Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation
Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W 6+ doped Ni(OH) 2 nanosheet sample (w-Ni(OH) 2 ) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 2149 - 10 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.05.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-019-09845-z |
Cover
Loading…
Abstract | Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W
6+
doped Ni(OH)
2
nanosheet sample (w-Ni(OH)
2
) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is obtained reaching a current density of 10 mA/cm
2
. Moreover, at high current density of 80 mA/cm
2
, the overpotential value is 267 mV. The corresponding Tafel slope is measured to be 33 mV/dec. The d
0
W
6+
atom with a low spin-state has more outermost vacant orbitals, resulting in more water and OH
−
groups being adsorbed on the exposed W sites of the Ni(OH)
2
nanosheet. Density functional theory (DFT) calculations confirm that the O radical and O-O coupling are both generated at the same site of W
6+
. This work demonstrates that W
6+
doping can promote the electrocatalytic water oxidation activity of Ni(OH)
2
with the highest performance.
Electrocatalytic water splitting for hydrogen and oxygen generation provides an attractive path to obtain clean energy, but the half reaction of oxygen evolution remains the bottleneck for the progress. Here, the authors show single atom tungsten doped ultrathin α-Ni(OH)
2
exhibits enhanced performance in electrocatalytic water oxidation. |
---|---|
AbstractList | Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W
6+
doped Ni(OH)
2
nanosheet sample (w-Ni(OH)
2
) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is obtained reaching a current density of 10 mA/cm
2
. Moreover, at high current density of 80 mA/cm
2
, the overpotential value is 267 mV. The corresponding Tafel slope is measured to be 33 mV/dec. The d
0
W
6+
atom with a low spin-state has more outermost vacant orbitals, resulting in more water and OH
−
groups being adsorbed on the exposed W sites of the Ni(OH)
2
nanosheet. Density functional theory (DFT) calculations confirm that the O radical and O-O coupling are both generated at the same site of W
6+
. This work demonstrates that W
6+
doping can promote the electrocatalytic water oxidation activity of Ni(OH)
2
with the highest performance.
Electrocatalytic water splitting for hydrogen and oxygen generation provides an attractive path to obtain clean energy, but the half reaction of oxygen evolution remains the bottleneck for the progress. Here, the authors show single atom tungsten doped ultrathin α-Ni(OH)
2
exhibits enhanced performance in electrocatalytic water oxidation. Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W doped Ni(OH) nanosheet sample (w-Ni(OH) ) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is obtained reaching a current density of 10 mA/cm . Moreover, at high current density of 80 mA/cm , the overpotential value is 267 mV. The corresponding Tafel slope is measured to be 33 mV/dec. The d W atom with a low spin-state has more outermost vacant orbitals, resulting in more water and OH groups being adsorbed on the exposed W sites of the Ni(OH) nanosheet. Density functional theory (DFT) calculations confirm that the O radical and O-O coupling are both generated at the same site of W . This work demonstrates that W doping can promote the electrocatalytic water oxidation activity of Ni(OH) with the highest performance. Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W 6+ doped Ni(OH) 2 nanosheet sample (w-Ni(OH) 2 ) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is obtained reaching a current density of 10 mA/cm 2 . Moreover, at high current density of 80 mA/cm 2 , the overpotential value is 267 mV. The corresponding Tafel slope is measured to be 33 mV/dec. The d 0 W 6+ atom with a low spin-state has more outermost vacant orbitals, resulting in more water and OH − groups being adsorbed on the exposed W sites of the Ni(OH) 2 nanosheet. Density functional theory (DFT) calculations confirm that the O radical and O-O coupling are both generated at the same site of W 6+ . This work demonstrates that W 6+ doping can promote the electrocatalytic water oxidation activity of Ni(OH) 2 with the highest performance. Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W6+ doped Ni(OH)2 nanosheet sample (w-Ni(OH)2) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is obtained reaching a current density of 10 mA/cm2. Moreover, at high current density of 80 mA/cm2, the overpotential value is 267 mV. The corresponding Tafel slope is measured to be 33 mV/dec. The d0 W6+ atom with a low spin-state has more outermost vacant orbitals, resulting in more water and OH- groups being adsorbed on the exposed W sites of the Ni(OH)2 nanosheet. Density functional theory (DFT) calculations confirm that the O radical and O-O coupling are both generated at the same site of W6+. This work demonstrates that W6+ doping can promote the electrocatalytic water oxidation activity of Ni(OH)2 with the highest performance.Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W6+ doped Ni(OH)2 nanosheet sample (w-Ni(OH)2) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is obtained reaching a current density of 10 mA/cm2. Moreover, at high current density of 80 mA/cm2, the overpotential value is 267 mV. The corresponding Tafel slope is measured to be 33 mV/dec. The d0 W6+ atom with a low spin-state has more outermost vacant orbitals, resulting in more water and OH- groups being adsorbed on the exposed W sites of the Ni(OH)2 nanosheet. Density functional theory (DFT) calculations confirm that the O radical and O-O coupling are both generated at the same site of W6+. This work demonstrates that W6+ doping can promote the electrocatalytic water oxidation activity of Ni(OH)2 with the highest performance. Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W6+ doped Ni(OH)2 nanosheet sample (w-Ni(OH)2) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is obtained reaching a current density of 10 mA/cm2. Moreover, at high current density of 80 mA/cm2, the overpotential value is 267 mV. The corresponding Tafel slope is measured to be 33 mV/dec. The d0 W6+ atom with a low spin-state has more outermost vacant orbitals, resulting in more water and OH− groups being adsorbed on the exposed W sites of the Ni(OH)2 nanosheet. Density functional theory (DFT) calculations confirm that the O radical and O-O coupling are both generated at the same site of W6+. This work demonstrates that W6+ doping can promote the electrocatalytic water oxidation activity of Ni(OH)2 with the highest performance.Electrocatalytic water splitting for hydrogen and oxygen generation provides an attractive path to obtain clean energy, but the half reaction of oxygen evolution remains the bottleneck for the progress. Here, the authors show single atom tungsten doped ultrathin α-Ni(OH)2 exhibits enhanced performance in electrocatalytic water oxidation. Electrocatalytic water splitting for hydrogen and oxygen generation provides an attractive path to obtain clean energy, but the half reaction of oxygen evolution remains the bottleneck for the progress. Here, the authors show single atom tungsten doped ultrathin α-Ni(OH)2 exhibits enhanced performance in electrocatalytic water oxidation. |
ArticleNumber | 2149 |
Author | Kong, Lingqiao White, Jai Zhang, Jing Yan, Junqing Liu, Shengzhong Li, Youyong Ma, Tianyi An, Pengfei Lee, Shuit-Tong Ji, Yujin |
Author_xml | – sequence: 1 givenname: Junqing orcidid: 0000-0002-9966-6237 surname: Yan fullname: Yan, Junqing organization: Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University – sequence: 2 givenname: Lingqiao surname: Kong fullname: Kong, Lingqiao organization: Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University – sequence: 3 givenname: Yujin surname: Ji fullname: Ji, Yujin organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University – sequence: 4 givenname: Jai surname: White fullname: White, Jai organization: Discipline of Chemistry, School of Environmental and Life Sciences, University of Newcastle – sequence: 5 givenname: Youyong orcidid: 0000-0002-5248-2756 surname: Li fullname: Li, Youyong email: yyli@suda.edu.cn organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University – sequence: 6 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 7 givenname: Pengfei surname: An fullname: An, Pengfei organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 8 givenname: Shengzhong surname: Liu fullname: Liu, Shengzhong email: liusz@snnu.edu.cn organization: Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, iChEM, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences – sequence: 9 givenname: Shuit-Tong surname: Lee fullname: Lee, Shuit-Tong organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University – sequence: 10 givenname: Tianyi orcidid: 0000-0002-1042-8700 surname: Ma fullname: Ma, Tianyi email: tianyi.ma@newcastle.edu.au organization: Discipline of Chemistry, School of Environmental and Life Sciences, University of Newcastle |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31089139$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNUREvpC7BAkdiURcC_cbJBqiqglSq6AJbIcuybGY889mA7QOeteBGeCTMppe2i3tiyv3N87HufVns-eKiq5xi9xoh2bxLDrBUNwn2D-o7xZvuoOiCI4QYLQvdurfero5RWqAza446xJ9U-xajrMe0Pqq-frF84qFUO6zpPfpEy-NqEDZh6cjmqvLS-_v2r-WiPL89ekXoMsQa_VF4XAhzoHINWWbmrbHX9Q2WIdfhpjco2-GfV41G5BEfX82H15f27z6dnzcXlh_PTk4tGM863jeE97nnbAxbt2LaMDcAHQ3uNDefCCDxgNSqERjSMxFBuhKZId7gbdElBCD2szmdfE9RKbqJdq3glg7JytxHiQqpY8jmQClBHBOIYRMsoEZ0YlRnEyFTHgI2meL2dvTbTsAajwZdfcHdM7554u5SL8F22HAtGWTE4vjaI4dsEKcu1TRqcUx7ClGTJW8rAW4wL-vIeugpT9OWrCkU4JpQjWqgXtxPdRPlXxQKQGdAxpBRhvEEwkn-7Rc7dIku3yF23yG0RdfdE2uZd1cqrrHtYSmdpKvf4BcT_sR9Q_QHDF9WF |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_9b07481 crossref_primary_10_1039_D1CC03410C crossref_primary_10_1016_j_jallcom_2022_165259 crossref_primary_10_1021_acssuschemeng_4c00318 crossref_primary_10_1016_j_ccr_2024_216112 crossref_primary_10_1016_j_jallcom_2024_174896 crossref_primary_10_1021_acsnano_2c09880 crossref_primary_10_1002_adfm_202000531 crossref_primary_10_1021_acsami_2c13435 crossref_primary_10_1002_sstr_202200094 crossref_primary_10_1021_acscatal_3c01963 crossref_primary_10_1021_acsmaterialslett_0c00549 crossref_primary_10_1016_j_ijhydene_2022_08_139 crossref_primary_10_1016_j_fuel_2025_134704 crossref_primary_10_1039_D1DT03906G crossref_primary_10_1021_jacs_3c11446 crossref_primary_10_1039_D0QI00614A crossref_primary_10_1016_j_ccr_2022_214603 crossref_primary_10_1021_acs_cgd_4c00747 crossref_primary_10_3390_nano11123379 crossref_primary_10_1002_adma_202102801 crossref_primary_10_1080_21870764_2023_2203635 crossref_primary_10_1002_adma_202100745 crossref_primary_10_1002_smll_202411479 crossref_primary_10_1039_D2DT02770D crossref_primary_10_1039_D1TA08046F crossref_primary_10_1039_D3TA01869E crossref_primary_10_1002_smll_202102448 crossref_primary_10_1002_adma_202006784 crossref_primary_10_3390_nano9091284 crossref_primary_10_1007_s12678_022_00808_5 crossref_primary_10_1039_D4EE01783H crossref_primary_10_1016_j_electacta_2024_144953 crossref_primary_10_1039_D2TA00149G crossref_primary_10_1007_s12274_021_3475_z crossref_primary_10_1021_jacs_4c02292 crossref_primary_10_1039_D0TA06656G crossref_primary_10_1002_celc_202001454 crossref_primary_10_1039_D4QI01046A crossref_primary_10_1039_D1EE00248A crossref_primary_10_1016_j_jechem_2020_10_022 crossref_primary_10_1039_D0TA01966F crossref_primary_10_1016_j_cclet_2021_08_045 crossref_primary_10_1021_acssuschemeng_0c04322 crossref_primary_10_1039_C9TA07601H crossref_primary_10_1016_j_apsusc_2020_145943 crossref_primary_10_1002_adma_202417593 crossref_primary_10_1002_smll_202001642 crossref_primary_10_3390_ma16083044 crossref_primary_10_1016_j_apcatb_2022_122072 crossref_primary_10_1016_j_cjsc_2025_100520 crossref_primary_10_3389_fchem_2022_1071274 crossref_primary_10_1016_j_seppur_2024_126977 crossref_primary_10_1002_adfm_202001704 crossref_primary_10_1002_aenm_202003018 crossref_primary_10_1002_adma_202306309 crossref_primary_10_1002_smll_202100129 crossref_primary_10_1016_j_apsusc_2022_156236 crossref_primary_10_1002_smll_202203365 crossref_primary_10_1002_smll_202403412 crossref_primary_10_3390_catal13071095 crossref_primary_10_1002_aenm_202303281 crossref_primary_10_1016_j_jcat_2022_09_014 crossref_primary_10_1039_D3EE03896C crossref_primary_10_1021_acs_jpcc_1c03824 crossref_primary_10_1039_C9CC05115E crossref_primary_10_1039_D1TA08148A crossref_primary_10_1016_j_ccr_2021_214261 crossref_primary_10_1002_smtd_202300348 crossref_primary_10_1016_j_ijhydene_2023_11_294 crossref_primary_10_1016_j_jcis_2022_04_152 crossref_primary_10_1002_aenm_202201141 crossref_primary_10_1039_D0TA00860E crossref_primary_10_1016_j_jallcom_2023_171910 crossref_primary_10_1002_smtd_202301434 crossref_primary_10_1016_j_ijhydene_2023_04_023 crossref_primary_10_1007_s12274_022_5240_3 crossref_primary_10_1038_s41467_023_36830_4 crossref_primary_10_1039_D0SE00659A crossref_primary_10_1016_j_nanoen_2024_109300 crossref_primary_10_1038_s41467_022_28413_6 crossref_primary_10_1360_nso_20220059 crossref_primary_10_1021_acsami_2c00254 crossref_primary_10_1007_s12598_024_02784_9 crossref_primary_10_1002_smll_202105680 crossref_primary_10_1039_D2DT00037G crossref_primary_10_1002_adfm_202010633 crossref_primary_10_1021_acs_iecr_1c04902 crossref_primary_10_1039_D2SE00804A crossref_primary_10_1002_adfm_202309824 crossref_primary_10_1002_celc_202300460 crossref_primary_10_1007_s40843_022_2274_7 crossref_primary_10_1002_adma_202403151 crossref_primary_10_1016_j_jiec_2023_07_060 crossref_primary_10_1002_anie_202104053 crossref_primary_10_1039_D1TA00072A crossref_primary_10_1016_j_apcatb_2024_124934 crossref_primary_10_1002_ange_202104053 crossref_primary_10_1002_adfm_202009779 crossref_primary_10_1002_smll_202105696 crossref_primary_10_1016_j_apcatb_2020_119197 crossref_primary_10_1002_aenm_202500554 crossref_primary_10_1021_acsami_2c21041 crossref_primary_10_1016_j_jelechem_2022_116633 crossref_primary_10_1039_D0TA00547A crossref_primary_10_1021_acs_nanolett_9b03523 crossref_primary_10_1021_acscatal_0c04020 crossref_primary_10_1039_D4RA02326A crossref_primary_10_1016_j_ccr_2020_213483 crossref_primary_10_1002_smll_202401034 crossref_primary_10_1016_j_jcat_2024_115352 crossref_primary_10_1016_j_cej_2024_149184 crossref_primary_10_1039_D4SC03612C crossref_primary_10_1002_adfm_202301884 crossref_primary_10_1002_advs_202201916 crossref_primary_10_1002_adfm_202110224 crossref_primary_10_1016_j_ijhydene_2022_04_072 crossref_primary_10_1021_acscatal_4c07778 crossref_primary_10_1002_adfm_202301526 crossref_primary_10_1016_j_jpowsour_2025_236834 crossref_primary_10_1126_sciadv_abb6833 crossref_primary_10_1016_j_apcatb_2022_122269 crossref_primary_10_1002_aenm_202000177 crossref_primary_10_1039_D3NJ02846A crossref_primary_10_1002_smll_202207236 crossref_primary_10_1016_j_nanoen_2024_110468 crossref_primary_10_1021_acs_inorgchem_3c01095 crossref_primary_10_1039_D1GC03909A crossref_primary_10_1002_adma_202204448 crossref_primary_10_1039_D4QI02568G crossref_primary_10_1002_adma_202200088 crossref_primary_10_1021_acscatal_4c04393 crossref_primary_10_1016_j_enchem_2024_100119 crossref_primary_10_1021_acsami_3c16507 crossref_primary_10_1021_acscatal_0c01733 crossref_primary_10_1016_j_jhazmat_2022_130576 crossref_primary_10_1002_anie_201914647 crossref_primary_10_1002_eom2_12254 crossref_primary_10_1021_acsanm_4c07004 crossref_primary_10_1002_adma_202300945 crossref_primary_10_1016_j_xcrp_2021_100356 crossref_primary_10_1039_D4EE05340K crossref_primary_10_1016_j_est_2024_110671 crossref_primary_10_1016_j_apcatb_2021_120263 crossref_primary_10_1002_adma_202304182 crossref_primary_10_1016_j_electacta_2021_139714 crossref_primary_10_1002_cnma_202400242 crossref_primary_10_3866_PKU_WHXB202307019 crossref_primary_10_1002_ange_202112042 crossref_primary_10_1016_j_jcis_2020_11_015 crossref_primary_10_1002_anie_202103824 crossref_primary_10_1039_D2CE01491B crossref_primary_10_3390_catal12070696 crossref_primary_10_1016_j_jpcs_2024_112143 crossref_primary_10_1007_s12274_021_3694_3 crossref_primary_10_1016_j_ijhydene_2024_04_301 crossref_primary_10_1021_acs_inorgchem_1c00841 crossref_primary_10_1016_j_ijhydene_2021_02_173 crossref_primary_10_2139_ssrn_4174946 crossref_primary_10_1002_cnma_202400476 crossref_primary_10_1039_D1NR04138J crossref_primary_10_1002_aenm_202002464 crossref_primary_10_1002_smtd_202000248 crossref_primary_10_1016_j_apsusc_2023_157204 crossref_primary_10_1002_adfm_202307390 crossref_primary_10_1016_j_rser_2021_111097 crossref_primary_10_1016_j_ccr_2020_213280 crossref_primary_10_1021_acs_chemrev_0c00594 crossref_primary_10_1016_j_cej_2021_133483 crossref_primary_10_20517_energymater_2024_41 crossref_primary_10_1021_acs_jpcc_3c05005 crossref_primary_10_1016_j_nanoen_2020_105085 crossref_primary_10_1002_anie_202100610 crossref_primary_10_1002_adma_202404658 crossref_primary_10_1039_D1NR00933H crossref_primary_10_1002_adma_202107053 crossref_primary_10_1016_j_apcatb_2023_122749 crossref_primary_10_1002_celc_201900857 crossref_primary_10_1016_j_ccr_2024_216141 crossref_primary_10_1016_j_ijhydene_2023_07_097 crossref_primary_10_1021_acsomega_2c05812 crossref_primary_10_1039_D4QI02766C crossref_primary_10_1002_adfm_202309438 crossref_primary_10_1021_acsaem_2c02812 crossref_primary_10_1016_j_cej_2021_134446 crossref_primary_10_1016_j_ces_2021_117398 crossref_primary_10_1016_j_apmt_2023_102037 crossref_primary_10_1016_j_jechem_2022_07_037 crossref_primary_10_1038_s41467_021_25609_0 crossref_primary_10_1002_cctc_201902316 crossref_primary_10_1007_s10854_022_08674_z crossref_primary_10_1016_j_electacta_2023_142891 crossref_primary_10_1002_chem_202404086 crossref_primary_10_1021_acssuschemeng_9b04590 crossref_primary_10_1021_acsaem_0c02628 crossref_primary_10_1016_j_scib_2023_06_001 crossref_primary_10_1016_j_cej_2022_140079 crossref_primary_10_1039_C9CS00869A crossref_primary_10_1038_s41467_024_55612_0 crossref_primary_10_1016_j_jechem_2020_03_020 crossref_primary_10_1016_j_apsusc_2023_157433 crossref_primary_10_1002_ange_202115331 crossref_primary_10_1016_j_matdes_2022_111427 crossref_primary_10_1002_smll_201907556 crossref_primary_10_1039_D2CS00038E crossref_primary_10_1021_acs_chemrev_0c00576 crossref_primary_10_1007_s40843_020_1271_x crossref_primary_10_1016_j_enconman_2021_115038 crossref_primary_10_1002_adfm_202107056 crossref_primary_10_1021_acsami_1c05660 crossref_primary_10_1021_acsami_2c09725 crossref_primary_10_1039_D0TA05160H crossref_primary_10_1021_acsami_1c12005 crossref_primary_10_1039_C9TA11852G crossref_primary_10_1016_j_cej_2021_130204 crossref_primary_10_1021_acs_analchem_1c04912 crossref_primary_10_1007_s12274_021_3917_7 crossref_primary_10_1016_j_jallcom_2023_169699 crossref_primary_10_1002_idm2_12011 crossref_primary_10_1007_s11426_024_2389_9 crossref_primary_10_1016_j_apsusc_2024_160657 crossref_primary_10_1039_D2EE00461E crossref_primary_10_1016_j_jallcom_2020_154247 crossref_primary_10_1002_anie_202100371 crossref_primary_10_1007_s42765_022_00138_7 crossref_primary_10_1002_ente_202201203 crossref_primary_10_1016_j_cej_2021_129214 crossref_primary_10_1021_acscatal_2c02604 crossref_primary_10_1021_acs_iecr_9b06470 crossref_primary_10_1002_adfm_202406670 crossref_primary_10_1021_acsaem_1c03748 crossref_primary_10_1039_D0CS00978D crossref_primary_10_1002_adfm_202211576 crossref_primary_10_1016_j_apsusc_2024_159537 crossref_primary_10_1039_D2TA00835A crossref_primary_10_1039_D1TA04032D crossref_primary_10_1002_cssc_202400624 crossref_primary_10_1002_cssc_202102404 crossref_primary_10_1039_D1EE02485J crossref_primary_10_1038_s41467_020_15498_0 crossref_primary_10_1016_j_jcis_2022_07_103 crossref_primary_10_1021_acs_analchem_2c01051 crossref_primary_10_1021_acsenergylett_4c02650 crossref_primary_10_1039_D1SE01535D crossref_primary_10_1016_j_jcis_2023_09_115 crossref_primary_10_1002_aenm_202401449 crossref_primary_10_1016_j_ijhydene_2024_10_077 crossref_primary_10_1021_acs_chemrev_9b00238 crossref_primary_10_1002_ange_202103824 crossref_primary_10_1016_j_apcatb_2022_121684 crossref_primary_10_1002_anie_202008116 crossref_primary_10_1021_acs_nanolett_0c02007 crossref_primary_10_1016_j_jpowsour_2025_236662 crossref_primary_10_1016_j_jallcom_2022_163855 crossref_primary_10_1002_anie_202410105 crossref_primary_10_1002_adfm_202106149 crossref_primary_10_1021_acs_analchem_4c01258 crossref_primary_10_1002_adma_202210703 crossref_primary_10_1021_acssuschemeng_3c01531 crossref_primary_10_1039_D0EE00755B crossref_primary_10_1002_cssc_202401872 crossref_primary_10_1088_1361_6528_acef2f crossref_primary_10_1016_j_jpowsour_2020_228625 crossref_primary_10_1021_acssuschemeng_1c02256 crossref_primary_10_1039_D3DT03249C crossref_primary_10_1039_D1TA08872F crossref_primary_10_1021_acsami_1c16755 crossref_primary_10_1039_D4NJ01627K crossref_primary_10_1038_s41563_021_01006_2 crossref_primary_10_1002_ange_202422740 crossref_primary_10_1021_acs_chemmater_2c00950 crossref_primary_10_1016_j_apsusc_2022_153408 crossref_primary_10_1016_j_cej_2021_132888 crossref_primary_10_1021_jacsau_3c00001 crossref_primary_10_1149_1945_7111_acee27 crossref_primary_10_1016_j_apcatb_2019_118580 crossref_primary_10_1007_s11581_023_05330_2 crossref_primary_10_1007_s12598_024_02975_4 crossref_primary_10_1021_acssuschemeng_2c03166 crossref_primary_10_1002_adfm_202414493 crossref_primary_10_1016_j_cej_2022_139104 crossref_primary_10_1039_D1CS00330E crossref_primary_10_1016_j_chemosphere_2023_140012 crossref_primary_10_1016_j_cej_2020_127917 crossref_primary_10_1016_j_jallcom_2023_169014 crossref_primary_10_1039_D0TA00708K crossref_primary_10_1002_cssc_202002946 crossref_primary_10_1002_ange_202410105 crossref_primary_10_1039_D4QI00090K crossref_primary_10_1039_D0TA01680B crossref_primary_10_1002_adfm_202423092 crossref_primary_10_1002_ange_202008116 crossref_primary_10_1002_adfm_202107308 crossref_primary_10_1002_solr_202400522 crossref_primary_10_1002_aenm_202301547 crossref_primary_10_1039_D4GC05682E crossref_primary_10_1002_tcr_202200237 crossref_primary_10_1007_s12274_022_4140_x crossref_primary_10_1016_j_jechem_2021_08_055 crossref_primary_10_1021_acs_inorgchem_2c03805 crossref_primary_10_1038_s41467_023_37404_0 crossref_primary_10_1002_adfm_202417983 crossref_primary_10_1016_j_cej_2024_155429 crossref_primary_10_1016_j_jcis_2021_05_011 crossref_primary_10_1002_cey2_329 crossref_primary_10_1016_j_ijhydene_2020_10_156 crossref_primary_10_1002_adma_202302642 crossref_primary_10_1016_j_ccr_2023_215602 crossref_primary_10_1002_smll_202304560 crossref_primary_10_1038_s41467_020_16558_1 crossref_primary_10_1016_j_apcatb_2019_118567 crossref_primary_10_1016_j_ijhydene_2021_11_046 crossref_primary_10_1002_adma_202406094 crossref_primary_10_1002_chem_202401644 crossref_primary_10_1016_j_jallcom_2023_170231 crossref_primary_10_1016_j_cej_2022_139369 crossref_primary_10_1002_cey2_216 crossref_primary_10_1016_j_cej_2025_161377 crossref_primary_10_1021_acs_nanolett_2c04444 crossref_primary_10_1002_adma_202000872 crossref_primary_10_1016_j_ijhydene_2024_02_078 crossref_primary_10_1002_smll_202200303 crossref_primary_10_1016_j_apcatb_2019_118334 crossref_primary_10_1149_1945_7111_ac7172 crossref_primary_10_1002_ange_202100371 crossref_primary_10_26599_NRE_2022_9120029 crossref_primary_10_1002_adma_202104764 crossref_primary_10_1016_j_ijhydene_2023_08_144 crossref_primary_10_1016_j_cej_2021_129165 crossref_primary_10_1002_solr_202100833 crossref_primary_10_1007_s40843_020_1443_8 crossref_primary_10_1002_tcr_202300330 crossref_primary_10_1016_j_matlet_2020_128951 crossref_primary_10_1002_anie_202422740 crossref_primary_10_1039_D2TA08461A crossref_primary_10_1016_j_electacta_2022_140779 crossref_primary_10_1021_acs_est_2c07282 crossref_primary_10_1016_j_apsusc_2021_149064 crossref_primary_10_1021_acscatal_4c03974 crossref_primary_10_1016_j_scib_2020_08_037 crossref_primary_10_1021_acs_jpcc_0c02324 crossref_primary_10_1016_j_seppur_2025_132642 crossref_primary_10_1021_acs_inorgchem_3c00562 crossref_primary_10_1002_aenm_202204213 crossref_primary_10_1007_s40820_023_01066_w crossref_primary_10_1021_acsanm_1c04359 crossref_primary_10_1016_j_apmt_2021_101029 crossref_primary_10_1016_j_coelec_2023_101231 crossref_primary_10_1021_acsaem_1c02023 crossref_primary_10_1021_acsnano_4c02240 crossref_primary_10_1002_aenm_202101202 crossref_primary_10_1002_adma_202404900 crossref_primary_10_1002_smll_202303169 crossref_primary_10_1016_j_jechem_2024_05_044 crossref_primary_10_1021_acs_inorgchem_4c02804 crossref_primary_10_1016_j_scib_2022_08_008 crossref_primary_10_1039_D0CE00504E crossref_primary_10_1021_jacs_1c04682 crossref_primary_10_1002_adma_202304508 crossref_primary_10_1016_j_cej_2024_158565 crossref_primary_10_1021_acsnano_0c09755 crossref_primary_10_1016_j_renene_2022_08_013 crossref_primary_10_1038_s41467_021_24828_9 crossref_primary_10_1016_j_envres_2021_111589 crossref_primary_10_1002_adfm_201906477 crossref_primary_10_1039_D0TA03138K crossref_primary_10_1002_cey2_532 crossref_primary_10_1021_acs_inorgchem_1c03665 crossref_primary_10_1016_j_ensm_2021_11_050 crossref_primary_10_1016_j_nanoen_2020_105540 crossref_primary_10_1016_j_xcrp_2022_101059 crossref_primary_10_1002_ange_201914647 crossref_primary_10_1016_j_cej_2021_129403 crossref_primary_10_1016_j_cej_2021_130873 crossref_primary_10_1002_aenm_202402046 crossref_primary_10_1039_D1RA05045A crossref_primary_10_1016_j_cej_2024_158317 crossref_primary_10_1016_j_ijhydene_2022_06_212 crossref_primary_10_1016_j_jcis_2024_09_238 crossref_primary_10_1021_acscatal_2c02416 crossref_primary_10_1002_ange_202100610 crossref_primary_10_1039_D1CC05752A crossref_primary_10_1016_j_nanoen_2023_108225 crossref_primary_10_1007_s40820_023_01185_4 crossref_primary_10_1002_adma_202003414 crossref_primary_10_1038_s41467_022_30766_x crossref_primary_10_3390_cryst11040340 crossref_primary_10_1002_anie_202112042 crossref_primary_10_1002_smtd_202400108 crossref_primary_10_1002_cey2_79 crossref_primary_10_1002_adfm_202405262 crossref_primary_10_1016_j_apcatb_2024_124641 crossref_primary_10_1002_smll_202101725 crossref_primary_10_1016_j_cej_2021_130532 crossref_primary_10_1016_j_jece_2023_110244 crossref_primary_10_1016_j_ijhydene_2024_02_019 crossref_primary_10_1021_acscatal_2c00188 crossref_primary_10_1016_j_electacta_2024_144005 crossref_primary_10_1016_j_talanta_2025_127926 crossref_primary_10_1016_j_apcatb_2024_124636 crossref_primary_10_1039_D3CY00789H crossref_primary_10_1002_smll_201904507 crossref_primary_10_1016_j_cej_2024_157208 crossref_primary_10_1007_s11705_025_2524_7 crossref_primary_10_1016_j_jcis_2025_02_148 crossref_primary_10_1039_D0CS00795A crossref_primary_10_1016_j_nanoen_2022_107375 crossref_primary_10_1002_anie_202115331 crossref_primary_10_1002_adsu_202000184 crossref_primary_10_1002_cnl2_105 crossref_primary_10_1039_C9SE00822E crossref_primary_10_1016_j_jcis_2024_08_111 crossref_primary_10_1039_D1TA00154J crossref_primary_10_1021_acsami_0c10234 crossref_primary_10_1016_j_checat_2024_101157 crossref_primary_10_1007_s12274_022_4799_z crossref_primary_10_1021_acsaem_1c02399 crossref_primary_10_1038_s41467_024_45320_0 crossref_primary_10_1002_adfm_202209698 crossref_primary_10_1016_j_apcatb_2021_120740 crossref_primary_10_1021_acscentsci_4c00345 crossref_primary_10_1002_aenm_201903137 crossref_primary_10_1039_D0RA06617F crossref_primary_10_1021_acssuschemeng_1c07464 crossref_primary_10_1007_s40843_020_1331_x crossref_primary_10_1002_celc_202400159 crossref_primary_10_1016_j_apcatb_2020_119112 crossref_primary_10_1016_j_apsusc_2024_160201 crossref_primary_10_1002_cssc_202002544 crossref_primary_10_1016_j_jcis_2022_06_053 crossref_primary_10_1016_j_jallcom_2025_179819 crossref_primary_10_1039_D3EY00113J crossref_primary_10_1002_smll_202310829 crossref_primary_10_1021_acssuschemeng_9b03830 crossref_primary_10_1016_j_cej_2024_156219 crossref_primary_10_1021_acsaem_1c03379 crossref_primary_10_1021_acsami_1c00890 crossref_primary_10_1021_acsaem_0c01091 crossref_primary_10_1016_j_apcatb_2023_123266 crossref_primary_10_1016_j_ijhydene_2024_01_312 crossref_primary_10_1021_acscatal_0c01273 |
Cites_doi | 10.1021/acs.chemmater.5b03148 10.1038/nmat3811 10.1063/1.1329672 10.1021/acs.chemmater.8b01334 10.1002/aenm.201701686 10.1021/ja3126432 10.1021/jp303546r 10.1103/PhysRevLett.77.3865 10.1073/pnas.0603395103 10.1038/s41929-018-0043-3 10.1016/j.apcatb.2016.04.048 10.1126/science.1209816 10.1002/adma.201800396 10.1038/s41467-017-02429-9 10.1021/acsenergylett.8b00342 10.1021/jacs.7b05372 10.1021/jacs.7b07117 10.1107/S0909049505012719 10.1021/jacs.8b00752 10.1002/aenm.201702965 10.1021/jp047349j 10.1002/anie.201204842 10.1021/ja502379c 10.1021/ja405351s 10.1021/jacs.5b10699 10.1126/science.1212858 10.1126/science.aaf1525 10.1038/ncomms5477 10.1021/jacs.6b00332 10.1021/acsnano.7b05481 10.1016/j.joule.2018.06.019 10.1039/C5SC04486C 10.1021/jacs.8b02225 10.1021/acscatal.7b04226 10.1002/ange.201800883 10.1021/acsenergylett.8b00982 10.1021/ja502128j 10.1021/cr1002326 10.1016/j.ijhydene.2011.03.144 10.1002/aenm.201703290 10.1038/s41467-018-04788-3 10.1038/nenergy.2017.31 10.1038/nchem.1439 10.1073/pnas.1722034115 10.1021/jacs.6b12250 10.1149/1.2100463 10.1002/adma.201705045 10.1103/PhysRevB.54.11169 10.1098/rspa.2014.0792 10.1021/acsenergylett.8b00174 10.1021/ja511559d 10.1002/jcc.20495 10.1039/c0cp00104j 10.1021/ja403102j 10.1038/s41467-018-03380-z 10.1002/adfm.201706319 10.1002/aenm.201601275 10.1126/science.1211934 10.1038/s41467-018-05341-y 10.1039/C7EE03457A |
ContentType | Journal Article |
Copyright | The Author(s) 2019 The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-019-09845-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_ae0827051e76432787fadb7f4a84e4fd PMC6517434 31089139 10_1038_s41467_019_09845_z |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c455z-d5919569e176f6644be5bd39c1d557d71b1afa00f0bf2d35d7c30c818bcced223 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:49:39 EDT 2025 Thu Aug 21 18:18:16 EDT 2025 Tue Aug 05 11:21:12 EDT 2025 Wed Aug 13 08:04:46 EDT 2025 Mon Jul 21 05:40:51 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Tue Jul 01 02:21:29 EDT 2025 Fri Feb 21 02:38:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455z-d5919569e176f6644be5bd39c1d557d71b1afa00f0bf2d35d7c30c818bcced223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1042-8700 0000-0002-9966-6237 0000-0002-5248-2756 |
OpenAccessLink | https://www.proquest.com/docview/2225123503?pq-origsite=%requestingapplication% |
PMID | 31089139 |
PQID | 2225123503 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ae0827051e76432787fadb7f4a84e4fd pubmedcentral_primary_oai_pubmedcentral_nih_gov_6517434 proquest_miscellaneous_2231845611 proquest_journals_2225123503 pubmed_primary_31089139 crossref_primary_10_1038_s41467_019_09845_z crossref_citationtrail_10_1038_s41467_019_09845_z springer_journals_10_1038_s41467_019_09845_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190514 |
PublicationDateYYYYMMDD | 2019-05-14 |
PublicationDate_xml | – month: 5 year: 2019 text: 20190514 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Jin, Huang, Yue, Du, Shen (CR25) 2018; 8 Xiao, Shin, Goddard (CR55) 2018; 115 He (CR8) 2018; 3 Reier, Nong, Teschner, Schlögl, Strasser (CR4) 2017; 7 Gu (CR13) 2018; 130 Aghazadeh, Golikand, Ghaemi (CR50) 2011; 36 Lin, Boettcher (CR42) 2014; 13 Reece (CR3) 2011; 334 Kresse, Furthmüller (CR57) 1996; 54 Shin, Xiao, Goddard (CR54) 2018; 140 Fu (CR12) 2018; 3 Shin, Xiao, Goddard (CR44) 2018; 140 Lewis, Nocera (CR1) 2006; 103 Chen (CR47) 2018; 30 Walter (CR2) 2010; 110 Zhang (CR46) 2017; 139 Danilovic (CR39) 2012; 51 Chen (CR48) 2018; 2 Mirzakulova (CR6) 2010; 4 Gao (CR15) 2014; 136 Yan (CR52) 2016; 194 Song, Hu (CR17) 2014; 5 Hung (CR24) 2018; 8 Schouten, van der Niet, Koper (CR40) 2010; 12 Li, Niu, Zhou, Yang (CR20) 2018; 3 Liu (CR10) 2018; 8 Chen (CR32) 2015; 137 Friebel (CR31) 2015; 137 Huang (CR23) 2018; 30 Trotochaud, Young, Ranney, Boettcher (CR30) 2014; 136 Hall, Lockwood, Bock, MacDougall (CR49) 2014; 471 Subbaraman (CR38) 2011; 334 Anantharaj (CR7) 2018; 11 Louie, Bell (CR28) 2013; 135 Diaz-Morales, Ferrus-Suspedra, Koper (CR36) 2016; 7 Nørskov, Rossmeisl, Logadottir, Lindqvist (CR60) 2004; 108 Yan (CR18) 2018; 9 Jiang (CR19) 2018; 9 Stevens, Trang, Enman, Deng, Boettcher (CR34) 2017; 139 Perdew, Burke, Ernzerhof (CR58) 1997; 77 Ravel, Newville (CR56) 2005; 12 McAteer (CR26) 2018; 8 Henkelman, Uberuaga, Jónsson (CR61) 2000; 113 Zhang (CR45) 2018; 9 Görlin (CR35) 2017; 139 Ledezma-Yanez (CR41) 2017; 2 Zhang (CR43) 2018; 9 Corrigan (CR27) 1987; 134 Fang (CR21) 2017; 11 Görlin (CR33) 2016; 138 Burke (CR53) 2015; 27 Bediako, Surendranath, Nocera (CR37) 2013; 135 Zhang (CR9) 2018; 140 Duan (CR16) 2018; 30 Grimme (CR59) 2006; 27 Kakizaki (CR22) 2018; 28 Smith, Prevot, Fagan, Trudel, Berlinguette (CR29) 2013; 135 Zhang (CR14) 2016; 352 Li (CR11) 2018; 1 Hall, Lockwood, Poirier, Bock, MacDougall (CR51) 2012; 116 Suntivich, May, Gasteiger, Goodenough, Shao-Horn (CR5) 2011; 334 E Mirzakulova (9845_CR6) 2010; 4 B Ravel (9845_CR56) 2005; 12 D Friebel (9845_CR31) 2015; 137 Y Chen (9845_CR48) 2018; 2 M Görlin (9845_CR33) 2016; 138 H Shin (9845_CR54) 2018; 140 JQ Yan (9845_CR52) 2016; 194 S Grimme (9845_CR59) 2006; 27 Z Yan (9845_CR18) 2018; 9 JF Zhang (9845_CR9) 2018; 140 H Shin (9845_CR44) 2018; 140 D McAteer (9845_CR26) 2018; 8 J Suntivich (9845_CR5) 2011; 334 M Aghazadeh (9845_CR50) 2011; 36 NS Lewis (9845_CR1) 2006; 103 DK Bediako (9845_CR37) 2013; 135 MW Louie (9845_CR28) 2013; 135 B Zhang (9845_CR14) 2016; 352 Z Li (9845_CR20) 2018; 3 HQ Fu (9845_CR12) 2018; 3 RDL Smith (9845_CR29) 2013; 135 KL Liu (9845_CR10) 2018; 8 R Subbaraman (9845_CR38) 2011; 334 I Ledezma-Yanez (9845_CR41) 2017; 2 JP Perdew (9845_CR58) 1997; 77 O Diaz-Morales (9845_CR36) 2016; 7 MG Walter (9845_CR2) 2010; 110 YS Jin (9845_CR25) 2018; 8 DA Corrigan (9845_CR27) 1987; 134 J Zhang (9845_CR45) 2018; 9 G Kresse (9845_CR57) 1996; 54 H Kakizaki (9845_CR22) 2018; 28 J Jiang (9845_CR19) 2018; 9 T Li (9845_CR11) 2018; 1 JK Nørskov (9845_CR60) 2004; 108 F Song (9845_CR17) 2014; 5 SF Hung (9845_CR24) 2018; 8 L Duan (9845_CR16) 2018; 30 SY Reece (9845_CR3) 2011; 334 S Anantharaj (9845_CR7) 2018; 11 N Danilovic (9845_CR39) 2012; 51 M Zhang (9845_CR46) 2017; 139 C Gu (9845_CR13) 2018; 130 H Xiao (9845_CR55) 2018; 115 M Görlin (9845_CR35) 2017; 139 MB Stevens (9845_CR34) 2017; 139 JW Huang (9845_CR23) 2018; 30 L Trotochaud (9845_CR30) 2014; 136 P Zhang (9845_CR43) 2018; 9 G Henkelman (9845_CR61) 2000; 113 F Lin (9845_CR42) 2014; 13 JYC Chen (9845_CR32) 2015; 137 DS Hall (9845_CR51) 2012; 116 KJP Schouten (9845_CR40) 2010; 12 DS Hall (9845_CR49) 2014; 471 M Gao (9845_CR15) 2014; 136 W Chen (9845_CR47) 2018; 30 MS Burke (9845_CR53) 2015; 27 Q He (9845_CR8) 2018; 3 T Reier (9845_CR4) 2017; 7 ZW Fang (9845_CR21) 2017; 11 |
References_xml | – volume: 27 start-page: 7549 year: 2015 end-page: 7558 ident: CR53 article-title: Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03148 – volume: 13 start-page: 81 year: 2014 end-page: 86 ident: CR42 article-title: Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes publication-title: Nat. Mater. doi: 10.1038/nmat3811 – volume: 113 start-page: 9901 year: 2000 end-page: 9904 ident: CR61 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 30 start-page: 4321 year: 2018 end-page: 4433 ident: CR16 article-title: Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01334 – volume: 8 start-page: 1701686 year: 2018 ident: CR24 article-title: Unraveling geometrical site confinement in highly efficient iron-doped electrocatalysts toward oxygen evolution reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701686 – volume: 135 start-page: 3662 year: 2013 end-page: 3674 ident: CR37 article-title: Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3126432 – volume: 116 start-page: 6771 year: 2012 end-page: 6784 ident: CR51 article-title: Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel publication-title: J. Phys. Chem. A doi: 10.1021/jp303546r – volume: 77 start-page: 3865 year: 1997 end-page: 3868 ident: CR58 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 103 start-page: 15729 year: 2006 end-page: 15735 ident: CR1 article-title: Powering the planet: chemical challenges in solar energy utilization publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0603395103 – volume: 1 start-page: 300 year: 2018 end-page: 305 ident: CR11 article-title: Atomic-scale insights into surface species of electrocatalysts in three dimensions publication-title: Nat. Catal. doi: 10.1038/s41929-018-0043-3 – volume: 194 start-page: 74 year: 2016 end-page: 83 ident: CR52 article-title: One-pot hydrothermal fabrication of layered β-Ni(OH) /g-C N nanohybrids for enhanced photocatalytic water splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.04.048 – volume: 334 start-page: 645 year: 2011 end-page: 648 ident: CR3 article-title: Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts publication-title: Science doi: 10.1126/science.1209816 – volume: 30 start-page: 1800396 year: 2018 ident: CR47 article-title: Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201800396 – volume: 9 year: 2018 ident: CR43 article-title: Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-017-02429-9 – volume: 3 start-page: 861 year: 2018 end-page: 868 ident: CR8 article-title: Highly defective Fe-based oxyhydroxides from electrochemical reconstruction for efficient oxygen evolution catalysis publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00342 – volume: 139 start-page: 10976 year: 2017 end-page: 10979 ident: CR46 article-title: Metal (Hydr)oxides@Polymer core-shell strategy to metal single atom materials publication-title: J. Am. Chm. Soc. doi: 10.1021/jacs.7b05372 – volume: 139 start-page: 11361 year: 2017 end-page: 11364 ident: CR34 article-title: Reactive Fe-sites in Ni/Fe (Oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07117 – volume: 12 start-page: 537 year: 2005 end-page: 541 ident: CR56 article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT publication-title: J. Synchrotron Rad. doi: 10.1107/S0909049505012719 – volume: 140 start-page: 3876 year: 2018 end-page: 3879 ident: CR9 article-title: Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00752 – volume: 8 start-page: 1702965 year: 2018 ident: CR26 article-title: Liquid exfoliated Co(OH) nanosheets as low-cost, yet high-performance, catalysts for the oxygen evolution reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702965 – volume: 108 start-page: 17886 year: 2004 end-page: 17892 ident: CR60 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 51 start-page: 12495 year: 2012 end-page: 12498 ident: CR39 article-title: Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH) /metal catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204842 – volume: 136 start-page: 6744 year: 2014 end-page: 6753 ident: CR30 article-title: Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502379c – volume: 135 start-page: 12329 year: 2013 end-page: 12337 ident: CR28 article-title: An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405351s – volume: 137 start-page: 15090 year: 2015 end-page: 15093 ident: CR32 article-title: Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe by mössbauer spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10699 – volume: 334 start-page: 1383 year: 2011 end-page: 1385 ident: CR5 article-title: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles publication-title: Science doi: 10.1126/science.1212858 – volume: 352 start-page: 333 year: 2016 end-page: 337 ident: CR14 article-title: Homogeneously dispersed, multimetal oxygen-evolving catalysts publication-title: Science doi: 10.1126/science.aaf1525 – volume: 5 year: 2014 ident: CR17 article-title: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis publication-title: Nat. Commun. doi: 10.1038/ncomms5477 – volume: 138 start-page: 5603 year: 2016 end-page: 5614 ident: CR33 article-title: Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00332 – volume: 11 start-page: 9550 year: 2017 end-page: 9557 ident: CR21 article-title: Metallic transition metal selenide holey nanosheets for efficient oxygen evolution electrocatalysis publication-title: ACS Nano. doi: 10.1021/acsnano.7b05481 – volume: 2 start-page: 1242 year: 2018 ident: CR48 article-title: Single-atom catalysts: synthetic strategies and electrochemical applications publication-title: Joule doi: 10.1016/j.joule.2018.06.019 – volume: 7 start-page: 2639 year: 2016 end-page: 2645 ident: CR36 article-title: The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation publication-title: Chem. Sci. doi: 10.1039/C5SC04486C – volume: 140 start-page: 6745 year: 2018 end-page: 6748 ident: CR44 article-title: In silico discovery of new dopants for Fe-doped Ni oxyhydroxide (Ni Fe OOH) catalysts for oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02225 – volume: 8 start-page: 2359 year: 2018 end-page: 2363 ident: CR25 article-title: Mo- and Fe-modified Ni(OH) /NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.7b04226 – volume: 130 start-page: 4084 year: 2018 end-page: 4088 ident: CR13 article-title: Synthesis of sub-2 nm iron-doped NiSe nanowires and their surface confined oxidation for oxygen evolution catalysis publication-title: Angew. Chem. doi: 10.1002/ange.201800883 – volume: 3 start-page: 2021 year: 2018 end-page: 2029 ident: CR12 article-title: 1D/1D hierarchical nickel sulfide/phosphide nanostructures for electrocatalytic water oxidation publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00982 – volume: 136 start-page: 7077 year: 2014 end-page: 7708 ident: CR15 article-title: Efficient water oxidation using nanostructured α-Nickel-Hydroxide as an electrocatalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502128j – volume: 110 start-page: 6446 year: 2010 end-page: 6473 ident: CR2 article-title: Solar water splitting cells publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 36 start-page: 8674 year: 2011 end-page: 8679 ident: CR50 article-title: Synthesis, characterization, and electrochemical properties of ultrafine β-Ni(OH) nanoparticles publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.03.144 – volume: 8 start-page: 1703290 year: 2018 ident: CR10 article-title: The role of sctive oxide species for electrochemical water oxidation on the surface of 3d-metal phosphides publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703290 – volume: 9 year: 2018 ident: CR18 article-title: Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-018-04788-3 – volume: 2 start-page: 17031 year: 2017 ident: CR41 article-title: Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes publication-title: Nat. Energy doi: 10.1038/nenergy.2017.31 – volume: 4 start-page: 794 year: 2010 end-page: 801 ident: CR6 article-title: Electrode-assisted catalytic water oxidation by a flavin derivative publication-title: Nat. Chem. doi: 10.1038/nchem.1439 – volume: 115 start-page: 5872 year: 2018 end-page: 5877 ident: CR55 article-title: Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction publication-title: PNAS doi: 10.1073/pnas.1722034115 – volume: 139 start-page: 2070 year: 2017 end-page: 2082 ident: CR35 article-title: Tracking catalyst redox states and reaction dynamics in Ni–Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12250 – volume: 134 start-page: 377 year: 1987 end-page: 384 ident: CR27 article-title: The catalysis of the oxygen evolution reaction by iron impurities in thin-film nickel-oxide electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.2100463 – volume: 30 start-page: 1705045 year: 2018 ident: CR23 article-title: A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation publication-title: Adv. Mater. doi: 10.1002/adma.201705045 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR57 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phy. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 471 start-page: 20140792 year: 2014 ident: CR49 article-title: Nickel hydroxides and related materials: a review of their structures, synthesis and properties publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2014.0792 – volume: 140 start-page: 6745 year: 2018 end-page: 6748 ident: CR54 article-title: In silico discovery of new dopants for Fe-doped Ni oxyhydroxide (Ni Fe OOH) catalysts for oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02225 – volume: 3 start-page: 892 year: 2018 end-page: 898 ident: CR20 article-title: Phosphorus and aluminum codoped porous NiO nanosheets as highly efficient electrocatalysts for overall water splitting publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00174 – volume: 137 start-page: 1305 year: 2015 end-page: 1313 ident: CR31 article-title: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511559d – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: CR59 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comp. Chem. doi: 10.1002/jcc.20495 – volume: 12 start-page: 15217 year: 2010 end-page: 15224 ident: CR40 article-title: Impedance spectroscopy of H and OH adsorption on stepped single-crystal platinum electrodes in alkaline and acidic media publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00104j – volume: 135 start-page: 11580 year: 2013 end-page: 11586 ident: CR29 article-title: Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403102j – volume: 9 year: 2018 ident: CR45 article-title: Cation vacancy stabilization of single-atomic-site Pt /Ni(OH) catalyst for diboration of alkynes and alkenes publication-title: Nat. Commun. doi: 10.1038/s41467-018-03380-z – volume: 28 start-page: 1706319 year: 2018 ident: CR22 article-title: Evidence that crystal facet orientation dictates oxygen evolution intermediates on rutile manganese oxide publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706319 – volume: 7 start-page: 1601275 year: 2017 ident: CR4 article-title: Electrocatalytic oxygen evolution reaction in acidic environments–reaction mechanisms and catalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601275 – volume: 334 start-page: 1256 year: 2011 end-page: 1260 ident: CR38 article-title: Enhancing hydrogen evolution activity in water splitting by tailoring Li -Ni(OH) -Pt interfaces publication-title: Science doi: 10.1126/science.1211934 – volume: 9 year: 2018 ident: CR19 article-title: Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide publication-title: Nat. Commun. doi: 10.1038/s41467-018-05341-y – volume: 11 start-page: 744 year: 2018 end-page: 771 ident: CR7 article-title: Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03457A – volume: 135 start-page: 11580 year: 2013 ident: 9845_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403102j – volume: 54 start-page: 11169 year: 1996 ident: 9845_CR57 publication-title: Phy. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 7 start-page: 1601275 year: 2017 ident: 9845_CR4 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601275 – volume: 3 start-page: 861 year: 2018 ident: 9845_CR8 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00342 – volume: 113 start-page: 9901 year: 2000 ident: 9845_CR61 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 9 year: 2018 ident: 9845_CR45 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03380-z – volume: 334 start-page: 1256 year: 2011 ident: 9845_CR38 publication-title: Science doi: 10.1126/science.1211934 – volume: 110 start-page: 6446 year: 2010 ident: 9845_CR2 publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 27 start-page: 7549 year: 2015 ident: 9845_CR53 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03148 – volume: 9 year: 2018 ident: 9845_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04788-3 – volume: 139 start-page: 10976 year: 2017 ident: 9845_CR46 publication-title: J. Am. Chm. Soc. doi: 10.1021/jacs.7b05372 – volume: 116 start-page: 6771 year: 2012 ident: 9845_CR51 publication-title: J. Phys. Chem. A doi: 10.1021/jp303546r – volume: 5 year: 2014 ident: 9845_CR17 publication-title: Nat. Commun. doi: 10.1038/ncomms5477 – volume: 130 start-page: 4084 year: 2018 ident: 9845_CR13 publication-title: Angew. Chem. doi: 10.1002/ange.201800883 – volume: 108 start-page: 17886 year: 2004 ident: 9845_CR60 publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 194 start-page: 74 year: 2016 ident: 9845_CR52 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.04.048 – volume: 471 start-page: 20140792 year: 2014 ident: 9845_CR49 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2014.0792 – volume: 334 start-page: 1383 year: 2011 ident: 9845_CR5 publication-title: Science doi: 10.1126/science.1212858 – volume: 51 start-page: 12495 year: 2012 ident: 9845_CR39 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204842 – volume: 137 start-page: 15090 year: 2015 ident: 9845_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10699 – volume: 30 start-page: 1800396 year: 2018 ident: 9845_CR47 publication-title: Adv. Mater. doi: 10.1002/adma.201800396 – volume: 140 start-page: 3876 year: 2018 ident: 9845_CR9 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00752 – volume: 136 start-page: 6744 year: 2014 ident: 9845_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502379c – volume: 28 start-page: 1706319 year: 2018 ident: 9845_CR22 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706319 – volume: 12 start-page: 537 year: 2005 ident: 9845_CR56 publication-title: J. Synchrotron Rad. doi: 10.1107/S0909049505012719 – volume: 352 start-page: 333 year: 2016 ident: 9845_CR14 publication-title: Science doi: 10.1126/science.aaf1525 – volume: 134 start-page: 377 year: 1987 ident: 9845_CR27 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2100463 – volume: 3 start-page: 892 year: 2018 ident: 9845_CR20 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00174 – volume: 139 start-page: 2070 year: 2017 ident: 9845_CR35 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12250 – volume: 115 start-page: 5872 year: 2018 ident: 9845_CR55 publication-title: PNAS doi: 10.1073/pnas.1722034115 – volume: 8 start-page: 2359 year: 2018 ident: 9845_CR25 publication-title: ACS Catal. doi: 10.1021/acscatal.7b04226 – volume: 77 start-page: 3865 year: 1997 ident: 9845_CR58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 30 start-page: 4321 year: 2018 ident: 9845_CR16 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01334 – volume: 13 start-page: 81 year: 2014 ident: 9845_CR42 publication-title: Nat. Mater. doi: 10.1038/nmat3811 – volume: 9 year: 2018 ident: 9845_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02429-9 – volume: 7 start-page: 2639 year: 2016 ident: 9845_CR36 publication-title: Chem. Sci. doi: 10.1039/C5SC04486C – volume: 8 start-page: 1703290 year: 2018 ident: 9845_CR10 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703290 – volume: 140 start-page: 6745 year: 2018 ident: 9845_CR54 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02225 – volume: 334 start-page: 645 year: 2011 ident: 9845_CR3 publication-title: Science doi: 10.1126/science.1209816 – volume: 36 start-page: 8674 year: 2011 ident: 9845_CR50 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.03.144 – volume: 3 start-page: 2021 year: 2018 ident: 9845_CR12 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00982 – volume: 2 start-page: 17031 year: 2017 ident: 9845_CR41 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.31 – volume: 135 start-page: 12329 year: 2013 ident: 9845_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405351s – volume: 8 start-page: 1702965 year: 2018 ident: 9845_CR26 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702965 – volume: 30 start-page: 1705045 year: 2018 ident: 9845_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.201705045 – volume: 2 start-page: 1242 year: 2018 ident: 9845_CR48 publication-title: Joule doi: 10.1016/j.joule.2018.06.019 – volume: 137 start-page: 1305 year: 2015 ident: 9845_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511559d – volume: 4 start-page: 794 year: 2010 ident: 9845_CR6 publication-title: Nat. Chem. doi: 10.1038/nchem.1439 – volume: 139 start-page: 11361 year: 2017 ident: 9845_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07117 – volume: 136 start-page: 7077 year: 2014 ident: 9845_CR15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502128j – volume: 11 start-page: 9550 year: 2017 ident: 9845_CR21 publication-title: ACS Nano. doi: 10.1021/acsnano.7b05481 – volume: 135 start-page: 3662 year: 2013 ident: 9845_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3126432 – volume: 11 start-page: 744 year: 2018 ident: 9845_CR7 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03457A – volume: 1 start-page: 300 year: 2018 ident: 9845_CR11 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0043-3 – volume: 140 start-page: 6745 year: 2018 ident: 9845_CR44 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02225 – volume: 138 start-page: 5603 year: 2016 ident: 9845_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00332 – volume: 8 start-page: 1701686 year: 2018 ident: 9845_CR24 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701686 – volume: 103 start-page: 15729 year: 2006 ident: 9845_CR1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0603395103 – volume: 12 start-page: 15217 year: 2010 ident: 9845_CR40 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00104j – volume: 27 start-page: 1787 year: 2006 ident: 9845_CR59 publication-title: J. Comp. Chem. doi: 10.1002/jcc.20495 – volume: 9 year: 2018 ident: 9845_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05341-y |
SSID | ssj0000391844 |
Score | 2.6889503 |
Snippet | Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W
6+
doped Ni(OH)
2
nanosheet... Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W doped Ni(OH) nanosheet sample... Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W6+ doped Ni(OH)2 nanosheet sample... Electrocatalytic water splitting for hydrogen and oxygen generation provides an attractive path to obtain clean energy, but the half reaction of oxygen... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2149 |
SubjectTerms | 147/135 147/137 147/28 639/638/675 639/638/77/886 639/638/77/887 Clean energy Current density Density functional theory Humanities and Social Sciences multidisciplinary Nanostructure Nickel compounds Oxidation Oxygen Oxygen evolution reactions Science Science (multidisciplinary) Tungsten Water splitting |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PaxQxFH-UgtCLWK06tpYIPSgaOpkkk5ljWyyL0HrQQi8SkknCLqyzpd2l7X4rv4ifyZfM7Nr176XXSULC-_t7k7z3APaEtXURgqeqsIaiwXPU1M7RUAlTlOgfZBnznU9Oy8GZ-HAuz--0-opvwrrywB3h9o1HJ6VQdLxC51mgfAXjrArCVMKL4KL1RZ93J5hKNpjXGLqIPksm59X-lUg2IY85O3UlJJ2veKJUsP9PKPP3x5K_3JgmR3T8CB72CJIcdCffhDXfPoYHXU_J2yfw5ROuGnuCwfRXMkVVRja2xE0uvCOzcaxFOxy15Ps3ejp6_XHwpiCIWolvh-klAOm74qSfOre4AblGLHpJJjejrvfSFpwdv_98NKB9DwXaCCnn1Mk6ZgTWnqkylAh-rJfW8bphTkrlFLPMBJPnIbehcFw61fC8QS9uG9wVscNTWG8nrX8OxDNbiqq0DG2SYMwYyS0PCvFQZZn1JgO2oKdu-gLjsc_FWKeLbl7pjgcaeaATD_Q8g7fLNRddeY1_zj6MbFrOjKWx0wcUGN0LjP6fwGSws2Cy7vX1SseoN2YN5zyDV8th1LR4fWJaP5nFOWj_It5kGTzrZGJ5EgTJ8b63zkCtSMvKUVdH2tEwVfMuY61wLjJ4t5Crn8f6Oyle3AcptmGjSAohKRM7sD69nPmXiLGmdjep0w_oqyPA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bbtQwELWgFRIvFXdSCjISDyCwGsd2Lk8VRa1WSCwIqNQXZNmxza60TbZ7EXT_ih_hmzp2vKmWS19jR3E8M8fHHs8MQi-41lXmnCVFphUBwDNEVcYQV3KV5bA-iNzHO38Y5oMT_v5UnMYDt3m8VrnGxADUpq39Gfm-35f4uM6UHUzPia8a5b2rsYTGTbQNEFyChm8fHg0_fe5PWXz-85LzGC2TsnJ_zgM2pD52pyq5IKuNFSkk7v8X2_z70uQfntOwIB3fQTuRSeK3nejvohu2uYdudbUlL-6jb1_grYnFsKk-wwswaRBng007tQYvJz4n7Wjc4N-_yHD88uPgVYaBvWLbjMKNAByr44TDnQv4AP4BnHSG25_jrgbTA3RyfPT13YDEWgqk5kKsiBGVjwysLC1ylwMJ0lZow6qaGiEKU1BNlVNp6lLtMsOEKWqW1rCa6xq-ChziIdpq2sY-RthSnfMy1xSwiVOqlGCauQJ4UamptipBdD2fso6Jxn29i4kMDm9Wyk4GEmQggwzkKkGv-3emXZqNa3sfejH1PX2K7PCgnX2X0eKkssBuCsAcC8NkGQCTU0YXjquSW-5MgvbWQpbRbufySssS9LxvBovzbhTV2Hbp-wAOet5JE_So04l-JECWvd-3SlCxoS0bQ91sacajkNU79znDGU_Qm7VeXQ3r_1Oxe_1fPEG3s6DqglC-h7YWs6V9CixqoZ9FU7kEhAMcVg priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UiuBLsV5HW4ngg6LBySSZy6MulkWwPmihLxKSSeIubGfKdhft_iv_iL_Jk8xFVqvg6yQhhzmXfDM55zsAT4UxVea9o0VmNMWAZ6murKW-FDrL8XyQeah3fn-cT0_Eu1N5ugPZUAsTk_YjpWUM00N22KsLEV06DSU3VSkk3VyD64G6PaTxTfLJ-F8lMJ6XQvT1MSkvr1i6dQZFqv6r8OWfaZK_3ZXGI-joFuz12JG87qTdhx3X3IYbXTfJyzvw-SOuWjiCn9FnZIVOjApsiG3PnSXrRWChnc0b8uM7PZ4_-zB9nhHEq8Q1s5gDQPp-OPF3ziVuQL4iCl2S9tu867p0F06O3n6aTGnfPYHWQsoNtbIKtYCVY0Xuc4Q9xkljeVUzK2VhC2aY9jpNfWp8Zrm0Rc3TGs9vU-OuiBruwW7TNu4BEMdMLsrcMIxGgjGtJTfcF4iESsOM0wmw4X2quqcWDx0uFipecfNSdTpQqAMVdaA2CbwY15x3xBr_nP0mqGmcGUix44N2-UX1RqK0QzxTYJRxKCbPMBR5bU3hhS6FE94mcDAoWfWeeqHC926oF055Ak_GYfSxcHGiG9euwxyMfAFpsgTudzYxSoLwONz0VgkUW9ayJer2SDOfRR7vPLCEc5HAy8Gufon191fx8P-mP4KbWTR9SZk4gN3Vcu0OEUetzOPoOD8BgPIZfg priority: 102 providerName: Springer Nature |
Title | Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation |
URI | https://link.springer.com/article/10.1038/s41467-019-09845-z https://www.ncbi.nlm.nih.gov/pubmed/31089139 https://www.proquest.com/docview/2225123503 https://www.proquest.com/docview/2231845611 https://pubmed.ncbi.nlm.nih.gov/PMC6517434 https://doaj.org/article/ae0827051e76432787fadb7f4a84e4fd |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7tQ6C9IN4ElspIHEAQiBM7Tg4IdastVaUtiKVST0R27NBKJYVuK7b9V_wRfhNjJykqdLkkUmLLE8_rc-yZAXjKlErDojC-CJX00eBpX6Za-0XCZBijf-CxjXc-G8S9IeuP-GgPmnJH9QRe7Fza2XpSw_n01eX31VtU-DdVyHjy-oI5dQ9sOE6aMO6v9-EQPZOwpRzOarjvLHOU4oKG1bEzu7sewXVEPHbzLt1yVS6j_y4Y-u9pyr-2VJ2n6t6EGzXEJO1KJm7Bnilvw7Wq6OTqDnw-x15TQ3C1_ZUsUNeRzyXR-NmaLKc2We14UpJfP_3B5Nn73nMSEsS1xJRjd1aA1HVz3G-fFY5AfiBanZPZ5aSqznQXht3TT52eX1dZ8HPG-drXPLUxg6mhIi5ihEfKcKWjNKeac6EFVVQWMgiKQBWhjrgWeRTk6OdVjqMiurgHB-WsNA-AGKpilsSKotVilErJIxUVAhFToqgy0gPaTGiW1ynIbSWMaea2wqMkq_iRIT8yx49s7cGLTZ9vVQKO_7Y-sXzatLTJs92D2fxLVutiJg3iHoHWyCCZUYgmq5BaiYLJhBlWaA-OGy5njUBmdl1s44qDyIMnm9eoi3aDRZZmtrRt0EJaREo9uF8JxYaSRqg8EFviskXq9ptyMnb5vmObTTxiHrxsBOsPWVdPxcMrSXgER6GTeO5TdgwHi_nSPEZotVAt2Bcjgdek-64Fh-12_7yP95PTwYeP-LQTd1rup0XL6dVvat4lTQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJtAASOBBAKrcWLHyQEhXtWWtsuBVtpLZezYYVdakmUfKrs_Cok_wm9i7Dyq5dFbr4mtOJ7P34w9nhmEHjOts6goLBGRVgQIzxCVGUOKlKkoAf3AExfvfNBPekfsw4APNtCPNhbGXatsOdETtalyd0a-7fYlLq4zjF9NvhFXNcp5V9sSGjUs9uzyBLZss5e770C-T6Jo5_3h2x5pqgqQnHG-IoZnLkYus1QkRQLmgLZcmzjLqeFcGEE1VYUKwyLURWRibkQehznoNZ3n1kQu0QFQ_gVQvKG7QigGojvTcdnWU8aa2JwwTrdnzDNR6CKFspRxslrTf75MwL9s27-vaP7hp_Xqb-cqutLYrfh1DbRraMOW19HFupLl8gY6_gS9xhbDFv4rngOBAHhKbKqJNXgxdhlwh6MS__pJ-qOnH3vPIgy2Mrbl0N8_wE0tHn-UtIQP4BOwgKe4-j6qKz7dREfnMse30GZZlfYOwpbqhKWJpsCEjFKleKzjQoAVlmqqrQoQbedT5k1ac1ddYyy9ez1OZS0DCTKQXgZyFaDnXZ9JndTjzNZvnJi6li4ht39QTb_IZn1LZcGWEsBwFoYZR0CDhTJaFEylzLLCBGirFbJsWGImTzEdoEfda1jfzmmjSlstXBtgXWfl0gDdrjHRjQQg6LzMWYDEGlrWhrr-phwNfQ7xxGUoj1mAXrS4Oh3W_6fi7tl_8RBd6h0e7Mv93f7ePXQ58rDnhLIttDmfLux9sN_m-oFfNBh9Pu9V-huV71hb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWi0BcEG_CLmAkkEBgNU7sODkgBCxVl4WCBCv1goId27RSNyl9aGn_FVd-BL-JsZN0VR5722vjKFPPzOfPHs8MQg-YUllkrSEiUpIA4GkiM62JTZmMElgfeOLynd_1k94hezPggy30s82FcdcqW0z0QK2rwp2Rd9y-xOV1hnHHNtciPux1n0--EddBykVa23YatYkcmOUxbN9mz_b3QNcPo6j7-tOrHmk6DJCCcb4immcuXy4zVCQ2AWqgDFc6zgqqORdaUEWllWFoQ2UjHXMtijgsYI1TRWF05IoeAPyfEzGIBr4kBmJ9vuMqr6eMNXk6YZx2ZsyjUuiyhrKUcbLaWAt9y4B_8dy_r2v-EbP1S2H3MrrUcFj8oja6K2jLlFfR-bqr5fIa-vwR3hobDNv5IzwHMAFDKrGuJkbjxdhVwx2OSvzrB-mPHr3vPY4w8GZsyqG_i4Cbvjz-WGkJH8DHwIanuPo-qrs_XUeHZzLHN9B2WZXmFsKGqoSliaKAioxSKXmsYiuAkaWKKiMDRNv5zIumxLnrtDHOfag9TvNaBznoIPc6yFcBerJ-Z1IX-Dh19EunpvVIV5zb_1BNv-aNr-fSAK8SgHYGxIwjgEQrtRKWyZQZZnWAdlsl5w1izPIT-w7Q_fVj8HUXwJGlqRZuDCCwY7w0QDdrm1hLAjTdRZyzAIkNa9kQdfNJORr6euKJq1YeswA9be3qRKz_T8Xt0__FPXQB_DN_u98_2EEXI2_1nFC2i7bn04W5A1Ruru56n8Hoy1k76W-eY1yR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+atom+tungsten+doped+ultrathin+%CE%B1-Ni%28OH%29+2+for+enhanced+electrocatalytic+water+oxidation&rft.jtitle=Nature+communications&rft.au=Yan%2C+Junqing&rft.au=Kong%2C+Lingqiao&rft.au=Ji%2C+Yujin&rft.au=White%2C+Jai&rft.date=2019-05-14&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=2149&rft_id=info:doi/10.1038%2Fs41467-019-09845-z&rft_id=info%3Apmid%2F31089139&rft.externalDocID=31089139 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |