Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity
Summary 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers’ assessment and interpretation of the single best ‘magic model’. The shortcomings of s...
Saved in:
Published in | Methods in ecology and evolution Vol. 5; no. 4; pp. 320 - 328 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
John Wiley & Sons, Inc
01.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers’ assessment and interpretation of the single best ‘magic model’. The shortcomings of stepwise regression have been extensively described in statistical literature, yet it is still widely used in ecological literature. Similarly, hierarchical regression which is thought to be an improvement of the stepwise procedure, fails to address multicollinearity.
2. We propose that regression commonality analysis (CA), a technique more commonly used in psychology and education research will be helpful in interpreting the typical multiple regression analyses conducted on ecological data.
3. CA decomposes the variance of R2 into unique and common (or shared) variance (or effects) of predictors, and hence, it can significantly improve exploratory capabilities in studies where multiple regressions are widely used, particularly when predictors are correlated. CA can explicitly identify the magnitude and location of multicollinearity and suppression in a regression model.
In this paper, using a simulated (from a correlation matrix) and an empirical dataset (human habitat selection, migration of Canadians across cities), we demonstrate how CA can be used with correlated predictors in multiple regression to improve our understanding and interpretation of data. We strongly encourage the use of CA in ecological research as a follow‐on analysis from multiple regressions. |
---|---|
AbstractList | 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers' assessment and interpretation of the single best 'magic model'. The shortcomings of stepwise regression have been extensively described in statistical literature, yet it is still widely used in ecological literature. Similarly, hierarchical regression which is thought to be an improvement of the stepwise procedure, fails to address multicollinearity. 2. We propose that regression commonality analysis (CA), a technique more commonly used in psychology and education research will be helpful in interpreting the typical multiple regression analyses conducted on ecological data. 3. CA decomposes the variance of R super(2) into unique and common (or shared) variance (or effects) of predictors, and hence, it can significantly improve exploratory capabilities in studies where multiple regressions are widely used, particularly when predictors are correlated. CA can explicitly identify the magnitude and location of multicollinearity and suppression in a regression model. In this paper, using a simulated (from a correlation matrix) and an empirical dataset (human habitat selection, migration of Canadians across cities), we demonstrate how CA can be used with correlated predictors in multiple regression to improve our understanding and interpretation of data. We strongly encourage the use of CA in ecological research as a follow-on analysis from multiple regressions. 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers’ assessment and interpretation of the single best ‘magic model’. The shortcomings of stepwise regression have been extensively described in statistical literature, yet it is still widely used in ecological literature. Similarly, hierarchical regression which is thought to be an improvement of the stepwise procedure, fails to address multicollinearity. 2. We propose that regression commonality analysis ( CA ), a technique more commonly used in psychology and education research will be helpful in interpreting the typical multiple regression analyses conducted on ecological data. 3. CA decomposes the variance of R 2 into unique and common (or shared) variance (or effects) of predictors, and hence, it can significantly improve exploratory capabilities in studies where multiple regressions are widely used, particularly when predictors are correlated. CA can explicitly identify the magnitude and location of multicollinearity and suppression in a regression model. In this paper, using a simulated (from a correlation matrix) and an empirical dataset (human habitat selection, migration of Canadians across cities), we demonstrate how CA can be used with correlated predictors in multiple regression to improve our understanding and interpretation of data. We strongly encourage the use of CA in ecological research as a follow‐on analysis from multiple regressions. Summary 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers’ assessment and interpretation of the single best ‘magic model’. The shortcomings of stepwise regression have been extensively described in statistical literature, yet it is still widely used in ecological literature. Similarly, hierarchical regression which is thought to be an improvement of the stepwise procedure, fails to address multicollinearity. 2. We propose that regression commonality analysis (CA), a technique more commonly used in psychology and education research will be helpful in interpreting the typical multiple regression analyses conducted on ecological data. 3. CA decomposes the variance of R2 into unique and common (or shared) variance (or effects) of predictors, and hence, it can significantly improve exploratory capabilities in studies where multiple regressions are widely used, particularly when predictors are correlated. CA can explicitly identify the magnitude and location of multicollinearity and suppression in a regression model. In this paper, using a simulated (from a correlation matrix) and an empirical dataset (human habitat selection, migration of Canadians across cities), we demonstrate how CA can be used with correlated predictors in multiple regression to improve our understanding and interpretation of data. We strongly encourage the use of CA in ecological research as a follow‐on analysis from multiple regressions. Summary 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers' assessment and interpretation of the single best 'magic model'. The shortcomings of stepwise regression have been extensively described in statistical literature, yet it is still widely used in ecological literature. Similarly, hierarchical regression which is thought to be an improvement of the stepwise procedure, fails to address multicollinearity. 2. We propose that regression commonality analysis (CA), a technique more commonly used in psychology and education research will be helpful in interpreting the typical multiple regression analyses conducted on ecological data. 3.CA decomposes the variance of R2 into unique and common (or shared) variance (or effects) of predictors, and hence, it can significantly improve exploratory capabilities in studies where multiple regressions are widely used, particularly when predictors are correlated. CA can explicitly identify the magnitude and location of multicollinearity and suppression in a regression model. In this paper, using a simulated (from a correlation matrix) and an empirical dataset (human habitat selection, migration of Canadians across cities), we demonstrate how CA can be used with correlated predictors in multiple regression to improve our understanding and interpretation of data. We strongly encourage the use of CA in ecological research as a follow-on analysis from multiple regressions. [PUBLICATION ABSTRACT] |
Author | Morris, Douglas W. Hamer, Michelle Ray‐Mukherjee, Jayanti Nimon, Kim Mukherjee, Shomen Slotow, Rob Nakagawa, Shinichi |
Author_xml | – sequence: 1 givenname: Jayanti surname: Ray‐Mukherjee fullname: Ray‐Mukherjee, Jayanti organization: Westville Campus – sequence: 2 givenname: Kim surname: Nimon fullname: Nimon, Kim organization: University of North Texas – sequence: 3 givenname: Shomen surname: Mukherjee fullname: Mukherjee, Shomen organization: Westville Campus – sequence: 4 givenname: Douglas W. surname: Morris fullname: Morris, Douglas W. organization: Lakehead University – sequence: 5 givenname: Rob surname: Slotow fullname: Slotow, Rob organization: Westville Campus – sequence: 6 givenname: Michelle surname: Hamer fullname: Hamer, Michelle organization: South African National Biodiversity Institute – sequence: 7 givenname: Shinichi surname: Nakagawa fullname: Nakagawa, Shinichi |
BookMark | eNqFkUtLxDAQgIMo-Dx7DXjxsmumabupN5H1AYoXBW8hTScaSZs1ySKLf96sFREPOodMCN83Q2Z2yebgByTkENgUcpwUrIRJAexxCgXU9QbZ-X7Z_HHfJgcxvrAcXDSsKHfI-0O0wxPVvu_9oJxNK6pyXkUbqR1ov3TJLhzSgE8BY7R-iKdU0eS9ywftMJsLH38CFI1BnT799IzUKI3Um7GW9s7ZAVXInfbJllEu4sFX3iMPF_P786vJzd3l9fnZzUSXVV1PCqaxrXQJ3DTQdsB4qzslGj4r20KVdY1aYGs4tii6GqBrZ1AKgTBjiK0wfI8cj3UXwb8uMSbZ26jROTWgX0YJVcF4w5qqyujRL_TFL0MeyJoCPgMmRJGpaqR08DEGNFLbpFL-ewrKOglMrrci13OX67nLz61k7-SXtwi2V2H1h1GPxpt1uPoPl7fzOR_FD9LGoeo |
CitedBy_id | crossref_primary_10_1111_bij_12737 crossref_primary_10_1111_gcb_13679 crossref_primary_10_1111_jzo_13226 crossref_primary_10_1111_jeb_14191 crossref_primary_10_1080_15230430_2019_1698894 crossref_primary_10_1016_j_molliq_2017_05_009 crossref_primary_10_1093_jpe_rtae001 crossref_primary_10_1016_j_jalz_2017_09_014 crossref_primary_10_1111_fwb_13034 crossref_primary_10_1016_j_jenvp_2018_08_015 crossref_primary_10_1089_neu_2018_5930 crossref_primary_10_1016_j_agrformet_2022_108957 crossref_primary_10_3390_f8040109 crossref_primary_10_1093_aob_mcab123 crossref_primary_10_3389_fphys_2018_01495 crossref_primary_10_1093_jpe_rtad038 crossref_primary_10_1111_nph_20067 crossref_primary_10_1016_j_eplepsyres_2017_07_015 crossref_primary_10_1016_j_envres_2023_117031 crossref_primary_10_1080_00273171_2019_1660605 crossref_primary_10_1002_ecs2_4066 crossref_primary_10_1080_09297049_2021_2022112 crossref_primary_10_1016_j_ecolind_2025_113215 crossref_primary_10_1016_j_ejsobi_2024_103617 crossref_primary_10_1177_1747954119897521 crossref_primary_10_1177_1420326X211011698 crossref_primary_10_1016_j_landurbplan_2022_104507 crossref_primary_10_1177_10820132241243240 crossref_primary_10_7717_peerj_11414 crossref_primary_10_1016_j_agrformet_2022_109113 crossref_primary_10_1007_s00442_018_4294_0 crossref_primary_10_1111_1365_2745_13005 crossref_primary_10_1007_s00442_017_3847_y crossref_primary_10_1177_03057356211046375 crossref_primary_10_1111_1365_2664_14383 crossref_primary_10_1016_j_pld_2024_06_002 crossref_primary_10_1007_s11104_014_2323_2 crossref_primary_10_1098_rsif_2017_0213 crossref_primary_10_1111_1365_2664_12524 crossref_primary_10_1016_j_drugpo_2019_07_026 crossref_primary_10_3390_agriculture10110553 crossref_primary_10_1093_treephys_tpaa169 crossref_primary_10_1126_sciadv_abe3596 crossref_primary_10_1038_s41598_022_26438_x crossref_primary_10_1111_ecog_03968 crossref_primary_10_1111_mec_13029 crossref_primary_10_1523_ENEURO_0182_24_2024 crossref_primary_10_1111_oik_03369 crossref_primary_10_1371_journal_pone_0154468 crossref_primary_10_17250_khisli_35__201809_006 crossref_primary_10_1111_aab_12487 crossref_primary_10_3390_f13070986 crossref_primary_10_1002_ecm_1646 crossref_primary_10_1016_j_heliyon_2024_e38166 crossref_primary_10_1016_j_cogdev_2021_101028 crossref_primary_10_1016_j_scitotenv_2024_171488 crossref_primary_10_1007_s11274_020_02844_z crossref_primary_10_1111_eva_12941 crossref_primary_10_7554_eLife_87297_4 crossref_primary_10_1016_j_rama_2015_07_011 crossref_primary_10_1111_2041_210X_12820 crossref_primary_10_1371_journal_pone_0168612 crossref_primary_10_1111_oik_08043 crossref_primary_10_1111_vsu_14086 crossref_primary_10_1016_j_jwb_2021_101209 crossref_primary_10_1111_1467_9817_12258 crossref_primary_10_1556_2006_8_2019_70 crossref_primary_10_1007_s10750_020_04396_7 crossref_primary_10_1111_ddi_12419 crossref_primary_10_3897_VCS_95767 crossref_primary_10_1016_j_foreco_2021_119402 crossref_primary_10_1080_03630242_2018_1478361 crossref_primary_10_1002_ece3_2822 crossref_primary_10_1111_2041_210X_13800 crossref_primary_10_1121_10_0036220 crossref_primary_10_1007_s11145_022_10313_2 crossref_primary_10_1007_s10508_021_02153_y crossref_primary_10_1016_j_catena_2023_107742 crossref_primary_10_1002_hbm_24561 crossref_primary_10_1080_14330237_2022_2121051 crossref_primary_10_1111_1365_2435_13188 crossref_primary_10_1016_j_msksp_2023_102766 crossref_primary_10_1111_jbi_13400 crossref_primary_10_2139_ssrn_4056853 crossref_primary_10_1017_S014271642000034X crossref_primary_10_1016_j_ecolind_2020_107036 crossref_primary_10_1016_j_foreco_2018_07_021 crossref_primary_10_1590_1982_0224_2021_0042 crossref_primary_10_1002_wlb3_01021 crossref_primary_10_1080_21548455_2020_1774094 crossref_primary_10_1016_j_neuroimage_2021_118452 crossref_primary_10_1016_j_neuron_2024_12_003 crossref_primary_10_1007_s00421_022_05084_1 crossref_primary_10_1111_ele_12972 crossref_primary_10_1371_journal_pone_0136469 crossref_primary_10_1016_j_lindif_2015_02_008 crossref_primary_10_1016_j_scitotenv_2022_157808 crossref_primary_10_1007_s00426_020_01467_1 crossref_primary_10_1111_1467_9817_12350 crossref_primary_10_1002_ecs2_3709 crossref_primary_10_1038_s41598_019_43956_3 crossref_primary_10_1002_hbm_25084 crossref_primary_10_3390_e20040240 crossref_primary_10_1186_s12859_021_04322_1 crossref_primary_10_1002_ece3_2967 crossref_primary_10_1080_10615806_2023_2225034 crossref_primary_10_1016_j_scitotenv_2016_07_060 crossref_primary_10_1080_10106049_2022_2158238 crossref_primary_10_1111_1365_2435_12830 crossref_primary_10_1073_pnas_2104863118 crossref_primary_10_1111_een_12247 crossref_primary_10_1093_aob_mcad158 crossref_primary_10_1016_j_baae_2022_12_002 crossref_primary_10_1186_s12302_019_0260_7 crossref_primary_10_1111_ecog_02108 crossref_primary_10_1016_j_buildenv_2023_110867 crossref_primary_10_1017_S0033291720001440 crossref_primary_10_1007_s10681_022_03071_3 crossref_primary_10_4491_eer_2024_403 crossref_primary_10_1126_scitranslmed_aax7830 crossref_primary_10_1111_cobi_14066 crossref_primary_10_1038_s41598_017_08001_1 crossref_primary_10_1371_journal_pone_0152468 crossref_primary_10_1111_cdev_13465 crossref_primary_10_1016_j_scitotenv_2021_148322 crossref_primary_10_1007_s10980_020_01045_1 crossref_primary_10_1016_j_dendro_2020_125800 crossref_primary_10_1007_s11104_016_3077_9 crossref_primary_10_1016_j_amjms_2021_07_003 crossref_primary_10_1016_j_biocontrol_2017_01_015 crossref_primary_10_1080_23279095_2022_2147837 crossref_primary_10_1002_joc_7703 crossref_primary_10_1177_13684302211002923 crossref_primary_10_3390_w15040734 crossref_primary_10_1038_s41467_023_38499_1 crossref_primary_10_1021_acs_est_4c11833 crossref_primary_10_1016_j_paid_2023_112169 crossref_primary_10_1002_fsn3_4105 crossref_primary_10_1093_cercor_bhac235 crossref_primary_10_1080_02763877_2015_1057682 crossref_primary_10_1007_s10902_020_00349_y crossref_primary_10_1073_pnas_1816686116 crossref_primary_10_1007_s10439_021_02813_z crossref_primary_10_1088_1748_9326_acd26a crossref_primary_10_1111_mec_13653 crossref_primary_10_1177_03611981231197647 crossref_primary_10_1108_JGM_03_2024_0018 crossref_primary_10_1016_j_ecolind_2017_10_026 crossref_primary_10_1098_rspb_2016_2593 crossref_primary_10_3390_agronomy13071940 crossref_primary_10_1038_s41467_018_06695_z crossref_primary_10_1016_j_childyouth_2024_107867 crossref_primary_10_1111_desc_12699 crossref_primary_10_1016_j_ecolind_2024_112738 crossref_primary_10_1523_JNEUROSCI_2389_17_2017 crossref_primary_10_1016_j_ecolind_2018_06_034 crossref_primary_10_1111_psyg_12775 crossref_primary_10_1016_j_ecolind_2018_12_029 crossref_primary_10_1111_mec_16236 crossref_primary_10_1044_2021_JSLHR_20_00583 crossref_primary_10_1024_1010_0652_a000344 crossref_primary_10_1177_2754124X241235545 crossref_primary_10_1016_j_foreco_2021_119802 crossref_primary_10_1016_j_paid_2021_111167 crossref_primary_10_1038_s41559_023_02151_4 crossref_primary_10_1525_mp_2019_37_1_66 crossref_primary_10_1111_1365_2745_13095 crossref_primary_10_1088_1748_9326_ad657e crossref_primary_10_1111_nph_17536 crossref_primary_10_1371_journal_pone_0173109 crossref_primary_10_5194_bg_16_2873_2019 crossref_primary_10_1002_ecm_1502 crossref_primary_10_1038_s41598_021_91960_3 crossref_primary_10_3758_s13421_019_00994_6 crossref_primary_10_1073_pnas_1805574115 crossref_primary_10_1111_pala_12526 crossref_primary_10_1016_j_gca_2025_02_018 crossref_primary_10_1038_s41437_019_0183_5 crossref_primary_10_1002_ajp_22439 crossref_primary_10_1111_ecog_04224 crossref_primary_10_1111_1365_2745_13321 crossref_primary_10_1002_ldr_4049 crossref_primary_10_1111_jbi_14573 crossref_primary_10_1017_S071498081700023X crossref_primary_10_1016_j_agrformet_2017_09_013 crossref_primary_10_1002_wics_1346 crossref_primary_10_1073_pnas_2112235118 crossref_primary_10_1016_j_gloplacha_2016_11_017 crossref_primary_10_3389_fmars_2018_00496 crossref_primary_10_7554_eLife_87297 crossref_primary_10_1016_j_brat_2018_12_006 crossref_primary_10_1016_j_jad_2017_08_037 crossref_primary_10_1371_journal_pone_0172112 crossref_primary_10_1111_ecog_06078 crossref_primary_10_1002_ecs2_3794 crossref_primary_10_1111_btp_12906 crossref_primary_10_1093_jpe_rtac096 |
Cites_doi | 10.1177/1534484311411077 10.1023/A:1006954016433 10.1111/j.2041-210x.2012.00261.x 10.1177/105381510602800405 10.1111/j.1365-2699.2006.01584.x 10.1177/0013164401612006 10.2307/2530428 10.1007/s10980-009-9383-3 10.2307/2985237 10.1287/opre.17.5.770 10.1080/09084280801917566 10.1890/02-3114 10.1177/1094428104266017 10.1521/scpq.16.1.31.19158 10.1111/j.1468-2958.1979.tb00649.x 10.1080/10871200903551985 10.1080/00273171.2012.658331 10.1177/0013164495055004001 10.3389/fpsyg.2012.00044 10.1017/CBO9780511542138.005 10.1007/s10393-010-0358-2 10.1111/j.1365-2656.2006.01141.x 10.3102/1076998612458319 10.1177/001316447403400105 10.3758/BRM.40.2.457 10.1073/pnas.94.2.549 10.1177/1094428113493929 |
ContentType | Journal Article |
Copyright | 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society Copyright © 2014 British Ecological Society |
Copyright_xml | – notice: 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society – notice: Copyright © 2014 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 8FD C1K FR3 P64 RC3 7ST 7U1 7U6 |
DOI | 10.1111/2041-210X.12166 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Risk Abstracts Sustainability Science Abstracts |
DatabaseTitle | CrossRef Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Risk Abstracts Environment Abstracts Sustainability Science Abstracts |
DatabaseTitleList | Risk Abstracts CrossRef Genetics Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 2041-210X |
EndPage | 328 |
ExternalDocumentID | 3269410891 10_1111_2041_210X_12166 MEE312166 |
Genre | article |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 4.4 4P2 50Y 5DZ 702 8-1 A00 AAESR AAFWJ AAHBH AAHHS AAZKR ABCUV ABLJU ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACPRK ACXQS ADBBV ADKYN ADXAS ADZMN AEEZP AENEX AEQDE AEUYN AFBPY AFKRA AFPKN AFRAH AIAGR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ATCPS AVUZU AZVAB BBNVY BENPR BFHJK BHPHI BMXJE BRXPI CAG CCPQU COF DCZOG DPXWK EBD EBS EDH EJD F1Z G-S GODZA GROUPED_DOAJ HCIFZ HZ~ LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES M7P MY. MY~ M~E O9- P2P P2W P4E PATMY PYCSY R.K ROL RX1 SUPJJ V8K WBKPD WOHZO WYJ ZZTAW ~S- AAYXX CITATION PHGZM PHGZT 7QG 7SN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 WIN 7ST 7U1 7U6 |
ID | FETCH-LOGICAL-c4566-20ceb5c413f91bd103bcda89374b2a466ec8ebf3ebe8d611db71488e170eeb8f3 |
ISSN | 2041-210X |
IngestDate | Fri Jul 11 11:01:02 EDT 2025 Wed Aug 13 04:25:56 EDT 2025 Tue Jul 01 03:19:35 EDT 2025 Thu Apr 24 23:12:26 EDT 2025 Wed Jan 22 17:01:11 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4566-20ceb5c413f91bd103bcda89374b2a466ec8ebf3ebe8d611db71488e170eeb8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/2041-210X.12166 |
PQID | 1513710882 |
PQPubID | 1016379 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1520390955 proquest_journals_1513710882 crossref_citationtrail_10_1111_2041_210X_12166 crossref_primary_10_1111_2041_210X_12166 wiley_primary_10_1111_2041_210X_12166_MEE312166 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2014 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: April 2014 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Methods in ecology and evolution |
PublicationYear | 2014 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2009; 24 1974; 34 2013; 4 2010; 15 2006; 75 2010; 36 2000; 4 2006; 33 2004; 7 1995; 55 2006; 8 1997 2003; 36 2008; 15 2007 1973 2011; 10 1995 2006 2001; 27 2012; 17 2006; 4 2003 2002 1969; 17 2012; 14 1998; 45 2001; 61 2012; 3 2013; 38 2013; 16 1979; 5 1981; 37 1983 2001; 16 1967; 16 2013 2012; 47 2008; 40 2003; 84 2010; 7 Kerlinger F.N. (e_1_2_9_12_1) 1973 Thompson B. (e_1_2_9_41_1) 2006 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_33_1 R Development Core Team (e_1_2_9_32_1) 2013 Capraro R.M. (e_1_2_9_5_1) 2001; 27 MacKinnon D.P. (e_1_2_9_17_1) 2000; 4 Nimon K. (e_1_2_9_24_1) 2010; 36 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 Pedhazur E.J. (e_1_2_9_30_1) 1997 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 Nathans L. (e_1_2_9_22_1) 2012; 17 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_3_1 e_1_2_9_2_1 Morris D.W. (e_1_2_9_20_1) 2006; 8 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 Morris D.W. (e_1_2_9_19_1) 2012; 14 e_1_2_9_28_1 Petrocelli J.V. (e_1_2_9_31_1) 2003; 36 e_1_2_9_27_1 Cohen J. (e_1_2_9_6_1) 1983 e_1_2_9_29_1 Burnham K.P. (e_1_2_9_4_1) 2002 |
References_xml | – year: 1983 – volume: 15 start-page: 77 year: 2010 end-page: 89 article-title: Predicting private landowner intensions to enroll in an incentive program to protect endangered species publication-title: Human Dimensions of Wildlife – volume: 61 start-page: 229 year: 2001 end-page: 248 article-title: Use of structure coefficients in published multiple regression articles: β is not enough publication-title: Educational and Psychological Measurement – volume: 37 start-page: 391 year: 1981 end-page: 411 article-title: Building multiple regression models interactively publication-title: Biometrics – start-page: 85 year: 2003 end-page: 124 – volume: 10 start-page: 329 year: 2011 end-page: 340 article-title: Regression commonality analysis: a technique for quantitative theory building publication-title: Human Resource Development – volume: 16 start-page: 51 year: 1967 end-page: 64 article-title: A development of multiple regression for the analysis of routine data publication-title: Applied Statistics – year: 2007 – volume: 38 start-page: 3 year: 2013 end-page: 31 article-title: Determining predictor importance in hierarchical linear models using dominance analysis publication-title: Journal of Educational and Behavioral Statistics – volume: 75 start-page: 1182 year: 2006 end-page: 1189 article-title: Why do we still use stepwise modeling in ecology and behaviour? publication-title: Journal of Animal Ecology – volume: 45 start-page: 253 year: 1998 end-page: 275 article-title: On variable importance in linear regression publication-title: Social Indicators Research – year: 1973 – volume: 4 start-page: 133 year: 2013 end-page: 142 article-title: A general and simple method for obtaining R2 from generalized linear mixed‐effects models publication-title: Methods in Ecology and Evolution – volume: 84 start-page: 2809 year: 2003 end-page: 2815 article-title: Multicollinearity in ecological multiple regression publication-title: Ecology – volume: 14 start-page: 689 year: 2012 end-page: 705 article-title: Climate‐induced habitat selection predicts future evolutionary strategies of lemmings publication-title: Evolutionary Ecology Research – volume: 16 start-page: 31 year: 2001 end-page: 55 article-title: WISC‐III predictors of academic achievement for children with learning disabilities: are global and factor scores comparable? publication-title: School Psychology Quarterly – volume: 27 start-page: 16 year: 2001 end-page: 23 article-title: Commonality analysis: understanding variance contributions to overall canonical correlation effects of attitude toward mathematics on geometry achievement publication-title: Multiple Linear Regression Viewpoints – volume: 8 start-page: 1263 year: 2006 end-page: 1275 article-title: Simulated and human metapopulations created by habitat selection publication-title: Evolutionary Ecology Research – volume: 17 start-page: 1 year: 2012 end-page: 19 article-title: Interpreting multiple linear regression: a guidebook of variable importance publication-title: Practical Assessment Research & Evaluation – volume: 55 start-page: 525 year: 1995 end-page: 534 article-title: Stepwise regression and stepwise discriminant analysis need not apply here: a guidelines editorial publication-title: Educational and Psychological Measurement – volume: 3 start-page: 1 year: 2012 end-page: 10 article-title: Interpreting multiple regression in the face of multicollinearity publication-title: Frontiers in Psychology – volume: 34 start-page: 35 year: 1974 end-page: 46 article-title: A revised definition for suppressor variables: a guide to their identification and interpretation publication-title: Educational and Psychological Measurement – volume: 17 start-page: 770 year: 1969 end-page: 784 article-title: Macro‐analysis of the American educational system publication-title: Operations Research – volume: 36 start-page: 9 year: 2003 end-page: 22 article-title: Hierarchical multiple regression in counseling research: common problems and possible remedies publication-title: Measurement and Evolution in Counseling and Development – volume: 7 start-page: 258 year: 2004 end-page: 282 article-title: A Monte Carlo comparison of relative importance methodologies publication-title: Organizational Research Methods – volume: 16 start-page: 650 year: 2013 end-page: 674 article-title: Understanding the results of multiple linear regression: beyond standardized regression coefficients publication-title: Organizational Research Methods – year: 2002 – volume: 36 start-page: 10 year: 2010 end-page: 17 article-title: Regression commonality analysis: demonstration of an SPSS solution publication-title: Multiple Linear Regression Viewpoints – volume: 5 start-page: 355 year: 1979 end-page: 363 article-title: Commonality analysis: a method for decomposing explained variance in multiple regression analysis publication-title: Human Communication Research – year: 2006 – volume: 47 start-page: 224 year: 2012 end-page: 246 article-title: Isolating and examining sources of suppression and multicollinearity in multiple linear regression publication-title: Multivariate Behavioral Research – volume: 4 start-page: 173 year: 2000 end-page: 185 article-title: Equivalence of the mediation, confounding, and suppression effect publication-title: Prevention Research – volume: 7 start-page: 526 year: 2010 end-page: 536 article-title: What drives chytrid infections in newt populations? Associations with substrate, temperature, and shade publication-title: EcoHealth – year: 1997 – volume: 15 start-page: 44 year: 2008 end-page: 53 article-title: Playing statistical Ouija board with commonality analysis: good questions, wrong assumptions publication-title: Applied Neuropsychology – volume: 24 start-page: 1271 year: 2009 end-page: 1285 article-title: Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation publication-title: Landscape Ecology – year: 1995 – volume: 40 start-page: 457 year: 2008 end-page: 466 article-title: An R package to compute commonality coefficients in multiple regression case: an introduction to the package and a practical example publication-title: Behavior Research Methods – volume: 33 start-page: 1677 year: 2006 end-page: 1688 article-title: Five (or so) challenges for species distribution modeling publication-title: Journal of Biogeography – year: 2013 – volume: 4 start-page: 299 year: 2006 end-page: 307 article-title: Commonality analysis: partitioning variance to facilitate better understanding of data publication-title: Journal of Early Intervention – ident: e_1_2_9_28_1 doi: 10.1177/1534484311411077 – ident: e_1_2_9_39_1 doi: 10.1023/A:1006954016433 – ident: e_1_2_9_21_1 doi: 10.1111/j.2041-210x.2012.00261.x – ident: e_1_2_9_44_1 doi: 10.1177/105381510602800405 – ident: e_1_2_9_25_1 – ident: e_1_2_9_2_1 doi: 10.1111/j.1365-2699.2006.01584.x – volume-title: Model Selection and Multimodel Inference: A Practice Information‐Theoretic Approach year: 2002 ident: e_1_2_9_4_1 – ident: e_1_2_9_8_1 doi: 10.1177/0013164401612006 – volume: 8 start-page: 1263 year: 2006 ident: e_1_2_9_20_1 article-title: Simulated and human metapopulations created by habitat selection publication-title: Evolutionary Ecology Research – volume-title: Multiple Regression in Behavioral Research: Explanation and Prediction year: 1997 ident: e_1_2_9_30_1 – volume-title: Multiple Regression in Behavioral Research year: 1973 ident: e_1_2_9_12_1 – ident: e_1_2_9_11_1 doi: 10.2307/2530428 – volume-title: R: A Language and Environment for Statistical Computing year: 2013 ident: e_1_2_9_32_1 – ident: e_1_2_9_36_1 doi: 10.1007/s10980-009-9383-3 – ident: e_1_2_9_23_1 doi: 10.2307/2985237 – ident: e_1_2_9_18_1 doi: 10.1287/opre.17.5.770 – volume: 17 start-page: 1 year: 2012 ident: e_1_2_9_22_1 article-title: Interpreting multiple linear regression: a guidebook of variable importance publication-title: Practical Assessment Research & Evaluation – ident: e_1_2_9_34_1 doi: 10.1080/09084280801917566 – ident: e_1_2_9_9_1 doi: 10.1890/02-3114 – ident: e_1_2_9_27_1 – volume-title: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences year: 1983 ident: e_1_2_9_6_1 – ident: e_1_2_9_14_1 doi: 10.1177/1094428104266017 – volume: 4 start-page: 173 year: 2000 ident: e_1_2_9_17_1 article-title: Equivalence of the mediation, confounding, and suppression effect publication-title: Prevention Research – volume: 27 start-page: 16 year: 2001 ident: e_1_2_9_5_1 article-title: Commonality analysis: understanding variance contributions to overall canonical correlation effects of attitude toward mathematics on geometry achievement publication-title: Multiple Linear Regression Viewpoints – ident: e_1_2_9_10_1 doi: 10.1521/scpq.16.1.31.19158 – volume: 14 start-page: 689 year: 2012 ident: e_1_2_9_19_1 article-title: Climate‐induced habitat selection predicts future evolutionary strategies of lemmings publication-title: Evolutionary Ecology Research – ident: e_1_2_9_35_1 doi: 10.1111/j.1468-2958.1979.tb00649.x – ident: e_1_2_9_38_1 doi: 10.1080/10871200903551985 – ident: e_1_2_9_3_1 doi: 10.1080/00273171.2012.658331 – ident: e_1_2_9_40_1 doi: 10.1177/0013164495055004001 – volume: 36 start-page: 10 year: 2010 ident: e_1_2_9_24_1 article-title: Regression commonality analysis: demonstration of an SPSS solution publication-title: Multiple Linear Regression Viewpoints – ident: e_1_2_9_13_1 doi: 10.3389/fpsyg.2012.00044 – ident: e_1_2_9_15_1 – ident: e_1_2_9_42_1 doi: 10.1017/CBO9780511542138.005 – ident: e_1_2_9_33_1 doi: 10.1007/s10393-010-0358-2 – ident: e_1_2_9_43_1 doi: 10.1111/j.1365-2656.2006.01141.x – ident: e_1_2_9_16_1 doi: 10.3102/1076998612458319 – volume: 36 start-page: 9 year: 2003 ident: e_1_2_9_31_1 article-title: Hierarchical multiple regression in counseling research: common problems and possible remedies publication-title: Measurement and Evolution in Counseling and Development – volume-title: Foundations of Behavioral Statistics: An Insight‐Based Approach year: 2006 ident: e_1_2_9_41_1 – ident: e_1_2_9_7_1 doi: 10.1177/001316447403400105 – ident: e_1_2_9_29_1 doi: 10.3758/BRM.40.2.457 – ident: e_1_2_9_37_1 doi: 10.1073/pnas.94.2.549 – ident: e_1_2_9_26_1 doi: 10.1177/1094428113493929 |
SSID | ssj0000389024 |
Score | 2.4776306 |
Snippet | Summary
1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky.... 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding... Summary 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky.... 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 320 |
SubjectTerms | Ecological research Habitat selection hierarchical regression Regression analysis standardized partial regression coefficient stepwise regression structure coefficients suppressor variable |
Title | Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.12166 https://www.proquest.com/docview/1513710882 https://www.proquest.com/docview/1520390955 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWIiQuiPIhFkplJA5cUpLYyWa5IZSqgqYc2JX2FsUfgUA3W22zSAWJH8KvZcZxEhe2onCxosR2FM-zM2M_PxPyvIy4YMqXnmIT7QEoAk8ozj1cgSriMkpChVMD2Ul8NOdvF9FiNPrpsJY2jTiQ37buK_kfq8I9sCvukv0Hy_aVwg24BvtCChaG9Fo2nndbZpedP110GiNVPXAF1_pjy3atz9u9zQ0Kb4LTqTQyypGxPmTpGR6WAFkW0kwrmNqkkfCGzlE1l5aDM3MOtSmj5aDqpL_azx9Wky68bPMFcPLZEoCKCzBtNayOLFsWwLtqOUDByf_hEypG9I9W63XlxgEtXbCbxQhc8osZ7EKfBx6En4v2v7Tlnh2tIweU3Bl5Weg7P3HW7ji_4v_QV4zaGvEWJe6T9_nh_Pg4n6WL2Q1yM4QQBE_HyH4M83coTOibM5P72qxyFBLFfnvDZadniGTceMg4NLO75I6NROjrFla7ZKTre-RW2prvPvluwEUdcNEOXLSqaQcu6oDrFS0oQgsS2kPLyUAttLA8QIsitOiqpH9A6wGZH6azN0eePanDk-CAx9AppRaRBIeonAZCBT4TUhXoCnMRFjyOtUy0KBmMGImKg0CJCYThiQ4mvtYiKdlDslOvav2IUNQnVJOp4Oh5-jqCUsmUB5LJQopQqTE56Joyl1bGHk9TOc27cBbbPse2z03bj8mLvsBZq-Bydda9zja57ebnObjEDNxwiETH5Fn_GAZhXFkrar3aYJ7QZ1NUcxyTl8amf3tVnqUpM1ePr1HrE3J76DR7ZKdZb_RTcIYbsW9Q-QuWxbdQ |
linkProvider | ISSN International Centre |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60InoRn1ifK3jwEk2ymzT1JlKpj3qyUryE7CMi1ERsPYh_3pnNNlZBxEsIZGc3zOxkv5mdfAtwmEdCcu0rT_OW8XBSBJ7UQni0A5XFeZSEmlIDvdu42xdXg2gw9S9MxQ9RJ9zIM-z3mhycEtJTXh76IvAwYhkQQ0Icz8IcYZukAXNn9_2Hfp1pIQo5355uW0s4jh8q6fnRy_fl6QtzTiNXu_RcLMOSw4zsrDLyCsyYYhXmO5Zv-n0NPuy2P8P3f3awmmWOaoQ9FWxSMshezWNV9FqMTlnGxmU5xAvThsrKy9F0A-bKPEgeESLLM2VYmVd9KcvjjR6CI61D_6Jzd9713JkKnkKoFKNTKCMjhUtX3g6kDnwulc4ItAgZZiKOjUqMzDnaNtFxEGjZwoApMUHLN0YmOd-ARlEWZhMYMcnpVlsKwgi-iVAqaYtAcZUpGWrdhOOJKlPlCMfp3IthOgk8SPcp6T61um_CUS3wUnFt_N50Z2Kb1DndKEXwwhEwYczQhIP6MboL7YFkhSnfqE3o8zbx7jXhxNr0r6HSXqfD7d3WvyX2YaF717tJby5vr7dhEcGWq_rZgcb49c3sIqAZyz03Yz8BtjLrmA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58oHgRn7g-I3jwUm2btNv1JrqLbzy4Il5K86gI2oq7HsQ_70ya1lUQ8VIKnUnKTKb5Jpl-AdjJIyG59pWnedt4OCgCT2ohPNqByuI8SkJNSwOXV_FJX5zdRXU1If0LU_FDNAtuFBn2e00B_qLzkSAPfRF4mLDcEUFCHI_DJHHl4cCePLzt3_ebhRZikPPt4baNhqP4oYqeH618n52-IOcocLUzT28OZh1kZIeVj-dhzBQLMNW1dNPvi_Bhd_0Zvv6zQ9Usc0wj7LFgdcUgezUPVc1rMThgGRuW5RNemDZUVV4ORgWYq_IgfQSILM-UYWVetaUsjTcGCPa0BP1e9-boxHNHKngKkVKMMaGMjBTOXHknkDrwuVQ6I8wiZJiJODYqMTLn6NpEx0GgZRvzpcQEbd8YmeR8GSaKsjArwIhITrc7UhBE8E2EWklHBIqrTMlQ6xbs1aZMleMbp2MvntI67yDbp2T71Nq-BbuNwktFtfG76Hrtm9TF3CBF7MIRL2HK0ILt5jFGC22BZIUp30gm9HmHaPdasG99-ldX6WW3y-3d6r81tmD6-riXXpxena_BDEItV_OzDhPD1zezgXBmKDfdgP0ESdvqwQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+commonality+analysis+in+multiple+regressions%3A+a+tool+to+decompose+regression+effects+in+the+face+of+multicollinearity&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Ray-Mukherjee%2C+Jayanti&rft.au=Nimon%2C+Kim&rft.au=Mukherjee%2C+Shomen&rft.au=Morris%2C+Douglas+W&rft.date=2014-04-01&rft.issn=2041-210X&rft.eissn=2041-210X&rft.volume=5&rft.issue=4&rft.spage=320&rft.epage=328&rft_id=info:doi/10.1111%2F2041-210X.12166&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon |