Reversing cold tumors to hot: An immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photo-immunotherapy
Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. H...
Saved in:
Published in | Bioactive materials Vol. 6; no. 2; pp. 312 - 325 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.02.2021
KeAi Publishing KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH2) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer.
[Display omitted]
•Tumor microenvironment and light dual-response nanoplatform realize multi-modal imaging-guided cancer photo-immunotherapy.•When light triggers photothermal therapy, the immune system is activated to play a long-acting anti-tumor effect.•Nanoscale MOF could accumulate at the tumor site via the EPR effect and tumor-enhanced micropinocytosis. |
---|---|
AbstractList | Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH
) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer. Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH2) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer. [Display omitted] •Tumor microenvironment and light dual-response nanoplatform realize multi-modal imaging-guided cancer photo-immunotherapy.•When light triggers photothermal therapy, the immune system is activated to play a long-acting anti-tumor effect.•Nanoscale MOF could accumulate at the tumor site via the EPR effect and tumor-enhanced micropinocytosis. Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH 2 ) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer. Image 1 • Tumor microenvironment and light dual-response nanoplatform realize multi-modal imaging-guided cancer photo-immunotherapy. • When light triggers photothermal therapy, the immune system is activated to play a long-acting anti-tumor effect. • Nanoscale MOF could accumulate at the tumor site via the EPR effect and tumor-enhanced micropinocytosis. Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH2) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer. Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH2) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer.Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH2) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer. |
Author | Liu, Hongxing Pan, Dongming Lin, Jingyan Fan, Zhijin Zhang, Jian Zhang, Zhenzhen Fu, Yu Xue, Yaohua Xia, Zhaohua Qiao, Kun Liao, Yuhui |
Author_xml | – sequence: 1 givenname: Zhijin orcidid: 0000-0003-0018-4949 surname: Fan fullname: Fan, Zhijin organization: Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China – sequence: 2 givenname: Hongxing surname: Liu fullname: Liu, Hongxing organization: Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China – sequence: 3 givenname: Yaohua surname: Xue fullname: Xue, Yaohua organization: Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China – sequence: 4 givenname: Jingyan surname: Lin fullname: Lin, Jingyan organization: Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China – sequence: 5 givenname: Yu surname: Fu fullname: Fu, Yu organization: Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China – sequence: 6 givenname: Zhaohua surname: Xia fullname: Xia, Zhaohua organization: Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China – sequence: 7 givenname: Dongming orcidid: 0000-0002-4429-3752 surname: Pan fullname: Pan, Dongming organization: Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China – sequence: 8 givenname: Jian surname: Zhang fullname: Zhang, Jian email: jianzhang@gzhmu.edu.cn organization: Department of Biomedical Engineering, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China – sequence: 9 givenname: Kun surname: Qiao fullname: Qiao, Kun email: szqiaokun@163.com organization: Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China – sequence: 10 givenname: Zhenzhen orcidid: 0000-0002-9885-7453 surname: Zhang fullname: Zhang, Zhenzhen organization: Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China – sequence: 11 givenname: Yuhui orcidid: 0000-0003-4702-9516 surname: Liao fullname: Liao, Yuhui email: liaoyh8@mail.sysu.edu.cn organization: Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32954050$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt1u1DAQhSNUREvpK0AuuckyTuz8IIG0qvipVAkJgcSdNXHGWy-JvdjOouU5eGC8bFm13MBNHNnnfGfsmcfZiXWWsuwZgwUDVr9YL3rjUMUJ46KEEhbQLgDEg-ys5KIsWNd9Obnzf5pdhLAGANakDzSPstOq7AQHAWfZz4-0JR-MXeXKjUMe58n5kEeX37j4Ml_a3EzTbB0O63mLNhZ6tioaZ3E0P2jIJ4o4Fs6v0BqVa48TfXf-a66dz6d5jGZyA44JgquUUaxmMyRX2FnyKxNi8mxSkCsOKfGGPG52T7KHGsdAF7frefb57ZtPl--L6w_vri6X14XiohYFG8q6AQItuqpjwIHaphV66OqyId4SI6U6pduSs7LWjGlQgAqbqqtbNghRnWdXB-7gcC03PlXpd9Khkb830q0k-lTjSFJr0SOjpkXFOQPqAaueN70esGZImFivD6zN3E80KLLR43gPev_Emhu5clvZ8EaIEhLg-S3Au28zhSgnExSNI1pyc5Al57yGSkCXpE_vZh1D_rQ1CZqDQHkXgid9lDCQ-xmSa3mcIbmfIQmtTDOUnK_-cioTcd_wVLQZ_8O_PPgp9W1ryMugDFlFg_GkYnpY80_GL5t27f4 |
CitedBy_id | crossref_primary_10_1002_mba2_25 crossref_primary_10_1039_D1BM01409A crossref_primary_10_3389_fbioe_2024_1397804 crossref_primary_10_1021_acsnano_4c05065 crossref_primary_10_1039_D3RA04110G crossref_primary_10_3389_fbioe_2022_991949 crossref_primary_10_1186_s12951_023_01885_4 crossref_primary_10_1002_slct_202302655 crossref_primary_10_1021_acsnano_4c00844 crossref_primary_10_1002_adhm_202401743 crossref_primary_10_1039_D2BM00579D crossref_primary_10_1007_s40005_024_00691_w crossref_primary_10_1002_VIW_20200117 crossref_primary_10_3390_polym15061490 crossref_primary_10_1002_anse_202300052 crossref_primary_10_1016_j_cclet_2022_02_052 crossref_primary_10_1016_j_bioactmat_2021_05_004 crossref_primary_10_1039_D2DT01039A crossref_primary_10_1016_j_ccr_2023_215434 crossref_primary_10_1021_acsphotonics_2c00440 crossref_primary_10_1016_j_colsurfb_2021_111914 crossref_primary_10_1186_s12951_021_01148_0 crossref_primary_10_1016_j_ntm_2024_100032 crossref_primary_10_1039_D2NH00070A crossref_primary_10_1186_s12951_022_01375_z crossref_primary_10_3389_fbioe_2023_1156079 crossref_primary_10_1002_sstr_202400033 crossref_primary_10_3389_fphar_2021_685465 crossref_primary_10_1016_j_addr_2021_114036 crossref_primary_10_1002_smll_202411879 crossref_primary_10_1016_j_bioactmat_2021_07_025 crossref_primary_10_1002_advs_202301764 crossref_primary_10_1002_mba2_96 crossref_primary_10_1039_D1BM00660F crossref_primary_10_2147_IJN_S318678 crossref_primary_10_1002_advs_202409833 crossref_primary_10_1002_advs_202003504 crossref_primary_10_1002_advs_202410427 crossref_primary_10_1186_s12951_021_01094_x crossref_primary_10_1002_advs_202204932 crossref_primary_10_1016_j_ccr_2020_213662 crossref_primary_10_1063_5_0027606 crossref_primary_10_1016_j_bioactmat_2021_01_004 crossref_primary_10_1016_j_jconrel_2022_05_003 crossref_primary_10_3389_fbioe_2021_746815 crossref_primary_10_1016_j_ccr_2024_216006 crossref_primary_10_1080_21645515_2020_1852872 crossref_primary_10_1021_acsbiomaterials_0c01644 crossref_primary_10_1002_smtd_202201403 crossref_primary_10_1002_adfm_202401272 crossref_primary_10_1166_jbn_2022_3250 crossref_primary_10_1016_j_mattod_2022_05_024 crossref_primary_10_1039_D1DT03898B crossref_primary_10_1021_acs_bioconjchem_2c00593 crossref_primary_10_1016_j_ajps_2022_02_004 crossref_primary_10_1016_j_cej_2021_131451 crossref_primary_10_1016_j_ajps_2022_04_005 crossref_primary_10_1016_j_ajps_2023_100784 crossref_primary_10_1002_tcr_202300018 crossref_primary_10_1515_revneuro_2024_0097 crossref_primary_10_3389_fimmu_2022_1057850 crossref_primary_10_2147_IJN_S461843 crossref_primary_10_2174_0113862073296206240416060154 crossref_primary_10_2147_IJN_S301664 crossref_primary_10_1016_j_bioactmat_2021_08_010 crossref_primary_10_3389_fimmu_2022_1050421 crossref_primary_10_1002_smll_202306402 crossref_primary_10_3389_fbioe_2022_1031986 crossref_primary_10_1002_adtp_202200218 crossref_primary_10_1021_acsami_1c14998 crossref_primary_10_1007_s10495_023_01851_3 crossref_primary_10_1186_s12951_022_01455_0 crossref_primary_10_1007_s12598_024_02779_6 crossref_primary_10_1016_j_ccr_2022_214486 crossref_primary_10_1002_smll_202404350 crossref_primary_10_1039_D1BM00568E crossref_primary_10_1002_adfm_202315551 crossref_primary_10_1007_s40843_022_2140_7 crossref_primary_10_3390_molecules28031360 crossref_primary_10_1021_acs_analchem_2c03658 crossref_primary_10_1016_j_bioactmat_2023_04_010 crossref_primary_10_1186_s12951_022_01388_8 crossref_primary_10_1002_adhm_202403108 crossref_primary_10_1016_j_addr_2022_114320 crossref_primary_10_1039_D1BM00721A crossref_primary_10_1002_smtd_202201313 crossref_primary_10_3389_fimmu_2020_612072 crossref_primary_10_1007_s12274_023_5844_2 crossref_primary_10_3748_wjg_v27_i10_939 crossref_primary_10_7717_peerj_11968 crossref_primary_10_3390_curroncol30050362 crossref_primary_10_1016_j_ajps_2022_05_001 crossref_primary_10_1016_j_jcis_2023_05_031 crossref_primary_10_1021_acs_analchem_1c02602 crossref_primary_10_1016_j_jconrel_2022_05_062 crossref_primary_10_3390_biomedicines11102769 crossref_primary_10_1021_acsnano_3c05936 crossref_primary_10_1002_anbr_202100014 crossref_primary_10_1186_s12951_022_01305_z crossref_primary_10_1515_nanoph_2021_0209 crossref_primary_10_1016_j_mtnano_2022_100253 crossref_primary_10_1155_2022_3235238 crossref_primary_10_1039_D2TB01787C crossref_primary_10_1021_acsnano_2c04983 crossref_primary_10_1039_D2RA02290G crossref_primary_10_1016_j_apsb_2022_05_008 crossref_primary_10_18632_aging_203671 |
Cites_doi | 10.1038/nature12138 10.1021/ic800538r 10.1038/nature10673 10.1002/anie.201911429 10.1021/acs.nanolett.9b05265 10.3389/fimmu.2017.00533 10.1021/acsami.8b05876 10.1002/adfm.201905758 10.1021/acsnano.9b05974 10.1039/C7CC09377B 10.1016/j.isci.2020.101341 10.1038/nrclinonc.2018.29 10.1039/C6CC09280B 10.1038/d41586-017-08699-z 10.3322/caac.21349 10.1021/jacs.7b07392 10.1021/acsnano.9b01665 10.1021/acsami.8b01680 10.1002/smll.201502857 10.1038/d41586-018-07366-1 10.1016/j.cell.2018.10.028 10.1002/smll.201900262 10.1021/acsami.9b12816 10.1016/j.coi.2015.06.013 10.1021/acsnano.9b00300 10.1002/advs.201900069 10.1002/adma.201707634 10.1021/acs.nanolett.8b04618 10.1038/s41467-019-11269-8 10.1002/adma.201904997 10.1021/acsnano.9b05425 10.1016/j.biomaterials.2015.10.028 10.1126/science.aaf1490 10.1038/s41578-019-0108-1 10.1002/adma.201901893 10.1038/s41571-018-0134-8 10.1016/j.biocel.2016.06.010 10.1021/acsnano.8b02446 10.1021/jacs.0c05039 10.1016/j.jacc.2014.04.053 10.1021/acs.nanolett.6b01994 10.1038/nrc.2016.36 10.1021/jacs.9b11046 10.1021/acsami.9b11238 10.1002/anie.202002145 10.1016/j.ccr.2019.07.006 10.1002/adfm.201701388 10.1021/ja906198y 10.1016/j.biomaterials.2019.119545 10.1016/j.jconrel.2020.02.025 10.1039/C9AN00777F 10.1002/smll.201901156 10.1016/j.cell.2016.11.022 10.1002/smll.201903761 10.1002/smll.201903628 10.3322/caac.21492 10.1021/acs.chemrev.9b00739 10.1016/j.bioactmat.2020.04.011 10.1016/j.trecan.2020.01.011 |
ContentType | Journal Article |
Copyright | 2020 [The Author/The Authors] 2020 [The Author/The Authors]. 2020 [The Author/The Authors] 2020 |
Copyright_xml | – notice: 2020 [The Author/The Authors] – notice: 2020 [The Author/The Authors]. – notice: 2020 [The Author/The Authors] 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.bioactmat.2020.08.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-199X |
EndPage | 325 |
ExternalDocumentID | oai_doaj_org_article_ff5ba1e78ac4410eb0a3b47bfda61aea PMC7475520 32954050 10_1016_j_bioactmat_2020_08_005 S2452199X20301511 |
Genre | Journal Article |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAYWO AAYXX ABJCF ACVFH ADCNI ADMLS ADVLN AEUPX AFKRA AFPUW AIGII AKBMS AKRWK AKYEP BBNVY BENPR BGLVJ BHPHI CCPQU CITATION HCIFZ KB. M7P M~E PDBOC PHGZM PHGZT PIMPY NPM 7X8 5PM |
ID | FETCH-LOGICAL-c4565-1d2670e0f59391040e8785fd9627e48e1ecc9cf824126f11f0c0aca739681d553 |
IEDL.DBID | DOA |
ISSN | 2452-199X |
IngestDate | Wed Aug 27 01:30:36 EDT 2025 Thu Aug 21 18:21:37 EDT 2025 Fri Jul 11 08:42:33 EDT 2025 Thu Apr 03 07:05:55 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Tue Jul 01 02:11:24 EDT 2025 Wed May 17 00:09:08 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Multimodal imaging CpG Synergistic cancer photoimmunotherapy Hot tumor Metal-organic frameworks |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2020 [The Author/The Authors]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4565-1d2670e0f59391040e8785fd9627e48e1ecc9cf824126f11f0c0aca739681d553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contribute equally to this work. |
ORCID | 0000-0002-9885-7453 0000-0002-4429-3752 0000-0003-4702-9516 0000-0003-0018-4949 |
OpenAccessLink | https://doaj.org/article/ff5ba1e78ac4410eb0a3b47bfda61aea |
PMID | 32954050 |
PQID | 2444603509 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ff5ba1e78ac4410eb0a3b47bfda61aea pubmedcentral_primary_oai_pubmedcentral_nih_gov_7475520 proquest_miscellaneous_2444603509 pubmed_primary_32954050 crossref_primary_10_1016_j_bioactmat_2020_08_005 crossref_citationtrail_10_1016_j_bioactmat_2020_08_005 elsevier_sciencedirect_doi_10_1016_j_bioactmat_2020_08_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Bioactive materials |
PublicationTitleAlternate | Bioact Mater |
PublicationYear | 2021 |
Publisher | Elsevier B.V KeAi Publishing KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
References | Dong, Sun, Chu, Zhang, Deng (bib38) 2017; 139 Topalian, Taube, Anders, Pardoll (bib15) 2016; 16 Ma, Song, Xu, Si, Lv, Zhang, Tang, Chen (bib24) 2020; 20 Lu, Aung, Guo, Weichselbaum, Lin (bib34) 2018; 30 Zhang, Yang, Ji, Zhou, Xing (bib62) 2014; 64 Fukumura, Kloepper, Amoozgar, Duda, Jain (bib4) 2018; 15 Mellman, Coukos, Dranoff (bib5) 2011; 480 Wen, Ding, Yang, Xing (bib60) 2016; 75 Taylor-Pashow, Della Rocca, Xie, Tran, Lin (bib39) 2009; 131 Shu, Li, Yang, Xiao, Lin, Lei, Xu, Liu (bib56) 2018; 54 Chen, Zhou, Wang, Han, Lu, Liu, Hu, Yao, Lin, Liang, Shi, Dong (bib21) 2019; 31 Anderson, Balasas, Callaghan, Coombes, Evans, Hall, Kinrade, Jones, Jones, Jones, Marshall, Panico, Shaw, Steeg, Sullivan, Tong, Westwell, Ritchie (bib2) 2019; 16 Kim, Aragon-Sanabria, Randolph, Jiang, Reynolds, Webb, Madhankumar, Lian, Connor, Yang, Dong (bib11) 2020; 5 Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (bib1) 2018; 68 Bender (bib17) 2017; 552 Wu, Yu, Zhao, Shou, Piao, Zhao, Zhao, Wang (bib27) 2019; 11 Zhang, Liu, Wang, Liu, Ren, Qu (bib42) 2017; 53 Lu, Fan, Xing (bib46) 2016; 78 Zhang, Kuang, He, Lu, Cheng, Zhou, Huang (bib59) 2020 Ainsworth (bib16) 2018; 563 Benci, Xu, Qiu, Wu, Dada, Twyman-Saint Victor, Cucolo, Lee, Pauken, Huang, Gangadhar, Amaravadi, Schuchter, Feldman, Ishwaran, Vonderheide, Maity, Wherry, Minn (bib13) 2016; 167 Wang, Wang, Liu, Yu, Jiao, Feng, Zhou, Fu, Yin, Zhang, Zhang, Zhou, Li (bib6) 2016; 16 Zhang, Zheng, Lin, Liu, Li, Yang, Tan (bib12) 2020; 59 Cheng, Yang, Xiang, Zhang, Cao, Wang, Dong, Zhang (bib58) 2019; 19 Miller, Siegel, Lin, Mariotto, Kramer, Rowland, Stein, Alteri, Jemal (bib3) 2016; 66 Bauer, Serre, Devic, Horcajada, Marrot, Ferey, Stock (bib50) 2008; 47 Jiang, Wang, Hein, Liu, Luo, Davis (bib51) 2020; 120 McGranahan, Furness, Rosenthal, Ramskov, Lyngaa, Saini, Jamal-Hanjani, Wilson, Birkbak, Hiley, Watkins, Shafi, Murugaesu, Mitter, Akarca, Linares, Marafioti, Henry, Van Allen, Miao, Schilling, Schadendorf, Garraway, Makarov, Rizvi, Snyder, Hellmann, Merghoub, Wolchok, Shukla, Wu, Peggs, Chan, Hadrup, Quezada, Swanton (bib14) 2016; 351 Li, Yang, Luo, Jiang, Qin, Yin, Zhu, Yuan, Zhang, Luo, Du, Li, Lou, Qiu, You (bib45) 2019; 10 Li, Hu, Fu, Liu, Wang, Song, Yang (bib19) 2019; 30 Li, Lin, Wang, Luo, Lin, Zhang, Hou, Liu, Liu (bib10) 2019; 13 Choo, Kang, Kim, Han, Kang, Lee, Jeong, Kwon, Song, Go, Jung, Hong, Kim (bib48) 2018; 12 van Montfoort, Borst, Korrer, Sluijter, Marijt, Santegoets, van Ham, Ehsan, Charoentong, Andre, Wagtmann, Welters, Kim, Piersma, van der Burg, van Hall (bib18) 2018; 175 Ge, Liu, Zhang, Wang, Li, Liu, Liu, Sun, Zhang, Hou, Zhang, Yang (bib26) 2018; 10 Huang, Huang, You, Nie, Chen (bib57) 2017; 27 Zang, Wei, Shi, Chen, Xing (bib63) 2016; 12 Nam, Son, Park, Zou, Shea, Moon (bib29) 2019; 4 Yang, Chen, Wu, Kirk, Xu, Liu, Xue (bib43) 2018; 10 Chen, Liang, Song, Yi, Yang, Feng, Liu (bib22) 2019; 15 Zhu, Zhao, Chen, Liu (bib41) 2019; 398 Ng, Li, Pu (bib23) 2018; 28 Wang, Wu, Liu, Manghnani, Hu, Ma, Teh, Wang, Liu (bib31) 2019; 13 Commisso, Davidson, Soydaner-Azeloglu, Parker, Kamphorst, Hackett, Grabocka, Nofal, Drebin, Thompson, Rabinowitz, Metallo, Vander Heiden, Bar-Sagi (bib44) 2013; 497 Song, Das, Chen (bib28) 2020; 6 Sosale, Spinler, Alvey, Discher (bib47) 2015; 35 Sun, Xu, Gao, Huang, Feng, Chen, Wang, Guo, Li, Meng, Zhang, Ge, An, Ding, Luo, Zhang, Jiang, Ning (bib35) 2019; 15 Liu, Zhang, Xu (bib30) 2019; 15 Zhang, Oberoi, Oelsner, Waldmann, Lindner, Tonn, Wels (bib8) 2017; 8 Wang, Wu, Lim, Phua, Xu, Chen, Guo, Zhao (bib33) 2019; 31 Zhang, He, Kuang, Liu, Lu, Li, Zhou, Huang (bib61) 2020 Li, Lin, Cai, Wang, Luo, Yao, Zhang, Hou, Liu, Liu (bib9) 2020; 321 Ni, Luo, Lan, Culbert, Song, Wu, Jiang, Lin (bib36) 2020; 59 Fan, Yu, Lin, Liu, Liao (bib52) 2019; 144 Wan, Cheng, Zeng, Zhang (bib32) 2019; 13 Zhang, Zheng, Lin, Lan, Zhang, Zheng, Li, Liu, Yang, Liu, Liu (bib55) 2019; 15 Ni, Luo, Culbert, Kaufmann, Jiang, Lin (bib40) 2020 Zhao, Xu, Li, Guan, Han, Xu, Zhou, Peng, Wang, Liu (bib20) 2019; 13 Wang, Qu, Zhao, Weng, Waterhouse, Yan, Guan, Zhou (bib37) 2019; 11 Liu, Lin, He, Chen (bib53) 2020; 226 Chang, Zou, Wang, Li, Jin, Yin, Xing (bib49) 2020; 7 Wu, Zheng, Zhang, Yu, Peng, Chen, Lin, Cai, Li, Wei, Lin, Liu, Liu (bib7) 2020; 23 Zheng, Hu, Wu, Mo, Xie, Li, Peng, Xu, Qiu, Tan (bib25) 2020; 142 Fan, Xiao, Lin, Liao, Huang (bib54) 2019; 15 Ni (10.1016/j.bioactmat.2020.08.005_bib40) 2020 Lu (10.1016/j.bioactmat.2020.08.005_bib46) 2016; 78 Sun (10.1016/j.bioactmat.2020.08.005_bib35) 2019; 15 Nam (10.1016/j.bioactmat.2020.08.005_bib29) 2019; 4 Lu (10.1016/j.bioactmat.2020.08.005_bib34) 2018; 30 Sosale (10.1016/j.bioactmat.2020.08.005_bib47) 2015; 35 Zhang (10.1016/j.bioactmat.2020.08.005_bib12) 2020; 59 Zhu (10.1016/j.bioactmat.2020.08.005_bib41) 2019; 398 Liu (10.1016/j.bioactmat.2020.08.005_bib53) 2020; 226 Wang (10.1016/j.bioactmat.2020.08.005_bib33) 2019; 31 Chang (10.1016/j.bioactmat.2020.08.005_bib49) 2020; 7 Fan (10.1016/j.bioactmat.2020.08.005_bib52) 2019; 144 Fan (10.1016/j.bioactmat.2020.08.005_bib54) 2019; 15 Song (10.1016/j.bioactmat.2020.08.005_bib28) 2020; 6 Li (10.1016/j.bioactmat.2020.08.005_bib10) 2019; 13 Huang (10.1016/j.bioactmat.2020.08.005_bib57) 2017; 27 Wen (10.1016/j.bioactmat.2020.08.005_bib60) 2016; 75 Zang (10.1016/j.bioactmat.2020.08.005_bib63) 2016; 12 Li (10.1016/j.bioactmat.2020.08.005_bib19) 2019; 30 Wang (10.1016/j.bioactmat.2020.08.005_bib31) 2019; 13 Wang (10.1016/j.bioactmat.2020.08.005_bib6) 2016; 16 Zheng (10.1016/j.bioactmat.2020.08.005_bib25) 2020; 142 Commisso (10.1016/j.bioactmat.2020.08.005_bib44) 2013; 497 Benci (10.1016/j.bioactmat.2020.08.005_bib13) 2016; 167 Wang (10.1016/j.bioactmat.2020.08.005_bib37) 2019; 11 Ng (10.1016/j.bioactmat.2020.08.005_bib23) 2018; 28 Choo (10.1016/j.bioactmat.2020.08.005_bib48) 2018; 12 Wu (10.1016/j.bioactmat.2020.08.005_bib7) 2020; 23 Zhao (10.1016/j.bioactmat.2020.08.005_bib20) 2019; 13 Mellman (10.1016/j.bioactmat.2020.08.005_bib5) 2011; 480 Ma (10.1016/j.bioactmat.2020.08.005_bib24) 2020; 20 Liu (10.1016/j.bioactmat.2020.08.005_bib30) 2019; 15 Shu (10.1016/j.bioactmat.2020.08.005_bib56) 2018; 54 Cheng (10.1016/j.bioactmat.2020.08.005_bib58) 2019; 19 Bray (10.1016/j.bioactmat.2020.08.005_bib1) 2018; 68 Bender (10.1016/j.bioactmat.2020.08.005_bib17) 2017; 552 Anderson (10.1016/j.bioactmat.2020.08.005_bib2) 2019; 16 Zhang (10.1016/j.bioactmat.2020.08.005_bib8) 2017; 8 Ni (10.1016/j.bioactmat.2020.08.005_bib36) 2020; 59 Jiang (10.1016/j.bioactmat.2020.08.005_bib51) 2020; 120 Li (10.1016/j.bioactmat.2020.08.005_bib9) 2020; 321 Li (10.1016/j.bioactmat.2020.08.005_bib45) 2019; 10 Taylor-Pashow (10.1016/j.bioactmat.2020.08.005_bib39) 2009; 131 Chen (10.1016/j.bioactmat.2020.08.005_bib21) 2019; 31 Chen (10.1016/j.bioactmat.2020.08.005_bib22) 2019; 15 Miller (10.1016/j.bioactmat.2020.08.005_bib3) 2016; 66 Ainsworth (10.1016/j.bioactmat.2020.08.005_bib16) 2018; 563 Wan (10.1016/j.bioactmat.2020.08.005_bib32) 2019; 13 Zhang (10.1016/j.bioactmat.2020.08.005_bib59) 2020 van Montfoort (10.1016/j.bioactmat.2020.08.005_bib18) 2018; 175 Zhang (10.1016/j.bioactmat.2020.08.005_bib61) 2020 Wu (10.1016/j.bioactmat.2020.08.005_bib27) 2019; 11 Yang (10.1016/j.bioactmat.2020.08.005_bib43) 2018; 10 McGranahan (10.1016/j.bioactmat.2020.08.005_bib14) 2016; 351 Ge (10.1016/j.bioactmat.2020.08.005_bib26) 2018; 10 Kim (10.1016/j.bioactmat.2020.08.005_bib11) 2020; 5 Dong (10.1016/j.bioactmat.2020.08.005_bib38) 2017; 139 Zhang (10.1016/j.bioactmat.2020.08.005_bib55) 2019; 15 Fukumura (10.1016/j.bioactmat.2020.08.005_bib4) 2018; 15 Zhang (10.1016/j.bioactmat.2020.08.005_bib42) 2017; 53 Zhang (10.1016/j.bioactmat.2020.08.005_bib62) 2014; 64 Topalian (10.1016/j.bioactmat.2020.08.005_bib15) 2016; 16 Bauer (10.1016/j.bioactmat.2020.08.005_bib50) 2008; 47 |
References_xml | – volume: 35 start-page: 107 year: 2015 end-page: 112 ident: bib47 article-title: Macrophage engulfment of a cell or nanoparticle is regulated by unavoidable opsonization, a species-specific 'Marker of Self' CD47, and target physical properties publication-title: Curr. Opin. Immunol. – volume: 64 start-page: 385 year: 2014 end-page: 390 ident: bib62 article-title: Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation publication-title: J. Am. Coll. Cardiol. – volume: 31 year: 2019 ident: bib21 article-title: Tumor-targeted drug and CpG delivery system for phototherapy and docetaxel-enhanced immunotherapy with polarization toward M1-type macrophages on triple negative breast cancers publication-title: Adv. Mater. – volume: 28 year: 2018 ident: bib23 article-title: Recent progresses in phototherapy-synergized cancer immunotherapy publication-title: Adv. Funct. Mater. – volume: 27 year: 2017 ident: bib57 article-title: High-yield synthesis of multifunctional tellurium nanorods to achieve simultaneous chemo-photothermal combination cancer therapy publication-title: Adv. Funct. Mater. – volume: 75 start-page: 163 year: 2016 end-page: 173 ident: bib60 article-title: Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes publication-title: Biomaterials – volume: 59 start-page: 1108 year: 2020 end-page: 1112 ident: bib36 article-title: A nanoscale metal-organic framework to mediate photodynamic therapy and deliver CpG oligodeoxynucleotides to enhance antigen presentation and cancer immunotherapy publication-title: Angew Chem. Int. Ed. Engl. – volume: 10 start-page: 3349 year: 2019 ident: bib45 article-title: Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death publication-title: Nat. Commun. – volume: 66 start-page: 271 year: 2016 end-page: 289 ident: bib3 article-title: Cancer treatment and survivorship statistics, 2016 publication-title: Ca - Cancer J. Clin. – volume: 31 year: 2019 ident: bib33 article-title: A mesoporous nanoenzyme derived from metal-organic frameworks with endogenous oxygen generation to alleviate tumor hypoxia for significantly enhanced photodynamic therapy publication-title: Adv. Mater. – volume: 552 year: 2017 ident: bib17 article-title: Cancer immunotherapy publication-title: Nature – year: 2020 ident: bib61 article-title: Morphology tunable and acid-sensitive dextran-doxorubicin conjugate assemblies for targeted cancer therapy publication-title: J. Mater. Chem. B – volume: 131 start-page: 14261 year: 2009 end-page: 14263 ident: bib39 article-title: Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1905758 year: 2019 ident: bib19 article-title: NIR/ROS-Responsive black phosphorus QD vesicles as immunoadjuvant carrier for specific cancer photodynamic immunotherapy publication-title: Adv. Funct. Mater. – volume: 497 start-page: 633 year: 2013 end-page: 637 ident: bib44 article-title: Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells publication-title: Nature – volume: 68 start-page: 394 year: 2018 end-page: 424 ident: bib1 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: Ca - Cancer J. Clin. – volume: 16 start-page: 185 year: 2019 end-page: 204 ident: bib2 article-title: A framework for the development of effective anti-metastatic agents publication-title: Nat. Rev. Clin. Oncol. – volume: 175 start-page: 1744 year: 2018 end-page: 1755 ident: bib18 article-title: NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines publication-title: Cell – year: 2020 ident: bib59 article-title: Photoactivatable prodrug-backboned polymeric nanoparticles for efficient light-controlled gene delivery and synergistic treatment of platinum-resistant ovarian cancer publication-title: Nano Lett. – volume: 13 start-page: 6561 year: 2019 end-page: 6571 ident: bib32 article-title: A Mn(III)-Sealed metal-organic framework nanosystem for redox-unlocked tumor theranostics publication-title: ACS Nano – volume: 30 year: 2018 ident: bib34 article-title: Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications publication-title: Adv. Mater. – volume: 19 start-page: 1179 year: 2019 end-page: 1189 ident: bib58 article-title: Ultrathin tellurium oxide/ammonium tungsten bronze nanoribbon for multimodality imaging and second near-infrared region photothermal therapy publication-title: Nano Lett. – volume: 8 start-page: 533 year: 2017 ident: bib8 article-title: Chimeric antigen receptor-engineered NK-92 cells: an off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity publication-title: Front. Immunol. – volume: 15 year: 2019 ident: bib22 article-title: Hybrid protein nano-reactors enable simultaneous increments of tumor oxygenation and iodine-131 delivery for enhanced radionuclide therapy publication-title: Small – volume: 480 start-page: 480 year: 2011 end-page: 489 ident: bib5 article-title: Cancer immunotherapy comes of age publication-title: Nature – volume: 5 start-page: 624 year: 2020 end-page: 635 ident: bib11 article-title: High-affinity mutant Interleukin-13 targeted CAR T cells enhance delivery of clickable biodegradable fluorescent nanoparticles to glioblastoma publication-title: Bioact Mater – volume: 10 start-page: 20342 year: 2018 end-page: 20355 ident: bib26 article-title: Photothermal-activatable Fe3O4 superparticle nanodrug carriers with PD-L1 immune checkpoint blockade for anti-metastatic cancer immunotherapy publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 12912 year: 2019 end-page: 12928 ident: bib10 article-title: Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy publication-title: ACS Nano – volume: 10 start-page: 12463 year: 2018 end-page: 12473 ident: bib43 article-title: Reduction-responsive codelivery system based on a metal-organic framework for eliciting potent cellular immune response publication-title: ACS Appl. Mater. Interfaces – volume: 120 start-page: 3852 year: 2020 end-page: 3889 ident: bib51 article-title: Antifouling strategies for selective in vitro and in vivo sensing publication-title: Chem. Rev. – volume: 16 start-page: 5503 year: 2016 end-page: 5513 ident: bib6 article-title: Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy publication-title: Nano Lett. – volume: 78 start-page: 206 year: 2016 end-page: 216 ident: bib46 article-title: Photo-enhancement of macrophage phagocytic activity via Rac1-mediated signaling pathway: implications for bacterial infection publication-title: Int. J. Biochem. Cell Biol. – volume: 351 start-page: 1463 year: 2016 end-page: 1469 ident: bib14 article-title: Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade publication-title: Science – volume: 11 start-page: 33716 year: 2019 end-page: 33724 ident: bib27 article-title: NK-Cell-Encapsulated porous microspheres via microfluidic electrospray for tumor immunotherapy publication-title: ACS Appl. Mater. Interfaces – volume: 398 year: 2019 ident: bib41 article-title: Nanoscale metal-organic frameworks and coordination polymers as theranostic platforms for cancer treatment publication-title: Coord. Chem. Rev. – volume: 15 year: 2019 ident: bib54 article-title: Functionalized DNA enables programming exosomes/vesicles for tumor imaging and therapy publication-title: Small – volume: 59 start-page: 12022 year: 2020 end-page: 12028 ident: bib12 article-title: Equipping natural killer cells with specific targeting and checkpoint blocking aptamers for enhanced adoptive immunotherapy in solid tumors publication-title: Angew Chem. Int. Ed. Engl. – volume: 12 start-page: 8977 year: 2018 end-page: 8993 ident: bib48 article-title: M1 macrophage-derived nanovesicles potentiate the anticancer efficacy of immune checkpoint inhibitors publication-title: ACS Nano – volume: 16 start-page: 275 year: 2016 end-page: 287 ident: bib15 article-title: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy publication-title: Nat. Rev. Canc. – volume: 563 start-page: S52 year: 2018 end-page: S54 ident: bib16 article-title: Building a better lymphoma vaccine publication-title: Nature – volume: 15 year: 2019 ident: bib35 article-title: Synergistic amplification of oxidative stress-mediated antitumor activity via liposomal dichloroacetic acid and MOF-Fe(2) publication-title: Small – volume: 11 start-page: 35228 year: 2019 end-page: 35237 ident: bib37 article-title: Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy publication-title: ACS Appl. Mater. Interfaces – volume: 167 start-page: 1540 year: 2016 end-page: 1554 ident: bib13 article-title: Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade publication-title: Cell – volume: 13 start-page: 6879 year: 2019 end-page: 6890 ident: bib31 article-title: Cancer-cell-activated photodynamic therapy assisted by Cu(II)-Based metal-organic framework publication-title: ACS Nano – volume: 226 start-page: 119545 year: 2020 ident: bib53 article-title: Radiosensitive core/satellite ternary heteronanostructure for multimodal imaging-guided synergistic cancer radiotherapy publication-title: Biomaterials – volume: 54 start-page: 2232 year: 2018 end-page: 2235 ident: bib56 article-title: Active droplet-array (ADA) microfluidics enables multiplexed complex bioassays for point of care testing publication-title: Chem. Commun. – volume: 53 start-page: 1840 year: 2017 end-page: 1843 ident: bib42 article-title: Metal-organic-framework-supported immunostimulatory oligonucleotides for enhanced immune response and imaging publication-title: Chem. Commun. – volume: 23 year: 2020 ident: bib7 article-title: Converting immune cold into hot by biosynthetic functional vesicles to boost systematic antitumor immunity publication-title: iScience – volume: 142 start-page: 382 year: 2020 end-page: 391 ident: bib25 article-title: In vivo monocyte/macrophage-hitchhiked intratumoral accumulation of nanomedicines for enhanced tumor therapy publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 13127 year: 2019 end-page: 13135 ident: bib20 article-title: Nanoscale coordination polymer based nanovaccine for tumor immunotherapy publication-title: ACS Nano – volume: 7 start-page: 1900069 year: 2020 ident: bib49 article-title: Targeting and specific activation of antigen-presenting cells by endogenous antigen-loaded nanoparticles elicits tumor-specific immunity publication-title: Adv. Sci. – volume: 4 start-page: 398 year: 2019 end-page: 414 ident: bib29 article-title: Cancer nanomedicine for combination cancer immunotherapy publication-title: Nat. Rev. Mater. – volume: 139 start-page: 14209 year: 2017 end-page: 14216 ident: bib38 article-title: Multivariate metal-organic frameworks for dialing-in the binding and programming the release of drug molecules publication-title: J. Am. Chem. Soc. – volume: 321 start-page: 222 year: 2020 end-page: 235 ident: bib9 article-title: Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy publication-title: J. Contr. Release – volume: 20 start-page: 2514 year: 2020 end-page: 2521 ident: bib24 article-title: Rationally designed polymer conjugate for tumor-specific amplification of oxidative stress and boosting antitumor immunity publication-title: Nano Lett. – volume: 15 start-page: 325 year: 2018 end-page: 340 ident: bib4 article-title: Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges publication-title: Nat. Rev. Clin. Oncol. – volume: 47 start-page: 7568 year: 2008 end-page: 7576 ident: bib50 article-title: High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system publication-title: Inorg. Chem. – volume: 144 start-page: 5856 year: 2019 end-page: 5865 ident: bib52 article-title: Exosome-specific tumor diagnosis via biomedical analysis of exosome-containing microRNA biomarkers publication-title: Analyst – volume: 6 start-page: 288 year: 2020 end-page: 298 ident: bib28 article-title: Nanotherapeutics for immuno-oncology: a crossroad for new paradigms publication-title: Trends Cancer – volume: 15 year: 2019 ident: bib55 article-title: Artificial engineered natural killer cells combined with antiheat endurance as a powerful strategy for enhancing photothermal-immunotherapy efficiency of solid tumors publication-title: Small – volume: 15 year: 2019 ident: bib30 article-title: Nanoparticle-based nanomedicines to promote cancer immunotherapy: recent advances and future directions publication-title: Small – volume: 12 start-page: 756 year: 2016 end-page: 769 ident: bib63 article-title: Chemo/photoacoustic dual therapy with mRNA-triggered DOX release and photoinduced shockwave based on a DNA-gold nanoplatform publication-title: Small – year: 2020 ident: bib40 article-title: Nanoscale metal-organic framework Co-delivers TLR-7 agonists and anti-CD47 antibodies to modulate macrophages and orchestrate cancer immunotherapy publication-title: J. Am. Chem. Soc. – volume: 497 start-page: 633 issue: 7451 year: 2013 ident: 10.1016/j.bioactmat.2020.08.005_bib44 article-title: Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells publication-title: Nature doi: 10.1038/nature12138 – volume: 47 start-page: 7568 issue: 17 year: 2008 ident: 10.1016/j.bioactmat.2020.08.005_bib50 article-title: High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system publication-title: Inorg. Chem. doi: 10.1021/ic800538r – volume: 480 start-page: 480 issue: 7378 year: 2011 ident: 10.1016/j.bioactmat.2020.08.005_bib5 article-title: Cancer immunotherapy comes of age publication-title: Nature doi: 10.1038/nature10673 – volume: 15 issue: 42 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib55 article-title: Artificial engineered natural killer cells combined with antiheat endurance as a powerful strategy for enhancing photothermal-immunotherapy efficiency of solid tumors publication-title: Small – volume: 59 start-page: 1108 issue: 3 year: 2020 ident: 10.1016/j.bioactmat.2020.08.005_bib36 article-title: A nanoscale metal-organic framework to mediate photodynamic therapy and deliver CpG oligodeoxynucleotides to enhance antigen presentation and cancer immunotherapy publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.201911429 – volume: 20 start-page: 2514 issue: 4 year: 2020 ident: 10.1016/j.bioactmat.2020.08.005_bib24 article-title: Rationally designed polymer conjugate for tumor-specific amplification of oxidative stress and boosting antitumor immunity publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b05265 – volume: 8 start-page: 533 year: 2017 ident: 10.1016/j.bioactmat.2020.08.005_bib8 article-title: Chimeric antigen receptor-engineered NK-92 cells: an off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.00533 – volume: 10 start-page: 20342 issue: 24 year: 2018 ident: 10.1016/j.bioactmat.2020.08.005_bib26 article-title: Photothermal-activatable Fe3O4 superparticle nanodrug carriers with PD-L1 immune checkpoint blockade for anti-metastatic cancer immunotherapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05876 – volume: 30 start-page: 1905758 issue: 3 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib19 article-title: NIR/ROS-Responsive black phosphorus QD vesicles as immunoadjuvant carrier for specific cancer photodynamic immunotherapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905758 – volume: 13 start-page: 13127 issue: 11 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib20 article-title: Nanoscale coordination polymer based nanovaccine for tumor immunotherapy publication-title: ACS Nano doi: 10.1021/acsnano.9b05974 – volume: 54 start-page: 2232 issue: 18 year: 2018 ident: 10.1016/j.bioactmat.2020.08.005_bib56 article-title: Active droplet-array (ADA) microfluidics enables multiplexed complex bioassays for point of care testing publication-title: Chem. Commun. doi: 10.1039/C7CC09377B – volume: 23 issue: 7 year: 2020 ident: 10.1016/j.bioactmat.2020.08.005_bib7 article-title: Converting immune cold into hot by biosynthetic functional vesicles to boost systematic antitumor immunity publication-title: iScience doi: 10.1016/j.isci.2020.101341 – volume: 15 start-page: 325 issue: 5 year: 2018 ident: 10.1016/j.bioactmat.2020.08.005_bib4 article-title: Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2018.29 – volume: 53 start-page: 1840 issue: 11 year: 2017 ident: 10.1016/j.bioactmat.2020.08.005_bib42 article-title: Metal-organic-framework-supported immunostimulatory oligonucleotides for enhanced immune response and imaging publication-title: Chem. Commun. doi: 10.1039/C6CC09280B – volume: 552 issue: 7685 year: 2017 ident: 10.1016/j.bioactmat.2020.08.005_bib17 article-title: Cancer immunotherapy publication-title: Nature doi: 10.1038/d41586-017-08699-z – volume: 66 start-page: 271 issue: 4 year: 2016 ident: 10.1016/j.bioactmat.2020.08.005_bib3 article-title: Cancer treatment and survivorship statistics, 2016 publication-title: Ca - Cancer J. Clin. doi: 10.3322/caac.21349 – volume: 139 start-page: 14209 issue: 40 year: 2017 ident: 10.1016/j.bioactmat.2020.08.005_bib38 article-title: Multivariate metal-organic frameworks for dialing-in the binding and programming the release of drug molecules publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07392 – volume: 13 start-page: 6879 issue: 6 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib31 article-title: Cancer-cell-activated photodynamic therapy assisted by Cu(II)-Based metal-organic framework publication-title: ACS Nano doi: 10.1021/acsnano.9b01665 – volume: 10 start-page: 12463 issue: 15 year: 2018 ident: 10.1016/j.bioactmat.2020.08.005_bib43 article-title: Reduction-responsive codelivery system based on a metal-organic framework for eliciting potent cellular immune response publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01680 – volume: 12 start-page: 756 issue: 6 year: 2016 ident: 10.1016/j.bioactmat.2020.08.005_bib63 article-title: Chemo/photoacoustic dual therapy with mRNA-triggered DOX release and photoinduced shockwave based on a DNA-gold nanoplatform publication-title: Small doi: 10.1002/smll.201502857 – volume: 563 start-page: S52 issue: 7731 year: 2018 ident: 10.1016/j.bioactmat.2020.08.005_bib16 article-title: Building a better lymphoma vaccine publication-title: Nature doi: 10.1038/d41586-018-07366-1 – volume: 175 start-page: 1744 issue: 7 year: 2018 ident: 10.1016/j.bioactmat.2020.08.005_bib18 article-title: NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines publication-title: Cell doi: 10.1016/j.cell.2018.10.028 – volume: 15 issue: 32 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib30 article-title: Nanoparticle-based nanomedicines to promote cancer immunotherapy: recent advances and future directions publication-title: Small doi: 10.1002/smll.201900262 – volume: 11 start-page: 33716 issue: 37 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib27 article-title: NK-Cell-Encapsulated porous microspheres via microfluidic electrospray for tumor immunotherapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b12816 – volume: 35 start-page: 107 year: 2015 ident: 10.1016/j.bioactmat.2020.08.005_bib47 article-title: Macrophage engulfment of a cell or nanoparticle is regulated by unavoidable opsonization, a species-specific 'Marker of Self' CD47, and target physical properties publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2015.06.013 – volume: 13 start-page: 6561 issue: 6 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib32 article-title: A Mn(III)-Sealed metal-organic framework nanosystem for redox-unlocked tumor theranostics publication-title: ACS Nano doi: 10.1021/acsnano.9b00300 – volume: 7 start-page: 1900069 issue: 1 year: 2020 ident: 10.1016/j.bioactmat.2020.08.005_bib49 article-title: Targeting and specific activation of antigen-presenting cells by endogenous antigen-loaded nanoparticles elicits tumor-specific immunity publication-title: Adv. Sci. doi: 10.1002/advs.201900069 – volume: 30 issue: 37 year: 2018 ident: 10.1016/j.bioactmat.2020.08.005_bib34 article-title: Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications publication-title: Adv. Mater. doi: 10.1002/adma.201707634 – volume: 19 start-page: 1179 issue: 2 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib58 article-title: Ultrathin tellurium oxide/ammonium tungsten bronze nanoribbon for multimodality imaging and second near-infrared region photothermal therapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04618 – volume: 10 start-page: 3349 issue: 1 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib45 article-title: Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death publication-title: Nat. Commun. doi: 10.1038/s41467-019-11269-8 – volume: 31 issue: 52 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib21 article-title: Tumor-targeted drug and CpG delivery system for phototherapy and docetaxel-enhanced immunotherapy with polarization toward M1-type macrophages on triple negative breast cancers publication-title: Adv. Mater. doi: 10.1002/adma.201904997 – volume: 13 start-page: 12912 issue: 11 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib10 article-title: Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy publication-title: ACS Nano doi: 10.1021/acsnano.9b05425 – year: 2020 ident: 10.1016/j.bioactmat.2020.08.005_bib59 article-title: Photoactivatable prodrug-backboned polymeric nanoparticles for efficient light-controlled gene delivery and synergistic treatment of platinum-resistant ovarian cancer publication-title: Nano Lett. – volume: 75 start-page: 163 year: 2016 ident: 10.1016/j.bioactmat.2020.08.005_bib60 article-title: Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.10.028 – year: 2020 ident: 10.1016/j.bioactmat.2020.08.005_bib61 article-title: Morphology tunable and acid-sensitive dextran-doxorubicin conjugate assemblies for targeted cancer therapy publication-title: J. Mater. Chem. B – volume: 351 start-page: 1463 issue: 6280 year: 2016 ident: 10.1016/j.bioactmat.2020.08.005_bib14 article-title: Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade publication-title: Science doi: 10.1126/science.aaf1490 – volume: 4 start-page: 398 issue: 6 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib29 article-title: Cancer nanomedicine for combination cancer immunotherapy publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0108-1 – volume: 31 issue: 27 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib33 article-title: A mesoporous nanoenzyme derived from metal-organic frameworks with endogenous oxygen generation to alleviate tumor hypoxia for significantly enhanced photodynamic therapy publication-title: Adv. Mater. doi: 10.1002/adma.201901893 – volume: 16 start-page: 185 issue: 3 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib2 article-title: A framework for the development of effective anti-metastatic agents publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-018-0134-8 – volume: 78 start-page: 206 year: 2016 ident: 10.1016/j.bioactmat.2020.08.005_bib46 article-title: Photo-enhancement of macrophage phagocytic activity via Rac1-mediated signaling pathway: implications for bacterial infection publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2016.06.010 – volume: 12 start-page: 8977 issue: 9 year: 2018 ident: 10.1016/j.bioactmat.2020.08.005_bib48 article-title: M1 macrophage-derived nanovesicles potentiate the anticancer efficacy of immune checkpoint inhibitors publication-title: ACS Nano doi: 10.1021/acsnano.8b02446 – year: 2020 ident: 10.1016/j.bioactmat.2020.08.005_bib40 article-title: Nanoscale metal-organic framework Co-delivers TLR-7 agonists and anti-CD47 antibodies to modulate macrophages and orchestrate cancer immunotherapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05039 – volume: 64 start-page: 385 issue: 4 year: 2014 ident: 10.1016/j.bioactmat.2020.08.005_bib62 article-title: Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2014.04.053 – volume: 16 start-page: 5503 issue: 9 year: 2016 ident: 10.1016/j.bioactmat.2020.08.005_bib6 article-title: Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01994 – volume: 16 start-page: 275 issue: 5 year: 2016 ident: 10.1016/j.bioactmat.2020.08.005_bib15 article-title: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy publication-title: Nat. Rev. Canc. doi: 10.1038/nrc.2016.36 – volume: 142 start-page: 382 issue: 1 year: 2020 ident: 10.1016/j.bioactmat.2020.08.005_bib25 article-title: In vivo monocyte/macrophage-hitchhiked intratumoral accumulation of nanomedicines for enhanced tumor therapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11046 – volume: 11 start-page: 35228 issue: 38 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib37 article-title: Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11238 – volume: 28 issue: 46 year: 2018 ident: 10.1016/j.bioactmat.2020.08.005_bib23 article-title: Recent progresses in phototherapy-synergized cancer immunotherapy publication-title: Adv. Funct. Mater. – volume: 59 start-page: 12022 issue: 29 year: 2020 ident: 10.1016/j.bioactmat.2020.08.005_bib12 article-title: Equipping natural killer cells with specific targeting and checkpoint blocking aptamers for enhanced adoptive immunotherapy in solid tumors publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.202002145 – volume: 398 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib41 article-title: Nanoscale metal-organic frameworks and coordination polymers as theranostic platforms for cancer treatment publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.07.006 – volume: 27 issue: 33 year: 2017 ident: 10.1016/j.bioactmat.2020.08.005_bib57 article-title: High-yield synthesis of multifunctional tellurium nanorods to achieve simultaneous chemo-photothermal combination cancer therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701388 – volume: 131 start-page: 14261 issue: 40 year: 2009 ident: 10.1016/j.bioactmat.2020.08.005_bib39 article-title: Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906198y – volume: 226 start-page: 119545 year: 2020 ident: 10.1016/j.bioactmat.2020.08.005_bib53 article-title: Radiosensitive core/satellite ternary heteronanostructure for multimodal imaging-guided synergistic cancer radiotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119545 – volume: 321 start-page: 222 year: 2020 ident: 10.1016/j.bioactmat.2020.08.005_bib9 article-title: Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2020.02.025 – volume: 144 start-page: 5856 issue: 19 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib52 article-title: Exosome-specific tumor diagnosis via biomedical analysis of exosome-containing microRNA biomarkers publication-title: Analyst doi: 10.1039/C9AN00777F – volume: 15 issue: 24 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib35 article-title: Synergistic amplification of oxidative stress-mediated antitumor activity via liposomal dichloroacetic acid and MOF-Fe(2) publication-title: Small doi: 10.1002/smll.201901156 – volume: 167 start-page: 1540 issue: 6 year: 2016 ident: 10.1016/j.bioactmat.2020.08.005_bib13 article-title: Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade publication-title: Cell doi: 10.1016/j.cell.2016.11.022 – volume: 15 issue: 47 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib54 article-title: Functionalized DNA enables programming exosomes/vesicles for tumor imaging and therapy publication-title: Small doi: 10.1002/smll.201903761 – volume: 15 issue: 46 year: 2019 ident: 10.1016/j.bioactmat.2020.08.005_bib22 article-title: Hybrid protein nano-reactors enable simultaneous increments of tumor oxygenation and iodine-131 delivery for enhanced radionuclide therapy publication-title: Small doi: 10.1002/smll.201903628 – volume: 68 start-page: 394 issue: 6 year: 2018 ident: 10.1016/j.bioactmat.2020.08.005_bib1 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: Ca - Cancer J. Clin. doi: 10.3322/caac.21492 – volume: 120 start-page: 3852 issue: 8 year: 2020 ident: 10.1016/j.bioactmat.2020.08.005_bib51 article-title: Antifouling strategies for selective in vitro and in vivo sensing publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00739 – volume: 5 start-page: 624 issue: 3 year: 2020 ident: 10.1016/j.bioactmat.2020.08.005_bib11 article-title: High-affinity mutant Interleukin-13 targeted CAR T cells enhance delivery of clickable biodegradable fluorescent nanoparticles to glioblastoma publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2020.04.011 – volume: 6 start-page: 288 issue: 4 year: 2020 ident: 10.1016/j.bioactmat.2020.08.005_bib28 article-title: Nanotherapeutics for immuno-oncology: a crossroad for new paradigms publication-title: Trends Cancer doi: 10.1016/j.trecan.2020.01.011 |
SSID | ssj0001700007 |
Score | 2.5370653 |
Snippet | Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 312 |
SubjectTerms | CpG Hot tumor Metal-organic frameworks Multimodal imaging Synergistic cancer photoimmunotherapy |
Title | Reversing cold tumors to hot: An immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photo-immunotherapy |
URI | https://dx.doi.org/10.1016/j.bioactmat.2020.08.005 https://www.ncbi.nlm.nih.gov/pubmed/32954050 https://www.proquest.com/docview/2444603509 https://pubmed.ncbi.nlm.nih.gov/PMC7475520 https://doaj.org/article/ff5ba1e78ac4410eb0a3b47bfda61aea |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwFLRQe-GCQHyF0spIXCOcxHaS3paKqmoFh4qKvVlObLdZsUnVTQ7ld_CDec9OVhs47IVrEsex_aw3jsczhHwsdJUXpZOxgPQRc6dhziVViXJ3ibBGi9zgf8iv3-TFDb9ciuWO1RdywoI8cOi4T86JSic2L3QNmZvZiums4nnljJaJth4aQc7bWUytgigMZj90luMiRTbFckbuqppO1z1gQlghpsyLeKKB3U5q8gr-swz1LwL9m0i5k5nOn5NnI6Ski9CUF-SJbV-S39fWEy7aWwpDbWg_rLuHDe07etf1p3TR0gZPhnTarAYA032MCS78F2x-WUPXFlB5HDyfauomChcFjEs9CXHdGai0WXuXo_h2aAyU2jziUUKv_UzvoaIuDrWEU16Pr8jN-ZfvZxfx6MAQ14j04sSkMmeWOVFmgCs4s0VeCGfQscfywiYQAGXtCoABqXRJ4ljNdK3zrJSAg4XIXpODtmvtW0KFqE3FMm2YNBzephGbWs6MLJPMsiwicup8VY_y5OiS8VNNPLSV2o6awlFT6J_JRETYtuB9UOjYX-Qzju72cZTY9hegV9UYeGpf4EXkdIoNNaKVgELgVc3-L_gwRZOC-YybNLq13bBRALe4xO3eMiJvQnRtvzPDTVkmWETyWdzNGjK_0zZ3XjMcVo1CpOzd_2j5EXmaIrPHc9ffk4P-YbDHAM366oQcLq6uf1yd-Nn4BwE8P0U |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversing+cold+tumors+to+hot%3A+An+immunoadjuvant-functionalized+metal-organic+framework+for+multimodal+imaging-guided+synergistic+photo-immunotherapy&rft.jtitle=Bioactive+materials&rft.au=Fan%2C+Zhijin&rft.au=Liu%2C+Hongxing&rft.au=Xue%2C+Yaohua&rft.au=Lin%2C+Jingyan&rft.date=2021-02-01&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=6&rft.issue=2&rft.spage=312&rft.epage=325&rft_id=info:doi/10.1016%2Fj.bioactmat.2020.08.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bioactmat_2020_08_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon |