Liquid Metal Based Island‐Bridge Architectures for All Printed Stretchable Electrochemical Devices

The adoption of epidermal electronics into everyday life requires new design and fabrication paradigms, transitioning away from traditional rigid, bulky electronics towards soft devices that adapt with high intimacy to the human body. Here, a new strategy is reported for fabricating achieving highly...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 30
Main Authors Silva, Cristian A., lv, Jian, Yin, Lu, Jeerapan, Itthipon, Innocenzi, Gabriel, Soto, Fernando, Ha, Young‐Geun, Wang, Joseph
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202002041

Cover

Loading…
Abstract The adoption of epidermal electronics into everyday life requires new design and fabrication paradigms, transitioning away from traditional rigid, bulky electronics towards soft devices that adapt with high intimacy to the human body. Here, a new strategy is reported for fabricating achieving highly stretchable “island‐bridge” (IB) electrochemical devices based on thick‐film printing process involving merging the deterministic IB architecture with stress‐enduring composite silver (Ag) inks based on eutectic gallium‐indium particles (EGaInPs) as dynamic electrical anchors within the inside the percolated network. The fabrication of free‐standing soft Ag‐EGaInPs‐based serpentine “bridges” enables the printed microstructures to maintain mechanical and electrical properties under an extreme (≈800%) strain. Coupling these highly stretchable “bridges” with rigid multifunctional “island” electrodes allows the realization of electrochemical devices that can sustain high mechanical deformation while displaying an extremely attractive and stable electrochemical performance. The advantages and practical utility of the new printed Ag‐liquid metal‐based island‐bridge designs are discussed and illustrated using a wearable biofuel cell. Such new scalable and tunable fabrication strategy will allow to incorporate a wide range of materials into a single device towards a wide range of applications in wearable electronics. Liquid metal based materials offer distinct advantages for the fabrication of island‐bridge electrochemical electronics. This study describes a novel approachmerging the unique advantages of deterministic architectures with stress‐enduring nanoengineered inks, supported with dynamic electrical anchors inside the percolated network. Versatile applications with various functional materials are also demonstrated by printing epidermal biofuel cells tested successfully on human subjects.
AbstractList The adoption of epidermal electronics into everyday life requires new design and fabrication paradigms, transitioning away from traditional rigid, bulky electronics towards soft devices that adapt with high intimacy to the human body. Here, a new strategy is reported for fabricating achieving highly stretchable “island‐bridge” (IB) electrochemical devices based on thick‐film printing process involving merging the deterministic IB architecture with stress‐enduring composite silver (Ag) inks based on eutectic gallium‐indium particles (EGaInPs) as dynamic electrical anchors within the inside the percolated network. The fabrication of free‐standing soft Ag‐EGaInPs‐based serpentine “bridges” enables the printed microstructures to maintain mechanical and electrical properties under an extreme (≈800%) strain. Coupling these highly stretchable “bridges” with rigid multifunctional “island” electrodes allows the realization of electrochemical devices that can sustain high mechanical deformation while displaying an extremely attractive and stable electrochemical performance. The advantages and practical utility of the new printed Ag‐liquid metal‐based island‐bridge designs are discussed and illustrated using a wearable biofuel cell. Such new scalable and tunable fabrication strategy will allow to incorporate a wide range of materials into a single device towards a wide range of applications in wearable electronics.
The adoption of epidermal electronics into everyday life requires new design and fabrication paradigms, transitioning away from traditional rigid, bulky electronics towards soft devices that adapt with high intimacy to the human body. Here, a new strategy is reported for fabricating achieving highly stretchable “island‐bridge” (IB) electrochemical devices based on thick‐film printing process involving merging the deterministic IB architecture with stress‐enduring composite silver (Ag) inks based on eutectic gallium‐indium particles (EGaInPs) as dynamic electrical anchors within the inside the percolated network. The fabrication of free‐standing soft Ag‐EGaInPs‐based serpentine “bridges” enables the printed microstructures to maintain mechanical and electrical properties under an extreme (≈800%) strain. Coupling these highly stretchable “bridges” with rigid multifunctional “island” electrodes allows the realization of electrochemical devices that can sustain high mechanical deformation while displaying an extremely attractive and stable electrochemical performance. The advantages and practical utility of the new printed Ag‐liquid metal‐based island‐bridge designs are discussed and illustrated using a wearable biofuel cell. Such new scalable and tunable fabrication strategy will allow to incorporate a wide range of materials into a single device towards a wide range of applications in wearable electronics. Liquid metal based materials offer distinct advantages for the fabrication of island‐bridge electrochemical electronics. This study describes a novel approachmerging the unique advantages of deterministic architectures with stress‐enduring nanoengineered inks, supported with dynamic electrical anchors inside the percolated network. Versatile applications with various functional materials are also demonstrated by printing epidermal biofuel cells tested successfully on human subjects.
Author Yin, Lu
lv, Jian
Silva, Cristian A.
Soto, Fernando
Wang, Joseph
Jeerapan, Itthipon
Ha, Young‐Geun
Innocenzi, Gabriel
Author_xml – sequence: 1
  givenname: Cristian A.
  orcidid: 0000-0001-9262-0976
  surname: Silva
  fullname: Silva, Cristian A.
  organization: University of California San Diego
– sequence: 2
  givenname: Jian
  orcidid: 0000-0003-3425-2882
  surname: lv
  fullname: lv, Jian
  organization: University of California San Diego
– sequence: 3
  givenname: Lu
  orcidid: 0000-0002-5075-5263
  surname: Yin
  fullname: Yin, Lu
  organization: University of California San Diego
– sequence: 4
  givenname: Itthipon
  orcidid: 0000-0001-8016-6411
  surname: Jeerapan
  fullname: Jeerapan, Itthipon
  organization: University of California San Diego
– sequence: 5
  givenname: Gabriel
  surname: Innocenzi
  fullname: Innocenzi, Gabriel
  organization: University of California San Diego
– sequence: 6
  givenname: Fernando
  orcidid: 0000-0001-8494-9325
  surname: Soto
  fullname: Soto, Fernando
  organization: University of California San Diego
– sequence: 7
  givenname: Young‐Geun
  surname: Ha
  fullname: Ha, Young‐Geun
  organization: University of California San Diego
– sequence: 8
  givenname: Joseph
  orcidid: 0000-0002-4921-9674
  surname: Wang
  fullname: Wang, Joseph
  email: josephwang@ucsd.edu
  organization: University of California San Diego
BookMark eNqFkM1KAzEUhYNUsK1uXQ-4nppkMj9dTv-00KKggrshk9yxKelMm6RKdz6Cz-iTmFKpIIirexbnO-dyOqhVNzUgdElwj2BMr7msVj2KqdeYkRPUJglJwgjTrHXU5PkMdaxdYkzSNGJtJGdqs1UymIPjOhhwCzKYWs1r-fn-MTBKvkCQG7FQDoTbGrBB1Zgg1zq4N6p23v3gDDix4KWGYKy9yzRiASslfN4IXpUAe45OK64tXHzfLnqajB-Ht-Hs7mY6zGehYHFCwjjmEJUlySqa-PdYSkHQPiORiKtURiDLkkYxk0IyATgTXMY0I4JXnFKeiDjqoqtD7to0my1YVyybral9ZUHZPhPHEfWu3sElTGOtgapYG7XiZlcQXOyXLPZLFsclPcB-AUI57lRTO8OV_hvrH7A3pWH3T0mRjybzH_YL9gGMJw
CitedBy_id crossref_primary_10_3390_mi13122142
crossref_primary_10_1007_s40843_022_2081_0
crossref_primary_10_20517_ss_2023_30
crossref_primary_10_1002_admt_202101657
crossref_primary_10_1021_acsami_1c11275
crossref_primary_10_1002_admi_202100884
crossref_primary_10_1039_D2NR04551F
crossref_primary_10_1039_D4TC03745F
crossref_primary_10_1002_adfm_202107062
crossref_primary_10_1039_D3TC02560H
crossref_primary_10_1039_D4MH00587B
crossref_primary_10_1002_adfm_202313504
crossref_primary_10_1002_pen_26198
crossref_primary_10_1002_pol_20210867
crossref_primary_10_1002_adma_202008465
crossref_primary_10_1002_admt_202201935
crossref_primary_10_1016_j_cej_2021_133965
crossref_primary_10_1002_adfm_202404373
crossref_primary_10_1002_admi_202000626
crossref_primary_10_1016_j_biosx_2022_100182
crossref_primary_10_1016_j_cej_2024_150589
crossref_primary_10_1021_acsami_2c23002
crossref_primary_10_1016_j_ijbiomac_2024_131025
crossref_primary_10_1016_j_jmat_2023_08_013
crossref_primary_10_1002_advs_202205795
crossref_primary_10_1002_admi_202101857
crossref_primary_10_1016_j_isci_2021_102698
crossref_primary_10_1016_j_bios_2020_112569
crossref_primary_10_1088_2058_8585_ac6c64
crossref_primary_10_1002_adfm_202308703
crossref_primary_10_1016_j_sna_2024_115287
crossref_primary_10_1038_s43246_024_00490_8
crossref_primary_10_1002_adfm_202314783
crossref_primary_10_1002_admi_202201875
crossref_primary_10_1038_s41378_023_00625_w
crossref_primary_10_1115_1_4064211
crossref_primary_10_1002_admt_202401413
crossref_primary_10_1021_acsanm_3c00761
crossref_primary_10_1021_acsnano_4c01759
crossref_primary_10_3390_bios13010084
crossref_primary_10_1016_j_cej_2021_132250
crossref_primary_10_1002_adfm_202107082
crossref_primary_10_1016_j_apmt_2024_102507
crossref_primary_10_1016_j_surfin_2022_101838
crossref_primary_10_1002_advs_202305558
crossref_primary_10_1039_D2NR04464A
crossref_primary_10_1002_adfm_202309989
crossref_primary_10_1002_sstr_202200034
crossref_primary_10_1002_adfm_202313567
crossref_primary_10_1016_j_nanoen_2022_107884
crossref_primary_10_1007_s40820_024_01571_6
crossref_primary_10_1016_j_compscitech_2023_110201
crossref_primary_10_1016_j_matpr_2021_06_170
crossref_primary_10_1039_D2MH00470D
crossref_primary_10_1002_adfm_202102359
crossref_primary_10_1002_adfm_202007436
crossref_primary_10_1002_adma_202308831
crossref_primary_10_1007_s11431_020_1733_x
crossref_primary_10_1016_j_cej_2022_140443
crossref_primary_10_1016_j_sna_2025_116339
crossref_primary_10_1038_s44222_024_00175_4
crossref_primary_10_1016_j_cis_2022_102752
crossref_primary_10_1016_j_sna_2024_115105
crossref_primary_10_1002_advs_202104426
crossref_primary_10_1021_acsami_2c10638
crossref_primary_10_1002_adma_202407886
crossref_primary_10_1002_adma_202408456
crossref_primary_10_1126_sciadv_abn3863
crossref_primary_10_1002_adfm_202103976
crossref_primary_10_1016_j_ijthermalsci_2024_109617
crossref_primary_10_1016_j_pmatsci_2023_101228
crossref_primary_10_1088_1361_6463_adade5
crossref_primary_10_1016_j_isci_2020_102026
crossref_primary_10_1021_acsmaterialslett_1c00799
crossref_primary_10_1007_s40843_021_2023_x
crossref_primary_10_3390_s24196428
crossref_primary_10_1007_s10853_023_08894_6
crossref_primary_10_1002_adma_202202509
crossref_primary_10_1002_advs_202105623
crossref_primary_10_1007_s11814_024_00339_3
crossref_primary_10_1016_j_aca_2023_342154
crossref_primary_10_3389_fmats_2023_1188662
crossref_primary_10_1016_j_mattod_2022_06_001
crossref_primary_10_1002_admt_202201067
crossref_primary_10_1002_adma_202203391
crossref_primary_10_1021_acsami_3c10049
crossref_primary_10_1016_j_cej_2025_160750
crossref_primary_10_1021_acsami_4c00318
crossref_primary_10_1109_ACCESS_2022_3189478
crossref_primary_10_1002_sus2_204
crossref_primary_10_1002_admt_202000694
crossref_primary_10_1021_acsabm_3c00640
crossref_primary_10_1002_smtd_202300671
crossref_primary_10_1021_acssensors_1c02606
crossref_primary_10_3389_fbioe_2023_1118812
crossref_primary_10_1002_adfm_202107042
crossref_primary_10_1016_j_nantod_2021_101366
crossref_primary_10_1002_adem_202401244
crossref_primary_10_1007_s11708_022_0815_y
crossref_primary_10_1021_acs_chemrev_3c00374
crossref_primary_10_1126_sciadv_abg8433
crossref_primary_10_35848_1347_4065_ac5761
crossref_primary_10_1002_adfm_202309386
crossref_primary_10_1002_aelm_202100591
crossref_primary_10_1002_smsc_202400197
crossref_primary_10_1002_smll_202410247
crossref_primary_10_1002_adfm_202011059
crossref_primary_10_1002_admt_202201042
crossref_primary_10_1063_5_0133569
crossref_primary_10_1002_smll_202107879
crossref_primary_10_1021_acsaelm_4c00607
crossref_primary_10_1016_j_apmt_2021_100954
Cites_doi 10.1016/j.gaitpost.2018.12.003
10.1002/celc.201901703
10.1002/adma.201506234
10.1021/acsnano.9b04843
10.1002/anie.201302922
10.1126/sciadv.1602076
10.1002/admt.201900048
10.1002/adma.201902278
10.1002/adma.201904309
10.1007/s11431-018-9253-9
10.1021/la5035118
10.1126/science.1206157
10.1126/science.1182383
10.1016/j.nanoen.2019.104055
10.1039/c3sm51476e
10.1002/adma.201903789
10.1021/acsami.7b10256
10.1002/aenm.201703652
10.1038/nature16521
10.1002/smll.201903753
10.1002/admt.201800265
10.1002/adma.201706157
10.1021/acsami.9b00934
10.1002/adma.201903864
10.1039/C8EE02792G
10.1002/admt.201800013
10.1016/j.jbiomech.2005.12.010
10.1002/adem.201700781
10.1002/adma.201301400
10.1002/adfm.201906243
10.1557/mrs.2016.2
10.1002/admt.201600284
10.1007/s10544-018-0353-x
10.1002/adma.201502386
10.1002/adfm.201808739
10.1039/C7EE00865A
10.1021/la404356r
10.1126/science.1160309
10.1016/j.jpowsour.2018.11.012
10.1002/adfm.201300124
10.1002/smll.201800938
10.1021/acs.accounts.8b00451
10.1002/adma.201201886
10.1038/ncomms8461
10.1002/adfm.201906683
10.1002/adma.201904664
10.1021/acs.jpcc.8b07042
10.1557/jmr.2005.0422
10.1002/adma.201801852
10.1021/acs.analchem.9b04668
10.1002/adma.201801368
10.1002/adma.201806133
10.1016/j.cossms.2015.01.004
10.1021/acsami.7b15814
10.1039/c3sm51360b
10.1021/acs.accounts.8b00508
10.1002/chem.200700554
10.1016/j.matlet.2019.127223
10.1002/adfm.201804336
10.1021/am5043017
10.1007/978-1-4614-9625-0
10.1002/adma.201805536
10.1039/C7LC00914C
10.1002/aenm.201602096
10.1039/C6TA08358G
10.1021/acs.nanolett.5b04549
10.1002/smll.201702817
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202002041
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202002041
ADFM202002041
Genre article
GrantInformation_xml – fundername: University of California Institute for Mexico and the United States
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4561-55ae3bb18f26177472ec29413c5f7d3edbb2354dcd4ce08cad5281cafa22a6c53
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 08:34:38 EDT 2025
Tue Jul 01 04:12:14 EDT 2025
Thu Apr 24 23:10:15 EDT 2025
Wed Jan 22 16:32:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4561-55ae3bb18f26177472ec29413c5f7d3edbb2354dcd4ce08cad5281cafa22a6c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3425-2882
0000-0001-8494-9325
0000-0002-4921-9674
0000-0001-9262-0976
0000-0002-5075-5263
0000-0001-8016-6411
PQID 2426170532
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2426170532
crossref_primary_10_1002_adfm_202002041
crossref_citationtrail_10_1002_adfm_202002041
wiley_primary_10_1002_adfm_202002041_ADFM202002041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2018; 122
2013; 25
2017; 2
2017; 3
2019; 52
2019; 11
2013; 23
2019; 10
2019; 13
2019; 16
2005; 20
2017; 9
2013; 9
2020; 7
2018; 8
2019; 410–411
2018; 3
2019; 21
2019; 65
2019; 68
2020; 92
2013; 52
2016; 41
2019; 29
2018; 30
2012; 24
2014; 6
2018; 28
2011; 333
2015; 6
2019; 4
2015; 19
2010; 327
2019; 31
2019; 32
2016; 529
2020; 265
2018; 61
2008; 321
2016; 16
2018; 20
2007; 13
2016; 4
2018; 18
2015; 27
2020; 30
1994; 19
2017; 10
2019
2018; 51
2007; 40
2014; 30
2014; 74
2016; 28
2018; 11
2018; 10
2018; 14
e_1_2_7_5_1
Kim J. (e_1_2_7_17_1) 2017; 3
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
Chen X. (e_1_2_7_68_1) 2019; 29
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Yang J. (e_1_2_7_47_1) 2019; 10
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Arumugam V. (e_1_2_7_72_1) 1994; 19
References_xml – volume: 410–411
  start-page: 69
  year: 2019
  publication-title: J. Power Sources
– volume: 321
  start-page: 1468
  year: 2008
  publication-title: Science
– volume: 74
  year: 2014
– volume: 9
  start-page: 8062
  year: 2013
  publication-title: Soft Matter
– volume: 10
  year: 2019
  publication-title: IEEE Xplore
– volume: 14
  year: 2018
  publication-title: Small
– volume: 30
  start-page: 533
  year: 2014
  publication-title: Langmuir
– volume: 10
  start-page: 1581
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 529
  start-page: 509
  year: 2016
  publication-title: Nature
– volume: 51
  start-page: 2820
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 28
  start-page: 4507
  year: 2016
  publication-title: Adv. Mater.
– volume: 68
  start-page: 285
  year: 2019
  publication-title: Gait Posture
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 6423
  year: 2015
  publication-title: Adv. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 5150
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 40
  start-page: 468
  year: 2007
  publication-title: J. Biomech.
– volume: 6
  start-page: 7641
  year: 2015
  publication-title: Nat. Commun.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 333
  start-page: 838
  year: 2011
  publication-title: Science
– volume: 92
  start-page: 378
  year: 2020
  publication-title: Anal. Chem.
– volume: 41
  start-page: 123
  year: 2016
  publication-title: MRS Bull.
– volume: 327
  start-page: 1603
  year: 2010
  publication-title: Science
– volume: 2
  year: 2017
  publication-title: Adv. Mater. Technol.
– volume: 265
  year: 2020
  publication-title: Mater. Lett.
– volume: 3
  year: 2018
  publication-title: Adv. Mater. Technol.
– year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 3431
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 5117
  year: 2012
  publication-title: Adv. Mater.
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 13
  start-page: 5048
  year: 2007
  publication-title: Chem. ‐ Eur. J.
– volume: 25
  start-page: 5081
  year: 2013
  publication-title: Adv. Mater.
– volume: 16
  start-page: 721
  year: 2016
  publication-title: Nano Lett.
– volume: 16
  year: 2019
  publication-title: Small
– volume: 20
  start-page: 3274
  year: 2005
  publication-title: J. Mater. Res.
– volume: 19
  start-page: 307
  year: 1994
  publication-title: J. Biomed. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 7
  start-page: 191
  year: 2020
  publication-title: ChemElectroChem
– volume: 52
  start-page: 91
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 20
  year: 2018
  publication-title: Adv. Eng. Mater.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 7388
  year: 2019
  publication-title: ACS Nano
– volume: 19
  start-page: 160
  year: 2015
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 52
  start-page: 7233
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 8476
  year: 2013
  publication-title: Soft Matter
– volume: 61
  start-page: 1031
  year: 2018
  publication-title: Sci. China: Technol. Sci.
– volume: 3
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 18
  start-page: 217
  year: 2018
  publication-title: Lab Chip
– volume: 32
  year: 2019
  publication-title: Adv. Mater.
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 10
  start-page: 2083
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2014
  publication-title: Langmuir
– volume: 21
  start-page: 6
  year: 2019
  publication-title: Biomed. Microdevices
– year: 2019
  publication-title: Adv. Mater.
– ident: e_1_2_7_6_1
  doi: 10.1016/j.gaitpost.2018.12.003
– ident: e_1_2_7_74_1
  doi: 10.1002/celc.201901703
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201506234
– ident: e_1_2_7_29_1
  doi: 10.1021/acsnano.9b04843
– ident: e_1_2_7_70_1
  doi: 10.1002/anie.201302922
– ident: e_1_2_7_20_1
  doi: 10.1126/sciadv.1602076
– volume: 19
  start-page: 307
  year: 1994
  ident: e_1_2_7_72_1
  publication-title: J. Biomed. Sci.
– ident: e_1_2_7_58_1
  doi: 10.1002/admt.201900048
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201902278
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.201904309
– ident: e_1_2_7_35_1
  doi: 10.1007/s11431-018-9253-9
– ident: e_1_2_7_37_1
  doi: 10.1021/la5035118
– ident: e_1_2_7_59_1
  doi: 10.1126/science.1206157
– ident: e_1_2_7_10_1
  doi: 10.1126/science.1182383
– ident: e_1_2_7_67_1
  doi: 10.1016/j.nanoen.2019.104055
– ident: e_1_2_7_51_1
  doi: 10.1039/c3sm51476e
– volume: 10
  start-page: 19108842
  year: 2019
  ident: e_1_2_7_47_1
  publication-title: IEEE Xplore
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201903789
– ident: e_1_2_7_34_1
  doi: 10.1021/acsami.7b10256
– ident: e_1_2_7_43_1
  doi: 10.1002/aenm.201703652
– ident: e_1_2_7_2_1
  doi: 10.1038/nature16521
– ident: e_1_2_7_28_1
  doi: 10.1002/smll.201903753
– ident: e_1_2_7_33_1
  doi: 10.1002/admt.201800265
– volume: 29
  start-page: 05785
  year: 2019
  ident: e_1_2_7_68_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_52_1
  doi: 10.1002/adma.201706157
– ident: e_1_2_7_21_1
  doi: 10.1021/acsami.9b00934
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201903864
– ident: e_1_2_7_69_1
  doi: 10.1039/C8EE02792G
– ident: e_1_2_7_57_1
  doi: 10.1002/admt.201800013
– ident: e_1_2_7_71_1
  doi: 10.1016/j.jbiomech.2005.12.010
– ident: e_1_2_7_30_1
  doi: 10.1002/adem.201700781
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.201301400
– ident: e_1_2_7_3_1
  doi: 10.1002/adfm.201906243
– ident: e_1_2_7_12_1
  doi: 10.1557/mrs.2016.2
– ident: e_1_2_7_49_1
  doi: 10.1002/admt.201600284
– ident: e_1_2_7_65_1
  doi: 10.1007/s10544-018-0353-x
– ident: e_1_2_7_73_1
  doi: 10.1002/anie.201302922
– ident: e_1_2_7_64_1
  doi: 10.1002/adma.201502386
– ident: e_1_2_7_14_1
  doi: 10.1002/adfm.201808739
– ident: e_1_2_7_48_1
  doi: 10.1039/C7EE00865A
– ident: e_1_2_7_45_1
  doi: 10.1021/la404356r
– ident: e_1_2_7_24_1
  doi: 10.1126/science.1160309
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jpowsour.2018.11.012
– ident: e_1_2_7_16_1
  doi: 10.1002/adfm.201300124
– ident: e_1_2_7_66_1
  doi: 10.1002/smll.201800938
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.201903864
– ident: e_1_2_7_9_1
  doi: 10.1021/acs.accounts.8b00451
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201201886
– ident: e_1_2_7_23_1
  doi: 10.1038/ncomms8461
– ident: e_1_2_7_39_1
  doi: 10.1002/adfm.201906683
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201904664
– ident: e_1_2_7_38_1
  doi: 10.1021/acs.jpcc.8b07042
– ident: e_1_2_7_60_1
  doi: 10.1557/jmr.2005.0422
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201801852
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.analchem.9b04668
– ident: e_1_2_7_61_1
  doi: 10.1126/science.1182383
– volume: 3
  start-page: 16002
  year: 2017
  ident: e_1_2_7_17_1
  publication-title: Adv. Electron. Mater.
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201801368
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201806133
– ident: e_1_2_7_50_1
  doi: 10.1016/j.cossms.2015.01.004
– ident: e_1_2_7_44_1
  doi: 10.1021/acsami.7b15814
– ident: e_1_2_7_62_1
  doi: 10.1039/c3sm51360b
– ident: e_1_2_7_63_1
  doi: 10.1021/acs.accounts.8b00508
– ident: e_1_2_7_25_1
  doi: 10.1002/chem.200700554
– ident: e_1_2_7_54_1
  doi: 10.1016/j.matlet.2019.127223
– ident: e_1_2_7_31_1
  doi: 10.1002/adfm.201804336
– ident: e_1_2_7_36_1
  doi: 10.1021/am5043017
– ident: e_1_2_7_53_1
  doi: 10.1007/978-1-4614-9625-0
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.201805536
– ident: e_1_2_7_7_1
  doi: 10.1039/C7LC00914C
– ident: e_1_2_7_19_1
  doi: 10.1002/aenm.201602096
– ident: e_1_2_7_55_1
  doi: 10.1039/C6TA08358G
– ident: e_1_2_7_56_1
  doi: 10.1021/acs.nanolett.5b04549
– ident: e_1_2_7_8_1
  doi: 10.1002/smll.201702817
SSID ssj0017734
Score 2.6176593
Snippet The adoption of epidermal electronics into everyday life requires new design and fabrication paradigms, transitioning away from traditional rigid, bulky...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Biochemical fuel cells
Bridge maintenance
Electric bridges
Electrical properties
Electrochemical analysis
Electronic devices
Electronics
Gallium
Inks
island‐bridge devices
Liquid metals
Materials science
Serpentine
Silver
soft electronics
Strain
stretchable and printable conductors
Wearable technology
Title Liquid Metal Based Island‐Bridge Architectures for All Printed Stretchable Electrochemical Devices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202002041
https://www.proquest.com/docview/2426170532
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB3ElS58i9UqsxBcTZtM3svUthSxImKhuzCvQLFE7WPjyk_wG_0S52aSNBVE0F0CMyGZuXfumcw95yJ0qZ0vApoT8VlEifZERrQXWURxDeWYRuRWANzh4Z0_GLk3Y29cY_EbfYjqhxt4Rr5eg4MzPm-vREOZTIFJTnN6J-x_IGELUNFDpR9lB4E5VvZtSPCyx6Vqo0Xb693Xo9IKatYBax5x-ruIle9qEk2eWssFb4m3bzKO__mYPbRTwFEcG_vZRxsqO0DbNZHCQyRvJ6_LicRDpXE67uioJzEYUiY_3z86Od8Lx7XjiDnWOBjH0ym-n4EYhcRw8q2NA0hauGfK7ohCpwB3Vb5UHaFRv_d4PSBFbQYiAHIRz2PK4dwOU5B013sSqgSNdEQUXhpIR0nOqeO5UkhXKCsUTHo0tAVLGaXMF55zjDaz50ydIExpFDq6iwYvgZtCEdJAScdPmR9xbUFeA5FybhJRCJdD_YxpYiSXaQKjl1Sj10BXVfsXI9nxY8tmOdVJ4brzBDALaAw5tIFoPme_PCWJu_1hdXf6l05naAuuTRpwE20uZkt1rsHOgl_kBv0FE7f11A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO6JQwAckTmkTZz-mtFWBpkKolXqLvEWqqAJ0uXDiE_hGvgRPtrZICAmOieIosWc8z_a8NwhdKefzgeakOdQnmvJEqikv0jXJFJSjCpHrLnCHw57TGVh3Q7vIJgQuTKYPUW64gWek8zU4OGxI1xeqoVTEQCUnKb9TLYA2oKw3-GbzsVSQMlw3O1h2DEjxMoaFbqNO6qvtV-PSAmwuQ9Y05rR3ESu-Nks1earNZ6zG374JOf7rd_bQTo5IcZCZ0D5ak8kB2l7SKTxEojt6nY8EDqWC6rihAp_AYEuJ-Hz_aKSULxwsnUhMsYLCOBiP8cME9CgEhsNvZR_A08KtrPIOz6UKcFOms9URGrRb_ZuOlpdn0DigLs22qTQZM7wYVN3VsoRITnwVFLkdu8KUgjFi2pbgwuJS9zgVNvEMTmNKCHW4bR6j9eQ5kScIE-J7pmqi8ItrxVCH1JXCdGLq-EwZkV1BWjE4Ec-1y6GExjjKVJdJBL0Xlb1XQdfl8y-ZasePT1aLsY5y751GAFtAZsgkFUTSQfvlLVHQbIfl1elfGl2izU4_7Ebd2979GdqC-1lWcBWtzyZzea6wz4xdpNb9BXM6-e0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yQfTBuzidmgfBp25ten_c7MrUbQxxsLeSJikMR527vPjkT_A3-kvM6W2dIII-tiSlTc7J-dKT7zsIXUvnc4HmpFjUJYr0RKpIL1IVEUooRyUiV23gDvf6Vmdo3I_MUYnFn-pDFD_cwDOS9RocfMqjxko0lPIImOQkoXfK_c-mYakObL-8x0JASrPtNK9saXDCSxvlso0qaaz3Xw9LK6xZRqxJyPH3EM1fNj1p8lxfLsI6e_um4_ifr9lHuxkexc3UgA7QhogP0U5JpfAI8e74dTnmuCckUMctGfY4BkuK-ef7RyshfOFmKR8xxxII4-ZkggczUKPgGFLf0jqApYXbad0dlgkVYE8ka9UxGvrtp9uOkhVnUBhgLsU0qdDDUHMi0HSXmxIiGHFlSGRmZHNd8DAkumlwxg0mVIdRbhJHYzSihFCLmfoJqsQvsThFmBDX0WUXiV5sI4IqpLbguhVRyw2lCZlVpORzE7BMuRwKaEyCVHOZBDB6QTF6VXRTtJ-mmh0_tqzlUx1kvjsPALSAyJBOqogkc_bLU4Km5_eKq7O_dLpCWwPPD7p3_YdztA230yPBNVRZzJbiQgKfRXiZ2PYXnuv4pQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid+Metal+Based+Island%E2%80%90Bridge+Architectures+for+All+Printed+Stretchable+Electrochemical+Devices&rft.jtitle=Advanced+functional+materials&rft.au=Silva%2C+Cristian+A.&rft.au=lv%2C+Jian&rft.au=Yin%2C+Lu&rft.au=Jeerapan%2C+Itthipon&rft.date=2020-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=30&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202002041&rft.externalDBID=10.1002%252Fadfm.202002041&rft.externalDocID=ADFM202002041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon