Evaluation of fit for 3D-printed retainers compared with thermoform retainers

In the literature, there is little information available on 3D-printed orthodontic retainers. This study examined the accuracy of 3D-printed retainers compared with conventional vacuum-formed and commercially available vacuum-formed retainers. Three reference models (models 1, 2, and 3) were used to...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of orthodontics and dentofacial orthopedics Vol. 155; no. 4; pp. 592 - 599
Main Authors Cole, David, Bencharit, Sompop, Carrico, Caroline K., Arias, Andrew, Tüfekçi, Eser
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the literature, there is little information available on 3D-printed orthodontic retainers. This study examined the accuracy of 3D-printed retainers compared with conventional vacuum-formed and commercially available vacuum-formed retainers. Three reference models (models 1, 2, and 3) were used to fabricate traditional vacuum-formed, commercially available vacuum-formed, and 3D-printed retainers. For each model, retainers were made using the 3 methods (a total of 27 retainers). To determine the trueness, ie, closeness of a model to a true model, the distance between the retainer and its digital model at reference points were calculated with the use of engineering software. The measurements were reported as average absolute observed values and compared with those of the conventional vacuum-formed retainers. Average differences of the conventional vacuum-formed retainers ranged from 0.10 to 0.20 mm. The commercially available and 3D-printed retainers had ranges of 0.10 to 0.30 mm and 0.10 to 0.40 mm, respectively. The conventional vacuum-formed retainers showed the least amount of deviation from the original reference models and the 3D-printed retainers showed the greatest deviation. However, all 3 methods yielded measurements within 0.5 mm, which has previously been accepted to be clinically sufficient. •The traditional vacuum-formed retainers had the least amount of deviation from the original model.•3D-printed retainers are good alternatives to the traditional vacuum-formed retainers.•Retainers may be successfully 3D printed with the use of stereolithography technology.
AbstractList In the literature, there is little information available on 3D-printed orthodontic retainers. This study examined the accuracy of 3D-printed retainers compared with conventional vacuum-formed and commercially available vacuum-formed retainers. Three reference models (models 1, 2, and 3) were used to fabricate traditional vacuum-formed, commercially available vacuum-formed, and 3D-printed retainers. For each model, retainers were made using the 3 methods (a total of 27 retainers). To determine the trueness, ie, closeness of a model to a true model, the distance between the retainer and its digital model at reference points were calculated with the use of engineering software. The measurements were reported as average absolute observed values and compared with those of the conventional vacuum-formed retainers. Average differences of the conventional vacuum-formed retainers ranged from 0.10 to 0.20 mm. The commercially available and 3D-printed retainers had ranges of 0.10 to 0.30 mm and 0.10 to 0.40 mm, respectively. The conventional vacuum-formed retainers showed the least amount of deviation from the original reference models and the 3D-printed retainers showed the greatest deviation. However, all 3 methods yielded measurements within 0.5 mm, which has previously been accepted to be clinically sufficient. •The traditional vacuum-formed retainers had the least amount of deviation from the original model.•3D-printed retainers are good alternatives to the traditional vacuum-formed retainers.•Retainers may be successfully 3D printed with the use of stereolithography technology.
In the literature, there is little information available on 3D-printed orthodontic retainers. This study examined the accuracy of 3D-printed retainers compared with conventional vacuum-formed and commercially available vacuum-formed retainers.INTRODUCTIONIn the literature, there is little information available on 3D-printed orthodontic retainers. This study examined the accuracy of 3D-printed retainers compared with conventional vacuum-formed and commercially available vacuum-formed retainers.Three reference models (models 1, 2, and 3) were used to fabricate traditional vacuum-formed, commercially available vacuum-formed, and 3D-printed retainers. For each model, retainers were made using the 3 methods (a total of 27 retainers). To determine the trueness, ie, closeness of a model to a true model, the distance between the retainer and its digital model at reference points were calculated with the use of engineering software. The measurements were reported as average absolute observed values and compared with those of the conventional vacuum-formed retainers.METHODSThree reference models (models 1, 2, and 3) were used to fabricate traditional vacuum-formed, commercially available vacuum-formed, and 3D-printed retainers. For each model, retainers were made using the 3 methods (a total of 27 retainers). To determine the trueness, ie, closeness of a model to a true model, the distance between the retainer and its digital model at reference points were calculated with the use of engineering software. The measurements were reported as average absolute observed values and compared with those of the conventional vacuum-formed retainers.Average differences of the conventional vacuum-formed retainers ranged from 0.10 to 0.20 mm. The commercially available and 3D-printed retainers had ranges of 0.10 to 0.30 mm and 0.10 to 0.40 mm, respectively.RESULTSAverage differences of the conventional vacuum-formed retainers ranged from 0.10 to 0.20 mm. The commercially available and 3D-printed retainers had ranges of 0.10 to 0.30 mm and 0.10 to 0.40 mm, respectively.The conventional vacuum-formed retainers showed the least amount of deviation from the original reference models and the 3D-printed retainers showed the greatest deviation. However, all 3 methods yielded measurements within 0.5 mm, which has previously been accepted to be clinically sufficient.CONCLUSIONSThe conventional vacuum-formed retainers showed the least amount of deviation from the original reference models and the 3D-printed retainers showed the greatest deviation. However, all 3 methods yielded measurements within 0.5 mm, which has previously been accepted to be clinically sufficient.
In the literature, there is little information available on 3D-printed orthodontic retainers. This study examined the accuracy of 3D-printed retainers compared with conventional vacuum-formed and commercially available vacuum-formed retainers. Three reference models (models 1, 2, and 3) were used to fabricate traditional vacuum-formed, commercially available vacuum-formed, and 3D-printed retainers. For each model, retainers were made using the 3 methods (a total of 27 retainers). To determine the trueness, ie, closeness of a model to a true model, the distance between the retainer and its digital model at reference points were calculated with the use of engineering software. The measurements were reported as average absolute observed values and compared with those of the conventional vacuum-formed retainers. Average differences of the conventional vacuum-formed retainers ranged from 0.10 to 0.20 mm. The commercially available and 3D-printed retainers had ranges of 0.10 to 0.30 mm and 0.10 to 0.40 mm, respectively. The conventional vacuum-formed retainers showed the least amount of deviation from the original reference models and the 3D-printed retainers showed the greatest deviation. However, all 3 methods yielded measurements within 0.5 mm, which has previously been accepted to be clinically sufficient.
Author Arias, Andrew
Tüfekçi, Eser
Cole, David
Bencharit, Sompop
Carrico, Caroline K.
Author_xml – sequence: 1
  givenname: David
  surname: Cole
  fullname: Cole, David
  organization: Department of Orthodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Va
– sequence: 2
  givenname: Sompop
  surname: Bencharit
  fullname: Bencharit, Sompop
  organization: Department of General Practice, School of Dentistry, Virginia Commonwealth University, Richmond, Va
– sequence: 3
  givenname: Caroline K.
  surname: Carrico
  fullname: Carrico, Caroline K.
  organization: Oral Health Promotion and Community Outreach, Oral Health Research Core, Virginia Commonwealth University, Richmond, Va
– sequence: 4
  givenname: Andrew
  surname: Arias
  fullname: Arias, Andrew
  organization: School of Dentistry, Virginia Commonwealth University, Richmond, Va
– sequence: 5
  givenname: Eser
  orcidid: 0000-0002-9379-7316
  surname: Tüfekçi
  fullname: Tüfekçi, Eser
  email: etufekci@vcu.edu
  organization: Department of Orthodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Va
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30935614$$D View this record in MEDLINE/PubMed
BookMark eNqFkEFr2zAUgMXIWNNuv2BQfNzF7pNl2RKlh5Fm7SCll-0sFOmZKrOtVFJa-u9nN90KuQQED8T3PXjfKZkNfkBCvlIoKND6YlPojbe-KIGKAmQBlH4gcwqyyeuGlzMyByFkziuoT8hpjBsAkFUJn8gJA8l4Tas5uVs-6W6nk_ND5tusdSlrfcjYdb4Nbkhos4BJuwFDzIzvtzqMX88uPWTpAUPvR7h_Rz6Tj63uIn55m2fk94_lr8Vtvrq_-bn4vspNxeuUU6y0Zrzh0rJSWCZYqysj2zWrmwao1EI0DbdaGsvYWgLjXEBJGbYVa4Rm7Ix82-_dBv-4w5hU76LBrtMD-l1UZQnTq8WEnr-hu3WPVo1n9Tq8qH8JRoDtARN8jAHb_wgFNYVWG_UaWk2hFUg1hh4teWAZl14zpqBdd8S92rs4JnpyGFQ0DgeD1gU0SVnvjviXB77p3OCM7v7gy1H7L0k7rQo
CitedBy_id crossref_primary_10_1080_03091902_2025_2466198
crossref_primary_10_1177_03015742241253947
crossref_primary_10_3390_dj10070123
crossref_primary_10_1002_cre2_366
crossref_primary_10_1016_j_ajodo_2020_12_022
crossref_primary_10_3390_nano13192649
crossref_primary_10_3390_app14093837
crossref_primary_10_3390_polym13081236
crossref_primary_10_1007_s00784_023_04983_7
crossref_primary_10_1038_s41598_023_36851_5
crossref_primary_10_1177_1465312520936704
crossref_primary_10_3390_children10040676
crossref_primary_10_1016_j_ortho_2021_01_005
crossref_primary_10_1016_j_ajodo_2023_08_005
crossref_primary_10_1053_j_sodo_2019_10_006
crossref_primary_10_12968_ortu_2023_16_4_177
crossref_primary_10_1016_j_ajodo_2020_06_033
crossref_primary_10_4041_kjod21_269
crossref_primary_10_3390_biomedicines13010044
crossref_primary_10_1038_s41598_022_09831_4
crossref_primary_10_1007_s00056_024_00570_x
crossref_primary_10_1038_s41598_025_86687_4
crossref_primary_10_18261_issn_2058_7538_2020_01_13
crossref_primary_10_2319_102622_734_1
crossref_primary_10_3390_polym15092164
crossref_primary_10_3390_app13148111
crossref_primary_10_1186_s12903_020_01338_6
crossref_primary_10_3389_fmats_2024_1438660
crossref_primary_10_2478_aoj_2024_0008
crossref_primary_10_1016_j_bioactmat_2022_10_006
crossref_primary_10_3390_app15031345
crossref_primary_10_1038_s41405_022_00108_6
crossref_primary_10_4103_jips_jips_41_21
crossref_primary_10_2186_ajps_15_64
crossref_primary_10_1016_j_ajodo_2020_09_027
crossref_primary_10_4274_TurkJOrthod_2022_2021_0074
crossref_primary_10_1007_s10853_021_06811_3
crossref_primary_10_3390_app132111952
crossref_primary_10_17533_udea_rfo_v33n1a1
crossref_primary_10_1016_j_ejwf_2022_10_001
crossref_primary_10_1016_j_ajodo_2022_12_008
crossref_primary_10_1016_j_ajodo_2024_06_010
crossref_primary_10_1016_j_ajodo_2020_07_029
crossref_primary_10_1007_s00056_022_00424_4
crossref_primary_10_7759_cureus_54740
crossref_primary_10_1016_j_jdent_2024_105108
crossref_primary_10_1016_j_ajodo_2021_01_020
crossref_primary_10_1088_1742_6596_2487_1_012020
crossref_primary_10_22974_jkda_2024_62_5_004
crossref_primary_10_1016_j_jpor_2019_07_010
crossref_primary_10_3390_ma16062166
crossref_primary_10_1002_cre2_827
crossref_primary_10_1111_jopr_13138
crossref_primary_10_1007_s40964_024_00706_w
crossref_primary_10_1016_j_ajodo_2021_03_016
crossref_primary_10_25259_APOS_201_2023
crossref_primary_10_3390_ma13194419
crossref_primary_10_18231_j_jco_2024_062
crossref_primary_10_3889_oamjms_2022_7874
crossref_primary_10_1186_s12903_024_04522_0
crossref_primary_10_1016_j_ajodo_2023_10_006
crossref_primary_10_1080_13440241_2020_1814522
Cites_doi 10.1186/1475-925X-12-49
10.1016/j.ajodo.2015.04.025
10.1016/j.bjoms.2014.04.010
10.1308/147363514X13990346756481
10.1080/03091900050163427
10.1016/j.ajodo.2013.04.024
10.1016/j.ajodo.2017.05.025
10.1007/s13191-011-0103-8
10.1016/j.ajodo.2013.05.011
10.1016/S0022-3913(13)60028-1
10.1093/ejo/cju075
10.1016/j.ajodo.2015.06.029
10.1016/j.joms.2017.08.001
10.1067/mod.2001.115459
10.2319/01091-727.1
10.1016/j.ajodo.2014.01.025
10.1016/j.ajodo.2005.10.005
10.4236/ojmi.2017.74017
10.11607/jomi.3265
ContentType Journal Article
Copyright 2019 American Association of Orthodontists
Copyright © 2019 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 American Association of Orthodontists
– notice: Copyright © 2019 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ajodo.2018.09.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 1097-6752
EndPage 599
ExternalDocumentID 30935614
10_1016_j_ajodo_2018_09_011
S088954061831117X
Genre Journal Article
Comparative Study
GrantInformation_xml – fundername: Southern Association of Orthodontists Research
– fundername: Virginia Commonwealth University Alexander Research
GroupedDBID ---
--K
--M
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAGKA
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDX
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LH1
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SEL
SES
SEW
SJN
SPCBC
SSH
SSZ
T5K
TEORI
UHS
UV1
WUQ
X7M
Z5R
ZGI
ZXP
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AFCTW
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c456t-1e4aa35759d328d383fa4c9fb3677019a88775da9cd33b9035580213ef4378a33
IEDL.DBID .~1
ISSN 0889-5406
1097-6752
IngestDate Fri Jul 11 07:42:19 EDT 2025
Wed Feb 19 02:36:51 EST 2025
Tue Jul 01 00:35:51 EDT 2025
Thu Apr 24 22:56:03 EDT 2025
Fri Feb 23 02:21:44 EST 2024
Tue Aug 26 19:00:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2019 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-1e4aa35759d328d383fa4c9fb3677019a88775da9cd33b9035580213ef4378a33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-9379-7316
OpenAccessLink http://www.ajodo.org/article/S088954061831117X/pdf
PMID 30935614
PQID 2202202683
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2202202683
pubmed_primary_30935614
crossref_primary_10_1016_j_ajodo_2018_09_011
crossref_citationtrail_10_1016_j_ajodo_2018_09_011
elsevier_sciencedirect_doi_10_1016_j_ajodo_2018_09_011
elsevier_clinicalkey_doi_10_1016_j_ajodo_2018_09_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
2019-Apr
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of orthodontics and dentofacial orthopedics
PublicationTitleAlternate Am J Orthod Dentofacial Orthop
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Whitaker (bib10) 2014; 96
Nasef, El-Beialy, Eid, Mostafa (bib21) 2017; 7
Hazeveld, Huddleston Slater, Ren (bib13) 2014; 145
Webb (bib8) 2000; 24
Dietrich, Ender, Baumgartner, Mehl (bib15) 2017; 87
Ventola (bib11) 2014; 39
Johal, Sharma, McLaughlin, Zou (bib25) 2015; 37
Kravitz, Groth, Jones, Graham, Redmond (bib12) 2014; 48
Kasparova, Grafova, Dvorak (bib1) 2013; 12
Sweeney, Smith, Messersmith (bib17) 2015; 148
Saunders (bib26) 2018
Hull (bib9) 1986
Deeb, Allen, Hall, Whitley, Laskin, Bencharit (bib24) 2017; 75
Park, Yi, Koak, Kim, Park, Heo (bib5) 2014; 29
Ciuffolo, Epifania, Durant (bib23) 2006; 129
Ender, Mehl (bib27) 2013; 109
Nasef, El-Beialy, Mostafa (bib20) 2014; 145
Kabot (bib19) 2017
Groth, Neal, Shirck (bib4) 2018; 52
Halazonetis (bib16) 2001; 119
Kravitz, Groth, Shannon (bib7) 2018; 52
Akyalcin, Cozad, English, Colville, Laman (bib2) 2013; 144
Kim, Shin, Jung, Hwang, Baik, Cha (bib18) 2018; 153
Murugesan, Anandapandian, Sharma, Vasantha Kuma (bib14) 2012; 12
Groth, Kravitz, Jones, Graham, Redmond (bib6) 2014; 48
Rossini, Parrini, Castroflorio, Deregibus, Debernardi (bib3) 2016; 149
Shqaidef, Ayoub, Khambay (bib22) 2014; 52
Deeb (10.1016/j.ajodo.2018.09.011_bib24) 2017; 75
Sweeney (10.1016/j.ajodo.2018.09.011_bib17) 2015; 148
Murugesan (10.1016/j.ajodo.2018.09.011_bib14) 2012; 12
Ender (10.1016/j.ajodo.2018.09.011_bib27) 2013; 109
Kasparova (10.1016/j.ajodo.2018.09.011_bib1) 2013; 12
Webb (10.1016/j.ajodo.2018.09.011_bib8) 2000; 24
Saunders (10.1016/j.ajodo.2018.09.011_bib26)
Halazonetis (10.1016/j.ajodo.2018.09.011_bib16) 2001; 119
Akyalcin (10.1016/j.ajodo.2018.09.011_bib2) 2013; 144
Ciuffolo (10.1016/j.ajodo.2018.09.011_bib23) 2006; 129
Nasef (10.1016/j.ajodo.2018.09.011_bib20) 2014; 145
Whitaker (10.1016/j.ajodo.2018.09.011_bib10) 2014; 96
Johal (10.1016/j.ajodo.2018.09.011_bib25) 2015; 37
Park (10.1016/j.ajodo.2018.09.011_bib5) 2014; 29
Hazeveld (10.1016/j.ajodo.2018.09.011_bib13) 2014; 145
Shqaidef (10.1016/j.ajodo.2018.09.011_bib22) 2014; 52
Kim (10.1016/j.ajodo.2018.09.011_bib18) 2018; 153
Kravitz (10.1016/j.ajodo.2018.09.011_bib7) 2018; 52
Hull (10.1016/j.ajodo.2018.09.011_bib9)
Kabot (10.1016/j.ajodo.2018.09.011_bib19) 2017
Nasef (10.1016/j.ajodo.2018.09.011_bib21) 2017; 7
Rossini (10.1016/j.ajodo.2018.09.011_bib3) 2016; 149
Dietrich (10.1016/j.ajodo.2018.09.011_bib15) 2017; 87
Groth (10.1016/j.ajodo.2018.09.011_bib4) 2018; 52
Ventola (10.1016/j.ajodo.2018.09.011_bib11) 2014; 39
Kravitz (10.1016/j.ajodo.2018.09.011_bib12) 2014; 48
Groth (10.1016/j.ajodo.2018.09.011_bib6) 2014; 48
References_xml – volume: 129
  start-page: 75
  year: 2006
  end-page: 77
  ident: bib23
  article-title: Rapid prototyping: a new method of preparing trays for indirect bonding
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 52
  start-page: 28
  year: 2018
  end-page: 33
  ident: bib4
  article-title: Incorporating three-dimensional printing in orthodontics
  publication-title: J Clin Orthod
– volume: 48
  start-page: 337
  year: 2014
  end-page: 347
  ident: bib12
  article-title: Intraoral digital scanners
  publication-title: J Clin Orthod
– volume: 52
  start-page: 609
  year: 2014
  end-page: 614
  ident: bib22
  article-title: How accurate are rapid prototyped (RP) final orthognathic surgical wafers? A pilot study
  publication-title: Br J Oral Maxillofac Surg
– year: 1986
  ident: bib9
  article-title: Apparatus for production of three-dimensional objects by stereolithography. US4575330 A
– volume: 109
  start-page: 121
  year: 2013
  end-page: 128
  ident: bib27
  article-title: Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision
  publication-title: J Prosthet Dent
– volume: 12
  start-page: 49
  year: 2013
  ident: bib1
  article-title: Possibility of reconstruction of dental plaster cast from 3D digital study models
  publication-title: Biomed Eng Online
– volume: 29
  start-page: 374
  year: 2014
  end-page: 383
  ident: bib5
  article-title: Comparison of five-axis milling and rapid prototyping for implant surgical templates
  publication-title: Int J Oral Maxillofac Implants
– volume: 96
  start-page: 228
  year: 2014
  end-page: 229
  ident: bib10
  article-title: The history of 3D printing in healthcare
  publication-title: Bull R Coll Surg Engl
– volume: 7
  start-page: 169
  year: 2017
  end-page: 179
  ident: bib21
  article-title: Accuracy of orthodontic 3D printed retainers versus thermoformed retainers
  publication-title: Open J Med Imaging
– volume: 148
  start-page: 245
  year: 2015
  end-page: 252
  ident: bib17
  article-title: Comparison of 5 types of interocclusal recording materials on the accuracy of articulation of digital models
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 145
  start-page: 108
  year: 2014
  end-page: 115
  ident: bib13
  article-title: Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 48
  start-page: 475
  year: 2014
  end-page: 485
  ident: bib6
  article-title: Three-dimensional printing technology
  publication-title: J Clin Orthod
– volume: 24
  start-page: 149
  year: 2000
  end-page: 153
  ident: bib8
  article-title: A review of rapid prototyping (RP) technologies in the medical and biomedical sector
  publication-title: J Med Eng Technol
– year: 2017
  ident: bib19
  article-title: Private communication
– volume: 87
  start-page: 782
  year: 2017
  end-page: 787
  ident: bib15
  article-title: A validation study of reconstructed rapid prototyping models produced by two technologies
  publication-title: Angle Orthod
– year: 2018
  ident: bib26
  article-title: EnvisionTEC's steady, stealthy rise in orthodontics 3D printing. 3Dprint.com
– volume: 153
  start-page: 144
  year: 2018
  end-page: 153
  ident: bib18
  article-title: Precision and trueness of dental models manufactured with different 3-dimensional printing techniques
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 52
  start-page: 22
  year: 2018
  end-page: 27
  ident: bib7
  article-title: CAD/CAM software for three-dimensional printing
  publication-title: J Clin Orthod
– volume: 149
  start-page: 161
  year: 2016
  end-page: 170
  ident: bib3
  article-title: Diagnostic accuracy and measurement sensitivity of digital models for orthodontic purposes: a systematic review
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 39
  start-page: 704
  year: 2014
  end-page: 711
  ident: bib11
  article-title: Medical applications for 3D printing: current and projected uses
  publication-title: Pharm Ther
– volume: 144
  start-page: 916
  year: 2013
  end-page: 922
  ident: bib2
  article-title: Diagnostic accuracy of impression-free digital models
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 37
  start-page: 503
  year: 2015
  end-page: 507
  ident: bib25
  article-title: The reliability of thermoform retainers: a laboratory-based comparative study
  publication-title: Eur J Orthod
– volume: 75
  start-page: 2559.e1
  year: 2017
  end-page: 2559.e8
  ident: bib24
  article-title: How accurate are implant surgical guides produced with desktop stereolithographic 3-dimensional printers?
  publication-title: J Oral Maxillofac Surg
– volume: 12
  start-page: 16
  year: 2012
  end-page: 20
  ident: bib14
  article-title: Comparative evaluation of dimension and surface detail accuracy of models produced by three different rapid prototype techniques
  publication-title: J Indian Prosthodont Soc
– volume: 119
  start-page: 556
  year: 2001
  end-page: 560
  ident: bib16
  article-title: Acquisition of 3-dimensional shapes from images
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 145
  start-page: 394
  year: 2014
  end-page: 398
  ident: bib20
  article-title: Virtual techniques for designing and fabricating a retainer
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 12
  start-page: 49
  year: 2013
  ident: 10.1016/j.ajodo.2018.09.011_bib1
  article-title: Possibility of reconstruction of dental plaster cast from 3D digital study models
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-12-49
– volume: 48
  start-page: 337
  year: 2014
  ident: 10.1016/j.ajodo.2018.09.011_bib12
  article-title: Intraoral digital scanners
  publication-title: J Clin Orthod
– volume: 148
  start-page: 245
  year: 2015
  ident: 10.1016/j.ajodo.2018.09.011_bib17
  article-title: Comparison of 5 types of interocclusal recording materials on the accuracy of articulation of digital models
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2015.04.025
– volume: 52
  start-page: 609
  year: 2014
  ident: 10.1016/j.ajodo.2018.09.011_bib22
  article-title: How accurate are rapid prototyped (RP) final orthognathic surgical wafers? A pilot study
  publication-title: Br J Oral Maxillofac Surg
  doi: 10.1016/j.bjoms.2014.04.010
– volume: 96
  start-page: 228
  year: 2014
  ident: 10.1016/j.ajodo.2018.09.011_bib10
  article-title: The history of 3D printing in healthcare
  publication-title: Bull R Coll Surg Engl
  doi: 10.1308/147363514X13990346756481
– volume: 24
  start-page: 149
  year: 2000
  ident: 10.1016/j.ajodo.2018.09.011_bib8
  article-title: A review of rapid prototyping (RP) technologies in the medical and biomedical sector
  publication-title: J Med Eng Technol
  doi: 10.1080/03091900050163427
– volume: 144
  start-page: 916
  year: 2013
  ident: 10.1016/j.ajodo.2018.09.011_bib2
  article-title: Diagnostic accuracy of impression-free digital models
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2013.04.024
– volume: 153
  start-page: 144
  year: 2018
  ident: 10.1016/j.ajodo.2018.09.011_bib18
  article-title: Precision and trueness of dental models manufactured with different 3-dimensional printing techniques
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2017.05.025
– volume: 12
  start-page: 16
  year: 2012
  ident: 10.1016/j.ajodo.2018.09.011_bib14
  article-title: Comparative evaluation of dimension and surface detail accuracy of models produced by three different rapid prototype techniques
  publication-title: J Indian Prosthodont Soc
  doi: 10.1007/s13191-011-0103-8
– volume: 145
  start-page: 108
  year: 2014
  ident: 10.1016/j.ajodo.2018.09.011_bib13
  article-title: Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2013.05.011
– volume: 109
  start-page: 121
  year: 2013
  ident: 10.1016/j.ajodo.2018.09.011_bib27
  article-title: Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision
  publication-title: J Prosthet Dent
  doi: 10.1016/S0022-3913(13)60028-1
– volume: 37
  start-page: 503
  year: 2015
  ident: 10.1016/j.ajodo.2018.09.011_bib25
  article-title: The reliability of thermoform retainers: a laboratory-based comparative study
  publication-title: Eur J Orthod
  doi: 10.1093/ejo/cju075
– ident: 10.1016/j.ajodo.2018.09.011_bib9
– volume: 149
  start-page: 161
  year: 2016
  ident: 10.1016/j.ajodo.2018.09.011_bib3
  article-title: Diagnostic accuracy and measurement sensitivity of digital models for orthodontic purposes: a systematic review
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2015.06.029
– year: 2017
  ident: 10.1016/j.ajodo.2018.09.011_bib19
– volume: 75
  start-page: 2559.e1
  year: 2017
  ident: 10.1016/j.ajodo.2018.09.011_bib24
  article-title: How accurate are implant surgical guides produced with desktop stereolithographic 3-dimensional printers?
  publication-title: J Oral Maxillofac Surg
  doi: 10.1016/j.joms.2017.08.001
– volume: 119
  start-page: 556
  year: 2001
  ident: 10.1016/j.ajodo.2018.09.011_bib16
  article-title: Acquisition of 3-dimensional shapes from images
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1067/mod.2001.115459
– volume: 87
  start-page: 782
  year: 2017
  ident: 10.1016/j.ajodo.2018.09.011_bib15
  article-title: A validation study of reconstructed rapid prototyping models produced by two technologies
  publication-title: Angle Orthod
  doi: 10.2319/01091-727.1
– volume: 145
  start-page: 394
  year: 2014
  ident: 10.1016/j.ajodo.2018.09.011_bib20
  article-title: Virtual techniques for designing and fabricating a retainer
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2014.01.025
– volume: 48
  start-page: 475
  year: 2014
  ident: 10.1016/j.ajodo.2018.09.011_bib6
  article-title: Three-dimensional printing technology
  publication-title: J Clin Orthod
– ident: 10.1016/j.ajodo.2018.09.011_bib26
– volume: 52
  start-page: 28
  year: 2018
  ident: 10.1016/j.ajodo.2018.09.011_bib4
  article-title: Incorporating three-dimensional printing in orthodontics
  publication-title: J Clin Orthod
– volume: 129
  start-page: 75
  year: 2006
  ident: 10.1016/j.ajodo.2018.09.011_bib23
  article-title: Rapid prototyping: a new method of preparing trays for indirect bonding
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2005.10.005
– volume: 7
  start-page: 169
  year: 2017
  ident: 10.1016/j.ajodo.2018.09.011_bib21
  article-title: Accuracy of orthodontic 3D printed retainers versus thermoformed retainers
  publication-title: Open J Med Imaging
  doi: 10.4236/ojmi.2017.74017
– volume: 39
  start-page: 704
  year: 2014
  ident: 10.1016/j.ajodo.2018.09.011_bib11
  article-title: Medical applications for 3D printing: current and projected uses
  publication-title: Pharm Ther
– volume: 52
  start-page: 22
  year: 2018
  ident: 10.1016/j.ajodo.2018.09.011_bib7
  article-title: CAD/CAM software for three-dimensional printing
  publication-title: J Clin Orthod
– volume: 29
  start-page: 374
  year: 2014
  ident: 10.1016/j.ajodo.2018.09.011_bib5
  article-title: Comparison of five-axis milling and rapid prototyping for implant surgical templates
  publication-title: Int J Oral Maxillofac Implants
  doi: 10.11607/jomi.3265
SSID ssj0009420
Score 2.4754717
Snippet In the literature, there is little information available on 3D-printed orthodontic retainers. This study examined the accuracy of 3D-printed retainers compared...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 592
SubjectTerms Dental Models
Humans
Orthodontic Appliance Design - methods
Orthodontic Retainers
Printing, Three-Dimensional
Title Evaluation of fit for 3D-printed retainers compared with thermoform retainers
URI https://www.clinicalkey.com/#!/content/1-s2.0-S088954061831117X
https://dx.doi.org/10.1016/j.ajodo.2018.09.011
https://www.ncbi.nlm.nih.gov/pubmed/30935614
https://www.proquest.com/docview/2202202683
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUqOMAFsVOWykgcCW1sJ3GOVRcVKnoAKnqznMSRWkFS0fTKtzOTpRWHFolTNltJxvbMS_zmmZA7W0uG00WW4b60RKC1FUBUsgxDZRIvRFUxZFuM3MFYPE2cSY10qlwYpFWWvr_w6bm3Ls80S2s259Np8xUJOg7GI8lhwHoTzGAXHvbyh-81zcMXhTQjsnmwdKU8lHO89Ay-_ZDfJXOxU9veFJ02oc88CvUPyUEJH2m7eMIjUjPJMdnrIuUHV207Ic-9lXw3TWMaTzMKsJTyroV_8ABeUiQYYsbfglb8c4o_Yykiwc8UMey6yCkZ93tvnYFVLplghYCEMss2QmuOi25GnMkIPj9jLUI_DrjrofC6Bp_iOZH2w4jzwG-huDpEeW5iwT2pOT8jO0mamAtCncgYzuCyLQPBjdHMZ7AXxlHEA9kSdcIqU6mw1BPHZS0-VEUcm6ncvgrtq1q-AvvWyf2q0ryQ09heXFRtoKpMUfBtCtz99mruqtqvzvR3xduqoRUMM5w70YlJlwvFGKYkM1fyOjkvesDqBfLJZIA5l_-97RXZhyO_IARdk53sa2luAOtkQSPvzA2y234cDka4Hb68D38AtUf9Xg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4hGGBBvClPI8FGaGO7jTMwIFpUaGGBSt2MkzhSK2gr2gqx8Kf4g9zl0YqhRUJiixJbSc723Wf783cAp65RnLaLHCt85cjAGCfAqORYTsokXkiqYsS2eKjUW_KuXW4vwFd-FoZolZnvT3164q2zO8XMmsVBp1N8JIJOmeKREjhgvXbGrGzYj3ectw0vb6vYyGec39SerutOllrACRExjBzXSmMEJaeMBFcRTtNiI0M_DkTFI4Fyg2PPK0fGDyMhAr9EIuQYDYWNpfCUoVVQ9PtLEt0FpU24-JzySnyZakESfYg-L5c6SkhlpouTTSKUqURd1XVnhcNZcDcJezdrsJrhVXaVmmQdFmxvA5arxDGiNHGbcF-b6IWzfszizoghDmai6tCSIeJZRoxGOmI4ZDnhndHqLyPo-don0DwtsgWtfzHkNiz2-j27C6wcWSs4PnZVIIW1hvscr8I4ikSgSrIAPDeVDjMBc8qj8aJzplpXJ_bVZF9d8jXatwDnk0qDVL9jfnGZt4HOj6aiM9UYX-ZXq0yq_ei9v1c8yRta47imzRrTs_3xUHNOZ6B5RYkC7KQ9YPIDye414qq9v772GJbrT_dN3bx9aOzDCj7xUzbSASyO3sb2EIHWKDhKOjaD5_8eSd-c4jV4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+fit+for+3D-printed+retainers+compared+with+thermoform+retainers&rft.jtitle=American+journal+of+orthodontics+and+dentofacial+orthopedics&rft.au=Cole%2C+David&rft.au=Bencharit%2C+Sompop&rft.au=Carrico%2C+Caroline+K&rft.au=Arias%2C+Andrew&rft.date=2019-04-01&rft.eissn=1097-6752&rft.volume=155&rft.issue=4&rft.spage=592&rft_id=info:doi/10.1016%2Fj.ajodo.2018.09.011&rft_id=info%3Apmid%2F30935614&rft.externalDocID=30935614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-5406&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-5406&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-5406&client=summon