Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity

Summary 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers’ assessment and interpretation of the single best ‘magic model’. The shortcomings of s...

Full description

Saved in:
Bibliographic Details
Published inMethods in ecology and evolution Vol. 5; no. 4; pp. 320 - 328
Main Authors Ray‐Mukherjee, Jayanti, Nimon, Kim, Mukherjee, Shomen, Morris, Douglas W., Slotow, Rob, Hamer, Michelle, Nakagawa, Shinichi
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers’ assessment and interpretation of the single best ‘magic model’. The shortcomings of stepwise regression have been extensively described in statistical literature, yet it is still widely used in ecological literature. Similarly, hierarchical regression which is thought to be an improvement of the stepwise procedure, fails to address multicollinearity. 2. We propose that regression commonality analysis (CA), a technique more commonly used in psychology and education research will be helpful in interpreting the typical multiple regression analyses conducted on ecological data. 3. CA decomposes the variance of R2 into unique and common (or shared) variance (or effects) of predictors, and hence, it can significantly improve exploratory capabilities in studies where multiple regressions are widely used, particularly when predictors are correlated. CA can explicitly identify the magnitude and location of multicollinearity and suppression in a regression model. In this paper, using a simulated (from a correlation matrix) and an empirical dataset (human habitat selection, migration of Canadians across cities), we demonstrate how CA can be used with correlated predictors in multiple regression to improve our understanding and interpretation of data. We strongly encourage the use of CA in ecological research as a follow‐on analysis from multiple regressions.
AbstractList 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers' assessment and interpretation of the single best 'magic model'. The shortcomings of stepwise regression have been extensively described in statistical literature, yet it is still widely used in ecological literature. Similarly, hierarchical regression which is thought to be an improvement of the stepwise procedure, fails to address multicollinearity. 2. We propose that regression commonality analysis (CA), a technique more commonly used in psychology and education research will be helpful in interpreting the typical multiple regression analyses conducted on ecological data. 3. CA decomposes the variance of R super(2) into unique and common (or shared) variance (or effects) of predictors, and hence, it can significantly improve exploratory capabilities in studies where multiple regressions are widely used, particularly when predictors are correlated. CA can explicitly identify the magnitude and location of multicollinearity and suppression in a regression model. In this paper, using a simulated (from a correlation matrix) and an empirical dataset (human habitat selection, migration of Canadians across cities), we demonstrate how CA can be used with correlated predictors in multiple regression to improve our understanding and interpretation of data. We strongly encourage the use of CA in ecological research as a follow-on analysis from multiple regressions.
1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers’ assessment and interpretation of the single best ‘magic model’. The shortcomings of stepwise regression have been extensively described in statistical literature, yet it is still widely used in ecological literature. Similarly, hierarchical regression which is thought to be an improvement of the stepwise procedure, fails to address multicollinearity. 2. We propose that regression commonality analysis ( CA ), a technique more commonly used in psychology and education research will be helpful in interpreting the typical multiple regression analyses conducted on ecological data. 3. CA decomposes the variance of R 2 into unique and common (or shared) variance (or effects) of predictors, and hence, it can significantly improve exploratory capabilities in studies where multiple regressions are widely used, particularly when predictors are correlated. CA can explicitly identify the magnitude and location of multicollinearity and suppression in a regression model. In this paper, using a simulated (from a correlation matrix) and an empirical dataset (human habitat selection, migration of Canadians across cities), we demonstrate how CA can be used with correlated predictors in multiple regression to improve our understanding and interpretation of data. We strongly encourage the use of CA in ecological research as a follow‐on analysis from multiple regressions.
Summary 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers’ assessment and interpretation of the single best ‘magic model’. The shortcomings of stepwise regression have been extensively described in statistical literature, yet it is still widely used in ecological literature. Similarly, hierarchical regression which is thought to be an improvement of the stepwise procedure, fails to address multicollinearity. 2. We propose that regression commonality analysis (CA), a technique more commonly used in psychology and education research will be helpful in interpreting the typical multiple regression analyses conducted on ecological data. 3. CA decomposes the variance of R2 into unique and common (or shared) variance (or effects) of predictors, and hence, it can significantly improve exploratory capabilities in studies where multiple regressions are widely used, particularly when predictors are correlated. CA can explicitly identify the magnitude and location of multicollinearity and suppression in a regression model. In this paper, using a simulated (from a correlation matrix) and an empirical dataset (human habitat selection, migration of Canadians across cities), we demonstrate how CA can be used with correlated predictors in multiple regression to improve our understanding and interpretation of data. We strongly encourage the use of CA in ecological research as a follow‐on analysis from multiple regressions.
Summary 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers' assessment and interpretation of the single best 'magic model'. The shortcomings of stepwise regression have been extensively described in statistical literature, yet it is still widely used in ecological literature. Similarly, hierarchical regression which is thought to be an improvement of the stepwise procedure, fails to address multicollinearity. 2. We propose that regression commonality analysis (CA), a technique more commonly used in psychology and education research will be helpful in interpreting the typical multiple regression analyses conducted on ecological data. 3.CA decomposes the variance of R2 into unique and common (or shared) variance (or effects) of predictors, and hence, it can significantly improve exploratory capabilities in studies where multiple regressions are widely used, particularly when predictors are correlated. CA can explicitly identify the magnitude and location of multicollinearity and suppression in a regression model. In this paper, using a simulated (from a correlation matrix) and an empirical dataset (human habitat selection, migration of Canadians across cities), we demonstrate how CA can be used with correlated predictors in multiple regression to improve our understanding and interpretation of data. We strongly encourage the use of CA in ecological research as a follow-on analysis from multiple regressions. [PUBLICATION ABSTRACT]
Author Morris, Douglas W.
Hamer, Michelle
Ray‐Mukherjee, Jayanti
Nimon, Kim
Mukherjee, Shomen
Slotow, Rob
Nakagawa, Shinichi
Author_xml – sequence: 1
  givenname: Jayanti
  surname: Ray‐Mukherjee
  fullname: Ray‐Mukherjee, Jayanti
  organization: Westville Campus
– sequence: 2
  givenname: Kim
  surname: Nimon
  fullname: Nimon, Kim
  organization: University of North Texas
– sequence: 3
  givenname: Shomen
  surname: Mukherjee
  fullname: Mukherjee, Shomen
  organization: Westville Campus
– sequence: 4
  givenname: Douglas W.
  surname: Morris
  fullname: Morris, Douglas W.
  organization: Lakehead University
– sequence: 5
  givenname: Rob
  surname: Slotow
  fullname: Slotow, Rob
  organization: Westville Campus
– sequence: 6
  givenname: Michelle
  surname: Hamer
  fullname: Hamer, Michelle
  organization: South African National Biodiversity Institute
– sequence: 7
  givenname: Shinichi
  surname: Nakagawa
  fullname: Nakagawa, Shinichi
BookMark eNqFkUtLxDAQgIMo-Dx7DXjxsmumabupN5H1AYoXBW8hTScaSZs1ySKLf96sFREPOodMCN83Q2Z2yebgByTkENgUcpwUrIRJAexxCgXU9QbZ-X7Z_HHfJgcxvrAcXDSsKHfI-0O0wxPVvu_9oJxNK6pyXkUbqR1ov3TJLhzSgE8BY7R-iKdU0eS9ywftMJsLH38CFI1BnT799IzUKI3Um7GW9s7ZAVXInfbJllEu4sFX3iMPF_P786vJzd3l9fnZzUSXVV1PCqaxrXQJ3DTQdsB4qzslGj4r20KVdY1aYGs4tii6GqBrZ1AKgTBjiK0wfI8cj3UXwb8uMSbZ26jROTWgX0YJVcF4w5qqyujRL_TFL0MeyJoCPgMmRJGpaqR08DEGNFLbpFL-ewrKOglMrrci13OX67nLz61k7-SXtwi2V2H1h1GPxpt1uPoPl7fzOR_FD9LGoeo
CitedBy_id crossref_primary_10_1111_bij_12737
crossref_primary_10_1111_gcb_13679
crossref_primary_10_1111_jzo_13226
crossref_primary_10_1111_jeb_14191
crossref_primary_10_1080_15230430_2019_1698894
crossref_primary_10_1016_j_molliq_2017_05_009
crossref_primary_10_1093_jpe_rtae001
crossref_primary_10_1016_j_jalz_2017_09_014
crossref_primary_10_1111_fwb_13034
crossref_primary_10_1016_j_jenvp_2018_08_015
crossref_primary_10_1089_neu_2018_5930
crossref_primary_10_1016_j_agrformet_2022_108957
crossref_primary_10_3390_f8040109
crossref_primary_10_1093_aob_mcab123
crossref_primary_10_3389_fphys_2018_01495
crossref_primary_10_1093_jpe_rtad038
crossref_primary_10_1111_nph_20067
crossref_primary_10_1016_j_eplepsyres_2017_07_015
crossref_primary_10_1016_j_envres_2023_117031
crossref_primary_10_1080_00273171_2019_1660605
crossref_primary_10_1002_ecs2_4066
crossref_primary_10_1080_09297049_2021_2022112
crossref_primary_10_1016_j_ecolind_2025_113215
crossref_primary_10_1016_j_ejsobi_2024_103617
crossref_primary_10_1177_1747954119897521
crossref_primary_10_1177_1420326X211011698
crossref_primary_10_1016_j_landurbplan_2022_104507
crossref_primary_10_1177_10820132241243240
crossref_primary_10_7717_peerj_11414
crossref_primary_10_1016_j_agrformet_2022_109113
crossref_primary_10_1007_s00442_018_4294_0
crossref_primary_10_1111_1365_2745_13005
crossref_primary_10_1007_s00442_017_3847_y
crossref_primary_10_1177_03057356211046375
crossref_primary_10_1111_1365_2664_14383
crossref_primary_10_1016_j_pld_2024_06_002
crossref_primary_10_1007_s11104_014_2323_2
crossref_primary_10_1098_rsif_2017_0213
crossref_primary_10_1111_1365_2664_12524
crossref_primary_10_1016_j_drugpo_2019_07_026
crossref_primary_10_3390_agriculture10110553
crossref_primary_10_1093_treephys_tpaa169
crossref_primary_10_1126_sciadv_abe3596
crossref_primary_10_1038_s41598_022_26438_x
crossref_primary_10_1111_ecog_03968
crossref_primary_10_1111_mec_13029
crossref_primary_10_1523_ENEURO_0182_24_2024
crossref_primary_10_1111_oik_03369
crossref_primary_10_1371_journal_pone_0154468
crossref_primary_10_17250_khisli_35__201809_006
crossref_primary_10_1111_aab_12487
crossref_primary_10_3390_f13070986
crossref_primary_10_1002_ecm_1646
crossref_primary_10_1016_j_heliyon_2024_e38166
crossref_primary_10_1016_j_cogdev_2021_101028
crossref_primary_10_1016_j_scitotenv_2024_171488
crossref_primary_10_1007_s11274_020_02844_z
crossref_primary_10_1111_eva_12941
crossref_primary_10_7554_eLife_87297_4
crossref_primary_10_1016_j_rama_2015_07_011
crossref_primary_10_1111_2041_210X_12820
crossref_primary_10_1371_journal_pone_0168612
crossref_primary_10_1111_oik_08043
crossref_primary_10_1111_vsu_14086
crossref_primary_10_1016_j_jwb_2021_101209
crossref_primary_10_1111_1467_9817_12258
crossref_primary_10_1556_2006_8_2019_70
crossref_primary_10_1007_s10750_020_04396_7
crossref_primary_10_1111_ddi_12419
crossref_primary_10_3897_VCS_95767
crossref_primary_10_1016_j_foreco_2021_119402
crossref_primary_10_1080_03630242_2018_1478361
crossref_primary_10_1002_ece3_2822
crossref_primary_10_1111_2041_210X_13800
crossref_primary_10_1121_10_0036220
crossref_primary_10_1007_s11145_022_10313_2
crossref_primary_10_1007_s10508_021_02153_y
crossref_primary_10_1016_j_catena_2023_107742
crossref_primary_10_1002_hbm_24561
crossref_primary_10_1080_14330237_2022_2121051
crossref_primary_10_1111_1365_2435_13188
crossref_primary_10_1016_j_msksp_2023_102766
crossref_primary_10_1111_jbi_13400
crossref_primary_10_2139_ssrn_4056853
crossref_primary_10_1017_S014271642000034X
crossref_primary_10_1016_j_ecolind_2020_107036
crossref_primary_10_1016_j_foreco_2018_07_021
crossref_primary_10_1590_1982_0224_2021_0042
crossref_primary_10_1002_wlb3_01021
crossref_primary_10_1080_21548455_2020_1774094
crossref_primary_10_1016_j_neuroimage_2021_118452
crossref_primary_10_1016_j_neuron_2024_12_003
crossref_primary_10_1007_s00421_022_05084_1
crossref_primary_10_1111_ele_12972
crossref_primary_10_1371_journal_pone_0136469
crossref_primary_10_1016_j_lindif_2015_02_008
crossref_primary_10_1016_j_scitotenv_2022_157808
crossref_primary_10_1007_s00426_020_01467_1
crossref_primary_10_1111_1467_9817_12350
crossref_primary_10_1002_ecs2_3709
crossref_primary_10_1038_s41598_019_43956_3
crossref_primary_10_1002_hbm_25084
crossref_primary_10_3390_e20040240
crossref_primary_10_1186_s12859_021_04322_1
crossref_primary_10_1002_ece3_2967
crossref_primary_10_1080_10615806_2023_2225034
crossref_primary_10_1016_j_scitotenv_2016_07_060
crossref_primary_10_1080_10106049_2022_2158238
crossref_primary_10_1111_1365_2435_12830
crossref_primary_10_1073_pnas_2104863118
crossref_primary_10_1111_een_12247
crossref_primary_10_1093_aob_mcad158
crossref_primary_10_1016_j_baae_2022_12_002
crossref_primary_10_1186_s12302_019_0260_7
crossref_primary_10_1111_ecog_02108
crossref_primary_10_1016_j_buildenv_2023_110867
crossref_primary_10_1017_S0033291720001440
crossref_primary_10_1007_s10681_022_03071_3
crossref_primary_10_4491_eer_2024_403
crossref_primary_10_1126_scitranslmed_aax7830
crossref_primary_10_1111_cobi_14066
crossref_primary_10_1038_s41598_017_08001_1
crossref_primary_10_1371_journal_pone_0152468
crossref_primary_10_1111_cdev_13465
crossref_primary_10_1016_j_scitotenv_2021_148322
crossref_primary_10_1007_s10980_020_01045_1
crossref_primary_10_1016_j_dendro_2020_125800
crossref_primary_10_1007_s11104_016_3077_9
crossref_primary_10_1016_j_amjms_2021_07_003
crossref_primary_10_1016_j_biocontrol_2017_01_015
crossref_primary_10_1080_23279095_2022_2147837
crossref_primary_10_1002_joc_7703
crossref_primary_10_1177_13684302211002923
crossref_primary_10_3390_w15040734
crossref_primary_10_1038_s41467_023_38499_1
crossref_primary_10_1021_acs_est_4c11833
crossref_primary_10_1016_j_paid_2023_112169
crossref_primary_10_1002_fsn3_4105
crossref_primary_10_1093_cercor_bhac235
crossref_primary_10_1080_02763877_2015_1057682
crossref_primary_10_1007_s10902_020_00349_y
crossref_primary_10_1073_pnas_1816686116
crossref_primary_10_1007_s10439_021_02813_z
crossref_primary_10_1088_1748_9326_acd26a
crossref_primary_10_1111_mec_13653
crossref_primary_10_1177_03611981231197647
crossref_primary_10_1108_JGM_03_2024_0018
crossref_primary_10_1016_j_ecolind_2017_10_026
crossref_primary_10_1098_rspb_2016_2593
crossref_primary_10_3390_agronomy13071940
crossref_primary_10_1038_s41467_018_06695_z
crossref_primary_10_1016_j_childyouth_2024_107867
crossref_primary_10_1111_desc_12699
crossref_primary_10_1016_j_ecolind_2024_112738
crossref_primary_10_1523_JNEUROSCI_2389_17_2017
crossref_primary_10_1016_j_ecolind_2018_06_034
crossref_primary_10_1111_psyg_12775
crossref_primary_10_1016_j_ecolind_2018_12_029
crossref_primary_10_1111_mec_16236
crossref_primary_10_1044_2021_JSLHR_20_00583
crossref_primary_10_1024_1010_0652_a000344
crossref_primary_10_1177_2754124X241235545
crossref_primary_10_1016_j_foreco_2021_119802
crossref_primary_10_1016_j_paid_2021_111167
crossref_primary_10_1038_s41559_023_02151_4
crossref_primary_10_1525_mp_2019_37_1_66
crossref_primary_10_1111_1365_2745_13095
crossref_primary_10_1088_1748_9326_ad657e
crossref_primary_10_1111_nph_17536
crossref_primary_10_1371_journal_pone_0173109
crossref_primary_10_5194_bg_16_2873_2019
crossref_primary_10_1002_ecm_1502
crossref_primary_10_1038_s41598_021_91960_3
crossref_primary_10_3758_s13421_019_00994_6
crossref_primary_10_1073_pnas_1805574115
crossref_primary_10_1111_pala_12526
crossref_primary_10_1016_j_gca_2025_02_018
crossref_primary_10_1038_s41437_019_0183_5
crossref_primary_10_1002_ajp_22439
crossref_primary_10_1111_ecog_04224
crossref_primary_10_1111_1365_2745_13321
crossref_primary_10_1002_ldr_4049
crossref_primary_10_1111_jbi_14573
crossref_primary_10_1017_S071498081700023X
crossref_primary_10_1016_j_agrformet_2017_09_013
crossref_primary_10_1002_wics_1346
crossref_primary_10_1073_pnas_2112235118
crossref_primary_10_1016_j_gloplacha_2016_11_017
crossref_primary_10_3389_fmars_2018_00496
crossref_primary_10_7554_eLife_87297
crossref_primary_10_1016_j_brat_2018_12_006
crossref_primary_10_1016_j_jad_2017_08_037
crossref_primary_10_1371_journal_pone_0172112
crossref_primary_10_1111_ecog_06078
crossref_primary_10_1002_ecs2_3794
crossref_primary_10_1111_btp_12906
crossref_primary_10_1093_jpe_rtac096
Cites_doi 10.1177/1534484311411077
10.1023/A:1006954016433
10.1111/j.2041-210x.2012.00261.x
10.1177/105381510602800405
10.1111/j.1365-2699.2006.01584.x
10.1177/0013164401612006
10.2307/2530428
10.1007/s10980-009-9383-3
10.2307/2985237
10.1287/opre.17.5.770
10.1080/09084280801917566
10.1890/02-3114
10.1177/1094428104266017
10.1521/scpq.16.1.31.19158
10.1111/j.1468-2958.1979.tb00649.x
10.1080/10871200903551985
10.1080/00273171.2012.658331
10.1177/0013164495055004001
10.3389/fpsyg.2012.00044
10.1017/CBO9780511542138.005
10.1007/s10393-010-0358-2
10.1111/j.1365-2656.2006.01141.x
10.3102/1076998612458319
10.1177/001316447403400105
10.3758/BRM.40.2.457
10.1073/pnas.94.2.549
10.1177/1094428113493929
ContentType Journal Article
Copyright 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society
Copyright © 2014 British Ecological Society
Copyright_xml – notice: 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society
– notice: Copyright © 2014 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
8FD
C1K
FR3
P64
RC3
7ST
7U1
7U6
DOI 10.1111/2041-210X.12166
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
Risk Abstracts
Sustainability Science Abstracts
DatabaseTitle CrossRef
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Risk Abstracts
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList Risk Abstracts
CrossRef

Genetics Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2041-210X
EndPage 328
ExternalDocumentID 3269410891
10_1111_2041_210X_12166
MEE312166
Genre article
GroupedDBID 05W
0R~
1OC
24P
31~
33P
4.4
4P2
50Y
5DZ
702
8-1
A00
AAESR
AAFWJ
AAHBH
AAHHS
AAZKR
ABCUV
ABLJU
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AENEX
AEQDE
AEUYN
AFBPY
AFKRA
AFPKN
AFRAH
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
AVUZU
AZVAB
BBNVY
BENPR
BFHJK
BHPHI
BMXJE
BRXPI
CAG
CCPQU
COF
DCZOG
DPXWK
EBD
EBS
EDH
EJD
F1Z
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M7P
MY.
MY~
M~E
O9-
P2P
P2W
P4E
PATMY
PYCSY
R.K
ROL
RX1
SUPJJ
V8K
WBKPD
WOHZO
WYJ
ZZTAW
~S-
AAYXX
CITATION
PHGZM
PHGZT
7QG
7SN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
WIN
7ST
7U1
7U6
ID FETCH-LOGICAL-c4566-20ceb5c413f91bd103bcda89374b2a466ec8ebf3ebe8d611db71488e170eeb8f3
ISSN 2041-210X
IngestDate Fri Jul 11 11:01:02 EDT 2025
Wed Aug 13 04:25:56 EDT 2025
Tue Jul 01 03:19:35 EDT 2025
Thu Apr 24 23:12:26 EDT 2025
Wed Jan 22 17:01:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4566-20ceb5c413f91bd103bcda89374b2a466ec8ebf3ebe8d611db71488e170eeb8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/2041-210X.12166
PQID 1513710882
PQPubID 1016379
PageCount 9
ParticipantIDs proquest_miscellaneous_1520390955
proquest_journals_1513710882
crossref_citationtrail_10_1111_2041_210X_12166
crossref_primary_10_1111_2041_210X_12166
wiley_primary_10_1111_2041_210X_12166_MEE312166
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2014
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: April 2014
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Methods in ecology and evolution
PublicationYear 2014
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2009; 24
1974; 34
2013; 4
2010; 15
2006; 75
2010; 36
2000; 4
2006; 33
2004; 7
1995; 55
2006; 8
1997
2003; 36
2008; 15
2007
1973
2011; 10
1995
2006
2001; 27
2012; 17
2006; 4
2003
2002
1969; 17
2012; 14
1998; 45
2001; 61
2012; 3
2013; 38
2013; 16
1979; 5
1981; 37
1983
2001; 16
1967; 16
2013
2012; 47
2008; 40
2003; 84
2010; 7
Kerlinger F.N. (e_1_2_9_12_1) 1973
Thompson B. (e_1_2_9_41_1) 2006
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_33_1
R Development Core Team (e_1_2_9_32_1) 2013
Capraro R.M. (e_1_2_9_5_1) 2001; 27
MacKinnon D.P. (e_1_2_9_17_1) 2000; 4
Nimon K. (e_1_2_9_24_1) 2010; 36
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
Pedhazur E.J. (e_1_2_9_30_1) 1997
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
Nathans L. (e_1_2_9_22_1) 2012; 17
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_3_1
e_1_2_9_2_1
Morris D.W. (e_1_2_9_20_1) 2006; 8
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
Morris D.W. (e_1_2_9_19_1) 2012; 14
e_1_2_9_28_1
Petrocelli J.V. (e_1_2_9_31_1) 2003; 36
e_1_2_9_27_1
Cohen J. (e_1_2_9_6_1) 1983
e_1_2_9_29_1
Burnham K.P. (e_1_2_9_4_1) 2002
References_xml – year: 1983
– volume: 15
  start-page: 77
  year: 2010
  end-page: 89
  article-title: Predicting private landowner intensions to enroll in an incentive program to protect endangered species
  publication-title: Human Dimensions of Wildlife
– volume: 61
  start-page: 229
  year: 2001
  end-page: 248
  article-title: Use of structure coefficients in published multiple regression articles: β is not enough
  publication-title: Educational and Psychological Measurement
– volume: 37
  start-page: 391
  year: 1981
  end-page: 411
  article-title: Building multiple regression models interactively
  publication-title: Biometrics
– start-page: 85
  year: 2003
  end-page: 124
– volume: 10
  start-page: 329
  year: 2011
  end-page: 340
  article-title: Regression commonality analysis: a technique for quantitative theory building
  publication-title: Human Resource Development
– volume: 16
  start-page: 51
  year: 1967
  end-page: 64
  article-title: A development of multiple regression for the analysis of routine data
  publication-title: Applied Statistics
– year: 2007
– volume: 38
  start-page: 3
  year: 2013
  end-page: 31
  article-title: Determining predictor importance in hierarchical linear models using dominance analysis
  publication-title: Journal of Educational and Behavioral Statistics
– volume: 75
  start-page: 1182
  year: 2006
  end-page: 1189
  article-title: Why do we still use stepwise modeling in ecology and behaviour?
  publication-title: Journal of Animal Ecology
– volume: 45
  start-page: 253
  year: 1998
  end-page: 275
  article-title: On variable importance in linear regression
  publication-title: Social Indicators Research
– year: 1973
– volume: 4
  start-page: 133
  year: 2013
  end-page: 142
  article-title: A general and simple method for obtaining R2 from generalized linear mixed‐effects models
  publication-title: Methods in Ecology and Evolution
– volume: 84
  start-page: 2809
  year: 2003
  end-page: 2815
  article-title: Multicollinearity in ecological multiple regression
  publication-title: Ecology
– volume: 14
  start-page: 689
  year: 2012
  end-page: 705
  article-title: Climate‐induced habitat selection predicts future evolutionary strategies of lemmings
  publication-title: Evolutionary Ecology Research
– volume: 16
  start-page: 31
  year: 2001
  end-page: 55
  article-title: WISC‐III predictors of academic achievement for children with learning disabilities: are global and factor scores comparable?
  publication-title: School Psychology Quarterly
– volume: 27
  start-page: 16
  year: 2001
  end-page: 23
  article-title: Commonality analysis: understanding variance contributions to overall canonical correlation effects of attitude toward mathematics on geometry achievement
  publication-title: Multiple Linear Regression Viewpoints
– volume: 8
  start-page: 1263
  year: 2006
  end-page: 1275
  article-title: Simulated and human metapopulations created by habitat selection
  publication-title: Evolutionary Ecology Research
– volume: 17
  start-page: 1
  year: 2012
  end-page: 19
  article-title: Interpreting multiple linear regression: a guidebook of variable importance
  publication-title: Practical Assessment Research & Evaluation
– volume: 55
  start-page: 525
  year: 1995
  end-page: 534
  article-title: Stepwise regression and stepwise discriminant analysis need not apply here: a guidelines editorial
  publication-title: Educational and Psychological Measurement
– volume: 3
  start-page: 1
  year: 2012
  end-page: 10
  article-title: Interpreting multiple regression in the face of multicollinearity
  publication-title: Frontiers in Psychology
– volume: 34
  start-page: 35
  year: 1974
  end-page: 46
  article-title: A revised definition for suppressor variables: a guide to their identification and interpretation
  publication-title: Educational and Psychological Measurement
– volume: 17
  start-page: 770
  year: 1969
  end-page: 784
  article-title: Macro‐analysis of the American educational system
  publication-title: Operations Research
– volume: 36
  start-page: 9
  year: 2003
  end-page: 22
  article-title: Hierarchical multiple regression in counseling research: common problems and possible remedies
  publication-title: Measurement and Evolution in Counseling and Development
– volume: 7
  start-page: 258
  year: 2004
  end-page: 282
  article-title: A Monte Carlo comparison of relative importance methodologies
  publication-title: Organizational Research Methods
– volume: 16
  start-page: 650
  year: 2013
  end-page: 674
  article-title: Understanding the results of multiple linear regression: beyond standardized regression coefficients
  publication-title: Organizational Research Methods
– year: 2002
– volume: 36
  start-page: 10
  year: 2010
  end-page: 17
  article-title: Regression commonality analysis: demonstration of an SPSS solution
  publication-title: Multiple Linear Regression Viewpoints
– volume: 5
  start-page: 355
  year: 1979
  end-page: 363
  article-title: Commonality analysis: a method for decomposing explained variance in multiple regression analysis
  publication-title: Human Communication Research
– year: 2006
– volume: 47
  start-page: 224
  year: 2012
  end-page: 246
  article-title: Isolating and examining sources of suppression and multicollinearity in multiple linear regression
  publication-title: Multivariate Behavioral Research
– volume: 4
  start-page: 173
  year: 2000
  end-page: 185
  article-title: Equivalence of the mediation, confounding, and suppression effect
  publication-title: Prevention Research
– volume: 7
  start-page: 526
  year: 2010
  end-page: 536
  article-title: What drives chytrid infections in newt populations? Associations with substrate, temperature, and shade
  publication-title: EcoHealth
– year: 1997
– volume: 15
  start-page: 44
  year: 2008
  end-page: 53
  article-title: Playing statistical Ouija board with commonality analysis: good questions, wrong assumptions
  publication-title: Applied Neuropsychology
– volume: 24
  start-page: 1271
  year: 2009
  end-page: 1285
  article-title: Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation
  publication-title: Landscape Ecology
– year: 1995
– volume: 40
  start-page: 457
  year: 2008
  end-page: 466
  article-title: An R package to compute commonality coefficients in multiple regression case: an introduction to the package and a practical example
  publication-title: Behavior Research Methods
– volume: 33
  start-page: 1677
  year: 2006
  end-page: 1688
  article-title: Five (or so) challenges for species distribution modeling
  publication-title: Journal of Biogeography
– year: 2013
– volume: 4
  start-page: 299
  year: 2006
  end-page: 307
  article-title: Commonality analysis: partitioning variance to facilitate better understanding of data
  publication-title: Journal of Early Intervention
– ident: e_1_2_9_28_1
  doi: 10.1177/1534484311411077
– ident: e_1_2_9_39_1
  doi: 10.1023/A:1006954016433
– ident: e_1_2_9_21_1
  doi: 10.1111/j.2041-210x.2012.00261.x
– ident: e_1_2_9_44_1
  doi: 10.1177/105381510602800405
– ident: e_1_2_9_25_1
– ident: e_1_2_9_2_1
  doi: 10.1111/j.1365-2699.2006.01584.x
– volume-title: Model Selection and Multimodel Inference: A Practice Information‐Theoretic Approach
  year: 2002
  ident: e_1_2_9_4_1
– ident: e_1_2_9_8_1
  doi: 10.1177/0013164401612006
– volume: 8
  start-page: 1263
  year: 2006
  ident: e_1_2_9_20_1
  article-title: Simulated and human metapopulations created by habitat selection
  publication-title: Evolutionary Ecology Research
– volume-title: Multiple Regression in Behavioral Research: Explanation and Prediction
  year: 1997
  ident: e_1_2_9_30_1
– volume-title: Multiple Regression in Behavioral Research
  year: 1973
  ident: e_1_2_9_12_1
– ident: e_1_2_9_11_1
  doi: 10.2307/2530428
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2013
  ident: e_1_2_9_32_1
– ident: e_1_2_9_36_1
  doi: 10.1007/s10980-009-9383-3
– ident: e_1_2_9_23_1
  doi: 10.2307/2985237
– ident: e_1_2_9_18_1
  doi: 10.1287/opre.17.5.770
– volume: 17
  start-page: 1
  year: 2012
  ident: e_1_2_9_22_1
  article-title: Interpreting multiple linear regression: a guidebook of variable importance
  publication-title: Practical Assessment Research & Evaluation
– ident: e_1_2_9_34_1
  doi: 10.1080/09084280801917566
– ident: e_1_2_9_9_1
  doi: 10.1890/02-3114
– ident: e_1_2_9_27_1
– volume-title: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences
  year: 1983
  ident: e_1_2_9_6_1
– ident: e_1_2_9_14_1
  doi: 10.1177/1094428104266017
– volume: 4
  start-page: 173
  year: 2000
  ident: e_1_2_9_17_1
  article-title: Equivalence of the mediation, confounding, and suppression effect
  publication-title: Prevention Research
– volume: 27
  start-page: 16
  year: 2001
  ident: e_1_2_9_5_1
  article-title: Commonality analysis: understanding variance contributions to overall canonical correlation effects of attitude toward mathematics on geometry achievement
  publication-title: Multiple Linear Regression Viewpoints
– ident: e_1_2_9_10_1
  doi: 10.1521/scpq.16.1.31.19158
– volume: 14
  start-page: 689
  year: 2012
  ident: e_1_2_9_19_1
  article-title: Climate‐induced habitat selection predicts future evolutionary strategies of lemmings
  publication-title: Evolutionary Ecology Research
– ident: e_1_2_9_35_1
  doi: 10.1111/j.1468-2958.1979.tb00649.x
– ident: e_1_2_9_38_1
  doi: 10.1080/10871200903551985
– ident: e_1_2_9_3_1
  doi: 10.1080/00273171.2012.658331
– ident: e_1_2_9_40_1
  doi: 10.1177/0013164495055004001
– volume: 36
  start-page: 10
  year: 2010
  ident: e_1_2_9_24_1
  article-title: Regression commonality analysis: demonstration of an SPSS solution
  publication-title: Multiple Linear Regression Viewpoints
– ident: e_1_2_9_13_1
  doi: 10.3389/fpsyg.2012.00044
– ident: e_1_2_9_15_1
– ident: e_1_2_9_42_1
  doi: 10.1017/CBO9780511542138.005
– ident: e_1_2_9_33_1
  doi: 10.1007/s10393-010-0358-2
– ident: e_1_2_9_43_1
  doi: 10.1111/j.1365-2656.2006.01141.x
– ident: e_1_2_9_16_1
  doi: 10.3102/1076998612458319
– volume: 36
  start-page: 9
  year: 2003
  ident: e_1_2_9_31_1
  article-title: Hierarchical multiple regression in counseling research: common problems and possible remedies
  publication-title: Measurement and Evolution in Counseling and Development
– volume-title: Foundations of Behavioral Statistics: An Insight‐Based Approach
  year: 2006
  ident: e_1_2_9_41_1
– ident: e_1_2_9_7_1
  doi: 10.1177/001316447403400105
– ident: e_1_2_9_29_1
  doi: 10.3758/BRM.40.2.457
– ident: e_1_2_9_37_1
  doi: 10.1073/pnas.94.2.549
– ident: e_1_2_9_26_1
  doi: 10.1177/1094428113493929
SSID ssj0000389024
Score 2.4776306
Snippet Summary 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky....
1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding...
Summary 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky....
1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 320
SubjectTerms Ecological research
Habitat selection
hierarchical regression
Regression analysis
standardized partial regression coefficient
stepwise regression
structure coefficients
suppressor variable
Title Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.12166
https://www.proquest.com/docview/1513710882
https://www.proquest.com/docview/1520390955
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWIiQuiPIhFkplJA5cUpLYyWa5IZSqgqYc2JX2FsUfgUA3W22zSAWJH8KvZcZxEhe2onCxosR2FM-zM2M_PxPyvIy4YMqXnmIT7QEoAk8ozj1cgSriMkpChVMD2Ul8NOdvF9FiNPrpsJY2jTiQ37buK_kfq8I9sCvukv0Hy_aVwg24BvtCChaG9Fo2nndbZpedP110GiNVPXAF1_pjy3atz9u9zQ0Kb4LTqTQyypGxPmTpGR6WAFkW0kwrmNqkkfCGzlE1l5aDM3MOtSmj5aDqpL_azx9Wky68bPMFcPLZEoCKCzBtNayOLFsWwLtqOUDByf_hEypG9I9W63XlxgEtXbCbxQhc8osZ7EKfBx6En4v2v7Tlnh2tIweU3Bl5Weg7P3HW7ji_4v_QV4zaGvEWJe6T9_nh_Pg4n6WL2Q1yM4QQBE_HyH4M83coTOibM5P72qxyFBLFfnvDZadniGTceMg4NLO75I6NROjrFla7ZKTre-RW2prvPvluwEUdcNEOXLSqaQcu6oDrFS0oQgsS2kPLyUAttLA8QIsitOiqpH9A6wGZH6azN0eePanDk-CAx9AppRaRBIeonAZCBT4TUhXoCnMRFjyOtUy0KBmMGImKg0CJCYThiQ4mvtYiKdlDslOvav2IUNQnVJOp4Oh5-jqCUsmUB5LJQopQqTE56Joyl1bGHk9TOc27cBbbPse2z03bj8mLvsBZq-Bydda9zja57ebnObjEDNxwiETH5Fn_GAZhXFkrar3aYJ7QZ1NUcxyTl8amf3tVnqUpM1ePr1HrE3J76DR7ZKdZb_RTcIYbsW9Q-QuWxbdQ
linkProvider ISSN International Centre
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60InoRn1ifK3jwEk2ymzT1JlKpj3qyUryE7CMi1ERsPYh_3pnNNlZBxEsIZGc3zOxkv5mdfAtwmEdCcu0rT_OW8XBSBJ7UQni0A5XFeZSEmlIDvdu42xdXg2gw9S9MxQ9RJ9zIM-z3mhycEtJTXh76IvAwYhkQQ0Icz8IcYZukAXNn9_2Hfp1pIQo5355uW0s4jh8q6fnRy_fl6QtzTiNXu_RcLMOSw4zsrDLyCsyYYhXmO5Zv-n0NPuy2P8P3f3awmmWOaoQ9FWxSMshezWNV9FqMTlnGxmU5xAvThsrKy9F0A-bKPEgeESLLM2VYmVd9KcvjjR6CI61D_6Jzd9713JkKnkKoFKNTKCMjhUtX3g6kDnwulc4ItAgZZiKOjUqMzDnaNtFxEGjZwoApMUHLN0YmOd-ARlEWZhMYMcnpVlsKwgi-iVAqaYtAcZUpGWrdhOOJKlPlCMfp3IthOgk8SPcp6T61um_CUS3wUnFt_N50Z2Kb1DndKEXwwhEwYczQhIP6MboL7YFkhSnfqE3o8zbx7jXhxNr0r6HSXqfD7d3WvyX2YaF717tJby5vr7dhEcGWq_rZgcb49c3sIqAZyz03Yz8BtjLrmA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58oHgRn7g-I3jwUm2btNv1JrqLbzy4Il5K86gI2oq7HsQ_70ya1lUQ8VIKnUnKTKb5Jpl-AdjJIyG59pWnedt4OCgCT2ohPNqByuI8SkJNSwOXV_FJX5zdRXU1If0LU_FDNAtuFBn2e00B_qLzkSAPfRF4mLDcEUFCHI_DJHHl4cCePLzt3_ebhRZikPPt4baNhqP4oYqeH618n52-IOcocLUzT28OZh1kZIeVj-dhzBQLMNW1dNPvi_Bhd_0Zvv6zQ9Usc0wj7LFgdcUgezUPVc1rMThgGRuW5RNemDZUVV4ORgWYq_IgfQSILM-UYWVetaUsjTcGCPa0BP1e9-boxHNHKngKkVKMMaGMjBTOXHknkDrwuVQ6I8wiZJiJODYqMTLn6NpEx0GgZRvzpcQEbd8YmeR8GSaKsjArwIhITrc7UhBE8E2EWklHBIqrTMlQ6xbs1aZMleMbp2MvntI67yDbp2T71Nq-BbuNwktFtfG76Hrtm9TF3CBF7MIRL2HK0ILt5jFGC22BZIUp30gm9HmHaPdasG99-ldX6WW3y-3d6r81tmD6-riXXpxena_BDEItV_OzDhPD1zezgXBmKDfdgP0ESdvqwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+commonality+analysis+in+multiple+regressions%3A+a+tool+to+decompose+regression+effects+in+the+face+of+multicollinearity&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Ray-Mukherjee%2C+Jayanti&rft.au=Nimon%2C+Kim&rft.au=Mukherjee%2C+Shomen&rft.au=Morris%2C+Douglas+W&rft.date=2014-04-01&rft.issn=2041-210X&rft.eissn=2041-210X&rft.volume=5&rft.issue=4&rft.spage=320&rft.epage=328&rft_id=info:doi/10.1111%2F2041-210X.12166&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon