SoySNP618K array: A high‐resolution single nucleotide polymorphism platform as a valuable genomic resource for soybean genetics and breeding
ABSTRACT Innovations in genomics have enabled the development of low‐cost, high‐resolution, single nucleotide polymorphism (SNP) genotyping arrays that accelerate breeding progress and support basic research in crop science. Here, we developed and validated the SoySNP618K array (618,888 SNPs) for th...
Saved in:
Cover
Loading…
Abstract | ABSTRACT
Innovations in genomics have enabled the development of low‐cost, high‐resolution, single nucleotide polymorphism (SNP) genotyping arrays that accelerate breeding progress and support basic research in crop science. Here, we developed and validated the SoySNP618K array (618,888 SNPs) for the important crop soybean. The SNPs were selected from whole‐genome resequencing data containing 2,214 diverse soybean accessions; 29.34% of the SNPs mapped to genic regions representing 86.85% of the 56,044 annotated high‐confidence genes. Identity‐by‐state analyses of 318 soybeans revealed 17 redundant accessions, highlighting the potential of the SoySNP618K array in supporting gene bank management. The patterns of population stratification and genomic regions enriched through domestication were highly consistent with previous findings based on resequencing data, suggesting that the ascertainment bias in the SoySNP618K array was largely compensated for. Genome‐wide association mapping in combination with reported quantitative trait loci enabled fine‐mapping of genes known to influence flowering time, E2 and GmPRR3b, and of a new candidate gene, GmVIP5. Moreover, genomic prediction of flowering and maturity time in 502 recombinant inbred lines was highly accurate (>0.65). Thus, the SoySNP618K array is a valuable genomic tool that can be used to address many questions in applied breeding, germplasm management, and basic crop research.
To accelerate breeding progress and support basic research in soybean, the customized SoySNP618K array contains 618,888 SNPs selected from > 2,000 diverse, re‐sequenced soybean genomes. SoySNP618K is a valuable genomic tool to address questions in applied breeding, germplasm management, and basic research. |
---|---|
AbstractList | ABSTRACT
Innovations in genomics have enabled the development of low‐cost, high‐resolution, single nucleotide polymorphism (SNP) genotyping arrays that accelerate breeding progress and support basic research in crop science. Here, we developed and validated the SoySNP618K array (618,888 SNPs) for the important crop soybean. The SNPs were selected from whole‐genome resequencing data containing 2,214 diverse soybean accessions; 29.34% of the SNPs mapped to genic regions representing 86.85% of the 56,044 annotated high‐confidence genes. Identity‐by‐state analyses of 318 soybeans revealed 17 redundant accessions, highlighting the potential of the SoySNP618K array in supporting gene bank management. The patterns of population stratification and genomic regions enriched through domestication were highly consistent with previous findings based on resequencing data, suggesting that the ascertainment bias in the SoySNP618K array was largely compensated for. Genome‐wide association mapping in combination with reported quantitative trait loci enabled fine‐mapping of genes known to influence flowering time, E2 and GmPRR3b, and of a new candidate gene, GmVIP5. Moreover, genomic prediction of flowering and maturity time in 502 recombinant inbred lines was highly accurate (>0.65). Thus, the SoySNP618K array is a valuable genomic tool that can be used to address many questions in applied breeding, germplasm management, and basic crop research.
To accelerate breeding progress and support basic research in soybean, the customized SoySNP618K array contains 618,888 SNPs selected from > 2,000 diverse, re‐sequenced soybean genomes. SoySNP618K is a valuable genomic tool to address questions in applied breeding, germplasm management, and basic research. Innovations in genomics have enabled the devel-opment of low-cost, high-resolution, single nu-cleotide polymorphism (SNP) genotyping arrays that accelerate breeding progress and support basic research in crop science. Here, we devel-oped and validated the SoySNP618K array (618,888 SNPs) for the important crop soybean. The SNPs were selected from whole-genome re-sequencing data containing 2,214 diverse soybean accessions;29.34%of the SNPs mapped to genic regions representing 86.85% of the 56,044 annotated high-confidence genes. Identity-by-state analyses of 318 soybeans revealed 17 redundant accessions, highlighting the potential of the SoySNP618K array in supporting gene bank man-agement. The patterns of population stratification and genomic regions enriched through domes-tication were highly consistent with previous find-ings based on resequencing data, suggesting that the ascertainment bias in the SoySNP618K array was largely compensated for. Genome-wide asso-ciation mapping in combination with reported quantitative trait loci enabled fine-mapping of genes known to influence flowering time, E2 and GmPRR3b, and of a new candidate gene, GmVIP5. Moreover, genomic prediction of flowering and maturity time in 502 recombinant inbred lines was highly accurate (>0.65). Thus, the SoySNP618K array is a valuable genomic tool that can be used to address many questions in applied breeding, germplasm management, and basic crop research. Innovations in genomics have enabled the development of low-cost, high-resolution, single nucleotide polymorphism (SNP) genotyping arrays that accelerate breeding progress and support basic research in crop science. Here, we developed and validated the SoySNP618K array (618,888 SNPs) for the important crop soybean. The SNPs were selected from whole-genome resequencing data containing 2,214 diverse soybean accessions; 29.34% of the SNPs mapped to genic regions representing 86.85% of the 56,044 annotated high-confidence genes. Identity-by-state analyses of 318 soybeans revealed 17 redundant accessions, highlighting the potential of the SoySNP618K array in supporting gene bank management. The patterns of population stratification and genomic regions enriched through domestication were highly consistent with previous findings based on resequencing data, suggesting that the ascertainment bias in the SoySNP618K array was largely compensated for. Genome-wide association mapping in combination with reported quantitative trait loci enabled fine-mapping of genes known to influence flowering time, E2 and GmPRR3b, and of a new candidate gene, GmVIP5. Moreover, genomic prediction of flowering and maturity time in 502 recombinant inbred lines was highly accurate (>0.65). Thus, the SoySNP618K array is a valuable genomic tool that can be used to address many questions in applied breeding, germplasm management, and basic crop research.Innovations in genomics have enabled the development of low-cost, high-resolution, single nucleotide polymorphism (SNP) genotyping arrays that accelerate breeding progress and support basic research in crop science. Here, we developed and validated the SoySNP618K array (618,888 SNPs) for the important crop soybean. The SNPs were selected from whole-genome resequencing data containing 2,214 diverse soybean accessions; 29.34% of the SNPs mapped to genic regions representing 86.85% of the 56,044 annotated high-confidence genes. Identity-by-state analyses of 318 soybeans revealed 17 redundant accessions, highlighting the potential of the SoySNP618K array in supporting gene bank management. The patterns of population stratification and genomic regions enriched through domestication were highly consistent with previous findings based on resequencing data, suggesting that the ascertainment bias in the SoySNP618K array was largely compensated for. Genome-wide association mapping in combination with reported quantitative trait loci enabled fine-mapping of genes known to influence flowering time, E2 and GmPRR3b, and of a new candidate gene, GmVIP5. Moreover, genomic prediction of flowering and maturity time in 502 recombinant inbred lines was highly accurate (>0.65). Thus, the SoySNP618K array is a valuable genomic tool that can be used to address many questions in applied breeding, germplasm management, and basic crop research. Innovations in genomics have enabled the development of low‐cost, high‐resolution, single nucleotide polymorphism (SNP) genotyping arrays that accelerate breeding progress and support basic research in crop science. Here, we developed and validated the SoySNP618K array (618,888 SNPs) for the important crop soybean. The SNPs were selected from whole‐genome resequencing data containing 2,214 diverse soybean accessions; 29.34% of the SNPs mapped to genic regions representing 86.85% of the 56,044 annotated high‐confidence genes. Identity‐by‐state analyses of 318 soybeans revealed 17 redundant accessions, highlighting the potential of the SoySNP618K array in supporting gene bank management. The patterns of population stratification and genomic regions enriched through domestication were highly consistent with previous findings based on resequencing data, suggesting that the ascertainment bias in the SoySNP618K array was largely compensated for. Genome‐wide association mapping in combination with reported quantitative trait loci enabled fine‐mapping of genes known to influence flowering time, E2 and GmPRR3b , and of a new candidate gene, GmVIP5 . Moreover, genomic prediction of flowering and maturity time in 502 recombinant inbred lines was highly accurate (>0.65). Thus, the SoySNP618K array is a valuable genomic tool that can be used to address many questions in applied breeding, germplasm management, and basic crop research. Innovations in genomics have enabled the development of low-cost, high-resolution, single nucleotide polymorphism (SNP) genotyping arrays that accelerate breeding progress and support basic research in crop science. Here, we developed and validated the SoySNP618K array (618,888 SNPs) for the important crop soybean. The SNPs were selected from whole-genome resequencing data containing 2,214 diverse soybean accessions; 29.34% of the SNPs mapped to genic regions representing 86.85% of the 56,044 annotated high-confidence genes. Identity-by-state analyses of 318 soybeans revealed 17 redundant accessions, highlighting the potential of the SoySNP618K array in supporting gene bank management. The patterns of population stratification and genomic regions enriched through domestication were highly consistent with previous findings based on resequencing data, suggesting that the ascertainment bias in the SoySNP618K array was largely compensated for. Genome-wide association mapping in combination with reported quantitative trait loci enabled fine-mapping of genes known to influence flowering time, E2 and GmPRR3b, and of a new candidate gene, GmVIP5. Moreover, genomic prediction of flowering and maturity time in 502 recombinant inbred lines was highly accurate (>0.65). Thus, the SoySNP618K array is a valuable genomic tool that can be used to address many questions in applied breeding, germplasm management, and basic crop research. |
Author | Fu, Guang‐Hui Wang, Xiao‐Bo Li, Ying‐Hui Su, Shan‐Shan Qi, Zhao‐Ming Wang, Xing Sun, Ru‐Jian Chen, Qing‐Shan Tian, Yu Reif, Jochen C. Qiu, Li‐Juan Li, Yan‐Fei Ji, Ya‐Liang Li, De‐Lin Xu, Ze‐Jun Liu, Zhang‐Xiong Liu, Ji‐Qiang |
AuthorAffiliation | The National Key Facility for Crop Gene Resources and Genetic Improvement(NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement(MOA)/Key Laboratory of Soybean Biology(Beijing)(MOA),Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China%Beijing Compass Biotechnology Co.Ltd,Beijing 102206,China%Department of Breeding Research,Leibniz Institute of Plant Genetics and Crop Plant Research(IPK),Gatersleben 06466,Germany%Key Laboratory of Soybean Biology in Chinese Ministry of Education(Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry),Northeast Agricultural University,Harbin 150030,China%School of Agronomy,Anhui Agricultural University,Hefei 230036,China%Xuzhou Institute of Agricultural Sciences of Xu-huai Region of Jiangsu,Xuzhou 221131,China%The National Key Facility for Crop Gene Resources and Genetic Improvement(NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement(MOA)/Key Laboratory |
AuthorAffiliation_xml | – name: The National Key Facility for Crop Gene Resources and Genetic Improvement(NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement(MOA)/Key Laboratory of Soybean Biology(Beijing)(MOA),Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China%Beijing Compass Biotechnology Co.Ltd,Beijing 102206,China%Department of Breeding Research,Leibniz Institute of Plant Genetics and Crop Plant Research(IPK),Gatersleben 06466,Germany%Key Laboratory of Soybean Biology in Chinese Ministry of Education(Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry),Northeast Agricultural University,Harbin 150030,China%School of Agronomy,Anhui Agricultural University,Hefei 230036,China%Xuzhou Institute of Agricultural Sciences of Xu-huai Region of Jiangsu,Xuzhou 221131,China%The National Key Facility for Crop Gene Resources and Genetic Improvement(NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement(MOA)/Key Laboratory of Soybean Biology(Beijing)(MOA),Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China;Department of Plant Genetics and Breeding,China Agricultural University,Beijing 100193,China%The National Key Facility for Crop Gene Resources and Genetic Improvement(NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement(MOA)/Key Laboratory of Soybean Biology(Beijing)(MOA),Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China;Key Laboratory of Soybean Biology in Chinese Ministry of Education(Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry),Northeast Agricultural University,Harbin 150030,China;Hulun Buir Institution of Agricultural Sciences,ZhalantunInner Mongolia 021000,China%Suzhou Academy of Agricultural Sciences,Suzhou 234000,China |
Author_xml | – sequence: 1 givenname: Yan‐Fei orcidid: 0000-0001-5566-7222 surname: Li fullname: Li, Yan‐Fei organization: Chinese Academy of Agricultural Sciences – sequence: 2 givenname: Ying‐Hui orcidid: 0000-0001-7089-4263 surname: Li fullname: Li, Ying‐Hui organization: Chinese Academy of Agricultural Sciences – sequence: 3 givenname: Shan‐Shan orcidid: 0000-0003-1850-4090 surname: Su fullname: Su, Shan‐Shan organization: Beijing Compass Biotechnology Co. Ltd – sequence: 4 givenname: Jochen C. orcidid: 0000-0002-6742-265X surname: Reif fullname: Reif, Jochen C. organization: Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) – sequence: 5 givenname: Zhao‐Ming orcidid: 0000-0002-0657-9127 surname: Qi fullname: Qi, Zhao‐Ming organization: Northeast Agricultural University – sequence: 6 givenname: Xiao‐Bo orcidid: 0000-0002-2810-9249 surname: Wang fullname: Wang, Xiao‐Bo organization: Anhui Agricultural University – sequence: 7 givenname: Xing orcidid: 0000-0002-9214-2385 surname: Wang fullname: Wang, Xing organization: Xuzhou Institute of Agricultural Sciences of Xu‐huai Region of Jiangsu – sequence: 8 givenname: Yu orcidid: 0000-0002-2765-0156 surname: Tian fullname: Tian, Yu organization: Chinese Academy of Agricultural Sciences – sequence: 9 givenname: De‐Lin orcidid: 0000-0002-3689-3790 surname: Li fullname: Li, De‐Lin organization: China Agricultural University – sequence: 10 givenname: Ru‐Jian orcidid: 0000-0003-0112-5713 surname: Sun fullname: Sun, Ru‐Jian organization: Hulun Buir Institution of Agricultural Sciences – sequence: 11 givenname: Zhang‐Xiong orcidid: 0000-0002-3783-2754 surname: Liu fullname: Liu, Zhang‐Xiong organization: Chinese Academy of Agricultural Sciences – sequence: 12 givenname: Ze‐Jun orcidid: 0000-0001-8379-1140 surname: Xu fullname: Xu, Ze‐Jun organization: Xuzhou Institute of Agricultural Sciences of Xu‐huai Region of Jiangsu – sequence: 13 givenname: Guang‐Hui orcidid: 0000-0002-7336-1769 surname: Fu fullname: Fu, Guang‐Hui organization: Suzhou Academy of Agricultural Sciences – sequence: 14 givenname: Ya‐Liang orcidid: 0000-0001-8772-2986 surname: Ji fullname: Ji, Ya‐Liang organization: Beijing Compass Biotechnology Co. Ltd – sequence: 15 givenname: Qing‐Shan orcidid: 0000-0002-3714-9066 surname: Chen fullname: Chen, Qing‐Shan organization: Northeast Agricultural University – sequence: 16 givenname: Ji‐Qiang orcidid: 0000-0002-7419-5379 surname: Liu fullname: Liu, Ji‐Qiang organization: Beijing Compass Biotechnology Co. Ltd – sequence: 17 givenname: Li‐Juan orcidid: 0000-0001-5777-3344 surname: Qiu fullname: Qiu, Li‐Juan email: qiulijuan@caas.cn organization: Chinese Academy of Agricultural Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34914170$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAQxyNURD_gwgMgSwgJIW2xHceOuZWKj0IFlQpny3Emu145drATSjjxBIhn5EnwslsOFULMxZb8-89_PDOHxZ4PHoriPsHHJMfTtR2aY1JSTG8VB0QwthASy71854IuJBZ0vzhMaY1xWWNO7xT7JZOEEYEPiu-XYb58d8FJ_RbpGPX8DJ2glV2ufn77ESEFN402eJSsXzpAfjIOwmhbQENwcx_isLKpR4PTYxdij3RCGn3WbtJNxpfgQ28N2iSaogGUGZTC3ID2m0cYrckC36ImArTZ425xu9Muwb3deVR8fPniw-nrxfn7V2enJ-cLwypOF8Aka7UwXGvcYVFLU0rCmWkaAVxwIWvD8ldl21JcdSAqXFKO6xZXZdkwCeVR8Wib90r7TvulWucCfXZUX6--NLmTFJe5XZl7vOWGGD5NkEbV22TAOe0hTElRzuq6ErRm_4ESLHGVa8vowxvoH3vKS0lz1CRTD3bU1PTQqiHaXsdZXQ8vA3gLmBhSitApY0e9mdcYtXWKYLXZD7XZD_V7P7LkyQ3Jdda_wmTXJOtg_gep3pxdPN9qfgEI08rX |
CitedBy_id | crossref_primary_10_1186_s12870_023_04519_x crossref_primary_10_1007_s00122_023_04299_w crossref_primary_10_1016_j_hpj_2023_12_011 crossref_primary_10_1111_pbi_14254 crossref_primary_10_1186_s12864_024_10382_3 crossref_primary_10_1007_s11033_023_08260_4 crossref_primary_10_1007_s00122_022_04222_9 crossref_primary_10_1007_s11032_023_01378_0 crossref_primary_10_1016_j_jgg_2025_02_004 |
Cites_doi | 10.1038/nbt.3096 10.1111/tpj.12755 10.1046/j.1439-0523.2000.00501.x 10.1093/aob/mct269 10.1073/pnas.1000088107 10.1371/journal.pgen.1004061 10.1016/j.cell.2020.05.023 10.1111/nph.15077 10.1038/nature11651 10.1111/j.1558-5646.1984.tb05657.x 10.2135/cropsci2006.12.0838tpg 10.1038/nrg1249 10.1007/s11103-005-0257-z 10.1093/bioinformatics/btm308 10.1371/journal.pone.0074612 10.1111/tpj.15089 10.1093/bioinformatics/bty875 10.1016/S0378-1119(99)00219-X 10.1017/S1479262110000493 10.1038/srep20728 10.1534/genetics.108.092742 10.1016/j.jare.2019.10.013 10.1105/tpc.114.126938 10.1038/ng0997-21 10.1038/s41588-018-0229-2 10.1002/bies.201300014 10.1038/srep45226 10.1038/s41586-018-0063-9 10.1093/genetics/157.4.1819 10.1086/519795 10.20944/preprints202010.0460.v2 10.1093/bioinformatics/btr330 10.1038/s41467-020-20337-3 10.1038/ng.715 10.1111/jipb.12934 10.1186/s12862-016-0653-9 10.1186/s12864-021-07663-6 10.1101/gr.094052.109 10.1101/gr.100545.109 10.1371/journal.pone.0232479 10.1534/genetics.110.125062 10.1016/j.molp.2020.01.014 10.1136/bmj.310.6973.170 10.1007/s00122-018-3272-6 10.1073/pnas.1717070115 10.1111/pbi.13361 10.1007/s00122-011-1562-3 10.1111/tpj.14025 10.1038/s41598-020-78622-6 10.3390/agronomy3010117 10.1038/s41477-017-0084-7 10.1111/pbi.13170 10.1371/journal.pone.0245178 10.3835/plantgenome2015.04.0020 10.1038/s41588-020-0604-7 10.1073/pnas.1117982109 10.1016/j.molp.2017.06.008 10.1105/tpc.16.00568 10.1371/journal.pone.0054985 10.1534/g3.115.019000 10.1126/science.1228746 10.1073/pnas.96.2.778 10.1111/tpj.12695 10.1105/tpc.105.033266 10.1371/journal.pgen.1005767 10.3389/fpls.2017.01792 10.1186/1471-2164-14-579 10.3835/plantgenome2015.11.0120 10.1038/nature08670 10.1371/journal.pgen.1006770 10.1073/pnas.1417282111 10.1111/pbi.13206 10.18637/jss.v067.i01 |
ContentType | Journal Article |
Copyright | 2021 Institute of Botany, Chinese Academy of Sciences 2021 Institute of Botany, Chinese Academy of Sciences. 2022 Institute of Botany, Chinese Academy of Sciences Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2021 Institute of Botany, Chinese Academy of Sciences – notice: 2021 Institute of Botany, Chinese Academy of Sciences. – notice: 2022 Institute of Botany, Chinese Academy of Sciences – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7T7 8FD C1K FR3 P64 RC3 7X8 7S9 L.6 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1111/jipb.13202 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE AGRICOLA Genetics Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1744-7909 |
EndPage | 648 |
ExternalDocumentID | zwxb202203003 34914170 10_1111_jipb_13202 JIPB13202 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2021YFD1201600; 2020YFE0202300 – fundername: Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences Platform of National Crop Germplasm Resources of China funderid: Platform of National Crop Germplasm Resources of China; 2016‐004, 2017‐004; Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences; CAAS‐ZDRW20210 – fundername: Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences Platform of National Crop Germplasm Resources of China grantid: 2016-004, 2017-004 – fundername: Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences Platform of National Crop Germplasm Resources of China grantid: CAAS-ZDRW20210 – fundername: Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences Platform of National Crop Germplasm Resources of China grantid: Platform of National Crop Germplasm Resources of China – fundername: Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences Platform of National Crop Germplasm Resources of China grantid: Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences – fundername: National Key Research and Development Program of China grantid: 2020YFE0202300 – fundername: National Key Research and Development Program of China grantid: 2021YFD1201600 |
GroupedDBID | --- -SA -S~ .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29K 2B. 2C. 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VR 5VS 5XA 5XB 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 92E 92I 92Q 930 93N A03 A8Z AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXDM AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFUIB AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CAJEA CCEZO CCVFK CHBEP CHDYS COF CS3 CW9 D-E D-F D-I DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FA0 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q-- Q.N Q11 QB0 R.K ROL RX1 SJN SUPJJ SV3 TCJ TGP TUS U1G U5K UB1 W8V W99 WBKPD WFFXF WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QO 7T7 8FD C1K FR3 P64 RC3 7X8 7S9 L.6 4A8 PSX |
ID | FETCH-LOGICAL-c4562-e494da7c6aa0f0789c39164cbb7e676798c48069dd205fe75032608d0533b49e3 |
IEDL.DBID | 24P |
ISSN | 1672-9072 1744-7909 |
IngestDate | Thu May 29 04:01:05 EDT 2025 Fri Jul 11 18:27:32 EDT 2025 Thu Jul 10 23:11:29 EDT 2025 Fri Jul 25 21:08:25 EDT 2025 Mon Jul 21 06:02:29 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Tue Jul 01 03:06:10 EDT 2025 Wed Jan 22 16:25:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | soybean genomic selection marker-assisted selection gene discovery functional single nucleotide polymorphism array genome-wide association studies |
Language | English |
License | 2021 Institute of Botany, Chinese Academy of Sciences. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4562-e494da7c6aa0f0789c39164cbb7e676798c48069dd205fe75032608d0533b49e3 |
Notes | Baohui Liu, Guangzhou University, China These authors contributed equally to this work. Edited by ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5777-3344 0000-0002-7419-5379 0000-0001-8379-1140 0000-0002-6742-265X 0000-0003-1850-4090 0000-0002-9214-2385 0000-0002-3714-9066 0000-0001-5566-7222 0000-0001-8772-2986 0000-0002-7336-1769 0000-0002-0657-9127 0000-0002-3689-3790 0000-0001-7089-4263 0000-0002-2765-0156 0000-0003-0112-5713 0000-0002-3783-2754 0000-0002-2810-9249 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.13202 |
PMID | 34914170 |
PQID | 2639222281 |
PQPubID | 2045135 |
PageCount | 17 |
ParticipantIDs | wanfang_journals_zwxb202203003 proquest_miscellaneous_2648857284 proquest_miscellaneous_2610905798 proquest_journals_2639222281 pubmed_primary_34914170 crossref_citationtrail_10_1111_jipb_13202 crossref_primary_10_1111_jipb_13202 wiley_primary_10_1111_jipb_13202_JIPB13202 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | China (Republic : 1949- ) |
PublicationPlace_xml | – name: China (Republic : 1949- ) – name: Hoboken |
PublicationTitle | Journal of integrative plant biology |
PublicationTitleAlternate | J Integr Plant Biol |
PublicationTitle_FL | Journal of Integrative Plant Biology |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc Department of Plant Genetics and Breeding,China Agricultural University,Beijing 100193,China%The National Key Facility for Crop Gene Resources and Genetic Improvement(NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement(MOA)/Key Laboratory of Soybean Biology(Beijing)(MOA),Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China Key Laboratory of Soybean Biology in Chinese Ministry of Education(Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry),Northeast Agricultural University,Harbin 150030,China The National Key Facility for Crop Gene Resources and Genetic Improvement(NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement(MOA)/Key Laboratory of Soybean Biology(Beijing)(MOA),Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China%Beijing Compass Biotechnology Co.Ltd,Beijing 102206,China%Department of Breeding Research,Leibniz Institute of Plant Genetics and Crop Plant Research(IPK),Gatersleben 06466,Germany%Key Laboratory of Soybean Biology in Chinese Ministry of Education(Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry),Northeast Agricultural University,Harbin 150030,China%School of Agronomy,Anhui Agricultural University,Hefei 230036,China%Xuzhou Institute of Agricultural Sciences of Xu-huai Region of Jiangsu,Xuzhou 221131,China%The National Key Facility for Crop Gene Resources and Genetic Improvement(NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement(MOA)/Key Laboratory of Soybean Biology(Beijing)(MOA),Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China Hulun Buir Institution of Agricultural Sciences,ZhalantunInner Mongolia 021000,China%Suzhou Academy of Agricultural Sciences,Suzhou 234000,China |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Hulun Buir Institution of Agricultural Sciences,ZhalantunInner Mongolia 021000,China%Suzhou Academy of Agricultural Sciences,Suzhou 234000,China – name: The National Key Facility for Crop Gene Resources and Genetic Improvement(NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement(MOA)/Key Laboratory of Soybean Biology(Beijing)(MOA),Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China%Beijing Compass Biotechnology Co.Ltd,Beijing 102206,China%Department of Breeding Research,Leibniz Institute of Plant Genetics and Crop Plant Research(IPK),Gatersleben 06466,Germany%Key Laboratory of Soybean Biology in Chinese Ministry of Education(Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry),Northeast Agricultural University,Harbin 150030,China%School of Agronomy,Anhui Agricultural University,Hefei 230036,China%Xuzhou Institute of Agricultural Sciences of Xu-huai Region of Jiangsu,Xuzhou 221131,China%The National Key Facility for Crop Gene Resources and Genetic Improvement(NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement(MOA)/Key Laboratory of Soybean Biology(Beijing)(MOA),Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China – name: Department of Plant Genetics and Breeding,China Agricultural University,Beijing 100193,China%The National Key Facility for Crop Gene Resources and Genetic Improvement(NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement(MOA)/Key Laboratory of Soybean Biology(Beijing)(MOA),Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China – name: Key Laboratory of Soybean Biology in Chinese Ministry of Education(Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry),Northeast Agricultural University,Harbin 150030,China |
References | 2017; 7 2017; 8 2021b; 16 2013; 3 2010; 107 2020; 62 2015; 33 2014; 26 2010; 463 2020; 15 2004; 5 2018a; 50 2020; 10 2018b; 557 2013; 8 2012; 13 2016a; 6 1979; 76 2020; 18 2012; 492 2010; 20 2013; 14 2015; 81 2020; 52 2018; 218 2018a; 35 1997; 17 1999; 96 2009; 19 2011; 27 2007; 23 2012; 338 2011; 123 2014; 10 2016b; 16 2015; 5 2021; 105 2020; 182 2006 2021a; 22 2017; 29 1995; 310 2018b; 4 2014; 111 2016; 12 2012; 109 2011; 9 2014; 113 2015; 67 2008; 180 1993; 14 2001; 157 2010; 42 2020a; 13 2020b; 18 2014; 80 2021; 12 2013; 35 1984; 38 2020 2017; 10 2018; 115 2017; 13 2007; 81 1999; 234 2018; 96 2020; 22 2005; 17 2016; 9 2011; 188 2007; 47 2005; 57 2019; 132 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 Wang K. (e_1_2_9_64_1) 2012; 13 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Muralidharan K. (e_1_2_9_43_1) 1993; 14 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_29_1 Qiu L. (e_1_2_9_48_1) 2006 |
References_xml | – volume: 12 start-page: 97 year: 2021 article-title: The patterns of deleterious mutations during the domestication of soybean publication-title: Nat. Commun – volume: 180 start-page: 995 year: 2008 end-page: 1007 article-title: Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene publication-title: Genetics – volume: 182 start-page: 162 year: 2020 end-page: 176 article-title: Pan‐genome of wild and cultivated soybeans publication-title: Cell – volume: 6 year: 2016a article-title: Development and application of a novel genome‐wide SNP array reveals domestication history in soybean publication-title: Sci. Rep – volume: 18 start-page: 389 year: 2020b end-page: 401 article-title: Identification of loci controlling adaptation in Chinese soya bean landraces via a combination of conventional and bioclimatic GWAS publication-title: Plant Biotechnol. J – volume: 310 start-page: 170 year: 1995 article-title: Multiple significance tests: The Bonferroni method publication-title: Br. Med J – volume: 47 start-page: S113 year: 2007 end-page: S124 article-title: A rearrangement resulting in small tandem repeats in the F3′ 5′H gene of white flower genotypes is associated with the soybean locus publication-title: Crop Sci – volume: 16 year: 2021b article-title: How array design creates SNP ascertainment bias publication-title: PLoS One – volume: 14 start-page: 579 year: 2013 article-title: Molecular footprints of domestication and improvement in soybean revealed by whole genome re‐sequencing publication-title: BMC Genomics – volume: 42 start-page: 1053 year: 2010 end-page: 1059 article-title: Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection publication-title: Nat. Genet – volume: 9 start-page: 1 year: 2016 end-page: 9 article-title: GAPIT version 2: An enhanced integrated tool for genomic association and prediction publication-title: Plant Genome – volume: 13 start-page: 745 year: 2020a end-page: 759 article-title: A domestication‐associated gene regulates the circadian clock and flowering time in soybean publication-title: Mol. Plant – volume: 62 start-page: 546 year: 2020 end-page: 549 article-title: Flowering phenology as a core domestication trait in soybean publication-title: J. Integr. Plant Biol – volume: 14 start-page: 362 year: 1993 end-page: 364 article-title: Concentration of primer and template qualitatively affects products in random‐amplified polymorphic DNA PCR publication-title: Biotechniques – volume: 76 start-page: 5269 year: 1979 end-page: 5273 article-title: Mathematical model for studying genetic variation in terms of restriction endonucleases publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 19 start-page: 1655 year: 2009 end-page: 1664 article-title: Fast model‐based estimation of ancestry in unrelated individuals publication-title: Genome Res – volume: 9 issue: 2 year: 2016 article-title: Dissecting the genetic basis of resistance to soybean Cyst Nematode combining linkage and association mapping publication-title: Plant Genome – volume: 188 start-page: 395 year: 2011 end-page: 407 article-title: A map‐based cloning strategy employing a residual heterozygous line reveals that the gene is involved in soybean maturity and flowering publication-title: Genetics – volume: 557 start-page: 43 year: 2018b end-page: 49 article-title: Genomic variation in 3,010 diverse accessions of Asian cultivated rice publication-title: Nature – volume: 9 start-page: 109 year: 2011 end-page: 122 article-title: The worldwide utilization of the Chinese soybean germplasm collection publication-title: Plant Genet. Resour – volume: 57 start-page: 461 year: 2005 end-page: 485 article-title: Linkage disequilibrium and association studies in higher plants: Present status and future prospects publication-title: Plant Mol. Biol – volume: 16 start-page: 79 year: 2016b article-title: Molecular and geographic evolutionary support for the essential role of in soybean domestication of flowering time publication-title: BMC Evol. Biol – volume: 157 start-page: 1819 year: 2001 end-page: 1829 article-title: Prediction of total genetic value using genome‐wide dense marker maps publication-title: Genetics – volume: 33 start-page: 408 year: 2015 end-page: 414 article-title: Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean publication-title: Nat. Biotechnol – volume: 3 start-page: 117 year: 2013 end-page: 134 article-title: Genetic variation in soybean at the maturity locus is involved in adaptation to long days at high latitudes publication-title: Agronomy – volume: 38 start-page: 1358 year: 1984 end-page: 1370 article-title: Estimating f‐statistics for the analysis of population structure publication-title: Evolution – volume: 52 start-page: 428 year: 2020 end-page: 436 article-title: Stepwise selection on homeologous genes controlling flowering and maturity during soybean domestication publication-title: Nat. Genet – volume: 105 start-page: 1113 year: 2021 end-page: 1122 article-title: New resources for genetic studies in maize ( L.): A genome‐wide Maize6H‐60K single nucleotide polymorphism array and its application publication-title: Plant J – volume: 8 year: 2013 article-title: Development and evaluation of SoySNP50K, a high‐density genotyping array for soybean publication-title: PLoS One – volume: 115 start-page: E4512 year: 2018 end-page: E4521 article-title: An atypical N‐ethylmaleimide sensitive factor enables the viability of nematode‐resistant soybeans publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 96 start-page: 147 year: 2018 end-page: 162 article-title: Natural variation in promoter affects photoperiod control of flowering time and maturity in soybean publication-title: Plant J – volume: 13 year: 2017 article-title: An R2R3‐type MYB transcription factor, , regulates isoflavone biosynthesis in soybean publication-title: PLoS Genet – volume: 111 start-page: 17797 year: 2014 end-page: 17802 article-title: Molecular basis of a shattering resistance boosting global dissemination of soybean publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 35 start-page: 1786 year: 2018a end-page: 1788 article-title: PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files publication-title: Bioinformatics – volume: 22 start-page: 119 year: 2020 end-page: 135 article-title: GWAS: Fast‐forwarding gene identification and characterization in temperate Cereals: Lessons from Barley – A review publication-title: J. Adv. Res – volume: 22 start-page: 1 year: 2021a end-page: 13 article-title: How imputation can mitigate SNP ascertainment Bias publication-title: BMC Genomics – volume: 67 start-page: 1 year: 2015 end-page: 48 article-title: Fitting linear mixed‐effects publication-title: models using lme4. J. Stat. Softw. – volume: 29 start-page: 277 year: 2017 end-page: 291 article-title: Phosphorylation of SPT5 by CDKD;2 is required for VIP5 recruitment and normal flowering in publication-title: Plant Cell – volume: 10 start-page: 1047 year: 2017 end-page: 1064 article-title: Crop breeding chips and genotyping platforms: Progress, challenges, and perspectives publication-title: Mol. Plant – volume: 123 start-page: 11 year: 2011 end-page: 20 article-title: Extent and genome‐wide distribution of linkage disequilibrium in commercial maize germplasm publication-title: Theor. Appl. Genet – volume: 10 year: 2014 article-title: The acid phosphatase‐encoding gene contributes to soybean tolerance to low‐phosphorus stress publication-title: PLoS Genet – volume: 96 start-page: 778 year: 1999 end-page: 783 article-title: A cytochrome b5 is required for full activity of flavonoid 3′, 5′‐hydroxylase, a cytochrome P450 involved in the formation of blue flower colors publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 12 year: 2016 article-title: Iterative usage of fixed and random effect models for powerful and efficient genome‐wide association studies publication-title: PLoS Genet – volume: 17 start-page: 2327 year: 2005 end-page: 2339 article-title: Actin‐related protein2/3 complex component ARPC1 is required for proper cell morphogenesis and polarized cell growth in publication-title: Plant Cell – volume: 218 start-page: 1247 year: 2018 end-page: 1259 article-title: Targeted resequencing reveals genomic signatures of barley domestication publication-title: New Phytol – volume: 8 start-page: 1792 year: 2017 article-title: Development and evaluation of a barley 50k iSelect SNP array publication-title: Front. Plant Sci – volume: 80 start-page: 937 year: 2014 end-page: 950 article-title: Salinity tolerance in soybean is modulated by natural variation in publication-title: Plant J – volume: 113 start-page: 429 year: 2014 end-page: 441 article-title: Natural variation in the genes responsible for maturity loci , , and in soybean publication-title: Ann. Bot – volume: 15 year: 2020 article-title: An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies publication-title: PLoS One – volume: 81 start-page: 559 year: 2007 end-page: 575 article-title: PLINK: a tool set for whole‐genome association and population‐based linkage analyses publication-title: Am. J. Hum. Genet – volume: 13 start-page: 507 year: 2012 end-page: 514 article-title: Exploration and studies of wild soybean germplasm resources in the China Genebank during recent decade publication-title: J. Plant Genet. Resour – volume: 10 start-page: 1 year: 2020 end-page: 11 article-title: A new SNP genotyping technology Target SNP‐seq and its application in genetic analysis of cucumber varieties publication-title: Sci. Rep – volume: 5 start-page: 1999 year: 2015 end-page: 2006 article-title: Fingerprinting soybean germplasm and its utility in genomic research publication-title: G3 (Bethesda) – volume: 132 start-page: 1195 year: 2019 end-page: 1209 article-title: Genetic dissection of domestication‐related traits in soybean through genotyping‐by‐sequencing of two interspecific mapping populations publication-title: Theor. Appl. Genet – volume: 109 start-page: E2155 year: 2012 end-page: E2164 article-title: Positional cloning and characterization reveal the molecular basis for soybean maturity locus that regulates photoperiodic flowering publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 20 start-page: 393 year: 2010 end-page: 402 article-title: Population differentiation as a test for selective sweeps publication-title: Genome Res – volume: 26 start-page: 2831 year: 2014 end-page: 2842 article-title: is a gain‐of‐function MADS‐domain factor gene that specifies semideterminacy in soybean publication-title: Plant Cell – volume: 23 start-page: 2633 year: 2007 end-page: 2635 article-title: TASSEL: Software for association mapping of complex traits in diverse samples publication-title: Bioinformatics – volume: 81 start-page: 625 year: 2015 end-page: 636 article-title: Development, validation and genetic analysis of a large soybean SNP genotyping array publication-title: Plant J – volume: 5 start-page: 63 year: 2004 end-page: 69 article-title: The evolution of molecular markers‐Just a matter of fashion? publication-title: Nat. Rev. Genet – volume: 50 start-page: 1435 year: 2018a end-page: 1441 article-title: Parallel selection on a dormancy gene during domestication of crops from multiple families publication-title: Nat. Genet – volume: 18 start-page: 57 year: 2020 end-page: 67 article-title: Hybrid breeding of rice via genomic selection publication-title: Plant Biotechnol. J – year: 2006 – volume: 27 start-page: 2156 year: 2011 end-page: 2158 article-title: The variant call format and VCFtools publication-title: Bioinformatics – volume: 17 start-page: 21 year: 1997 end-page: 24 article-title: The use of a genetic map of biallelic markers in linkage studies publication-title: Nat. Genet – volume: 8 year: 2013 article-title: Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity publication-title: PLoS One – volume: 4 start-page: 30 year: 2018b end-page: 35 article-title: Elevation of soybean seed oil content through selection for seed coat shininess publication-title: Nat. Plants – volume: 234 start-page: 177 year: 1999 end-page: 186 article-title: The essence of SNPs publication-title: Gene – volume: 35 start-page: 780 year: 2013 end-page: 786 article-title: SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it publication-title: BioEssays – volume: 338 start-page: 1206 year: 2012 end-page: 1209 article-title: Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean publication-title: Science – volume: 463 start-page: 178 year: 2010 end-page: 183 article-title: Genome sequence of the palaeopolyploid soybean publication-title: Nature – volume: 18 start-page: 1354 year: 2020 end-page: 1360 article-title: The wheat 660K SNP array demonstrates great potential for marker‐assisted selection in polyploid wheat publication-title: Plant Biotechnol. J – volume: 7 year: 2017 article-title: Characterization of the Soluble NSF Attachment Protein gene family identifies two members involved in additive resistance to a plant pathogen publication-title: Sci. Rep – volume: 492 start-page: 256 year: 2012 end-page: 260 article-title: A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens publication-title: Nature – year: 2020 article-title: Ideas in genomic selection with the potential to transform plant molecular breeding: A review publication-title: Preprints – volume: 107 start-page: 8563 year: 2010 end-page: 8568 article-title: Artificial selection for determinate growth habit in soybean publication-title: Proc. Natl. Acad. Sci. U.S.A – ident: e_1_2_9_77_1 doi: 10.1038/nbt.3096 – ident: e_1_2_9_29_1 doi: 10.1111/tpj.12755 – ident: e_1_2_9_44_1 doi: 10.1046/j.1439-0523.2000.00501.x – ident: e_1_2_9_61_1 doi: 10.1093/aob/mct269 – ident: e_1_2_9_59_1 doi: 10.1073/pnas.1000088107 – ident: e_1_2_9_73_1 doi: 10.1371/journal.pgen.1004061 – ident: e_1_2_9_37_1 doi: 10.1016/j.cell.2020.05.023 – ident: e_1_2_9_45_1 doi: 10.1111/nph.15077 – ident: e_1_2_9_35_1 doi: 10.1038/nature11651 – ident: e_1_2_9_69_1 doi: 10.1111/j.1558-5646.1984.tb05657.x – ident: e_1_2_9_71_1 doi: 10.2135/cropsci2006.12.0838tpg – ident: e_1_2_9_51_1 doi: 10.1038/nrg1249 – ident: e_1_2_9_21_1 doi: 10.1007/s11103-005-0257-z – ident: e_1_2_9_8_1 doi: 10.1093/bioinformatics/btm308 – ident: e_1_2_9_23_1 doi: 10.1371/journal.pone.0074612 – ident: e_1_2_9_58_1 doi: 10.1111/tpj.15089 – ident: e_1_2_9_72_1 doi: 10.1093/bioinformatics/bty875 – ident: e_1_2_9_9_1 doi: 10.1016/S0378-1119(99)00219-X – ident: e_1_2_9_49_1 doi: 10.1017/S1479262110000493 – volume-title: Descriptors and Data Standard for Soybean (Glycine spp.) year: 2006 ident: e_1_2_9_48_1 – ident: e_1_2_9_63_1 doi: 10.1038/srep20728 – ident: e_1_2_9_34_1 doi: 10.1534/genetics.108.092742 – ident: e_1_2_9_3_1 doi: 10.1016/j.jare.2019.10.013 – ident: e_1_2_9_46_1 doi: 10.1105/tpc.114.126938 – ident: e_1_2_9_25_1 doi: 10.1038/ng0997-21 – volume: 14 start-page: 362 year: 1993 ident: e_1_2_9_43_1 article-title: Concentration of primer and template qualitatively affects products in random‐amplified polymorphic DNA PCR publication-title: Biotechniques – ident: e_1_2_9_65_1 doi: 10.1038/s41588-018-0229-2 – ident: e_1_2_9_26_1 doi: 10.1002/bies.201300014 – ident: e_1_2_9_27_1 doi: 10.1038/srep45226 – ident: e_1_2_9_66_1 doi: 10.1038/s41586-018-0063-9 – volume: 13 start-page: 507 year: 2012 ident: e_1_2_9_64_1 article-title: Exploration and studies of wild soybean germplasm resources in the China Genebank during recent decade publication-title: J. Plant Genet. Resour – ident: e_1_2_9_41_1 doi: 10.1093/genetics/157.4.1819 – ident: e_1_2_9_47_1 doi: 10.1086/519795 – ident: e_1_2_9_40_1 doi: 10.20944/preprints202010.0460.v2 – ident: e_1_2_9_14_1 doi: 10.1093/bioinformatics/btr330 – ident: e_1_2_9_24_1 doi: 10.1038/s41467-020-20337-3 – ident: e_1_2_9_28_1 doi: 10.1038/ng.715 – ident: e_1_2_9_19_1 doi: 10.1111/jipb.12934 – ident: e_1_2_9_67_1 doi: 10.1186/s12862-016-0653-9 – ident: e_1_2_9_17_1 doi: 10.1186/s12864-021-07663-6 – ident: e_1_2_9_2_1 doi: 10.1101/gr.094052.109 – ident: e_1_2_9_10_1 doi: 10.1101/gr.100545.109 – ident: e_1_2_9_42_1 doi: 10.1371/journal.pone.0232479 – ident: e_1_2_9_68_1 doi: 10.1534/genetics.110.125062 – ident: e_1_2_9_30_1 doi: 10.1016/j.molp.2020.01.014 – ident: e_1_2_9_7_1 doi: 10.1136/bmj.310.6973.170 – ident: e_1_2_9_56_1 doi: 10.1007/s00122-018-3272-6 – ident: e_1_2_9_6_1 doi: 10.1073/pnas.1717070115 – ident: e_1_2_9_55_1 doi: 10.1111/pbi.13361 – ident: e_1_2_9_62_1 doi: 10.1007/s00122-011-1562-3 – ident: e_1_2_9_76_1 doi: 10.1111/tpj.14025 – ident: e_1_2_9_75_1 doi: 10.1038/s41598-020-78622-6 – ident: e_1_2_9_60_1 doi: 10.3390/agronomy3010117 – ident: e_1_2_9_74_1 doi: 10.1038/s41477-017-0084-7 – ident: e_1_2_9_13_1 doi: 10.1111/pbi.13170 – ident: e_1_2_9_18_1 doi: 10.1371/journal.pone.0245178 – ident: e_1_2_9_32_1 doi: 10.3835/plantgenome2015.04.0020 – ident: e_1_2_9_39_1 doi: 10.1038/s41588-020-0604-7 – ident: e_1_2_9_70_1 doi: 10.1073/pnas.1117982109 – ident: e_1_2_9_50_1 doi: 10.1016/j.molp.2017.06.008 – ident: e_1_2_9_38_1 doi: 10.1105/tpc.16.00568 – ident: e_1_2_9_53_1 doi: 10.1371/journal.pone.0054985 – ident: e_1_2_9_54_1 doi: 10.1534/g3.115.019000 – ident: e_1_2_9_12_1 doi: 10.1126/science.1228746 – ident: e_1_2_9_15_1 doi: 10.1073/pnas.96.2.778 – ident: e_1_2_9_20_1 doi: 10.1111/tpj.12695 – ident: e_1_2_9_22_1 doi: 10.1105/tpc.105.033266 – ident: e_1_2_9_36_1 doi: 10.1371/journal.pgen.1005767 – ident: e_1_2_9_5_1 doi: 10.3389/fpls.2017.01792 – ident: e_1_2_9_33_1 doi: 10.1186/1471-2164-14-579 – ident: e_1_2_9_57_1 doi: 10.3835/plantgenome2015.11.0120 – ident: e_1_2_9_52_1 doi: 10.1038/nature08670 – ident: e_1_2_9_11_1 doi: 10.1371/journal.pgen.1006770 – ident: e_1_2_9_16_1 doi: 10.1073/pnas.1417282111 – ident: e_1_2_9_31_1 doi: 10.1111/pbi.13206 – ident: e_1_2_9_4_1 doi: 10.18637/jss.v067.i01 |
SSID | ssj0038062 |
Score | 2.3654912 |
Snippet | ABSTRACT
Innovations in genomics have enabled the development of low‐cost, high‐resolution, single nucleotide polymorphism (SNP) genotyping arrays that... Innovations in genomics have enabled the development of low‐cost, high‐resolution, single nucleotide polymorphism (SNP) genotyping arrays that accelerate... Innovations in genomics have enabled the development of low-cost, high-resolution, single nucleotide polymorphism (SNP) genotyping arrays that accelerate... Innovations in genomics have enabled the devel-opment of low-cost, high-resolution, single nu-cleotide polymorphism (SNP) genotyping arrays that accelerate... |
SourceID | wanfang proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 632 |
SubjectTerms | Arrays Crop science Crops Domestication Flowering functional single nucleotide polymorphism array Gene banks gene discovery Gene mapping Gene polymorphism Genes Genetics Genome, Plant - genetics Genome-Wide Association Study Genomes genome‐wide association studies genomic selection Genomics Genotype Genotyping Germplasm Glycine max - genetics Inbreeding Mapping marker‐assisted selection Nucleotides Plant Breeding Polymorphism Polymorphism, Single Nucleotide - genetics prediction Quantitative trait loci quantitative traits Single-nucleotide polymorphism soybean Soybeans |
Title | SoySNP618K array: A high‐resolution single nucleotide polymorphism platform as a valuable genomic resource for soybean genetics and breeding |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.13202 https://www.ncbi.nlm.nih.gov/pubmed/34914170 https://www.proquest.com/docview/2639222281 https://www.proquest.com/docview/2610905798 https://www.proquest.com/docview/2648857284 https://d.wanfangdata.com.cn/periodical/zwxb202203003 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5VhQMXxD-BUhnBBaSgxPEma8SlBapSRLWiVOot8m-10tZZbbaC5cQTIJ6RJ2HGyQYqUCUuUSSP49iesWdsf58BnkpbWAw7VGq1kqnwXKQyQ7vyGIpJqQpjPQGcPxyW-8fi4GR0sgGv1liYjh9iWHAjy4jjNRm40u2fRj6d6xcEAMYB-Apha0nLuZisx-FinMXrRPOy4lh-xXty0niOZ8h7cTr6y8eMUJ7gVTi96LzG2WfvBlzv3Ua20_XzTdhw4RZc3W3QtVvdhu9HzerocFLm4_dMLRZq9ZLtMCIi_vntB4bTvXYxWhaYORaIwrhZTq1j82aGsT829bQ9Y_OZWpILy1TLFIss4BrFicX1bGrYol_oZyjD2malnQqUSChIzBAsw-g6ToV34Hjv7afX-2l_0UJqKABKnZDCqsqUSmWe-OcNwXGF0bpyROgmx0Zga0preTbyjrY-MQwaW8LxaiFdcRc2QxPcfWBl5Z1zwihujSjwCzmvfO7QK-ZaelMk8Gzd3rXpWcjpMoxZPUQj2Dd17JsEngyy8457459SW-tuq3v7a2uOjhenxa08gcdDMloObYeo4JpzkqFDqSOs3WUyOMCNKpzDE7jXqcTwK4WQucirLIHtXkd-l__18xfNCcRcoCIm8DyqziWVqA_eTXbj24P_EX4I16iU7kzcFmwuF-fuETpJS70dbQGfbz7yX-OhDyY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9SBX0Rv12tNaIvCiu72dzm0rdWLNev46At9G3J15aDa_a4u6LXp_4F4t_Yv8SZbG61KAXfFjLZfM0kM5OZXwj5IG1hwexQqdVKprxmPJUZyFUNppiUqjC2xgTnw2E5OOF7p73TGJuDuTAtPkTncEPJCPs1Cjg6pP-U8vFUf8YMYNiB7_KSCXy5gfHRaiMu-ll4TzQvBYMOCBbRSUMgT1f35nn0l5IZcnl8rfzZTe01HD87j8jDqDfSrXahH5M7zj8h97Yb0O2WT8mPo2Z5NByVeX-fqtlMLTfpFkUk4uurn2BPR_ai6BeYOOoRw7hZjK2j02YCxj_M9Xh-TqcTtUAdlqo5VTTAgGsgRxjX87Ghs-jpp0BD581SO-WxENMgoYK3FMzrcBY-Iyc7X4-_DNL40kJq0AJKHZfcKmFKpbIaAegN5uNyo7VwiOgm-4bDbEprWdarHd59gh3Ut5jIq7l0xXOy5hvvXhJaito5x41i1vAC_pAzUecO1GKmZW2KhHxczXdlIgw5voYxqTpzBNamCmuTkPcd7bQF3_gn1fpq2aoogPOKgebF0LuVJ-RdVwyig_chyrvmAmkwKrUHo7uNBna4noBDPCEvWpboulJwmfNcZAnZiDzyu_3Lb981wyzmAhgxIZ8C69wyiGpvd7Qdvl79D_Fbcn9wfHhQHewO91-TB9hiGyC3TtYWswv3BjSmhd4IcvELGggRqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9KFfFF_G601hV9UYgkm73kVnxp1aMfehzUQt_CfsrBNQl3V_R88i8Q_0b_Emc2uWhRCr4FMpvN7nzszOzObwGeSZtZDDtUbLWSsfBcxDJBvfIYikmpMmM9FTh_GOf7J-LwdHC6Aa_XtTAtPkSfcCPNCPaaFLyx_k8lnzb6JRUAowG-Qrt9JN9cTNZ2OBsm4TrRNC849l_wDpw0nOPp215cjv7yMUMpT-VV9emi8xpWn9FNuNG5jWy35fMt2HDVbbi6V6Nrt7oD34_r1fF4kqfDI6bmc7V6xXYZARH__PYDw-lOuhilBWaOVQRhXC-n1rGmnmHsj1M9XZyxZqaW5MIytWCKBRRwjeSE4no2NWzeJfoZ0rBFvdJOVfSSqiCxQWUZRtdhKbwLJ6N3H9_sx91FC7GhACh2QgqrCpMrlXjCnzdUjiuM1oUjQDc5NAJnU1rLk4F3tPWJYdDQUh2vFtJl92Czqiu3BSwvvHNOGMWtERl-IeWFTx16xVxLb7IInq_nuzQdCjldhjEr-2gEeVMG3kTwtKdtWuyNf1Jtr9lWdvq3KDk6XpySW2kET_rXqDm0HaIqV58TDR1KHeDoLqNBAzcocA2P4H4rEv2vZEKmIi2SCHY6Gfnd_9fPXzSnIuYMBTGCF0F0LhlEeXgw2QtPD_6H-DFcm7wdle8PxkcP4Tp12B6P24bN5fzcPUJ_aal3glr8AnViENs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SoySNP618K+array%3A+A+high%E2%80%90resolution+single+nucleotide+polymorphism+platform+as+a+valuable+genomic+resource+for+soybean+genetics+and+breeding&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=Li%2C+Yan%E2%80%90Fei&rft.au=Li%2C+Ying%E2%80%90Hui&rft.au=Su%2C+Shan%E2%80%90Shan&rft.au=Reif%2C+Jochen+C.&rft.date=2022-03-01&rft.issn=1672-9072&rft.eissn=1744-7909&rft.volume=64&rft.issue=3&rft.spage=632&rft.epage=648&rft_id=info:doi/10.1111%2Fjipb.13202&rft.externalDBID=10.1111%252Fjipb.13202&rft.externalDocID=JIPB13202 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwxb%2Fzwxb.jpg |