Multifunctional intracellular matrix metalloproteinases: implications in disease

Matrix metalloproteinases (MMPs) are zinc‐dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP‐2 i...

Full description

Saved in:
Bibliographic Details
Published inThe FEBS journal Vol. 288; no. 24; pp. 7162 - 7182
Main Authors Bassiouni, Wesam, Ali, Mohammad A. M., Schulz, Richard
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Matrix metalloproteinases (MMPs) are zinc‐dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP‐2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress‐induced injury. Beyond MMP‐2, currently at least eleven other MMPs are known to function intracellularly including MMP‐1, MMP‐3, MMP‐7, MMP‐8, MMP‐9, MMP‐10, MMP‐11, MMP‐12, MMP‐14, MMP‐23 and MMP‐26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease‐dependent and protease‐independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors. Matrix metalloproteinases (MMPs) were first discovered as secreted proteases that cleave extracellular matrix proteins. However, by different mechanisms, they can also remain inside the cell and localize to different subcellular compartments and organelles including, for example, the cytosol, mitochondria, nuclei, and sarcomere. When intracellularly activated, MMPs can also proteolyze specific intracellular proteins to affect both pathological and physiological responses.
AbstractList Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP-2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress-induced injury. Beyond MMP-2, currently at least eleven other MMPs are known to function intracellularly including MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-23 and MMP-26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease-dependent and protease-independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors.
Matrix metalloproteinases (MMPs) are zinc‐dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP‐2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress‐induced injury. Beyond MMP‐2, currently at least eleven other MMPs are known to function intracellularly including MMP‐1, MMP‐3, MMP‐7, MMP‐8, MMP‐9, MMP‐10, MMP‐11, MMP‐12, MMP‐14, MMP‐23 and MMP‐26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease‐dependent and protease‐independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors. Matrix metalloproteinases (MMPs) were first discovered as secreted proteases that cleave extracellular matrix proteins. However, by different mechanisms, they can also remain inside the cell and localize to different subcellular compartments and organelles including, for example, the cytosol, mitochondria, nuclei, and sarcomere. When intracellularly activated, MMPs can also proteolyze specific intracellular proteins to affect both pathological and physiological responses.
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP-2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress-induced injury. Beyond MMP-2, currently at least eleven other MMPs are known to function intracellularly including MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-23 and MMP-26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease-dependent and protease-independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors.Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP-2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress-induced injury. Beyond MMP-2, currently at least eleven other MMPs are known to function intracellularly including MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-23 and MMP-26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease-dependent and protease-independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors.
Author Ali, Mohammad A. M.
Bassiouni, Wesam
Schulz, Richard
Author_xml – sequence: 1
  givenname: Wesam
  surname: Bassiouni
  fullname: Bassiouni, Wesam
  organization: University of Alberta
– sequence: 2
  givenname: Mohammad A. M.
  surname: Ali
  fullname: Ali, Mohammad A. M.
  email: mali@binghamton.edu
  organization: State University of New York‐Binghamton
– sequence: 3
  givenname: Richard
  orcidid: 0000-0002-5045-3193
  surname: Schulz
  fullname: Schulz, Richard
  email: richard.schulz@ualberta.ca
  organization: University of Alberta
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33405316$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LxDAURYOMqDO68QdIwY0IM-blox_udHBUGFFQwV1I2wQiaTsmLeq_N7WjCxHNJoGc83jcO0ajuqkVQvuAZxDOiVa5nwFPMGygHUgYmbKYp6PvN3vaRmPvnzGmnGXZFtqmlGFOId5BdzedbY3u6qI1TS1tZOrWyUJZ21npokq2zrxFlWqltc3KNa0ytfTKn0amWllTyF7zwYpK41X42UWbWlqv9tb3BD0uLh7mV9Pl7eX1_Gw5LRiPYaoolKBLzEuVpDpnPC0JpTrWGc7SnGc6K4EAxkQTTrKSxRqDZCpgWcyTXNIJOhrmhqVeOuVbURnf7y1r1XRekJjGNGUEyP8oSzinNA3CBB3-QJ-bzoVc-oEAIT5IeupgTXV5pUqxcqaS7l18xRoAPACFa7x3SovCtJ9RhXCNFYBF35zomxOfzQXl-IfyNfVXGAb41Vj1_gcpFhfn94PzAWrVqFE
CitedBy_id crossref_primary_10_1016_j_jff_2024_106255
crossref_primary_10_1016_j_jep_2022_115992
crossref_primary_10_1007_s11033_024_09486_6
crossref_primary_10_1016_j_heliyon_2024_e37031
crossref_primary_10_1016_j_intimp_2023_111272
crossref_primary_10_1615_OncoTherap_2022045773
crossref_primary_10_3390_jcm13020511
crossref_primary_10_1007_s00395_023_00987_2
crossref_primary_10_3389_fonc_2022_1030590
crossref_primary_10_1186_s13059_024_03396_3
crossref_primary_10_1016_j_job_2024_100609
crossref_primary_10_3390_biomedicines10102477
crossref_primary_10_1097_MEG_0000000000002586
crossref_primary_10_1016_j_jep_2023_116457
crossref_primary_10_3390_ijms23042131
crossref_primary_10_62347_BQFH7352
crossref_primary_10_1007_s12033_024_01167_w
crossref_primary_10_1007_s12035_024_04315_0
crossref_primary_10_1016_j_exer_2021_108843
crossref_primary_10_1038_s41420_022_00989_4
crossref_primary_10_3390_molecules28145567
crossref_primary_10_1016_j_isci_2024_111171
crossref_primary_10_1002_ardp_202300263
crossref_primary_10_3390_cimb46120824
crossref_primary_10_18481_2077_7566_2024_20_1_5_10
crossref_primary_10_1038_s41598_024_59112_5
crossref_primary_10_1038_s41467_021_27860_x
crossref_primary_10_1016_j_heliyon_2023_e23927
crossref_primary_10_18699_vjgb_24_49
crossref_primary_10_1016_j_vph_2024_107420
crossref_primary_10_1111_jcmm_17878
crossref_primary_10_18087_cardio_2024_4_n2411
crossref_primary_10_1088_1748_605X_ad7556
crossref_primary_10_1139_cjpp_2021_0199
crossref_primary_10_3389_fmicb_2023_1167160
crossref_primary_10_1016_j_gene_2024_148990
crossref_primary_10_3390_biom11060903
crossref_primary_10_3389_fimmu_2022_1046810
crossref_primary_10_1007_s10068_022_01233_6
crossref_primary_10_1124_pharmrev_121_000349
crossref_primary_10_1016_j_jocn_2022_09_002
crossref_primary_10_1038_s41598_022_09017_y
crossref_primary_10_1007_s12094_023_03284_5
crossref_primary_10_3389_fcell_2023_1131481
crossref_primary_10_1007_s13273_022_00252_y
crossref_primary_10_12677_WJCR_2023_132011
crossref_primary_10_2147_DMSO_S507337
crossref_primary_10_1097_BRS_0000000000005167
crossref_primary_10_2147_JHC_S449419
crossref_primary_10_3389_fneur_2022_988854
crossref_primary_10_3390_biomedicines11071839
crossref_primary_10_1016_j_abb_2023_109713
crossref_primary_10_31393_reports_vnmedical_2023_27_2__24
crossref_primary_10_1155_2023_6122331
crossref_primary_10_1111_febs_16061
crossref_primary_10_1038_s41598_022_17944_z
crossref_primary_10_1002_ctm2_70232
crossref_primary_10_3390_ijms23179513
crossref_primary_10_1021_acs_jproteome_3c00755
crossref_primary_10_1016_j_urolonc_2024_05_002
crossref_primary_10_1007_s12672_021_00417_6
crossref_primary_10_1016_j_isci_2022_105775
crossref_primary_10_3389_fonc_2022_926404
crossref_primary_10_1080_03008207_2023_2295322
crossref_primary_10_1021_acs_jnatprod_2c00626
crossref_primary_10_3390_ijms231810546
crossref_primary_10_3390_bioengineering10101122
crossref_primary_10_3389_fimmu_2022_1067950
crossref_primary_10_1016_j_scitotenv_2024_178329
crossref_primary_10_3390_molecules28083356
crossref_primary_10_1016_j_biopha_2023_116116
crossref_primary_10_1007_s12374_022_09369_y
crossref_primary_10_1016_j_jtha_2024_12_013
crossref_primary_10_32604_or_2024_055449
crossref_primary_10_1186_s13018_025_05622_5
crossref_primary_10_1161_CIRCRESAHA_123_323360
crossref_primary_10_1016_j_matbio_2023_03_011
crossref_primary_10_2478_cipms_2024_0011
crossref_primary_10_1016_j_cellsig_2024_111194
crossref_primary_10_3390_ijms25147804
crossref_primary_10_1080_13102818_2024_2373855
crossref_primary_10_1165_rcmb_2023_0431LE
crossref_primary_10_3390_ijms22158056
crossref_primary_10_3390_ijms241210291
crossref_primary_10_1002_dvdy_398
crossref_primary_10_15616_BSL_2023_29_4_321
crossref_primary_10_1007_s11010_023_04849_2
crossref_primary_10_1177_00033197241227598
crossref_primary_10_1007_s43032_024_01778_3
crossref_primary_10_3390_life13030810
crossref_primary_10_1016_j_advms_2024_09_008
crossref_primary_10_1007_s00403_024_02964_8
crossref_primary_10_4081_jbr_2024_12567
crossref_primary_10_1016_j_ejcb_2022_151276
crossref_primary_10_1007_s11033_024_09555_w
crossref_primary_10_3389_fonc_2022_844648
crossref_primary_10_1186_s12920_023_01482_2
crossref_primary_10_1159_000529687
crossref_primary_10_1152_physrev_00036_2021
crossref_primary_10_1016_j_jff_2024_106267
crossref_primary_10_1134_S1990750823600504
crossref_primary_10_1093_stcltm_szae069
crossref_primary_10_3390_ijms242115660
crossref_primary_10_1007_s13577_023_00951_1
crossref_primary_10_1016_j_biomaterials_2021_121268
crossref_primary_10_1021_acsabm_2c01008
crossref_primary_10_36660_abc_20230490
crossref_primary_10_1016_j_cellsig_2024_111174
crossref_primary_10_2174_1574887118666230131141608
crossref_primary_10_3389_fnut_2023_1193289
crossref_primary_10_3390_ijms222011047
crossref_primary_10_3390_ijms24021258
crossref_primary_10_1016_j_identj_2024_12_017
crossref_primary_10_4269_ajtmh_21_0860
crossref_primary_10_1007_s12035_024_03982_3
crossref_primary_10_1016_j_artmed_2024_102871
crossref_primary_10_3390_ijms252413516
crossref_primary_10_12677_acm_2025_153785
crossref_primary_10_1016_j_cbi_2023_110743
crossref_primary_10_1016_j_jtemb_2023_127162
crossref_primary_10_1128_mSystems_01173_20
crossref_primary_10_3389_fphar_2024_1355242
crossref_primary_10_3390_cancers16162801
crossref_primary_10_3390_jcm11040902
crossref_primary_10_4081_ejh_2022_3423
crossref_primary_10_1016_j_psj_2022_101915
crossref_primary_10_3390_cancers14071847
crossref_primary_10_17816_medjrf641666
crossref_primary_10_1016_j_biopha_2023_114534
crossref_primary_10_1093_infdis_jiae305
crossref_primary_10_1007_s00535_022_01901_8
crossref_primary_10_3390_ijms23031883
crossref_primary_10_3390_cells12242774
crossref_primary_10_4103_AGINGADV_AGINGADV_D_24_00031
crossref_primary_10_34172_mejdd_2024_373
crossref_primary_10_3390_cancers13143466
crossref_primary_10_1016_j_nexres_2025_100178
crossref_primary_10_3390_diagnostics14242784
crossref_primary_10_1016_j_heliyon_2022_e11022
crossref_primary_10_3390_medicina59071295
crossref_primary_10_12677_PI_2024_131004
crossref_primary_10_3390_medicina59081424
crossref_primary_10_2147_CMAR_S389742
crossref_primary_10_3390_biology12060843
crossref_primary_10_1016_j_ygcen_2021_113924
crossref_primary_10_1021_acsaom_3c00325
crossref_primary_10_1016_j_ccr_2024_216402
crossref_primary_10_2147_JIR_S480466
crossref_primary_10_21292_2075_1230_2022_100_10_22_29
crossref_primary_10_31083_j_jin2202029
crossref_primary_10_1186_s12929_024_01042_5
crossref_primary_10_1016_j_bcp_2023_115684
crossref_primary_10_17221_77_2023_VETMED
crossref_primary_10_3390_polym15071616
crossref_primary_10_1007_s00210_024_03363_6
crossref_primary_10_1016_j_heliyon_2024_e32891
crossref_primary_10_3389_fonc_2024_1491099
crossref_primary_10_1016_j_mam_2025_101358
crossref_primary_10_2174_1381612828666220413101929
crossref_primary_10_1002_advs_202204951
crossref_primary_10_1093_burnst_tkad025
crossref_primary_10_1186_s12885_023_11662_z
crossref_primary_10_3390_ijms25126720
crossref_primary_10_1016_j_jep_2024_119230
crossref_primary_10_1007_s00018_024_05310_3
crossref_primary_10_1016_j_yexcr_2021_112984
crossref_primary_10_3389_fphar_2023_1285455
crossref_primary_10_1186_s40364_024_00663_0
crossref_primary_10_1016_j_bbr_2022_114020
crossref_primary_10_3390_pharmaceutics17030279
crossref_primary_10_33549_physiolres_935228
crossref_primary_10_1016_j_cellsig_2023_110959
crossref_primary_10_18786_2072_0505_2025_53_003
crossref_primary_10_3390_ijms232415900
crossref_primary_10_1016_j_molmed_2023_11_001
crossref_primary_10_1016_j_jnha_2025_100529
crossref_primary_10_1080_1744666X_2024_2302362
crossref_primary_10_1177_09603271221143040
crossref_primary_10_3389_fimmu_2024_1429523
crossref_primary_10_2139_ssrn_4089126
crossref_primary_10_36660_abc_20230490i
crossref_primary_10_1016_j_bioactmat_2024_01_004
crossref_primary_10_3390_gels11010022
crossref_primary_10_1016_j_actbio_2024_01_002
crossref_primary_10_3389_fonc_2022_1108695
crossref_primary_10_3390_ijms24032524
crossref_primary_10_1016_j_biopha_2023_115410
crossref_primary_10_12677_WJCR_2022_122008
crossref_primary_10_1016_j_theriogenology_2022_03_029
crossref_primary_10_1186_s13578_023_01040_4
crossref_primary_10_3389_fimmu_2023_1196791
crossref_primary_10_62347_UPFN1244
crossref_primary_10_1016_j_freeradbiomed_2024_06_022
crossref_primary_10_1093_brain_awae156
crossref_primary_10_3390_biom12020279
crossref_primary_10_1007_s12033_024_01186_7
crossref_primary_10_1016_j_actbio_2022_08_063
crossref_primary_10_1080_08916934_2023_2281223
crossref_primary_10_1080_07357907_2021_1954190
crossref_primary_10_1620_tjem_2022_J120
crossref_primary_10_2174_0118715206270002231108071917
crossref_primary_10_1016_j_jri_2022_103648
crossref_primary_10_1002_iub_2803
crossref_primary_10_1097_MS9_0000000000001491
crossref_primary_10_17802_2306_1278_2022_11_3_72_83
crossref_primary_10_3389_fnins_2024_1450072
crossref_primary_10_3389_fsysb_2024_1470000
crossref_primary_10_4070_kcj_2024_0093
crossref_primary_10_3390_bioengineering9030119
crossref_primary_10_1016_j_kint_2024_05_004
crossref_primary_10_3390_ijms24043786
crossref_primary_10_1038_s41598_023_42629_6
crossref_primary_10_3389_fimmu_2022_885229
crossref_primary_10_3389_fvets_2022_1063580
crossref_primary_10_1007_s00395_023_01007_z
crossref_primary_10_3390_genes14050990
Cites_doi 10.1161/JAHA.115.001868
10.1042/bj2050091
10.1093/carcin/23.5.769
10.1161/01.RES.0000019241.12929.EB
10.3390/ph12020077
10.1038/bjp.2008.373
10.1091/mbc.11.7.2387
10.1101/gad.268714.115
10.1111/j.1440-1827.2010.02547.x
10.1111/j.1582-4934.2007.00113.x
10.1152/ajpheart.00434.2006
10.1074/jbc.M102417200
10.1016/j.neuroscience.2012.06.019
10.1160/TH13-03-0248
10.1002/mc.20270
10.1161/CIRCULATIONAHA.104.531616
10.1016/j.neuron.2010.06.021
10.1161/CIRCULATIONAHA.109.930222
10.1093/cvr/cvaa017
10.1016/S1388-9842(99)00048-3
10.1093/eurheartj/ehi007
10.1016/j.tibs.2006.08.004
10.1073/pnas.83.12.4322
10.1089/ars.2007.1993
10.1101/gad.178749.111
10.1073/pnas.48.6.1014
10.1074/jbc.M202494200
10.1038/386616a0
10.1152/ajprenal.00461.2016
10.1055/s-0037-1615367
10.1161/01.RES.0000021398.28936.1D
10.1074/jbc.M100121200
10.1074/jbc.M201197200
10.2353/ajpath.2006.060005
10.1016/j.cardiores.2005.08.023
10.1093/carcin/bgn159
10.1038/nm.3508
10.1074/jbc.M406792200
10.1074/jbc.M709509200
10.2147/CMAR.S235776
10.1161/CIRCULATIONAHA.106.612960
10.1016/j.bmc.2007.01.011
10.1371/journal.pone.0068154
10.1161/ATVBAHA.111.242685
10.1016/bs.pmbts.2017.02.005
10.1074/jbc.271.15.9135
10.1074/jbc.M210975200
10.1021/bi00476a020
10.1038/sj.bjp.0706823
10.1074/jbc.M008925200
10.1016/S0008-6363(02)00719-8
10.1126/science.2982211
10.1080/17460441.2020.1819235
10.1016/j.yjmcc.2007.07.055
10.1371/journal.pone.0221798
10.1111/j.1471-4159.2008.05399.x
10.1093/cvr/cvp175
10.1016/S0008-6363(01)00445-X
10.1016/j.ejmech.2020.112260
10.1186/s40035-015-0041-1
10.1074/jbc.274.8.4570
10.1016/j.matbio.2016.03.007
10.2337/db11-0816
10.1007/s13277-014-2597-2
10.1096/fj.02-1202fje
10.1016/j.tcm.2012.03.008
10.1242/jcs.00063
10.1016/S0008-6363(96)00254-4
10.1161/01.RES.87.3.241
10.1111/j.1749-6632.1994.tb44319.x
10.1007/s00395-019-0749-7
10.1007/s11373-008-9264-9
10.1126/science.1073634
10.1038/nrm2125
10.1016/j.bbamcr.2017.05.013
10.1002/glia.20927
10.1038/375244a0
10.1016/j.semcdb.2007.07.003
10.1161/JAHA.115.002553
10.1093/cvr/cvx115
10.1016/j.bcp.2008.11.004
10.1096/fj.06-7938com
10.4049/jimmunol.1500944
10.1517/13543784.2012.681043
10.2147/VHRM.S68415
10.1083/jcb.200108112
10.1016/j.bbrc.2013.07.066
10.2353/ajpath.2010.090050
10.1186/gb-2011-12-11-233
10.1016/j.bbamcr.2010.01.003
10.3390/molecules24122265
10.1155/2015/257471
10.1167/iovs.10-6368
10.1074/jbc.M111.264176
10.1016/B978-0-12-378630-2.00185-7
10.1016/j.jprot.2014.04.026
10.3390/cells7070080
10.1038/ncomms6552
10.1016/bs.pmbts.2017.02.001
10.1016/j.mam.2008.05.002
10.3109/10799891003614808
10.1038/325733a0
10.1111/j.1471-4159.2007.04625.x
10.7150/thno.23209
10.1371/journal.pone.0071794
10.1128/MCB.01288-07
10.1016/0014-5793(93)80312-I
10.1016/j.exger.2006.08.010
10.1073/pnas.94.9.4424
10.1074/jbc.M502779200
10.1002/jcp.24040
10.1021/pr801012x
10.1002/cphy.c160010
10.1161/01.CIR.0000065603.09430.58
10.3109/10409238.2010.501783
10.1016/j.cardiores.2005.12.002
10.1080/01902140802406059
10.1371/journal.pone.0084748
10.1111/j.1471-4159.2008.05430.x
10.3389/fphys.2014.00363
10.1146/annurev.pharmtox.47.120505.105230
10.1002/jcp.21535
10.1074/jbc.M008087200
10.1016/j.bbrc.2013.12.103
10.1016/j.bbrc.2007.04.094
10.1158/1078-0432.CCR-14-2279
10.1038/nrd2308
10.1158/0008-5472.CAN-05-3592
10.1152/ajpheart.00909.2013
10.1371/journal.pone.0174853
10.1371/journal.pone.0034177
10.1016/S0021-9258(18)38172-9
10.1038/sj.bjp.0705917
10.1042/bj3150953
10.1007/s00395-014-0424-y
10.1016/j.matbio.2015.09.003
10.1152/ajpheart.00099.2008
10.1073/pnas.241293698
10.1155/2016/6927328
10.1038/sj.emboj.7600403
10.1111/j.1471-4159.2009.06433.x
10.1091/mbc.E03-07-0516
10.1016/S0002-9440(10)62371-1
10.1016/j.proghi.2011.12.002
10.1074/jbc.M106958200
10.1152/ajpheart.00577.2012
10.1161/01.CIR.0000028818.33488.7B
10.1089/ars.2013.5411
10.1161/01.CIR.101.15.1833
10.1086/374644
10.1590/1414-431x20176104
10.1186/1471-2407-11-348
10.18632/oncotarget.13157
10.1038/nature08181
10.1016/j.yjmcc.2007.01.008
10.1038/cddiscovery.2017.36
ContentType Journal Article
Copyright 2021 Federation of European Biochemical Societies
2021 Federation of European Biochemical Societies.
Copyright © 2021 Federation of European Biochemical Societies
Copyright_xml – notice: 2021 Federation of European Biochemical Societies
– notice: 2021 Federation of European Biochemical Societies.
– notice: Copyright © 2021 Federation of European Biochemical Societies
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/febs.15701
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
Virology and AIDS Abstracts

MEDLINE - Academic
CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1742-4658
EndPage 7182
ExternalDocumentID 33405316
10_1111_febs_15701
FEBS15701
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  funderid: 143299
– fundername: SUNY startup fund
  funderid: 910252‐50
– fundername: Alberta Innovates
– fundername: CIHR
  grantid: 143299
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EAD
EAP
EAS
EAU
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HH5
HZI
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OK1
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIJ
WIK
WIN
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
Y6R
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4561-e31d1fd05de78fb458d233f6f9098b59f9d121002f2529d46f01a4e58d9657ba3
IEDL.DBID DR2
ISSN 1742-464X
1742-4658
IngestDate Fri Jul 11 18:31:24 EDT 2025
Fri Jul 11 12:28:22 EDT 2025
Fri Jul 25 19:42:13 EDT 2025
Tue Apr 01 03:09:33 EDT 2025
Tue Jul 01 03:06:53 EDT 2025
Thu Apr 24 23:00:25 EDT 2025
Wed Jan 22 16:28:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords cardiovascular disease
cytosol
inflammation
mitochondria
matrix metalloproteinase
nucleus
cancer
proteolysis
sarcomere
Language English
License 2021 Federation of European Biochemical Societies.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4561-e31d1fd05de78fb458d233f6f9098b59f9d121002f2529d46f01a4e58d9657ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5045-3193
PMID 33405316
PQID 2611549176
PQPubID 28478
PageCount 7182
ParticipantIDs proquest_miscellaneous_2636384212
proquest_miscellaneous_2475533836
proquest_journals_2611549176
pubmed_primary_33405316
crossref_citationtrail_10_1111_febs_15701
crossref_primary_10_1111_febs_15701
wiley_primary_10_1111_febs_15701_FEBS15701
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The FEBS journal
PublicationTitleAlternate FEBS J
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2007; 102
2006; 31
2009; 83
2011; 60
2000; 87
2019; 12
2004; 23
2002; 277
2019; 14
2003; 57
2011; 52
2020; 16
2016; 30
2008; 106
2016; 2016
1998; 80
2020; 12
1995; 375
2013; 8
2003; 278
2017; 312
2014; 21
2014; 20
2018; 7
2009; 11
2018; 8
1986; 83
2007; 292
2008; 29
2019; 24
2000; 11
1997; 386
2010; 112
2008; 28
2007; 8
2007; 6
1962; 48
2002; 90
2012; 26
2016; 49
2010; 30
2012; 21
2006; 169
2004; 143
2012; 220
1987; 325
1982; 205
2005; 112
2007; 11
2012; 227
2012; 32
2007; 15
2006; 113
2010; 45
2001; 276
2001; 155
2015; 195
2009; 77
2014; 306
2017; 50
2016; 6
2006; 41
2003; 107
2004; 279
1997; 33
1990; 29
2015; 2015
2010; 177
2014; 35
2009; 460
2000; 101
2012; 47
2017; 147
2003; 187
2017; 8
2017; 3
2010; 58
2002; 53
2017; 1864
2002; 115
2011; 11
2011; 12
1992; 14
2005; 26
1994; 737
2017; 113
1990; 265
2010; 60
2010; 67
2014; 5
1997; 94
2013; 438
2006; 66
2021; 117
2006; 69
2002; 106
2011; 21
2019; 114
2010; 1803
2014; 9
2007; 21
2008; 155
2014; 6
2011; 286
1993; 331
2001; 98
2014; 443
2015; 4
2002; 297
2008; 19
2015; 11
2010; 122
2008; 15
1985; 227
1999; 1
2014; 111
2012; 303
2008; 283
2016; 56
2005; 280
2014; 106
2009; 35
2014; 109
2007; 358
2004; 18
2005; 166
2020
2002; 23
2004; 15
2020; 194
2017; 12
2015; 21
1999; 274
1996; 271
2020; 116
2008; 217
2009; 8
2013
2007; 42
2006; 149
2012; 7
2007; 43
2007; 46
2008; 295
2007; 47
1996; 315
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_148_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_102_1
e_1_2_11_144_1
e_1_2_11_140_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
Sinha SK (e_1_2_11_63_1) 2014; 6
e_1_2_11_117_1
e_1_2_11_136_1
e_1_2_11_159_1
e_1_2_11_59_1
e_1_2_11_113_1
e_1_2_11_132_1
e_1_2_11_155_1
e_1_2_11_151_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_149_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_141_1
e_1_2_11_160_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_156_1
e_1_2_11_110_1
e_1_2_11_39_1
e_1_2_11_152_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_127_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_123_1
e_1_2_11_142_1
e_1_2_11_161_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_157_1
e_1_2_11_19_1
e_1_2_11_153_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
Roczkowsky A (e_1_2_11_130_1) 2020; 116
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
Ali MAM (e_1_2_11_133_1) 2020
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_143_1
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_158_1
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_154_1
e_1_2_11_112_1
Saari H (e_1_2_11_67_1) 1992; 14
e_1_2_11_131_1
e_1_2_11_150_1
References_xml – volume: 113
  start-page: 2919
  year: 2006
  end-page: 2928
  article-title: Matrix metalloproteinase‐7 affects connexin‐43 levels, electrical conduction, and survival after myocardial infarction
  publication-title: Circulation
– volume: 217
  start-page: 643
  year: 2008
  end-page: 651
  article-title: Role of the hemopexin domain of matrix metalloproteinases in cell migration
  publication-title: J Cell Physiol
– volume: 21
  start-page: 2127
  year: 2015
  end-page: 2137
  article-title: Rac1/Pak1/p38/MMP‐2 axis regulates angiogenesis in ovarian cancer
  publication-title: Clin Cancer Res
– volume: 6
  start-page: 155
  year: 2014
  end-page: 162
  article-title: Nuclear localization of catalytically active MMP‐2 in endothelial cells and neurons
  publication-title: Am J Transl Res
– volume: 87
  start-page: 241
  year: 2000
  end-page: 247
  article-title: Peroxynitrite is a major contributor to cytokine‐induced myocardial contractile failure
  publication-title: Circ Res
– volume: 155
  start-page: 1174
  year: 2008
  end-page: 1184
  article-title: Protective action of doxycycline against diabetic cardiomyopathy in rats
  publication-title: Br J Pharmacol
– volume: 29
  start-page: 1655
  year: 2008
  end-page: 1664
  article-title: Impaired tyrosine phosphorylation of membrane type 1‐matrix metalloproteinase reduces tumor cell proliferation in three‐dimensional matrices and abrogates tumor growth in mice
  publication-title: Carcinogenesis
– volume: 737
  start-page: 291
  year: 1994
  end-page: 307
  article-title: Alpha 2‐macroglobulin: a sensor for proteolysis
  publication-title: Ann N Y Acad Sci
– volume: 295
  start-page: H890
  year: 2008
  end-page: H897
  article-title: Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 303
  start-page: H919
  year: 2012
  end-page: H930
  article-title: The history of matrix metalloproteinases: milestones, myths, and misperceptions
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 102
  start-page: 1256
  year: 2007
  end-page: 1263
  article-title: Cleavage of neuronal synaptosomal‐associated protein of 25 kDa by exogenous matrix metalloproteinase‐7
  publication-title: J Neurochem
– volume: 306
  start-page: H764
  year: 2014
  end-page: H770
  article-title: MMP‐2 is localized to the mitochondria‐associated membrane of the heart
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 286
  start-page: 33236
  year: 2011
  end-page: 33243
  article-title: Structural basis for matrix metalloproteinase‐2 (MMP‐2)‐selective inhibitory action of β‐amyloid precursor protein‐derived inhibitor
  publication-title: J Biol Chem
– volume: 106
  start-page: 405
  year: 2008
  end-page: 415
  article-title: A novel intracellular role of matrix metalloproteinase‐3 during apoptosis of dopaminergic cells
  publication-title: J Neurochem
– volume: 194
  year: 2020
  article-title: Matrix metalloproteinase‐9 (MMP‐9) and its inhibitors in cancer: a minireview
  publication-title: Eur J Med Chem
– volume: 1
  start-page: 337
  year: 1999
  end-page: 352
  article-title: Altered balance between matrix gelatinases (MMP‐2 and MMP‐9) and their tissue inhibitors in human dilated cardiomyopathy: potential role of MMP‐9 in myosin‐heavy chain degradation
  publication-title: Eur J Heart Fail
– volume: 107
  start-page: 2487
  year: 2003
  end-page: 2492
  article-title: Imbalance between tissue inhibitor of metalloproteinase‐4 and matrix metalloproteinases during acute myocardial [correction of myocardial] ischemia‐reperfusion injury
  publication-title: Circulation
– volume: 41
  start-page: 1094
  year: 2006
  end-page: 1107
  article-title: Zinc‐binding proteins (metallothionein and alpha‐2 macroglobulin) and immunosenescence
  publication-title: Exp Gerontol
– volume: 31
  start-page: 563
  year: 2006
  end-page: 571
  article-title: The surprising complexity of signal sequences
  publication-title: Trends Biochem Sci
– volume: 169
  start-page: 1390
  year: 2006
  end-page: 1401
  article-title: Matrix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis
  publication-title: Am J Pathol
– volume: 112
  start-page: 134
  year: 2010
  end-page: 149
  article-title: Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia
  publication-title: J Neurochem
– volume: 11
  start-page: 1069
  year: 2007
  end-page: 1086
  article-title: Matrix metalloproteinase‐2, caveolins, focal adhesion kinase and c‐Kit in cells of the mouse myocardium
  publication-title: J Cell Mol Med
– volume: 292
  start-page: H1847
  year: 2007
  end-page: H1860
  article-title: Cardiac matrix metalloproteinase‐2 expression independently induces marked ventricular remodeling and systolic dysfunction
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 205
  start-page: 91
  year: 1982
  end-page: 95
  article-title: Evolution of alpha 2‐macroglobulin. The demonstration in a variety of vertebrate species of a protein resembling human alpha 2‐macroglobulin
  publication-title: Biochem J
– volume: 271
  start-page: 9135
  year: 1996
  end-page: 9140
  article-title: Transmembrane‐deletion mutants of the membrane‐type matrix metalloproteinase‐1 process progelatinase A and express intrinsic matrix‐degrading activity
  publication-title: J Biol Chem
– volume: 7
  start-page: 80
  year: 2018
  article-title: Sub‐cellular localization of metalloproteinases in megakaryocytes
  publication-title: Cells
– volume: 15
  start-page: 678
  year: 2004
  end-page: 687
  article-title: Caveolae are a novel pathway for membrane‐type 1 matrix metalloproteinase traffic in human endothelial cells
  publication-title: Mol Biol Cell.
– volume: 9
  year: 2014
  article-title: Matrix metalloproteinase 3 promotes cellular anti‐dengue virus response via interaction with transcription factor NFκB in cell nucleus
  publication-title: PLoS One
– volume: 29
  start-page: 5783
  year: 1990
  end-page: 5789
  article-title: Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4‐aminophenyl)mercuric acetate
  publication-title: Biochemistry
– volume: 109
  start-page: 424
  year: 2014
  article-title: Targeting MMP‐2 to treat ischemic heart injury
  publication-title: Basic Res Cardiol
– volume: 80
  start-page: 836
  year: 1998
  end-page: 839
  article-title: Localization and translocation of MMP‐2 during aggregation of human platelets
  publication-title: Thromb Haemost
– volume: 2015
  year: 2015
  article-title: Intracellular cleavage of the Cx43 C‐terminal domain by matrix‐metalloproteases: a novel contributor to inflammation?
  publication-title: Mediators Inflamm
– volume: 315
  start-page: 953
  issue: Pt 3
  year: 1996
  end-page: 958
  article-title: Characterization of structural determinants and molecular mechanisms involved in pro‐stromelysin‐3 activation by 4‐aminophenylmercuric acetate and furin‐type convertases
  publication-title: Biochem J
– volume: 147
  start-page: 75
  year: 2017
  end-page: 100
  article-title: Matrix metalloproteinases in myocardial infarction and heart failure
  publication-title: Prog Mol Biol Transl Sci
– volume: 147
  start-page: 1
  year: 2017
  end-page: 73
  article-title: Biochemical and biological attributes of matrix metalloproteinases
  publication-title: Prog Mol Biol Transl Sci
– volume: 12
  year: 2011
  article-title: Tissue inhibitors of metalloproteinases
  publication-title: Genome Biol
– volume: 280
  start-page: 25079
  year: 2005
  end-page: 25086
  article-title: Membrane type‐1 matrix metalloproteinase (MT1‐MMP) exhibits an important intracellular cleavage function and causes chromosome instability
  publication-title: J Biol Chem
– volume: 21
  start-page: 2486
  year: 2007
  end-page: 2495
  article-title: Regulation of matrix metalloproteinase‐2 (MMP‐2) activity by phosphorylation
  publication-title: FASEB J
– volume: 29
  start-page: 290
  year: 2008
  end-page: 308
  article-title: Progress in matrix metalloproteinase research
  publication-title: Mol Aspects Med
– volume: 276
  start-page: 15498
  year: 2001
  end-page: 15503
  article-title: The low density lipoprotein receptor‐related protein modulates levels of matrix metalloproteinase 9 (MMP‐9) by mediating its cellular catabolism
  publication-title: J Biol Chem
– volume: 14
  year: 2019
  article-title: Enhanced cardiac expression of two isoforms of matrix metalloproteinase‐2 in experimental diabetes mellitus
  publication-title: PLoS One
– volume: 8
  start-page: 221
  year: 2007
  end-page: 233
  article-title: Matrix metalloproteinases and the regulation of tissue remodelling
  publication-title: Nat Rev Mol Cell Biol
– volume: 35
  start-page: 12721
  year: 2014
  end-page: 12727
  article-title: A novel NF‐κB/MMP‐3 signal pathway involves in the aggressivity of glioma promoted by Bmi‐1
  publication-title: Tumour Biol
– volume: 101
  start-page: 1833
  year: 2000
  end-page: 1839
  article-title: Matrix metalloproteinase‐2 contributes to ischemia‐reperfusion injury in the heart
  publication-title: Circulation
– volume: 35
  start-page: 59
  year: 2009
  end-page: 75
  article-title: Nuclear localization of active matrix metalloproteinase‐2 in cigarette smoke‐exposed apoptotic endothelial cells
  publication-title: Exp Lung Res
– volume: 115
  start-page: 3719
  year: 2002
  end-page: 3727
  article-title: Metalloproteinase inhibitors: biological actions and therapeutic opportunities
  publication-title: J Cell Sci
– volume: 23
  start-page: 3758
  year: 2004
  end-page: 3768
  article-title: The membrane form of the DNA repair protein Ku interacts at the cell surface with metalloproteinase 9
  publication-title: EMBO J
– volume: 386
  start-page: 616
  year: 1997
  end-page: 619
  article-title: Release of gelatinase A during platelet activation mediates aggregation
  publication-title: Nature
– volume: 43
  start-page: 429
  year: 2007
  end-page: 436
  article-title: Matrix metalloproteinase‐2 degrades the cytoskeletal protein alpha‐actinin in peroxynitrite mediated myocardial injury
  publication-title: J Mol Cell Cardiol
– volume: 48
  start-page: 1014
  year: 1962
  end-page: 1022
  article-title: Collagenolytic activity in amphibian tissues: a tissue culture assay
  publication-title: Proc Natl Acad Sci USA
– volume: 187
  start-page: 1411
  year: 2003
  end-page: 1415
  article-title: Matrix metalloproteinase‐9 in pneumococcal meningitis: activation via an oxidative pathway
  publication-title: J Infect Dis
– volume: 278
  start-page: 15056
  year: 2003
  end-page: 15064
  article-title: Activation of pro‐gelatinase B by endometase/matrilysin‐2 promotes invasion of human prostate cancer cells
  publication-title: J Biol Chem
– volume: 3
  start-page: 17036
  year: 2017
  article-title: Nuclear matrix metalloproteinases: functions resemble the evolution from the intracellular to the extracellular compartment
  publication-title: Cell Death Discov
– start-page: 741
  year: 2013
  end-page: 744
– volume: 11
  start-page: 173
  year: 2015
  end-page: 183
  article-title: Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms
  publication-title: Vasc Health Risk Manag
– volume: 12
  year: 2017
  article-title: Differential inhibition of activity, activation and gene expression of MMP‐9 in THP‐1 cells by azithromycin and minocycline versus bortezomib: a comparative study
  publication-title: PLoS One
– volume: 155
  start-page: 1345
  year: 2001
  end-page: 1356
  article-title: Cytoplasmic tail‐dependent internalization of membrane‐type 1 matrix metalloproteinase is important for its invasion‐promoting activity
  publication-title: J Cell Biol
– volume: 90
  start-page: 1041
  year: 2002
  end-page: 1043
  article-title: Nonremodeling properties of matrix metalloproteinases: the platelet connection
  publication-title: Circ Res
– volume: 8
  start-page: 3191
  year: 2009
  end-page: 3197
  article-title: Vascular MMP‐9/TIMP‐2 and neuronal MMP‐10 up‐regulation in human brain after stroke: a combined laser microdissection and protein array study
  publication-title: J Proteome Res
– volume: 47
  start-page: 211
  year: 2007
  end-page: 242
  article-title: Intracellular targets of matrix metalloproteinase‐2 in cardiac disease: rationale and therapeutic approaches
  publication-title: Annu Rev Pharmacol Toxicol
– volume: 67
  start-page: 199
  year: 2010
  end-page: 212
  article-title: Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease
  publication-title: Neuron
– volume: 26
  start-page: 395
  year: 2012
  end-page: 413
  article-title: MT1‐MMP regulates the PI3Kδ·Mi‐2/NuRD‐dependent control of macrophage immune function
  publication-title: Genes Dev
– volume: 8
  year: 2013
  article-title: N‐terminal truncated intracellular matrix metalloproteinase‐2 induces cardiomyocyte hypertrophy, inflammation and systolic heart failure
  publication-title: PLoS One
– volume: 47
  start-page: 27
  year: 2012
  end-page: 58
  article-title: Nuclear localization of matrix metalloproteinases
  publication-title: Prog Histochem Cytochem
– volume: 276
  start-page: 29596
  year: 2001
  end-page: 29602
  article-title: Activation of matrix metalloproteinases by peroxynitrite‐induced protein S‐glutathiolation via disulfide S‐oxide formation
  publication-title: J Biol Chem
– volume: 8
  start-page: 2830
  year: 2018
  end-page: 2845
  article-title: Targeting intracellular MMPs efficiently inhibits tumor metastasis and angiogenesis
  publication-title: Theranostics
– volume: 12
  start-page: 77
  year: 2019
  article-title: The expanding role of MT1‐MMP in cancer progression
  publication-title: Pharmaceuticals
– volume: 1864
  start-page: 2043
  year: 2017
  end-page: 2055
  article-title: New intracellular activities of matrix metalloproteinases shine in the moonlight
  publication-title: Biochim Biophys Acta Mol Cell Res
– volume: 14
  start-page: 113
  year: 1992
  end-page: 120
  article-title: Reactive oxygen species as regulators of human neutrophil and fibroblast interstitial collagenases
  publication-title: Int J Tissue React
– volume: 20
  start-page: 493
  year: 2014
  end-page: 502
  article-title: A new transcriptional role for matrix metalloproteinase‐12 in antiviral immunity
  publication-title: Nat Med
– volume: 4
  start-page: 18
  year: 2015
  article-title: The endosomal‐lysosomal system: from acidification and cargo sorting to neurodegeneration
  publication-title: Transl Neurodegener
– volume: 11
  start-page: 669
  year: 2009
  end-page: 702
  article-title: Reactive nitrogen species: molecular mechanisms and potential significance in health and disease
  publication-title: Antioxid Redox Signal
– volume: 116
  start-page: 1021
  year: 2020
  end-page: 1031
  article-title: Myocardial MMP‐2 contributes to SERCA2a proteolysis during cardiac ischaemia‐reperfusion injury
  publication-title: Cardiovasc Res
– volume: 58
  start-page: 344
  year: 2010
  end-page: 366
  article-title: Differential vesicular distribution and trafficking of MMP‐2, MMP‐9, and their inhibitors in astrocytes
  publication-title: Glia
– volume: 227
  start-page: 3397
  year: 2012
  end-page: 3404
  article-title: Mechanisms of cytosolic targeting of matrix metalloproteinase‐2
  publication-title: J Cell Physiol
– volume: 49
  start-page: 37
  year: 2016
  end-page: 60
  article-title: Active site specificity profiling of the matrix metalloproteinase family: proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses
  publication-title: Matrix Biol
– volume: 11
  year: 2011
  article-title: MMP‐1 expression has an independent prognostic value in breast cancer
  publication-title: BMC Cancer
– volume: 98
  start-page: 13693
  year: 2001
  end-page: 13698
  article-title: Regulation of membrane‐type matrix metalloproteinase 1 activity by dynamin‐mediated endocytosis
  publication-title: Proc Natl Acad Sci USA
– volume: 227
  start-page: 747
  year: 1985
  end-page: 749
  article-title: Oxidative autoactivation of latent collagenase by human neutrophils
  publication-title: Science
– volume: 122
  start-page: 2039
  year: 2010
  end-page: 2047
  article-title: Titin is a target of matrix metalloproteinase‐2: implications in myocardial ischemia/reperfusion injury
  publication-title: Circulation
– volume: 312
  start-page: F1166
  year: 2017
  end-page: f1183
  article-title: An intracellular matrix metalloproteinase‐2 isoform induces tubular regulated necrosis: implications for acute kidney injury
  publication-title: Am J Physiol Renal Physiol
– volume: 166
  start-page: 1555
  year: 2005
  end-page: 1563
  article-title: Matrix metalloproteinase‐1 associates with intracellular organelles and confers resistance to lamin A/C degradation during apoptosis
  publication-title: Am J Pathol
– volume: 21
  start-page: 112
  year: 2011
  end-page: 118
  article-title: Cardiac sarcomeric proteins: novel intracellular targets of matrix metalloproteinase‐2 in heart disease
  publication-title: Trends Cardiovasc Med
– volume: 33
  start-page: 422
  year: 1997
  end-page: 432
  article-title: Generation of peroxynitrite contributes to ischemia‐reperfusion injury in isolated rat hearts
  publication-title: Cardiovasc Res
– volume: 11
  start-page: 2387
  year: 2000
  end-page: 2401
  article-title: Regulation of membrane type‐1 matrix metalloproteinase activation by proprotein convertases
  publication-title: Mol Biol Cell
– volume: 69
  start-page: 562
  year: 2006
  end-page: 573
  article-title: Structure and function of matrix metalloproteinases and TIMPs
  publication-title: Cardiovasc Res
– volume: 77
  start-page: 826
  year: 2009
  end-page: 834
  article-title: Activation and modulation of 72kDa matrix metalloproteinase‐2 by peroxynitrite and glutathione
  publication-title: Biochem Pharmacol
– year: 2020
  article-title: Matrix metalloproteinase‐2 mediates ribosomal RNA transcription by cleaving nucleolar histones
  publication-title: bioRxiv
– volume: 52
  start-page: 3832
  year: 2011
  end-page: 3841
  article-title: Novel role of mitochondrial matrix metalloproteinase‐2 in the development of diabetic retinopathy
  publication-title: Invest Ophthalmol Vis Sci
– volume: 4
  year: 2015
  article-title: Matrix metalloproteinase‐2 negatively regulates cardiac secreted phospholipase A2 to modulate inflammation and fever
  publication-title: J Am Heart Assoc
– volume: 83
  start-page: 698
  year: 2009
  end-page: 706
  article-title: Glycogen synthase kinase‐3beta is activated by matrix metalloproteinase‐2 mediated proteolysis in cardiomyoblasts
  publication-title: Cardiovasc Res
– volume: 7
  year: 2012
  article-title: A novel intracellular isoform of matrix metalloproteinase‐2 induced by oxidative stress activates innate immunity
  publication-title: PLoS One
– volume: 276
  start-page: 8403
  year: 2001
  end-page: 8408
  article-title: Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein‐related scavenger receptor and thrombospondin 2
  publication-title: J Biol Chem
– volume: 106
  start-page: 1543
  year: 2002
  end-page: 1549
  article-title: Intracellular action of matrix metalloproteinase‐2 accounts for acute myocardial ischemia and reperfusion injury
  publication-title: Circulation
– volume: 375
  start-page: 244
  year: 1995
  end-page: 247
  article-title: Furin‐dependent intracellular activation of the human stromelysin‐3 zymogen
  publication-title: Nature
– volume: 279
  start-page: 54944
  year: 2004
  end-page: 54951
  article-title: Low density lipoprotein receptor‐related protein mediates endocytic clearance of pro‐MMP‐2.TIMP‐2 complex through a thrombospondin‐independent mechanism
  publication-title: J Biol Chem
– volume: 277
  start-page: 25527
  year: 2002
  end-page: 25536
  article-title: Alternative splicing and promoter usage generates an intracellular stromelysin 3 isoform directly translated as an active matrix metalloproteinase
  publication-title: J Biol Chem
– volume: 21
  start-page: 1974
  year: 2014
  end-page: 1985
  article-title: Citrate synthase is a novel matrix metalloproteinase‐9 substrate that regulates mitochondrial function in the postmyocardial infarction left ventricle
  publication-title: Antioxid Redox Signal
– volume: 5
  start-page: 5552
  year: 2014
  article-title: Ambidextrous binding of cell and membrane bilayers by soluble matrix metalloproteinase‐12
  publication-title: Nat Commun
– volume: 117
  start-page: 188
  year: 2021
  end-page: 200
  article-title: MMP inhibitors attenuate doxorubicin cardiotoxicity by preventing intracellular and extracellular matrix remodeling
  publication-title: Cardiovasc Res
– volume: 23
  start-page: 769
  year: 2002
  end-page: 776
  article-title: Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases
  publication-title: Carcinogenesis
– volume: 195
  start-page: 2452
  year: 2015
  end-page: 2460
  article-title: Proteolytic cleavage of AMPKα and intracellular MMP9 expression are both required for TLR4‐mediated mTORC1 activation and HIF‐1α expression in leukocytes
  publication-title: J Immunol
– volume: 149
  start-page: 31
  year: 2006
  end-page: 42
  article-title: Matrix metalloproteinases contribute to endotoxin and interleukin‐1beta induced vascular dysfunction
  publication-title: Br J Pharmacol
– volume: 106
  start-page: 770
  year: 2008
  end-page: 780
  article-title: Inhibition of MMP‐3 or ‐9 suppresses lipopolysaccharide‐induced expression of proinflammatory cytokines and iNOS in microglia
  publication-title: J Neurochem
– volume: 112
  start-page: 544
  year: 2005
  end-page: 552
  article-title: Degradation of myosin light chain in isolated rat hearts subjected to ischemia‐reperfusion injury: a new intracellular target for matrix metalloproteinase‐2
  publication-title: Circulation
– volume: 18
  start-page: 690
  year: 2004
  end-page: 692
  article-title: Matrix metalloproteinase‐2 (MMP‐2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP‐ribose) polymerase (PARP)
  publication-title: FASEB J
– volume: 265
  start-page: 17401
  year: 1990
  end-page: 17404
  article-title: Sequence identity between the alpha 2‐macroglobulin receptor and low density lipoprotein receptor‐related protein suggests that this molecule is a multifunctional receptor
  publication-title: J Biol Chem
– volume: 83
  start-page: 4322
  year: 1986
  end-page: 4326
  article-title: Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils
  publication-title: Proc Natl Acad Sci USA
– volume: 177
  start-page: 2870
  year: 2010
  end-page: 2885
  article-title: Matrix metalloproteinase‐9 and cell division in neuroblastoma cells and bone marrow macrophages
  publication-title: Am J Pathol
– volume: 276
  start-page: 41279
  year: 2001
  end-page: 41287
  article-title: Hypochlorous acid oxygenates the cysteine switch domain of pro‐matrilysin (MMP‐7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase
  publication-title: J Biol Chem
– volume: 277
  start-page: 18967
  year: 2002
  end-page: 18972
  article-title: Unconventional activation mechanisms of MMP‐26, a human matrix metalloproteinase with a unique PHCGXXD cysteine‐switch motif
  publication-title: J Biol Chem
– volume: 66
  start-page: 2716
  year: 2006
  end-page: 2724
  article-title: Matrix metalloproteinase 26 proteolysis of the NH2‐terminal domain of the estrogen receptor beta correlates with the survival of breast cancer patients
  publication-title: Cancer Res
– volume: 69
  start-page: 688
  year: 2006
  end-page: 696
  article-title: Cardiac transgenic matrix metalloproteinase‐2 expression directly induces impaired contractility
  publication-title: Cardiovasc Res
– volume: 274
  start-page: 4570
  year: 1999
  end-page: 4576
  article-title: Cloning and characterization of human MMP‐23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members
  publication-title: J Biol Chem
– volume: 46
  start-page: 225
  year: 2007
  end-page: 230
  article-title: Atypical localization of membrane type 1‐matrix metalloproteinase in the nucleus is associated with aggressive features of hepatocellular carcinoma
  publication-title: Mol Carcinog
– volume: 297
  start-page: 1186
  year: 2002
  end-page: 1190
  article-title: S‐nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death
  publication-title: Science
– volume: 6
  start-page: 480
  year: 2007
  end-page: 498
  article-title: Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases
  publication-title: Nat Rev Drug Discov
– volume: 114
  start-page: 42
  year: 2019
  article-title: Junctophilin‐2 is a target of matrix metalloproteinase‐2 in myocardial ischemia‐reperfusion injury
  publication-title: Basic Res Cardiol
– volume: 358
  start-page: 189
  year: 2007
  end-page: 195
  article-title: Transgenic MMP‐2 expression induces latent cardiac mitochondrial dysfunction
  publication-title: Biochem Biophys Res Commun
– volume: 438
  start-page: 760
  year: 2013
  end-page: 764
  article-title: Interrelationship between activation of matrix metalloproteinases and mitochondrial dysfunction in the development of diabetic retinopathy
  publication-title: Biochem Biophys Res Commun
– volume: 45
  start-page: 351
  year: 2010
  end-page: 423
  article-title: Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases
  publication-title: Crit Rev Biochem Mol Biol
– volume: 26
  start-page: 27
  year: 2005
  end-page: 35
  article-title: Ischaemia‐reperfusion injury activates matrix metalloproteinases in the human heart
  publication-title: Eur Heart J
– volume: 56
  start-page: 57
  year: 2016
  end-page: 73
  article-title: MMP‐13 is constitutively produced in human chondrocytes and co‐endocytosed with ADAMTS‐5 and TIMP‐3 by the endocytic receptor LRP1
  publication-title: Matrix Biol
– volume: 283
  start-page: 10068
  year: 2008
  end-page: 10078
  article-title: Identification of amino acid residues of the matrix metalloproteinase‐2 essential for its selective inhibition by beta‐amyloid precursor protein‐derived inhibitor
  publication-title: J Biol Chem
– volume: 6
  start-page: 1935
  year: 2016
  end-page: 1949
  article-title: Modulation of systemic metabolism by MMP‐2: from MMP‐2 deficiency in mice to MMP‐2 deficiency in patients
  publication-title: Compr Physiol
– volume: 32
  start-page: 662
  year: 2012
  end-page: 668
  article-title: Matrix metalloproteinase‐2 proteolysis of calponin‐1 contributes to vascular hypocontractility in endotoxemic rats
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 50
  year: 2017
  article-title: Relationship between matrix metalloproteinases and the occurrence and development of ovarian cancer
  publication-title: Braz J Med Biol Res
– volume: 15
  start-page: 675
  year: 2008
  end-page: 685
  article-title: Connective tissue growth factor (CTGF) and cancer progression
  publication-title: J Biomed Sci
– volume: 1803
  start-page: 55
  year: 2010
  end-page: 71
  article-title: The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity
  publication-title: Biochim Biophys Acta
– volume: 4
  year: 2015
  article-title: Identification of a novel heart‐liver axis: matrix metalloproteinase‐2 negatively regulates cardiac secreted phospholipase A2 to modulate lipid metabolism and inflammation in the liver
  publication-title: J Am Heart Assoc
– volume: 113
  start-page: 1753
  year: 2017
  end-page: 1762
  article-title: Matrix metalloproteinase‐2 knockout prevents angiotensin II‐induced vascular injury
  publication-title: Cardiovasc Res
– volume: 53
  start-page: 165
  year: 2002
  end-page: 174
  article-title: Peroxynitrite‐induced myocardial injury is mediated through matrix metalloproteinase‐2
  publication-title: Cardiovasc Res
– volume: 90
  start-page: 1093
  year: 2002
  end-page: 1099
  article-title: Outside‐in signals delivered by matrix metalloproteinase‐1 regulate platelet function
  publication-title: Circ Res
– volume: 143
  start-page: 193
  year: 2004
  end-page: 201
  article-title: Expression of matrix metalloproteinase‐9 in human platelets: regulation of platelet activation in and studies
  publication-title: Br J Pharmacol
– volume: 28
  start-page: 2391
  year: 2008
  end-page: 2413
  article-title: Novel transcription‐factor‐like function of human matrix metalloproteinase 3 regulating the CTGF/CCN2 gene
  publication-title: Mol Cell Biol
– volume: 60
  start-page: 477
  year: 2010
  end-page: 496
  article-title: Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non‐neoplastic diseases
  publication-title: Pathol Int
– volume: 30
  start-page: 208
  year: 2016
  end-page: 219
  article-title: MMP‐9 facilitates selective proteolysis of the histone H3 tail at genes necessary for proficient osteoclastogenesis
  publication-title: Genes Dev
– volume: 8
  start-page: 2781
  year: 2017
  end-page: 2799
  article-title: Selective function‐blocking monoclonal human antibody highlights the important role of membrane type‐1 matrix metalloproteinase (MT1‐MMP) in metastasis
  publication-title: Oncotarget
– volume: 111
  start-page: 140
  year: 2014
  end-page: 153
  article-title: Intracellular matrix metalloproteinase‐2 (MMP‐2) regulates human platelet activation via hydrolysis of talin
  publication-title: Thromb Haemost
– volume: 8
  year: 2013
  article-title: Phosphorylation status of 72 kDa MMP‐2 determines its structure and activity in response to peroxynitrite
  publication-title: PLoS One
– volume: 5
  year: 2014
  article-title: A N‐terminal truncated intracellular isoform of matrix metalloproteinase‐2 impairs contractility of mouse myocardium
  publication-title: Front Physiol
– volume: 16
  start-page: 75
  year: 2020
  end-page: 88
  article-title: Challenges with matrix metalloproteinase inhibition and future drug discovery avenues
  publication-title: Expert Opin Drug Discov
– volume: 443
  start-page: 1148
  year: 2014
  end-page: 1154
  article-title: Centrosomal BRCA2 is a target protein of membrane type‐1 matrix metalloproteinase (MT1‐MMP)
  publication-title: Biochem Biophys Res Commun
– volume: 325
  start-page: 733
  year: 1987
  end-page: 736
  article-title: The precursor of Alzheimer's disease amyloid A4 protein resembles a cell‐surface receptor
  publication-title: Nature
– volume: 276
  start-page: 10443
  year: 2001
  end-page: 10452
  article-title: The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts
  publication-title: J Biol Chem
– volume: 21
  start-page: 797
  year: 2012
  end-page: 805
  article-title: Matrix metalloproteinases in diabetic retinopathy: potential role of MMP‐9
  publication-title: Expert Opin Investig Drugs
– volume: 15
  start-page: 2223
  year: 2007
  end-page: 2268
  article-title: Matrix metalloproteinases (MMPs): chemical‐biological functions and (Q)SARs
  publication-title: Bioorg Med Chem
– volume: 106
  start-page: 74
  year: 2014
  end-page: 85
  article-title: Inhibition of MMP‐2 expression affects metabolic enzyme expression levels: proteomic analysis of rat cardiomyocytes
  publication-title: J Proteomics
– volume: 2016
  year: 2016
  article-title: Oxidative DNA damage mediated by intranuclear MMP activity is associated with neuronal apoptosis in ischemic stroke
  publication-title: Oxid Med Cell Longev
– volume: 12
  start-page: 10949
  year: 2020
  end-page: 10964
  article-title: Matrilysins and stromelysins in pathogenesis and diagnostics of cancers
  publication-title: Cancer Manag Res
– volume: 19
  start-page: 34
  year: 2008
  end-page: 41
  article-title: Matrix metalloproteinases as modulators of inflammation
  publication-title: Semin Cell Dev Biol
– volume: 42
  start-page: 896
  year: 2007
  end-page: 901
  article-title: Caveolin‐1 inhibits matrix metalloproteinase‐2 activity in the heart
  publication-title: J Mol Cell Cardiol
– volume: 220
  start-page: 277
  year: 2012
  end-page: 290
  article-title: Intranuclear matrix metalloproteinases promote DNA damage and apoptosis induced by oxygen‐glucose deprivation in neurons
  publication-title: Neuroscience
– volume: 94
  start-page: 4424
  year: 1997
  end-page: 4429
  article-title: Intracellular activation of gelatinase A (72‐kDa type IV collagenase) by normal fibroblasts
  publication-title: Proc Natl Acad Sci USA
– volume: 30
  start-page: 78
  year: 2010
  end-page: 87
  article-title: Cardiac specific deletion of N‐methyl‐d‐aspartate receptor 1 ameliorates mtMMP‐9 mediated autophagy/mitophagy in hyperhomocysteinemia
  publication-title: J Recept Signal Transduct Res
– volume: 60
  start-page: 3023
  year: 2011
  end-page: 3033
  article-title: Abrogation of MMP‐9 gene protects against the development of retinopathy in diabetic mice by preventing mitochondrial damage
  publication-title: Diabetes
– volume: 331
  start-page: 134
  year: 1993
  end-page: 140
  article-title: Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc‐binding environments (HEXXHXXGXXH and Met‐turn) and topologies and should be grouped into a common family, the 'metzincins'
  publication-title: FEBS Lett
– volume: 57
  start-page: 426
  year: 2003
  end-page: 433
  article-title: Matrix metalloproteinase‐2 mediates cytokine‐induced myocardial contractile dysfunction
  publication-title: Cardiovasc Res
– volume: 460
  start-page: 637
  year: 2009
  end-page: 641
  article-title: Macrophage elastase kills bacteria within murine macrophages
  publication-title: Nature
– volume: 24
  year: 2019
  article-title: Inhibitory antibodies designed for matrix metalloproteinase modulation
  publication-title: Molecules
– ident: e_1_2_11_96_1
  doi: 10.1161/JAHA.115.001868
– ident: e_1_2_11_34_1
  doi: 10.1042/bj2050091
– ident: e_1_2_11_155_1
  doi: 10.1093/carcin/23.5.769
– ident: e_1_2_11_105_1
  doi: 10.1161/01.RES.0000019241.12929.EB
– ident: e_1_2_11_157_1
  doi: 10.3390/ph12020077
– ident: e_1_2_11_142_1
  doi: 10.1038/bjp.2008.373
– ident: e_1_2_11_83_1
  doi: 10.1091/mbc.11.7.2387
– ident: e_1_2_11_134_1
  doi: 10.1101/gad.268714.115
– ident: e_1_2_11_30_1
  doi: 10.1111/j.1440-1827.2010.02547.x
– ident: e_1_2_11_50_1
  doi: 10.1111/j.1582-4934.2007.00113.x
– ident: e_1_2_11_137_1
  doi: 10.1152/ajpheart.00434.2006
– ident: e_1_2_11_24_1
  doi: 10.1074/jbc.M102417200
– ident: e_1_2_11_132_1
  doi: 10.1016/j.neuroscience.2012.06.019
– ident: e_1_2_11_108_1
  doi: 10.1160/TH13-03-0248
– ident: e_1_2_11_87_1
  doi: 10.1002/mc.20270
– ident: e_1_2_11_116_1
  doi: 10.1161/CIRCULATIONAHA.104.531616
– ident: e_1_2_11_17_1
  doi: 10.1016/j.neuron.2010.06.021
– ident: e_1_2_11_114_1
  doi: 10.1161/CIRCULATIONAHA.109.930222
– volume: 14
  start-page: 113
  year: 1992
  ident: e_1_2_11_67_1
  article-title: Reactive oxygen species as regulators of human neutrophil and fibroblast interstitial collagenases
  publication-title: Int J Tissue React
– ident: e_1_2_11_115_1
  doi: 10.1093/cvr/cvaa017
– ident: e_1_2_11_16_1
  doi: 10.1016/S1388-9842(99)00048-3
– ident: e_1_2_11_143_1
  doi: 10.1093/eurheartj/ehi007
– ident: e_1_2_11_40_1
  doi: 10.1016/j.tibs.2006.08.004
– ident: e_1_2_11_66_1
  doi: 10.1073/pnas.83.12.4322
– ident: e_1_2_11_71_1
  doi: 10.1089/ars.2007.1993
– ident: e_1_2_11_19_1
  doi: 10.1101/gad.178749.111
– ident: e_1_2_11_2_1
  doi: 10.1073/pnas.48.6.1014
– ident: e_1_2_11_43_1
  doi: 10.1074/jbc.M202494200
– ident: e_1_2_11_107_1
  doi: 10.1038/386616a0
– ident: e_1_2_11_144_1
  doi: 10.1152/ajprenal.00461.2016
– ident: e_1_2_11_92_1
  doi: 10.1055/s-0037-1615367
– ident: e_1_2_11_104_1
  doi: 10.1161/01.RES.0000021398.28936.1D
– ident: e_1_2_11_47_1
  doi: 10.1074/jbc.M100121200
– ident: e_1_2_11_85_1
  doi: 10.1074/jbc.M201197200
– ident: e_1_2_11_15_1
  doi: 10.2353/ajpath.2006.060005
– ident: e_1_2_11_138_1
  doi: 10.1016/j.cardiores.2005.08.023
– ident: e_1_2_11_79_1
  doi: 10.1093/carcin/bgn159
– ident: e_1_2_11_18_1
  doi: 10.1038/nm.3508
– ident: e_1_2_11_45_1
  doi: 10.1074/jbc.M406792200
– ident: e_1_2_11_39_1
  doi: 10.1074/jbc.M709509200
– ident: e_1_2_11_100_1
  doi: 10.2147/CMAR.S235776
– volume: 116
  start-page: 1021
  year: 2020
  ident: e_1_2_11_130_1
  article-title: Myocardial MMP‐2 contributes to SERCA2a proteolysis during cardiac ischaemia‐reperfusion injury
  publication-title: Cardiovasc Res
– ident: e_1_2_11_125_1
  doi: 10.1161/CIRCULATIONAHA.106.612960
– ident: e_1_2_11_3_1
  doi: 10.1016/j.bmc.2007.01.011
– ident: e_1_2_11_41_1
  doi: 10.1371/journal.pone.0068154
– ident: e_1_2_11_25_1
  doi: 10.1161/ATVBAHA.111.242685
– ident: e_1_2_11_21_1
  doi: 10.1016/bs.pmbts.2017.02.005
– ident: e_1_2_11_82_1
  doi: 10.1074/jbc.271.15.9135
– ident: e_1_2_11_86_1
  doi: 10.1074/jbc.M210975200
– ident: e_1_2_11_22_1
  doi: 10.1021/bi00476a020
– ident: e_1_2_11_140_1
  doi: 10.1038/sj.bjp.0706823
– ident: e_1_2_11_46_1
  doi: 10.1074/jbc.M008925200
– ident: e_1_2_11_75_1
  doi: 10.1016/S0008-6363(02)00719-8
– ident: e_1_2_11_65_1
  doi: 10.1126/science.2982211
– ident: e_1_2_11_159_1
  doi: 10.1080/17460441.2020.1819235
– ident: e_1_2_11_101_1
  doi: 10.1016/j.yjmcc.2007.07.055
– ident: e_1_2_11_141_1
  doi: 10.1371/journal.pone.0221798
– ident: e_1_2_11_84_1
  doi: 10.1111/j.1471-4159.2008.05399.x
– ident: e_1_2_11_103_1
  doi: 10.1093/cvr/cvp175
– ident: e_1_2_11_72_1
  doi: 10.1016/S0008-6363(01)00445-X
– ident: e_1_2_11_98_1
  doi: 10.1016/j.ejmech.2020.112260
– ident: e_1_2_11_54_1
  doi: 10.1186/s40035-015-0041-1
– ident: e_1_2_11_44_1
  doi: 10.1074/jbc.274.8.4570
– ident: e_1_2_11_48_1
  doi: 10.1016/j.matbio.2016.03.007
– ident: e_1_2_11_64_1
  doi: 10.2337/db11-0816
– ident: e_1_2_11_153_1
  doi: 10.1007/s13277-014-2597-2
– ident: e_1_2_11_60_1
  doi: 10.1096/fj.02-1202fje
– ident: e_1_2_11_76_1
  doi: 10.1016/j.tcm.2012.03.008
– ident: e_1_2_11_32_1
  doi: 10.1242/jcs.00063
– ident: e_1_2_11_73_1
  doi: 10.1016/S0008-6363(96)00254-4
– ident: e_1_2_11_74_1
  doi: 10.1161/01.RES.87.3.241
– ident: e_1_2_11_35_1
  doi: 10.1111/j.1749-6632.1994.tb44319.x
– ident: e_1_2_11_109_1
  doi: 10.1007/s00395-019-0749-7
– ident: e_1_2_11_154_1
  doi: 10.1007/s11373-008-9264-9
– ident: e_1_2_11_77_1
  doi: 10.1126/science.1073634
– ident: e_1_2_11_5_1
  doi: 10.1038/nrm2125
– ident: e_1_2_11_59_1
  doi: 10.1016/j.bbamcr.2017.05.013
– ident: e_1_2_11_110_1
  doi: 10.1002/glia.20927
– ident: e_1_2_11_80_1
  doi: 10.1038/375244a0
– ident: e_1_2_11_145_1
  doi: 10.1016/j.semcdb.2007.07.003
– ident: e_1_2_11_97_1
  doi: 10.1161/JAHA.115.002553
– ident: e_1_2_11_139_1
  doi: 10.1093/cvr/cvx115
– ident: e_1_2_11_26_1
  doi: 10.1016/j.bcp.2008.11.004
– ident: e_1_2_11_78_1
  doi: 10.1096/fj.06-7938com
– ident: e_1_2_11_93_1
  doi: 10.4049/jimmunol.1500944
– ident: e_1_2_11_126_1
  doi: 10.1517/13543784.2012.681043
– ident: e_1_2_11_7_1
  doi: 10.2147/VHRM.S68415
– ident: e_1_2_11_53_1
  doi: 10.1083/jcb.200108112
– ident: e_1_2_11_128_1
  doi: 10.1016/j.bbrc.2013.07.066
– ident: e_1_2_11_111_1
  doi: 10.2353/ajpath.2010.090050
– ident: e_1_2_11_29_1
  doi: 10.1186/gb-2011-12-11-233
– ident: e_1_2_11_31_1
  doi: 10.1016/j.bbamcr.2010.01.003
– ident: e_1_2_11_161_1
  doi: 10.3390/molecules24122265
– ident: e_1_2_11_123_1
  doi: 10.1155/2015/257471
– ident: e_1_2_11_122_1
  doi: 10.1167/iovs.10-6368
– ident: e_1_2_11_38_1
  doi: 10.1074/jbc.M111.264176
– ident: e_1_2_11_117_1
  doi: 10.1016/B978-0-12-378630-2.00185-7
– ident: e_1_2_11_121_1
  doi: 10.1016/j.jprot.2014.04.026
– ident: e_1_2_11_89_1
  doi: 10.3390/cells7070080
– ident: e_1_2_11_57_1
  doi: 10.1038/ncomms6552
– ident: e_1_2_11_8_1
  doi: 10.1016/bs.pmbts.2017.02.001
– ident: e_1_2_11_10_1
  doi: 10.1016/j.mam.2008.05.002
– volume: 6
  start-page: 155
  year: 2014
  ident: e_1_2_11_63_1
  article-title: Nuclear localization of catalytically active MMP‐2 in endothelial cells and neurons
  publication-title: Am J Transl Res
– ident: e_1_2_11_124_1
  doi: 10.3109/10799891003614808
– ident: e_1_2_11_37_1
  doi: 10.1038/325733a0
– ident: e_1_2_11_55_1
  doi: 10.1111/j.1471-4159.2007.04625.x
– ident: e_1_2_11_99_1
  doi: 10.7150/thno.23209
– ident: e_1_2_11_70_1
  doi: 10.1371/journal.pone.0071794
– ident: e_1_2_11_42_1
  doi: 10.1128/MCB.01288-07
– ident: e_1_2_11_27_1
  doi: 10.1016/0014-5793(93)80312-I
– ident: e_1_2_11_33_1
  doi: 10.1016/j.exger.2006.08.010
– ident: e_1_2_11_91_1
  doi: 10.1073/pnas.94.9.4424
– ident: e_1_2_11_113_1
  doi: 10.1074/jbc.M502779200
– ident: e_1_2_11_13_1
  doi: 10.1002/jcp.24040
– ident: e_1_2_11_112_1
  doi: 10.1021/pr801012x
– ident: e_1_2_11_146_1
  doi: 10.1002/cphy.c160010
– ident: e_1_2_11_102_1
  doi: 10.1161/01.CIR.0000065603.09430.58
– ident: e_1_2_11_20_1
  doi: 10.3109/10409238.2010.501783
– ident: e_1_2_11_23_1
  doi: 10.1016/j.cardiores.2005.12.002
– ident: e_1_2_11_131_1
  doi: 10.1080/01902140802406059
– ident: e_1_2_11_147_1
  doi: 10.1371/journal.pone.0084748
– ident: e_1_2_11_148_1
  doi: 10.1111/j.1471-4159.2008.05430.x
– ident: e_1_2_11_119_1
  doi: 10.3389/fphys.2014.00363
– ident: e_1_2_11_9_1
  doi: 10.1146/annurev.pharmtox.47.120505.105230
– ident: e_1_2_11_28_1
  doi: 10.1002/jcp.21535
– ident: e_1_2_11_156_1
  doi: 10.1074/jbc.M008087200
– ident: e_1_2_11_158_1
  doi: 10.1016/j.bbrc.2013.12.103
– ident: e_1_2_11_118_1
  doi: 10.1016/j.bbrc.2007.04.094
– ident: e_1_2_11_150_1
  doi: 10.1158/1078-0432.CCR-14-2279
– ident: e_1_2_11_6_1
  doi: 10.1038/nrd2308
– ident: e_1_2_11_94_1
  doi: 10.1158/0008-5472.CAN-05-3592
– ident: e_1_2_11_120_1
  doi: 10.1152/ajpheart.00909.2013
– ident: e_1_2_11_149_1
  doi: 10.1371/journal.pone.0174853
– ident: e_1_2_11_14_1
  doi: 10.1371/journal.pone.0034177
– ident: e_1_2_11_36_1
  doi: 10.1016/S0021-9258(18)38172-9
– ident: e_1_2_11_106_1
  doi: 10.1038/sj.bjp.0705917
– year: 2020
  ident: e_1_2_11_133_1
  article-title: Matrix metalloproteinase‐2 mediates ribosomal RNA transcription by cleaving nucleolar histones
  publication-title: bioRxiv
– ident: e_1_2_11_81_1
  doi: 10.1042/bj3150953
– ident: e_1_2_11_95_1
  doi: 10.1007/s00395-014-0424-y
– ident: e_1_2_11_88_1
  doi: 10.1016/j.matbio.2015.09.003
– ident: e_1_2_11_127_1
  doi: 10.1152/ajpheart.00099.2008
– ident: e_1_2_11_52_1
  doi: 10.1073/pnas.241293698
– ident: e_1_2_11_61_1
  doi: 10.1155/2016/6927328
– ident: e_1_2_11_56_1
  doi: 10.1038/sj.emboj.7600403
– ident: e_1_2_11_135_1
  doi: 10.1111/j.1471-4159.2009.06433.x
– ident: e_1_2_11_51_1
  doi: 10.1091/mbc.E03-07-0516
– ident: e_1_2_11_152_1
  doi: 10.1016/S0002-9440(10)62371-1
– ident: e_1_2_11_58_1
  doi: 10.1016/j.proghi.2011.12.002
– ident: e_1_2_11_68_1
  doi: 10.1074/jbc.M106958200
– ident: e_1_2_11_4_1
  doi: 10.1152/ajpheart.00577.2012
– ident: e_1_2_11_12_1
  doi: 10.1161/01.CIR.0000028818.33488.7B
– ident: e_1_2_11_129_1
  doi: 10.1089/ars.2013.5411
– ident: e_1_2_11_11_1
  doi: 10.1161/01.CIR.101.15.1833
– ident: e_1_2_11_69_1
  doi: 10.1086/374644
– ident: e_1_2_11_151_1
  doi: 10.1590/1414-431x20176104
– ident: e_1_2_11_90_1
  doi: 10.1186/1471-2407-11-348
– ident: e_1_2_11_160_1
  doi: 10.18632/oncotarget.13157
– ident: e_1_2_11_136_1
  doi: 10.1038/nature08181
– ident: e_1_2_11_49_1
  doi: 10.1016/j.yjmcc.2007.01.008
– ident: e_1_2_11_62_1
  doi: 10.1038/cddiscovery.2017.36
SSID ssj0035499
Score 2.698356
SecondaryResourceType review_article
Snippet Matrix metalloproteinases (MMPs) are zinc‐dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins....
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7162
SubjectTerms Animals
cancer
Cardiomyocytes
cardiovascular disease
Cardiovascular Diseases - enzymology
Cytosol
Humans
inflammation
Intracellular
Malignancy
Matrix metalloproteinase
Matrix metalloproteinases
Matrix Metalloproteinases - metabolism
metalloproteinases
Mitochondria
Myocytes
Neoplasms - enzymology
nucleus
Oxidative stress
Pathogenesis
Protease
Proteinase
Proteins
proteolysis
sarcomere
sarcomeres
Substrates
Title Multifunctional intracellular matrix metalloproteinases: implications in disease
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.15701
https://www.ncbi.nlm.nih.gov/pubmed/33405316
https://www.proquest.com/docview/2611549176
https://www.proquest.com/docview/2475533836
https://www.proquest.com/docview/2636384212
Volume 288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD4s9sG-tFXbut6YohQUsiSZSzLFl111EaFF2gr7UkJmMgNLu9ni7oL66ztncnFtRbBvgZyByeTcL98AHCRMsVQxGVCjGIJqO5ESuQ50qrl0JlBoioPCn7-I8yt2MeKjDhw3szAVPkSbcEPJ8PoaBTxXsyUht0bNehFP_PAWNmuhR_S1xY6iGPhU05BxwAQb1dik2MZzv_ShNfrHxXzosXqTM3wNP5rNVp0mP3uLuerpu79wHP_3a97Aq9oXJf2KedagY8p12OiXLg6f3JKPxHeH-rT7OqyeNDfDbcCln9pFi1glEskYM8RYAsCeVjJB1P8bMjFzLOp7IIhx6Yzl7BMZL_Wvu1WkLg-9havh2feT86C-mSHQ6HAFhkZFZIuQFyZJrWI8LWJKrbAylKni0soCgcnC2MY8lgUTNoxyZhyZFDxROX0HK-W0NJtAUhkaXgjh3NCEce30R1zwWCkbacczQnbhsPlDma5hy_H2jF9ZE77g0WX-6Lqw39L-rsA6HqXaaX50VgvsLHOBJILVRYnowof2tTtXPLy8NNOFo2EJ5xjSP0UjqNNoWGbvwvuKidqtUMpQ5bnVR54VnthjNjwbfPNPW88h3oaXMfbc-HabHViZXy_MrnOa5moPXvQHp4PhnheSP9AxE4g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigXKC2PhQJGPCQqZZX4lRiJQ2m72tKHELTS3kKc2NIKNovYrGj7n_pX-E14nActoEoceuAWKePIsWfG4_HnbwCex1zzRHMVMKM5kmo7k5JZHuRJLpRbAmXO8KLw_oEcHvF3IzFagLP2LkzND9El3NAyvL9GA8eE9Dkrt0bP-pGIw6jBVO6ak-9uxzZ7s7PlpvcFpYPtw81h0BQVCHKMFQLDoiKyRSgKEydWc5EUlDErrQpVooWyqkBOrZBaKqgquLRhlHHjxJQUsc6Y--41uI4lxJGqf-tDx1bFcKtV37-kAZd81LChInDoV18vrn9_BLUXY2S_yA1uwY92eGpsy-f-vNL9_PQ35sj_ZvyW4WYTbpON2j5uw4IpV2B1o8yq6eSEvCQeAOtPFlZgabMtfrcK7_3FZFz061wpGWMSHE85ELZLJljY4JhMTIW4Bc91MS5dPDB7TcbnIPquFWlOwO7A0ZX8511YLKeluQ8kUaERhZQu0o65yJ2LpIWgWtsod2YhVQ9etSqR5g0zOxYI-ZK2OzScqtRPVQ-edbJfaz6Sv0qttZqVNj5plrq9MvLxRbHswdPutRtXHLysNNO5k-GxEJi1uExGMue0EUnQg3u11nZdYYyjV3et173uXdLHdLD99qN_evAvwk9gaXi4v5fu7RzsPoQbFCFGHl20BovVt7l55GLESj_2lkng01Wr8k-Bwm5j
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIkEvFFpKFwoY8ZColFXiV2IkDqXbVUuhqoBKewtxYksr2GzFZgXtb-Kv8J_wOA9aQJU49MAtUsaRY8-Mx-PP3wA8ibnmieYqYEZzJNV2JiWzPMiTXCi3BMqc4UXhtwdy94i_HonRAnxv78LU_BBdwg0tw_trNPDjwp4xcmv0rB-JOIwaSOW-OfnqNmyzl3sDN7tPKR3ufNjeDZqaAkGOoUJgWFREtghFYeLEai6SgjJmpVWhSrRQVhVIqRVSSwVVBZc2jDJunJiSItYZc9-9Ale5DBUWihi868iqGO606uuXNOCSjxoyVMQN_err-eXvj5j2fIjs17jhMvxoR6eGtnzqzyvdz09_I478X4bvJtxogm2yVVvHLVgw5QqsbpVZNZ2ckGfEw1_9ucIKXN9uS9-twqG_loxLfp0pJWNMgeMZB4J2yQTLGnwjE1MhasEzXYxLFw3MXpDxGYC-a0Wa86_bcHQp_7kGi-W0NOtAEhUaUUjp4uyYi9w5SFoIqrWNcmcUUvXgeasRad7wsmN5kM9puz_DqUr9VPXgcSd7XLOR_FVqo1WstPFIs9TtlJGNL4plDx51r9244uBlpZnOnQyPhcCcxUUykjmXjTiCHtyplbbrCmMcfbprvelV74I-psOdV-_9091_EX4I1w4Hw_TN3sH-PViiiC_y0KINWKy-zM19FyBW-oG3SwIfL1uTfwKuyW0S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+intracellular+matrix+metalloproteinases%3A+implications+in+disease&rft.jtitle=The+FEBS+journal&rft.au=Bassiouni%2C+Wesam&rft.au=Ali%2C+Mohammad+A+M&rft.au=Schulz%2C+Richard&rft.date=2021-12-01&rft.issn=1742-4658&rft.eissn=1742-4658&rft.volume=288&rft.issue=24&rft.spage=7162&rft_id=info:doi/10.1111%2Ffebs.15701&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon