Characterization challenges for nanomaterials
Nanostructured materials are increasingly subject to nearly every type of chemical and physical analysis possible. Due to their small sizes, there is a significant focus on tools with high spatial resolution. It is also natural to characterize nanomaterials using tools designed to analyze surfaces,...
Saved in:
Published in | Surface and interface analysis Vol. 40; no. 3-4; pp. 529 - 537 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.03.2008
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanostructured materials are increasingly subject to nearly every type of chemical and physical analysis possible. Due to their small sizes, there is a significant focus on tools with high spatial resolution. It is also natural to characterize nanomaterials using tools designed to analyze surfaces, because of their high surface area. Regardless of the approach, nanostructured materials present a variety of obstacles to adequate, useful, and needed analysis. Case studies of measurements on ceria and iron metal‐core/oxide‐shell nanoparticles are used to introduce some of the issues that frequently need to be addressed during analysis of nanostructured materials. We use a combination of tools for routine analysis including X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and x‐ray diffraction (XRD) and apply several other methods as needed to obtain essential information. The examples provide an introduction to other issues and complications associated with the analysis of nanostructured materials including particle stability, probe effects, environmental effects, specimen handling, surface coating, contamination, and time. Copyright © 2008 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Nanostructured materials are increasingly subject to nearly every type of chemical and physical analysis possible. Because of their small feature size there is a significant focus on tools with high spatial resolution. Because of their high surface area, it is also natural to characterize nanomaterials using tools designed to analyze surfaces. Regardless of the approach, nanostructured materials present a variety of obstacles to adequate, useful and needed analysis. This paper provides short overviews to some of the issues and complications including: particle stability, environmental effects, specimen handling, surface coating, contamination and time. Some specific examples are provided from a our work focused on ceria nanoparticles and iron metal-core/oxide-shell nanoparticles in which we use a combination of tools for routine analysis including XPS, TEM, and XRD and apply other methods as needed to obtain essential information. Nanostructured materials are increasingly subject to nearly every type of chemical and physical analysis possible. Due to their small sizes, there is a significant focus on tools with high spatial resolution. It is also natural to characterize nanomaterials using tools designed to analyze surfaces, because of their high surface area. Regardless of the approach, nanostructured materials present a variety of obstacles to adequate, useful, and needed analysis. Case studies of measurements on ceria and iron metal‐core/oxide‐shell nanoparticles are used to introduce some of the issues that frequently need to be addressed during analysis of nanostructured materials. We use a combination of tools for routine analysis including X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and x‐ray diffraction (XRD) and apply several other methods as needed to obtain essential information. The examples provide an introduction to other issues and complications associated with the analysis of nanostructured materials including particle stability, probe effects, environmental effects, specimen handling, surface coating, contamination, and time. Copyright © 2008 John Wiley & Sons, Ltd. Nanostructured materials are increasingly subject to nearly every type of chemical and physical analysis possible. Due to their small sizes, there is a significant focus on tools with high spatial resolution. It is also natural to characterize nanomaterials using tools designed to analyze surfaces, because of their high surface area. Regardless of the approach, nanostructured materials present a variety of obstacles to adequate, useful, and needed analysis. Case studies of measurements on ceria and iron metal-core/oxide-shell nanoparticles are used to introduce some of the issues that frequently need to be addressed during analysis of nanostructured materials. We use a combination of tools for routine analysis including X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and x-ray diffraction (XRD) and apply several other methods as needed to obtain essential information. The examples provide an introduction to other issues and complications associated with the analysis of nanostructured materials including particle stability, probe effects, environmental effects, specimen handling, surface coating, contamination, and time. |
Author | Karakoti, A. S. Baer, D. R. Engelhard, M. H. Gaspar, D. J. Nachimuthu, P. Wang, C.-M. Seal, S. Nurmi, J. T. Kuchibhatla, S. Sarathy, V. Tratnyek, P. G. Sharma, A. Amonette, J. E. Qiang, Y. |
Author_xml | – sequence: 1 givenname: D. R. surname: Baer fullname: Baer, D. R. email: don.baer@pnl.gov organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA, USA – sequence: 2 givenname: J. E. surname: Amonette fullname: Amonette, J. E. organization: Fundamental and Computational Science Directorate, Pacific Northwest National Laboratory, USA – sequence: 3 givenname: M. H. surname: Engelhard fullname: Engelhard, M. H. organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA, USA – sequence: 4 givenname: D. J. surname: Gaspar fullname: Gaspar, D. J. organization: Energy and Environment Directorate, Pacific Northwest National Laboratory, USA – sequence: 5 givenname: A. S. surname: Karakoti fullname: Karakoti, A. S. organization: Advanced Materials Processing and Analysis Center, Mechanical Materials Aerospace Eng, Nanoscience and Technology Center, University of Central Florida, Orlando Florida, USA – sequence: 6 givenname: S. surname: Kuchibhatla fullname: Kuchibhatla, S. organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA, USA – sequence: 7 givenname: P. surname: Nachimuthu fullname: Nachimuthu, P. organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA, USA – sequence: 8 givenname: J. T. surname: Nurmi fullname: Nurmi, J. T. organization: Department of Environmental and Biomolecular Systems, Oregon Health and Sciences University, Beaverton Oregon, USA – sequence: 9 givenname: Y. surname: Qiang fullname: Qiang, Y. organization: Physics Department, University of Idaho, Moscow, Idaho, USA – sequence: 10 givenname: V. surname: Sarathy fullname: Sarathy, V. organization: Department of Environmental and Biomolecular Systems, Oregon Health and Sciences University, Beaverton Oregon, USA – sequence: 11 givenname: S. surname: Seal fullname: Seal, S. organization: Advanced Materials Processing and Analysis Center, Mechanical Materials Aerospace Eng, Nanoscience and Technology Center, University of Central Florida, Orlando Florida, USA – sequence: 12 givenname: A. surname: Sharma fullname: Sharma, A. organization: Physics Department, University of Idaho, Moscow, Idaho, USA – sequence: 13 givenname: P. G. surname: Tratnyek fullname: Tratnyek, P. G. organization: Department of Environmental and Biomolecular Systems, Oregon Health and Sciences University, Beaverton Oregon, USA – sequence: 14 givenname: C.-M. surname: Wang fullname: Wang, C.-M. organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20361391$$DView record in Pascal Francis https://www.osti.gov/biblio/927963$$D View this record in Osti.gov |
BookMark | eNp10E1LAzEQBuAgCtYq-BPqQfGyNV-b3T3WorVQKmLFYxjTxEa3iSZb_Pj1pq4Iip6GTJ4ZhncHbTrvNEL7BPcJxvQkWujTgooN1CG4EllVkXITdTDhNKOckm20E-MDxrhkpeigbLiAAKrRwb5DY73rqQXUtXb3OvaMDz0Hzi9h_Q913EVbJhW991W76Ob8bDa8yCaXo_FwMMkUz4XIDNcK8tIAVwUA54bcFXdGl4YLiilLjxLPAdM8nZFags0FqURqlfOc57hiXXTQ7vWxsTIq22i1UN45rRpZ0aISLJmj1jwF_7zSsZFLG5Wua3Dar6JktCgEIyTBwy8IUUFtAjhlo3wKdgnhTVLMBGHV2h23TgUfY9DmmxAs19nKlK1cZ5to_xdNJ37G1wSw9V8DWTvwYmv99u9ieT0e_PQ2Nvr120N4lKJgRS5vpyN5ejWbknM6kph9AD34mUc |
CODEN | SIANDQ |
CitedBy_id | crossref_primary_10_1039_C1RA00353D crossref_primary_10_1039_C6CC03790A crossref_primary_10_1007_s11095_016_1886_4 crossref_primary_10_1016_j_apsusc_2017_09_210 crossref_primary_10_1002_ppsc_200900062 crossref_primary_10_2116_bunsekikagaku_65_703 crossref_primary_10_1016_j_apples_2023_100166 crossref_primary_10_1116_1_5049141 crossref_primary_10_1116_1_4967216 crossref_primary_10_1016_j_jmst_2022_06_044 crossref_primary_10_1557_jmr_2018_490 crossref_primary_10_1016_j_aca_2015_10_040 crossref_primary_10_1116_1_4964867 crossref_primary_10_1021_jp301453w crossref_primary_10_3390_jcs6100307 crossref_primary_10_1021_acs_jpcc_6b06713 crossref_primary_10_1039_D0NR03551C crossref_primary_10_1557_opl_2013_191 crossref_primary_10_32362_2410_6593_2023_18_2_135_167 crossref_primary_10_1016_j_teac_2020_e00101 crossref_primary_10_1021_cg801358z crossref_primary_10_1021_jp4048538 crossref_primary_10_1007_s11051_017_3975_7 crossref_primary_10_1021_es902924h crossref_primary_10_1021_jp4068747 crossref_primary_10_1021_jp806073t crossref_primary_10_1021_acs_jpcc_0c02161 crossref_primary_10_1002_nano_202100039 crossref_primary_10_1002_sia_5315 crossref_primary_10_1016_j_jconhyd_2010_07_011 crossref_primary_10_1021_jp300725s crossref_primary_10_1016_j_apsusc_2010_01_024 crossref_primary_10_1021_acs_est_7b02233 crossref_primary_10_1384_jsa_17_163 crossref_primary_10_1002_admt_202401887 crossref_primary_10_1007_s11051_010_9946_x crossref_primary_10_1107_S2052252521007867 crossref_primary_10_3762_bjnano_6_167 crossref_primary_10_1016_j_nano_2020_102178 crossref_primary_10_3389_fchem_2018_00145 crossref_primary_10_1016_j_jconhyd_2015_03_004 crossref_primary_10_1088_0957_4484_25_11_115701 crossref_primary_10_1039_C0JM02448A crossref_primary_10_3390_surfaces2010016 crossref_primary_10_1016_j_elspec_2009_09_003 crossref_primary_10_1039_c004323k crossref_primary_10_35414_akufemubid_888530 crossref_primary_10_1039_D2TB01135B crossref_primary_10_1002_sia_4938 crossref_primary_10_1116_1_5141419 crossref_primary_10_1016_j_jchas_2015_02_001 crossref_primary_10_1002_sia_5006 crossref_primary_10_1039_D3RA05816F crossref_primary_10_1002_ppsc_201300172 crossref_primary_10_1016_j_jphotobiol_2018_02_015 crossref_primary_10_1021_jp305267d crossref_primary_10_1007_s11051_017_3875_x crossref_primary_10_1116_1_4926897 crossref_primary_10_1002_sia_6490 crossref_primary_10_1016_j_scp_2022_100598 crossref_primary_10_1021_jp108759b crossref_primary_10_1021_jp300900j crossref_primary_10_1021_acs_jpcc_7b09930 crossref_primary_10_1017_S1551929516000109 crossref_primary_10_1116_1_4818423 crossref_primary_10_1088_0957_4484_22_6_062001 crossref_primary_10_1088_2053_1591_aad2b5 crossref_primary_10_1039_c3nr02372a crossref_primary_10_1590_1980_5373_mr_2019_0189 crossref_primary_10_1039_D0CS00714E crossref_primary_10_1016_j_chroma_2016_12_080 crossref_primary_10_1016_j_elspec_2009_05_004 crossref_primary_10_1080_09593330_2014_904932 crossref_primary_10_1002_ange_201509008 crossref_primary_10_1021_ja900353f crossref_primary_10_1002_sia_3798 crossref_primary_10_1155_2014_417305 crossref_primary_10_1088_0957_4484_23_21_215704 crossref_primary_10_1002_adma_201605895 crossref_primary_10_1017_S1431927621000465 crossref_primary_10_1002_sia_5452 crossref_primary_10_1002_wnan_1338 crossref_primary_10_1002_etc_1786 crossref_primary_10_1116_1_4926547 crossref_primary_10_1149_1_3474223 crossref_primary_10_1007_s11356_019_04128_y crossref_primary_10_56714_bjrs_49_1_4 crossref_primary_10_1021_es204140s crossref_primary_10_1016_j_jcat_2025_115986 crossref_primary_10_1002_anie_201509008 crossref_primary_10_1007_s00216_009_3360_1 crossref_primary_10_1007_s00216_015_9207_z |
Cites_doi | 10.1063/1.1835566 10.1103/PhysRevB.64.174420 10.1126/science.291.5503.451 10.1126/science.1075094 10.1038/427402a 10.1038/nnano.2006.51 10.1016/j.biomaterials.2006.11.036 10.1002/sia.2031 10.1016/j.scriptamat.2003.11.059 10.1016/j.ultramic.2007.03.002 10.1103/PhysRevB.37.844 10.1021/ja064666q 10.1021/ja051351m 10.1115/1.2204961 10.1126/science.1135080 10.1126/science.1125767 10.1098/rsta.2002.1126 10.1039/cs9831200251 10.1016/S0304-8853(01)00134-2 10.1021/ja036811v 10.1002/sia.2339 10.1021/jp063822c 10.1086/305994 10.1021/jp035437i 10.1126/science.1117219 10.1038/scientificamerican0193-118 10.1039/B403202K 10.1126/science.233.4766.872 10.1073/pnas.251534898 10.1116/1.1387089 10.1063/1.2216960 10.1007/s11051-005-9011-3 10.1088/0953-8984/14/49/311 10.1021/la981012p 10.1021/jp034981o 10.1021/jp0545748 10.1021/ja056721l 10.1021/nl010010d 10.1021/jp0204197 10.1103/PhysRevLett.60.535 10.1088/0957-4484/18/7/075303 10.1021/nl051592s 10.1021/jp055584b 10.1023/A:1021696107498 10.1021/cm970359v 10.1038/nature01845 10.1021/cm051483e 10.1016/S0304-8853(03)00649-8 10.1039/b618790k 10.1021/nl049550b 10.1063/1.1430502 10.1166/jnn.2006.925 10.1116/1.2188410 10.1063/1.2061873 10.1021/jp076164k 10.1016/S0012-821X(02)00818-X 10.1016/j.apsusc.2004.03.046 10.1021/es049190u 10.1016/S0039-6028(02)02657-2 10.4028/www.scientific.net/JMNM.23.95 10.1116/11.20040199 10.1016/S0378-7753(03)00060-0 10.1007/s10853-006-6564-1 10.1016/j.optmat.2004.08.047 |
ContentType | Journal Article Conference Proceeding |
Copyright | Copyright © 2008 John Wiley & Sons, Ltd. 2008 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2008 John Wiley & Sons, Ltd. – notice: 2008 INIST-CNRS |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
DBID | BSCLL AAYXX CITATION IQODW 7U5 8FD L7M OTOTI |
DOI | 10.1002/sia.2726 |
DatabaseName | Istex CrossRef Pascal-Francis Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-9918 |
EndPage | 537 |
ExternalDocumentID | 927963 20361391 10_1002_sia_2726 SIA2726 ark_67375_WNG_BQTN1F2G_0 |
Genre | article |
GrantInformation_xml | – fundername: NSF – fundername: Offices of Basic Energy Sciences – fundername: Biological and Environmental Research, US DOE |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWM RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW 7U5 8FD L7M AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c4566-f4eca58fa4c7aa44f1b7bfe8f462023b7b80da02500046263d61960da8d545093 |
IEDL.DBID | DR2 |
ISSN | 0142-2421 |
IngestDate | Fri May 19 00:36:32 EDT 2023 Thu Jul 10 23:07:13 EDT 2025 Mon Jul 21 09:16:04 EDT 2025 Tue Jul 01 03:34:48 EDT 2025 Thu Apr 24 22:58:24 EDT 2025 Wed Jan 22 16:47:47 EST 2025 Wed Oct 30 09:56:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | Transmission electron microscopy XPS nanomaterials XRD Surface analysis TEM characterization X-ray photoelectron spectra |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | Papers Presented at ECASIA'07. Proceedings of the 12th European Conference on Applications of surface and Interface Analysis, 9-14 September 2007, Brussels, Belgium |
MergedId | FETCHMERGED-LOGICAL-c4566-f4eca58fa4c7aa44f1b7bfe8f462023b7b80da02500046263d61960da8d545093 |
Notes | NSF istex:98E89A4EFE50403DFD09F88A9BBCDC7A9A7837DD Offices of Basic Energy Sciences Biological and Environmental Research, US DOE ArticleID:SIA2726 ark:/67375/WNG-BQTN1F2G-0 SourceType-Scholarly Journals-2 ObjectType-Feature-2 ObjectType-Conference Paper-1 content type line 23 SourceType-Conference Papers & Proceedings-1 ObjectType-Article-3 PNNL-SA-56706 USDOE AC05-76RL01830 |
PQID | 32776311 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_927963 proquest_miscellaneous_32776311 pascalfrancis_primary_20361391 crossref_primary_10_1002_sia_2726 crossref_citationtrail_10_1002_sia_2726 wiley_primary_10_1002_sia_2726_SIA2726 istex_primary_ark_67375_WNG_BQTN1F2G_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March ‐ April 2008 |
PublicationDateYYYYMMDD | 2008-03-01 |
PublicationDate_xml | – month: 03 year: 2008 text: March ‐ April 2008 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester – name: United States |
PublicationTitle | Surface and interface analysis |
PublicationTitleAlternate | Surf. Interface Anal |
PublicationYear | 2008 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Zhu B, Yang XT, Xu J, Zhu ZG, Ji SJ, Sun MT, Sun JC. J. Power Sources 2003; 118: 47. Ajayan PM. Nature 2004; 427: 402. Zhang XX, Wen GH, Huang SM, Dai LM, Gao RP, Wang ZL. J. Magn. Magn. Mater. 2001; 231: L9. Nepijko SA, Klimenkov M, Adelt M, Kuhlenbeck H, Schlogl R, Freund HJ. Langmuir 1999; 15: 5309. Chen HH, Urquidez OA, Ichim S, Rodriguez LH, Brenner MP, Aziz MJ. Science 2005; 310: 294. Yang DQ, Gillet JN, Meunier M, Sacher E. J. Appl. Phys. 2005; 97: 024303. DOI:10.1063/1.1835566 . Frankamp BL, Boal AK, Tuominen MT, Rotello VM. J. Am. Chem. Soc. 2005; 127: 9731. Finke RG (ed.). Synthesis, Characterization and Applications. Marcel Dekker: New York, 2002. Phillips R, Quake SR. Phys. Today 2006; 59: 38. Krishnan KM, Pakhomov AB, Bao Y, Blomqvist P, Chun Y, Gonzales M, Griffin K, Ji X, Roberts BK. J. Mater. Sci. 2006; 41: 793. Karakoti AS, Kuchibhatla S, Babu KS, Seal S. J. Phys. Chem. C 2007; 111: 17232-17240. Baer DR, Gaspar DJ, Engelhard MH, Lea AS. Beam Effects During AES and XPS Analysis. IM Publications and Surface Spectra: Chichester, 2003. Finnegan M, Zhang H. J. Phys. Chem. C 2007; 111: 1962. Rowlinson JS. Chem. Soc. Rev. 1983; 12: 251. Hakkinen H, Yoon B, Landman U, Li X, Zhai HJ, Wang LS. J. Phys. Chem. A 2003; 107: 6168. Henderson MA, Perkins CL, Engelhard MH, Thevuthasan S, Peden CHF. Surf. Sci. 2003; 526: 1. Gaspar DJ, Engelhard MH, Henry MC, Baer DR. Surf. Interface Anal. 2005; 37: 417. Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ. Biomaterials 2007; 28: 1918. Reinhard BM, Siu M, Agarwal H, Alivisatos AP, Liphardt J. Nano Lett. 2005; 5: 2246. Schwartz DA, Norberg NS, Nguyen QP, Parker JM, Gamelin DR. J. Am. Chem. Soc. 2003; 125: 13205. Kuhn LT, Bojesen A, Timmermann L, Nielsen MM, Morup S. J. Phys.: Condens. Matter 2002; 14: 13551. Wertheim GK, Dicenzo SB. Phys. Rev. B 1988; 37: 844. Masui T, Fujiwara K, Machida Ki, Adachi Gy, Sakata T, Mori H. Chem. Mater. 1997; 9: 2197. Kawi S, Tang YP, Hidajat K, Yu LE. J. Metastable Nanocryst. Mater. 2005; 23: 95. Deshpande S, Patil S, Kuchibhatla S, Seal S. Appl. Phys. Lett. 2005; 87: 133113. Norman TJ, Grant CD, Magana D, Zhang JZ, Liu J, Cao DL, Bridges F, Van Buuren A. J. Phys. Chem. B 2002; 106: 7005. Campbell CT, Parker SC, Starr DE. Science 2002; 298: 811. Chernyshova IV, Hochella MF, Madden AS. Phys. Chem. Chem. Phys. 2007; 9: 1736. Feng XD, Sayle DC, Wang ZL, Paras MS, Santora B, Sutorik AC, Sayle TXT, Yang Y, Ding Y, Wang XD, Her YS. Science 2006; 312: 1504. Zhao JP, Chen ZY, Cai XJ, Rabalais JW. J. Vac. Sci. Technol., B 2006; 24: 1104. Antony J, Qiang Y, Baer DR, Wang CM. J. Nanosci. Nanotechnol. 2006; 6: 568. Liu GL, Yin YD, Kunchakarra S, Mukherjee B, Gerion D, Jett SD, Bear DG, Gray JW, Alivisatos AP, Lee LP, Chen FQF. Nat. Nanotechnol. 2006; 1: 47. Punnoose A, Magnone H, Seehra MS, Bonevich J. Phys. Rev. B 2001; 64: 174420. Bao YP, Beerman M, Krishnan KM. J. Magn. Magn. Mater. 2003; 266: L245. Feng Z, Siu-Wai C, Jonathan ES, Ebru A, Qiang J, Richard DR, Irving PH. Appl. Phys. Lett. 2002; 80: 127. Kuchibhatla S, Karakoti AS, Seal S. Nanotechnology 2007; 18. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang CM, Linehan JC, Matson DW, Penn RL, Driessen MD. Environ. Sci. Technol. 2005; 39: 1221. Hoagland RG, Kurtz RJ, Henager CH. Scripta Mater. 2004; 50: 775. Reed MA, Randall JN, Aggarwal RJ, Matyi RJ, Moore TM, Wetsel AE. Phys. Rev. Lett. 1988; 60: 535. Smith DJ, Petfordlong AK, Wallenberg LR, Bovin JO. Science 1986; 233: 872. Ranade MR, Navrotsky A, Zhang HZ, Banfield JF, Elder SH, Zaban A, Borse PH, Kulkarni SK, Doran GS, Whitfield HJ. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 6476. Jung YJ, Homma Y, Vajtai R, Kobayashi Y, Ogino T, Ajayan PM. Nano Lett. 2004; 4: 1109. Baer DR, Engelhard MH, Lea AS. Surf. Sci. Spectra 2003; 10: 45. Reed MA. Sci. Am. 1993; 268: 118. Baer DR, Tratnyek PG, Qiang Y, Amonette JE, Linehan JC, Sarathy V, Nurmi JT, Wang CM, Antony J. In Environmental Applications of Nanomaterials: Synthesis, Sorbents and Sensors, Fryxell G, Cao G (eds). Imperial College Press: London, 2006. Chen W, Pan XL, Willinger MG, Su DS, Bao XH. J. Am. Chem. Soc. 2006; 128: 3136. Dane A, Demirok UK, Aydinli A, Suzer S. J. Phys. Chem. B 2006; 110: 1137. Verma A, Srivastava S, Rotello VM. Chem. Mater. 2005; 17: 6317. Hochella MF. Earth Planet. Sci. Lett. 2002; 203: 593. Baer DR, Engelhard MH, Gaspar DJ, Matson DW, Pecher K, Williams JR, Wang CM. J. Surf. Anal. 2005; 12: 101. Zhang HZ, Gilbert B, Huang F, Banfield JF. Nature 2003; 424: 1025. Sarathy V, Tratnyek PG, Nurmi JT, Baer DR, Amonette JE, Wang C-M, Chun NC, Penn RL, Lai G, Reardon EJ. J. Phys. Chem. C 2008; (in press), DOI: 10.1021/jp0777418. Hill TL. Nano Lett. 2001; 1: 111. Billinge SJL, Levin I. Science 2007; 316: 561. Patil S, Kuiry SC, Seal S, Vanfleet R. J. Nanopart. Res. 2002; 4: 433. Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH. J. Phys. Chem. B 2005; 109: 24380. Gaspar DJ, Laskin A, Wang W, Hunt SW, Finlayson-Pitts BJ. Appl. Surf. Sci. 2004; 231-232: 520. Jurac S, Johnson RE, Donn B. Astrophys. J. 1998; 503: 247. Zhang YW, Si R, Liao CS, Yan CH. J. Phys. Chem. B 2003; 107: 10159. Liu H, Brison LC. J. Appl. Mech. 2006; 73: 758. Yacaman MJ, Ascencio JA, Liu HB, Gardea-Torresdey J. Journal of Vacuum Science and Technology 2001; 19: 1091. Gliemann H, Almeida AT, Petri DFS, Schimmel T. Surf. Interface Anal. 2007; 39: 1. Scher EC, Manna L, Alivisatos AP. Philos. Trans. R. Soc. Lond. A 2003; 361: 241. Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D. J. Nanopart. Res. 2006; 8: 489. Wang CM, Baer DR, Amonette JE, Engelhard ME, Antony JJ, Qiang Y. Ultramicroscopy 2007; 108: 43. Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski M, Wasilewski ZR, Stern O, Forchel A. Science 2001; 291: 451. Latham AH, Wilson MJ, Schiffer P, Williams ME. J. Am. Chem. Soc. 2006; 128: 12632. Hernandez-Alonso MD, Hungria AB, Martinez-Arias A, Coronado JM, Conesa JC, Soria J, Fernandez-Garcia M. Phys. Chem. Chem. Phys. 2004; 6: 3524. Glover M, Meldrum A. Opt. Mater. 2005; 27: 977. 2007; 39 2002; 14 2003; 118 2007; 108 2006; 73 1988; 37 2002; 99 2004; 4 2004; 6 2005; 27 1997; 9 2005; 23 2003; 10 1983; 12 2007; 28 2004; 231–232 2003; 526 2006; 24 2001; 291 1999; 15 2001; 19 2002; 106 2007; 9 2005; 109 2005; 37 2003; 125 2005; 39 2006; 128 2003; 361 2007; 18 1986; 233 2005; 310 2002; 298 2006; 59 2006; 8 2008 2006; 110 2006 2002; 4 2005; 87 2006; 6 2003 2006; 1 2002 2002; 80 1993; 268 2004; 427 2006; 312 2001; 64 2001; 231 2004; 50 2006; 41 2007; 316 2003; 107 2003; 424 2007; 111 2005; 127 2005; 5 1998; 503 2005; 97 2002; 203 2001; 1 2005; 17 1988; 60 2003; 266 2005; 12 Baer DR (e_1_2_1_68_2) 2003 e_1_2_1_41_2 e_1_2_1_64_2 e_1_2_1_66_2 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_60_2 e_1_2_1_20_2 e_1_2_1_43_2 e_1_2_1_62_2 e_1_2_1_26_2 Antony J (e_1_2_1_32_2) 2006; 6 e_1_2_1_49_2 e_1_2_1_47_2 e_1_2_1_28_2 Finke RG (e_1_2_1_3_2) 2002 e_1_2_1_6_2 e_1_2_1_54_2 e_1_2_1_4_2 e_1_2_1_56_2 e_1_2_1_2_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_50_2 e_1_2_1_71_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_52_2 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_14_2 e_1_2_1_35_2 e_1_2_1_58_2 e_1_2_1_8_2 Baer DR (e_1_2_1_23_2) 2006 e_1_2_1_18_2 e_1_2_1_39_2 e_1_2_1_40_2 e_1_2_1_65_2 e_1_2_1_67_2 e_1_2_1_44_2 e_1_2_1_61_2 e_1_2_1_21_2 e_1_2_1_42_2 e_1_2_1_63_2 e_1_2_1_27_2 e_1_2_1_48_2 e_1_2_1_25_2 e_1_2_1_46_2 e_1_2_1_69_2 e_1_2_1_29_2 e_1_2_1_70_2 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_55_2 e_1_2_1_5_2 Baer DR (e_1_2_1_53_2) 2005; 12 e_1_2_1_11_2 e_1_2_1_34_2 Sarathy V (e_1_2_1_24_2) 2008 e_1_2_1_51_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_19_2 e_1_2_1_57_2 e_1_2_1_17_2 e_1_2_1_59_2 e_1_2_1_9_2 |
References_xml | – reference: Yang DQ, Gillet JN, Meunier M, Sacher E. J. Appl. Phys. 2005; 97: 024303. DOI:10.1063/1.1835566 . – reference: Yacaman MJ, Ascencio JA, Liu HB, Gardea-Torresdey J. Journal of Vacuum Science and Technology 2001; 19: 1091. – reference: Liu GL, Yin YD, Kunchakarra S, Mukherjee B, Gerion D, Jett SD, Bear DG, Gray JW, Alivisatos AP, Lee LP, Chen FQF. Nat. Nanotechnol. 2006; 1: 47. – reference: Zhu B, Yang XT, Xu J, Zhu ZG, Ji SJ, Sun MT, Sun JC. J. Power Sources 2003; 118: 47. – reference: Deshpande S, Patil S, Kuchibhatla S, Seal S. Appl. Phys. Lett. 2005; 87: 133113. – reference: Baer DR, Tratnyek PG, Qiang Y, Amonette JE, Linehan JC, Sarathy V, Nurmi JT, Wang CM, Antony J. In Environmental Applications of Nanomaterials: Synthesis, Sorbents and Sensors, Fryxell G, Cao G (eds). Imperial College Press: London, 2006. – reference: Bao YP, Beerman M, Krishnan KM. J. Magn. Magn. Mater. 2003; 266: L245. – reference: Masui T, Fujiwara K, Machida Ki, Adachi Gy, Sakata T, Mori H. Chem. Mater. 1997; 9: 2197. – reference: Scher EC, Manna L, Alivisatos AP. Philos. Trans. R. Soc. Lond. A 2003; 361: 241. – reference: Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH. J. Phys. Chem. B 2005; 109: 24380. – reference: Feng Z, Siu-Wai C, Jonathan ES, Ebru A, Qiang J, Richard DR, Irving PH. Appl. Phys. Lett. 2002; 80: 127. – reference: Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ. Biomaterials 2007; 28: 1918. – reference: Karakoti AS, Kuchibhatla S, Babu KS, Seal S. J. Phys. Chem. C 2007; 111: 17232-17240. – reference: Smith DJ, Petfordlong AK, Wallenberg LR, Bovin JO. Science 1986; 233: 872. – reference: Liu H, Brison LC. J. Appl. Mech. 2006; 73: 758. – reference: Zhang HZ, Gilbert B, Huang F, Banfield JF. Nature 2003; 424: 1025. – reference: Dane A, Demirok UK, Aydinli A, Suzer S. J. Phys. Chem. B 2006; 110: 1137. – reference: Kawi S, Tang YP, Hidajat K, Yu LE. J. Metastable Nanocryst. Mater. 2005; 23: 95. – reference: Phillips R, Quake SR. Phys. Today 2006; 59: 38. – reference: Krishnan KM, Pakhomov AB, Bao Y, Blomqvist P, Chun Y, Gonzales M, Griffin K, Ji X, Roberts BK. J. Mater. Sci. 2006; 41: 793. – reference: Zhang XX, Wen GH, Huang SM, Dai LM, Gao RP, Wang ZL. J. Magn. Magn. Mater. 2001; 231: L9. – reference: Henderson MA, Perkins CL, Engelhard MH, Thevuthasan S, Peden CHF. Surf. Sci. 2003; 526: 1. – reference: Latham AH, Wilson MJ, Schiffer P, Williams ME. J. Am. Chem. Soc. 2006; 128: 12632. – reference: Chernyshova IV, Hochella MF, Madden AS. Phys. Chem. Chem. Phys. 2007; 9: 1736. – reference: Rowlinson JS. Chem. Soc. Rev. 1983; 12: 251. – reference: Hill TL. Nano Lett. 2001; 1: 111. – reference: Baer DR, Engelhard MH, Lea AS. Surf. Sci. Spectra 2003; 10: 45. – reference: Finke RG (ed.). Synthesis, Characterization and Applications. Marcel Dekker: New York, 2002. – reference: Ajayan PM. Nature 2004; 427: 402. – reference: Zhang YW, Si R, Liao CS, Yan CH. J. Phys. Chem. B 2003; 107: 10159. – reference: Antony J, Qiang Y, Baer DR, Wang CM. J. Nanosci. Nanotechnol. 2006; 6: 568. – reference: Baer DR, Gaspar DJ, Engelhard MH, Lea AS. Beam Effects During AES and XPS Analysis. IM Publications and Surface Spectra: Chichester, 2003. – reference: Hernandez-Alonso MD, Hungria AB, Martinez-Arias A, Coronado JM, Conesa JC, Soria J, Fernandez-Garcia M. Phys. Chem. Chem. Phys. 2004; 6: 3524. – reference: Gliemann H, Almeida AT, Petri DFS, Schimmel T. Surf. Interface Anal. 2007; 39: 1. – reference: Gaspar DJ, Engelhard MH, Henry MC, Baer DR. Surf. Interface Anal. 2005; 37: 417. – reference: Hochella MF. Earth Planet. Sci. Lett. 2002; 203: 593. – reference: Ranade MR, Navrotsky A, Zhang HZ, Banfield JF, Elder SH, Zaban A, Borse PH, Kulkarni SK, Doran GS, Whitfield HJ. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 6476. – reference: Wertheim GK, Dicenzo SB. Phys. Rev. B 1988; 37: 844. – reference: Reed MA. Sci. Am. 1993; 268: 118. – reference: Billinge SJL, Levin I. Science 2007; 316: 561. – reference: Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski M, Wasilewski ZR, Stern O, Forchel A. Science 2001; 291: 451. – reference: Finnegan M, Zhang H. J. Phys. Chem. C 2007; 111: 1962. – reference: Kuhn LT, Bojesen A, Timmermann L, Nielsen MM, Morup S. J. Phys.: Condens. Matter 2002; 14: 13551. – reference: Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D. J. Nanopart. Res. 2006; 8: 489. – reference: Wang CM, Baer DR, Amonette JE, Engelhard ME, Antony JJ, Qiang Y. Ultramicroscopy 2007; 108: 43. – reference: Glover M, Meldrum A. Opt. Mater. 2005; 27: 977. – reference: Chen W, Pan XL, Willinger MG, Su DS, Bao XH. J. Am. Chem. Soc. 2006; 128: 3136. – reference: Patil S, Kuiry SC, Seal S, Vanfleet R. J. Nanopart. Res. 2002; 4: 433. – reference: Verma A, Srivastava S, Rotello VM. Chem. Mater. 2005; 17: 6317. – reference: Kuchibhatla S, Karakoti AS, Seal S. Nanotechnology 2007; 18. – reference: Frankamp BL, Boal AK, Tuominen MT, Rotello VM. J. Am. Chem. Soc. 2005; 127: 9731. – reference: Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang CM, Linehan JC, Matson DW, Penn RL, Driessen MD. Environ. Sci. Technol. 2005; 39: 1221. – reference: Norman TJ, Grant CD, Magana D, Zhang JZ, Liu J, Cao DL, Bridges F, Van Buuren A. J. Phys. Chem. B 2002; 106: 7005. – reference: Campbell CT, Parker SC, Starr DE. Science 2002; 298: 811. – reference: Hoagland RG, Kurtz RJ, Henager CH. Scripta Mater. 2004; 50: 775. – reference: Gaspar DJ, Laskin A, Wang W, Hunt SW, Finlayson-Pitts BJ. Appl. Surf. Sci. 2004; 231-232: 520. – reference: Jung YJ, Homma Y, Vajtai R, Kobayashi Y, Ogino T, Ajayan PM. Nano Lett. 2004; 4: 1109. – reference: Hakkinen H, Yoon B, Landman U, Li X, Zhai HJ, Wang LS. J. Phys. Chem. A 2003; 107: 6168. – reference: Nepijko SA, Klimenkov M, Adelt M, Kuhlenbeck H, Schlogl R, Freund HJ. Langmuir 1999; 15: 5309. – reference: Jurac S, Johnson RE, Donn B. Astrophys. J. 1998; 503: 247. – reference: Reed MA, Randall JN, Aggarwal RJ, Matyi RJ, Moore TM, Wetsel AE. Phys. Rev. Lett. 1988; 60: 535. – reference: Chen HH, Urquidez OA, Ichim S, Rodriguez LH, Brenner MP, Aziz MJ. Science 2005; 310: 294. – reference: Feng XD, Sayle DC, Wang ZL, Paras MS, Santora B, Sutorik AC, Sayle TXT, Yang Y, Ding Y, Wang XD, Her YS. Science 2006; 312: 1504. – reference: Zhao JP, Chen ZY, Cai XJ, Rabalais JW. J. Vac. Sci. Technol., B 2006; 24: 1104. – reference: Sarathy V, Tratnyek PG, Nurmi JT, Baer DR, Amonette JE, Wang C-M, Chun NC, Penn RL, Lai G, Reardon EJ. J. Phys. Chem. C 2008; (in press), DOI: 10.1021/jp0777418. – reference: Punnoose A, Magnone H, Seehra MS, Bonevich J. Phys. Rev. B 2001; 64: 174420. – reference: Baer DR, Engelhard MH, Gaspar DJ, Matson DW, Pecher K, Williams JR, Wang CM. J. Surf. Anal. 2005; 12: 101. – reference: Reinhard BM, Siu M, Agarwal H, Alivisatos AP, Liphardt J. Nano Lett. 2005; 5: 2246. – reference: Schwartz DA, Norberg NS, Nguyen QP, Parker JM, Gamelin DR. J. Am. Chem. Soc. 2003; 125: 13205. – volume: 64 start-page: 174420 year: 2001 publication-title: Phys. Rev. B – volume: 5 start-page: 2246 year: 2005 publication-title: Nano Lett. – volume: 526 start-page: 1 year: 2003 publication-title: Surf. Sci. – volume: 12 start-page: 251 year: 1983 publication-title: Chem. Soc. Rev. – volume: 19 start-page: 1091 year: 2001 publication-title: Journal of Vacuum Science and Technology – volume: 291 start-page: 451 year: 2001 publication-title: Science – volume: 37 start-page: 417 year: 2005 publication-title: Surf. Interface Anal. – volume: 268 start-page: 118 year: 1993 publication-title: Sci. Am. – volume: 231 start-page: L9 year: 2001 publication-title: J. Magn. Magn. Mater. – volume: 28 start-page: 1918 year: 2007 publication-title: Biomaterials – volume: 298 start-page: 811 year: 2002 publication-title: Science – volume: 9 start-page: 2197 year: 1997 publication-title: Chem. Mater. – volume: 118 start-page: 47 year: 2003 publication-title: J. Power Sources – volume: 127 start-page: 9731 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 13551 year: 2002 publication-title: J. Phys.: Condens. Matter – volume: 41 start-page: 793 year: 2006 publication-title: J. Mater. Sci. – volume: 8 start-page: 489 year: 2006 publication-title: J. Nanopart. Res. – volume: 59 start-page: 38 year: 2006 publication-title: Phys. Today – volume: 15 start-page: 5309 year: 1999 publication-title: Langmuir – volume: 60 start-page: 535 year: 1988 publication-title: Phys. Rev. Lett. – volume: 17 start-page: 6317 year: 2005 publication-title: Chem. Mater. – volume: 312 start-page: 1504 year: 2006 publication-title: Science – volume: 231–232 start-page: 520 year: 2004 publication-title: Appl. Surf. Sci. – volume: 106 start-page: 7005 year: 2002 publication-title: J. Phys. Chem. B – volume: 125 start-page: 13205 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 97 start-page: 024303 year: 2005 publication-title: J. Appl. Phys. – volume: 50 start-page: 775 year: 2004 publication-title: Scripta Mater. – volume: 39 start-page: 1221 year: 2005 publication-title: Environ. Sci. Technol. – volume: 23 start-page: 95 year: 2005 publication-title: J. Metastable Nanocryst. Mater. – volume: 24 start-page: 1104 year: 2006 publication-title: J. Vac. Sci. Technol., B – volume: 1 start-page: 111 year: 2001 publication-title: Nano Lett. – volume: 128 start-page: 3136 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 316 start-page: 561 year: 2007 publication-title: Science – volume: 6 start-page: 568 year: 2006 publication-title: J. Nanosci. Nanotechnol. – volume: 233 start-page: 872 year: 1986 publication-title: Science – volume: 4 start-page: 1109 year: 2004 publication-title: Nano Lett. – volume: 107 start-page: 10159 year: 2003 publication-title: J. Phys. Chem. B – volume: 99 start-page: 6476 year: 2002 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 87 start-page: 133113 year: 2005 publication-title: Appl. Phys. Lett. – volume: 107 start-page: 6168 year: 2003 publication-title: J. Phys. Chem. A – volume: 1 start-page: 47 year: 2006 publication-title: Nat. Nanotechnol. – year: 2003 – volume: 310 start-page: 294 year: 2005 publication-title: Science – volume: 424 start-page: 1025 year: 2003 publication-title: Nature – volume: 110 start-page: 1137 year: 2006 publication-title: J. Phys. Chem. B – year: 2008 publication-title: J. Phys. Chem. C – volume: 111 start-page: 1962 year: 2007 publication-title: J. Phys. Chem. C – volume: 73 start-page: 758 year: 2006 publication-title: J. Appl. Mech. – volume: 109 start-page: 24380 year: 2005 publication-title: J. Phys. Chem. B – volume: 427 start-page: 402 year: 2004 publication-title: Nature – volume: 12 start-page: 101 year: 2005 publication-title: J. Surf. Anal. – volume: 266 start-page: L245 year: 2003 publication-title: J. Magn. Magn. Mater. – volume: 108 start-page: 43 year: 2007 publication-title: Ultramicroscopy – volume: 128 start-page: 12632 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 361 start-page: 241 year: 2003 publication-title: Philos. Trans. R. Soc. Lond. A – volume: 18 year: 2007 publication-title: Nanotechnology – volume: 37 start-page: 844 year: 1988 publication-title: Phys. Rev. B – volume: 10 start-page: 45 year: 2003 publication-title: Surf. Sci. Spectra – year: 2002 – year: 2006 – volume: 80 start-page: 127 year: 2002 publication-title: Appl. Phys. Lett. – volume: 27 start-page: 977 year: 2005 publication-title: Opt. Mater. – volume: 4 start-page: 433 year: 2002 publication-title: J. Nanopart. Res. – volume: 111 start-page: 17232 year: 2007 end-page: 17240 publication-title: J. Phys. Chem. C – volume: 39 start-page: 1 year: 2007 publication-title: Surf. Interface Anal. – volume: 6 start-page: 3524 year: 2004 publication-title: Phys. Chem. Chem. Phys. – volume: 503 start-page: 247 year: 1998 publication-title: Astrophys. J. – volume: 9 start-page: 1736 year: 2007 publication-title: Phys. Chem. Chem. Phys. – volume: 203 start-page: 593 year: 2002 publication-title: Earth Planet. Sci. Lett. – ident: e_1_2_1_22_2 doi: 10.1063/1.1835566 – ident: e_1_2_1_31_2 doi: 10.1103/PhysRevB.64.174420 – ident: e_1_2_1_63_2 doi: 10.1126/science.291.5503.451 – ident: e_1_2_1_26_2 doi: 10.1126/science.1075094 – ident: e_1_2_1_44_2 doi: 10.1038/427402a – ident: e_1_2_1_69_2 doi: 10.1038/nnano.2006.51 – ident: e_1_2_1_7_2 doi: 10.1016/j.biomaterials.2006.11.036 – ident: e_1_2_1_51_2 doi: 10.1002/sia.2031 – ident: e_1_2_1_27_2 doi: 10.1016/j.scriptamat.2003.11.059 – ident: e_1_2_1_47_2 doi: 10.1016/j.ultramic.2007.03.002 – ident: e_1_2_1_59_2 doi: 10.1103/PhysRevB.37.844 – ident: e_1_2_1_48_2 doi: 10.1021/ja064666q – ident: e_1_2_1_58_2 doi: 10.1021/ja051351m – ident: e_1_2_1_65_2 doi: 10.1115/1.2204961 – ident: e_1_2_1_71_2 doi: 10.1126/science.1135080 – ident: e_1_2_1_11_2 doi: 10.1126/science.1125767 – ident: e_1_2_1_2_2 – ident: e_1_2_1_57_2 doi: 10.1098/rsta.2002.1126 – ident: e_1_2_1_39_2 doi: 10.1039/cs9831200251 – ident: e_1_2_1_20_2 doi: 10.1016/S0304-8853(01)00134-2 – volume-title: Environmental Applications of Nanomaterials: Synthesis, Sorbents and Sensors year: 2006 ident: e_1_2_1_23_2 – ident: e_1_2_1_64_2 doi: 10.1021/ja036811v – ident: e_1_2_1_56_2 doi: 10.1002/sia.2339 – ident: e_1_2_1_34_2 doi: 10.1021/jp063822c – ident: e_1_2_1_37_2 doi: 10.1086/305994 – year: 2008 ident: e_1_2_1_24_2 publication-title: J. Phys. Chem. C – ident: e_1_2_1_38_2 doi: 10.1021/jp035437i – ident: e_1_2_1_50_2 doi: 10.1126/science.1117219 – ident: e_1_2_1_35_2 doi: 10.1038/scientificamerican0193-118 – ident: e_1_2_1_14_2 doi: 10.1039/B403202K – ident: e_1_2_1_45_2 doi: 10.1126/science.233.4766.872 – ident: e_1_2_1_30_2 doi: 10.1073/pnas.251534898 – ident: e_1_2_1_40_2 doi: 10.1116/1.1387089 – ident: e_1_2_1_42_2 doi: 10.1063/1.2216960 – ident: e_1_2_1_19_2 doi: 10.1007/s11051-005-9011-3 – ident: e_1_2_1_21_2 doi: 10.1088/0953-8984/14/49/311 – ident: e_1_2_1_25_2 doi: 10.1021/la981012p – ident: e_1_2_1_12_2 doi: 10.1021/jp034981o – ident: e_1_2_1_60_2 doi: 10.1021/jp0545748 – ident: e_1_2_1_55_2 doi: 10.1021/ja056721l – ident: e_1_2_1_41_2 doi: 10.1021/nl010010d – volume-title: Synthesis, Characterization and Applications year: 2002 ident: e_1_2_1_3_2 – ident: e_1_2_1_61_2 doi: 10.1021/jp0204197 – ident: e_1_2_1_36_2 doi: 10.1103/PhysRevLett.60.535 – ident: e_1_2_1_16_2 doi: 10.1088/0957-4484/18/7/075303 – ident: e_1_2_1_62_2 doi: 10.1021/nl051592s – ident: e_1_2_1_9_2 doi: 10.1021/jp055584b – ident: e_1_2_1_6_2 doi: 10.1023/A:1021696107498 – ident: e_1_2_1_13_2 doi: 10.1021/cm970359v – ident: e_1_2_1_54_2 doi: 10.1038/nature01845 – volume-title: Beam Effects During AES and XPS Analysis year: 2003 ident: e_1_2_1_68_2 – ident: e_1_2_1_70_2 doi: 10.1021/cm051483e – ident: e_1_2_1_43_2 doi: 10.1016/S0304-8853(03)00649-8 – ident: e_1_2_1_29_2 doi: 10.1039/b618790k – ident: e_1_2_1_52_2 doi: 10.1021/nl049550b – ident: e_1_2_1_10_2 doi: 10.1063/1.1430502 – volume: 6 start-page: 568 year: 2006 ident: e_1_2_1_32_2 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2006.925 – ident: e_1_2_1_46_2 doi: 10.1116/1.2188410 – ident: e_1_2_1_8_2 doi: 10.1063/1.2061873 – ident: e_1_2_1_15_2 doi: 10.1021/jp076164k – volume: 12 start-page: 101 year: 2005 ident: e_1_2_1_53_2 publication-title: J. Surf. Anal. – ident: e_1_2_1_33_2 doi: 10.1016/S0012-821X(02)00818-X – ident: e_1_2_1_49_2 doi: 10.1016/j.apsusc.2004.03.046 – ident: e_1_2_1_18_2 doi: 10.1021/es049190u – ident: e_1_2_1_17_2 doi: 10.1016/S0039-6028(02)02657-2 – ident: e_1_2_1_5_2 doi: 10.4028/www.scientific.net/JMNM.23.95 – ident: e_1_2_1_67_2 doi: 10.1116/11.20040199 – ident: e_1_2_1_4_2 doi: 10.1016/S0378-7753(03)00060-0 – ident: e_1_2_1_28_2 doi: 10.1007/s10853-006-6564-1 – ident: e_1_2_1_66_2 doi: 10.1016/j.optmat.2004.08.047 |
SSID | ssj0008386 |
Score | 2.2308004 |
Snippet | Nanostructured materials are increasingly subject to nearly every type of chemical and physical analysis possible. Due to their small sizes, there is a... Nanostructured materials are increasingly subject to nearly every type of chemical and physical analysis possible. Because of their small feature size there is... |
SourceID | osti proquest pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 529 |
SubjectTerms | CERIUM OXIDES characterization CHEMICAL ANALYSIS Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science; rheology Environmental Molecular Sciences Laboratory Exact sciences and technology GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE IRON IRON OXIDES MEASURING METHODS nanomaterials NANOSCIENCE AND NANOTECHNOLOGY NANOSTRUCTURES PHYSICAL PROPERTIES Physics SPATIAL RESOLUTION surface analysis SURFACE PROPERTIES TEM XPS XRD |
Title | Characterization challenges for nanomaterials |
URI | https://api.istex.fr/ark:/67375/WNG-BQTN1F2G-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsia.2726 https://www.proquest.com/docview/32776311 https://www.osti.gov/biblio/927963 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD6UlLK99JJtzF0vHozuyYktK748tqFJW1hgW8sCexCSbMFocUadwNiv7zlS7DRlhdEnY3MsZB1dPlnf-Q7Ap1RKSrc9CDRLTMB5HgW4CJeBonguXJOMskFiXybJxQ2_mg6mS1YlxcI4fYj2hxuNDDtf0wCXqu6vREPrX7LHUkZq20TVIjz0baUclcU2ySNuAJg99Wx0Z0PWb15cW4k2qVH_4Lw8w5FFBElZYxsZl9xiDX0-xrB2ERrtwM-m-o57cttbzFVP_32i7Piy79uF7SU29U9dZ9qDjbLqwqthkxKuC1uWL6rrNxAMW6FnF8fp6yYrS-0jDvYrWc0QDLv-_RZuRufXw4tgmXkh0AioksDwUstBZiTX6EzOTaRSZcrM8ITSreNNFhaS4JMNbk3iAvdhCT7KCkRkYR6_g041q8r34KskitIyxlKU4Vms8zCUBJoKLfNcxrEHnxsvCL2UJafsGHfCCSozgQ0hqCE8-Nha_nZSHP-wObGObA3k_S1R19KB-DEZi7Ov15NoxMYi9GCfPC0QZ5BYriZWkZ6LnKU4I3lwtOb_tjQ6tUXIHHlw3HQIgS6gMxZZlbNFLWKW4owdocWJde6zNRXfL0_puv-_hh_gteOqEP_tADrz-0V5iIBoro5s138AUyYEqQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD6CIsRexgZMC-MSJARPaRPHzUU8QbVSbpUYRfCAZDluLE1M6dS00rRfzzl2EygaEtpTlOgkin18-Wyf830A-7GUJLfd9hSLtMd5Gng4CedeRvlcOCfpzCSJXfWj3i0_v2_fL8BRlQtj-SHqDTfqGWa8pg5OG9KtZ9bQ8qdssphFi7BEgt5mPfXjmTsqCY3MIy4BmDn3rJhnfdaq3pybi5aoWv_gyDzCvkUhkrLEWtJW3mIOf75EsWYa6q7CQ1UAG33y2JxOsqb6-4rb8T9L-Ak-zuCpe2zb02dYyIs1WOlUqnBrsGxCRlW5Dl6n5nq2qZyuqoRZShehsFvIYoR42DbxDbjtfh90et5MfMFTiKkiT_NcyXaiJVfoT851kMWZzhPNI1Jcx5vEH0pCUCa_NQqHuBSL8FEyRFDmp-EXaBSjIv8KbhYFQZyH-JVM8yRUqe9Lwk1DJdNUhqEDh5UbhJoxk5NAxi9hOZWZwIoQVBEO7NWWvy0bxz9sDownawM5fqTotbgt7vqn4uR60A-67FT4DmySqwVCDeLLVRRYpCYiZTEOSg7szDWA-mt0cIuoOXBgt2oRAl1AxyyyyEfTUoQsxkE7QIsD4903_1TcnB3TdfO9hruw0htcXYrLs_7FN_hgQ1coHG4LGpPxNN9GfDTJdkw_eAKRfQjE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5REG0vFGirBigECdFTlsTxOskRFpb3qg8QSD1YjhNLFVUWkV2p6q9nxt4EFrUS4hQlmliOx575HM98A7CVKEXltruBZsIEnGdRgE64DHLK50KfZHKbJHY-EEeX_OS6ez2JqqRcGMcP0f5wo5Vh7TUt8NvC7DyQhta_VIclTLyCOS7ClGb0_vcH6qg0tlUecQfA7LFnQzwbsp3mzSlXNEej-gcN8xCXFkVIqhoHybjqFlPw8zGItV6o_w5-Nv13wSc3nfEo7-i_T6gdX_aBi7AwAaf-rptNSzBTVsvwptfUhFuGeRswquv3EPRapmeXyOnrpixL7SMQ9itVDRENuwn-AS77Bxe9o2BSeiHQiKhEYHipVTc1imvUJucmypPclKnhguqt400aForwk81uFXGBGzGBj9ICIVmYxR9hthpW5SfwcxFFSRljK7nhaayzMFSEmgqtskzFsQdfGi1IPeElp_IYv6VjVGYSB0LSQHiw2UreOi6Of8hsW0W2AuruhmLXkq68GhzKvW8Xg6jPDmXowQppWiLQILZcTWFFeiQzlqBJ8mB9Sv9ta3Rsi5g58mCjmRASVUCHLKoqh-NaxixBkx2hxLZV7n97Kn8c79J15bmCG_D6635fnh0PTlfhrYtboVi4NZgd3Y3LzwiORvm6XQX3kAQHfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Surface+and+interface+analysis&rft.atitle=Characterization+challenges+for+nanomaterials&rft.au=BAER%2C+D.+R&rft.au=AMONETTE%2C+J.+E&rft.au=SEAL%2C+S&rft.au=SHARMA%2C+A&rft.date=2008-03-01&rft.pub=Wiley&rft.issn=0142-2421&rft.volume=40&rft.issue=3-4&rft.spage=529&rft.epage=537&rft_id=info:doi/10.1002%2Fsia.2726&rft.externalDBID=n%2Fa&rft.externalDocID=20361391 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-2421&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-2421&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-2421&client=summon |