Liquid Metal Based Island‐Bridge Architectures for All Printed Stretchable Electrochemical Devices
The adoption of epidermal electronics into everyday life requires new design and fabrication paradigms, transitioning away from traditional rigid, bulky electronics towards soft devices that adapt with high intimacy to the human body. Here, a new strategy is reported for fabricating achieving highly...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 30 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202002041 |
Cover
Loading…
Abstract | The adoption of epidermal electronics into everyday life requires new design and fabrication paradigms, transitioning away from traditional rigid, bulky electronics towards soft devices that adapt with high intimacy to the human body. Here, a new strategy is reported for fabricating achieving highly stretchable “island‐bridge” (IB) electrochemical devices based on thick‐film printing process involving merging the deterministic IB architecture with stress‐enduring composite silver (Ag) inks based on eutectic gallium‐indium particles (EGaInPs) as dynamic electrical anchors within the inside the percolated network. The fabrication of free‐standing soft Ag‐EGaInPs‐based serpentine “bridges” enables the printed microstructures to maintain mechanical and electrical properties under an extreme (≈800%) strain. Coupling these highly stretchable “bridges” with rigid multifunctional “island” electrodes allows the realization of electrochemical devices that can sustain high mechanical deformation while displaying an extremely attractive and stable electrochemical performance. The advantages and practical utility of the new printed Ag‐liquid metal‐based island‐bridge designs are discussed and illustrated using a wearable biofuel cell. Such new scalable and tunable fabrication strategy will allow to incorporate a wide range of materials into a single device towards a wide range of applications in wearable electronics.
Liquid metal based materials offer distinct advantages for the fabrication of island‐bridge electrochemical electronics. This study describes a novel approachmerging the unique advantages of deterministic architectures with stress‐enduring nanoengineered inks, supported with dynamic electrical anchors inside the percolated network. Versatile applications with various functional materials are also demonstrated by printing epidermal biofuel cells tested successfully on human subjects. |
---|---|
AbstractList | The adoption of epidermal electronics into everyday life requires new design and fabrication paradigms, transitioning away from traditional rigid, bulky electronics towards soft devices that adapt with high intimacy to the human body. Here, a new strategy is reported for fabricating achieving highly stretchable “island‐bridge” (IB) electrochemical devices based on thick‐film printing process involving merging the deterministic IB architecture with stress‐enduring composite silver (Ag) inks based on eutectic gallium‐indium particles (EGaInPs) as dynamic electrical anchors within the inside the percolated network. The fabrication of free‐standing soft Ag‐EGaInPs‐based serpentine “bridges” enables the printed microstructures to maintain mechanical and electrical properties under an extreme (≈800%) strain. Coupling these highly stretchable “bridges” with rigid multifunctional “island” electrodes allows the realization of electrochemical devices that can sustain high mechanical deformation while displaying an extremely attractive and stable electrochemical performance. The advantages and practical utility of the new printed Ag‐liquid metal‐based island‐bridge designs are discussed and illustrated using a wearable biofuel cell. Such new scalable and tunable fabrication strategy will allow to incorporate a wide range of materials into a single device towards a wide range of applications in wearable electronics. The adoption of epidermal electronics into everyday life requires new design and fabrication paradigms, transitioning away from traditional rigid, bulky electronics towards soft devices that adapt with high intimacy to the human body. Here, a new strategy is reported for fabricating achieving highly stretchable “island‐bridge” (IB) electrochemical devices based on thick‐film printing process involving merging the deterministic IB architecture with stress‐enduring composite silver (Ag) inks based on eutectic gallium‐indium particles (EGaInPs) as dynamic electrical anchors within the inside the percolated network. The fabrication of free‐standing soft Ag‐EGaInPs‐based serpentine “bridges” enables the printed microstructures to maintain mechanical and electrical properties under an extreme (≈800%) strain. Coupling these highly stretchable “bridges” with rigid multifunctional “island” electrodes allows the realization of electrochemical devices that can sustain high mechanical deformation while displaying an extremely attractive and stable electrochemical performance. The advantages and practical utility of the new printed Ag‐liquid metal‐based island‐bridge designs are discussed and illustrated using a wearable biofuel cell. Such new scalable and tunable fabrication strategy will allow to incorporate a wide range of materials into a single device towards a wide range of applications in wearable electronics. Liquid metal based materials offer distinct advantages for the fabrication of island‐bridge electrochemical electronics. This study describes a novel approachmerging the unique advantages of deterministic architectures with stress‐enduring nanoengineered inks, supported with dynamic electrical anchors inside the percolated network. Versatile applications with various functional materials are also demonstrated by printing epidermal biofuel cells tested successfully on human subjects. |
Author | Yin, Lu lv, Jian Silva, Cristian A. Soto, Fernando Wang, Joseph Jeerapan, Itthipon Ha, Young‐Geun Innocenzi, Gabriel |
Author_xml | – sequence: 1 givenname: Cristian A. orcidid: 0000-0001-9262-0976 surname: Silva fullname: Silva, Cristian A. organization: University of California San Diego – sequence: 2 givenname: Jian orcidid: 0000-0003-3425-2882 surname: lv fullname: lv, Jian organization: University of California San Diego – sequence: 3 givenname: Lu orcidid: 0000-0002-5075-5263 surname: Yin fullname: Yin, Lu organization: University of California San Diego – sequence: 4 givenname: Itthipon orcidid: 0000-0001-8016-6411 surname: Jeerapan fullname: Jeerapan, Itthipon organization: University of California San Diego – sequence: 5 givenname: Gabriel surname: Innocenzi fullname: Innocenzi, Gabriel organization: University of California San Diego – sequence: 6 givenname: Fernando orcidid: 0000-0001-8494-9325 surname: Soto fullname: Soto, Fernando organization: University of California San Diego – sequence: 7 givenname: Young‐Geun surname: Ha fullname: Ha, Young‐Geun organization: University of California San Diego – sequence: 8 givenname: Joseph orcidid: 0000-0002-4921-9674 surname: Wang fullname: Wang, Joseph email: josephwang@ucsd.edu organization: University of California San Diego |
BookMark | eNqFkM1KAzEUhYNUsK1uXQ-4nppkMj9dTv-00KKggrshk9yxKelMm6RKdz6Cz-iTmFKpIIirexbnO-dyOqhVNzUgdElwj2BMr7msVj2KqdeYkRPUJglJwgjTrHXU5PkMdaxdYkzSNGJtJGdqs1UymIPjOhhwCzKYWs1r-fn-MTBKvkCQG7FQDoTbGrBB1Zgg1zq4N6p23v3gDDix4KWGYKy9yzRiASslfN4IXpUAe45OK64tXHzfLnqajB-Ht-Hs7mY6zGehYHFCwjjmEJUlySqa-PdYSkHQPiORiKtURiDLkkYxk0IyATgTXMY0I4JXnFKeiDjqoqtD7to0my1YVyybral9ZUHZPhPHEfWu3sElTGOtgapYG7XiZlcQXOyXLPZLFsclPcB-AUI57lRTO8OV_hvrH7A3pWH3T0mRjybzH_YL9gGMJw |
CitedBy_id | crossref_primary_10_3390_mi13122142 crossref_primary_10_1007_s40843_022_2081_0 crossref_primary_10_20517_ss_2023_30 crossref_primary_10_1002_admt_202101657 crossref_primary_10_1021_acsami_1c11275 crossref_primary_10_1002_admi_202100884 crossref_primary_10_1039_D2NR04551F crossref_primary_10_1039_D4TC03745F crossref_primary_10_1002_adfm_202107062 crossref_primary_10_1039_D3TC02560H crossref_primary_10_1039_D4MH00587B crossref_primary_10_1002_adfm_202313504 crossref_primary_10_1002_pen_26198 crossref_primary_10_1002_pol_20210867 crossref_primary_10_1002_adma_202008465 crossref_primary_10_1002_admt_202201935 crossref_primary_10_1016_j_cej_2021_133965 crossref_primary_10_1002_adfm_202404373 crossref_primary_10_1002_admi_202000626 crossref_primary_10_1016_j_biosx_2022_100182 crossref_primary_10_1016_j_cej_2024_150589 crossref_primary_10_1021_acsami_2c23002 crossref_primary_10_1016_j_ijbiomac_2024_131025 crossref_primary_10_1016_j_jmat_2023_08_013 crossref_primary_10_1002_advs_202205795 crossref_primary_10_1002_admi_202101857 crossref_primary_10_1016_j_isci_2021_102698 crossref_primary_10_1016_j_bios_2020_112569 crossref_primary_10_1088_2058_8585_ac6c64 crossref_primary_10_1002_adfm_202308703 crossref_primary_10_1016_j_sna_2024_115287 crossref_primary_10_1038_s43246_024_00490_8 crossref_primary_10_1002_adfm_202314783 crossref_primary_10_1002_admi_202201875 crossref_primary_10_1038_s41378_023_00625_w crossref_primary_10_1115_1_4064211 crossref_primary_10_1002_admt_202401413 crossref_primary_10_1021_acsanm_3c00761 crossref_primary_10_1021_acsnano_4c01759 crossref_primary_10_3390_bios13010084 crossref_primary_10_1016_j_cej_2021_132250 crossref_primary_10_1002_adfm_202107082 crossref_primary_10_1016_j_apmt_2024_102507 crossref_primary_10_1016_j_surfin_2022_101838 crossref_primary_10_1002_advs_202305558 crossref_primary_10_1039_D2NR04464A crossref_primary_10_1002_adfm_202309989 crossref_primary_10_1002_sstr_202200034 crossref_primary_10_1002_adfm_202313567 crossref_primary_10_1016_j_nanoen_2022_107884 crossref_primary_10_1007_s40820_024_01571_6 crossref_primary_10_1016_j_compscitech_2023_110201 crossref_primary_10_1016_j_matpr_2021_06_170 crossref_primary_10_1039_D2MH00470D crossref_primary_10_1002_adfm_202102359 crossref_primary_10_1002_adfm_202007436 crossref_primary_10_1002_adma_202308831 crossref_primary_10_1007_s11431_020_1733_x crossref_primary_10_1016_j_cej_2022_140443 crossref_primary_10_1016_j_sna_2025_116339 crossref_primary_10_1038_s44222_024_00175_4 crossref_primary_10_1016_j_cis_2022_102752 crossref_primary_10_1016_j_sna_2024_115105 crossref_primary_10_1002_advs_202104426 crossref_primary_10_1021_acsami_2c10638 crossref_primary_10_1002_adma_202407886 crossref_primary_10_1002_adma_202408456 crossref_primary_10_1126_sciadv_abn3863 crossref_primary_10_1002_adfm_202103976 crossref_primary_10_1016_j_ijthermalsci_2024_109617 crossref_primary_10_1016_j_pmatsci_2023_101228 crossref_primary_10_1088_1361_6463_adade5 crossref_primary_10_1016_j_isci_2020_102026 crossref_primary_10_1021_acsmaterialslett_1c00799 crossref_primary_10_1007_s40843_021_2023_x crossref_primary_10_3390_s24196428 crossref_primary_10_1007_s10853_023_08894_6 crossref_primary_10_1002_adma_202202509 crossref_primary_10_1002_advs_202105623 crossref_primary_10_1007_s11814_024_00339_3 crossref_primary_10_1016_j_aca_2023_342154 crossref_primary_10_3389_fmats_2023_1188662 crossref_primary_10_1016_j_mattod_2022_06_001 crossref_primary_10_1002_admt_202201067 crossref_primary_10_1002_adma_202203391 crossref_primary_10_1021_acsami_3c10049 crossref_primary_10_1016_j_cej_2025_160750 crossref_primary_10_1021_acsami_4c00318 crossref_primary_10_1109_ACCESS_2022_3189478 crossref_primary_10_1002_sus2_204 crossref_primary_10_1002_admt_202000694 crossref_primary_10_1021_acsabm_3c00640 crossref_primary_10_1002_smtd_202300671 crossref_primary_10_1021_acssensors_1c02606 crossref_primary_10_3389_fbioe_2023_1118812 crossref_primary_10_1002_adfm_202107042 crossref_primary_10_1016_j_nantod_2021_101366 crossref_primary_10_1002_adem_202401244 crossref_primary_10_1007_s11708_022_0815_y crossref_primary_10_1021_acs_chemrev_3c00374 crossref_primary_10_1126_sciadv_abg8433 crossref_primary_10_35848_1347_4065_ac5761 crossref_primary_10_1002_adfm_202309386 crossref_primary_10_1002_aelm_202100591 crossref_primary_10_1002_smsc_202400197 crossref_primary_10_1002_smll_202410247 crossref_primary_10_1002_adfm_202011059 crossref_primary_10_1002_admt_202201042 crossref_primary_10_1063_5_0133569 crossref_primary_10_1002_smll_202107879 crossref_primary_10_1021_acsaelm_4c00607 crossref_primary_10_1016_j_apmt_2021_100954 |
Cites_doi | 10.1016/j.gaitpost.2018.12.003 10.1002/celc.201901703 10.1002/adma.201506234 10.1021/acsnano.9b04843 10.1002/anie.201302922 10.1126/sciadv.1602076 10.1002/admt.201900048 10.1002/adma.201902278 10.1002/adma.201904309 10.1007/s11431-018-9253-9 10.1021/la5035118 10.1126/science.1206157 10.1126/science.1182383 10.1016/j.nanoen.2019.104055 10.1039/c3sm51476e 10.1002/adma.201903789 10.1021/acsami.7b10256 10.1002/aenm.201703652 10.1038/nature16521 10.1002/smll.201903753 10.1002/admt.201800265 10.1002/adma.201706157 10.1021/acsami.9b00934 10.1002/adma.201903864 10.1039/C8EE02792G 10.1002/admt.201800013 10.1016/j.jbiomech.2005.12.010 10.1002/adem.201700781 10.1002/adma.201301400 10.1002/adfm.201906243 10.1557/mrs.2016.2 10.1002/admt.201600284 10.1007/s10544-018-0353-x 10.1002/adma.201502386 10.1002/adfm.201808739 10.1039/C7EE00865A 10.1021/la404356r 10.1126/science.1160309 10.1016/j.jpowsour.2018.11.012 10.1002/adfm.201300124 10.1002/smll.201800938 10.1021/acs.accounts.8b00451 10.1002/adma.201201886 10.1038/ncomms8461 10.1002/adfm.201906683 10.1002/adma.201904664 10.1021/acs.jpcc.8b07042 10.1557/jmr.2005.0422 10.1002/adma.201801852 10.1021/acs.analchem.9b04668 10.1002/adma.201801368 10.1002/adma.201806133 10.1016/j.cossms.2015.01.004 10.1021/acsami.7b15814 10.1039/c3sm51360b 10.1021/acs.accounts.8b00508 10.1002/chem.200700554 10.1016/j.matlet.2019.127223 10.1002/adfm.201804336 10.1021/am5043017 10.1007/978-1-4614-9625-0 10.1002/adma.201805536 10.1039/C7LC00914C 10.1002/aenm.201602096 10.1039/C6TA08358G 10.1021/acs.nanolett.5b04549 10.1002/smll.201702817 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202002041 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202002041 ADFM202002041 |
Genre | article |
GrantInformation_xml | – fundername: University of California Institute for Mexico and the United States |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4561-55ae3bb18f26177472ec29413c5f7d3edbb2354dcd4ce08cad5281cafa22a6c53 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 08:34:38 EDT 2025 Tue Jul 01 04:12:14 EDT 2025 Thu Apr 24 23:10:15 EDT 2025 Wed Jan 22 16:32:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4561-55ae3bb18f26177472ec29413c5f7d3edbb2354dcd4ce08cad5281cafa22a6c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3425-2882 0000-0001-8494-9325 0000-0002-4921-9674 0000-0001-9262-0976 0000-0002-5075-5263 0000-0001-8016-6411 |
PQID | 2426170532 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2426170532 crossref_primary_10_1002_adfm_202002041 crossref_citationtrail_10_1002_adfm_202002041 wiley_primary_10_1002_adfm_202002041_ADFM202002041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2018; 122 2013; 25 2017; 2 2017; 3 2019; 52 2019; 11 2013; 23 2019; 10 2019; 13 2019; 16 2005; 20 2017; 9 2013; 9 2020; 7 2018; 8 2019; 410–411 2018; 3 2019; 21 2019; 65 2019; 68 2020; 92 2013; 52 2016; 41 2019; 29 2018; 30 2012; 24 2014; 6 2018; 28 2011; 333 2015; 6 2019; 4 2015; 19 2010; 327 2019; 31 2019; 32 2016; 529 2020; 265 2018; 61 2008; 321 2016; 16 2018; 20 2007; 13 2016; 4 2018; 18 2015; 27 2020; 30 1994; 19 2017; 10 2019 2018; 51 2007; 40 2014; 30 2014; 74 2016; 28 2018; 11 2018; 10 2018; 14 e_1_2_7_5_1 Kim J. (e_1_2_7_17_1) 2017; 3 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 Chen X. (e_1_2_7_68_1) 2019; 29 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Yang J. (e_1_2_7_47_1) 2019; 10 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Arumugam V. (e_1_2_7_72_1) 1994; 19 |
References_xml | – volume: 410–411 start-page: 69 year: 2019 publication-title: J. Power Sources – volume: 321 start-page: 1468 year: 2008 publication-title: Science – volume: 74 year: 2014 – volume: 9 start-page: 8062 year: 2013 publication-title: Soft Matter – volume: 10 year: 2019 publication-title: IEEE Xplore – volume: 14 year: 2018 publication-title: Small – volume: 30 start-page: 533 year: 2014 publication-title: Langmuir – volume: 10 start-page: 1581 year: 2017 publication-title: Energy Environ. Sci. – volume: 529 start-page: 509 year: 2016 publication-title: Nature – volume: 51 start-page: 2820 year: 2018 publication-title: Acc. Chem. Res. – volume: 28 start-page: 4507 year: 2016 publication-title: Adv. Mater. – volume: 68 start-page: 285 year: 2019 publication-title: Gait Posture – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 27 start-page: 6423 year: 2015 publication-title: Adv. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 5150 year: 2013 publication-title: Adv. Funct. Mater. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 40 start-page: 468 year: 2007 publication-title: J. Biomech. – volume: 6 start-page: 7641 year: 2015 publication-title: Nat. Commun. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 333 start-page: 838 year: 2011 publication-title: Science – volume: 92 start-page: 378 year: 2020 publication-title: Anal. Chem. – volume: 41 start-page: 123 year: 2016 publication-title: MRS Bull. – volume: 327 start-page: 1603 year: 2010 publication-title: Science – volume: 2 year: 2017 publication-title: Adv. Mater. Technol. – volume: 265 year: 2020 publication-title: Mater. Lett. – volume: 3 year: 2018 publication-title: Adv. Mater. Technol. – year: 2019 publication-title: Adv. Funct. Mater. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 11 start-page: 3431 year: 2018 publication-title: Energy Environ. Sci. – volume: 24 start-page: 5117 year: 2012 publication-title: Adv. Mater. – volume: 4 year: 2019 publication-title: Adv. Mater. Technol. – volume: 13 start-page: 5048 year: 2007 publication-title: Chem. ‐ Eur. J. – volume: 25 start-page: 5081 year: 2013 publication-title: Adv. Mater. – volume: 16 start-page: 721 year: 2016 publication-title: Nano Lett. – volume: 16 year: 2019 publication-title: Small – volume: 20 start-page: 3274 year: 2005 publication-title: J. Mater. Res. – volume: 19 start-page: 307 year: 1994 publication-title: J. Biomed. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 7 start-page: 191 year: 2020 publication-title: ChemElectroChem – volume: 52 start-page: 91 year: 2019 publication-title: Acc. Chem. Res. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 20 year: 2018 publication-title: Adv. Eng. Mater. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 7388 year: 2019 publication-title: ACS Nano – volume: 19 start-page: 160 year: 2015 publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 52 start-page: 7233 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 8476 year: 2013 publication-title: Soft Matter – volume: 61 start-page: 1031 year: 2018 publication-title: Sci. China: Technol. Sci. – volume: 3 year: 2017 publication-title: Adv. Electron. Mater. – volume: 18 start-page: 217 year: 2018 publication-title: Lab Chip – volume: 32 year: 2019 publication-title: Adv. Mater. – volume: 65 year: 2019 publication-title: Nano Energy – volume: 10 start-page: 2083 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2014 publication-title: Langmuir – volume: 21 start-page: 6 year: 2019 publication-title: Biomed. Microdevices – year: 2019 publication-title: Adv. Mater. – ident: e_1_2_7_6_1 doi: 10.1016/j.gaitpost.2018.12.003 – ident: e_1_2_7_74_1 doi: 10.1002/celc.201901703 – ident: e_1_2_7_27_1 doi: 10.1002/adma.201506234 – ident: e_1_2_7_29_1 doi: 10.1021/acsnano.9b04843 – ident: e_1_2_7_70_1 doi: 10.1002/anie.201302922 – ident: e_1_2_7_20_1 doi: 10.1126/sciadv.1602076 – volume: 19 start-page: 307 year: 1994 ident: e_1_2_7_72_1 publication-title: J. Biomed. Sci. – ident: e_1_2_7_58_1 doi: 10.1002/admt.201900048 – ident: e_1_2_7_13_1 doi: 10.1002/adma.201902278 – ident: e_1_2_7_46_1 doi: 10.1002/adma.201904309 – ident: e_1_2_7_35_1 doi: 10.1007/s11431-018-9253-9 – ident: e_1_2_7_37_1 doi: 10.1021/la5035118 – ident: e_1_2_7_59_1 doi: 10.1126/science.1206157 – ident: e_1_2_7_10_1 doi: 10.1126/science.1182383 – ident: e_1_2_7_67_1 doi: 10.1016/j.nanoen.2019.104055 – ident: e_1_2_7_51_1 doi: 10.1039/c3sm51476e – volume: 10 start-page: 19108842 year: 2019 ident: e_1_2_7_47_1 publication-title: IEEE Xplore – ident: e_1_2_7_11_1 doi: 10.1002/adma.201903789 – ident: e_1_2_7_34_1 doi: 10.1021/acsami.7b10256 – ident: e_1_2_7_43_1 doi: 10.1002/aenm.201703652 – ident: e_1_2_7_2_1 doi: 10.1038/nature16521 – ident: e_1_2_7_28_1 doi: 10.1002/smll.201903753 – ident: e_1_2_7_33_1 doi: 10.1002/admt.201800265 – volume: 29 start-page: 05785 year: 2019 ident: e_1_2_7_68_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_52_1 doi: 10.1002/adma.201706157 – ident: e_1_2_7_21_1 doi: 10.1021/acsami.9b00934 – ident: e_1_2_7_40_1 doi: 10.1002/adma.201903864 – ident: e_1_2_7_69_1 doi: 10.1039/C8EE02792G – ident: e_1_2_7_57_1 doi: 10.1002/admt.201800013 – ident: e_1_2_7_71_1 doi: 10.1016/j.jbiomech.2005.12.010 – ident: e_1_2_7_30_1 doi: 10.1002/adem.201700781 – ident: e_1_2_7_41_1 doi: 10.1002/adma.201301400 – ident: e_1_2_7_3_1 doi: 10.1002/adfm.201906243 – ident: e_1_2_7_12_1 doi: 10.1557/mrs.2016.2 – ident: e_1_2_7_49_1 doi: 10.1002/admt.201600284 – ident: e_1_2_7_65_1 doi: 10.1007/s10544-018-0353-x – ident: e_1_2_7_73_1 doi: 10.1002/anie.201302922 – ident: e_1_2_7_64_1 doi: 10.1002/adma.201502386 – ident: e_1_2_7_14_1 doi: 10.1002/adfm.201808739 – ident: e_1_2_7_48_1 doi: 10.1039/C7EE00865A – ident: e_1_2_7_45_1 doi: 10.1021/la404356r – ident: e_1_2_7_24_1 doi: 10.1126/science.1160309 – ident: e_1_2_7_4_1 doi: 10.1016/j.jpowsour.2018.11.012 – ident: e_1_2_7_16_1 doi: 10.1002/adfm.201300124 – ident: e_1_2_7_66_1 doi: 10.1002/smll.201800938 – ident: e_1_2_7_26_1 doi: 10.1002/adma.201903864 – ident: e_1_2_7_9_1 doi: 10.1021/acs.accounts.8b00451 – ident: e_1_2_7_18_1 doi: 10.1002/adma.201201886 – ident: e_1_2_7_23_1 doi: 10.1038/ncomms8461 – ident: e_1_2_7_39_1 doi: 10.1002/adfm.201906683 – ident: e_1_2_7_5_1 doi: 10.1002/adma.201904664 – ident: e_1_2_7_38_1 doi: 10.1021/acs.jpcc.8b07042 – ident: e_1_2_7_60_1 doi: 10.1557/jmr.2005.0422 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201801852 – ident: e_1_2_7_1_1 doi: 10.1021/acs.analchem.9b04668 – ident: e_1_2_7_61_1 doi: 10.1126/science.1182383 – volume: 3 start-page: 16002 year: 2017 ident: e_1_2_7_17_1 publication-title: Adv. Electron. Mater. – ident: e_1_2_7_15_1 doi: 10.1002/adma.201801368 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201806133 – ident: e_1_2_7_50_1 doi: 10.1016/j.cossms.2015.01.004 – ident: e_1_2_7_44_1 doi: 10.1021/acsami.7b15814 – ident: e_1_2_7_62_1 doi: 10.1039/c3sm51360b – ident: e_1_2_7_63_1 doi: 10.1021/acs.accounts.8b00508 – ident: e_1_2_7_25_1 doi: 10.1002/chem.200700554 – ident: e_1_2_7_54_1 doi: 10.1016/j.matlet.2019.127223 – ident: e_1_2_7_31_1 doi: 10.1002/adfm.201804336 – ident: e_1_2_7_36_1 doi: 10.1021/am5043017 – ident: e_1_2_7_53_1 doi: 10.1007/978-1-4614-9625-0 – ident: e_1_2_7_42_1 doi: 10.1002/adma.201805536 – ident: e_1_2_7_7_1 doi: 10.1039/C7LC00914C – ident: e_1_2_7_19_1 doi: 10.1002/aenm.201602096 – ident: e_1_2_7_55_1 doi: 10.1039/C6TA08358G – ident: e_1_2_7_56_1 doi: 10.1021/acs.nanolett.5b04549 – ident: e_1_2_7_8_1 doi: 10.1002/smll.201702817 |
SSID | ssj0017734 |
Score | 2.6176593 |
Snippet | The adoption of epidermal electronics into everyday life requires new design and fabrication paradigms, transitioning away from traditional rigid, bulky... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Biochemical fuel cells Bridge maintenance Electric bridges Electrical properties Electrochemical analysis Electronic devices Electronics Gallium Inks island‐bridge devices Liquid metals Materials science Serpentine Silver soft electronics Strain stretchable and printable conductors Wearable technology |
Title | Liquid Metal Based Island‐Bridge Architectures for All Printed Stretchable Electrochemical Devices |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202002041 https://www.proquest.com/docview/2426170532 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB3ElS58i9UqsxBcTZtM3svUthSxImKhuzCvQLFE7WPjyk_wG_0S52aSNBVE0F0CMyGZuXfumcw95yJ0qZ0vApoT8VlEifZERrQXWURxDeWYRuRWANzh4Z0_GLk3Y29cY_EbfYjqhxt4Rr5eg4MzPm-vREOZTIFJTnN6J-x_IGELUNFDpR9lB4E5VvZtSPCyx6Vqo0Xb693Xo9IKatYBax5x-ruIle9qEk2eWssFb4m3bzKO__mYPbRTwFEcG_vZRxsqO0DbNZHCQyRvJ6_LicRDpXE67uioJzEYUiY_3z86Od8Lx7XjiDnWOBjH0ym-n4EYhcRw8q2NA0hauGfK7ohCpwB3Vb5UHaFRv_d4PSBFbQYiAHIRz2PK4dwOU5B013sSqgSNdEQUXhpIR0nOqeO5UkhXKCsUTHo0tAVLGaXMF55zjDaz50ydIExpFDq6iwYvgZtCEdJAScdPmR9xbUFeA5FybhJRCJdD_YxpYiSXaQKjl1Sj10BXVfsXI9nxY8tmOdVJ4brzBDALaAw5tIFoPme_PCWJu_1hdXf6l05naAuuTRpwE20uZkt1rsHOgl_kBv0FE7f11A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO6JQwAckTmkTZz-mtFWBpkKolXqLvEWqqAJ0uXDiE_hGvgRPtrZICAmOieIosWc8z_a8NwhdKefzgeakOdQnmvJEqikv0jXJFJSjCpHrLnCHw57TGVh3Q7vIJgQuTKYPUW64gWek8zU4OGxI1xeqoVTEQCUnKb9TLYA2oKw3-GbzsVSQMlw3O1h2DEjxMoaFbqNO6qvtV-PSAmwuQ9Y05rR3ESu-Nks1earNZ6zG374JOf7rd_bQTo5IcZCZ0D5ak8kB2l7SKTxEojt6nY8EDqWC6rihAp_AYEuJ-Hz_aKSULxwsnUhMsYLCOBiP8cME9CgEhsNvZR_A08KtrPIOz6UKcFOms9URGrRb_ZuOlpdn0DigLs22qTQZM7wYVN3VsoRITnwVFLkdu8KUgjFi2pbgwuJS9zgVNvEMTmNKCHW4bR6j9eQ5kScIE-J7pmqi8ItrxVCH1JXCdGLq-EwZkV1BWjE4Ec-1y6GExjjKVJdJBL0Xlb1XQdfl8y-ZasePT1aLsY5y751GAFtAZsgkFUTSQfvlLVHQbIfl1elfGl2izU4_7Ebd2979GdqC-1lWcBWtzyZzea6wz4xdpNb9BXM6-e0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yQfTBuzidmgfBp25ten_c7MrUbQxxsLeSJikMR527vPjkT_A3-kvM6W2dIII-tiSlTc7J-dKT7zsIXUvnc4HmpFjUJYr0RKpIL1IVEUooRyUiV23gDvf6Vmdo3I_MUYnFn-pDFD_cwDOS9RocfMqjxko0lPIImOQkoXfK_c-mYakObL-8x0JASrPtNK9saXDCSxvlso0qaaz3Xw9LK6xZRqxJyPH3EM1fNj1p8lxfLsI6e_um4_ifr9lHuxkexc3UgA7QhogP0U5JpfAI8e74dTnmuCckUMctGfY4BkuK-ef7RyshfOFmKR8xxxII4-ZkggczUKPgGFLf0jqApYXbad0dlgkVYE8ka9UxGvrtp9uOkhVnUBhgLsU0qdDDUHMi0HSXmxIiGHFlSGRmZHNd8DAkumlwxg0mVIdRbhJHYzSihFCLmfoJqsQvsThFmBDX0WUXiV5sI4IqpLbguhVRyw2lCZlVpORzE7BMuRwKaEyCVHOZBDB6QTF6VXRTtJ-mmh0_tqzlUx1kvjsPALSAyJBOqogkc_bLU4Km5_eKq7O_dLpCWwPPD7p3_YdztA230yPBNVRZzJbiQgKfRXiZ2PYXnuv4pQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid+Metal+Based+Island%E2%80%90Bridge+Architectures+for+All+Printed+Stretchable+Electrochemical+Devices&rft.jtitle=Advanced+functional+materials&rft.au=Silva%2C+Cristian+A.&rft.au=lv%2C+Jian&rft.au=Yin%2C+Lu&rft.au=Jeerapan%2C+Itthipon&rft.date=2020-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=30&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202002041&rft.externalDBID=10.1002%252Fadfm.202002041&rft.externalDocID=ADFM202002041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |