: Accuracy of orthodontic 3D printed retainers versus thermoformed retainers publication-title: Open J Med Imaging – volume: 148 start-page: 245 year: 2015 end-page: 252 ident: bib17 article-title: Comparison of 5 types of interocclusal recording materials on the accuracy of articulation of digital models publication-title: Am J Orthod Dentofacial Orthop – volume: 145 start-page: 108 year: 2014 end-page: 115 ident: bib13 article-title: Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques publication-title: Am J Orthod Dentofacial Orthop – volume: 48 start-page: 475 year: 2014 end-page: 485 ident: bib6 article-title: Three-dimensional printing technology publication-title: J Clin Orthod – volume: 24 start-page: 149 year: 2000 end-page: 153 ident: bib8 article-title: A review of rapid prototyping (RP) technologies in the medical and biomedical sector publication-title: J Med Eng Technol – year: 2017 ident: bib19 article-title: Private communication – volume: 87 start-page: 782 year: 2017 end-page: 787 ident: bib15 article-title: A validation study of reconstructed rapid prototyping models produced by two technologies publication-title: Angle Orthod – year: 2018 ident: bib26 article-title: EnvisionTEC's steady, stealthy rise in orthodontics 3D printing. 3Dprint.com – volume: 153 start-page: 144 year: 2018 end-page: 153 ident: bib18 article-title: Precision and trueness of dental models manufactured with different 3-dimensional printing techniques publication-title: Am J Orthod Dentofacial Orthop – volume: 52 start-page: 22 year: 2018 end-page: 27 ident: bib7 article-title: CAD/CAM software for three-dimensional printing publication-title: J Clin Orthod – volume: 149 start-page: 161 year: 2016 end-page: 170 ident: bib3 article-title: Diagnostic accuracy and measurement sensitivity of digital models for orthodontic purposes: a systematic review publication-title: Am J Orthod Dentofacial Orthop – volume: 39 start-page: 704 year: 2014 end-page: 711 ident: bib11 article-title: Medical applications for 3D printing: current and projected uses publication-title: Pharm Ther – volume: 144 start-page: 916 year: 2013 end-page: 922 ident: bib2 article-title: Diagnostic accuracy of impression-free digital models publication-title: Am J Orthod Dentofacial Orthop – volume: 37 start-page: 503 year: 2015 end-page: 507 ident: bib25 article-title: The reliability of thermoform retainers: a laboratory-based comparative study publication-title: Eur J Orthod – volume: 75 start-page: 2559.e1 year: 2017 end-page: 2559.e8 ident: bib24 article-title: How accurate are implant surgical guides produced with desktop stereolithographic 3-dimensional printers? publication-title: J Oral Maxillofac Surg – volume: 12 start-page: 16 year: 2012 end-page: 20 ident: bib14 article-title: Comparative evaluation of dimension and surface detail accuracy of models produced by three different rapid prototype techniques publication-title: J Indian Prosthodont Soc – volume: 119 start-page: 556 year: 2001 end-page: 560 ident: bib16 article-title: Acquisition of 3-dimensional shapes from images publication-title: Am J Orthod Dentofacial Orthop – volume: 145 start-page: 394 year: 2014 end-page: 398 ident: bib20 article-title: Virtual techniques for designing and fabricating a retainer publication-title: Am J Orthod Dentofacial Orthop – volume: 12 start-page: 49 year: 2013 ident: 10.1016/j.ajodo.2018.09.011_bib1 article-title: Possibility of reconstruction of dental plaster cast from 3D digital study models publication-title: Biomed Eng Online doi: 10.1186/1475-925X-12-49 – volume: 48 start-page: 337 year: 2014 ident: 10.1016/j.ajodo.2018.09.011_bib12 article-title: Intraoral digital scanners publication-title: J Clin Orthod – volume: 148 start-page: 245 year: 2015 ident: 10.1016/j.ajodo.2018.09.011_bib17 article-title: Comparison of 5 types of interocclusal recording materials on the accuracy of articulation of digital models publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2015.04.025 – volume: 52 start-page: 609 year: 2014 ident: 10.1016/j.ajodo.2018.09.011_bib22 article-title: How accurate are rapid prototyped (RP) final orthognathic surgical wafers? A pilot study publication-title: Br J Oral Maxillofac Surg doi: 10.1016/j.bjoms.2014.04.010 – volume: 96 start-page: 228 year: 2014 ident: 10.1016/j.ajodo.2018.09.011_bib10 article-title: The history of 3D printing in healthcare publication-title: Bull R Coll Surg Engl doi: 10.1308/147363514X13990346756481 – volume: 24 start-page: 149 year: 2000 ident: 10.1016/j.ajodo.2018.09.011_bib8 article-title: A review of rapid prototyping (RP) technologies in the medical and biomedical sector publication-title: J Med Eng Technol doi: 10.1080/03091900050163427 – volume: 144 start-page: 916 year: 2013 ident: 10.1016/j.ajodo.2018.09.011_bib2 article-title: Diagnostic accuracy of impression-free digital models publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2013.04.024 – volume: 153 start-page: 144 year: 2018 ident: 10.1016/j.ajodo.2018.09.011_bib18 article-title: Precision and trueness of dental models manufactured with different 3-dimensional printing techniques publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2017.05.025 – volume: 12 start-page: 16 year: 2012 ident: 10.1016/j.ajodo.2018.09.011_bib14 article-title: Comparative evaluation of dimension and surface detail accuracy of models produced by three different rapid prototype techniques publication-title: J Indian Prosthodont Soc doi: 10.1007/s13191-011-0103-8 – volume: 145 start-page: 108 year: 2014 ident: 10.1016/j.ajodo.2018.09.011_bib13 article-title: Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2013.05.011 – volume: 109 start-page: 121 year: 2013 ident: 10.1016/j.ajodo.2018.09.011_bib27 article-title: Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision publication-title: J Prosthet Dent doi: 10.1016/S0022-3913(13)60028-1 – volume: 37 start-page: 503 year: 2015 ident: 10.1016/j.ajodo.2018.09.011_bib25 article-title: The reliability of thermoform retainers: a laboratory-based comparative study publication-title: Eur J Orthod doi: 10.1093/ejo/cju075 – ident: 10.1016/j.ajodo.2018.09.011_bib9 – volume: 149 start-page: 161 year: 2016 ident: 10.1016/j.ajodo.2018.09.011_bib3 article-title: Diagnostic accuracy and measurement sensitivity of digital models for orthodontic purposes: a systematic review publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2015.06.029 – year: 2017 ident: 10.1016/j.ajodo.2018.09.011_bib19 – volume: 75 start-page: 2559.e1 year: 2017 ident: 10.1016/j.ajodo.2018.09.011_bib24 article-title: How accurate are implant surgical guides produced with desktop stereolithographic 3-dimensional printers? publication-title: J Oral Maxillofac Surg doi: 10.1016/j.joms.2017.08.001 – volume: 119 start-page: 556 year: 2001 ident: 10.1016/j.ajodo.2018.09.011_bib16 article-title: Acquisition of 3-dimensional shapes from images publication-title: Am J Orthod Dentofacial Orthop doi: 10.1067/mod.2001.115459 – volume: 87 start-page: 782 year: 2017 ident: 10.1016/j.ajodo.2018.09.011_bib15 article-title: A validation study of reconstructed rapid prototyping models produced by two technologies publication-title: Angle Orthod doi: 10.2319/01091-727.1 – volume: 145 start-page: 394 year: 2014 ident: 10.1016/j.ajodo.2018.09.011_bib20 article-title: Virtual techniques for designing and fabricating a retainer publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2014.01.025 – volume: 48 start-page: 475 year: 2014 ident: 10.1016/j.ajodo.2018.09.011_bib6 article-title: Three-dimensional printing technology publication-title: J Clin Orthod – ident: 10.1016/j.ajodo.2018.09.011_bib26 – volume: 52 start-page: 28 year: 2018 ident: 10.1016/j.ajodo.2018.09.011_bib4 article-title: Incorporating three-dimensional printing in orthodontics publication-title: J Clin Orthod – volume: 129 start-page: 75 year: 2006 ident: 10.1016/j.ajodo.2018.09.011_bib23 article-title: Rapid prototyping: a new method of preparing trays for indirect bonding publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2005.10.005 – volume: 7 start-page: 169 year: 2017 ident: 10.1016/j.ajodo.2018.09.011_bib21 article-title: Accuracy of orthodontic 3D printed retainers versus thermoformed retainers publication-title: Open J Med Imaging doi: 10.4236/ojmi.2017.74017 – volume: 39 start-page: 704 year: 2014 ident: 10.1016/j.ajodo.2018.09.011_bib11 article-title: Medical applications for 3D printing: current and projected uses publication-title: Pharm Ther – volume: 52 start-page: 22 year: 2018 ident: 10.1016/j.ajodo.2018.09.011_bib7 article-title: CAD/CAM software for three-dimensional printing publication-title: J Clin Orthod – volume: 29 start-page: 374 year: 2014 ident: 10.1016/j.ajodo.2018.09.011_bib5 article-title: Comparison of five-axis milling and rapid prototyping for implant surgical templates publication-title: Int J Oral Maxillofac Implants doi: 10.11607/jomi.3265 |
SSID | ssj0009420 |
Score | 2.4754717 |
Snippet | In the literature, there is little information available on 3D-printed orthodontic retainers. This study examined the accuracy of 3D-printed retainers compared... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 592 |
SubjectTerms | Dental Models Humans Orthodontic Appliance Design - methods Orthodontic Retainers Printing, Three-Dimensional |
Title | Evaluation of fit for 3D-printed retainers compared with thermoform retainers |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S088954061831117X https://dx.doi.org/10.1016/j.ajodo.2018.09.011 https://www.ncbi.nlm.nih.gov/pubmed/30935614 https://www.proquest.com/docview/2202202683 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUqOMAFsVOWykgcCW1sJ3GOVRcVKnoAKnqznMSRWkFS0fTKtzOTpRWHFolTNltJxvbMS_zmmZA7W0uG00WW4b60RKC1FUBUsgxDZRIvRFUxZFuM3MFYPE2cSY10qlwYpFWWvr_w6bm3Ls80S2s259Np8xUJOg7GI8lhwHoTzGAXHvbyh-81zcMXhTQjsnmwdKU8lHO89Ay-_ZDfJXOxU9veFJ02oc88CvUPyUEJH2m7eMIjUjPJMdnrIuUHV207Ic-9lXw3TWMaTzMKsJTyroV_8ABeUiQYYsbfglb8c4o_Yykiwc8UMey6yCkZ93tvnYFVLplghYCEMss2QmuOi25GnMkIPj9jLUI_DrjrofC6Bp_iOZH2w4jzwG-huDpEeW5iwT2pOT8jO0mamAtCncgYzuCyLQPBjdHMZ7AXxlHEA9kSdcIqU6mw1BPHZS0-VEUcm6ncvgrtq1q-AvvWyf2q0ryQ09heXFRtoKpMUfBtCtz99mruqtqvzvR3xduqoRUMM5w70YlJlwvFGKYkM1fyOjkvesDqBfLJZIA5l_-97RXZhyO_IARdk53sa2luAOtkQSPvzA2y234cDka4Hb68D38AtUf9Xg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4hGGBBvClPI8FGaGO7jTMwIFpUaGGBSt2MkzhSK2gr2gqx8Kf4g9zl0YqhRUJiixJbSc723Wf783cAp65RnLaLHCt85cjAGCfAqORYTsokXkiqYsS2eKjUW_KuXW4vwFd-FoZolZnvT3164q2zO8XMmsVBp1N8JIJOmeKREjhgvXbGrGzYj3ectw0vb6vYyGec39SerutOllrACRExjBzXSmMEJaeMBFcRTtNiI0M_DkTFI4Fyg2PPK0fGDyMhAr9EIuQYDYWNpfCUoVVQ9PtLEt0FpU24-JzySnyZakESfYg-L5c6SkhlpouTTSKUqURd1XVnhcNZcDcJezdrsJrhVXaVmmQdFmxvA5arxDGiNHGbcF-b6IWzfszizoghDmai6tCSIeJZRoxGOmI4ZDnhndHqLyPo-don0DwtsgWtfzHkNiz2-j27C6wcWSs4PnZVIIW1hvscr8I4ikSgSrIAPDeVDjMBc8qj8aJzplpXJ_bVZF9d8jXatwDnk0qDVL9jfnGZt4HOj6aiM9UYX-ZXq0yq_ei9v1c8yRta47imzRrTs_3xUHNOZ6B5RYkC7KQ9YPIDye414qq9v772GJbrT_dN3bx9aOzDCj7xUzbSASyO3sb2EIHWKDhKOjaD5_8eSd-c4jV4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+fit+for+3D-printed+retainers+compared+with+thermoform+retainers&rft.jtitle=American+journal+of+orthodontics+and+dentofacial+orthopedics&rft.au=Cole%2C+David&rft.au=Bencharit%2C+Sompop&rft.au=Carrico%2C+Caroline+K&rft.au=Arias%2C+Andrew&rft.date=2019-04-01&rft.eissn=1097-6752&rft.volume=155&rft.issue=4&rft.spage=592&rft_id=info:doi/10.1016%2Fj.ajodo.2018.09.011&rft_id=info%3Apmid%2F30935614&rft.externalDocID=30935614 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-5406&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-5406&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-5406&client=summon |