Reversing cold tumors to hot: An immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photo-immunotherapy

Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. H...

Full description

Saved in:
Bibliographic Details
Published inBioactive materials Vol. 6; no. 2; pp. 312 - 325
Main Authors Fan, Zhijin, Liu, Hongxing, Xue, Yaohua, Lin, Jingyan, Fu, Yu, Xia, Zhaohua, Pan, Dongming, Zhang, Jian, Qiao, Kun, Zhang, Zhenzhen, Liao, Yuhui
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.02.2021
KeAi Publishing
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH2) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer. [Display omitted] •Tumor microenvironment and light dual-response nanoplatform realize multi-modal imaging-guided cancer photo-immunotherapy.•When light triggers photothermal therapy, the immune system is activated to play a long-acting anti-tumor effect.•Nanoscale MOF could accumulate at the tumor site via the EPR effect and tumor-enhanced micropinocytosis.
AbstractList Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH ) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer.
Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH2) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer. [Display omitted] •Tumor microenvironment and light dual-response nanoplatform realize multi-modal imaging-guided cancer photo-immunotherapy.•When light triggers photothermal therapy, the immune system is activated to play a long-acting anti-tumor effect.•Nanoscale MOF could accumulate at the tumor site via the EPR effect and tumor-enhanced micropinocytosis.
Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH 2 ) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer. Image 1 • Tumor microenvironment and light dual-response nanoplatform realize multi-modal imaging-guided cancer photo-immunotherapy. • When light triggers photothermal therapy, the immune system is activated to play a long-acting anti-tumor effect. • Nanoscale MOF could accumulate at the tumor site via the EPR effect and tumor-enhanced micropinocytosis.
Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH2) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer.
Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH2) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer.Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH2) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer.
Author Liu, Hongxing
Pan, Dongming
Lin, Jingyan
Fan, Zhijin
Zhang, Jian
Zhang, Zhenzhen
Fu, Yu
Xue, Yaohua
Xia, Zhaohua
Qiao, Kun
Liao, Yuhui
Author_xml – sequence: 1
  givenname: Zhijin
  orcidid: 0000-0003-0018-4949
  surname: Fan
  fullname: Fan, Zhijin
  organization: Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
– sequence: 2
  givenname: Hongxing
  surname: Liu
  fullname: Liu, Hongxing
  organization: Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
– sequence: 3
  givenname: Yaohua
  surname: Xue
  fullname: Xue, Yaohua
  organization: Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
– sequence: 4
  givenname: Jingyan
  surname: Lin
  fullname: Lin, Jingyan
  organization: Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
– sequence: 5
  givenname: Yu
  surname: Fu
  fullname: Fu, Yu
  organization: Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
– sequence: 6
  givenname: Zhaohua
  surname: Xia
  fullname: Xia, Zhaohua
  organization: Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
– sequence: 7
  givenname: Dongming
  orcidid: 0000-0002-4429-3752
  surname: Pan
  fullname: Pan, Dongming
  organization: Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
– sequence: 8
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  email: jianzhang@gzhmu.edu.cn
  organization: Department of Biomedical Engineering, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
– sequence: 9
  givenname: Kun
  surname: Qiao
  fullname: Qiao, Kun
  email: szqiaokun@163.com
  organization: Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
– sequence: 10
  givenname: Zhenzhen
  orcidid: 0000-0002-9885-7453
  surname: Zhang
  fullname: Zhang, Zhenzhen
  organization: Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
– sequence: 11
  givenname: Yuhui
  orcidid: 0000-0003-4702-9516
  surname: Liao
  fullname: Liao, Yuhui
  email: liaoyh8@mail.sysu.edu.cn
  organization: Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32954050$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1u1DAQhSNUREvpK0AuuckyTuz8IIG0qvipVAkJgcSdNXHGWy-JvdjOouU5eGC8bFm13MBNHNnnfGfsmcfZiXWWsuwZgwUDVr9YL3rjUMUJ46KEEhbQLgDEg-ys5KIsWNd9Obnzf5pdhLAGANakDzSPstOq7AQHAWfZz4-0JR-MXeXKjUMe58n5kEeX37j4Ml_a3EzTbB0O63mLNhZ6tioaZ3E0P2jIJ4o4Fs6v0BqVa48TfXf-a66dz6d5jGZyA44JgquUUaxmMyRX2FnyKxNi8mxSkCsOKfGGPG52T7KHGsdAF7frefb57ZtPl--L6w_vri6X14XiohYFG8q6AQItuqpjwIHaphV66OqyId4SI6U6pduSs7LWjGlQgAqbqqtbNghRnWdXB-7gcC03PlXpd9Khkb830q0k-lTjSFJr0SOjpkXFOQPqAaueN70esGZImFivD6zN3E80KLLR43gPev_Emhu5clvZ8EaIEhLg-S3Au28zhSgnExSNI1pyc5Al57yGSkCXpE_vZh1D_rQ1CZqDQHkXgid9lDCQ-xmSa3mcIbmfIQmtTDOUnK_-cioTcd_wVLQZ_8O_PPgp9W1ryMugDFlFg_GkYnpY80_GL5t27f4
CitedBy_id crossref_primary_10_1002_mba2_25
crossref_primary_10_1039_D1BM01409A
crossref_primary_10_3389_fbioe_2024_1397804
crossref_primary_10_1021_acsnano_4c05065
crossref_primary_10_1039_D3RA04110G
crossref_primary_10_3389_fbioe_2022_991949
crossref_primary_10_1186_s12951_023_01885_4
crossref_primary_10_1002_slct_202302655
crossref_primary_10_1021_acsnano_4c00844
crossref_primary_10_1002_adhm_202401743
crossref_primary_10_1039_D2BM00579D
crossref_primary_10_1007_s40005_024_00691_w
crossref_primary_10_1002_VIW_20200117
crossref_primary_10_3390_polym15061490
crossref_primary_10_1002_anse_202300052
crossref_primary_10_1016_j_cclet_2022_02_052
crossref_primary_10_1016_j_bioactmat_2021_05_004
crossref_primary_10_1039_D2DT01039A
crossref_primary_10_1016_j_ccr_2023_215434
crossref_primary_10_1021_acsphotonics_2c00440
crossref_primary_10_1016_j_colsurfb_2021_111914
crossref_primary_10_1186_s12951_021_01148_0
crossref_primary_10_1016_j_ntm_2024_100032
crossref_primary_10_1039_D2NH00070A
crossref_primary_10_1186_s12951_022_01375_z
crossref_primary_10_3389_fbioe_2023_1156079
crossref_primary_10_1002_sstr_202400033
crossref_primary_10_3389_fphar_2021_685465
crossref_primary_10_1016_j_addr_2021_114036
crossref_primary_10_1002_smll_202411879
crossref_primary_10_1016_j_bioactmat_2021_07_025
crossref_primary_10_1002_advs_202301764
crossref_primary_10_1002_mba2_96
crossref_primary_10_1039_D1BM00660F
crossref_primary_10_2147_IJN_S318678
crossref_primary_10_1002_advs_202409833
crossref_primary_10_1002_advs_202003504
crossref_primary_10_1002_advs_202410427
crossref_primary_10_1186_s12951_021_01094_x
crossref_primary_10_1002_advs_202204932
crossref_primary_10_1016_j_ccr_2020_213662
crossref_primary_10_1063_5_0027606
crossref_primary_10_1016_j_bioactmat_2021_01_004
crossref_primary_10_1016_j_jconrel_2022_05_003
crossref_primary_10_3389_fbioe_2021_746815
crossref_primary_10_1016_j_ccr_2024_216006
crossref_primary_10_1080_21645515_2020_1852872
crossref_primary_10_1021_acsbiomaterials_0c01644
crossref_primary_10_1002_smtd_202201403
crossref_primary_10_1002_adfm_202401272
crossref_primary_10_1166_jbn_2022_3250
crossref_primary_10_1016_j_mattod_2022_05_024
crossref_primary_10_1039_D1DT03898B
crossref_primary_10_1021_acs_bioconjchem_2c00593
crossref_primary_10_1016_j_ajps_2022_02_004
crossref_primary_10_1016_j_cej_2021_131451
crossref_primary_10_1016_j_ajps_2022_04_005
crossref_primary_10_1016_j_ajps_2023_100784
crossref_primary_10_1002_tcr_202300018
crossref_primary_10_1515_revneuro_2024_0097
crossref_primary_10_3389_fimmu_2022_1057850
crossref_primary_10_2147_IJN_S461843
crossref_primary_10_2174_0113862073296206240416060154
crossref_primary_10_2147_IJN_S301664
crossref_primary_10_1016_j_bioactmat_2021_08_010
crossref_primary_10_3389_fimmu_2022_1050421
crossref_primary_10_1002_smll_202306402
crossref_primary_10_3389_fbioe_2022_1031986
crossref_primary_10_1002_adtp_202200218
crossref_primary_10_1021_acsami_1c14998
crossref_primary_10_1007_s10495_023_01851_3
crossref_primary_10_1186_s12951_022_01455_0
crossref_primary_10_1007_s12598_024_02779_6
crossref_primary_10_1016_j_ccr_2022_214486
crossref_primary_10_1002_smll_202404350
crossref_primary_10_1039_D1BM00568E
crossref_primary_10_1002_adfm_202315551
crossref_primary_10_1007_s40843_022_2140_7
crossref_primary_10_3390_molecules28031360
crossref_primary_10_1021_acs_analchem_2c03658
crossref_primary_10_1016_j_bioactmat_2023_04_010
crossref_primary_10_1186_s12951_022_01388_8
crossref_primary_10_1002_adhm_202403108
crossref_primary_10_1016_j_addr_2022_114320
crossref_primary_10_1039_D1BM00721A
crossref_primary_10_1002_smtd_202201313
crossref_primary_10_3389_fimmu_2020_612072
crossref_primary_10_1007_s12274_023_5844_2
crossref_primary_10_3748_wjg_v27_i10_939
crossref_primary_10_7717_peerj_11968
crossref_primary_10_3390_curroncol30050362
crossref_primary_10_1016_j_ajps_2022_05_001
crossref_primary_10_1016_j_jcis_2023_05_031
crossref_primary_10_1021_acs_analchem_1c02602
crossref_primary_10_1016_j_jconrel_2022_05_062
crossref_primary_10_3390_biomedicines11102769
crossref_primary_10_1021_acsnano_3c05936
crossref_primary_10_1002_anbr_202100014
crossref_primary_10_1186_s12951_022_01305_z
crossref_primary_10_1515_nanoph_2021_0209
crossref_primary_10_1016_j_mtnano_2022_100253
crossref_primary_10_1155_2022_3235238
crossref_primary_10_1039_D2TB01787C
crossref_primary_10_1021_acsnano_2c04983
crossref_primary_10_1039_D2RA02290G
crossref_primary_10_1016_j_apsb_2022_05_008
crossref_primary_10_18632_aging_203671
Cites_doi 10.1038/nature12138
10.1021/ic800538r
10.1038/nature10673
10.1002/anie.201911429
10.1021/acs.nanolett.9b05265
10.3389/fimmu.2017.00533
10.1021/acsami.8b05876
10.1002/adfm.201905758
10.1021/acsnano.9b05974
10.1039/C7CC09377B
10.1016/j.isci.2020.101341
10.1038/nrclinonc.2018.29
10.1039/C6CC09280B
10.1038/d41586-017-08699-z
10.3322/caac.21349
10.1021/jacs.7b07392
10.1021/acsnano.9b01665
10.1021/acsami.8b01680
10.1002/smll.201502857
10.1038/d41586-018-07366-1
10.1016/j.cell.2018.10.028
10.1002/smll.201900262
10.1021/acsami.9b12816
10.1016/j.coi.2015.06.013
10.1021/acsnano.9b00300
10.1002/advs.201900069
10.1002/adma.201707634
10.1021/acs.nanolett.8b04618
10.1038/s41467-019-11269-8
10.1002/adma.201904997
10.1021/acsnano.9b05425
10.1016/j.biomaterials.2015.10.028
10.1126/science.aaf1490
10.1038/s41578-019-0108-1
10.1002/adma.201901893
10.1038/s41571-018-0134-8
10.1016/j.biocel.2016.06.010
10.1021/acsnano.8b02446
10.1021/jacs.0c05039
10.1016/j.jacc.2014.04.053
10.1021/acs.nanolett.6b01994
10.1038/nrc.2016.36
10.1021/jacs.9b11046
10.1021/acsami.9b11238
10.1002/anie.202002145
10.1016/j.ccr.2019.07.006
10.1002/adfm.201701388
10.1021/ja906198y
10.1016/j.biomaterials.2019.119545
10.1016/j.jconrel.2020.02.025
10.1039/C9AN00777F
10.1002/smll.201901156
10.1016/j.cell.2016.11.022
10.1002/smll.201903761
10.1002/smll.201903628
10.3322/caac.21492
10.1021/acs.chemrev.9b00739
10.1016/j.bioactmat.2020.04.011
10.1016/j.trecan.2020.01.011
ContentType Journal Article
Copyright 2020 [The Author/The Authors]
2020 [The Author/The Authors].
2020 [The Author/The Authors] 2020
Copyright_xml – notice: 2020 [The Author/The Authors]
– notice: 2020 [The Author/The Authors].
– notice: 2020 [The Author/The Authors] 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.bioactmat.2020.08.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2452-199X
EndPage 325
ExternalDocumentID oai_doaj_org_article_ff5ba1e78ac4410eb0a3b47bfda61aea
PMC7475520
32954050
10_1016_j_bioactmat_2020_08_005
S2452199X20301511
Genre Journal Article
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAYWO
AAYXX
ABJCF
ACVFH
ADCNI
ADMLS
ADVLN
AEUPX
AFKRA
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
HCIFZ
KB.
M7P
M~E
PDBOC
PHGZM
PHGZT
PIMPY
NPM
7X8
5PM
ID FETCH-LOGICAL-c4565-1d2670e0f59391040e8785fd9627e48e1ecc9cf824126f11f0c0aca739681d553
IEDL.DBID DOA
ISSN 2452-199X
IngestDate Wed Aug 27 01:30:36 EDT 2025
Thu Aug 21 18:21:37 EDT 2025
Fri Jul 11 08:42:33 EDT 2025
Thu Apr 03 07:05:55 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Tue Jul 01 02:11:24 EDT 2025
Wed May 17 00:09:08 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Multimodal imaging
CpG
Synergistic cancer photoimmunotherapy
Hot tumor
Metal-organic frameworks
Language English
License This is an open access article under the CC BY-NC-ND license.
2020 [The Author/The Authors].
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4565-1d2670e0f59391040e8785fd9627e48e1ecc9cf824126f11f0c0aca739681d553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contribute equally to this work.
ORCID 0000-0002-9885-7453
0000-0002-4429-3752
0000-0003-4702-9516
0000-0003-0018-4949
OpenAccessLink https://doaj.org/article/ff5ba1e78ac4410eb0a3b47bfda61aea
PMID 32954050
PQID 2444603509
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_ff5ba1e78ac4410eb0a3b47bfda61aea
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7475520
proquest_miscellaneous_2444603509
pubmed_primary_32954050
crossref_primary_10_1016_j_bioactmat_2020_08_005
crossref_citationtrail_10_1016_j_bioactmat_2020_08_005
elsevier_sciencedirect_doi_10_1016_j_bioactmat_2020_08_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Bioactive materials
PublicationTitleAlternate Bioact Mater
PublicationYear 2021
Publisher Elsevier B.V
KeAi Publishing
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing
– name: KeAi Communications Co., Ltd
References Dong, Sun, Chu, Zhang, Deng (bib38) 2017; 139
Topalian, Taube, Anders, Pardoll (bib15) 2016; 16
Ma, Song, Xu, Si, Lv, Zhang, Tang, Chen (bib24) 2020; 20
Lu, Aung, Guo, Weichselbaum, Lin (bib34) 2018; 30
Zhang, Yang, Ji, Zhou, Xing (bib62) 2014; 64
Fukumura, Kloepper, Amoozgar, Duda, Jain (bib4) 2018; 15
Mellman, Coukos, Dranoff (bib5) 2011; 480
Wen, Ding, Yang, Xing (bib60) 2016; 75
Taylor-Pashow, Della Rocca, Xie, Tran, Lin (bib39) 2009; 131
Shu, Li, Yang, Xiao, Lin, Lei, Xu, Liu (bib56) 2018; 54
Chen, Zhou, Wang, Han, Lu, Liu, Hu, Yao, Lin, Liang, Shi, Dong (bib21) 2019; 31
Anderson, Balasas, Callaghan, Coombes, Evans, Hall, Kinrade, Jones, Jones, Jones, Marshall, Panico, Shaw, Steeg, Sullivan, Tong, Westwell, Ritchie (bib2) 2019; 16
Kim, Aragon-Sanabria, Randolph, Jiang, Reynolds, Webb, Madhankumar, Lian, Connor, Yang, Dong (bib11) 2020; 5
Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (bib1) 2018; 68
Bender (bib17) 2017; 552
Wu, Yu, Zhao, Shou, Piao, Zhao, Zhao, Wang (bib27) 2019; 11
Zhang, Liu, Wang, Liu, Ren, Qu (bib42) 2017; 53
Lu, Fan, Xing (bib46) 2016; 78
Zhang, Kuang, He, Lu, Cheng, Zhou, Huang (bib59) 2020
Ainsworth (bib16) 2018; 563
Benci, Xu, Qiu, Wu, Dada, Twyman-Saint Victor, Cucolo, Lee, Pauken, Huang, Gangadhar, Amaravadi, Schuchter, Feldman, Ishwaran, Vonderheide, Maity, Wherry, Minn (bib13) 2016; 167
Wang, Wang, Liu, Yu, Jiao, Feng, Zhou, Fu, Yin, Zhang, Zhang, Zhou, Li (bib6) 2016; 16
Zhang, Zheng, Lin, Liu, Li, Yang, Tan (bib12) 2020; 59
Cheng, Yang, Xiang, Zhang, Cao, Wang, Dong, Zhang (bib58) 2019; 19
Miller, Siegel, Lin, Mariotto, Kramer, Rowland, Stein, Alteri, Jemal (bib3) 2016; 66
Bauer, Serre, Devic, Horcajada, Marrot, Ferey, Stock (bib50) 2008; 47
Jiang, Wang, Hein, Liu, Luo, Davis (bib51) 2020; 120
McGranahan, Furness, Rosenthal, Ramskov, Lyngaa, Saini, Jamal-Hanjani, Wilson, Birkbak, Hiley, Watkins, Shafi, Murugaesu, Mitter, Akarca, Linares, Marafioti, Henry, Van Allen, Miao, Schilling, Schadendorf, Garraway, Makarov, Rizvi, Snyder, Hellmann, Merghoub, Wolchok, Shukla, Wu, Peggs, Chan, Hadrup, Quezada, Swanton (bib14) 2016; 351
Li, Yang, Luo, Jiang, Qin, Yin, Zhu, Yuan, Zhang, Luo, Du, Li, Lou, Qiu, You (bib45) 2019; 10
Li, Hu, Fu, Liu, Wang, Song, Yang (bib19) 2019; 30
Li, Lin, Wang, Luo, Lin, Zhang, Hou, Liu, Liu (bib10) 2019; 13
Choo, Kang, Kim, Han, Kang, Lee, Jeong, Kwon, Song, Go, Jung, Hong, Kim (bib48) 2018; 12
van Montfoort, Borst, Korrer, Sluijter, Marijt, Santegoets, van Ham, Ehsan, Charoentong, Andre, Wagtmann, Welters, Kim, Piersma, van der Burg, van Hall (bib18) 2018; 175
Ge, Liu, Zhang, Wang, Li, Liu, Liu, Sun, Zhang, Hou, Zhang, Yang (bib26) 2018; 10
Huang, Huang, You, Nie, Chen (bib57) 2017; 27
Zang, Wei, Shi, Chen, Xing (bib63) 2016; 12
Nam, Son, Park, Zou, Shea, Moon (bib29) 2019; 4
Yang, Chen, Wu, Kirk, Xu, Liu, Xue (bib43) 2018; 10
Chen, Liang, Song, Yi, Yang, Feng, Liu (bib22) 2019; 15
Zhu, Zhao, Chen, Liu (bib41) 2019; 398
Ng, Li, Pu (bib23) 2018; 28
Wang, Wu, Liu, Manghnani, Hu, Ma, Teh, Wang, Liu (bib31) 2019; 13
Commisso, Davidson, Soydaner-Azeloglu, Parker, Kamphorst, Hackett, Grabocka, Nofal, Drebin, Thompson, Rabinowitz, Metallo, Vander Heiden, Bar-Sagi (bib44) 2013; 497
Song, Das, Chen (bib28) 2020; 6
Sosale, Spinler, Alvey, Discher (bib47) 2015; 35
Sun, Xu, Gao, Huang, Feng, Chen, Wang, Guo, Li, Meng, Zhang, Ge, An, Ding, Luo, Zhang, Jiang, Ning (bib35) 2019; 15
Liu, Zhang, Xu (bib30) 2019; 15
Zhang, Oberoi, Oelsner, Waldmann, Lindner, Tonn, Wels (bib8) 2017; 8
Wang, Wu, Lim, Phua, Xu, Chen, Guo, Zhao (bib33) 2019; 31
Zhang, He, Kuang, Liu, Lu, Li, Zhou, Huang (bib61) 2020
Li, Lin, Cai, Wang, Luo, Yao, Zhang, Hou, Liu, Liu (bib9) 2020; 321
Ni, Luo, Lan, Culbert, Song, Wu, Jiang, Lin (bib36) 2020; 59
Fan, Yu, Lin, Liu, Liao (bib52) 2019; 144
Wan, Cheng, Zeng, Zhang (bib32) 2019; 13
Zhang, Zheng, Lin, Lan, Zhang, Zheng, Li, Liu, Yang, Liu, Liu (bib55) 2019; 15
Ni, Luo, Culbert, Kaufmann, Jiang, Lin (bib40) 2020
Zhao, Xu, Li, Guan, Han, Xu, Zhou, Peng, Wang, Liu (bib20) 2019; 13
Wang, Qu, Zhao, Weng, Waterhouse, Yan, Guan, Zhou (bib37) 2019; 11
Liu, Lin, He, Chen (bib53) 2020; 226
Chang, Zou, Wang, Li, Jin, Yin, Xing (bib49) 2020; 7
Wu, Zheng, Zhang, Yu, Peng, Chen, Lin, Cai, Li, Wei, Lin, Liu, Liu (bib7) 2020; 23
Zheng, Hu, Wu, Mo, Xie, Li, Peng, Xu, Qiu, Tan (bib25) 2020; 142
Fan, Xiao, Lin, Liao, Huang (bib54) 2019; 15
Ni (10.1016/j.bioactmat.2020.08.005_bib40) 2020
Lu (10.1016/j.bioactmat.2020.08.005_bib46) 2016; 78
Sun (10.1016/j.bioactmat.2020.08.005_bib35) 2019; 15
Nam (10.1016/j.bioactmat.2020.08.005_bib29) 2019; 4
Lu (10.1016/j.bioactmat.2020.08.005_bib34) 2018; 30
Sosale (10.1016/j.bioactmat.2020.08.005_bib47) 2015; 35
Zhang (10.1016/j.bioactmat.2020.08.005_bib12) 2020; 59
Zhu (10.1016/j.bioactmat.2020.08.005_bib41) 2019; 398
Liu (10.1016/j.bioactmat.2020.08.005_bib53) 2020; 226
Wang (10.1016/j.bioactmat.2020.08.005_bib33) 2019; 31
Chang (10.1016/j.bioactmat.2020.08.005_bib49) 2020; 7
Fan (10.1016/j.bioactmat.2020.08.005_bib52) 2019; 144
Fan (10.1016/j.bioactmat.2020.08.005_bib54) 2019; 15
Song (10.1016/j.bioactmat.2020.08.005_bib28) 2020; 6
Li (10.1016/j.bioactmat.2020.08.005_bib10) 2019; 13
Huang (10.1016/j.bioactmat.2020.08.005_bib57) 2017; 27
Wen (10.1016/j.bioactmat.2020.08.005_bib60) 2016; 75
Zang (10.1016/j.bioactmat.2020.08.005_bib63) 2016; 12
Li (10.1016/j.bioactmat.2020.08.005_bib19) 2019; 30
Wang (10.1016/j.bioactmat.2020.08.005_bib31) 2019; 13
Wang (10.1016/j.bioactmat.2020.08.005_bib6) 2016; 16
Zheng (10.1016/j.bioactmat.2020.08.005_bib25) 2020; 142
Commisso (10.1016/j.bioactmat.2020.08.005_bib44) 2013; 497
Benci (10.1016/j.bioactmat.2020.08.005_bib13) 2016; 167
Wang (10.1016/j.bioactmat.2020.08.005_bib37) 2019; 11
Ng (10.1016/j.bioactmat.2020.08.005_bib23) 2018; 28
Choo (10.1016/j.bioactmat.2020.08.005_bib48) 2018; 12
Wu (10.1016/j.bioactmat.2020.08.005_bib7) 2020; 23
Zhao (10.1016/j.bioactmat.2020.08.005_bib20) 2019; 13
Mellman (10.1016/j.bioactmat.2020.08.005_bib5) 2011; 480
Ma (10.1016/j.bioactmat.2020.08.005_bib24) 2020; 20
Liu (10.1016/j.bioactmat.2020.08.005_bib30) 2019; 15
Shu (10.1016/j.bioactmat.2020.08.005_bib56) 2018; 54
Cheng (10.1016/j.bioactmat.2020.08.005_bib58) 2019; 19
Bray (10.1016/j.bioactmat.2020.08.005_bib1) 2018; 68
Bender (10.1016/j.bioactmat.2020.08.005_bib17) 2017; 552
Anderson (10.1016/j.bioactmat.2020.08.005_bib2) 2019; 16
Zhang (10.1016/j.bioactmat.2020.08.005_bib8) 2017; 8
Ni (10.1016/j.bioactmat.2020.08.005_bib36) 2020; 59
Jiang (10.1016/j.bioactmat.2020.08.005_bib51) 2020; 120
Li (10.1016/j.bioactmat.2020.08.005_bib9) 2020; 321
Li (10.1016/j.bioactmat.2020.08.005_bib45) 2019; 10
Taylor-Pashow (10.1016/j.bioactmat.2020.08.005_bib39) 2009; 131
Chen (10.1016/j.bioactmat.2020.08.005_bib21) 2019; 31
Chen (10.1016/j.bioactmat.2020.08.005_bib22) 2019; 15
Miller (10.1016/j.bioactmat.2020.08.005_bib3) 2016; 66
Ainsworth (10.1016/j.bioactmat.2020.08.005_bib16) 2018; 563
Wan (10.1016/j.bioactmat.2020.08.005_bib32) 2019; 13
Zhang (10.1016/j.bioactmat.2020.08.005_bib59) 2020
van Montfoort (10.1016/j.bioactmat.2020.08.005_bib18) 2018; 175
Zhang (10.1016/j.bioactmat.2020.08.005_bib61) 2020
Wu (10.1016/j.bioactmat.2020.08.005_bib27) 2019; 11
Yang (10.1016/j.bioactmat.2020.08.005_bib43) 2018; 10
McGranahan (10.1016/j.bioactmat.2020.08.005_bib14) 2016; 351
Ge (10.1016/j.bioactmat.2020.08.005_bib26) 2018; 10
Kim (10.1016/j.bioactmat.2020.08.005_bib11) 2020; 5
Dong (10.1016/j.bioactmat.2020.08.005_bib38) 2017; 139
Zhang (10.1016/j.bioactmat.2020.08.005_bib55) 2019; 15
Fukumura (10.1016/j.bioactmat.2020.08.005_bib4) 2018; 15
Zhang (10.1016/j.bioactmat.2020.08.005_bib42) 2017; 53
Zhang (10.1016/j.bioactmat.2020.08.005_bib62) 2014; 64
Topalian (10.1016/j.bioactmat.2020.08.005_bib15) 2016; 16
Bauer (10.1016/j.bioactmat.2020.08.005_bib50) 2008; 47
References_xml – volume: 35
  start-page: 107
  year: 2015
  end-page: 112
  ident: bib47
  article-title: Macrophage engulfment of a cell or nanoparticle is regulated by unavoidable opsonization, a species-specific 'Marker of Self' CD47, and target physical properties
  publication-title: Curr. Opin. Immunol.
– volume: 64
  start-page: 385
  year: 2014
  end-page: 390
  ident: bib62
  article-title: Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation
  publication-title: J. Am. Coll. Cardiol.
– volume: 31
  year: 2019
  ident: bib21
  article-title: Tumor-targeted drug and CpG delivery system for phototherapy and docetaxel-enhanced immunotherapy with polarization toward M1-type macrophages on triple negative breast cancers
  publication-title: Adv. Mater.
– volume: 28
  year: 2018
  ident: bib23
  article-title: Recent progresses in phototherapy-synergized cancer immunotherapy
  publication-title: Adv. Funct. Mater.
– volume: 27
  year: 2017
  ident: bib57
  article-title: High-yield synthesis of multifunctional tellurium nanorods to achieve simultaneous chemo-photothermal combination cancer therapy
  publication-title: Adv. Funct. Mater.
– volume: 75
  start-page: 163
  year: 2016
  end-page: 173
  ident: bib60
  article-title: Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes
  publication-title: Biomaterials
– volume: 59
  start-page: 1108
  year: 2020
  end-page: 1112
  ident: bib36
  article-title: A nanoscale metal-organic framework to mediate photodynamic therapy and deliver CpG oligodeoxynucleotides to enhance antigen presentation and cancer immunotherapy
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 10
  start-page: 3349
  year: 2019
  ident: bib45
  article-title: Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death
  publication-title: Nat. Commun.
– volume: 66
  start-page: 271
  year: 2016
  end-page: 289
  ident: bib3
  article-title: Cancer treatment and survivorship statistics, 2016
  publication-title: Ca - Cancer J. Clin.
– volume: 31
  year: 2019
  ident: bib33
  article-title: A mesoporous nanoenzyme derived from metal-organic frameworks with endogenous oxygen generation to alleviate tumor hypoxia for significantly enhanced photodynamic therapy
  publication-title: Adv. Mater.
– volume: 552
  year: 2017
  ident: bib17
  article-title: Cancer immunotherapy
  publication-title: Nature
– year: 2020
  ident: bib61
  article-title: Morphology tunable and acid-sensitive dextran-doxorubicin conjugate assemblies for targeted cancer therapy
  publication-title: J. Mater. Chem. B
– volume: 131
  start-page: 14261
  year: 2009
  end-page: 14263
  ident: bib39
  article-title: Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 1905758
  year: 2019
  ident: bib19
  article-title: NIR/ROS-Responsive black phosphorus QD vesicles as immunoadjuvant carrier for specific cancer photodynamic immunotherapy
  publication-title: Adv. Funct. Mater.
– volume: 497
  start-page: 633
  year: 2013
  end-page: 637
  ident: bib44
  article-title: Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells
  publication-title: Nature
– volume: 68
  start-page: 394
  year: 2018
  end-page: 424
  ident: bib1
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: Ca - Cancer J. Clin.
– volume: 16
  start-page: 185
  year: 2019
  end-page: 204
  ident: bib2
  article-title: A framework for the development of effective anti-metastatic agents
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 175
  start-page: 1744
  year: 2018
  end-page: 1755
  ident: bib18
  article-title: NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines
  publication-title: Cell
– year: 2020
  ident: bib59
  article-title: Photoactivatable prodrug-backboned polymeric nanoparticles for efficient light-controlled gene delivery and synergistic treatment of platinum-resistant ovarian cancer
  publication-title: Nano Lett.
– volume: 13
  start-page: 6561
  year: 2019
  end-page: 6571
  ident: bib32
  article-title: A Mn(III)-Sealed metal-organic framework nanosystem for redox-unlocked tumor theranostics
  publication-title: ACS Nano
– volume: 30
  year: 2018
  ident: bib34
  article-title: Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications
  publication-title: Adv. Mater.
– volume: 19
  start-page: 1179
  year: 2019
  end-page: 1189
  ident: bib58
  article-title: Ultrathin tellurium oxide/ammonium tungsten bronze nanoribbon for multimodality imaging and second near-infrared region photothermal therapy
  publication-title: Nano Lett.
– volume: 8
  start-page: 533
  year: 2017
  ident: bib8
  article-title: Chimeric antigen receptor-engineered NK-92 cells: an off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity
  publication-title: Front. Immunol.
– volume: 15
  year: 2019
  ident: bib22
  article-title: Hybrid protein nano-reactors enable simultaneous increments of tumor oxygenation and iodine-131 delivery for enhanced radionuclide therapy
  publication-title: Small
– volume: 480
  start-page: 480
  year: 2011
  end-page: 489
  ident: bib5
  article-title: Cancer immunotherapy comes of age
  publication-title: Nature
– volume: 5
  start-page: 624
  year: 2020
  end-page: 635
  ident: bib11
  article-title: High-affinity mutant Interleukin-13 targeted CAR T cells enhance delivery of clickable biodegradable fluorescent nanoparticles to glioblastoma
  publication-title: Bioact Mater
– volume: 10
  start-page: 20342
  year: 2018
  end-page: 20355
  ident: bib26
  article-title: Photothermal-activatable Fe3O4 superparticle nanodrug carriers with PD-L1 immune checkpoint blockade for anti-metastatic cancer immunotherapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 12912
  year: 2019
  end-page: 12928
  ident: bib10
  article-title: Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy
  publication-title: ACS Nano
– volume: 10
  start-page: 12463
  year: 2018
  end-page: 12473
  ident: bib43
  article-title: Reduction-responsive codelivery system based on a metal-organic framework for eliciting potent cellular immune response
  publication-title: ACS Appl. Mater. Interfaces
– volume: 120
  start-page: 3852
  year: 2020
  end-page: 3889
  ident: bib51
  article-title: Antifouling strategies for selective in vitro and in vivo sensing
  publication-title: Chem. Rev.
– volume: 16
  start-page: 5503
  year: 2016
  end-page: 5513
  ident: bib6
  article-title: Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy
  publication-title: Nano Lett.
– volume: 78
  start-page: 206
  year: 2016
  end-page: 216
  ident: bib46
  article-title: Photo-enhancement of macrophage phagocytic activity via Rac1-mediated signaling pathway: implications for bacterial infection
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 351
  start-page: 1463
  year: 2016
  end-page: 1469
  ident: bib14
  article-title: Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade
  publication-title: Science
– volume: 11
  start-page: 33716
  year: 2019
  end-page: 33724
  ident: bib27
  article-title: NK-Cell-Encapsulated porous microspheres via microfluidic electrospray for tumor immunotherapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 398
  year: 2019
  ident: bib41
  article-title: Nanoscale metal-organic frameworks and coordination polymers as theranostic platforms for cancer treatment
  publication-title: Coord. Chem. Rev.
– volume: 15
  year: 2019
  ident: bib54
  article-title: Functionalized DNA enables programming exosomes/vesicles for tumor imaging and therapy
  publication-title: Small
– volume: 59
  start-page: 12022
  year: 2020
  end-page: 12028
  ident: bib12
  article-title: Equipping natural killer cells with specific targeting and checkpoint blocking aptamers for enhanced adoptive immunotherapy in solid tumors
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 12
  start-page: 8977
  year: 2018
  end-page: 8993
  ident: bib48
  article-title: M1 macrophage-derived nanovesicles potentiate the anticancer efficacy of immune checkpoint inhibitors
  publication-title: ACS Nano
– volume: 16
  start-page: 275
  year: 2016
  end-page: 287
  ident: bib15
  article-title: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy
  publication-title: Nat. Rev. Canc.
– volume: 563
  start-page: S52
  year: 2018
  end-page: S54
  ident: bib16
  article-title: Building a better lymphoma vaccine
  publication-title: Nature
– volume: 15
  year: 2019
  ident: bib35
  article-title: Synergistic amplification of oxidative stress-mediated antitumor activity via liposomal dichloroacetic acid and MOF-Fe(2)
  publication-title: Small
– volume: 11
  start-page: 35228
  year: 2019
  end-page: 35237
  ident: bib37
  article-title: Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 167
  start-page: 1540
  year: 2016
  end-page: 1554
  ident: bib13
  article-title: Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade
  publication-title: Cell
– volume: 13
  start-page: 6879
  year: 2019
  end-page: 6890
  ident: bib31
  article-title: Cancer-cell-activated photodynamic therapy assisted by Cu(II)-Based metal-organic framework
  publication-title: ACS Nano
– volume: 226
  start-page: 119545
  year: 2020
  ident: bib53
  article-title: Radiosensitive core/satellite ternary heteronanostructure for multimodal imaging-guided synergistic cancer radiotherapy
  publication-title: Biomaterials
– volume: 54
  start-page: 2232
  year: 2018
  end-page: 2235
  ident: bib56
  article-title: Active droplet-array (ADA) microfluidics enables multiplexed complex bioassays for point of care testing
  publication-title: Chem. Commun.
– volume: 53
  start-page: 1840
  year: 2017
  end-page: 1843
  ident: bib42
  article-title: Metal-organic-framework-supported immunostimulatory oligonucleotides for enhanced immune response and imaging
  publication-title: Chem. Commun.
– volume: 23
  year: 2020
  ident: bib7
  article-title: Converting immune cold into hot by biosynthetic functional vesicles to boost systematic antitumor immunity
  publication-title: iScience
– volume: 142
  start-page: 382
  year: 2020
  end-page: 391
  ident: bib25
  article-title: In vivo monocyte/macrophage-hitchhiked intratumoral accumulation of nanomedicines for enhanced tumor therapy
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 13127
  year: 2019
  end-page: 13135
  ident: bib20
  article-title: Nanoscale coordination polymer based nanovaccine for tumor immunotherapy
  publication-title: ACS Nano
– volume: 7
  start-page: 1900069
  year: 2020
  ident: bib49
  article-title: Targeting and specific activation of antigen-presenting cells by endogenous antigen-loaded nanoparticles elicits tumor-specific immunity
  publication-title: Adv. Sci.
– volume: 4
  start-page: 398
  year: 2019
  end-page: 414
  ident: bib29
  article-title: Cancer nanomedicine for combination cancer immunotherapy
  publication-title: Nat. Rev. Mater.
– volume: 139
  start-page: 14209
  year: 2017
  end-page: 14216
  ident: bib38
  article-title: Multivariate metal-organic frameworks for dialing-in the binding and programming the release of drug molecules
  publication-title: J. Am. Chem. Soc.
– volume: 321
  start-page: 222
  year: 2020
  end-page: 235
  ident: bib9
  article-title: Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy
  publication-title: J. Contr. Release
– volume: 20
  start-page: 2514
  year: 2020
  end-page: 2521
  ident: bib24
  article-title: Rationally designed polymer conjugate for tumor-specific amplification of oxidative stress and boosting antitumor immunity
  publication-title: Nano Lett.
– volume: 15
  start-page: 325
  year: 2018
  end-page: 340
  ident: bib4
  article-title: Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 47
  start-page: 7568
  year: 2008
  end-page: 7576
  ident: bib50
  article-title: High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system
  publication-title: Inorg. Chem.
– volume: 144
  start-page: 5856
  year: 2019
  end-page: 5865
  ident: bib52
  article-title: Exosome-specific tumor diagnosis via biomedical analysis of exosome-containing microRNA biomarkers
  publication-title: Analyst
– volume: 6
  start-page: 288
  year: 2020
  end-page: 298
  ident: bib28
  article-title: Nanotherapeutics for immuno-oncology: a crossroad for new paradigms
  publication-title: Trends Cancer
– volume: 15
  year: 2019
  ident: bib55
  article-title: Artificial engineered natural killer cells combined with antiheat endurance as a powerful strategy for enhancing photothermal-immunotherapy efficiency of solid tumors
  publication-title: Small
– volume: 15
  year: 2019
  ident: bib30
  article-title: Nanoparticle-based nanomedicines to promote cancer immunotherapy: recent advances and future directions
  publication-title: Small
– volume: 12
  start-page: 756
  year: 2016
  end-page: 769
  ident: bib63
  article-title: Chemo/photoacoustic dual therapy with mRNA-triggered DOX release and photoinduced shockwave based on a DNA-gold nanoplatform
  publication-title: Small
– year: 2020
  ident: bib40
  article-title: Nanoscale metal-organic framework Co-delivers TLR-7 agonists and anti-CD47 antibodies to modulate macrophages and orchestrate cancer immunotherapy
  publication-title: J. Am. Chem. Soc.
– volume: 497
  start-page: 633
  issue: 7451
  year: 2013
  ident: 10.1016/j.bioactmat.2020.08.005_bib44
  article-title: Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells
  publication-title: Nature
  doi: 10.1038/nature12138
– volume: 47
  start-page: 7568
  issue: 17
  year: 2008
  ident: 10.1016/j.bioactmat.2020.08.005_bib50
  article-title: High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system
  publication-title: Inorg. Chem.
  doi: 10.1021/ic800538r
– volume: 480
  start-page: 480
  issue: 7378
  year: 2011
  ident: 10.1016/j.bioactmat.2020.08.005_bib5
  article-title: Cancer immunotherapy comes of age
  publication-title: Nature
  doi: 10.1038/nature10673
– volume: 15
  issue: 42
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib55
  article-title: Artificial engineered natural killer cells combined with antiheat endurance as a powerful strategy for enhancing photothermal-immunotherapy efficiency of solid tumors
  publication-title: Small
– volume: 59
  start-page: 1108
  issue: 3
  year: 2020
  ident: 10.1016/j.bioactmat.2020.08.005_bib36
  article-title: A nanoscale metal-organic framework to mediate photodynamic therapy and deliver CpG oligodeoxynucleotides to enhance antigen presentation and cancer immunotherapy
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201911429
– volume: 20
  start-page: 2514
  issue: 4
  year: 2020
  ident: 10.1016/j.bioactmat.2020.08.005_bib24
  article-title: Rationally designed polymer conjugate for tumor-specific amplification of oxidative stress and boosting antitumor immunity
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b05265
– volume: 8
  start-page: 533
  year: 2017
  ident: 10.1016/j.bioactmat.2020.08.005_bib8
  article-title: Chimeric antigen receptor-engineered NK-92 cells: an off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00533
– volume: 10
  start-page: 20342
  issue: 24
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.005_bib26
  article-title: Photothermal-activatable Fe3O4 superparticle nanodrug carriers with PD-L1 immune checkpoint blockade for anti-metastatic cancer immunotherapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05876
– volume: 30
  start-page: 1905758
  issue: 3
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib19
  article-title: NIR/ROS-Responsive black phosphorus QD vesicles as immunoadjuvant carrier for specific cancer photodynamic immunotherapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905758
– volume: 13
  start-page: 13127
  issue: 11
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib20
  article-title: Nanoscale coordination polymer based nanovaccine for tumor immunotherapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05974
– volume: 54
  start-page: 2232
  issue: 18
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.005_bib56
  article-title: Active droplet-array (ADA) microfluidics enables multiplexed complex bioassays for point of care testing
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC09377B
– volume: 23
  issue: 7
  year: 2020
  ident: 10.1016/j.bioactmat.2020.08.005_bib7
  article-title: Converting immune cold into hot by biosynthetic functional vesicles to boost systematic antitumor immunity
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101341
– volume: 15
  start-page: 325
  issue: 5
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.005_bib4
  article-title: Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2018.29
– volume: 53
  start-page: 1840
  issue: 11
  year: 2017
  ident: 10.1016/j.bioactmat.2020.08.005_bib42
  article-title: Metal-organic-framework-supported immunostimulatory oligonucleotides for enhanced immune response and imaging
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC09280B
– volume: 552
  issue: 7685
  year: 2017
  ident: 10.1016/j.bioactmat.2020.08.005_bib17
  article-title: Cancer immunotherapy
  publication-title: Nature
  doi: 10.1038/d41586-017-08699-z
– volume: 66
  start-page: 271
  issue: 4
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.005_bib3
  article-title: Cancer treatment and survivorship statistics, 2016
  publication-title: Ca - Cancer J. Clin.
  doi: 10.3322/caac.21349
– volume: 139
  start-page: 14209
  issue: 40
  year: 2017
  ident: 10.1016/j.bioactmat.2020.08.005_bib38
  article-title: Multivariate metal-organic frameworks for dialing-in the binding and programming the release of drug molecules
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07392
– volume: 13
  start-page: 6879
  issue: 6
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib31
  article-title: Cancer-cell-activated photodynamic therapy assisted by Cu(II)-Based metal-organic framework
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01665
– volume: 10
  start-page: 12463
  issue: 15
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.005_bib43
  article-title: Reduction-responsive codelivery system based on a metal-organic framework for eliciting potent cellular immune response
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01680
– volume: 12
  start-page: 756
  issue: 6
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.005_bib63
  article-title: Chemo/photoacoustic dual therapy with mRNA-triggered DOX release and photoinduced shockwave based on a DNA-gold nanoplatform
  publication-title: Small
  doi: 10.1002/smll.201502857
– volume: 563
  start-page: S52
  issue: 7731
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.005_bib16
  article-title: Building a better lymphoma vaccine
  publication-title: Nature
  doi: 10.1038/d41586-018-07366-1
– volume: 175
  start-page: 1744
  issue: 7
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.005_bib18
  article-title: NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.028
– volume: 15
  issue: 32
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib30
  article-title: Nanoparticle-based nanomedicines to promote cancer immunotherapy: recent advances and future directions
  publication-title: Small
  doi: 10.1002/smll.201900262
– volume: 11
  start-page: 33716
  issue: 37
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib27
  article-title: NK-Cell-Encapsulated porous microspheres via microfluidic electrospray for tumor immunotherapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12816
– volume: 35
  start-page: 107
  year: 2015
  ident: 10.1016/j.bioactmat.2020.08.005_bib47
  article-title: Macrophage engulfment of a cell or nanoparticle is regulated by unavoidable opsonization, a species-specific 'Marker of Self' CD47, and target physical properties
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2015.06.013
– volume: 13
  start-page: 6561
  issue: 6
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib32
  article-title: A Mn(III)-Sealed metal-organic framework nanosystem for redox-unlocked tumor theranostics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00300
– volume: 7
  start-page: 1900069
  issue: 1
  year: 2020
  ident: 10.1016/j.bioactmat.2020.08.005_bib49
  article-title: Targeting and specific activation of antigen-presenting cells by endogenous antigen-loaded nanoparticles elicits tumor-specific immunity
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900069
– volume: 30
  issue: 37
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.005_bib34
  article-title: Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707634
– volume: 19
  start-page: 1179
  issue: 2
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib58
  article-title: Ultrathin tellurium oxide/ammonium tungsten bronze nanoribbon for multimodality imaging and second near-infrared region photothermal therapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04618
– volume: 10
  start-page: 3349
  issue: 1
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib45
  article-title: Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11269-8
– volume: 31
  issue: 52
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib21
  article-title: Tumor-targeted drug and CpG delivery system for phototherapy and docetaxel-enhanced immunotherapy with polarization toward M1-type macrophages on triple negative breast cancers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904997
– volume: 13
  start-page: 12912
  issue: 11
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib10
  article-title: Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05425
– year: 2020
  ident: 10.1016/j.bioactmat.2020.08.005_bib59
  article-title: Photoactivatable prodrug-backboned polymeric nanoparticles for efficient light-controlled gene delivery and synergistic treatment of platinum-resistant ovarian cancer
  publication-title: Nano Lett.
– volume: 75
  start-page: 163
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.005_bib60
  article-title: Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.10.028
– year: 2020
  ident: 10.1016/j.bioactmat.2020.08.005_bib61
  article-title: Morphology tunable and acid-sensitive dextran-doxorubicin conjugate assemblies for targeted cancer therapy
  publication-title: J. Mater. Chem. B
– volume: 351
  start-page: 1463
  issue: 6280
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.005_bib14
  article-title: Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade
  publication-title: Science
  doi: 10.1126/science.aaf1490
– volume: 4
  start-page: 398
  issue: 6
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib29
  article-title: Cancer nanomedicine for combination cancer immunotherapy
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0108-1
– volume: 31
  issue: 27
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib33
  article-title: A mesoporous nanoenzyme derived from metal-organic frameworks with endogenous oxygen generation to alleviate tumor hypoxia for significantly enhanced photodynamic therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901893
– volume: 16
  start-page: 185
  issue: 3
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib2
  article-title: A framework for the development of effective anti-metastatic agents
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-018-0134-8
– volume: 78
  start-page: 206
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.005_bib46
  article-title: Photo-enhancement of macrophage phagocytic activity via Rac1-mediated signaling pathway: implications for bacterial infection
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2016.06.010
– volume: 12
  start-page: 8977
  issue: 9
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.005_bib48
  article-title: M1 macrophage-derived nanovesicles potentiate the anticancer efficacy of immune checkpoint inhibitors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02446
– year: 2020
  ident: 10.1016/j.bioactmat.2020.08.005_bib40
  article-title: Nanoscale metal-organic framework Co-delivers TLR-7 agonists and anti-CD47 antibodies to modulate macrophages and orchestrate cancer immunotherapy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05039
– volume: 64
  start-page: 385
  issue: 4
  year: 2014
  ident: 10.1016/j.bioactmat.2020.08.005_bib62
  article-title: Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2014.04.053
– volume: 16
  start-page: 5503
  issue: 9
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.005_bib6
  article-title: Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01994
– volume: 16
  start-page: 275
  issue: 5
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.005_bib15
  article-title: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc.2016.36
– volume: 142
  start-page: 382
  issue: 1
  year: 2020
  ident: 10.1016/j.bioactmat.2020.08.005_bib25
  article-title: In vivo monocyte/macrophage-hitchhiked intratumoral accumulation of nanomedicines for enhanced tumor therapy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11046
– volume: 11
  start-page: 35228
  issue: 38
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib37
  article-title: Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b11238
– volume: 28
  issue: 46
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.005_bib23
  article-title: Recent progresses in phototherapy-synergized cancer immunotherapy
  publication-title: Adv. Funct. Mater.
– volume: 59
  start-page: 12022
  issue: 29
  year: 2020
  ident: 10.1016/j.bioactmat.2020.08.005_bib12
  article-title: Equipping natural killer cells with specific targeting and checkpoint blocking aptamers for enhanced adoptive immunotherapy in solid tumors
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202002145
– volume: 398
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib41
  article-title: Nanoscale metal-organic frameworks and coordination polymers as theranostic platforms for cancer treatment
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.07.006
– volume: 27
  issue: 33
  year: 2017
  ident: 10.1016/j.bioactmat.2020.08.005_bib57
  article-title: High-yield synthesis of multifunctional tellurium nanorods to achieve simultaneous chemo-photothermal combination cancer therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701388
– volume: 131
  start-page: 14261
  issue: 40
  year: 2009
  ident: 10.1016/j.bioactmat.2020.08.005_bib39
  article-title: Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja906198y
– volume: 226
  start-page: 119545
  year: 2020
  ident: 10.1016/j.bioactmat.2020.08.005_bib53
  article-title: Radiosensitive core/satellite ternary heteronanostructure for multimodal imaging-guided synergistic cancer radiotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119545
– volume: 321
  start-page: 222
  year: 2020
  ident: 10.1016/j.bioactmat.2020.08.005_bib9
  article-title: Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2020.02.025
– volume: 144
  start-page: 5856
  issue: 19
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib52
  article-title: Exosome-specific tumor diagnosis via biomedical analysis of exosome-containing microRNA biomarkers
  publication-title: Analyst
  doi: 10.1039/C9AN00777F
– volume: 15
  issue: 24
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib35
  article-title: Synergistic amplification of oxidative stress-mediated antitumor activity via liposomal dichloroacetic acid and MOF-Fe(2)
  publication-title: Small
  doi: 10.1002/smll.201901156
– volume: 167
  start-page: 1540
  issue: 6
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.005_bib13
  article-title: Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.022
– volume: 15
  issue: 47
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib54
  article-title: Functionalized DNA enables programming exosomes/vesicles for tumor imaging and therapy
  publication-title: Small
  doi: 10.1002/smll.201903761
– volume: 15
  issue: 46
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.005_bib22
  article-title: Hybrid protein nano-reactors enable simultaneous increments of tumor oxygenation and iodine-131 delivery for enhanced radionuclide therapy
  publication-title: Small
  doi: 10.1002/smll.201903628
– volume: 68
  start-page: 394
  issue: 6
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.005_bib1
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: Ca - Cancer J. Clin.
  doi: 10.3322/caac.21492
– volume: 120
  start-page: 3852
  issue: 8
  year: 2020
  ident: 10.1016/j.bioactmat.2020.08.005_bib51
  article-title: Antifouling strategies for selective in vitro and in vivo sensing
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00739
– volume: 5
  start-page: 624
  issue: 3
  year: 2020
  ident: 10.1016/j.bioactmat.2020.08.005_bib11
  article-title: High-affinity mutant Interleukin-13 targeted CAR T cells enhance delivery of clickable biodegradable fluorescent nanoparticles to glioblastoma
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2020.04.011
– volume: 6
  start-page: 288
  issue: 4
  year: 2020
  ident: 10.1016/j.bioactmat.2020.08.005_bib28
  article-title: Nanotherapeutics for immuno-oncology: a crossroad for new paradigms
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2020.01.011
SSID ssj0001700007
Score 2.5370653
Snippet Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 312
SubjectTerms CpG
Hot tumor
Metal-organic frameworks
Multimodal imaging
Synergistic cancer photoimmunotherapy
Title Reversing cold tumors to hot: An immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photo-immunotherapy
URI https://dx.doi.org/10.1016/j.bioactmat.2020.08.005
https://www.ncbi.nlm.nih.gov/pubmed/32954050
https://www.proquest.com/docview/2444603509
https://pubmed.ncbi.nlm.nih.gov/PMC7475520
https://doaj.org/article/ff5ba1e78ac4410eb0a3b47bfda61aea
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwFLRQe-GCQHyF0spIXCOcxHaS3paKqmoFh4qKvVlObLdZsUnVTQ7ld_CDec9OVhs47IVrEsex_aw3jsczhHwsdJUXpZOxgPQRc6dhziVViXJ3ibBGi9zgf8iv3-TFDb9ciuWO1RdywoI8cOi4T86JSic2L3QNmZvZiums4nnljJaJth4aQc7bWUytgigMZj90luMiRTbFckbuqppO1z1gQlghpsyLeKKB3U5q8gr-swz1LwL9m0i5k5nOn5NnI6Ski9CUF-SJbV-S39fWEy7aWwpDbWg_rLuHDe07etf1p3TR0gZPhnTarAYA032MCS78F2x-WUPXFlB5HDyfauomChcFjEs9CXHdGai0WXuXo_h2aAyU2jziUUKv_UzvoaIuDrWEU16Pr8jN-ZfvZxfx6MAQ14j04sSkMmeWOVFmgCs4s0VeCGfQscfywiYQAGXtCoABqXRJ4ljNdK3zrJSAg4XIXpODtmvtW0KFqE3FMm2YNBzephGbWs6MLJPMsiwicup8VY_y5OiS8VNNPLSV2o6awlFT6J_JRETYtuB9UOjYX-Qzju72cZTY9hegV9UYeGpf4EXkdIoNNaKVgELgVc3-L_gwRZOC-YybNLq13bBRALe4xO3eMiJvQnRtvzPDTVkmWETyWdzNGjK_0zZ3XjMcVo1CpOzd_2j5EXmaIrPHc9ffk4P-YbDHAM366oQcLq6uf1yd-Nn4BwE8P0U
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversing+cold+tumors+to+hot%3A+An+immunoadjuvant-functionalized+metal-organic+framework+for+multimodal+imaging-guided+synergistic+photo-immunotherapy&rft.jtitle=Bioactive+materials&rft.au=Fan%2C+Zhijin&rft.au=Liu%2C+Hongxing&rft.au=Xue%2C+Yaohua&rft.au=Lin%2C+Jingyan&rft.date=2021-02-01&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=6&rft.issue=2&rft.spage=312&rft.epage=325&rft_id=info:doi/10.1016%2Fj.bioactmat.2020.08.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bioactmat_2020_08_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon