Mechanical and Chemical Interactions in Atomically Defined Contacts
Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe‐tip can drastically influence the results. Establis...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 35; pp. e2101637 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe‐tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal‐oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip‐sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu‐tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen‐terminated Cu‐tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity.
The authors directly compared the performances of four different tip terminations in non‐contact atomic force microscopy manipulation experiments on single Xe atoms adsorbed at the metal/metal‐oxide boundary on partially oxidized Cu(110) surface. The results show how the chemical reactivity and the mechanical stability of the tip terminating particles can be determinative on the outcome of the manipulation processes. |
---|---|
AbstractList | Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe‐tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal‐oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip‐sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu‐tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen‐terminated Cu‐tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity. Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe‐tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal‐oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip‐sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu‐tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen‐terminated Cu‐tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity. The authors directly compared the performances of four different tip terminations in non‐contact atomic force microscopy manipulation experiments on single Xe atoms adsorbed at the metal/metal‐oxide boundary on partially oxidized Cu(110) surface. The results show how the chemical reactivity and the mechanical stability of the tip terminating particles can be determinative on the outcome of the manipulation processes. Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe‐tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal‐oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip‐sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu‐tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen‐terminated Cu‐tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity. Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe-tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal-oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip-sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu-tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen-terminated Cu-tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity.Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe-tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal-oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip-sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu-tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen-terminated Cu-tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity. |
Author | Schulze Lammers, Bertram Mönig, Harry Amirjalayer, Saeed Timmer, Alexander Hu, Zhixin Ji, Wei Yesilpinar, Damla Fuchs, Harald |
Author_xml | – sequence: 1 givenname: Damla surname: Yesilpinar fullname: Yesilpinar, Damla organization: Center for Nanotechnology – sequence: 2 givenname: Bertram surname: Schulze Lammers fullname: Schulze Lammers, Bertram organization: Center for Nanotechnology – sequence: 3 givenname: Alexander surname: Timmer fullname: Timmer, Alexander organization: Center for Nanotechnology – sequence: 4 givenname: Zhixin orcidid: 0000-0002-3253-6964 surname: Hu fullname: Hu, Zhixin organization: Tianjin University – sequence: 5 givenname: Wei orcidid: 0000-0001-5249-6624 surname: Ji fullname: Ji, Wei organization: Renmin University of China – sequence: 6 givenname: Saeed orcidid: 0000-0003-0777-5004 surname: Amirjalayer fullname: Amirjalayer, Saeed organization: Center for Multiscale Theory and Computation – sequence: 7 givenname: Harald surname: Fuchs fullname: Fuchs, Harald organization: Center for Nanotechnology – sequence: 8 givenname: Harry surname: Mönig fullname: Mönig, Harry email: harry.moenig@uni-muenster.de organization: Center for Nanotechnology |
BookMark | eNqFkE1rwjAYgMNwMOd23bmwyy51eZP06yjuS6jsMO8hjW8xkqauqQz__aIOB8LYKQl5nrzhuSYD1zok5A7oGChlj76xdswoAwopzy7IEFLgcZqzYnDaA70i196vKeXARDYk0znqlXJGKxspt4ymK2wOh5nrsVO6N63zkXHRpG8PF3YXPWFtHAa2dX0g_A25rJX1ePuzjsji5XkxfYvL99fZdFLGWiRpFvNaVTlXeY6p5gqqBCEpYJkXuagQRSVAF1wxUfA6oRrgQOllrlSGdZHxEXk4Prvp2s8t-l42xmu0Vjlst16yJOE5ZFAkAb0_Q9fttnPhc4EKFYRgNA3U-EjprvW-w1puOtOobieByn1SuU8qT0mDIM4EbXq1T9R3yti_teKofRmLu3-GyI95Wf663xoRjQo |
CitedBy_id | crossref_primary_10_1103_PhysRevB_108_165401 crossref_primary_10_1016_j_jelechem_2022_116904 crossref_primary_10_1088_1674_1056_ac6eec crossref_primary_10_1103_PhysRevLett_131_148001 crossref_primary_10_1088_1367_2630_ac8570 crossref_primary_10_1002_smtd_202101577 crossref_primary_10_1103_PhysRevLett_134_116201 |
Cites_doi | 10.1002/admi.201300013 10.1126/science.1176210 10.1103/PhysRevLett.108.086101 10.1038/nature17151 10.1103/PhysRevLett.79.697 10.1126/science.aaa5329 10.1103/PhysRevB.98.195409 10.1038/ncomms9338 10.1063/1.5085747 10.1088/1367-2630/17/5/053013 10.1021/acs.jpclett.6b02749 10.1103/PhysRevLett.113.186102 10.1103/PhysRevLett.67.855 10.1103/PhysRevB.54.11169 10.1021/acs.nanolett.1c00268 10.1021/ar00051a002 10.1103/PhysRevB.50.17953 10.1126/science.aad3569 10.1103/PhysRevLett.85.2777 10.1126/science.1249502 10.1103/PhysRevLett.110.036101 10.1126/science.aay3444 10.1063/1.5052264 10.1126/science.1160601 10.1103/PhysRevLett.114.146101 10.1126/science.1238187 10.1063/1.4793200 10.1021/ct200602x 10.1021/nn403097p 10.1063/1.122948 10.1103/PhysRevB.59.1758 10.1126/science.aaw7505 10.1038/nchem.2552 10.1063/1.3545985 10.1038/s41565-018-0104-4 10.1002/sia.1663 10.1126/science.1225621 10.1002/(SICI)1438-5171(200004)1:1<79::AID-SIMO79>3.0.CO;2-R 10.1126/science.1150288 10.1021/nl204322r 10.1039/C8CC05332D 10.1126/science.aay1914 10.1063/1.1667267 10.1038/344524a0 10.1126/science.254.5036.1319 10.1021/acsnano.5b06513 10.1103/PhysRevB.90.085421 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Small published by Wiley‐VCH GmbH 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Authors. Small published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 The Authors. Small published by Wiley‐VCH GmbH – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Authors. Small published by Wiley-VCH GmbH. |
DBID | 24P AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202101637 |
DatabaseName | Wiley Online Library Open Access CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202101637 SMLL202101637 |
Genre | article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: AM 460/2‐1; MO 2345/4‐1; FU 299/19 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 24P 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4567-3fab83a88e6c3a1b5e1591d8984bee4b41c93a2493f50c116c3a1cd8aa7ef973 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 18:07:15 EDT 2025 Sun Jul 20 04:20:15 EDT 2025 Thu Apr 24 23:02:16 EDT 2025 Tue Jul 01 02:11:06 EDT 2025 Wed Jan 22 16:27:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4567-3fab83a88e6c3a1b5e1591d8984bee4b41c93a2493f50c116c3a1cd8aa7ef973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0777-5004 0000-0001-5249-6624 0000-0002-3253-6964 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202101637 |
PQID | 2568144206 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2553817195 proquest_journals_2568144206 crossref_primary_10_1002_smll_202101637 crossref_citationtrail_10_1002_smll_202101637 wiley_primary_10_1002_smll_202101637_SMLL202101637 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 90 2015; 17 2015; 6 2021; 21 2004; 84 2014; 90 1991; 254 2000; 85 2016; 10 2019; 366 2013; 102 2000; 1 2008; 322 2013; 340 2015; 348 2013; 7 1990; 344 2012; 12 2019; 364 1996; 54 2011; 134 2019; 365 2012; 108 2011; 7 2014; 113 2014; 1 2016; 7 1995; 28 1991; 67 2015; 114 2004; 36 1997; 79 1999; 59 2008; 319 2016; 531 2019; 114 2013; 110 1998; 73 2018; 98 2018; 54 1994; 50 2012; 337 2016; 351 2016; 8 2009; 325 2014; 343 2018; 13 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 365 start-page: 1299 year: 2019 publication-title: Science – volume: 90 year: 2019 publication-title: Rev. Sci. Instrum. – volume: 54 start-page: 9874 year: 2018 publication-title: Chem. Commun. – volume: 113 year: 2014 publication-title: Phys. Rev. Lett. – volume: 85 start-page: 2777 year: 2000 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 5205 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 1070 year: 2012 publication-title: Nano Lett. – volume: 343 start-page: 1120 year: 2014 publication-title: Science – volume: 10 start-page: 1201 year: 2016 publication-title: ACS Nano – volume: 13 start-page: 371 year: 2018 publication-title: Nat. Nanotechnol. – volume: 90 year: 2014 publication-title: Phys. Rev. B – volume: 36 start-page: 109 year: 2004 publication-title: Handb. Surf. Interface Anal. – volume: 98 year: 2018 publication-title: Phys. Rev. B – volume: 7 start-page: 3567 year: 2011 publication-title: J. Chem. Theory Comp. – volume: 351 start-page: 957 year: 2016 publication-title: Science – volume: 348 start-page: 308 year: 2015 publication-title: Science – volume: 50 year: 1994 publication-title: Phys. Rev. B – volume: 21 start-page: 2318 year: 2021 publication-title: Nano Lett. – volume: 322 start-page: 413 year: 2008 publication-title: Science – volume: 344 start-page: 524 year: 1990 publication-title: Nature – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 254 start-page: 1319 year: 1991 publication-title: Science – volume: 28 start-page: 95 year: 1995 publication-title: Acc. Chem. Res. – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 79 start-page: 697 year: 1997 publication-title: Phys. Rev. Lett. – volume: 73 start-page: 3956 year: 1998 publication-title: Appl. Phys. Lett. – volume: 340 start-page: 1434 year: 2013 publication-title: Science – volume: 364 start-page: 670 year: 2019 publication-title: Science – volume: 337 start-page: 1326 year: 2012 publication-title: Science – volume: 7 start-page: 7370 year: 2013 publication-title: ACS Nano – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 325 start-page: 1110 year: 2009 publication-title: Science – volume: 366 start-page: 235 year: 2019 publication-title: Science – volume: 114 year: 2019 publication-title: Appl. Phys. Lett. – volume: 134 year: 2011 publication-title: J. Chem. Phys. – volume: 110 year: 2013 publication-title: Phys. Rev. Lett. – volume: 102 year: 2013 publication-title: Appl. Phys. Lett. – volume: 319 start-page: 1066 year: 2008 publication-title: Science – volume: 8 start-page: 935 year: 2016 publication-title: Nat. Chem. – volume: 67 start-page: 855 year: 1991 publication-title: Phys. Rev. Lett. – volume: 84 start-page: 1801 year: 2004 publication-title: Appl. Phys. Lett. – volume: 1 year: 2014 publication-title: Adv. Mater. Interfaces – volume: 531 start-page: 489 year: 2016 publication-title: Nature – volume: 1 start-page: 79 year: 2000 publication-title: Single Molecules – volume: 17 year: 2015 publication-title: New J. Phys. – volume: 6 start-page: 8338 year: 2015 publication-title: Nat. Commun. – ident: e_1_2_8_9_1 doi: 10.1002/admi.201300013 – ident: e_1_2_8_18_1 doi: 10.1126/science.1176210 – ident: e_1_2_8_32_1 doi: 10.1103/PhysRevLett.108.086101 – ident: e_1_2_8_21_1 doi: 10.1038/nature17151 – ident: e_1_2_8_11_1 doi: 10.1103/PhysRevLett.79.697 – ident: e_1_2_8_20_1 doi: 10.1126/science.aaa5329 – ident: e_1_2_8_14_1 doi: 10.1103/PhysRevB.98.195409 – ident: e_1_2_8_10_1 doi: 10.1038/ncomms9338 – ident: e_1_2_8_38_1 doi: 10.1063/1.5085747 – ident: e_1_2_8_7_1 doi: 10.1088/1367-2630/17/5/053013 – ident: e_1_2_8_33_1 doi: 10.1021/acs.jpclett.6b02749 – ident: e_1_2_8_37_1 doi: 10.1103/PhysRevLett.113.186102 – ident: e_1_2_8_39_1 doi: 10.1103/PhysRevLett.67.855 – ident: e_1_2_8_45_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_41_1 doi: 10.1021/acs.nanolett.1c00268 – ident: e_1_2_8_4_1 doi: 10.1021/ar00051a002 – ident: e_1_2_8_43_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_8_24_1 doi: 10.1126/science.aad3569 – ident: e_1_2_8_5_1 doi: 10.1103/PhysRevLett.85.2777 – ident: e_1_2_8_23_1 doi: 10.1126/science.1249502 – ident: e_1_2_8_16_1 doi: 10.1103/PhysRevLett.110.036101 – ident: e_1_2_8_27_1 doi: 10.1126/science.aay3444 – ident: e_1_2_8_28_1 doi: 10.1063/1.5052264 – ident: e_1_2_8_6_1 doi: 10.1126/science.1160601 – ident: e_1_2_8_13_1 doi: 10.1103/PhysRevLett.114.146101 – ident: e_1_2_8_19_1 doi: 10.1126/science.1238187 – ident: e_1_2_8_34_1 doi: 10.1063/1.4793200 – ident: e_1_2_8_47_1 doi: 10.1021/ct200602x – ident: e_1_2_8_17_1 doi: 10.1021/nn403097p – ident: e_1_2_8_42_1 doi: 10.1063/1.122948 – ident: e_1_2_8_44_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_8_25_1 doi: 10.1126/science.aaw7505 – ident: e_1_2_8_26_1 doi: 10.1038/nchem.2552 – ident: e_1_2_8_46_1 doi: 10.1063/1.3545985 – ident: e_1_2_8_30_1 doi: 10.1038/s41565-018-0104-4 – ident: e_1_2_8_12_1 doi: 10.1002/sia.1663 – ident: e_1_2_8_35_1 doi: 10.1126/science.1225621 – ident: e_1_2_8_3_1 doi: 10.1002/(SICI)1438-5171(200004)1:1<79::AID-SIMO79>3.0.CO;2-R – ident: e_1_2_8_15_1 doi: 10.1126/science.1150288 – ident: e_1_2_8_8_1 doi: 10.1021/nl204322r – ident: e_1_2_8_31_1 doi: 10.1039/C8CC05332D – ident: e_1_2_8_22_1 doi: 10.1126/science.aay1914 – ident: e_1_2_8_40_1 doi: 10.1063/1.1667267 – ident: e_1_2_8_1_1 doi: 10.1038/344524a0 – ident: e_1_2_8_2_1 doi: 10.1126/science.254.5036.1319 – ident: e_1_2_8_29_1 doi: 10.1021/acsnano.5b06513 – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevB.90.085421 |
SSID | ssj0031247 |
Score | 2.4063122 |
Snippet | Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2101637 |
SubjectTerms | Adatoms atom manipulation Atomic force microscopy Atomic interactions functionalized tips Nanotechnology non‐contact atomic force microscopy Tips Xenon |
Title | Mechanical and Chemical Interactions in Atomically Defined Contacts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202101637 https://www.proquest.com/docview/2568144206 https://www.proquest.com/docview/2553817195 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66kx78LU7nqCB46rY0aZcex3QM2UR0wm7lJU1BnK3Y7qB_vXnt2m2CCHpryUvSJnl530vyvhBySZkX6UgKW1LcZozcyPZBg-0rScEzJh04RiOP77zhE7-dutOVKP6CH6JacEPNyOdrVHCQaXtJGpq-znDrwEH3k2E4OR7YQlT0UPFHMWO88ttVjM2ykXirZG3sOO317OtWaQk1VwFrbnEGuwTKby0Omry05plsqc9vNI7_-Zk9srOAo1avGD_7ZEPHB2R7haTwkPTHGqODsTMtiEOrpBiw8sXEIi4itZ5jq5clecLsw7rWkSnAyCZxZiTSIzIZ3Ez6Q3tx9YKtDKIy004EUjAQQnuKAZWuNrCHhsIXXGrNJafKZ2BcNxa5HUVpLqVCAdDVkd9lx6QWJ7E-IRZ6LJJLH4CGxpcMgQklQ1Oyp1DQqxO7bPlALWjJ8XaMWVAQKjsBtk1QtU2dXFXybwUhx4-SjbIjg4VipoGDhGucOx1T8UWVbFQK90kg1skcZVzkLaS-WydO3mu_1BQ8jkej6u30L5nOyBY-F6fXGqSWvc_1uYE7mWySTYffN_OB_QXRmfhK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT4MwFH_ReVAPfhunUzEx8cRcKTA4LtNlKuygM_FG2lIS4wTj2EH_evvKYJuJMdEj9LWFtq_vo32_B3BOqJvIhHsmJ3jMmDiJ6TPJTF9wwlwl0pmN0cjhwO0_2rdPTnmbEGNhCnyIyuGGnKH3a2RwdEhfzlBDx68jPDuw0P6k7WVYwbTe2qq6rxCkqBJfOr-KklomQm-VuI0t63Kx_qJcmimb8yqrljm9TeDl1xZXTV6ak5w3xec3IMd__c4WbEw1UqNTLKFtWJLpDqzP4RTuQjeUGCCM82mwNDZKlAFD-xOL0Iix8ZwanTzTBaMP40omqgFFm6W5ohjvwbB3Pez2zWn2BVMopUrtPAnjHmWeJ11BGeGOVJoPiT3fs7mUNreJ8ClT1htNnJYgRFOJ2GOsLRO_TfehlmapPAADjRZuc58xEitzMmbUEzxWLbsCCd06mOXQR2KKTI4JMkZRgalsRTg2UTU2dbio6N8KTI4fKRvlTEZT3hxHFmKu2bbVUh2fVcWKq_CohKUymyCNg9CFxHfqYOlp-6Wn6CEMgurp8C-VTmG1PwyDKLgZ3B3BGr4vLrM1oJa_T-Sx0n5yfqLX9xeByvuO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54AdEH7-J0agXBp-rSpF36ODaHl22IF_CtJGkC4uzEdQ_6681p124TRNDHNl-SNsnJOSfJ-QJwQmhgtJHclQS3GY1v3FBo4YZKEhFYlS4YRiN3e8HlI7t-8p-movhzfohywQ0lI5uvUcDfYnM-IQ0dvvZx68BD95PW52GRBTWO47p1VxJIUau9sutVrNJykXmroG2seeez-WfV0sTWnLZYM5XTXgNRfGx-0uTlbJTKM_X5jcfxP3-zDqtje9Rp5ANoA-Z0sgkrUyyFW9DsagwPxt50RBI7BceAk60m5oERQ-c5cRrpIEvofzgtbWwBFjtIUosYbsND--KheemO715wlTWp7LxjhORUcK4DRQWRvrZ2D4l5yJnUmklGVEiF9d2o8WuKkAylYi5EXZuwTndgIRkkehccdFkkk6EQJLbOZCwoVzK2JQcKgUEF3KLlIzXmJcfrMfpRzqjsRdg2Udk2FTgt8W85I8ePyGrRkdFYMoeRh4xrjHk1W_FxmWxlCjdKRKIHI8T4SFxIQr8CXtZrv9QU3Xc7nfJp7y-ZjmDpttWOOle9m31Yxtf5SbYqLKTvI31gTZ9UHmaj-wunhPpG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+and+Chemical+Interactions+in+Atomically+Defined+Contacts&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yesilpinar%2C+Damla&rft.au=Schulze+Lammers%2C+Bertram&rft.au=Timmer%2C+Alexander&rft.au=Hu%2C+Zhixin&rft.date=2021-09-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202101637&rft.externalDBID=10.1002%252Fsmll.202101637&rft.externalDocID=SMLL202101637 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |