Multifunctional intracellular matrix metalloproteinases: implications in disease
Matrix metalloproteinases (MMPs) are zinc‐dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP‐2 i...
Saved in:
Published in | The FEBS journal Vol. 288; no. 24; pp. 7162 - 7182 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Matrix metalloproteinases (MMPs) are zinc‐dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP‐2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress‐induced injury. Beyond MMP‐2, currently at least eleven other MMPs are known to function intracellularly including MMP‐1, MMP‐3, MMP‐7, MMP‐8, MMP‐9, MMP‐10, MMP‐11, MMP‐12, MMP‐14, MMP‐23 and MMP‐26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease‐dependent and protease‐independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors.
Matrix metalloproteinases (MMPs) were first discovered as secreted proteases that cleave extracellular matrix proteins. However, by different mechanisms, they can also remain inside the cell and localize to different subcellular compartments and organelles including, for example, the cytosol, mitochondria, nuclei, and sarcomere. When intracellularly activated, MMPs can also proteolyze specific intracellular proteins to affect both pathological and physiological responses. |
---|---|
AbstractList | Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP-2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress-induced injury. Beyond MMP-2, currently at least eleven other MMPs are known to function intracellularly including MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-23 and MMP-26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease-dependent and protease-independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors. Matrix metalloproteinases (MMPs) are zinc‐dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP‐2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress‐induced injury. Beyond MMP‐2, currently at least eleven other MMPs are known to function intracellularly including MMP‐1, MMP‐3, MMP‐7, MMP‐8, MMP‐9, MMP‐10, MMP‐11, MMP‐12, MMP‐14, MMP‐23 and MMP‐26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease‐dependent and protease‐independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors. Matrix metalloproteinases (MMPs) were first discovered as secreted proteases that cleave extracellular matrix proteins. However, by different mechanisms, they can also remain inside the cell and localize to different subcellular compartments and organelles including, for example, the cytosol, mitochondria, nuclei, and sarcomere. When intracellularly activated, MMPs can also proteolyze specific intracellular proteins to affect both pathological and physiological responses. Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP-2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress-induced injury. Beyond MMP-2, currently at least eleven other MMPs are known to function intracellularly including MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-23 and MMP-26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease-dependent and protease-independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors.Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP-2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress-induced injury. Beyond MMP-2, currently at least eleven other MMPs are known to function intracellularly including MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-23 and MMP-26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease-dependent and protease-independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors. |
Author | Ali, Mohammad A. M. Bassiouni, Wesam Schulz, Richard |
Author_xml | – sequence: 1 givenname: Wesam surname: Bassiouni fullname: Bassiouni, Wesam organization: University of Alberta – sequence: 2 givenname: Mohammad A. M. surname: Ali fullname: Ali, Mohammad A. M. email: mali@binghamton.edu organization: State University of New York‐Binghamton – sequence: 3 givenname: Richard orcidid: 0000-0002-5045-3193 surname: Schulz fullname: Schulz, Richard email: richard.schulz@ualberta.ca organization: University of Alberta |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33405316$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1LxDAURYOMqDO68QdIwY0IM-blox_udHBUGFFQwV1I2wQiaTsmLeq_N7WjCxHNJoGc83jcO0ajuqkVQvuAZxDOiVa5nwFPMGygHUgYmbKYp6PvN3vaRmPvnzGmnGXZFtqmlGFOId5BdzedbY3u6qI1TS1tZOrWyUJZ21npokq2zrxFlWqltc3KNa0ytfTKn0amWllTyF7zwYpK41X42UWbWlqv9tb3BD0uLh7mV9Pl7eX1_Gw5LRiPYaoolKBLzEuVpDpnPC0JpTrWGc7SnGc6K4EAxkQTTrKSxRqDZCpgWcyTXNIJOhrmhqVeOuVbURnf7y1r1XRekJjGNGUEyP8oSzinNA3CBB3-QJ-bzoVc-oEAIT5IeupgTXV5pUqxcqaS7l18xRoAPACFa7x3SovCtJ9RhXCNFYBF35zomxOfzQXl-IfyNfVXGAb41Vj1_gcpFhfn94PzAWrVqFE |
CitedBy_id | crossref_primary_10_1016_j_jff_2024_106255 crossref_primary_10_1016_j_jep_2022_115992 crossref_primary_10_1007_s11033_024_09486_6 crossref_primary_10_1016_j_heliyon_2024_e37031 crossref_primary_10_1016_j_intimp_2023_111272 crossref_primary_10_1615_OncoTherap_2022045773 crossref_primary_10_3390_jcm13020511 crossref_primary_10_1007_s00395_023_00987_2 crossref_primary_10_3389_fonc_2022_1030590 crossref_primary_10_1186_s13059_024_03396_3 crossref_primary_10_1016_j_job_2024_100609 crossref_primary_10_3390_biomedicines10102477 crossref_primary_10_1097_MEG_0000000000002586 crossref_primary_10_1016_j_jep_2023_116457 crossref_primary_10_3390_ijms23042131 crossref_primary_10_62347_BQFH7352 crossref_primary_10_1007_s12033_024_01167_w crossref_primary_10_1007_s12035_024_04315_0 crossref_primary_10_1016_j_exer_2021_108843 crossref_primary_10_1038_s41420_022_00989_4 crossref_primary_10_3390_molecules28145567 crossref_primary_10_1016_j_isci_2024_111171 crossref_primary_10_1002_ardp_202300263 crossref_primary_10_3390_cimb46120824 crossref_primary_10_18481_2077_7566_2024_20_1_5_10 crossref_primary_10_1038_s41598_024_59112_5 crossref_primary_10_1038_s41467_021_27860_x crossref_primary_10_1016_j_heliyon_2023_e23927 crossref_primary_10_18699_vjgb_24_49 crossref_primary_10_1016_j_vph_2024_107420 crossref_primary_10_1111_jcmm_17878 crossref_primary_10_18087_cardio_2024_4_n2411 crossref_primary_10_1088_1748_605X_ad7556 crossref_primary_10_1139_cjpp_2021_0199 crossref_primary_10_3389_fmicb_2023_1167160 crossref_primary_10_1016_j_gene_2024_148990 crossref_primary_10_3390_biom11060903 crossref_primary_10_3389_fimmu_2022_1046810 crossref_primary_10_1007_s10068_022_01233_6 crossref_primary_10_1124_pharmrev_121_000349 crossref_primary_10_1016_j_jocn_2022_09_002 crossref_primary_10_1038_s41598_022_09017_y crossref_primary_10_1007_s12094_023_03284_5 crossref_primary_10_3389_fcell_2023_1131481 crossref_primary_10_1007_s13273_022_00252_y crossref_primary_10_12677_WJCR_2023_132011 crossref_primary_10_2147_DMSO_S507337 crossref_primary_10_1097_BRS_0000000000005167 crossref_primary_10_2147_JHC_S449419 crossref_primary_10_3389_fneur_2022_988854 crossref_primary_10_3390_biomedicines11071839 crossref_primary_10_1016_j_abb_2023_109713 crossref_primary_10_31393_reports_vnmedical_2023_27_2__24 crossref_primary_10_1155_2023_6122331 crossref_primary_10_1111_febs_16061 crossref_primary_10_1038_s41598_022_17944_z crossref_primary_10_1002_ctm2_70232 crossref_primary_10_3390_ijms23179513 crossref_primary_10_1021_acs_jproteome_3c00755 crossref_primary_10_1016_j_urolonc_2024_05_002 crossref_primary_10_1007_s12672_021_00417_6 crossref_primary_10_1016_j_isci_2022_105775 crossref_primary_10_3389_fonc_2022_926404 crossref_primary_10_1080_03008207_2023_2295322 crossref_primary_10_1021_acs_jnatprod_2c00626 crossref_primary_10_3390_ijms231810546 crossref_primary_10_3390_bioengineering10101122 crossref_primary_10_3389_fimmu_2022_1067950 crossref_primary_10_1016_j_scitotenv_2024_178329 crossref_primary_10_3390_molecules28083356 crossref_primary_10_1016_j_biopha_2023_116116 crossref_primary_10_1007_s12374_022_09369_y crossref_primary_10_1016_j_jtha_2024_12_013 crossref_primary_10_32604_or_2024_055449 crossref_primary_10_1186_s13018_025_05622_5 crossref_primary_10_1161_CIRCRESAHA_123_323360 crossref_primary_10_1016_j_matbio_2023_03_011 crossref_primary_10_2478_cipms_2024_0011 crossref_primary_10_1016_j_cellsig_2024_111194 crossref_primary_10_3390_ijms25147804 crossref_primary_10_1080_13102818_2024_2373855 crossref_primary_10_1165_rcmb_2023_0431LE crossref_primary_10_3390_ijms22158056 crossref_primary_10_3390_ijms241210291 crossref_primary_10_1002_dvdy_398 crossref_primary_10_15616_BSL_2023_29_4_321 crossref_primary_10_1007_s11010_023_04849_2 crossref_primary_10_1177_00033197241227598 crossref_primary_10_1007_s43032_024_01778_3 crossref_primary_10_3390_life13030810 crossref_primary_10_1016_j_advms_2024_09_008 crossref_primary_10_1007_s00403_024_02964_8 crossref_primary_10_4081_jbr_2024_12567 crossref_primary_10_1016_j_ejcb_2022_151276 crossref_primary_10_1007_s11033_024_09555_w crossref_primary_10_3389_fonc_2022_844648 crossref_primary_10_1186_s12920_023_01482_2 crossref_primary_10_1159_000529687 crossref_primary_10_1152_physrev_00036_2021 crossref_primary_10_1016_j_jff_2024_106267 crossref_primary_10_1134_S1990750823600504 crossref_primary_10_1093_stcltm_szae069 crossref_primary_10_3390_ijms242115660 crossref_primary_10_1007_s13577_023_00951_1 crossref_primary_10_1016_j_biomaterials_2021_121268 crossref_primary_10_1021_acsabm_2c01008 crossref_primary_10_36660_abc_20230490 crossref_primary_10_1016_j_cellsig_2024_111174 crossref_primary_10_2174_1574887118666230131141608 crossref_primary_10_3389_fnut_2023_1193289 crossref_primary_10_3390_ijms222011047 crossref_primary_10_3390_ijms24021258 crossref_primary_10_1016_j_identj_2024_12_017 crossref_primary_10_4269_ajtmh_21_0860 crossref_primary_10_1007_s12035_024_03982_3 crossref_primary_10_1016_j_artmed_2024_102871 crossref_primary_10_3390_ijms252413516 crossref_primary_10_12677_acm_2025_153785 crossref_primary_10_1016_j_cbi_2023_110743 crossref_primary_10_1016_j_jtemb_2023_127162 crossref_primary_10_1128_mSystems_01173_20 crossref_primary_10_3389_fphar_2024_1355242 crossref_primary_10_3390_cancers16162801 crossref_primary_10_3390_jcm11040902 crossref_primary_10_4081_ejh_2022_3423 crossref_primary_10_1016_j_psj_2022_101915 crossref_primary_10_3390_cancers14071847 crossref_primary_10_17816_medjrf641666 crossref_primary_10_1016_j_biopha_2023_114534 crossref_primary_10_1093_infdis_jiae305 crossref_primary_10_1007_s00535_022_01901_8 crossref_primary_10_3390_ijms23031883 crossref_primary_10_3390_cells12242774 crossref_primary_10_4103_AGINGADV_AGINGADV_D_24_00031 crossref_primary_10_34172_mejdd_2024_373 crossref_primary_10_3390_cancers13143466 crossref_primary_10_1016_j_nexres_2025_100178 crossref_primary_10_3390_diagnostics14242784 crossref_primary_10_1016_j_heliyon_2022_e11022 crossref_primary_10_3390_medicina59071295 crossref_primary_10_12677_PI_2024_131004 crossref_primary_10_3390_medicina59081424 crossref_primary_10_2147_CMAR_S389742 crossref_primary_10_3390_biology12060843 crossref_primary_10_1016_j_ygcen_2021_113924 crossref_primary_10_1021_acsaom_3c00325 crossref_primary_10_1016_j_ccr_2024_216402 crossref_primary_10_2147_JIR_S480466 crossref_primary_10_21292_2075_1230_2022_100_10_22_29 crossref_primary_10_31083_j_jin2202029 crossref_primary_10_1186_s12929_024_01042_5 crossref_primary_10_1016_j_bcp_2023_115684 crossref_primary_10_17221_77_2023_VETMED crossref_primary_10_3390_polym15071616 crossref_primary_10_1007_s00210_024_03363_6 crossref_primary_10_1016_j_heliyon_2024_e32891 crossref_primary_10_3389_fonc_2024_1491099 crossref_primary_10_1016_j_mam_2025_101358 crossref_primary_10_2174_1381612828666220413101929 crossref_primary_10_1002_advs_202204951 crossref_primary_10_1093_burnst_tkad025 crossref_primary_10_1186_s12885_023_11662_z crossref_primary_10_3390_ijms25126720 crossref_primary_10_1016_j_jep_2024_119230 crossref_primary_10_1007_s00018_024_05310_3 crossref_primary_10_1016_j_yexcr_2021_112984 crossref_primary_10_3389_fphar_2023_1285455 crossref_primary_10_1186_s40364_024_00663_0 crossref_primary_10_1016_j_bbr_2022_114020 crossref_primary_10_3390_pharmaceutics17030279 crossref_primary_10_33549_physiolres_935228 crossref_primary_10_1016_j_cellsig_2023_110959 crossref_primary_10_18786_2072_0505_2025_53_003 crossref_primary_10_3390_ijms232415900 crossref_primary_10_1016_j_molmed_2023_11_001 crossref_primary_10_1016_j_jnha_2025_100529 crossref_primary_10_1080_1744666X_2024_2302362 crossref_primary_10_1177_09603271221143040 crossref_primary_10_3389_fimmu_2024_1429523 crossref_primary_10_2139_ssrn_4089126 crossref_primary_10_36660_abc_20230490i crossref_primary_10_1016_j_bioactmat_2024_01_004 crossref_primary_10_3390_gels11010022 crossref_primary_10_1016_j_actbio_2024_01_002 crossref_primary_10_3389_fonc_2022_1108695 crossref_primary_10_3390_ijms24032524 crossref_primary_10_1016_j_biopha_2023_115410 crossref_primary_10_12677_WJCR_2022_122008 crossref_primary_10_1016_j_theriogenology_2022_03_029 crossref_primary_10_1186_s13578_023_01040_4 crossref_primary_10_3389_fimmu_2023_1196791 crossref_primary_10_62347_UPFN1244 crossref_primary_10_1016_j_freeradbiomed_2024_06_022 crossref_primary_10_1093_brain_awae156 crossref_primary_10_3390_biom12020279 crossref_primary_10_1007_s12033_024_01186_7 crossref_primary_10_1016_j_actbio_2022_08_063 crossref_primary_10_1080_08916934_2023_2281223 crossref_primary_10_1080_07357907_2021_1954190 crossref_primary_10_1620_tjem_2022_J120 crossref_primary_10_2174_0118715206270002231108071917 crossref_primary_10_1016_j_jri_2022_103648 crossref_primary_10_1002_iub_2803 crossref_primary_10_1097_MS9_0000000000001491 crossref_primary_10_17802_2306_1278_2022_11_3_72_83 crossref_primary_10_3389_fnins_2024_1450072 crossref_primary_10_3389_fsysb_2024_1470000 crossref_primary_10_4070_kcj_2024_0093 crossref_primary_10_3390_bioengineering9030119 crossref_primary_10_1016_j_kint_2024_05_004 crossref_primary_10_3390_ijms24043786 crossref_primary_10_1038_s41598_023_42629_6 crossref_primary_10_3389_fimmu_2022_885229 crossref_primary_10_3389_fvets_2022_1063580 crossref_primary_10_1007_s00395_023_01007_z crossref_primary_10_3390_genes14050990 |
Cites_doi | 10.1161/JAHA.115.001868 10.1042/bj2050091 10.1093/carcin/23.5.769 10.1161/01.RES.0000019241.12929.EB 10.3390/ph12020077 10.1038/bjp.2008.373 10.1091/mbc.11.7.2387 10.1101/gad.268714.115 10.1111/j.1440-1827.2010.02547.x 10.1111/j.1582-4934.2007.00113.x 10.1152/ajpheart.00434.2006 10.1074/jbc.M102417200 10.1016/j.neuroscience.2012.06.019 10.1160/TH13-03-0248 10.1002/mc.20270 10.1161/CIRCULATIONAHA.104.531616 10.1016/j.neuron.2010.06.021 10.1161/CIRCULATIONAHA.109.930222 10.1093/cvr/cvaa017 10.1016/S1388-9842(99)00048-3 10.1093/eurheartj/ehi007 10.1016/j.tibs.2006.08.004 10.1073/pnas.83.12.4322 10.1089/ars.2007.1993 10.1101/gad.178749.111 10.1073/pnas.48.6.1014 10.1074/jbc.M202494200 10.1038/386616a0 10.1152/ajprenal.00461.2016 10.1055/s-0037-1615367 10.1161/01.RES.0000021398.28936.1D 10.1074/jbc.M100121200 10.1074/jbc.M201197200 10.2353/ajpath.2006.060005 10.1016/j.cardiores.2005.08.023 10.1093/carcin/bgn159 10.1038/nm.3508 10.1074/jbc.M406792200 10.1074/jbc.M709509200 10.2147/CMAR.S235776 10.1161/CIRCULATIONAHA.106.612960 10.1016/j.bmc.2007.01.011 10.1371/journal.pone.0068154 10.1161/ATVBAHA.111.242685 10.1016/bs.pmbts.2017.02.005 10.1074/jbc.271.15.9135 10.1074/jbc.M210975200 10.1021/bi00476a020 10.1038/sj.bjp.0706823 10.1074/jbc.M008925200 10.1016/S0008-6363(02)00719-8 10.1126/science.2982211 10.1080/17460441.2020.1819235 10.1016/j.yjmcc.2007.07.055 10.1371/journal.pone.0221798 10.1111/j.1471-4159.2008.05399.x 10.1093/cvr/cvp175 10.1016/S0008-6363(01)00445-X 10.1016/j.ejmech.2020.112260 10.1186/s40035-015-0041-1 10.1074/jbc.274.8.4570 10.1016/j.matbio.2016.03.007 10.2337/db11-0816 10.1007/s13277-014-2597-2 10.1096/fj.02-1202fje 10.1016/j.tcm.2012.03.008 10.1242/jcs.00063 10.1016/S0008-6363(96)00254-4 10.1161/01.RES.87.3.241 10.1111/j.1749-6632.1994.tb44319.x 10.1007/s00395-019-0749-7 10.1007/s11373-008-9264-9 10.1126/science.1073634 10.1038/nrm2125 10.1016/j.bbamcr.2017.05.013 10.1002/glia.20927 10.1038/375244a0 10.1016/j.semcdb.2007.07.003 10.1161/JAHA.115.002553 10.1093/cvr/cvx115 10.1016/j.bcp.2008.11.004 10.1096/fj.06-7938com 10.4049/jimmunol.1500944 10.1517/13543784.2012.681043 10.2147/VHRM.S68415 10.1083/jcb.200108112 10.1016/j.bbrc.2013.07.066 10.2353/ajpath.2010.090050 10.1186/gb-2011-12-11-233 10.1016/j.bbamcr.2010.01.003 10.3390/molecules24122265 10.1155/2015/257471 10.1167/iovs.10-6368 10.1074/jbc.M111.264176 10.1016/B978-0-12-378630-2.00185-7 10.1016/j.jprot.2014.04.026 10.3390/cells7070080 10.1038/ncomms6552 10.1016/bs.pmbts.2017.02.001 10.1016/j.mam.2008.05.002 10.3109/10799891003614808 10.1038/325733a0 10.1111/j.1471-4159.2007.04625.x 10.7150/thno.23209 10.1371/journal.pone.0071794 10.1128/MCB.01288-07 10.1016/0014-5793(93)80312-I 10.1016/j.exger.2006.08.010 10.1073/pnas.94.9.4424 10.1074/jbc.M502779200 10.1002/jcp.24040 10.1021/pr801012x 10.1002/cphy.c160010 10.1161/01.CIR.0000065603.09430.58 10.3109/10409238.2010.501783 10.1016/j.cardiores.2005.12.002 10.1080/01902140802406059 10.1371/journal.pone.0084748 10.1111/j.1471-4159.2008.05430.x 10.3389/fphys.2014.00363 10.1146/annurev.pharmtox.47.120505.105230 10.1002/jcp.21535 10.1074/jbc.M008087200 10.1016/j.bbrc.2013.12.103 10.1016/j.bbrc.2007.04.094 10.1158/1078-0432.CCR-14-2279 10.1038/nrd2308 10.1158/0008-5472.CAN-05-3592 10.1152/ajpheart.00909.2013 10.1371/journal.pone.0174853 10.1371/journal.pone.0034177 10.1016/S0021-9258(18)38172-9 10.1038/sj.bjp.0705917 10.1042/bj3150953 10.1007/s00395-014-0424-y 10.1016/j.matbio.2015.09.003 10.1152/ajpheart.00099.2008 10.1073/pnas.241293698 10.1155/2016/6927328 10.1038/sj.emboj.7600403 10.1111/j.1471-4159.2009.06433.x 10.1091/mbc.E03-07-0516 10.1016/S0002-9440(10)62371-1 10.1016/j.proghi.2011.12.002 10.1074/jbc.M106958200 10.1152/ajpheart.00577.2012 10.1161/01.CIR.0000028818.33488.7B 10.1089/ars.2013.5411 10.1161/01.CIR.101.15.1833 10.1086/374644 10.1590/1414-431x20176104 10.1186/1471-2407-11-348 10.18632/oncotarget.13157 10.1038/nature08181 10.1016/j.yjmcc.2007.01.008 10.1038/cddiscovery.2017.36 |
ContentType | Journal Article |
Copyright | 2021 Federation of European Biochemical Societies 2021 Federation of European Biochemical Societies. Copyright © 2021 Federation of European Biochemical Societies |
Copyright_xml | – notice: 2021 Federation of European Biochemical Societies – notice: 2021 Federation of European Biochemical Societies. – notice: Copyright © 2021 Federation of European Biochemical Societies |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/febs.15701 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1742-4658 |
EndPage | 7182 |
ExternalDocumentID | 33405316 10_1111_febs_15701 FEBS15701 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research funderid: 143299 – fundername: SUNY startup fund funderid: 910252‐50 – fundername: Alberta Innovates – fundername: CIHR grantid: 143299 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29H 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHBH AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EAD EAP EAS EAU EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESX EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HH5 HZI HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OK1 OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RNS ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V W99 WBFHL WBKPD WIH WIJ WIK WIN WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 Y6R ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4561-e31d1fd05de78fb458d233f6f9098b59f9d121002f2529d46f01a4e58d9657ba3 |
IEDL.DBID | DR2 |
ISSN | 1742-464X 1742-4658 |
IngestDate | Fri Jul 11 18:31:24 EDT 2025 Fri Jul 11 12:28:22 EDT 2025 Fri Jul 25 19:42:13 EDT 2025 Tue Apr 01 03:09:33 EDT 2025 Tue Jul 01 03:06:53 EDT 2025 Thu Apr 24 23:00:25 EDT 2025 Wed Jan 22 16:28:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | cardiovascular disease cytosol inflammation mitochondria matrix metalloproteinase nucleus cancer proteolysis sarcomere |
Language | English |
License | 2021 Federation of European Biochemical Societies. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4561-e31d1fd05de78fb458d233f6f9098b59f9d121002f2529d46f01a4e58d9657ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5045-3193 |
PMID | 33405316 |
PQID | 2611549176 |
PQPubID | 28478 |
PageCount | 7182 |
ParticipantIDs | proquest_miscellaneous_2636384212 proquest_miscellaneous_2475533836 proquest_journals_2611549176 pubmed_primary_33405316 crossref_citationtrail_10_1111_febs_15701 crossref_primary_10_1111_febs_15701 wiley_primary_10_1111_febs_15701_FEBS15701 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The FEBS journal |
PublicationTitleAlternate | FEBS J |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2007; 102 2006; 31 2009; 83 2011; 60 2000; 87 2019; 12 2004; 23 2002; 277 2019; 14 2003; 57 2011; 52 2020; 16 2016; 30 2008; 106 2016; 2016 1998; 80 2020; 12 1995; 375 2013; 8 2003; 278 2017; 312 2014; 21 2014; 20 2018; 7 2009; 11 2018; 8 1986; 83 2007; 292 2008; 29 2019; 24 2000; 11 1997; 386 2010; 112 2008; 28 2007; 8 2007; 6 1962; 48 2002; 90 2012; 26 2016; 49 2010; 30 2012; 21 2006; 169 2004; 143 2012; 220 1987; 325 1982; 205 2005; 112 2007; 11 2012; 227 2012; 32 2007; 15 2006; 113 2010; 45 2001; 276 2001; 155 2015; 195 2009; 77 2014; 306 2017; 50 2016; 6 2006; 41 2003; 107 2004; 279 1997; 33 1990; 29 2015; 2015 2010; 177 2014; 35 2009; 460 2000; 101 2012; 47 2017; 147 2003; 187 2017; 8 2017; 3 2010; 58 2002; 53 2017; 1864 2002; 115 2011; 11 2011; 12 1992; 14 2005; 26 1994; 737 2017; 113 1990; 265 2010; 60 2010; 67 2014; 5 1997; 94 2013; 438 2006; 66 2021; 117 2006; 69 2002; 106 2011; 21 2019; 114 2010; 1803 2014; 9 2007; 21 2008; 155 2014; 6 2011; 286 1993; 331 2001; 98 2014; 443 2015; 4 2002; 297 2008; 19 2015; 11 2010; 122 2008; 15 1985; 227 1999; 1 2014; 111 2012; 303 2008; 283 2016; 56 2005; 280 2014; 106 2009; 35 2014; 109 2007; 358 2004; 18 2005; 166 2020 2002; 23 2004; 15 2020; 194 2017; 12 2015; 21 1999; 274 1996; 271 2020; 116 2008; 217 2009; 8 2013 2007; 42 2006; 149 2012; 7 2007; 43 2007; 46 2008; 295 2007; 47 1996; 315 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_29_1 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_148_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_102_1 e_1_2_11_144_1 e_1_2_11_140_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 Sinha SK (e_1_2_11_63_1) 2014; 6 e_1_2_11_117_1 e_1_2_11_136_1 e_1_2_11_159_1 e_1_2_11_59_1 e_1_2_11_113_1 e_1_2_11_132_1 e_1_2_11_155_1 e_1_2_11_151_1 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_149_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_122_1 e_1_2_11_145_1 e_1_2_11_141_1 e_1_2_11_160_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_156_1 e_1_2_11_110_1 e_1_2_11_39_1 e_1_2_11_152_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_127_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_123_1 e_1_2_11_142_1 e_1_2_11_161_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_157_1 e_1_2_11_19_1 e_1_2_11_153_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 Roczkowsky A (e_1_2_11_130_1) 2020; 116 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 Ali MAM (e_1_2_11_133_1) 2020 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_143_1 e_1_2_11_120_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_1 e_1_2_11_158_1 e_1_2_11_37_1 e_1_2_11_135_1 e_1_2_11_154_1 e_1_2_11_112_1 Saari H (e_1_2_11_67_1) 1992; 14 e_1_2_11_131_1 e_1_2_11_150_1 |
References_xml | – volume: 113 start-page: 2919 year: 2006 end-page: 2928 article-title: Matrix metalloproteinase‐7 affects connexin‐43 levels, electrical conduction, and survival after myocardial infarction publication-title: Circulation – volume: 217 start-page: 643 year: 2008 end-page: 651 article-title: Role of the hemopexin domain of matrix metalloproteinases in cell migration publication-title: J Cell Physiol – volume: 21 start-page: 2127 year: 2015 end-page: 2137 article-title: Rac1/Pak1/p38/MMP‐2 axis regulates angiogenesis in ovarian cancer publication-title: Clin Cancer Res – volume: 6 start-page: 155 year: 2014 end-page: 162 article-title: Nuclear localization of catalytically active MMP‐2 in endothelial cells and neurons publication-title: Am J Transl Res – volume: 87 start-page: 241 year: 2000 end-page: 247 article-title: Peroxynitrite is a major contributor to cytokine‐induced myocardial contractile failure publication-title: Circ Res – volume: 155 start-page: 1174 year: 2008 end-page: 1184 article-title: Protective action of doxycycline against diabetic cardiomyopathy in rats publication-title: Br J Pharmacol – volume: 29 start-page: 1655 year: 2008 end-page: 1664 article-title: Impaired tyrosine phosphorylation of membrane type 1‐matrix metalloproteinase reduces tumor cell proliferation in three‐dimensional matrices and abrogates tumor growth in mice publication-title: Carcinogenesis – volume: 737 start-page: 291 year: 1994 end-page: 307 article-title: Alpha 2‐macroglobulin: a sensor for proteolysis publication-title: Ann N Y Acad Sci – volume: 295 start-page: H890 year: 2008 end-page: H897 article-title: Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia publication-title: Am J Physiol Heart Circ Physiol – volume: 303 start-page: H919 year: 2012 end-page: H930 article-title: The history of matrix metalloproteinases: milestones, myths, and misperceptions publication-title: Am J Physiol Heart Circ Physiol – volume: 102 start-page: 1256 year: 2007 end-page: 1263 article-title: Cleavage of neuronal synaptosomal‐associated protein of 25 kDa by exogenous matrix metalloproteinase‐7 publication-title: J Neurochem – volume: 306 start-page: H764 year: 2014 end-page: H770 article-title: MMP‐2 is localized to the mitochondria‐associated membrane of the heart publication-title: Am J Physiol Heart Circ Physiol – volume: 286 start-page: 33236 year: 2011 end-page: 33243 article-title: Structural basis for matrix metalloproteinase‐2 (MMP‐2)‐selective inhibitory action of β‐amyloid precursor protein‐derived inhibitor publication-title: J Biol Chem – volume: 106 start-page: 405 year: 2008 end-page: 415 article-title: A novel intracellular role of matrix metalloproteinase‐3 during apoptosis of dopaminergic cells publication-title: J Neurochem – volume: 194 year: 2020 article-title: Matrix metalloproteinase‐9 (MMP‐9) and its inhibitors in cancer: a minireview publication-title: Eur J Med Chem – volume: 1 start-page: 337 year: 1999 end-page: 352 article-title: Altered balance between matrix gelatinases (MMP‐2 and MMP‐9) and their tissue inhibitors in human dilated cardiomyopathy: potential role of MMP‐9 in myosin‐heavy chain degradation publication-title: Eur J Heart Fail – volume: 107 start-page: 2487 year: 2003 end-page: 2492 article-title: Imbalance between tissue inhibitor of metalloproteinase‐4 and matrix metalloproteinases during acute myocardial [correction of myocardial] ischemia‐reperfusion injury publication-title: Circulation – volume: 41 start-page: 1094 year: 2006 end-page: 1107 article-title: Zinc‐binding proteins (metallothionein and alpha‐2 macroglobulin) and immunosenescence publication-title: Exp Gerontol – volume: 31 start-page: 563 year: 2006 end-page: 571 article-title: The surprising complexity of signal sequences publication-title: Trends Biochem Sci – volume: 169 start-page: 1390 year: 2006 end-page: 1401 article-title: Matrix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis publication-title: Am J Pathol – volume: 112 start-page: 134 year: 2010 end-page: 149 article-title: Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia publication-title: J Neurochem – volume: 11 start-page: 1069 year: 2007 end-page: 1086 article-title: Matrix metalloproteinase‐2, caveolins, focal adhesion kinase and c‐Kit in cells of the mouse myocardium publication-title: J Cell Mol Med – volume: 292 start-page: H1847 year: 2007 end-page: H1860 article-title: Cardiac matrix metalloproteinase‐2 expression independently induces marked ventricular remodeling and systolic dysfunction publication-title: Am J Physiol Heart Circ Physiol – volume: 205 start-page: 91 year: 1982 end-page: 95 article-title: Evolution of alpha 2‐macroglobulin. The demonstration in a variety of vertebrate species of a protein resembling human alpha 2‐macroglobulin publication-title: Biochem J – volume: 271 start-page: 9135 year: 1996 end-page: 9140 article-title: Transmembrane‐deletion mutants of the membrane‐type matrix metalloproteinase‐1 process progelatinase A and express intrinsic matrix‐degrading activity publication-title: J Biol Chem – volume: 7 start-page: 80 year: 2018 article-title: Sub‐cellular localization of metalloproteinases in megakaryocytes publication-title: Cells – volume: 15 start-page: 678 year: 2004 end-page: 687 article-title: Caveolae are a novel pathway for membrane‐type 1 matrix metalloproteinase traffic in human endothelial cells publication-title: Mol Biol Cell. – volume: 9 year: 2014 article-title: Matrix metalloproteinase 3 promotes cellular anti‐dengue virus response via interaction with transcription factor NFκB in cell nucleus publication-title: PLoS One – volume: 29 start-page: 5783 year: 1990 end-page: 5789 article-title: Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4‐aminophenyl)mercuric acetate publication-title: Biochemistry – volume: 109 start-page: 424 year: 2014 article-title: Targeting MMP‐2 to treat ischemic heart injury publication-title: Basic Res Cardiol – volume: 80 start-page: 836 year: 1998 end-page: 839 article-title: Localization and translocation of MMP‐2 during aggregation of human platelets publication-title: Thromb Haemost – volume: 2015 year: 2015 article-title: Intracellular cleavage of the Cx43 C‐terminal domain by matrix‐metalloproteases: a novel contributor to inflammation? publication-title: Mediators Inflamm – volume: 315 start-page: 953 issue: Pt 3 year: 1996 end-page: 958 article-title: Characterization of structural determinants and molecular mechanisms involved in pro‐stromelysin‐3 activation by 4‐aminophenylmercuric acetate and furin‐type convertases publication-title: Biochem J – volume: 147 start-page: 75 year: 2017 end-page: 100 article-title: Matrix metalloproteinases in myocardial infarction and heart failure publication-title: Prog Mol Biol Transl Sci – volume: 147 start-page: 1 year: 2017 end-page: 73 article-title: Biochemical and biological attributes of matrix metalloproteinases publication-title: Prog Mol Biol Transl Sci – volume: 12 year: 2011 article-title: Tissue inhibitors of metalloproteinases publication-title: Genome Biol – volume: 280 start-page: 25079 year: 2005 end-page: 25086 article-title: Membrane type‐1 matrix metalloproteinase (MT1‐MMP) exhibits an important intracellular cleavage function and causes chromosome instability publication-title: J Biol Chem – volume: 21 start-page: 2486 year: 2007 end-page: 2495 article-title: Regulation of matrix metalloproteinase‐2 (MMP‐2) activity by phosphorylation publication-title: FASEB J – volume: 29 start-page: 290 year: 2008 end-page: 308 article-title: Progress in matrix metalloproteinase research publication-title: Mol Aspects Med – volume: 276 start-page: 15498 year: 2001 end-page: 15503 article-title: The low density lipoprotein receptor‐related protein modulates levels of matrix metalloproteinase 9 (MMP‐9) by mediating its cellular catabolism publication-title: J Biol Chem – volume: 14 year: 2019 article-title: Enhanced cardiac expression of two isoforms of matrix metalloproteinase‐2 in experimental diabetes mellitus publication-title: PLoS One – volume: 8 start-page: 221 year: 2007 end-page: 233 article-title: Matrix metalloproteinases and the regulation of tissue remodelling publication-title: Nat Rev Mol Cell Biol – volume: 35 start-page: 12721 year: 2014 end-page: 12727 article-title: A novel NF‐κB/MMP‐3 signal pathway involves in the aggressivity of glioma promoted by Bmi‐1 publication-title: Tumour Biol – volume: 101 start-page: 1833 year: 2000 end-page: 1839 article-title: Matrix metalloproteinase‐2 contributes to ischemia‐reperfusion injury in the heart publication-title: Circulation – volume: 35 start-page: 59 year: 2009 end-page: 75 article-title: Nuclear localization of active matrix metalloproteinase‐2 in cigarette smoke‐exposed apoptotic endothelial cells publication-title: Exp Lung Res – volume: 115 start-page: 3719 year: 2002 end-page: 3727 article-title: Metalloproteinase inhibitors: biological actions and therapeutic opportunities publication-title: J Cell Sci – volume: 23 start-page: 3758 year: 2004 end-page: 3768 article-title: The membrane form of the DNA repair protein Ku interacts at the cell surface with metalloproteinase 9 publication-title: EMBO J – volume: 386 start-page: 616 year: 1997 end-page: 619 article-title: Release of gelatinase A during platelet activation mediates aggregation publication-title: Nature – volume: 43 start-page: 429 year: 2007 end-page: 436 article-title: Matrix metalloproteinase‐2 degrades the cytoskeletal protein alpha‐actinin in peroxynitrite mediated myocardial injury publication-title: J Mol Cell Cardiol – volume: 48 start-page: 1014 year: 1962 end-page: 1022 article-title: Collagenolytic activity in amphibian tissues: a tissue culture assay publication-title: Proc Natl Acad Sci USA – volume: 187 start-page: 1411 year: 2003 end-page: 1415 article-title: Matrix metalloproteinase‐9 in pneumococcal meningitis: activation via an oxidative pathway publication-title: J Infect Dis – volume: 278 start-page: 15056 year: 2003 end-page: 15064 article-title: Activation of pro‐gelatinase B by endometase/matrilysin‐2 promotes invasion of human prostate cancer cells publication-title: J Biol Chem – volume: 3 start-page: 17036 year: 2017 article-title: Nuclear matrix metalloproteinases: functions resemble the evolution from the intracellular to the extracellular compartment publication-title: Cell Death Discov – start-page: 741 year: 2013 end-page: 744 – volume: 11 start-page: 173 year: 2015 end-page: 183 article-title: Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms publication-title: Vasc Health Risk Manag – volume: 12 year: 2017 article-title: Differential inhibition of activity, activation and gene expression of MMP‐9 in THP‐1 cells by azithromycin and minocycline versus bortezomib: a comparative study publication-title: PLoS One – volume: 155 start-page: 1345 year: 2001 end-page: 1356 article-title: Cytoplasmic tail‐dependent internalization of membrane‐type 1 matrix metalloproteinase is important for its invasion‐promoting activity publication-title: J Cell Biol – volume: 90 start-page: 1041 year: 2002 end-page: 1043 article-title: Nonremodeling properties of matrix metalloproteinases: the platelet connection publication-title: Circ Res – volume: 8 start-page: 3191 year: 2009 end-page: 3197 article-title: Vascular MMP‐9/TIMP‐2 and neuronal MMP‐10 up‐regulation in human brain after stroke: a combined laser microdissection and protein array study publication-title: J Proteome Res – volume: 47 start-page: 211 year: 2007 end-page: 242 article-title: Intracellular targets of matrix metalloproteinase‐2 in cardiac disease: rationale and therapeutic approaches publication-title: Annu Rev Pharmacol Toxicol – volume: 67 start-page: 199 year: 2010 end-page: 212 article-title: Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease publication-title: Neuron – volume: 26 start-page: 395 year: 2012 end-page: 413 article-title: MT1‐MMP regulates the PI3Kδ·Mi‐2/NuRD‐dependent control of macrophage immune function publication-title: Genes Dev – volume: 8 year: 2013 article-title: N‐terminal truncated intracellular matrix metalloproteinase‐2 induces cardiomyocyte hypertrophy, inflammation and systolic heart failure publication-title: PLoS One – volume: 47 start-page: 27 year: 2012 end-page: 58 article-title: Nuclear localization of matrix metalloproteinases publication-title: Prog Histochem Cytochem – volume: 276 start-page: 29596 year: 2001 end-page: 29602 article-title: Activation of matrix metalloproteinases by peroxynitrite‐induced protein S‐glutathiolation via disulfide S‐oxide formation publication-title: J Biol Chem – volume: 8 start-page: 2830 year: 2018 end-page: 2845 article-title: Targeting intracellular MMPs efficiently inhibits tumor metastasis and angiogenesis publication-title: Theranostics – volume: 12 start-page: 77 year: 2019 article-title: The expanding role of MT1‐MMP in cancer progression publication-title: Pharmaceuticals – volume: 1864 start-page: 2043 year: 2017 end-page: 2055 article-title: New intracellular activities of matrix metalloproteinases shine in the moonlight publication-title: Biochim Biophys Acta Mol Cell Res – volume: 14 start-page: 113 year: 1992 end-page: 120 article-title: Reactive oxygen species as regulators of human neutrophil and fibroblast interstitial collagenases publication-title: Int J Tissue React – volume: 20 start-page: 493 year: 2014 end-page: 502 article-title: A new transcriptional role for matrix metalloproteinase‐12 in antiviral immunity publication-title: Nat Med – volume: 4 start-page: 18 year: 2015 article-title: The endosomal‐lysosomal system: from acidification and cargo sorting to neurodegeneration publication-title: Transl Neurodegener – volume: 11 start-page: 669 year: 2009 end-page: 702 article-title: Reactive nitrogen species: molecular mechanisms and potential significance in health and disease publication-title: Antioxid Redox Signal – volume: 116 start-page: 1021 year: 2020 end-page: 1031 article-title: Myocardial MMP‐2 contributes to SERCA2a proteolysis during cardiac ischaemia‐reperfusion injury publication-title: Cardiovasc Res – volume: 58 start-page: 344 year: 2010 end-page: 366 article-title: Differential vesicular distribution and trafficking of MMP‐2, MMP‐9, and their inhibitors in astrocytes publication-title: Glia – volume: 227 start-page: 3397 year: 2012 end-page: 3404 article-title: Mechanisms of cytosolic targeting of matrix metalloproteinase‐2 publication-title: J Cell Physiol – volume: 49 start-page: 37 year: 2016 end-page: 60 article-title: Active site specificity profiling of the matrix metalloproteinase family: proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses publication-title: Matrix Biol – volume: 11 year: 2011 article-title: MMP‐1 expression has an independent prognostic value in breast cancer publication-title: BMC Cancer – volume: 98 start-page: 13693 year: 2001 end-page: 13698 article-title: Regulation of membrane‐type matrix metalloproteinase 1 activity by dynamin‐mediated endocytosis publication-title: Proc Natl Acad Sci USA – volume: 227 start-page: 747 year: 1985 end-page: 749 article-title: Oxidative autoactivation of latent collagenase by human neutrophils publication-title: Science – volume: 122 start-page: 2039 year: 2010 end-page: 2047 article-title: Titin is a target of matrix metalloproteinase‐2: implications in myocardial ischemia/reperfusion injury publication-title: Circulation – volume: 312 start-page: F1166 year: 2017 end-page: f1183 article-title: An intracellular matrix metalloproteinase‐2 isoform induces tubular regulated necrosis: implications for acute kidney injury publication-title: Am J Physiol Renal Physiol – volume: 166 start-page: 1555 year: 2005 end-page: 1563 article-title: Matrix metalloproteinase‐1 associates with intracellular organelles and confers resistance to lamin A/C degradation during apoptosis publication-title: Am J Pathol – volume: 21 start-page: 112 year: 2011 end-page: 118 article-title: Cardiac sarcomeric proteins: novel intracellular targets of matrix metalloproteinase‐2 in heart disease publication-title: Trends Cardiovasc Med – volume: 33 start-page: 422 year: 1997 end-page: 432 article-title: Generation of peroxynitrite contributes to ischemia‐reperfusion injury in isolated rat hearts publication-title: Cardiovasc Res – volume: 11 start-page: 2387 year: 2000 end-page: 2401 article-title: Regulation of membrane type‐1 matrix metalloproteinase activation by proprotein convertases publication-title: Mol Biol Cell – volume: 69 start-page: 562 year: 2006 end-page: 573 article-title: Structure and function of matrix metalloproteinases and TIMPs publication-title: Cardiovasc Res – volume: 77 start-page: 826 year: 2009 end-page: 834 article-title: Activation and modulation of 72kDa matrix metalloproteinase‐2 by peroxynitrite and glutathione publication-title: Biochem Pharmacol – year: 2020 article-title: Matrix metalloproteinase‐2 mediates ribosomal RNA transcription by cleaving nucleolar histones publication-title: bioRxiv – volume: 52 start-page: 3832 year: 2011 end-page: 3841 article-title: Novel role of mitochondrial matrix metalloproteinase‐2 in the development of diabetic retinopathy publication-title: Invest Ophthalmol Vis Sci – volume: 4 year: 2015 article-title: Matrix metalloproteinase‐2 negatively regulates cardiac secreted phospholipase A2 to modulate inflammation and fever publication-title: J Am Heart Assoc – volume: 83 start-page: 698 year: 2009 end-page: 706 article-title: Glycogen synthase kinase‐3beta is activated by matrix metalloproteinase‐2 mediated proteolysis in cardiomyoblasts publication-title: Cardiovasc Res – volume: 7 year: 2012 article-title: A novel intracellular isoform of matrix metalloproteinase‐2 induced by oxidative stress activates innate immunity publication-title: PLoS One – volume: 276 start-page: 8403 year: 2001 end-page: 8408 article-title: Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein‐related scavenger receptor and thrombospondin 2 publication-title: J Biol Chem – volume: 106 start-page: 1543 year: 2002 end-page: 1549 article-title: Intracellular action of matrix metalloproteinase‐2 accounts for acute myocardial ischemia and reperfusion injury publication-title: Circulation – volume: 375 start-page: 244 year: 1995 end-page: 247 article-title: Furin‐dependent intracellular activation of the human stromelysin‐3 zymogen publication-title: Nature – volume: 279 start-page: 54944 year: 2004 end-page: 54951 article-title: Low density lipoprotein receptor‐related protein mediates endocytic clearance of pro‐MMP‐2.TIMP‐2 complex through a thrombospondin‐independent mechanism publication-title: J Biol Chem – volume: 277 start-page: 25527 year: 2002 end-page: 25536 article-title: Alternative splicing and promoter usage generates an intracellular stromelysin 3 isoform directly translated as an active matrix metalloproteinase publication-title: J Biol Chem – volume: 21 start-page: 1974 year: 2014 end-page: 1985 article-title: Citrate synthase is a novel matrix metalloproteinase‐9 substrate that regulates mitochondrial function in the postmyocardial infarction left ventricle publication-title: Antioxid Redox Signal – volume: 5 start-page: 5552 year: 2014 article-title: Ambidextrous binding of cell and membrane bilayers by soluble matrix metalloproteinase‐12 publication-title: Nat Commun – volume: 117 start-page: 188 year: 2021 end-page: 200 article-title: MMP inhibitors attenuate doxorubicin cardiotoxicity by preventing intracellular and extracellular matrix remodeling publication-title: Cardiovasc Res – volume: 23 start-page: 769 year: 2002 end-page: 776 article-title: Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases publication-title: Carcinogenesis – volume: 195 start-page: 2452 year: 2015 end-page: 2460 article-title: Proteolytic cleavage of AMPKα and intracellular MMP9 expression are both required for TLR4‐mediated mTORC1 activation and HIF‐1α expression in leukocytes publication-title: J Immunol – volume: 149 start-page: 31 year: 2006 end-page: 42 article-title: Matrix metalloproteinases contribute to endotoxin and interleukin‐1beta induced vascular dysfunction publication-title: Br J Pharmacol – volume: 106 start-page: 770 year: 2008 end-page: 780 article-title: Inhibition of MMP‐3 or ‐9 suppresses lipopolysaccharide‐induced expression of proinflammatory cytokines and iNOS in microglia publication-title: J Neurochem – volume: 112 start-page: 544 year: 2005 end-page: 552 article-title: Degradation of myosin light chain in isolated rat hearts subjected to ischemia‐reperfusion injury: a new intracellular target for matrix metalloproteinase‐2 publication-title: Circulation – volume: 18 start-page: 690 year: 2004 end-page: 692 article-title: Matrix metalloproteinase‐2 (MMP‐2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP‐ribose) polymerase (PARP) publication-title: FASEB J – volume: 265 start-page: 17401 year: 1990 end-page: 17404 article-title: Sequence identity between the alpha 2‐macroglobulin receptor and low density lipoprotein receptor‐related protein suggests that this molecule is a multifunctional receptor publication-title: J Biol Chem – volume: 83 start-page: 4322 year: 1986 end-page: 4326 article-title: Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils publication-title: Proc Natl Acad Sci USA – volume: 177 start-page: 2870 year: 2010 end-page: 2885 article-title: Matrix metalloproteinase‐9 and cell division in neuroblastoma cells and bone marrow macrophages publication-title: Am J Pathol – volume: 276 start-page: 41279 year: 2001 end-page: 41287 article-title: Hypochlorous acid oxygenates the cysteine switch domain of pro‐matrilysin (MMP‐7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase publication-title: J Biol Chem – volume: 277 start-page: 18967 year: 2002 end-page: 18972 article-title: Unconventional activation mechanisms of MMP‐26, a human matrix metalloproteinase with a unique PHCGXXD cysteine‐switch motif publication-title: J Biol Chem – volume: 66 start-page: 2716 year: 2006 end-page: 2724 article-title: Matrix metalloproteinase 26 proteolysis of the NH2‐terminal domain of the estrogen receptor beta correlates with the survival of breast cancer patients publication-title: Cancer Res – volume: 69 start-page: 688 year: 2006 end-page: 696 article-title: Cardiac transgenic matrix metalloproteinase‐2 expression directly induces impaired contractility publication-title: Cardiovasc Res – volume: 274 start-page: 4570 year: 1999 end-page: 4576 article-title: Cloning and characterization of human MMP‐23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members publication-title: J Biol Chem – volume: 46 start-page: 225 year: 2007 end-page: 230 article-title: Atypical localization of membrane type 1‐matrix metalloproteinase in the nucleus is associated with aggressive features of hepatocellular carcinoma publication-title: Mol Carcinog – volume: 297 start-page: 1186 year: 2002 end-page: 1190 article-title: S‐nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death publication-title: Science – volume: 6 start-page: 480 year: 2007 end-page: 498 article-title: Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases publication-title: Nat Rev Drug Discov – volume: 114 start-page: 42 year: 2019 article-title: Junctophilin‐2 is a target of matrix metalloproteinase‐2 in myocardial ischemia‐reperfusion injury publication-title: Basic Res Cardiol – volume: 358 start-page: 189 year: 2007 end-page: 195 article-title: Transgenic MMP‐2 expression induces latent cardiac mitochondrial dysfunction publication-title: Biochem Biophys Res Commun – volume: 438 start-page: 760 year: 2013 end-page: 764 article-title: Interrelationship between activation of matrix metalloproteinases and mitochondrial dysfunction in the development of diabetic retinopathy publication-title: Biochem Biophys Res Commun – volume: 45 start-page: 351 year: 2010 end-page: 423 article-title: Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases publication-title: Crit Rev Biochem Mol Biol – volume: 26 start-page: 27 year: 2005 end-page: 35 article-title: Ischaemia‐reperfusion injury activates matrix metalloproteinases in the human heart publication-title: Eur Heart J – volume: 56 start-page: 57 year: 2016 end-page: 73 article-title: MMP‐13 is constitutively produced in human chondrocytes and co‐endocytosed with ADAMTS‐5 and TIMP‐3 by the endocytic receptor LRP1 publication-title: Matrix Biol – volume: 283 start-page: 10068 year: 2008 end-page: 10078 article-title: Identification of amino acid residues of the matrix metalloproteinase‐2 essential for its selective inhibition by beta‐amyloid precursor protein‐derived inhibitor publication-title: J Biol Chem – volume: 6 start-page: 1935 year: 2016 end-page: 1949 article-title: Modulation of systemic metabolism by MMP‐2: from MMP‐2 deficiency in mice to MMP‐2 deficiency in patients publication-title: Compr Physiol – volume: 32 start-page: 662 year: 2012 end-page: 668 article-title: Matrix metalloproteinase‐2 proteolysis of calponin‐1 contributes to vascular hypocontractility in endotoxemic rats publication-title: Arterioscler Thromb Vasc Biol – volume: 50 year: 2017 article-title: Relationship between matrix metalloproteinases and the occurrence and development of ovarian cancer publication-title: Braz J Med Biol Res – volume: 15 start-page: 675 year: 2008 end-page: 685 article-title: Connective tissue growth factor (CTGF) and cancer progression publication-title: J Biomed Sci – volume: 1803 start-page: 55 year: 2010 end-page: 71 article-title: The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity publication-title: Biochim Biophys Acta – volume: 4 year: 2015 article-title: Identification of a novel heart‐liver axis: matrix metalloproteinase‐2 negatively regulates cardiac secreted phospholipase A2 to modulate lipid metabolism and inflammation in the liver publication-title: J Am Heart Assoc – volume: 113 start-page: 1753 year: 2017 end-page: 1762 article-title: Matrix metalloproteinase‐2 knockout prevents angiotensin II‐induced vascular injury publication-title: Cardiovasc Res – volume: 53 start-page: 165 year: 2002 end-page: 174 article-title: Peroxynitrite‐induced myocardial injury is mediated through matrix metalloproteinase‐2 publication-title: Cardiovasc Res – volume: 90 start-page: 1093 year: 2002 end-page: 1099 article-title: Outside‐in signals delivered by matrix metalloproteinase‐1 regulate platelet function publication-title: Circ Res – volume: 143 start-page: 193 year: 2004 end-page: 201 article-title: Expression of matrix metalloproteinase‐9 in human platelets: regulation of platelet activation in and studies publication-title: Br J Pharmacol – volume: 28 start-page: 2391 year: 2008 end-page: 2413 article-title: Novel transcription‐factor‐like function of human matrix metalloproteinase 3 regulating the CTGF/CCN2 gene publication-title: Mol Cell Biol – volume: 60 start-page: 477 year: 2010 end-page: 496 article-title: Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non‐neoplastic diseases publication-title: Pathol Int – volume: 30 start-page: 208 year: 2016 end-page: 219 article-title: MMP‐9 facilitates selective proteolysis of the histone H3 tail at genes necessary for proficient osteoclastogenesis publication-title: Genes Dev – volume: 8 start-page: 2781 year: 2017 end-page: 2799 article-title: Selective function‐blocking monoclonal human antibody highlights the important role of membrane type‐1 matrix metalloproteinase (MT1‐MMP) in metastasis publication-title: Oncotarget – volume: 111 start-page: 140 year: 2014 end-page: 153 article-title: Intracellular matrix metalloproteinase‐2 (MMP‐2) regulates human platelet activation via hydrolysis of talin publication-title: Thromb Haemost – volume: 8 year: 2013 article-title: Phosphorylation status of 72 kDa MMP‐2 determines its structure and activity in response to peroxynitrite publication-title: PLoS One – volume: 5 year: 2014 article-title: A N‐terminal truncated intracellular isoform of matrix metalloproteinase‐2 impairs contractility of mouse myocardium publication-title: Front Physiol – volume: 16 start-page: 75 year: 2020 end-page: 88 article-title: Challenges with matrix metalloproteinase inhibition and future drug discovery avenues publication-title: Expert Opin Drug Discov – volume: 443 start-page: 1148 year: 2014 end-page: 1154 article-title: Centrosomal BRCA2 is a target protein of membrane type‐1 matrix metalloproteinase (MT1‐MMP) publication-title: Biochem Biophys Res Commun – volume: 325 start-page: 733 year: 1987 end-page: 736 article-title: The precursor of Alzheimer's disease amyloid A4 protein resembles a cell‐surface receptor publication-title: Nature – volume: 276 start-page: 10443 year: 2001 end-page: 10452 article-title: The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts publication-title: J Biol Chem – volume: 21 start-page: 797 year: 2012 end-page: 805 article-title: Matrix metalloproteinases in diabetic retinopathy: potential role of MMP‐9 publication-title: Expert Opin Investig Drugs – volume: 15 start-page: 2223 year: 2007 end-page: 2268 article-title: Matrix metalloproteinases (MMPs): chemical‐biological functions and (Q)SARs publication-title: Bioorg Med Chem – volume: 106 start-page: 74 year: 2014 end-page: 85 article-title: Inhibition of MMP‐2 expression affects metabolic enzyme expression levels: proteomic analysis of rat cardiomyocytes publication-title: J Proteomics – volume: 2016 year: 2016 article-title: Oxidative DNA damage mediated by intranuclear MMP activity is associated with neuronal apoptosis in ischemic stroke publication-title: Oxid Med Cell Longev – volume: 12 start-page: 10949 year: 2020 end-page: 10964 article-title: Matrilysins and stromelysins in pathogenesis and diagnostics of cancers publication-title: Cancer Manag Res – volume: 19 start-page: 34 year: 2008 end-page: 41 article-title: Matrix metalloproteinases as modulators of inflammation publication-title: Semin Cell Dev Biol – volume: 42 start-page: 896 year: 2007 end-page: 901 article-title: Caveolin‐1 inhibits matrix metalloproteinase‐2 activity in the heart publication-title: J Mol Cell Cardiol – volume: 220 start-page: 277 year: 2012 end-page: 290 article-title: Intranuclear matrix metalloproteinases promote DNA damage and apoptosis induced by oxygen‐glucose deprivation in neurons publication-title: Neuroscience – volume: 94 start-page: 4424 year: 1997 end-page: 4429 article-title: Intracellular activation of gelatinase A (72‐kDa type IV collagenase) by normal fibroblasts publication-title: Proc Natl Acad Sci USA – volume: 30 start-page: 78 year: 2010 end-page: 87 article-title: Cardiac specific deletion of N‐methyl‐d‐aspartate receptor 1 ameliorates mtMMP‐9 mediated autophagy/mitophagy in hyperhomocysteinemia publication-title: J Recept Signal Transduct Res – volume: 60 start-page: 3023 year: 2011 end-page: 3033 article-title: Abrogation of MMP‐9 gene protects against the development of retinopathy in diabetic mice by preventing mitochondrial damage publication-title: Diabetes – volume: 331 start-page: 134 year: 1993 end-page: 140 article-title: Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc‐binding environments (HEXXHXXGXXH and Met‐turn) and topologies and should be grouped into a common family, the 'metzincins' publication-title: FEBS Lett – volume: 57 start-page: 426 year: 2003 end-page: 433 article-title: Matrix metalloproteinase‐2 mediates cytokine‐induced myocardial contractile dysfunction publication-title: Cardiovasc Res – volume: 460 start-page: 637 year: 2009 end-page: 641 article-title: Macrophage elastase kills bacteria within murine macrophages publication-title: Nature – volume: 24 year: 2019 article-title: Inhibitory antibodies designed for matrix metalloproteinase modulation publication-title: Molecules – ident: e_1_2_11_96_1 doi: 10.1161/JAHA.115.001868 – ident: e_1_2_11_34_1 doi: 10.1042/bj2050091 – ident: e_1_2_11_155_1 doi: 10.1093/carcin/23.5.769 – ident: e_1_2_11_105_1 doi: 10.1161/01.RES.0000019241.12929.EB – ident: e_1_2_11_157_1 doi: 10.3390/ph12020077 – ident: e_1_2_11_142_1 doi: 10.1038/bjp.2008.373 – ident: e_1_2_11_83_1 doi: 10.1091/mbc.11.7.2387 – ident: e_1_2_11_134_1 doi: 10.1101/gad.268714.115 – ident: e_1_2_11_30_1 doi: 10.1111/j.1440-1827.2010.02547.x – ident: e_1_2_11_50_1 doi: 10.1111/j.1582-4934.2007.00113.x – ident: e_1_2_11_137_1 doi: 10.1152/ajpheart.00434.2006 – ident: e_1_2_11_24_1 doi: 10.1074/jbc.M102417200 – ident: e_1_2_11_132_1 doi: 10.1016/j.neuroscience.2012.06.019 – ident: e_1_2_11_108_1 doi: 10.1160/TH13-03-0248 – ident: e_1_2_11_87_1 doi: 10.1002/mc.20270 – ident: e_1_2_11_116_1 doi: 10.1161/CIRCULATIONAHA.104.531616 – ident: e_1_2_11_17_1 doi: 10.1016/j.neuron.2010.06.021 – ident: e_1_2_11_114_1 doi: 10.1161/CIRCULATIONAHA.109.930222 – volume: 14 start-page: 113 year: 1992 ident: e_1_2_11_67_1 article-title: Reactive oxygen species as regulators of human neutrophil and fibroblast interstitial collagenases publication-title: Int J Tissue React – ident: e_1_2_11_115_1 doi: 10.1093/cvr/cvaa017 – ident: e_1_2_11_16_1 doi: 10.1016/S1388-9842(99)00048-3 – ident: e_1_2_11_143_1 doi: 10.1093/eurheartj/ehi007 – ident: e_1_2_11_40_1 doi: 10.1016/j.tibs.2006.08.004 – ident: e_1_2_11_66_1 doi: 10.1073/pnas.83.12.4322 – ident: e_1_2_11_71_1 doi: 10.1089/ars.2007.1993 – ident: e_1_2_11_19_1 doi: 10.1101/gad.178749.111 – ident: e_1_2_11_2_1 doi: 10.1073/pnas.48.6.1014 – ident: e_1_2_11_43_1 doi: 10.1074/jbc.M202494200 – ident: e_1_2_11_107_1 doi: 10.1038/386616a0 – ident: e_1_2_11_144_1 doi: 10.1152/ajprenal.00461.2016 – ident: e_1_2_11_92_1 doi: 10.1055/s-0037-1615367 – ident: e_1_2_11_104_1 doi: 10.1161/01.RES.0000021398.28936.1D – ident: e_1_2_11_47_1 doi: 10.1074/jbc.M100121200 – ident: e_1_2_11_85_1 doi: 10.1074/jbc.M201197200 – ident: e_1_2_11_15_1 doi: 10.2353/ajpath.2006.060005 – ident: e_1_2_11_138_1 doi: 10.1016/j.cardiores.2005.08.023 – ident: e_1_2_11_79_1 doi: 10.1093/carcin/bgn159 – ident: e_1_2_11_18_1 doi: 10.1038/nm.3508 – ident: e_1_2_11_45_1 doi: 10.1074/jbc.M406792200 – ident: e_1_2_11_39_1 doi: 10.1074/jbc.M709509200 – ident: e_1_2_11_100_1 doi: 10.2147/CMAR.S235776 – volume: 116 start-page: 1021 year: 2020 ident: e_1_2_11_130_1 article-title: Myocardial MMP‐2 contributes to SERCA2a proteolysis during cardiac ischaemia‐reperfusion injury publication-title: Cardiovasc Res – ident: e_1_2_11_125_1 doi: 10.1161/CIRCULATIONAHA.106.612960 – ident: e_1_2_11_3_1 doi: 10.1016/j.bmc.2007.01.011 – ident: e_1_2_11_41_1 doi: 10.1371/journal.pone.0068154 – ident: e_1_2_11_25_1 doi: 10.1161/ATVBAHA.111.242685 – ident: e_1_2_11_21_1 doi: 10.1016/bs.pmbts.2017.02.005 – ident: e_1_2_11_82_1 doi: 10.1074/jbc.271.15.9135 – ident: e_1_2_11_86_1 doi: 10.1074/jbc.M210975200 – ident: e_1_2_11_22_1 doi: 10.1021/bi00476a020 – ident: e_1_2_11_140_1 doi: 10.1038/sj.bjp.0706823 – ident: e_1_2_11_46_1 doi: 10.1074/jbc.M008925200 – ident: e_1_2_11_75_1 doi: 10.1016/S0008-6363(02)00719-8 – ident: e_1_2_11_65_1 doi: 10.1126/science.2982211 – ident: e_1_2_11_159_1 doi: 10.1080/17460441.2020.1819235 – ident: e_1_2_11_101_1 doi: 10.1016/j.yjmcc.2007.07.055 – ident: e_1_2_11_141_1 doi: 10.1371/journal.pone.0221798 – ident: e_1_2_11_84_1 doi: 10.1111/j.1471-4159.2008.05399.x – ident: e_1_2_11_103_1 doi: 10.1093/cvr/cvp175 – ident: e_1_2_11_72_1 doi: 10.1016/S0008-6363(01)00445-X – ident: e_1_2_11_98_1 doi: 10.1016/j.ejmech.2020.112260 – ident: e_1_2_11_54_1 doi: 10.1186/s40035-015-0041-1 – ident: e_1_2_11_44_1 doi: 10.1074/jbc.274.8.4570 – ident: e_1_2_11_48_1 doi: 10.1016/j.matbio.2016.03.007 – ident: e_1_2_11_64_1 doi: 10.2337/db11-0816 – ident: e_1_2_11_153_1 doi: 10.1007/s13277-014-2597-2 – ident: e_1_2_11_60_1 doi: 10.1096/fj.02-1202fje – ident: e_1_2_11_76_1 doi: 10.1016/j.tcm.2012.03.008 – ident: e_1_2_11_32_1 doi: 10.1242/jcs.00063 – ident: e_1_2_11_73_1 doi: 10.1016/S0008-6363(96)00254-4 – ident: e_1_2_11_74_1 doi: 10.1161/01.RES.87.3.241 – ident: e_1_2_11_35_1 doi: 10.1111/j.1749-6632.1994.tb44319.x – ident: e_1_2_11_109_1 doi: 10.1007/s00395-019-0749-7 – ident: e_1_2_11_154_1 doi: 10.1007/s11373-008-9264-9 – ident: e_1_2_11_77_1 doi: 10.1126/science.1073634 – ident: e_1_2_11_5_1 doi: 10.1038/nrm2125 – ident: e_1_2_11_59_1 doi: 10.1016/j.bbamcr.2017.05.013 – ident: e_1_2_11_110_1 doi: 10.1002/glia.20927 – ident: e_1_2_11_80_1 doi: 10.1038/375244a0 – ident: e_1_2_11_145_1 doi: 10.1016/j.semcdb.2007.07.003 – ident: e_1_2_11_97_1 doi: 10.1161/JAHA.115.002553 – ident: e_1_2_11_139_1 doi: 10.1093/cvr/cvx115 – ident: e_1_2_11_26_1 doi: 10.1016/j.bcp.2008.11.004 – ident: e_1_2_11_78_1 doi: 10.1096/fj.06-7938com – ident: e_1_2_11_93_1 doi: 10.4049/jimmunol.1500944 – ident: e_1_2_11_126_1 doi: 10.1517/13543784.2012.681043 – ident: e_1_2_11_7_1 doi: 10.2147/VHRM.S68415 – ident: e_1_2_11_53_1 doi: 10.1083/jcb.200108112 – ident: e_1_2_11_128_1 doi: 10.1016/j.bbrc.2013.07.066 – ident: e_1_2_11_111_1 doi: 10.2353/ajpath.2010.090050 – ident: e_1_2_11_29_1 doi: 10.1186/gb-2011-12-11-233 – ident: e_1_2_11_31_1 doi: 10.1016/j.bbamcr.2010.01.003 – ident: e_1_2_11_161_1 doi: 10.3390/molecules24122265 – ident: e_1_2_11_123_1 doi: 10.1155/2015/257471 – ident: e_1_2_11_122_1 doi: 10.1167/iovs.10-6368 – ident: e_1_2_11_38_1 doi: 10.1074/jbc.M111.264176 – ident: e_1_2_11_117_1 doi: 10.1016/B978-0-12-378630-2.00185-7 – ident: e_1_2_11_121_1 doi: 10.1016/j.jprot.2014.04.026 – ident: e_1_2_11_89_1 doi: 10.3390/cells7070080 – ident: e_1_2_11_57_1 doi: 10.1038/ncomms6552 – ident: e_1_2_11_8_1 doi: 10.1016/bs.pmbts.2017.02.001 – ident: e_1_2_11_10_1 doi: 10.1016/j.mam.2008.05.002 – volume: 6 start-page: 155 year: 2014 ident: e_1_2_11_63_1 article-title: Nuclear localization of catalytically active MMP‐2 in endothelial cells and neurons publication-title: Am J Transl Res – ident: e_1_2_11_124_1 doi: 10.3109/10799891003614808 – ident: e_1_2_11_37_1 doi: 10.1038/325733a0 – ident: e_1_2_11_55_1 doi: 10.1111/j.1471-4159.2007.04625.x – ident: e_1_2_11_99_1 doi: 10.7150/thno.23209 – ident: e_1_2_11_70_1 doi: 10.1371/journal.pone.0071794 – ident: e_1_2_11_42_1 doi: 10.1128/MCB.01288-07 – ident: e_1_2_11_27_1 doi: 10.1016/0014-5793(93)80312-I – ident: e_1_2_11_33_1 doi: 10.1016/j.exger.2006.08.010 – ident: e_1_2_11_91_1 doi: 10.1073/pnas.94.9.4424 – ident: e_1_2_11_113_1 doi: 10.1074/jbc.M502779200 – ident: e_1_2_11_13_1 doi: 10.1002/jcp.24040 – ident: e_1_2_11_112_1 doi: 10.1021/pr801012x – ident: e_1_2_11_146_1 doi: 10.1002/cphy.c160010 – ident: e_1_2_11_102_1 doi: 10.1161/01.CIR.0000065603.09430.58 – ident: e_1_2_11_20_1 doi: 10.3109/10409238.2010.501783 – ident: e_1_2_11_23_1 doi: 10.1016/j.cardiores.2005.12.002 – ident: e_1_2_11_131_1 doi: 10.1080/01902140802406059 – ident: e_1_2_11_147_1 doi: 10.1371/journal.pone.0084748 – ident: e_1_2_11_148_1 doi: 10.1111/j.1471-4159.2008.05430.x – ident: e_1_2_11_119_1 doi: 10.3389/fphys.2014.00363 – ident: e_1_2_11_9_1 doi: 10.1146/annurev.pharmtox.47.120505.105230 – ident: e_1_2_11_28_1 doi: 10.1002/jcp.21535 – ident: e_1_2_11_156_1 doi: 10.1074/jbc.M008087200 – ident: e_1_2_11_158_1 doi: 10.1016/j.bbrc.2013.12.103 – ident: e_1_2_11_118_1 doi: 10.1016/j.bbrc.2007.04.094 – ident: e_1_2_11_150_1 doi: 10.1158/1078-0432.CCR-14-2279 – ident: e_1_2_11_6_1 doi: 10.1038/nrd2308 – ident: e_1_2_11_94_1 doi: 10.1158/0008-5472.CAN-05-3592 – ident: e_1_2_11_120_1 doi: 10.1152/ajpheart.00909.2013 – ident: e_1_2_11_149_1 doi: 10.1371/journal.pone.0174853 – ident: e_1_2_11_14_1 doi: 10.1371/journal.pone.0034177 – ident: e_1_2_11_36_1 doi: 10.1016/S0021-9258(18)38172-9 – ident: e_1_2_11_106_1 doi: 10.1038/sj.bjp.0705917 – year: 2020 ident: e_1_2_11_133_1 article-title: Matrix metalloproteinase‐2 mediates ribosomal RNA transcription by cleaving nucleolar histones publication-title: bioRxiv – ident: e_1_2_11_81_1 doi: 10.1042/bj3150953 – ident: e_1_2_11_95_1 doi: 10.1007/s00395-014-0424-y – ident: e_1_2_11_88_1 doi: 10.1016/j.matbio.2015.09.003 – ident: e_1_2_11_127_1 doi: 10.1152/ajpheart.00099.2008 – ident: e_1_2_11_52_1 doi: 10.1073/pnas.241293698 – ident: e_1_2_11_61_1 doi: 10.1155/2016/6927328 – ident: e_1_2_11_56_1 doi: 10.1038/sj.emboj.7600403 – ident: e_1_2_11_135_1 doi: 10.1111/j.1471-4159.2009.06433.x – ident: e_1_2_11_51_1 doi: 10.1091/mbc.E03-07-0516 – ident: e_1_2_11_152_1 doi: 10.1016/S0002-9440(10)62371-1 – ident: e_1_2_11_58_1 doi: 10.1016/j.proghi.2011.12.002 – ident: e_1_2_11_68_1 doi: 10.1074/jbc.M106958200 – ident: e_1_2_11_4_1 doi: 10.1152/ajpheart.00577.2012 – ident: e_1_2_11_12_1 doi: 10.1161/01.CIR.0000028818.33488.7B – ident: e_1_2_11_129_1 doi: 10.1089/ars.2013.5411 – ident: e_1_2_11_11_1 doi: 10.1161/01.CIR.101.15.1833 – ident: e_1_2_11_69_1 doi: 10.1086/374644 – ident: e_1_2_11_151_1 doi: 10.1590/1414-431x20176104 – ident: e_1_2_11_90_1 doi: 10.1186/1471-2407-11-348 – ident: e_1_2_11_160_1 doi: 10.18632/oncotarget.13157 – ident: e_1_2_11_136_1 doi: 10.1038/nature08181 – ident: e_1_2_11_49_1 doi: 10.1016/j.yjmcc.2007.01.008 – ident: e_1_2_11_62_1 doi: 10.1038/cddiscovery.2017.36 |
SSID | ssj0035499 |
Score | 2.698356 |
SecondaryResourceType | review_article |
Snippet | Matrix metalloproteinases (MMPs) are zinc‐dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins.... Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7162 |
SubjectTerms | Animals cancer Cardiomyocytes cardiovascular disease Cardiovascular Diseases - enzymology Cytosol Humans inflammation Intracellular Malignancy Matrix metalloproteinase Matrix metalloproteinases Matrix Metalloproteinases - metabolism metalloproteinases Mitochondria Myocytes Neoplasms - enzymology nucleus Oxidative stress Pathogenesis Protease Proteinase Proteins proteolysis sarcomere sarcomeres Substrates |
Title | Multifunctional intracellular matrix metalloproteinases: implications in disease |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.15701 https://www.ncbi.nlm.nih.gov/pubmed/33405316 https://www.proquest.com/docview/2611549176 https://www.proquest.com/docview/2475533836 https://www.proquest.com/docview/2636384212 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD4s9sG-tFXbut6YohQUsiSZSzLFl111EaFF2gr7UkJmMgNLu9ni7oL66ztncnFtRbBvgZyByeTcL98AHCRMsVQxGVCjGIJqO5ESuQ50qrl0JlBoioPCn7-I8yt2MeKjDhw3szAVPkSbcEPJ8PoaBTxXsyUht0bNehFP_PAWNmuhR_S1xY6iGPhU05BxwAQb1dik2MZzv_ShNfrHxXzosXqTM3wNP5rNVp0mP3uLuerpu79wHP_3a97Aq9oXJf2KedagY8p12OiXLg6f3JKPxHeH-rT7OqyeNDfDbcCln9pFi1glEskYM8RYAsCeVjJB1P8bMjFzLOp7IIhx6Yzl7BMZL_Wvu1WkLg-9havh2feT86C-mSHQ6HAFhkZFZIuQFyZJrWI8LWJKrbAylKni0soCgcnC2MY8lgUTNoxyZhyZFDxROX0HK-W0NJtAUhkaXgjh3NCEce30R1zwWCkbacczQnbhsPlDma5hy_H2jF9ZE77g0WX-6Lqw39L-rsA6HqXaaX50VgvsLHOBJILVRYnowof2tTtXPLy8NNOFo2EJ5xjSP0UjqNNoWGbvwvuKidqtUMpQ5bnVR54VnthjNjwbfPNPW88h3oaXMfbc-HabHViZXy_MrnOa5moPXvQHp4PhnheSP9AxE4g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigXKC2PhQJGPCQqZZX4lRiJQ2m72tKHELTS3kKc2NIKNovYrGj7n_pX-E14nActoEoceuAWKePIsWfG4_HnbwCex1zzRHMVMKM5kmo7k5JZHuRJLpRbAmXO8KLw_oEcHvF3IzFagLP2LkzND9El3NAyvL9GA8eE9Dkrt0bP-pGIw6jBVO6ak-9uxzZ7s7PlpvcFpYPtw81h0BQVCHKMFQLDoiKyRSgKEydWc5EUlDErrQpVooWyqkBOrZBaKqgquLRhlHHjxJQUsc6Y--41uI4lxJGqf-tDx1bFcKtV37-kAZd81LChInDoV18vrn9_BLUXY2S_yA1uwY92eGpsy-f-vNL9_PQ35sj_ZvyW4WYTbpON2j5uw4IpV2B1o8yq6eSEvCQeAOtPFlZgabMtfrcK7_3FZFz061wpGWMSHE85ELZLJljY4JhMTIW4Bc91MS5dPDB7TcbnIPquFWlOwO7A0ZX8511YLKeluQ8kUaERhZQu0o65yJ2LpIWgWtsod2YhVQ9etSqR5g0zOxYI-ZK2OzScqtRPVQ-edbJfaz6Sv0qttZqVNj5plrq9MvLxRbHswdPutRtXHLysNNO5k-GxEJi1uExGMue0EUnQg3u11nZdYYyjV3et173uXdLHdLD99qN_evAvwk9gaXi4v5fu7RzsPoQbFCFGHl20BovVt7l55GLESj_2lkng01Wr8k-Bwm5j |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIkEvFFpKFwoY8ZColFXiV2IkDqXbVUuhqoBKewtxYksr2GzFZgXtb-Kv8J_wOA9aQJU49MAtUsaRY8-Mx-PP3wA8ibnmieYqYEZzJNV2JiWzPMiTXCi3BMqc4UXhtwdy94i_HonRAnxv78LU_BBdwg0tw_trNPDjwp4xcmv0rB-JOIwaSOW-OfnqNmyzl3sDN7tPKR3ufNjeDZqaAkGOoUJgWFREtghFYeLEai6SgjJmpVWhSrRQVhVIqRVSSwVVBZc2jDJunJiSItYZc9-9Ale5DBUWihi868iqGO606uuXNOCSjxoyVMQN_err-eXvj5j2fIjs17jhMvxoR6eGtnzqzyvdz09_I478X4bvJtxogm2yVVvHLVgw5QqsbpVZNZ2ckGfEw1_9ucIKXN9uS9-twqG_loxLfp0pJWNMgeMZB4J2yQTLGnwjE1MhasEzXYxLFw3MXpDxGYC-a0Wa86_bcHQp_7kGi-W0NOtAEhUaUUjp4uyYi9w5SFoIqrWNcmcUUvXgeasRad7wsmN5kM9puz_DqUr9VPXgcSd7XLOR_FVqo1WstPFIs9TtlJGNL4plDx51r9244uBlpZnOnQyPhcCcxUUykjmXjTiCHtyplbbrCmMcfbprvelV74I-psOdV-_9091_EX4I1w4Hw_TN3sH-PViiiC_y0KINWKy-zM19FyBW-oG3SwIfL1uTfwKuyW0S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+intracellular+matrix+metalloproteinases%3A+implications+in+disease&rft.jtitle=The+FEBS+journal&rft.au=Bassiouni%2C+Wesam&rft.au=Ali%2C+Mohammad+A+M&rft.au=Schulz%2C+Richard&rft.date=2021-12-01&rft.issn=1742-4658&rft.eissn=1742-4658&rft.volume=288&rft.issue=24&rft.spage=7162&rft_id=info:doi/10.1111%2Ffebs.15701&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon |