VEGF expression by ganglion cells in central retina before formation of the foveal depression in monkey retina: Evidence of developmental hypoxia

In macaque monkeys the foveal depression forms between fetal day (Fd) 105 and birth (Fd 172 of gestation). Before this, the incipient fovea is identified by a photoreceptor layer comprising cones almost exclusively, a multilayered ganglion cell layer (GCL), and a “domed” profile. Vessels are absent...

Full description

Saved in:
Bibliographic Details
Published inJournal of comparative neurology (1911) Vol. 462; no. 1; pp. 42 - 54
Main Authors Sandercoe, Trent M., Geller, Scott F., Hendrickson, Anita E., Stone, Jonathan, Provis, Jan M.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 14.07.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In macaque monkeys the foveal depression forms between fetal day (Fd) 105 and birth (Fd 172 of gestation). Before this, the incipient fovea is identified by a photoreceptor layer comprising cones almost exclusively, a multilayered ganglion cell layer (GCL), and a “domed” profile. Vessels are absent from the central retina until late in development, leading to the suggestion that the GCL in the incipient fovea may be transitorily hypoxic. Vascular endothelial growth factor (VEGF), expressed by both glial and neuronal cells and mediated by the hypoxia‐inducible transcription factor (HIF)‐1, is the principal factor involved in blood vessel growth in the retina. We examined VEGF expression in macaque retinas between Fd 85 and 4 months postnatal. Digoxygenin‐labeled riboprobes were generated from a partial‐length human cDNA polymerase chain reaction fragment, detected using fluorescence confocal microscopy, and quantified using Scion Image. High levels of VEGF mRNA were detected in astrocytes associated with developing vessels. We also detected strong expression of VEGF mRNA in the GCL at the incipient fovea prior to Fd 105, with peak labeling in the incipient fovea that declined with distance in nasal and temporal directions. By Fd 152 peak labeling was in two bands associated with development of the inner nuclear layer (INL) capillary plexus: in the inner INL where Müller and amacrine cell somas are located, and in the outer INL where horizontal cells are found. The findings suggest that at the incipient fovea the GCL is hypoxic, supporting the hypothesis that the adaptive significance of the fovea centralis is in ensuring adequate oxygen supply to neuronal elements initially located within the avascular region. J. Comp. Neurol. 462:42–54, 2003. © 2003 Wiley‐Liss, Inc.
AbstractList In macaque monkeys the foveal depression forms between fetal day (Fd) 105 and birth (Fd 172 of gestation). Before this, the incipient fovea is identified by a photoreceptor layer comprising cones almost exclusively, a multilayered ganglion cell layer (GCL), and a 'domed' profile. Vessels are absent from the central retina until late in development, leading to the suggestion that the GCL in the incipient fovea may be transitorily hypoxic. Vascular endothelial growth factor (VEGF), expressed by both glial and neuronal cells and mediated by the hypoxia-inducible transcription factor (HIF)-1, is the principal factor involved in blood vessel growth in the retina. We examined VEGF expression in macaque retinas between Fd 85 and 4 months postnatal. Digoxygenin- labeled riboprobes were generated from a partial-length human cDNA polymerase chain reaction fragment, detected using fluorescence confocal microscopy, and quantified using Scion Image. High levels of VEGF mRNA were detected in astrocytes associated with developing vessels. We also detected strong expression of VEGF mRNA in the GCL at the incipient fovea prior to Fd 105, with peak labeling in the incipient fovea that declined with distance in nasal and temporal directions. By Fd 152 peak labeling was in two bands associated with development of the inner nuclear layer (INL) capillary plexus: in the inner INL where Mueller and amacrine cell somas are located, and in the outer INL where horizontal cells are found. The findings suggest that at the incipient fovea the GCL is hypoxic, supporting the hypothesis that the adaptive significance of the fovea centralis is in ensuring adequate oxygen supply to neuronal elements initially located within the avascular region.
In macaque monkeys the foveal depression forms between fetal day (Fd) 105 and birth (Fd 172 of gestation). Before this, the incipient fovea is identified by a photoreceptor layer comprising cones almost exclusively, a multilayered ganglion cell layer (GCL), and a “domed” profile. Vessels are absent from the central retina until late in development, leading to the suggestion that the GCL in the incipient fovea may be transitorily hypoxic. Vascular endothelial growth factor (VEGF), expressed by both glial and neuronal cells and mediated by the hypoxia‐inducible transcription factor (HIF)‐1, is the principal factor involved in blood vessel growth in the retina. We examined VEGF expression in macaque retinas between Fd 85 and 4 months postnatal. Digoxygenin‐labeled riboprobes were generated from a partial‐length human cDNA polymerase chain reaction fragment, detected using fluorescence confocal microscopy, and quantified using Scion Image. High levels of VEGF mRNA were detected in astrocytes associated with developing vessels. We also detected strong expression of VEGF mRNA in the GCL at the incipient fovea prior to Fd 105, with peak labeling in the incipient fovea that declined with distance in nasal and temporal directions. By Fd 152 peak labeling was in two bands associated with development of the inner nuclear layer (INL) capillary plexus: in the inner INL where Müller and amacrine cell somas are located, and in the outer INL where horizontal cells are found. The findings suggest that at the incipient fovea the GCL is hypoxic, supporting the hypothesis that the adaptive significance of the fovea centralis is in ensuring adequate oxygen supply to neuronal elements initially located within the avascular region. J. Comp. Neurol. 462:42–54, 2003. © 2003 Wiley‐Liss, Inc.
In macaque monkeys the foveal depression forms between fetal day (Fd) 105 and birth (Fd 172 of gestation). Before this, the incipient fovea is identified by a photoreceptor layer comprising cones almost exclusively, a multilayered ganglion cell layer (GCL), and a "domed" profile. Vessels are absent from the central retina until late in development, leading to the suggestion that the GCL in the incipient fovea may be transitorily hypoxic. Vascular endothelial growth factor (VEGF), expressed by both glial and neuronal cells and mediated by the hypoxia-inducible transcription factor (HIF)-1, is the principal factor involved in blood vessel growth in the retina. We examined VEGF expression in macaque retinas between Fd 85 and 4 months postnatal. Digoxygenin-labeled riboprobes were generated from a partial-length human cDNA polymerase chain reaction fragment, detected using fluorescence confocal microscopy, and quantified using Scion Image. High levels of VEGF mRNA were detected in astrocytes associated with developing vessels. We also detected strong expression of VEGF mRNA in the GCL at the incipient fovea prior to Fd 105, with peak labeling in the incipient fovea that declined with distance in nasal and temporal directions. By Fd 152 peak labeling was in two bands associated with development of the inner nuclear layer (INL) capillary plexus: in the inner INL where Müller and amacrine cell somas are located, and in the outer INL where horizontal cells are found. The findings suggest that at the incipient fovea the GCL is hypoxic, supporting the hypothesis that the adaptive significance of the fovea centralis is in ensuring adequate oxygen supply to neuronal elements initially located within the avascular region.
Abstract In macaque monkeys the foveal depression forms between fetal day (Fd) 105 and birth (Fd 172 of gestation). Before this, the incipient fovea is identified by a photoreceptor layer comprising cones almost exclusively, a multilayered ganglion cell layer (GCL), and a “domed” profile. Vessels are absent from the central retina until late in development, leading to the suggestion that the GCL in the incipient fovea may be transitorily hypoxic. Vascular endothelial growth factor (VEGF), expressed by both glial and neuronal cells and mediated by the hypoxia‐inducible transcription factor (HIF)‐1, is the principal factor involved in blood vessel growth in the retina. We examined VEGF expression in macaque retinas between Fd 85 and 4 months postnatal. Digoxygenin‐labeled riboprobes were generated from a partial‐length human cDNA polymerase chain reaction fragment, detected using fluorescence confocal microscopy, and quantified using Scion Image. High levels of VEGF mRNA were detected in astrocytes associated with developing vessels. We also detected strong expression of VEGF mRNA in the GCL at the incipient fovea prior to Fd 105, with peak labeling in the incipient fovea that declined with distance in nasal and temporal directions. By Fd 152 peak labeling was in two bands associated with development of the inner nuclear layer (INL) capillary plexus: in the inner INL where Müller and amacrine cell somas are located, and in the outer INL where horizontal cells are found. The findings suggest that at the incipient fovea the GCL is hypoxic, supporting the hypothesis that the adaptive significance of the fovea centralis is in ensuring adequate oxygen supply to neuronal elements initially located within the avascular region. J. Comp. Neurol. 462:42–54, 2003. © 2003 Wiley‐Liss, Inc.
Author Provis, Jan M.
Sandercoe, Trent M.
Geller, Scott F.
Hendrickson, Anita E.
Stone, Jonathan
Author_xml – sequence: 1
  givenname: Trent M.
  surname: Sandercoe
  fullname: Sandercoe, Trent M.
  organization: Save Sight Institute, Sydney, New South Wales 2001, Australia
– sequence: 2
  givenname: Scott F.
  surname: Geller
  fullname: Geller, Scott F.
  organization: Department of Anatomy & Histology, University of Sydney, Sydney, New South Wales 2006, Australia
– sequence: 3
  givenname: Anita E.
  surname: Hendrickson
  fullname: Hendrickson, Anita E.
  organization: Department of Biological Structure, University of Washington, Seattle, Washington 98195
– sequence: 4
  givenname: Jonathan
  surname: Stone
  fullname: Stone, Jonathan
  organization: Department of Anatomy & Histology, University of Sydney, Sydney, New South Wales 2006, Australia
– sequence: 5
  givenname: Jan M.
  surname: Provis
  fullname: Provis, Jan M.
  email: jprovis@anatomy.usyd.edu.au
  organization: Save Sight Institute, Sydney, New South Wales 2001, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12761823$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAYRS1URKeFBS-AskJiEeqfOI7ZoWE6gKqBBT8SG8txvrSmiZ3amWHyGLwxDjOUFWJjf7bPPZJ1z9CJ8w4QekrwS4IxvTAO0iAwf4AWBMsyl1VJTtAivZFcylKcorMYv2OMpWTVI3RKqChJRdkC_fyyWl9msB8CxGi9y-opu9buuptnA10XMzsPbgy6ywKM1umshtYHyNLS63EGfZuNN_PFDhLVwL0tZXvvbmE6Rl9lq51twBmYMw3soPNDn-wpdjMNfm_1Y_Sw1V2EJ8f9HH2-XH1avs2vPqzfLV9f5abgJc851aZqCKYcGqwpo7QtDDeGt1gwZmhtKmlA1oWhJSYlaWQ6N5QAUIFlXbFz9PzgHYK_20IcVW_j_GPtwG-jShZciEr-FySJoUyyBL44gCb4GAO0agi212FSBKu5KJWKUr-LSuyzo3Rb99D8JY_NJODiAPywHUz_NqnlZvVHmR8SNo6wv0_ocKtKwQRXXzdrJfj7N5uPBVHf2C9agK-s
CitedBy_id crossref_primary_10_3390_cells9051217
crossref_primary_10_4199_C00122ED1V01Y201412NGL003
crossref_primary_10_1016_j_ophtha_2017_01_046
crossref_primary_10_1016_j_preteyeres_2018_03_006
crossref_primary_10_1111_j_1444_0938_2005_tb06711_x
crossref_primary_10_1126_scisignal_aan5785
crossref_primary_10_1002_jnr_22732
crossref_primary_10_1017_S095252380522206X
crossref_primary_10_1016_j_preteyeres_2011_11_003
crossref_primary_10_1016_j_ajpath_2013_05_011
crossref_primary_10_1523_JNEUROSCI_5368_06_2007
crossref_primary_10_1111_j_1755_3768_2010_01968_x
crossref_primary_10_3892_ijmm_2013_1597
crossref_primary_10_1016_j_survophthal_2010_08_006
crossref_primary_10_1038_s41598_018_23905_2
crossref_primary_10_1002_cne_21574
crossref_primary_10_1002_glia_23727
crossref_primary_10_1016_j_exer_2006_04_017
crossref_primary_10_1038_eye_2009_324
crossref_primary_10_1017_S0952523804041057
crossref_primary_10_1002_glia_20495
crossref_primary_10_1007_BF02968569
crossref_primary_10_1016_j_exer_2018_01_012
crossref_primary_10_3390_ijms22010369
crossref_primary_10_1016_j_biocel_2005_08_002
crossref_primary_10_1111_j_1755_3768_2008_01410_x
crossref_primary_10_1111_j_1460_9568_2004_03521_x
crossref_primary_10_1002_glia_20997
crossref_primary_10_1016_j_ijdevneu_2007_08_012
crossref_primary_10_1097_IAE_0000000000002123
crossref_primary_10_1016_j_preteyeres_2022_101091
crossref_primary_10_1111_opo_12958
crossref_primary_10_1586_eop_11_60
crossref_primary_10_1002_dvdy_20494
crossref_primary_10_1089_ham_2012_1031
crossref_primary_10_1016_j_preteyeres_2009_06_003
crossref_primary_10_1111_j_1444_0938_2005_tb06686_x
crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2023045298
Cites_doi 10.1002/cne.902330403
10.1073/pnas.92.3.768
10.1016/0042-6989(94)90013-2
10.1017/S0952523800005605
10.1523/JNEUROSCI.15-07-04738.1995
10.1073/pnas.97.18.10242
10.1016/0042-6989(90)90166-I
10.1172/JCI118962
10.1016/0306-4522(84)90007-1
10.1002/cne.902690403
10.1016/S0301-0082(97)00079-8
10.1016/S0002-9440(10)65138-3
10.1159/000116602
10.1002/cne.902820409
10.1111/j.1096-3642.1927.tb02243.x
10.1006/exer.1999.0730
10.1016/0039-6257(88)90052-5
10.1038/359843a0
10.1016/0042-6989(68)90010-2
10.1152/physrev.1991.71.2.447
10.1038/371070a0
10.3109/02713689008999612
10.1016/0306-4522(84)90006-X
10.1126/science.285.5425.245
10.1002/cne.902920402
10.1016/S0022-2143(98)90091-9
10.1002/(SICI)1096-9861(19990125)403:4<502::AID-CNE6>3.0.CO;2-N
10.1073/pnas.92.3.905
10.1016/S1350-9462(98)00013-5
10.1016/0006-8993(93)90230-K
10.2337/diacare.46.10.1619
10.1016/S0161-6420(81)34900-8
10.1007/978-1-4615-5391-5_21
10.1016/S1350-9462(00)00025-2
10.1038/nm1095-1024
10.1016/S0161-6420(84)34247-6
10.1038/212255a0
10.1073/pnas.93.2.582
10.1038/eye.1992.29
10.1056/NEJM200002173420707
10.1016/S1350-9462(01)00012-X
10.1159/000047211
10.1172/JCI1277
10.1385/JMN:14:3:197
10.1002/jcp.1114
10.1128/MCB.16.9.4604
10.1002/1096-9861(20000904)424:4<718::AID-CNE12>3.0.CO;2-Z
10.1016/0042-6989(86)90143-4
10.1016/S0039-6257(96)82014-5
10.1038/385313a0
10.1097/00001756-200112210-00048
10.1017/S0952523800000067
10.1016/S1350-9462(96)00019-5
10.1016/S0161-6420(82)34608-4
10.1002/cne.903230210
10.1002/(SICI)1096-9861(19970203)378:1<117::AID-CNE7>3.0.CO;2-7
10.1017/S095252380000184X
10.1159/000161941
10.1523/JNEUROSCI.16-19-06089.1996
10.1002/cne.902880113
10.3109/02713689608997411
10.1006/exer.1997.0365
10.1002/cne.902970404
ContentType Journal Article
Copyright Copyright © 2003 Wiley‐Liss, Inc.
Copyright 2003 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2003 Wiley‐Liss, Inc.
– notice: Copyright 2003 Wiley-Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
DOI 10.1002/cne.10705
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts

MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1096-9861
EndPage 54
ExternalDocumentID 10_1002_cne_10705
12761823
CNE10705
ark_67375_WNG_75JDNP41_Z
Genre article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: Kayser Award
– fundername: Sydney Eye Hospital Foundation
– fundername: Medical Foundation of the University of Sydney
– fundername: Retina Australia
– fundername: Ophthalmic Research Institute of Australia
– fundername: National Institutes of Health
  funderid: EY04536
– fundername: National Health and Medical Research Council
  funderid: 153825; 211123; 107277
– fundername: NEI NIH HHS
  grantid: EY04536
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMDK
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABHUG
ABIJN
ABIVO
ABJNI
ABOCM
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWD
RWI
RX1
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XJT
XV2
YQT
ZGI
ZZTAW
~IA
~WT
79B
AITYG
HGLYW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
ID FETCH-LOGICAL-c4565-52ac8d1025ed0a2322f4c5cc5f0733c2bc89ce9b4c260161d989cd21ee2709b83
IEDL.DBID DR2
ISSN 0021-9967
IngestDate Fri Aug 16 22:42:10 EDT 2024
Fri Aug 16 02:13:38 EDT 2024
Fri Aug 23 02:05:44 EDT 2024
Sat Sep 28 07:40:34 EDT 2024
Sat Aug 24 01:04:02 EDT 2024
Wed Jan 17 05:02:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright 2003 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4565-52ac8d1025ed0a2322f4c5cc5f0733c2bc89ce9b4c260161d989cd21ee2709b83
Notes Ophthalmic Research Institute of Australia
Kayser Award
National Health and Medical Research Council - No. 153825; No. 211123; No. 107277
ArticleID:CNE10705
National Institutes of Health - No. EY04536
Retina Australia
Sydney Eye Hospital Foundation
Medical Foundation of the University of Sydney
istex:9ACA40C698D5A5C14943B5AD19202FF80D59C0F1
ark:/67375/WNG-75JDNP41-Z
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 12761823
PQID 18932393
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_73304789
proquest_miscellaneous_18932393
crossref_primary_10_1002_cne_10705
pubmed_primary_12761823
wiley_primary_10_1002_cne_10705_CNE10705
istex_primary_ark_67375_WNG_75JDNP41_Z
PublicationCentury 2000
PublicationDate 14 July 2003
PublicationDateYYYYMMDD 2003-07-14
PublicationDate_xml – month: 07
  year: 2003
  text: 14 July 2003
  day: 14
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of comparative neurology (1911)
PublicationTitleAlternate J. Comp. Neurol
PublicationYear 2003
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Ferraz de Oliveira L, Ripps H. 1968. The "area centralis" of the owl monkey. Vision Res 8: 223-229.
Shweiki D, Itin A, Soffer D, Keshet E. 1992. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843-845.
Kim I, Ryan AM, Rohan R, Amano S, Agular S, Miller JW, Adamis AP. 1999. Constitutive expression of VEGF, VEGFR-1, and VEGFR-2 in normal eyes. Invest Ophthalmol Vis Sci 40: 2115-2121.
Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE. 1995. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92: 905-909.
Gariano RF, Sage EH, Kaplan HJ, Hendrickson AE. 1996c. Development of astrocytes and their relationship to blood vessels in fetal monkey retina. Invest Ophthalmol Vis Sci 37: 2367-2375.
Mann I. 1964. The development of the human eye. (First published 1928.) New York: Grune and Stratton.
Martin PR, Grünert U. 1992. Spatial density and immunoreactivity of bipolar cells in the macaque monkey retina. J Comp Neurol 323: 269-287.
Dreher B, Robinson SR. 1988. Development of the retinofugal pathway in birds and mammals: evidence for a common 'timetable'. Brain Behav Evol 31: 369-390.
Packer O, Hendrickson AE, Curcio CA. 1989. Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina). J Comp Neurol 288: 165-183.
Provis JM, Sandercoe T, Hendrickson AE. 2000. Astrocytes and blood vessels define the foveal rim during primate retinal development. Invest Ophthalmol Vis Sci 41: 2827-2836.
Gariano RF, Iruela AM, Hendrickson AE. 1994. Vascular development in primate retina: 1. Comparison of laminar plexus formation in monkey and human. Invest Ophthalmol Vis Sci 35: 3442-3455.
Diaz-Araya CM, Provis JM. 1992. Evidence of photoreceptor migration during early foveal development: a quantitative analysis of human fetal retinae. Vis Neurosci 8: 505-514.
Böcker-Meffert S, Rosentiel P, Röhl C, Warneke N, Held-Feindt J, Sievers J, Lucius R. 2002. Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats. Invest Opthalmol Vis Sci 43: 2021-2026.
Penfold PL, Madigan MC, Gillies MC, Provis JM. 2001. Immunological and aetiological aspects of macular degeneration. Prog Retinal Eye Res 20: 385-414.
Provis JM, Leech J, Diaz CM, Penfold PL, Stone J, Keshet E. 1997. Development of the human retinal vasculature: cellular relations and VEGF expression. Exp Eye Res 65: 555-568.
Sandercoe TM, Madigan MC, Billson FA, Penfold PL, Provis JM. 1999. Astrocyte proliferation during development of the human retinal vasculature. Exp Eye Res 69: 511-523.
Eichler W, Yafai Y, Kuhrt H, Gräter R, Hoffmand S, Wiedemann P, Reichenbach A. 2001. Hypoxia: modulation of endothelial cell proliferation by soluble factors released by retinal cells. Neuroreport 12: 4103-4108.
Jin KL, Mao, XO, Greenberg DA. 2000b. Vascular endothelial growth factor rescues HN33 neural cells from death induced by serum withdrawal. J Mol Neurosci 1483: 197-203
Müller B, Peichl L. 1989. Topography of cones and rods in the tree shrew retina. J Comp Neurol 282: 581-594.
Provis JM, Diaz CM, Dreher B. 1998. Ontogeny of the primate fovea: a central issue in retinal development. Prog Neurobiol 54: 549-580.
Perry VH, Silveira LC, Cowey A. 1990. Pathways mediating resolution in the primate retina. Ciba Found Symp 155: 5-14.
Calkins DJ, Schein SJ, Tsukamoto Y, Sterling P. 1994. M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature 371: 70-72.
Petry HW, Erichsen JT, Szel A. 1993. Immunocytochemical identification of photoreceptor populations in the tree shrew retina. Brain Res 616: 344-350.
Stone J, Chan-Ling T, Pe'er J, Itin A, Gnessin H, Keshet E. 1996. Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Investigative Ophthalmol Vis Sci 37: 290-299.
Forsythe J, Jiang B-H, Iyer NY, Agani F, Leung SW, Koos R, Semenza G. 1996. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16: 4604-4613.
Perry VH, Oehler R, Cowey A. 1984a. Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience 12: 1125-1137.
Gerhardinger C, Brown LF, Roy S, Mizutani M, Zucker CL, Lorenzi M. 1998. Expression of vascular endothelial growth factor in the human retina and in nonproliferative diabetic retinopathy. Am J Pathol 152: 1453-1462.
Wässle H, Boycott B. 1991. Functional architecture of mammalian retina. Physiol Rev 71: 447-480.
Perry VH, Oehler R, Cowey A. 1984b. Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12: 1101-1123.
Rohen JW, Castenholtz A. 1967. Über die Zentralisation der Retina bei Primaten. Folia Primatol 5: 92-147.
Jin KL, Mao, XO, Greenberg DA. 2000a. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA. 97: 10242-10247.
Lu M, Amano S, Miyamoto K, Garland R, Keough K, Qin W, Adamis AP. 1999. Insulin-induced vascular endothelial growth factor expression in retina. Invest Ophthalmol Vis Sci 40: 3281-3286.
Walls GL. 1963. The vertebrate eye and its adaptive radiation. New York: Hafner Publishing Co.
Alon T, Hemo I, Itin A, Pe'er J, Stone J, Keshet E. 1995. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1: 1024-1028.
Stone J, Maslim J. 1997. Mechanisms of retinal angiogenesis. Prog Retinal Eye Res 16: 157-181.
Karakousis PC, John SK, Behling KC, Surace EM, Smith JE, Hendrickson A, Tang WX, Bennett J, Milam AH. 2001. Localization of pigment epithelium derived factor (PEDF) in developing and adult human ocular tissues. Mol Vision 7: 154-163.
Youdelis C, Hendrickson A. 1986. A qualitative and quantitative analysis of the human fovea during development. Vision Res 26: 847-855.
Semenza G. 1998. Hypoxia-inducible factor-1 and the molecular physiology of oxygen homeostasis. J Lab Clin Med 131: 207-214.
Hendrickson A, Kupfer C. 1976. The histogenesis of the fovea in the macaque monkey. Invest Ophthalmol 15: 746-756.
Chase J. 1982. The evolution of retinal vascularization in mammals. Ophthalmology 89: 1518-1525.
Gariano RF, Kalina RE, Hendrickson AE. 1996b. Normal and pathological mechanisms in retinal vascular development. Surv Ophthalmol 40: 481-490.
Schein SJ. 1988. Anatomy of macaque fovea and spatial densities of neurons in foveal representation. J Comp Neurol 269: 479-505.
Hendrickson AE, Yuodelis C. 1984. The morphological development of the human fovea. Ophthalmology 91: 603-612.
Hendrickson A. 1992. A morphological comparison of foveal development in man and monkey. Eye 6: 136-144.
Blaauwgeers HG, Holtkamp GM, Rutten H, Witmer AN, Koolwijk P, Partanen TA, Alitalo K, Kroon ME, Kijlstra A, van Hinsbergh VW, Schlingemann RO. 1999. Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am J Pathol 155: 421-428.
Donahue ML, Phelps D, Watkins RH, LoMonaco MB, Horowitz S. 1996. Retinal vascular endothelial growth factor (VEGF) mRNA expression is altered in relation to neovascularization in oxygen induced retinopathy. Curr Eye Res 175-184.
Shweiki D, Neeman M, Itin A, Keshet E. 1995. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci USA 92: 768-772.
Provis JM, van Driel D, Billson FAB, Russell P. 1985. Development of the human retina: patterns of cell distribution and redistribution in the ganglion cell layer. J Comp Neurol 233: 429-451.
Bumsted K, Hendrickson A. 1999. Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea. J Comp Neurol 403: 502-516.
Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP. 1999. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285: 245-248.
Wässle H, Grünert U, Röhrenbeck J, Boycott BB. 1990. Retinal ganglion cell density and the cortical magnification factor in the primate. Vision Res 30: 1897-1911.
Shima DT, Gougos A, Miller JW, Tolentino M, Robinson G, Adamis AP, D'Amore PA. 1996. Cloning and mRNA expression of vascular endothelial growth factor in ischemic retinas of Macaca fascicularis. Invest Ophthalmol Vis Sci 37: 1334-1340.
Woollard HH. 1927. The differentiation of the retina in primates. Proc Zool Soc Lond 1: 1-17.
Stone J, Itin A, Alon T, Pe'er J, Gnessin H, Chan-Ling T, Keshet E. 1995. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15: 4738-4747.
Franco ECS, Finlay BL, Silveira LC, Yamada ES, Crowley J. 2000. Conservation of absolute foveal area in new world monkeys. Brain Behav Evol 56: 276-286.
Dacey DM. 1996. Circuitry for colour coding in the primate's retina. Proc Natl Acad Sci USA 93: 582-588.
Curcio CE, Sloan KR, Kalina RE, Hendrickson A. 1990. Human photoreceptor topography. J Comp Neurol 292: 497-523.
Kuroki M, Voest EE, Amano S, Beerepoot LV, Takashima S, Tolentino M, Kim RY, Rohan RM, Colby KA, Yeo KT, Adamis AP. 1996. Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J Clin Invest 98: 1667-1675.
Gariano RF, Iruela-Arispe ML, Sage EH, Hendrickson AE. 1996a. Immunohistochemical characterization of developing and mature primate retinal blood vessels. Invest Ophthalmol Vis Sci 37: 93-103.
Curcio CA, Millican CL, Bailey T, Kruth HS. 2001. Accumulation of cholesterol with age in human Bruch's membrane. Invest Ophthalmol Vis Sci 42: 265-176.
Weale RA. 1966. Why does the human retina possess a fovea? Nature 212: 255-256.
2001; 188
1968; 8
1992; 323
2000; 41
1997; 46
1994; 371
1988; 32
1999; 285
1989; 282
1996c; 37
1999; 40
1970
1988; 31
1999; 403
2000a; 97
1996; 37
1996b; 40
2001; 42
1998; 152
1988; 269
1992; 6
2000b; 1483
1993; 616
1992; 8
1992; 9
1997; 425
1984a; 12
1984; 91
2000; 56
1999; 18
1997; 385
2002; 43
1994; 34
1990; 292
1984b; 12
1992; 359
1996a; 37
1994; 35
1997; 16
2001; 12
1998; 54
1990; 297
1988
1997; 378
1990; 30
1995; 92
1966; 212
1997; 65
1995; 15
1999; 69
1927; 1
1996; 93
1996
1995; 1
1996; 16
1996; 98
2001; 20
1998; 131
1982; 89
1988; 4
2001; 7
1989; 288
2000; 424
1967; 5
1986; 26
1985; 233
1964
1991; 71
1963
1999; 155
2000; 342
1990; 9
1976; 15
1998; 101
1990; 155
1990; 5
1998; 9
e_1_2_6_51_1
e_1_2_6_74_1
Gerhardinger C (e_1_2_6_30_1) 1998; 152
Walls GL (e_1_2_6_75_1) 1963
e_1_2_6_76_1
e_1_2_6_70_1
e_1_2_6_72_1
Donahue ML (e_1_2_6_19_1) 1996
Woollard HH (e_1_2_6_82_1) 1927; 1
Lu M (e_1_2_6_44_1) 1999; 40
Gariano RF (e_1_2_6_29_1) 1996; 37
Gariano RF (e_1_2_6_27_1) 1996; 37
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
Curcio CA (e_1_2_6_13_1) 2001; 42
Curcio CA (e_1_2_6_12_1) 1996; 37
e_1_2_6_17_1
Karakousis PC (e_1_2_6_38_1) 2001; 7
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_57_1
e_1_2_6_43_1
Sandercoe T (e_1_2_6_64_1) 1998; 9
e_1_2_6_20_1
e_1_2_6_41_1
Kim I (e_1_2_6_39_1) 1999; 40
Stone J (e_1_2_6_73_1) 1996; 37
Yang X (e_1_2_6_83_1) 1996; 16
e_1_2_6_9_1
Gariano RF (e_1_2_6_26_1) 1994; 35
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
Rodieck RW (e_1_2_6_62_1) 1988
Perry VH (e_1_2_6_53_1) 1990; 155
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
Mann I (e_1_2_6_45_1) 1964
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
Wolin LR (e_1_2_6_81_1) 1970
e_1_2_6_33_1
Jin KL (e_1_2_6_37_1) 2000; 1483
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_77_1
Böcker‐Meffert S (e_1_2_6_5_1) 2002; 43
e_1_2_6_16_1
Hendrickson A (e_1_2_6_32_1) 1976; 15
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
Punglia RS (e_1_2_6_61_1) 1997; 46
e_1_2_6_23_1
Provis JM (e_1_2_6_60_1) 2000; 41
e_1_2_6_2_1
Hendrickson AE (e_1_2_6_34_1) 1988
e_1_2_6_67_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 31
  start-page: 369
  year: 1988
  end-page: 390
  article-title: Development of the retinofugal pathway in birds and mammals: evidence for a common ‘timetable’
  publication-title: Brain Behav Evol
– volume: 342
  start-page: 483
  year: 2000
  end-page: 492
  article-title: Age‐related macular degeneration
  publication-title: N Engl J Med
– volume: 371
  start-page: 70
  year: 1994
  end-page: 72
  article-title: M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses
  publication-title: Nature
– volume: 323
  start-page: 269
  year: 1992
  end-page: 287
  article-title: Spatial density and immunoreactivity of bipolar cells in the macaque monkey retina
  publication-title: J Comp Neurol
– volume: 41
  start-page: 2827
  year: 2000
  end-page: 2836
  article-title: Astrocytes and blood vessels define the foveal rim during primate retinal development
  publication-title: Invest Ophthalmol Vis Sci
– volume: 7
  start-page: 154
  year: 2001
  end-page: 163
  article-title: Localization of pigment epithelium derived factor (PEDF) in developing and adult human ocular tissues
  publication-title: Mol Vision
– start-page: 1
  year: 1970
  end-page: 27
– volume: 4
  start-page: 203
  year: 1988
  end-page: 278
– volume: 9
  start-page: 459
  year: 1990
  end-page: 478
  article-title: Development of retinal vasculature in the cat: processes and mechanisms
  publication-title: Curr Eye Res
– volume: 297
  start-page: 499
  year: 1990
  end-page: 508
  article-title: Photoreceptor mosaic: number and distribution of rods and cones in the rhesus monkey retina
  publication-title: J Comp Neurol
– volume: 155
  start-page: 421
  year: 1999
  end-page: 428
  article-title: Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation
  publication-title: Am J Pathol
– volume: 282
  start-page: 581
  year: 1989
  end-page: 594
  article-title: Topography of cones and rods in the tree shrew retina
  publication-title: J Comp Neurol
– volume: 37
  start-page: 1334
  year: 1996
  end-page: 1340
  article-title: Cloning and mRNA expression of vascular endothelial growth factor in ischemic retinas of
  publication-title: Invest Ophthalmol Vis Sci
– volume: 16
  start-page: 4604
  year: 1996
  end-page: 4613
  article-title: Activation of vascular endothelial growth factor gene transcription by hypoxia‐inducible factor 1
  publication-title: Mol Cell Biol
– volume: 233
  start-page: 429
  year: 1985
  end-page: 451
  article-title: Development of the human retina: patterns of cell distribution and redistribution in the ganglion cell layer
  publication-title: J Comp Neurol
– volume: 89
  start-page: 1518
  year: 1982
  end-page: 1525
  article-title: The evolution of retinal vascularization in mammals
  publication-title: Ophthalmology
– volume: 6
  start-page: 136
  year: 1992
  end-page: 144
  article-title: A morphological comparison of foveal development in man and monkey
  publication-title: Eye
– volume: 12
  start-page: 1125
  year: 1984a
  end-page: 1137
  article-title: Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey
  publication-title: Neuroscience
– volume: 93
  start-page: 582
  year: 1996
  end-page: 588
  article-title: Circuitry for colour coding in the primate's retina
  publication-title: Proc Natl Acad Sci USA
– volume: 378
  start-page: 117
  year: 1997
  end-page: 134
  article-title: Spatial and temporal expression of cone opsins during monkey retinal development
  publication-title: J Comp Neurol
– volume: 425
  start-page: 223
  year: 1997
  end-page: 237
  article-title: Structure‐function studies on PEDF. A noninhibitory serpin with neurotrophic activity
  publication-title: Adv Exp Med Biol
– volume: 42
  start-page: 265
  year: 2001
  end-page: 176
  article-title: Accumulation of cholesterol with age in human Bruch's membrane
  publication-title: Invest Ophthalmol Vis Sci
– start-page: 175
  year: 1996
  end-page: 184
  article-title: Retinal vascular endothelial growth factor (VEGF) mRNA expression is altered in relation to neovascularization in oxygen induced retinopathy
  publication-title: Curr Eye Res
– volume: 212
  start-page: 255
  year: 1966
  end-page: 256
  article-title: Why does the human retina possess a fovea?
  publication-title: Nature
– volume: 97
  start-page: 10242
  year: 2000a
  end-page: 10247
  article-title: Vascular endothelial growth factor: direct neuroprotective effect in ischemia
  publication-title: Proc Natl Acad Sci USA.
– volume: 12
  start-page: 1101
  year: 1984b
  end-page: 1123
  article-title: Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey
  publication-title: Neuroscience
– volume: 155
  start-page: 5
  year: 1990
  end-page: 14
  article-title: Pathways mediating resolution in the primate retina
  publication-title: Ciba Found Symp
– volume: 8
  start-page: 505
  year: 1992
  end-page: 514
  article-title: Evidence of photoreceptor migration during early foveal development: a quantitative analysis of human fetal retinae
  publication-title: Vis Neurosci
– volume: 359
  start-page: 843
  year: 1992
  end-page: 845
  article-title: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia‐initiated angiogenesis
  publication-title: Nature
– volume: 46
  start-page: 1619
  year: 1997
  end-page: 1626
  article-title: Regulation of vascular endothelial growth factor expression by insulin‐like growth factor I
  publication-title: Diabetes
– volume: 285
  start-page: 245
  year: 1999
  end-page: 248
  article-title: Pigment epithelium‐derived factor: a potent inhibitor of angiogenesis
  publication-title: Science
– volume: 40
  start-page: 481
  year: 1996b
  end-page: 490
  article-title: Normal and pathological mechanisms in retinal vascular development
  publication-title: Surv Ophthalmol
– volume: 37
  start-page: 2367
  year: 1996c
  end-page: 2375
  article-title: Development of astrocytes and their relationship to blood vessels in fetal monkey retina
  publication-title: Invest Ophthalmol Vis Sci
– volume: 92
  start-page: 905
  year: 1995
  end-page: 909
  article-title: Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization
  publication-title: Proc Natl Acad Sci USA
– volume: 37
  start-page: 1236
  year: 1996
  end-page: 1249
  article-title: Photoreceptor loss in age‐related macular degeneration
  publication-title: Invest Opthalmol Vis Sci
– volume: 20
  start-page: 799
  year: 2001
  end-page: 821
  article-title: Development of the primate retinal vasculature
  publication-title: Prog Retinal Eye Res
– volume: 101
  start-page: 1219
  year: 1998
  end-page: 1224
  article-title: Advanced glycation end products increase retinal vascular endothelial growth factor expression
  publication-title: J Clin Invest
– volume: 43
  start-page: 2021
  year: 2002
  end-page: 2026
  article-title: Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats
  publication-title: Invest Opthalmol Vis Sci
– volume: 616
  start-page: 344
  year: 1993
  end-page: 350
  article-title: Immunocytochemical identification of photoreceptor populations in the tree shrew retina
  publication-title: Brain Res
– volume: 92
  start-page: 768
  year: 1995
  end-page: 772
  article-title: Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis
  publication-title: Proc Natl Acad Sci USA
– volume: 37
  start-page: 93
  year: 1996a
  end-page: 103
  article-title: Immunohistochemical characterization of developing and mature primate retinal blood vessels
  publication-title: Invest Ophthalmol Vis Sci
– year: 1964
– volume: 35
  start-page: 3442
  year: 1994
  end-page: 3455
  article-title: Vascular development in primate retina: 1. Comparison of laminar plexus formation in monkey and human
  publication-title: Invest Ophthalmol Vis Sci
– volume: 188
  start-page: 253
  year: 2001
  end-page: 263
  article-title: Pigment epithelium‐derived factor inhibits retinal and choroidal neovascularization
  publication-title: J Cell Physiol
– volume: 54
  start-page: 549
  year: 1998
  end-page: 580
  article-title: Ontogeny of the primate fovea: a central issue in retinal development
  publication-title: Prog Neurobiol
– volume: 269
  start-page: 479
  year: 1988
  end-page: 505
  article-title: Anatomy of macaque fovea and spatial densities of neurons in foveal representation
  publication-title: J Comp Neurol
– volume: 32
  start-page: 375
  year: 1988
  end-page: 413
  article-title: Age‐related macular degeneration
  publication-title: Surv Ophthalmol
– volume: 8
  start-page: 223
  year: 1968
  end-page: 229
  article-title: The “area centralis” of the owl monkey
  publication-title: Vision Res
– volume: 292
  start-page: 497
  year: 1990
  end-page: 523
  article-title: Human photoreceptor topography
  publication-title: J Comp Neurol
– volume: 385
  start-page: 313
  year: 1997
  end-page: 318
  article-title: A tension‐based theory of morphogenesis and compact wiring in the central nervous system
  publication-title: Nature
– volume: 30
  start-page: 1897
  year: 1990
  end-page: 1911
  article-title: Retinal ganglion cell density and the cortical magnification factor in the primate
  publication-title: Vision Res
– volume: 1
  start-page: 1
  year: 1927
  end-page: 17
  article-title: The differentiation of the retina in primates
  publication-title: Proc Zool Soc Lond
– volume: 9
  start-page: 97
  year: 1998
  article-title: Cell division during development of the human retinal vasculature
  publication-title: Proc Aust Neurosci Soc
– volume: 71
  start-page: 447
  year: 1991
  end-page: 480
  article-title: Functional architecture of mammalian retina
  publication-title: Physiol Rev
– volume: 34
  start-page: 561
  year: 1994
  end-page: 579
  article-title: Immunohistochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina
  publication-title: Vision Res
– volume: 98
  start-page: 1667
  year: 1996
  end-page: 1675
  article-title: Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo
  publication-title: J Clin Invest
– volume: 15
  start-page: 746
  year: 1976
  end-page: 756
  article-title: The histogenesis of the fovea in the macaque monkey
  publication-title: Invest Ophthalmol
– volume: 5
  start-page: 43
  year: 1990
  end-page: 60
  article-title: A burst of differentiation in the outer posterior retina of the eleven‐week human fetus: an ultrastructural study
  publication-title: Vis Neurosci
– volume: 288
  start-page: 165
  year: 1989
  end-page: 183
  article-title: Photoreceptor topography of the retina in the adult pigtail macaque ( )
  publication-title: J Comp Neurol
– volume: 1
  start-page: 1024
  year: 1995
  end-page: 1028
  article-title: Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity
  publication-title: Nat Med
– volume: 5
  start-page: 92
  year: 1967
  end-page: 147
  article-title: Über die Zentralisation der Retina bei Primaten
  publication-title: Folia Primatol
– volume: 40
  start-page: 2115
  year: 1999
  end-page: 2121
  article-title: Constitutive expression of VEGF, VEGFR‐1, and VEGFR‐2 in normal eyes
  publication-title: Invest Ophthalmol Vis Sci
– volume: 9
  start-page: 603
  year: 1992
  end-page: 616
  article-title: Morphogenesis of retinal ganglion cells during formation of the fovea in the macaque
  publication-title: Vis Neurosci
– volume: 16
  start-page: 6089
  year: 1996
  end-page: 6099
  article-title: Flk‐1, a receptor for vascular endothelial growth factor (VEGF) is expressed by retinal progenitor cells
  publication-title: J Neurosci
– volume: 403
  start-page: 502
  year: 1999
  end-page: 516
  article-title: Distribution and development of short‐wavelength cones differ between monkey and human fovea
  publication-title: J Comp Neurol
– volume: 12
  start-page: 4103
  year: 2001
  end-page: 4108
  article-title: Hypoxia: modulation of endothelial cell proliferation by soluble factors released by retinal cells
  publication-title: Neuroreport
– volume: 18
  start-page: 737
  year: 1999
  end-page: 763
  article-title: Primate retina: cell types, circuits and color opponency
  publication-title: Prog Retinal Eye Res
– volume: 131
  start-page: 207
  year: 1998
  end-page: 214
  article-title: Hypoxia‐inducible factor‐1 and the molecular physiology of oxygen homeostasis
  publication-title: J Lab Clin Med
– year: 1963
– volume: 91
  start-page: 603
  year: 1984
  end-page: 612
  article-title: The morphological development of the human fovea
  publication-title: Ophthalmology
– volume: 424
  start-page: 718
  year: 2000
  end-page: 730
  article-title: Nocturnal tarsier retina has both short and long/medium‐wavelength cones in an unusual topography
  publication-title: J Comp Neurol
– start-page: 165
  year: 1988
  end-page: 178
– volume: 16
  start-page: 157
  year: 1997
  end-page: 181
  article-title: Mechanisms of retinal angiogenesis
  publication-title: Prog Retinal Eye Res
– volume: 69
  start-page: 511
  year: 1999
  end-page: 523
  article-title: Astrocyte proliferation during development of the human retinal vasculature
  publication-title: Exp Eye Res
– volume: 1483
  start-page: 197
  year: 2000b
  end-page: 203
  article-title: Vascular endothelial growth factor rescues HN33 neural cells from death induced by serum withdrawal
  publication-title: J Mol Neurosci
– volume: 37
  start-page: 290
  year: 1996
  end-page: 299
  article-title: Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity
  publication-title: Investigative Ophthalmol Vis Sci
– volume: 20
  start-page: 385
  year: 2001
  end-page: 414
  article-title: Immunological and aetiological aspects of macular degeneration
  publication-title: Prog Retinal Eye Res
– volume: 56
  start-page: 276
  year: 2000
  end-page: 286
  article-title: Conservation of absolute foveal area in new world monkeys
  publication-title: Brain Behav Evol
– volume: 40
  start-page: 3281
  year: 1999
  end-page: 3286
  article-title: Insulin‐induced vascular endothelial growth factor expression in retina
  publication-title: Invest Ophthalmol Vis Sci
– volume: 15
  start-page: 4738
  year: 1995
  end-page: 4747
  article-title: Development of retinal vasculature is mediated by hypoxia‐induced vascular endothelial growth factor (VEGF) expression by neuroglia
  publication-title: J Neurosci
– volume: 65
  start-page: 555
  year: 1997
  end-page: 568
  article-title: Development of the human retinal vasculature: cellular relations and VEGF expression
  publication-title: Exp Eye Res
– volume: 152
  start-page: 1453
  year: 1998
  end-page: 1462
  article-title: Expression of vascular endothelial growth factor in the human retina and in nonproliferative diabetic retinopathy
  publication-title: Am J Pathol
– volume: 26
  start-page: 847
  year: 1986
  end-page: 855
  article-title: A qualitative and quantitative analysis of the human fovea during development
  publication-title: Vision Res
– start-page: 1
  volume-title: The primate brain
  year: 1970
  ident: e_1_2_6_81_1
  contributor:
    fullname: Wolin LR
– ident: e_1_2_6_57_1
  doi: 10.1002/cne.902330403
– ident: e_1_2_6_70_1
  doi: 10.1073/pnas.92.3.768
– ident: e_1_2_6_78_1
  doi: 10.1016/0042-6989(94)90013-2
– ident: e_1_2_6_18_1
  doi: 10.1017/S0952523800005605
– ident: e_1_2_6_72_1
  doi: 10.1523/JNEUROSCI.15-07-04738.1995
– ident: e_1_2_6_36_1
  doi: 10.1073/pnas.97.18.10242
– ident: e_1_2_6_77_1
  doi: 10.1016/0042-6989(90)90166-I
– ident: e_1_2_6_41_1
  doi: 10.1172/JCI118962
– ident: e_1_2_6_51_1
  doi: 10.1016/0306-4522(84)90007-1
– ident: e_1_2_6_66_1
  doi: 10.1002/cne.902690403
– ident: e_1_2_6_59_1
  doi: 10.1016/S0301-0082(97)00079-8
– ident: e_1_2_6_4_1
  doi: 10.1016/S0002-9440(10)65138-3
– ident: e_1_2_6_20_1
  doi: 10.1159/000116602
– ident: e_1_2_6_48_1
  doi: 10.1002/cne.902820409
– volume: 7
  start-page: 154
  year: 2001
  ident: e_1_2_6_38_1
  article-title: Localization of pigment epithelium derived factor (PEDF) in developing and adult human ocular tissues
  publication-title: Mol Vision
  contributor:
    fullname: Karakousis PC
– volume: 9
  start-page: 97
  year: 1998
  ident: e_1_2_6_64_1
  article-title: Cell division during development of the human retinal vasculature
  publication-title: Proc Aust Neurosci Soc
  contributor:
    fullname: Sandercoe T
– volume: 1
  start-page: 1
  year: 1927
  ident: e_1_2_6_82_1
  article-title: The differentiation of the retina in primates
  publication-title: Proc Zool Soc Lond
  doi: 10.1111/j.1096-3642.1927.tb02243.x
  contributor:
    fullname: Woollard HH
– ident: e_1_2_6_65_1
  doi: 10.1006/exer.1999.0730
– volume: 15
  start-page: 746
  year: 1976
  ident: e_1_2_6_32_1
  article-title: The histogenesis of the fovea in the macaque monkey
  publication-title: Invest Ophthalmol
  contributor:
    fullname: Hendrickson A
– ident: e_1_2_6_6_1
  doi: 10.1016/0039-6257(88)90052-5
– volume: 37
  start-page: 2367
  year: 1996
  ident: e_1_2_6_29_1
  article-title: Development of astrocytes and their relationship to blood vessels in fetal monkey retina
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Gariano RF
– ident: e_1_2_6_69_1
  doi: 10.1038/359843a0
– ident: e_1_2_6_22_1
  doi: 10.1016/0042-6989(68)90010-2
– ident: e_1_2_6_76_1
  doi: 10.1152/physrev.1991.71.2.447
– volume: 40
  start-page: 2115
  year: 1999
  ident: e_1_2_6_39_1
  article-title: Constitutive expression of VEGF, VEGFR‐1, and VEGFR‐2 in normal eyes
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Kim I
– ident: e_1_2_6_9_1
  doi: 10.1038/371070a0
– ident: e_1_2_6_10_1
  doi: 10.3109/02713689008999612
– ident: e_1_2_6_52_1
  doi: 10.1016/0306-4522(84)90006-X
– volume: 43
  start-page: 2021
  year: 2002
  ident: e_1_2_6_5_1
  article-title: Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats
  publication-title: Invest Opthalmol Vis Sci
  contributor:
    fullname: Böcker‐Meffert S
– ident: e_1_2_6_17_1
  doi: 10.1126/science.285.5425.245
– ident: e_1_2_6_14_1
  doi: 10.1002/cne.902920402
– ident: e_1_2_6_67_1
  doi: 10.1016/S0022-2143(98)90091-9
– ident: e_1_2_6_7_1
  doi: 10.1002/(SICI)1096-9861(19990125)403:4<502::AID-CNE6>3.0.CO;2-N
– ident: e_1_2_6_55_1
  doi: 10.1073/pnas.92.3.905
– ident: e_1_2_6_16_1
  doi: 10.1016/S1350-9462(98)00013-5
– ident: e_1_2_6_54_1
  doi: 10.1016/0006-8993(93)90230-K
– volume: 46
  start-page: 1619
  year: 1997
  ident: e_1_2_6_61_1
  article-title: Regulation of vascular endothelial growth factor expression by insulin‐like growth factor I
  publication-title: Diabetes
  doi: 10.2337/diacare.46.10.1619
  contributor:
    fullname: Punglia RS
– ident: e_1_2_6_68_1
  doi: 10.1016/S0161-6420(81)34900-8
– ident: e_1_2_6_3_1
  doi: 10.1007/978-1-4615-5391-5_21
– ident: e_1_2_6_50_1
  doi: 10.1016/S1350-9462(00)00025-2
– ident: e_1_2_6_2_1
  doi: 10.1038/nm1095-1024
– ident: e_1_2_6_35_1
  doi: 10.1016/S0161-6420(84)34247-6
– ident: e_1_2_6_79_1
  doi: 10.1038/212255a0
– ident: e_1_2_6_15_1
  doi: 10.1073/pnas.93.2.582
– ident: e_1_2_6_31_1
  doi: 10.1038/eye.1992.29
– volume-title: The development of the human eye
  year: 1964
  ident: e_1_2_6_45_1
  contributor:
    fullname: Mann I
– ident: e_1_2_6_23_1
  doi: 10.1056/NEJM200002173420707
– volume: 152
  start-page: 1453
  year: 1998
  ident: e_1_2_6_30_1
  article-title: Expression of vascular endothelial growth factor in the human retina and in nonproliferative diabetic retinopathy
  publication-title: Am J Pathol
  contributor:
    fullname: Gerhardinger C
– volume-title: The vertebrate eye and its adaptive radiation
  year: 1963
  ident: e_1_2_6_75_1
  contributor:
    fullname: Walls GL
– volume: 42
  start-page: 265
  year: 2001
  ident: e_1_2_6_13_1
  article-title: Accumulation of cholesterol with age in human Bruch's membrane
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Curcio CA
– ident: e_1_2_6_56_1
  doi: 10.1016/S1350-9462(01)00012-X
– volume: 35
  start-page: 3442
  year: 1994
  ident: e_1_2_6_26_1
  article-title: Vascular development in primate retina: 1. Comparison of laminar plexus formation in monkey and human
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Gariano RF
– volume: 37
  start-page: 93
  year: 1996
  ident: e_1_2_6_27_1
  article-title: Immunohistochemical characterization of developing and mature primate retinal blood vessels
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Gariano RF
– start-page: 165
  volume-title: Handbook of growth and developmental biology
  year: 1988
  ident: e_1_2_6_34_1
  contributor:
    fullname: Hendrickson AE
– volume: 155
  start-page: 5
  year: 1990
  ident: e_1_2_6_53_1
  article-title: Pathways mediating resolution in the primate retina
  publication-title: Ciba Found Symp
  contributor:
    fullname: Perry VH
– ident: e_1_2_6_25_1
  doi: 10.1159/000047211
– ident: e_1_2_6_43_1
  doi: 10.1172/JCI1277
– volume: 1483
  start-page: 197
  year: 2000
  ident: e_1_2_6_37_1
  article-title: Vascular endothelial growth factor rescues HN33 neural cells from death induced by serum withdrawal
  publication-title: J Mol Neurosci
  doi: 10.1385/JMN:14:3:197
  contributor:
    fullname: Jin KL
– ident: e_1_2_6_47_1
  doi: 10.1002/jcp.1114
– volume: 41
  start-page: 2827
  year: 2000
  ident: e_1_2_6_60_1
  article-title: Astrocytes and blood vessels define the foveal rim during primate retinal development
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Provis JM
– volume: 40
  start-page: 3281
  year: 1999
  ident: e_1_2_6_44_1
  article-title: Insulin‐induced vascular endothelial growth factor expression in retina
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Lu M
– volume: 37
  start-page: 1236
  year: 1996
  ident: e_1_2_6_12_1
  article-title: Photoreceptor loss in age‐related macular degeneration
  publication-title: Invest Opthalmol Vis Sci
  contributor:
    fullname: Curcio CA
– ident: e_1_2_6_24_1
  doi: 10.1128/MCB.16.9.4604
– ident: e_1_2_6_33_1
  doi: 10.1002/1096-9861(20000904)424:4<718::AID-CNE12>3.0.CO;2-Z
– ident: e_1_2_6_84_1
  doi: 10.1016/0042-6989(86)90143-4
– ident: e_1_2_6_28_1
  doi: 10.1016/S0039-6257(96)82014-5
– ident: e_1_2_6_74_1
  doi: 10.1038/385313a0
– ident: e_1_2_6_21_1
  doi: 10.1097/00001756-200112210-00048
– ident: e_1_2_6_42_1
  doi: 10.1017/S0952523800000067
– ident: e_1_2_6_71_1
  doi: 10.1016/S1350-9462(96)00019-5
– volume: 37
  start-page: 290
  year: 1996
  ident: e_1_2_6_73_1
  article-title: Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity
  publication-title: Investigative Ophthalmol Vis Sci
  contributor:
    fullname: Stone J
– ident: e_1_2_6_11_1
  doi: 10.1016/S0161-6420(82)34608-4
– ident: e_1_2_6_46_1
  doi: 10.1002/cne.903230210
– ident: e_1_2_6_8_1
  doi: 10.1002/(SICI)1096-9861(19970203)378:1<117::AID-CNE7>3.0.CO;2-7
– ident: e_1_2_6_40_1
  doi: 10.1017/S095252380000184X
– start-page: 203
  volume-title: Comparative primate biology
  year: 1988
  ident: e_1_2_6_62_1
  contributor:
    fullname: Rodieck RW
– ident: e_1_2_6_63_1
  doi: 10.1159/000161941
– volume: 16
  start-page: 6089
  year: 1996
  ident: e_1_2_6_83_1
  article-title: Flk‐1, a receptor for vascular endothelial growth factor (VEGF) is expressed by retinal progenitor cells
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-19-06089.1996
  contributor:
    fullname: Yang X
– ident: e_1_2_6_49_1
  doi: 10.1002/cne.902880113
– start-page: 175
  year: 1996
  ident: e_1_2_6_19_1
  article-title: Retinal vascular endothelial growth factor (VEGF) mRNA expression is altered in relation to neovascularization in oxygen induced retinopathy
  publication-title: Curr Eye Res
  doi: 10.3109/02713689608997411
  contributor:
    fullname: Donahue ML
– ident: e_1_2_6_58_1
  doi: 10.1006/exer.1997.0365
– ident: e_1_2_6_80_1
  doi: 10.1002/cne.902970404
SSID ssj0009938
Score 2.0081913
Snippet In macaque monkeys the foveal depression forms between fetal day (Fd) 105 and birth (Fd 172 of gestation). Before this, the incipient fovea is identified by a...
Abstract In macaque monkeys the foveal depression forms between fetal day (Fd) 105 and birth (Fd 172 of gestation). Before this, the incipient fovea is...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 42
SubjectTerms Adaptation, Physiological - physiology
Amacrine Cells - cytology
Amacrine Cells - metabolism
Animals
astrocytes
blood vessels
endothelial cells
Endothelial Growth Factors - genetics
fovea
Fovea Centralis - blood supply
Fovea Centralis - embryology
Fovea Centralis - growth & development
Gene Expression Regulation, Developmental - genetics
Hypoxia, Brain - metabolism
Immunohistochemistry
Intercellular Signaling Peptides and Proteins - genetics
Lymphokines - genetics
Macaca
Macaca - embryology
Macaca - growth & development
Macaca - metabolism
Macaca fascicularis - embryology
Macaca fascicularis - growth & development
Macaca fascicularis - metabolism
Macaca nemestrina - embryology
Macaca nemestrina - growth & development
Macaca nemestrina - metabolism
Microcirculation - embryology
Microcirculation - growth & development
Microcirculation - metabolism
Müller cells
Neovascularization, Physiologic - physiology
Retinal Artery - embryology
Retinal Artery - growth & development
Retinal Artery - metabolism
Retinal Ganglion Cells - cytology
Retinal Ganglion Cells - metabolism
RNA, Messenger - metabolism
Vascular Endothelial Growth Factor A
Vascular Endothelial Growth Factors
Title VEGF expression by ganglion cells in central retina before formation of the foveal depression in monkey retina: Evidence of developmental hypoxia
URI https://api.istex.fr/ark:/67375/WNG-75JDNP41-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.10705
https://www.ncbi.nlm.nih.gov/pubmed/12761823
https://search.proquest.com/docview/18932393
https://search.proquest.com/docview/73304789
Volume 462
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB9EKfjST1uvH3YpRXyJJmmS3dUnud4pPhxF_EIKy-5mY0VIxLuTu_4X_sfObC45LBXEt0nYgc3szO4vw8xvAb7zPEIQmyWB0EUeJA5DUXItg8zJ0GTCZbrwVb6DbP84OThLzxZgp-mFqfkh2oQbRYbfrynAtRluzUlDbelQ5J6_lIj0CBAdzqmj8Nytd2EqQZAZb1iFwnir1XxwFi2RWSf_A5oPcas_ePqv4Hcz5bre5GpzPDKb9u8_bI7P_KbX8HIGSNlu7UFvYMGVb-HFeeXT7e_g7qS312duMquXLZmZsgtNvb8oU9Z_yC5J8DliRi2RpWbGIRR2rG2MZFXBEGjii1vEpaytvi1JF-MAN5KZ6jZrrjklnXxe0YRqf6bX1eRSr8Bxv3fU3Q9m1zgEluAi_upqK3IEMqnLQ40ILi4Sm1qbFnRhpI2NFdI6aRLr6c2iXOJzHkfOxTyURvx4D4tlVbpVYKERwvICMU5UJDqSiLlFjIsrMpGHVrgOfGsWVF3XbB2q5mWOFdpWedt2YN0vdTtC31xReRtP1elgT_H04OfgVxKp8w58bXxBYdCRTXXpqvFQRYjyiDvu8RGc8kRcyA58qJ1oPp-YZ_hTh7ob3hUen6jqDnpe-Pj0oZ9g2ZcbEvVn8hkWRzdj9wVh08is-fi4B3SyE4o
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tS9xAEB5EkfZL31-urXURKf0STWKS3S39Inrn-dJQirYilGV3s7EiJKJ35ey_6D_uzOaSw6JQ-m0SdmAzO7P7ZJh5FmCVFxGC2CwJhC6LIHEYipJrGWROhiYTLtOlr_LNs-FRsnecHs_Bx7YXpuGH6BJuFBl-v6YAp4T0-ow11FYORU4EpgsY7imF5faXGXkUnrzNPkxFCDLjLa9QGK93qjdOowUy7OQ2qHkTufqjZ_AQvreTbipOztfGI7Nmf_3F5_i_X_UIHkwxKdtsnOgxzLnqCSye1D7j_hR-f-3vDJibTEtmK2au2amm9l-UKfF_xc5I8GliRl2RlWbGIRp2rOuNZHXJEGvii58ITVlXgFuRLoYC7iVT1Q-svemUdIpZUROq_bi-qCdn-hkcDfqHW8NgepNDYAkx4t-utqJALJO6ItQI4uIysam1aUl3RtrYWCGtkyaxnuEsKiQ-F3HkXMxDacTGc5iv6sq9BBYaISwvEeZEZaIjibBbxLi6IhNFaIXrwUq7ouqiIexQDTVzrNC2ytu2B-_8Wncj9OU5VbjxVH3LdxRP97bzz0mkTnqw3DqDwrgjm-rK1eMrFSHQI_q4u0dwShVxIXvwovGi2XxinuF_Heq-975w90TVVt73wqt_H7oM94aHnw7UwW6-_xru--pDYgJN3sD86HLslhBFjcxbHyx_AKZhF6o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEA6lRfGL7y_nW4OI-GXb3TS7SfST9O5aqyxFrJZSCHlbLYXdo72Tq__Cf-xM9naPigXx2-yRgdxkJnkyzDwh5KXwGYDYgifSVD7hAUJRCaOSIqjUFjIUpopVvmWxe8D3DvPDFfK264Vp-SH6hBtGRtyvMcAnvtpckoa6OoAokL90jRdbDG9ew09L7ig4eNttGGsQVCE6WqGUbfaqlw6jNbTr_G9I8zJwjSfP-BY57ubcFpycbsymdsP9_IPO8T__1G1yc4FI6bvWhe6QlVDfJdeOmphvv0d-fRntjGmYLwpma2ov6DeDzb8gY9r_nJ6gEJPEFHsia0NtACwcaN8ZSZuKAtKEH34AMKV9-W2NuhAIsJMsVN_Q7p1T1PHLkiZQ-34xaeYn5j45GI8-b-8mi3ccEod4Ee66xkkPSCYPPjUA4VjFXe5cXuGLkY5ZJ5ULynIX-c0yr-DbsywEJlJl5dYDslo3dXhEaGqldKICkJNV3GQKQLdksLiykD51MgzIi25B9aSl69AtMTPTYFsdbTsgr-JS9yPM2SnWt4lcfy13tMj3huU-z_TRgKx3vqAh6tCmpg7N7FxnAPOQPO7qEQITRUKqAXnYOtFyPkwUcKsD3dfRFa6eqN4uR1F4_O9D18n1_eFYf3xffnhCbsTSQ6QB5U_J6vRsFp4BhJra5zFUfgNTYxZZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VEGF+expression+by+ganglion+cells+in+central+retina+before+formation+of+the+foveal+depression+in+monkey+retina%3A+Evidence+of+developmental+hypoxia&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Sandercoe%2C+Trent+M.&rft.au=Geller%2C+Scott+F.&rft.au=Hendrickson%2C+Anita+E.&rft.au=Stone%2C+Jonathan&rft.date=2003-07-14&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0021-9967&rft.eissn=1096-9861&rft.volume=462&rft.issue=1&rft.spage=42&rft.epage=54&rft_id=info:doi/10.1002%2Fcne.10705&rft.externalDBID=10.1002%252Fcne.10705&rft.externalDocID=CNE10705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon