Mechanical and Chemical Interactions in Atomically Defined Contacts

Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe‐tip can drastically influence the results. Establis...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 35; pp. e2101637 - n/a
Main Authors Yesilpinar, Damla, Schulze Lammers, Bertram, Timmer, Alexander, Hu, Zhixin, Ji, Wei, Amirjalayer, Saeed, Fuchs, Harald, Mönig, Harry
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe‐tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal‐oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip‐sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu‐tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen‐terminated Cu‐tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity. The authors directly compared the performances of four different tip terminations in non‐contact atomic force microscopy manipulation experiments on single Xe atoms adsorbed at the metal/metal‐oxide boundary on partially oxidized Cu(110) surface. The results show how the chemical reactivity and the mechanical stability of the tip terminating particles can be determinative on the outcome of the manipulation processes.
AbstractList Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe‐tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal‐oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip‐sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu‐tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen‐terminated Cu‐tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity.
Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe‐tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal‐oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip‐sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu‐tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen‐terminated Cu‐tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity. The authors directly compared the performances of four different tip terminations in non‐contact atomic force microscopy manipulation experiments on single Xe atoms adsorbed at the metal/metal‐oxide boundary on partially oxidized Cu(110) surface. The results show how the chemical reactivity and the mechanical stability of the tip terminating particles can be determinative on the outcome of the manipulation processes.
Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe‐tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal‐oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip‐sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu‐tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen‐terminated Cu‐tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity.
Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe-tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal-oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip-sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu-tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen-terminated Cu-tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity.Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe-tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal-oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip-sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu-tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen-terminated Cu-tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity.
Author Schulze Lammers, Bertram
Mönig, Harry
Amirjalayer, Saeed
Timmer, Alexander
Hu, Zhixin
Ji, Wei
Yesilpinar, Damla
Fuchs, Harald
Author_xml – sequence: 1
  givenname: Damla
  surname: Yesilpinar
  fullname: Yesilpinar, Damla
  organization: Center for Nanotechnology
– sequence: 2
  givenname: Bertram
  surname: Schulze Lammers
  fullname: Schulze Lammers, Bertram
  organization: Center for Nanotechnology
– sequence: 3
  givenname: Alexander
  surname: Timmer
  fullname: Timmer, Alexander
  organization: Center for Nanotechnology
– sequence: 4
  givenname: Zhixin
  orcidid: 0000-0002-3253-6964
  surname: Hu
  fullname: Hu, Zhixin
  organization: Tianjin University
– sequence: 5
  givenname: Wei
  orcidid: 0000-0001-5249-6624
  surname: Ji
  fullname: Ji, Wei
  organization: Renmin University of China
– sequence: 6
  givenname: Saeed
  orcidid: 0000-0003-0777-5004
  surname: Amirjalayer
  fullname: Amirjalayer, Saeed
  organization: Center for Multiscale Theory and Computation
– sequence: 7
  givenname: Harald
  surname: Fuchs
  fullname: Fuchs, Harald
  organization: Center for Nanotechnology
– sequence: 8
  givenname: Harry
  surname: Mönig
  fullname: Mönig, Harry
  email: harry.moenig@uni-muenster.de
  organization: Center for Nanotechnology
BookMark eNqFkE1rwjAYgMNwMOd23bmwyy51eZP06yjuS6jsMO8hjW8xkqauqQz__aIOB8LYKQl5nrzhuSYD1zok5A7oGChlj76xdswoAwopzy7IEFLgcZqzYnDaA70i196vKeXARDYk0znqlXJGKxspt4ymK2wOh5nrsVO6N63zkXHRpG8PF3YXPWFtHAa2dX0g_A25rJX1ePuzjsji5XkxfYvL99fZdFLGWiRpFvNaVTlXeY6p5gqqBCEpYJkXuagQRSVAF1wxUfA6oRrgQOllrlSGdZHxEXk4Prvp2s8t-l42xmu0Vjlst16yJOE5ZFAkAb0_Q9fttnPhc4EKFYRgNA3U-EjprvW-w1puOtOobieByn1SuU8qT0mDIM4EbXq1T9R3yti_teKofRmLu3-GyI95Wf663xoRjQo
CitedBy_id crossref_primary_10_1103_PhysRevB_108_165401
crossref_primary_10_1016_j_jelechem_2022_116904
crossref_primary_10_1088_1674_1056_ac6eec
crossref_primary_10_1103_PhysRevLett_131_148001
crossref_primary_10_1088_1367_2630_ac8570
crossref_primary_10_1002_smtd_202101577
crossref_primary_10_1103_PhysRevLett_134_116201
Cites_doi 10.1002/admi.201300013
10.1126/science.1176210
10.1103/PhysRevLett.108.086101
10.1038/nature17151
10.1103/PhysRevLett.79.697
10.1126/science.aaa5329
10.1103/PhysRevB.98.195409
10.1038/ncomms9338
10.1063/1.5085747
10.1088/1367-2630/17/5/053013
10.1021/acs.jpclett.6b02749
10.1103/PhysRevLett.113.186102
10.1103/PhysRevLett.67.855
10.1103/PhysRevB.54.11169
10.1021/acs.nanolett.1c00268
10.1021/ar00051a002
10.1103/PhysRevB.50.17953
10.1126/science.aad3569
10.1103/PhysRevLett.85.2777
10.1126/science.1249502
10.1103/PhysRevLett.110.036101
10.1126/science.aay3444
10.1063/1.5052264
10.1126/science.1160601
10.1103/PhysRevLett.114.146101
10.1126/science.1238187
10.1063/1.4793200
10.1021/ct200602x
10.1021/nn403097p
10.1063/1.122948
10.1103/PhysRevB.59.1758
10.1126/science.aaw7505
10.1038/nchem.2552
10.1063/1.3545985
10.1038/s41565-018-0104-4
10.1002/sia.1663
10.1126/science.1225621
10.1002/(SICI)1438-5171(200004)1:1<79::AID-SIMO79>3.0.CO;2-R
10.1126/science.1150288
10.1021/nl204322r
10.1039/C8CC05332D
10.1126/science.aay1914
10.1063/1.1667267
10.1038/344524a0
10.1126/science.254.5036.1319
10.1021/acsnano.5b06513
10.1103/PhysRevB.90.085421
ContentType Journal Article
Copyright 2021 The Authors. Small published by Wiley‐VCH GmbH
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 The Authors. Small published by Wiley-VCH GmbH.
Copyright_xml – notice: 2021 The Authors. Small published by Wiley‐VCH GmbH
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 The Authors. Small published by Wiley-VCH GmbH.
DBID 24P
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202101637
DatabaseName Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202101637
SMLL202101637
Genre article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: AM 460/2‐1; MO 2345/4‐1; FU 299/19
GroupedDBID ---
05W
0R~
123
1L6
1OC
24P
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4567-3fab83a88e6c3a1b5e1591d8984bee4b41c93a2493f50c116c3a1cd8aa7ef973
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 18:07:15 EDT 2025
Sun Jul 20 04:20:15 EDT 2025
Thu Apr 24 23:02:16 EDT 2025
Tue Jul 01 02:11:06 EDT 2025
Wed Jan 22 16:27:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4567-3fab83a88e6c3a1b5e1591d8984bee4b41c93a2493f50c116c3a1cd8aa7ef973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0777-5004
0000-0001-5249-6624
0000-0002-3253-6964
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202101637
PQID 2568144206
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_2553817195
proquest_journals_2568144206
crossref_primary_10_1002_smll_202101637
crossref_citationtrail_10_1002_smll_202101637
wiley_primary_10_1002_smll_202101637_SMLL202101637
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 90
2015; 17
2015; 6
2021; 21
2004; 84
2014; 90
1991; 254
2000; 85
2016; 10
2019; 366
2013; 102
2000; 1
2008; 322
2013; 340
2015; 348
2013; 7
1990; 344
2012; 12
2019; 364
1996; 54
2011; 134
2019; 365
2012; 108
2011; 7
2014; 113
2014; 1
2016; 7
1995; 28
1991; 67
2015; 114
2004; 36
1997; 79
1999; 59
2008; 319
2016; 531
2019; 114
2013; 110
1998; 73
2018; 98
2018; 54
1994; 50
2012; 337
2016; 351
2016; 8
2009; 325
2014; 343
2018; 13
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 365
  start-page: 1299
  year: 2019
  publication-title: Science
– volume: 90
  year: 2019
  publication-title: Rev. Sci. Instrum.
– volume: 54
  start-page: 9874
  year: 2018
  publication-title: Chem. Commun.
– volume: 113
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 85
  start-page: 2777
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 5205
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 1070
  year: 2012
  publication-title: Nano Lett.
– volume: 343
  start-page: 1120
  year: 2014
  publication-title: Science
– volume: 10
  start-page: 1201
  year: 2016
  publication-title: ACS Nano
– volume: 13
  start-page: 371
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 90
  year: 2014
  publication-title: Phys. Rev. B
– volume: 36
  start-page: 109
  year: 2004
  publication-title: Handb. Surf. Interface Anal.
– volume: 98
  year: 2018
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 3567
  year: 2011
  publication-title: J. Chem. Theory Comp.
– volume: 351
  start-page: 957
  year: 2016
  publication-title: Science
– volume: 348
  start-page: 308
  year: 2015
  publication-title: Science
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 21
  start-page: 2318
  year: 2021
  publication-title: Nano Lett.
– volume: 322
  start-page: 413
  year: 2008
  publication-title: Science
– volume: 344
  start-page: 524
  year: 1990
  publication-title: Nature
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 254
  start-page: 1319
  year: 1991
  publication-title: Science
– volume: 28
  start-page: 95
  year: 1995
  publication-title: Acc. Chem. Res.
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 79
  start-page: 697
  year: 1997
  publication-title: Phys. Rev. Lett.
– volume: 73
  start-page: 3956
  year: 1998
  publication-title: Appl. Phys. Lett.
– volume: 340
  start-page: 1434
  year: 2013
  publication-title: Science
– volume: 364
  start-page: 670
  year: 2019
  publication-title: Science
– volume: 337
  start-page: 1326
  year: 2012
  publication-title: Science
– volume: 7
  start-page: 7370
  year: 2013
  publication-title: ACS Nano
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 325
  start-page: 1110
  year: 2009
  publication-title: Science
– volume: 366
  start-page: 235
  year: 2019
  publication-title: Science
– volume: 114
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 134
  year: 2011
  publication-title: J. Chem. Phys.
– volume: 110
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 102
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 319
  start-page: 1066
  year: 2008
  publication-title: Science
– volume: 8
  start-page: 935
  year: 2016
  publication-title: Nat. Chem.
– volume: 67
  start-page: 855
  year: 1991
  publication-title: Phys. Rev. Lett.
– volume: 84
  start-page: 1801
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 1
  year: 2014
  publication-title: Adv. Mater. Interfaces
– volume: 531
  start-page: 489
  year: 2016
  publication-title: Nature
– volume: 1
  start-page: 79
  year: 2000
  publication-title: Single Molecules
– volume: 17
  year: 2015
  publication-title: New J. Phys.
– volume: 6
  start-page: 8338
  year: 2015
  publication-title: Nat. Commun.
– ident: e_1_2_8_9_1
  doi: 10.1002/admi.201300013
– ident: e_1_2_8_18_1
  doi: 10.1126/science.1176210
– ident: e_1_2_8_32_1
  doi: 10.1103/PhysRevLett.108.086101
– ident: e_1_2_8_21_1
  doi: 10.1038/nature17151
– ident: e_1_2_8_11_1
  doi: 10.1103/PhysRevLett.79.697
– ident: e_1_2_8_20_1
  doi: 10.1126/science.aaa5329
– ident: e_1_2_8_14_1
  doi: 10.1103/PhysRevB.98.195409
– ident: e_1_2_8_10_1
  doi: 10.1038/ncomms9338
– ident: e_1_2_8_38_1
  doi: 10.1063/1.5085747
– ident: e_1_2_8_7_1
  doi: 10.1088/1367-2630/17/5/053013
– ident: e_1_2_8_33_1
  doi: 10.1021/acs.jpclett.6b02749
– ident: e_1_2_8_37_1
  doi: 10.1103/PhysRevLett.113.186102
– ident: e_1_2_8_39_1
  doi: 10.1103/PhysRevLett.67.855
– ident: e_1_2_8_45_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.nanolett.1c00268
– ident: e_1_2_8_4_1
  doi: 10.1021/ar00051a002
– ident: e_1_2_8_43_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_8_24_1
  doi: 10.1126/science.aad3569
– ident: e_1_2_8_5_1
  doi: 10.1103/PhysRevLett.85.2777
– ident: e_1_2_8_23_1
  doi: 10.1126/science.1249502
– ident: e_1_2_8_16_1
  doi: 10.1103/PhysRevLett.110.036101
– ident: e_1_2_8_27_1
  doi: 10.1126/science.aay3444
– ident: e_1_2_8_28_1
  doi: 10.1063/1.5052264
– ident: e_1_2_8_6_1
  doi: 10.1126/science.1160601
– ident: e_1_2_8_13_1
  doi: 10.1103/PhysRevLett.114.146101
– ident: e_1_2_8_19_1
  doi: 10.1126/science.1238187
– ident: e_1_2_8_34_1
  doi: 10.1063/1.4793200
– ident: e_1_2_8_47_1
  doi: 10.1021/ct200602x
– ident: e_1_2_8_17_1
  doi: 10.1021/nn403097p
– ident: e_1_2_8_42_1
  doi: 10.1063/1.122948
– ident: e_1_2_8_44_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_8_25_1
  doi: 10.1126/science.aaw7505
– ident: e_1_2_8_26_1
  doi: 10.1038/nchem.2552
– ident: e_1_2_8_46_1
  doi: 10.1063/1.3545985
– ident: e_1_2_8_30_1
  doi: 10.1038/s41565-018-0104-4
– ident: e_1_2_8_12_1
  doi: 10.1002/sia.1663
– ident: e_1_2_8_35_1
  doi: 10.1126/science.1225621
– ident: e_1_2_8_3_1
  doi: 10.1002/(SICI)1438-5171(200004)1:1<79::AID-SIMO79>3.0.CO;2-R
– ident: e_1_2_8_15_1
  doi: 10.1126/science.1150288
– ident: e_1_2_8_8_1
  doi: 10.1021/nl204322r
– ident: e_1_2_8_31_1
  doi: 10.1039/C8CC05332D
– ident: e_1_2_8_22_1
  doi: 10.1126/science.aay1914
– ident: e_1_2_8_40_1
  doi: 10.1063/1.1667267
– ident: e_1_2_8_1_1
  doi: 10.1038/344524a0
– ident: e_1_2_8_2_1
  doi: 10.1126/science.254.5036.1319
– ident: e_1_2_8_29_1
  doi: 10.1021/acsnano.5b06513
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevB.90.085421
SSID ssj0031247
Score 2.4063122
Snippet Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2101637
SubjectTerms Adatoms
atom manipulation
Atomic force microscopy
Atomic interactions
functionalized tips
Nanotechnology
non‐contact atomic force microscopy
Tips
Xenon
Title Mechanical and Chemical Interactions in Atomically Defined Contacts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202101637
https://www.proquest.com/docview/2568144206
https://www.proquest.com/docview/2553817195
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66kx78LU7nqCB46rY0aZcex3QM2UR0wm7lJU1BnK3Y7qB_vXnt2m2CCHpryUvSJnl530vyvhBySZkX6UgKW1LcZozcyPZBg-0rScEzJh04RiOP77zhE7-dutOVKP6CH6JacEPNyOdrVHCQaXtJGpq-znDrwEH3k2E4OR7YQlT0UPFHMWO88ttVjM2ykXirZG3sOO317OtWaQk1VwFrbnEGuwTKby0Omry05plsqc9vNI7_-Zk9srOAo1avGD_7ZEPHB2R7haTwkPTHGqODsTMtiEOrpBiw8sXEIi4itZ5jq5clecLsw7rWkSnAyCZxZiTSIzIZ3Ez6Q3tx9YKtDKIy004EUjAQQnuKAZWuNrCHhsIXXGrNJafKZ2BcNxa5HUVpLqVCAdDVkd9lx6QWJ7E-IRZ6LJJLH4CGxpcMgQklQ1Oyp1DQqxO7bPlALWjJ8XaMWVAQKjsBtk1QtU2dXFXybwUhx4-SjbIjg4VipoGDhGucOx1T8UWVbFQK90kg1skcZVzkLaS-WydO3mu_1BQ8jkej6u30L5nOyBY-F6fXGqSWvc_1uYE7mWySTYffN_OB_QXRmfhK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT4MwFH_ReVAPfhunUzEx8cRcKTA4LtNlKuygM_FG2lIS4wTj2EH_evvKYJuJMdEj9LWFtq_vo32_B3BOqJvIhHsmJ3jMmDiJ6TPJTF9wwlwl0pmN0cjhwO0_2rdPTnmbEGNhCnyIyuGGnKH3a2RwdEhfzlBDx68jPDuw0P6k7WVYwbTe2qq6rxCkqBJfOr-KklomQm-VuI0t63Kx_qJcmimb8yqrljm9TeDl1xZXTV6ak5w3xec3IMd__c4WbEw1UqNTLKFtWJLpDqzP4RTuQjeUGCCM82mwNDZKlAFD-xOL0Iix8ZwanTzTBaMP40omqgFFm6W5ohjvwbB3Pez2zWn2BVMopUrtPAnjHmWeJ11BGeGOVJoPiT3fs7mUNreJ8ClT1htNnJYgRFOJ2GOsLRO_TfehlmapPAADjRZuc58xEitzMmbUEzxWLbsCCd06mOXQR2KKTI4JMkZRgalsRTg2UTU2dbio6N8KTI4fKRvlTEZT3hxHFmKu2bbVUh2fVcWKq_CohKUymyCNg9CFxHfqYOlp-6Wn6CEMgurp8C-VTmG1PwyDKLgZ3B3BGr4vLrM1oJa_T-Sx0n5yfqLX9xeByvuO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54AdEH7-J0agXBp-rSpF36ODaHl22IF_CtJGkC4uzEdQ_6681p124TRNDHNl-SNsnJOSfJ-QJwQmhgtJHclQS3GY1v3FBo4YZKEhFYlS4YRiN3e8HlI7t-8p-movhzfohywQ0lI5uvUcDfYnM-IQ0dvvZx68BD95PW52GRBTWO47p1VxJIUau9sutVrNJykXmroG2seeez-WfV0sTWnLZYM5XTXgNRfGx-0uTlbJTKM_X5jcfxP3-zDqtje9Rp5ANoA-Z0sgkrUyyFW9DsagwPxt50RBI7BceAk60m5oERQ-c5cRrpIEvofzgtbWwBFjtIUosYbsND--KheemO715wlTWp7LxjhORUcK4DRQWRvrZ2D4l5yJnUmklGVEiF9d2o8WuKkAylYi5EXZuwTndgIRkkehccdFkkk6EQJLbOZCwoVzK2JQcKgUEF3KLlIzXmJcfrMfpRzqjsRdg2Udk2FTgt8W85I8ePyGrRkdFYMoeRh4xrjHk1W_FxmWxlCjdKRKIHI8T4SFxIQr8CXtZrv9QU3Xc7nfJp7y-ZjmDpttWOOle9m31Yxtf5SbYqLKTvI31gTZ9UHmaj-wunhPpG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+and+Chemical+Interactions+in+Atomically+Defined+Contacts&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yesilpinar%2C+Damla&rft.au=Schulze+Lammers%2C+Bertram&rft.au=Timmer%2C+Alexander&rft.au=Hu%2C+Zhixin&rft.date=2021-09-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202101637&rft.externalDBID=10.1002%252Fsmll.202101637&rft.externalDocID=SMLL202101637
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon