Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation

Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W 6+ doped Ni(OH) 2 nanosheet sample (w-Ni(OH) 2 ) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 2149 - 10
Main Authors Yan, Junqing, Kong, Lingqiao, Ji, Yujin, White, Jai, Li, Youyong, Zhang, Jing, An, Pengfei, Liu, Shengzhong, Lee, Shuit-Tong, Ma, Tianyi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.05.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-019-09845-z

Cover

Loading…
Abstract Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W 6+ doped Ni(OH) 2 nanosheet sample (w-Ni(OH) 2 ) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is obtained reaching a current density of 10 mA/cm 2 . Moreover, at high current density of 80 mA/cm 2 , the overpotential value is 267 mV. The corresponding Tafel slope is measured to be 33 mV/dec. The d 0 W 6+ atom with a low spin-state has more outermost vacant orbitals, resulting in more water and OH − groups being adsorbed on the exposed W sites of the Ni(OH) 2 nanosheet. Density functional theory (DFT) calculations confirm that the O radical and O-O coupling are both generated at the same site of W 6+ . This work demonstrates that W 6+ doping can promote the electrocatalytic water oxidation activity of Ni(OH) 2 with the highest performance. Electrocatalytic water splitting for hydrogen and oxygen generation provides an attractive path to obtain clean energy, but the half reaction of oxygen evolution remains the bottleneck for the progress. Here, the authors show single atom tungsten doped ultrathin α-Ni(OH) 2 exhibits enhanced performance in electrocatalytic water oxidation.
AbstractList Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W 6+ doped Ni(OH) 2 nanosheet sample (w-Ni(OH) 2 ) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is obtained reaching a current density of 10 mA/cm 2 . Moreover, at high current density of 80 mA/cm 2 , the overpotential value is 267 mV. The corresponding Tafel slope is measured to be 33 mV/dec. The d 0 W 6+ atom with a low spin-state has more outermost vacant orbitals, resulting in more water and OH − groups being adsorbed on the exposed W sites of the Ni(OH) 2 nanosheet. Density functional theory (DFT) calculations confirm that the O radical and O-O coupling are both generated at the same site of W 6+ . This work demonstrates that W 6+ doping can promote the electrocatalytic water oxidation activity of Ni(OH) 2 with the highest performance. Electrocatalytic water splitting for hydrogen and oxygen generation provides an attractive path to obtain clean energy, but the half reaction of oxygen evolution remains the bottleneck for the progress. Here, the authors show single atom tungsten doped ultrathin α-Ni(OH) 2 exhibits enhanced performance in electrocatalytic water oxidation.
Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W doped Ni(OH) nanosheet sample (w-Ni(OH) ) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is obtained reaching a current density of 10 mA/cm . Moreover, at high current density of 80 mA/cm , the overpotential value is 267 mV. The corresponding Tafel slope is measured to be 33 mV/dec. The d W atom with a low spin-state has more outermost vacant orbitals, resulting in more water and OH groups being adsorbed on the exposed W sites of the Ni(OH) nanosheet. Density functional theory (DFT) calculations confirm that the O radical and O-O coupling are both generated at the same site of W . This work demonstrates that W doping can promote the electrocatalytic water oxidation activity of Ni(OH) with the highest performance.
Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W 6+ doped Ni(OH) 2 nanosheet sample (w-Ni(OH) 2 ) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is obtained reaching a current density of 10 mA/cm 2 . Moreover, at high current density of 80 mA/cm 2 , the overpotential value is 267 mV. The corresponding Tafel slope is measured to be 33 mV/dec. The d 0 W 6+ atom with a low spin-state has more outermost vacant orbitals, resulting in more water and OH − groups being adsorbed on the exposed W sites of the Ni(OH) 2 nanosheet. Density functional theory (DFT) calculations confirm that the O radical and O-O coupling are both generated at the same site of W 6+ . This work demonstrates that W 6+ doping can promote the electrocatalytic water oxidation activity of Ni(OH) 2 with the highest performance.
Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W6+ doped Ni(OH)2 nanosheet sample (w-Ni(OH)2) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is obtained reaching a current density of 10 mA/cm2. Moreover, at high current density of 80 mA/cm2, the overpotential value is 267 mV. The corresponding Tafel slope is measured to be 33 mV/dec. The d0 W6+ atom with a low spin-state has more outermost vacant orbitals, resulting in more water and OH- groups being adsorbed on the exposed W sites of the Ni(OH)2 nanosheet. Density functional theory (DFT) calculations confirm that the O radical and O-O coupling are both generated at the same site of W6+. This work demonstrates that W6+ doping can promote the electrocatalytic water oxidation activity of Ni(OH)2 with the highest performance.Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W6+ doped Ni(OH)2 nanosheet sample (w-Ni(OH)2) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is obtained reaching a current density of 10 mA/cm2. Moreover, at high current density of 80 mA/cm2, the overpotential value is 267 mV. The corresponding Tafel slope is measured to be 33 mV/dec. The d0 W6+ atom with a low spin-state has more outermost vacant orbitals, resulting in more water and OH- groups being adsorbed on the exposed W sites of the Ni(OH)2 nanosheet. Density functional theory (DFT) calculations confirm that the O radical and O-O coupling are both generated at the same site of W6+. This work demonstrates that W6+ doping can promote the electrocatalytic water oxidation activity of Ni(OH)2 with the highest performance.
Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W6+ doped Ni(OH)2 nanosheet sample (w-Ni(OH)2) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is obtained reaching a current density of 10 mA/cm2. Moreover, at high current density of 80 mA/cm2, the overpotential value is 267 mV. The corresponding Tafel slope is measured to be 33 mV/dec. The d0 W6+ atom with a low spin-state has more outermost vacant orbitals, resulting in more water and OH− groups being adsorbed on the exposed W sites of the Ni(OH)2 nanosheet. Density functional theory (DFT) calculations confirm that the O radical and O-O coupling are both generated at the same site of W6+. This work demonstrates that W6+ doping can promote the electrocatalytic water oxidation activity of Ni(OH)2 with the highest performance.Electrocatalytic water splitting for hydrogen and oxygen generation provides an attractive path to obtain clean energy, but the half reaction of oxygen evolution remains the bottleneck for the progress. Here, the authors show single atom tungsten doped ultrathin α-Ni(OH)2 exhibits enhanced performance in electrocatalytic water oxidation.
Electrocatalytic water splitting for hydrogen and oxygen generation provides an attractive path to obtain clean energy, but the half reaction of oxygen evolution remains the bottleneck for the progress. Here, the authors show single atom tungsten doped ultrathin α-Ni(OH)2 exhibits enhanced performance in electrocatalytic water oxidation.
ArticleNumber 2149
Author Kong, Lingqiao
White, Jai
Zhang, Jing
Yan, Junqing
Liu, Shengzhong
Li, Youyong
Ma, Tianyi
An, Pengfei
Lee, Shuit-Tong
Ji, Yujin
Author_xml – sequence: 1
  givenname: Junqing
  orcidid: 0000-0002-9966-6237
  surname: Yan
  fullname: Yan, Junqing
  organization: Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University
– sequence: 2
  givenname: Lingqiao
  surname: Kong
  fullname: Kong, Lingqiao
  organization: Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University
– sequence: 3
  givenname: Yujin
  surname: Ji
  fullname: Ji, Yujin
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University
– sequence: 4
  givenname: Jai
  surname: White
  fullname: White, Jai
  organization: Discipline of Chemistry, School of Environmental and Life Sciences, University of Newcastle
– sequence: 5
  givenname: Youyong
  orcidid: 0000-0002-5248-2756
  surname: Li
  fullname: Li, Youyong
  email: yyli@suda.edu.cn
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University
– sequence: 6
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences
– sequence: 7
  givenname: Pengfei
  surname: An
  fullname: An, Pengfei
  organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences
– sequence: 8
  givenname: Shengzhong
  surname: Liu
  fullname: Liu, Shengzhong
  email: liusz@snnu.edu.cn
  organization: Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, iChEM, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences
– sequence: 9
  givenname: Shuit-Tong
  surname: Lee
  fullname: Lee, Shuit-Tong
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University
– sequence: 10
  givenname: Tianyi
  orcidid: 0000-0002-1042-8700
  surname: Ma
  fullname: Ma, Tianyi
  email: tianyi.ma@newcastle.edu.au
  organization: Discipline of Chemistry, School of Environmental and Life Sciences, University of Newcastle
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31089139$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNUREvpC7BAkdiURcC_cbJBqiqglSq6AJbIcuybGY889mA7QOeteBGeCTMppe2i3tiyv3N87HufVns-eKiq5xi9xoh2bxLDrBUNwn2D-o7xZvuoOiCI4QYLQvdurfero5RWqAza446xJ9U-xajrMe0Pqq-frF84qFUO6zpPfpEy-NqEDZh6cjmqvLS-_v2r-WiPL89ekXoMsQa_VF4XAhzoHINWWbmrbHX9Q2WIdfhpjco2-GfV41G5BEfX82H15f27z6dnzcXlh_PTk4tGM863jeE97nnbAxbt2LaMDcAHQ3uNDefCCDxgNSqERjSMxFBuhKZId7gbdElBCD2szmdfE9RKbqJdq3glg7JytxHiQqpY8jmQClBHBOIYRMsoEZ0YlRnEyFTHgI2meL2dvTbTsAajwZdfcHdM7554u5SL8F22HAtGWTE4vjaI4dsEKcu1TRqcUx7ClGTJW8rAW4wL-vIeugpT9OWrCkU4JpQjWqgXtxPdRPlXxQKQGdAxpBRhvEEwkn-7Rc7dIku3yF23yG0RdfdE2uZd1cqrrHtYSmdpKvf4BcT_sR9Q_QHDF9WF
CitedBy_id crossref_primary_10_1021_acssuschemeng_9b07481
crossref_primary_10_1039_D1CC03410C
crossref_primary_10_1016_j_jallcom_2022_165259
crossref_primary_10_1021_acssuschemeng_4c00318
crossref_primary_10_1016_j_ccr_2024_216112
crossref_primary_10_1016_j_jallcom_2024_174896
crossref_primary_10_1021_acsnano_2c09880
crossref_primary_10_1002_adfm_202000531
crossref_primary_10_1021_acsami_2c13435
crossref_primary_10_1002_sstr_202200094
crossref_primary_10_1021_acscatal_3c01963
crossref_primary_10_1021_acsmaterialslett_0c00549
crossref_primary_10_1016_j_ijhydene_2022_08_139
crossref_primary_10_1016_j_fuel_2025_134704
crossref_primary_10_1039_D1DT03906G
crossref_primary_10_1021_jacs_3c11446
crossref_primary_10_1039_D0QI00614A
crossref_primary_10_1016_j_ccr_2022_214603
crossref_primary_10_1021_acs_cgd_4c00747
crossref_primary_10_3390_nano11123379
crossref_primary_10_1002_adma_202102801
crossref_primary_10_1080_21870764_2023_2203635
crossref_primary_10_1002_adma_202100745
crossref_primary_10_1002_smll_202411479
crossref_primary_10_1039_D2DT02770D
crossref_primary_10_1039_D1TA08046F
crossref_primary_10_1039_D3TA01869E
crossref_primary_10_1002_smll_202102448
crossref_primary_10_1002_adma_202006784
crossref_primary_10_3390_nano9091284
crossref_primary_10_1007_s12678_022_00808_5
crossref_primary_10_1039_D4EE01783H
crossref_primary_10_1016_j_electacta_2024_144953
crossref_primary_10_1039_D2TA00149G
crossref_primary_10_1007_s12274_021_3475_z
crossref_primary_10_1021_jacs_4c02292
crossref_primary_10_1039_D0TA06656G
crossref_primary_10_1002_celc_202001454
crossref_primary_10_1039_D4QI01046A
crossref_primary_10_1039_D1EE00248A
crossref_primary_10_1016_j_jechem_2020_10_022
crossref_primary_10_1039_D0TA01966F
crossref_primary_10_1016_j_cclet_2021_08_045
crossref_primary_10_1021_acssuschemeng_0c04322
crossref_primary_10_1039_C9TA07601H
crossref_primary_10_1016_j_apsusc_2020_145943
crossref_primary_10_1002_adma_202417593
crossref_primary_10_1002_smll_202001642
crossref_primary_10_3390_ma16083044
crossref_primary_10_1016_j_apcatb_2022_122072
crossref_primary_10_1016_j_cjsc_2025_100520
crossref_primary_10_3389_fchem_2022_1071274
crossref_primary_10_1016_j_seppur_2024_126977
crossref_primary_10_1002_adfm_202001704
crossref_primary_10_1002_aenm_202003018
crossref_primary_10_1002_adma_202306309
crossref_primary_10_1002_smll_202100129
crossref_primary_10_1016_j_apsusc_2022_156236
crossref_primary_10_1002_smll_202203365
crossref_primary_10_1002_smll_202403412
crossref_primary_10_3390_catal13071095
crossref_primary_10_1002_aenm_202303281
crossref_primary_10_1016_j_jcat_2022_09_014
crossref_primary_10_1039_D3EE03896C
crossref_primary_10_1021_acs_jpcc_1c03824
crossref_primary_10_1039_C9CC05115E
crossref_primary_10_1039_D1TA08148A
crossref_primary_10_1016_j_ccr_2021_214261
crossref_primary_10_1002_smtd_202300348
crossref_primary_10_1016_j_ijhydene_2023_11_294
crossref_primary_10_1016_j_jcis_2022_04_152
crossref_primary_10_1002_aenm_202201141
crossref_primary_10_1039_D0TA00860E
crossref_primary_10_1016_j_jallcom_2023_171910
crossref_primary_10_1002_smtd_202301434
crossref_primary_10_1016_j_ijhydene_2023_04_023
crossref_primary_10_1007_s12274_022_5240_3
crossref_primary_10_1038_s41467_023_36830_4
crossref_primary_10_1039_D0SE00659A
crossref_primary_10_1016_j_nanoen_2024_109300
crossref_primary_10_1038_s41467_022_28413_6
crossref_primary_10_1360_nso_20220059
crossref_primary_10_1021_acsami_2c00254
crossref_primary_10_1007_s12598_024_02784_9
crossref_primary_10_1002_smll_202105680
crossref_primary_10_1039_D2DT00037G
crossref_primary_10_1002_adfm_202010633
crossref_primary_10_1021_acs_iecr_1c04902
crossref_primary_10_1039_D2SE00804A
crossref_primary_10_1002_adfm_202309824
crossref_primary_10_1002_celc_202300460
crossref_primary_10_1007_s40843_022_2274_7
crossref_primary_10_1002_adma_202403151
crossref_primary_10_1016_j_jiec_2023_07_060
crossref_primary_10_1002_anie_202104053
crossref_primary_10_1039_D1TA00072A
crossref_primary_10_1016_j_apcatb_2024_124934
crossref_primary_10_1002_ange_202104053
crossref_primary_10_1002_adfm_202009779
crossref_primary_10_1002_smll_202105696
crossref_primary_10_1016_j_apcatb_2020_119197
crossref_primary_10_1002_aenm_202500554
crossref_primary_10_1021_acsami_2c21041
crossref_primary_10_1016_j_jelechem_2022_116633
crossref_primary_10_1039_D0TA00547A
crossref_primary_10_1021_acs_nanolett_9b03523
crossref_primary_10_1021_acscatal_0c04020
crossref_primary_10_1039_D4RA02326A
crossref_primary_10_1016_j_ccr_2020_213483
crossref_primary_10_1002_smll_202401034
crossref_primary_10_1016_j_jcat_2024_115352
crossref_primary_10_1016_j_cej_2024_149184
crossref_primary_10_1039_D4SC03612C
crossref_primary_10_1002_adfm_202301884
crossref_primary_10_1002_advs_202201916
crossref_primary_10_1002_adfm_202110224
crossref_primary_10_1016_j_ijhydene_2022_04_072
crossref_primary_10_1021_acscatal_4c07778
crossref_primary_10_1002_adfm_202301526
crossref_primary_10_1016_j_jpowsour_2025_236834
crossref_primary_10_1126_sciadv_abb6833
crossref_primary_10_1016_j_apcatb_2022_122269
crossref_primary_10_1002_aenm_202000177
crossref_primary_10_1039_D3NJ02846A
crossref_primary_10_1002_smll_202207236
crossref_primary_10_1016_j_nanoen_2024_110468
crossref_primary_10_1021_acs_inorgchem_3c01095
crossref_primary_10_1039_D1GC03909A
crossref_primary_10_1002_adma_202204448
crossref_primary_10_1039_D4QI02568G
crossref_primary_10_1002_adma_202200088
crossref_primary_10_1021_acscatal_4c04393
crossref_primary_10_1016_j_enchem_2024_100119
crossref_primary_10_1021_acsami_3c16507
crossref_primary_10_1021_acscatal_0c01733
crossref_primary_10_1016_j_jhazmat_2022_130576
crossref_primary_10_1002_anie_201914647
crossref_primary_10_1002_eom2_12254
crossref_primary_10_1021_acsanm_4c07004
crossref_primary_10_1002_adma_202300945
crossref_primary_10_1016_j_xcrp_2021_100356
crossref_primary_10_1039_D4EE05340K
crossref_primary_10_1016_j_est_2024_110671
crossref_primary_10_1016_j_apcatb_2021_120263
crossref_primary_10_1002_adma_202304182
crossref_primary_10_1016_j_electacta_2021_139714
crossref_primary_10_1002_cnma_202400242
crossref_primary_10_3866_PKU_WHXB202307019
crossref_primary_10_1002_ange_202112042
crossref_primary_10_1016_j_jcis_2020_11_015
crossref_primary_10_1002_anie_202103824
crossref_primary_10_1039_D2CE01491B
crossref_primary_10_3390_catal12070696
crossref_primary_10_1016_j_jpcs_2024_112143
crossref_primary_10_1007_s12274_021_3694_3
crossref_primary_10_1016_j_ijhydene_2024_04_301
crossref_primary_10_1021_acs_inorgchem_1c00841
crossref_primary_10_1016_j_ijhydene_2021_02_173
crossref_primary_10_2139_ssrn_4174946
crossref_primary_10_1002_cnma_202400476
crossref_primary_10_1039_D1NR04138J
crossref_primary_10_1002_aenm_202002464
crossref_primary_10_1002_smtd_202000248
crossref_primary_10_1016_j_apsusc_2023_157204
crossref_primary_10_1002_adfm_202307390
crossref_primary_10_1016_j_rser_2021_111097
crossref_primary_10_1016_j_ccr_2020_213280
crossref_primary_10_1021_acs_chemrev_0c00594
crossref_primary_10_1016_j_cej_2021_133483
crossref_primary_10_20517_energymater_2024_41
crossref_primary_10_1021_acs_jpcc_3c05005
crossref_primary_10_1016_j_nanoen_2020_105085
crossref_primary_10_1002_anie_202100610
crossref_primary_10_1002_adma_202404658
crossref_primary_10_1039_D1NR00933H
crossref_primary_10_1002_adma_202107053
crossref_primary_10_1016_j_apcatb_2023_122749
crossref_primary_10_1002_celc_201900857
crossref_primary_10_1016_j_ccr_2024_216141
crossref_primary_10_1016_j_ijhydene_2023_07_097
crossref_primary_10_1021_acsomega_2c05812
crossref_primary_10_1039_D4QI02766C
crossref_primary_10_1002_adfm_202309438
crossref_primary_10_1021_acsaem_2c02812
crossref_primary_10_1016_j_cej_2021_134446
crossref_primary_10_1016_j_ces_2021_117398
crossref_primary_10_1016_j_apmt_2023_102037
crossref_primary_10_1016_j_jechem_2022_07_037
crossref_primary_10_1038_s41467_021_25609_0
crossref_primary_10_1002_cctc_201902316
crossref_primary_10_1007_s10854_022_08674_z
crossref_primary_10_1016_j_electacta_2023_142891
crossref_primary_10_1002_chem_202404086
crossref_primary_10_1021_acssuschemeng_9b04590
crossref_primary_10_1021_acsaem_0c02628
crossref_primary_10_1016_j_scib_2023_06_001
crossref_primary_10_1016_j_cej_2022_140079
crossref_primary_10_1039_C9CS00869A
crossref_primary_10_1038_s41467_024_55612_0
crossref_primary_10_1016_j_jechem_2020_03_020
crossref_primary_10_1016_j_apsusc_2023_157433
crossref_primary_10_1002_ange_202115331
crossref_primary_10_1016_j_matdes_2022_111427
crossref_primary_10_1002_smll_201907556
crossref_primary_10_1039_D2CS00038E
crossref_primary_10_1021_acs_chemrev_0c00576
crossref_primary_10_1007_s40843_020_1271_x
crossref_primary_10_1016_j_enconman_2021_115038
crossref_primary_10_1002_adfm_202107056
crossref_primary_10_1021_acsami_1c05660
crossref_primary_10_1021_acsami_2c09725
crossref_primary_10_1039_D0TA05160H
crossref_primary_10_1021_acsami_1c12005
crossref_primary_10_1039_C9TA11852G
crossref_primary_10_1016_j_cej_2021_130204
crossref_primary_10_1021_acs_analchem_1c04912
crossref_primary_10_1007_s12274_021_3917_7
crossref_primary_10_1016_j_jallcom_2023_169699
crossref_primary_10_1002_idm2_12011
crossref_primary_10_1007_s11426_024_2389_9
crossref_primary_10_1016_j_apsusc_2024_160657
crossref_primary_10_1039_D2EE00461E
crossref_primary_10_1016_j_jallcom_2020_154247
crossref_primary_10_1002_anie_202100371
crossref_primary_10_1007_s42765_022_00138_7
crossref_primary_10_1002_ente_202201203
crossref_primary_10_1016_j_cej_2021_129214
crossref_primary_10_1021_acscatal_2c02604
crossref_primary_10_1021_acs_iecr_9b06470
crossref_primary_10_1002_adfm_202406670
crossref_primary_10_1021_acsaem_1c03748
crossref_primary_10_1039_D0CS00978D
crossref_primary_10_1002_adfm_202211576
crossref_primary_10_1016_j_apsusc_2024_159537
crossref_primary_10_1039_D2TA00835A
crossref_primary_10_1039_D1TA04032D
crossref_primary_10_1002_cssc_202400624
crossref_primary_10_1002_cssc_202102404
crossref_primary_10_1039_D1EE02485J
crossref_primary_10_1038_s41467_020_15498_0
crossref_primary_10_1016_j_jcis_2022_07_103
crossref_primary_10_1021_acs_analchem_2c01051
crossref_primary_10_1021_acsenergylett_4c02650
crossref_primary_10_1039_D1SE01535D
crossref_primary_10_1016_j_jcis_2023_09_115
crossref_primary_10_1002_aenm_202401449
crossref_primary_10_1016_j_ijhydene_2024_10_077
crossref_primary_10_1021_acs_chemrev_9b00238
crossref_primary_10_1002_ange_202103824
crossref_primary_10_1016_j_apcatb_2022_121684
crossref_primary_10_1002_anie_202008116
crossref_primary_10_1021_acs_nanolett_0c02007
crossref_primary_10_1016_j_jpowsour_2025_236662
crossref_primary_10_1016_j_jallcom_2022_163855
crossref_primary_10_1002_anie_202410105
crossref_primary_10_1002_adfm_202106149
crossref_primary_10_1021_acs_analchem_4c01258
crossref_primary_10_1002_adma_202210703
crossref_primary_10_1021_acssuschemeng_3c01531
crossref_primary_10_1039_D0EE00755B
crossref_primary_10_1002_cssc_202401872
crossref_primary_10_1088_1361_6528_acef2f
crossref_primary_10_1016_j_jpowsour_2020_228625
crossref_primary_10_1021_acssuschemeng_1c02256
crossref_primary_10_1039_D3DT03249C
crossref_primary_10_1039_D1TA08872F
crossref_primary_10_1021_acsami_1c16755
crossref_primary_10_1039_D4NJ01627K
crossref_primary_10_1038_s41563_021_01006_2
crossref_primary_10_1002_ange_202422740
crossref_primary_10_1021_acs_chemmater_2c00950
crossref_primary_10_1016_j_apsusc_2022_153408
crossref_primary_10_1016_j_cej_2021_132888
crossref_primary_10_1021_jacsau_3c00001
crossref_primary_10_1149_1945_7111_acee27
crossref_primary_10_1016_j_apcatb_2019_118580
crossref_primary_10_1007_s11581_023_05330_2
crossref_primary_10_1007_s12598_024_02975_4
crossref_primary_10_1021_acssuschemeng_2c03166
crossref_primary_10_1002_adfm_202414493
crossref_primary_10_1016_j_cej_2022_139104
crossref_primary_10_1039_D1CS00330E
crossref_primary_10_1016_j_chemosphere_2023_140012
crossref_primary_10_1016_j_cej_2020_127917
crossref_primary_10_1016_j_jallcom_2023_169014
crossref_primary_10_1039_D0TA00708K
crossref_primary_10_1002_cssc_202002946
crossref_primary_10_1002_ange_202410105
crossref_primary_10_1039_D4QI00090K
crossref_primary_10_1039_D0TA01680B
crossref_primary_10_1002_adfm_202423092
crossref_primary_10_1002_ange_202008116
crossref_primary_10_1002_adfm_202107308
crossref_primary_10_1002_solr_202400522
crossref_primary_10_1002_aenm_202301547
crossref_primary_10_1039_D4GC05682E
crossref_primary_10_1002_tcr_202200237
crossref_primary_10_1007_s12274_022_4140_x
crossref_primary_10_1016_j_jechem_2021_08_055
crossref_primary_10_1021_acs_inorgchem_2c03805
crossref_primary_10_1038_s41467_023_37404_0
crossref_primary_10_1002_adfm_202417983
crossref_primary_10_1016_j_cej_2024_155429
crossref_primary_10_1016_j_jcis_2021_05_011
crossref_primary_10_1002_cey2_329
crossref_primary_10_1016_j_ijhydene_2020_10_156
crossref_primary_10_1002_adma_202302642
crossref_primary_10_1016_j_ccr_2023_215602
crossref_primary_10_1002_smll_202304560
crossref_primary_10_1038_s41467_020_16558_1
crossref_primary_10_1016_j_apcatb_2019_118567
crossref_primary_10_1016_j_ijhydene_2021_11_046
crossref_primary_10_1002_adma_202406094
crossref_primary_10_1002_chem_202401644
crossref_primary_10_1016_j_jallcom_2023_170231
crossref_primary_10_1016_j_cej_2022_139369
crossref_primary_10_1002_cey2_216
crossref_primary_10_1016_j_cej_2025_161377
crossref_primary_10_1021_acs_nanolett_2c04444
crossref_primary_10_1002_adma_202000872
crossref_primary_10_1016_j_ijhydene_2024_02_078
crossref_primary_10_1002_smll_202200303
crossref_primary_10_1016_j_apcatb_2019_118334
crossref_primary_10_1149_1945_7111_ac7172
crossref_primary_10_1002_ange_202100371
crossref_primary_10_26599_NRE_2022_9120029
crossref_primary_10_1002_adma_202104764
crossref_primary_10_1016_j_ijhydene_2023_08_144
crossref_primary_10_1016_j_cej_2021_129165
crossref_primary_10_1002_solr_202100833
crossref_primary_10_1007_s40843_020_1443_8
crossref_primary_10_1002_tcr_202300330
crossref_primary_10_1016_j_matlet_2020_128951
crossref_primary_10_1002_anie_202422740
crossref_primary_10_1039_D2TA08461A
crossref_primary_10_1016_j_electacta_2022_140779
crossref_primary_10_1021_acs_est_2c07282
crossref_primary_10_1016_j_apsusc_2021_149064
crossref_primary_10_1021_acscatal_4c03974
crossref_primary_10_1016_j_scib_2020_08_037
crossref_primary_10_1021_acs_jpcc_0c02324
crossref_primary_10_1016_j_seppur_2025_132642
crossref_primary_10_1021_acs_inorgchem_3c00562
crossref_primary_10_1002_aenm_202204213
crossref_primary_10_1007_s40820_023_01066_w
crossref_primary_10_1021_acsanm_1c04359
crossref_primary_10_1016_j_apmt_2021_101029
crossref_primary_10_1016_j_coelec_2023_101231
crossref_primary_10_1021_acsaem_1c02023
crossref_primary_10_1021_acsnano_4c02240
crossref_primary_10_1002_aenm_202101202
crossref_primary_10_1002_adma_202404900
crossref_primary_10_1002_smll_202303169
crossref_primary_10_1016_j_jechem_2024_05_044
crossref_primary_10_1021_acs_inorgchem_4c02804
crossref_primary_10_1016_j_scib_2022_08_008
crossref_primary_10_1039_D0CE00504E
crossref_primary_10_1021_jacs_1c04682
crossref_primary_10_1002_adma_202304508
crossref_primary_10_1016_j_cej_2024_158565
crossref_primary_10_1021_acsnano_0c09755
crossref_primary_10_1016_j_renene_2022_08_013
crossref_primary_10_1038_s41467_021_24828_9
crossref_primary_10_1016_j_envres_2021_111589
crossref_primary_10_1002_adfm_201906477
crossref_primary_10_1039_D0TA03138K
crossref_primary_10_1002_cey2_532
crossref_primary_10_1021_acs_inorgchem_1c03665
crossref_primary_10_1016_j_ensm_2021_11_050
crossref_primary_10_1016_j_nanoen_2020_105540
crossref_primary_10_1016_j_xcrp_2022_101059
crossref_primary_10_1002_ange_201914647
crossref_primary_10_1016_j_cej_2021_129403
crossref_primary_10_1016_j_cej_2021_130873
crossref_primary_10_1002_aenm_202402046
crossref_primary_10_1039_D1RA05045A
crossref_primary_10_1016_j_cej_2024_158317
crossref_primary_10_1016_j_ijhydene_2022_06_212
crossref_primary_10_1016_j_jcis_2024_09_238
crossref_primary_10_1021_acscatal_2c02416
crossref_primary_10_1002_ange_202100610
crossref_primary_10_1039_D1CC05752A
crossref_primary_10_1016_j_nanoen_2023_108225
crossref_primary_10_1007_s40820_023_01185_4
crossref_primary_10_1002_adma_202003414
crossref_primary_10_1038_s41467_022_30766_x
crossref_primary_10_3390_cryst11040340
crossref_primary_10_1002_anie_202112042
crossref_primary_10_1002_smtd_202400108
crossref_primary_10_1002_cey2_79
crossref_primary_10_1002_adfm_202405262
crossref_primary_10_1016_j_apcatb_2024_124641
crossref_primary_10_1002_smll_202101725
crossref_primary_10_1016_j_cej_2021_130532
crossref_primary_10_1016_j_jece_2023_110244
crossref_primary_10_1016_j_ijhydene_2024_02_019
crossref_primary_10_1021_acscatal_2c00188
crossref_primary_10_1016_j_electacta_2024_144005
crossref_primary_10_1016_j_talanta_2025_127926
crossref_primary_10_1016_j_apcatb_2024_124636
crossref_primary_10_1039_D3CY00789H
crossref_primary_10_1002_smll_201904507
crossref_primary_10_1016_j_cej_2024_157208
crossref_primary_10_1007_s11705_025_2524_7
crossref_primary_10_1016_j_jcis_2025_02_148
crossref_primary_10_1039_D0CS00795A
crossref_primary_10_1016_j_nanoen_2022_107375
crossref_primary_10_1002_anie_202115331
crossref_primary_10_1002_adsu_202000184
crossref_primary_10_1002_cnl2_105
crossref_primary_10_1039_C9SE00822E
crossref_primary_10_1016_j_jcis_2024_08_111
crossref_primary_10_1039_D1TA00154J
crossref_primary_10_1021_acsami_0c10234
crossref_primary_10_1016_j_checat_2024_101157
crossref_primary_10_1007_s12274_022_4799_z
crossref_primary_10_1021_acsaem_1c02399
crossref_primary_10_1038_s41467_024_45320_0
crossref_primary_10_1002_adfm_202209698
crossref_primary_10_1016_j_apcatb_2021_120740
crossref_primary_10_1021_acscentsci_4c00345
crossref_primary_10_1002_aenm_201903137
crossref_primary_10_1039_D0RA06617F
crossref_primary_10_1021_acssuschemeng_1c07464
crossref_primary_10_1007_s40843_020_1331_x
crossref_primary_10_1002_celc_202400159
crossref_primary_10_1016_j_apcatb_2020_119112
crossref_primary_10_1016_j_apsusc_2024_160201
crossref_primary_10_1002_cssc_202002544
crossref_primary_10_1016_j_jcis_2022_06_053
crossref_primary_10_1016_j_jallcom_2025_179819
crossref_primary_10_1039_D3EY00113J
crossref_primary_10_1002_smll_202310829
crossref_primary_10_1021_acssuschemeng_9b03830
crossref_primary_10_1016_j_cej_2024_156219
crossref_primary_10_1021_acsaem_1c03379
crossref_primary_10_1021_acsami_1c00890
crossref_primary_10_1021_acsaem_0c01091
crossref_primary_10_1016_j_apcatb_2023_123266
crossref_primary_10_1016_j_ijhydene_2024_01_312
crossref_primary_10_1021_acscatal_0c01273
Cites_doi 10.1021/acs.chemmater.5b03148
10.1038/nmat3811
10.1063/1.1329672
10.1021/acs.chemmater.8b01334
10.1002/aenm.201701686
10.1021/ja3126432
10.1021/jp303546r
10.1103/PhysRevLett.77.3865
10.1073/pnas.0603395103
10.1038/s41929-018-0043-3
10.1016/j.apcatb.2016.04.048
10.1126/science.1209816
10.1002/adma.201800396
10.1038/s41467-017-02429-9
10.1021/acsenergylett.8b00342
10.1021/jacs.7b05372
10.1021/jacs.7b07117
10.1107/S0909049505012719
10.1021/jacs.8b00752
10.1002/aenm.201702965
10.1021/jp047349j
10.1002/anie.201204842
10.1021/ja502379c
10.1021/ja405351s
10.1021/jacs.5b10699
10.1126/science.1212858
10.1126/science.aaf1525
10.1038/ncomms5477
10.1021/jacs.6b00332
10.1021/acsnano.7b05481
10.1016/j.joule.2018.06.019
10.1039/C5SC04486C
10.1021/jacs.8b02225
10.1021/acscatal.7b04226
10.1002/ange.201800883
10.1021/acsenergylett.8b00982
10.1021/ja502128j
10.1021/cr1002326
10.1016/j.ijhydene.2011.03.144
10.1002/aenm.201703290
10.1038/s41467-018-04788-3
10.1038/nenergy.2017.31
10.1038/nchem.1439
10.1073/pnas.1722034115
10.1021/jacs.6b12250
10.1149/1.2100463
10.1002/adma.201705045
10.1103/PhysRevB.54.11169
10.1098/rspa.2014.0792
10.1021/acsenergylett.8b00174
10.1021/ja511559d
10.1002/jcc.20495
10.1039/c0cp00104j
10.1021/ja403102j
10.1038/s41467-018-03380-z
10.1002/adfm.201706319
10.1002/aenm.201601275
10.1126/science.1211934
10.1038/s41467-018-05341-y
10.1039/C7EE03457A
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-019-09845-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_ae0827051e76432787fadb7f4a84e4fd
PMC6517434
31089139
10_1038_s41467_019_09845_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c455z-d5919569e176f6644be5bd39c1d557d71b1afa00f0bf2d35d7c30c818bcced223
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 00:49:39 EDT 2025
Thu Aug 21 18:18:16 EDT 2025
Tue Aug 05 11:21:12 EDT 2025
Wed Aug 13 08:04:46 EDT 2025
Mon Jul 21 05:40:51 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Tue Jul 01 02:21:29 EDT 2025
Fri Feb 21 02:38:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455z-d5919569e176f6644be5bd39c1d557d71b1afa00f0bf2d35d7c30c818bcced223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1042-8700
0000-0002-9966-6237
0000-0002-5248-2756
OpenAccessLink https://www.proquest.com/docview/2225123503?pq-origsite=%requestingapplication%
PMID 31089139
PQID 2225123503
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_ae0827051e76432787fadb7f4a84e4fd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6517434
proquest_miscellaneous_2231845611
proquest_journals_2225123503
pubmed_primary_31089139
crossref_primary_10_1038_s41467_019_09845_z
crossref_citationtrail_10_1038_s41467_019_09845_z
springer_journals_10_1038_s41467_019_09845_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190514
PublicationDateYYYYMMDD 2019-05-14
PublicationDate_xml – month: 5
  year: 2019
  text: 20190514
  day: 14
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Jin, Huang, Yue, Du, Shen (CR25) 2018; 8
Xiao, Shin, Goddard (CR55) 2018; 115
He (CR8) 2018; 3
Reier, Nong, Teschner, Schlögl, Strasser (CR4) 2017; 7
Gu (CR13) 2018; 130
Aghazadeh, Golikand, Ghaemi (CR50) 2011; 36
Lin, Boettcher (CR42) 2014; 13
Reece (CR3) 2011; 334
Kresse, Furthmüller (CR57) 1996; 54
Shin, Xiao, Goddard (CR54) 2018; 140
Fu (CR12) 2018; 3
Shin, Xiao, Goddard (CR44) 2018; 140
Lewis, Nocera (CR1) 2006; 103
Chen (CR47) 2018; 30
Walter (CR2) 2010; 110
Zhang (CR46) 2017; 139
Danilovic (CR39) 2012; 51
Chen (CR48) 2018; 2
Mirzakulova (CR6) 2010; 4
Gao (CR15) 2014; 136
Yan (CR52) 2016; 194
Song, Hu (CR17) 2014; 5
Hung (CR24) 2018; 8
Schouten, van der Niet, Koper (CR40) 2010; 12
Li, Niu, Zhou, Yang (CR20) 2018; 3
Liu (CR10) 2018; 8
Chen (CR32) 2015; 137
Friebel (CR31) 2015; 137
Huang (CR23) 2018; 30
Trotochaud, Young, Ranney, Boettcher (CR30) 2014; 136
Hall, Lockwood, Bock, MacDougall (CR49) 2014; 471
Subbaraman (CR38) 2011; 334
Anantharaj (CR7) 2018; 11
Louie, Bell (CR28) 2013; 135
Diaz-Morales, Ferrus-Suspedra, Koper (CR36) 2016; 7
Nørskov, Rossmeisl, Logadottir, Lindqvist (CR60) 2004; 108
Yan (CR18) 2018; 9
Jiang (CR19) 2018; 9
Stevens, Trang, Enman, Deng, Boettcher (CR34) 2017; 139
Perdew, Burke, Ernzerhof (CR58) 1997; 77
Ravel, Newville (CR56) 2005; 12
McAteer (CR26) 2018; 8
Henkelman, Uberuaga, Jónsson (CR61) 2000; 113
Zhang (CR45) 2018; 9
Görlin (CR35) 2017; 139
Ledezma-Yanez (CR41) 2017; 2
Zhang (CR43) 2018; 9
Corrigan (CR27) 1987; 134
Fang (CR21) 2017; 11
Görlin (CR33) 2016; 138
Burke (CR53) 2015; 27
Bediako, Surendranath, Nocera (CR37) 2013; 135
Zhang (CR9) 2018; 140
Duan (CR16) 2018; 30
Grimme (CR59) 2006; 27
Kakizaki (CR22) 2018; 28
Smith, Prevot, Fagan, Trudel, Berlinguette (CR29) 2013; 135
Zhang (CR14) 2016; 352
Li (CR11) 2018; 1
Hall, Lockwood, Poirier, Bock, MacDougall (CR51) 2012; 116
Suntivich, May, Gasteiger, Goodenough, Shao-Horn (CR5) 2011; 334
E Mirzakulova (9845_CR6) 2010; 4
B Ravel (9845_CR56) 2005; 12
D Friebel (9845_CR31) 2015; 137
Y Chen (9845_CR48) 2018; 2
M Görlin (9845_CR33) 2016; 138
H Shin (9845_CR54) 2018; 140
JQ Yan (9845_CR52) 2016; 194
S Grimme (9845_CR59) 2006; 27
Z Yan (9845_CR18) 2018; 9
JF Zhang (9845_CR9) 2018; 140
H Shin (9845_CR44) 2018; 140
D McAteer (9845_CR26) 2018; 8
J Suntivich (9845_CR5) 2011; 334
M Aghazadeh (9845_CR50) 2011; 36
NS Lewis (9845_CR1) 2006; 103
DK Bediako (9845_CR37) 2013; 135
MW Louie (9845_CR28) 2013; 135
B Zhang (9845_CR14) 2016; 352
Z Li (9845_CR20) 2018; 3
HQ Fu (9845_CR12) 2018; 3
RDL Smith (9845_CR29) 2013; 135
KL Liu (9845_CR10) 2018; 8
R Subbaraman (9845_CR38) 2011; 334
I Ledezma-Yanez (9845_CR41) 2017; 2
JP Perdew (9845_CR58) 1997; 77
O Diaz-Morales (9845_CR36) 2016; 7
MG Walter (9845_CR2) 2010; 110
YS Jin (9845_CR25) 2018; 8
DA Corrigan (9845_CR27) 1987; 134
J Zhang (9845_CR45) 2018; 9
G Kresse (9845_CR57) 1996; 54
H Kakizaki (9845_CR22) 2018; 28
J Jiang (9845_CR19) 2018; 9
T Li (9845_CR11) 2018; 1
JK Nørskov (9845_CR60) 2004; 108
F Song (9845_CR17) 2014; 5
SF Hung (9845_CR24) 2018; 8
L Duan (9845_CR16) 2018; 30
SY Reece (9845_CR3) 2011; 334
S Anantharaj (9845_CR7) 2018; 11
N Danilovic (9845_CR39) 2012; 51
M Zhang (9845_CR46) 2017; 139
C Gu (9845_CR13) 2018; 130
H Xiao (9845_CR55) 2018; 115
M Görlin (9845_CR35) 2017; 139
MB Stevens (9845_CR34) 2017; 139
JW Huang (9845_CR23) 2018; 30
L Trotochaud (9845_CR30) 2014; 136
P Zhang (9845_CR43) 2018; 9
G Henkelman (9845_CR61) 2000; 113
F Lin (9845_CR42) 2014; 13
JYC Chen (9845_CR32) 2015; 137
DS Hall (9845_CR51) 2012; 116
KJP Schouten (9845_CR40) 2010; 12
DS Hall (9845_CR49) 2014; 471
M Gao (9845_CR15) 2014; 136
W Chen (9845_CR47) 2018; 30
MS Burke (9845_CR53) 2015; 27
Q He (9845_CR8) 2018; 3
T Reier (9845_CR4) 2017; 7
ZW Fang (9845_CR21) 2017; 11
References_xml – volume: 27
  start-page: 7549
  year: 2015
  end-page: 7558
  ident: CR53
  article-title: Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03148
– volume: 13
  start-page: 81
  year: 2014
  end-page: 86
  ident: CR42
  article-title: Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3811
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: CR61
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 30
  start-page: 4321
  year: 2018
  end-page: 4433
  ident: CR16
  article-title: Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01334
– volume: 8
  start-page: 1701686
  year: 2018
  ident: CR24
  article-title: Unraveling geometrical site confinement in highly efficient iron-doped electrocatalysts toward oxygen evolution reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701686
– volume: 135
  start-page: 3662
  year: 2013
  end-page: 3674
  ident: CR37
  article-title: Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3126432
– volume: 116
  start-page: 6771
  year: 2012
  end-page: 6784
  ident: CR51
  article-title: Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp303546r
– volume: 77
  start-page: 3865
  year: 1997
  end-page: 3868
  ident: CR58
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 103
  start-page: 15729
  year: 2006
  end-page: 15735
  ident: CR1
  article-title: Powering the planet: chemical challenges in solar energy utilization
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0603395103
– volume: 1
  start-page: 300
  year: 2018
  end-page: 305
  ident: CR11
  article-title: Atomic-scale insights into surface species of electrocatalysts in three dimensions
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0043-3
– volume: 194
  start-page: 74
  year: 2016
  end-page: 83
  ident: CR52
  article-title: One-pot hydrothermal fabrication of layered β-Ni(OH) /g-C N nanohybrids for enhanced photocatalytic water splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.04.048
– volume: 334
  start-page: 645
  year: 2011
  end-page: 648
  ident: CR3
  article-title: Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts
  publication-title: Science
  doi: 10.1126/science.1209816
– volume: 30
  start-page: 1800396
  year: 2018
  ident: CR47
  article-title: Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800396
– volume: 9
  year: 2018
  ident: CR43
  article-title: Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02429-9
– volume: 3
  start-page: 861
  year: 2018
  end-page: 868
  ident: CR8
  article-title: Highly defective Fe-based oxyhydroxides from electrochemical reconstruction for efficient oxygen evolution catalysis
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00342
– volume: 139
  start-page: 10976
  year: 2017
  end-page: 10979
  ident: CR46
  article-title: Metal (Hydr)oxides@Polymer core-shell strategy to metal single atom materials
  publication-title: J. Am. Chm. Soc.
  doi: 10.1021/jacs.7b05372
– volume: 139
  start-page: 11361
  year: 2017
  end-page: 11364
  ident: CR34
  article-title: Reactive Fe-sites in Ni/Fe (Oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07117
– volume: 12
  start-page: 537
  year: 2005
  end-page: 541
  ident: CR56
  article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S0909049505012719
– volume: 140
  start-page: 3876
  year: 2018
  end-page: 3879
  ident: CR9
  article-title: Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00752
– volume: 8
  start-page: 1702965
  year: 2018
  ident: CR26
  article-title: Liquid exfoliated Co(OH) nanosheets as low-cost, yet high-performance, catalysts for the oxygen evolution reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702965
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  ident: CR60
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 51
  start-page: 12495
  year: 2012
  end-page: 12498
  ident: CR39
  article-title: Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH) /metal catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204842
– volume: 136
  start-page: 6744
  year: 2014
  end-page: 6753
  ident: CR30
  article-title: Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502379c
– volume: 135
  start-page: 12329
  year: 2013
  end-page: 12337
  ident: CR28
  article-title: An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405351s
– volume: 137
  start-page: 15090
  year: 2015
  end-page: 15093
  ident: CR32
  article-title: Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe by mössbauer spectroscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10699
– volume: 334
  start-page: 1383
  year: 2011
  end-page: 1385
  ident: CR5
  article-title: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles
  publication-title: Science
  doi: 10.1126/science.1212858
– volume: 352
  start-page: 333
  year: 2016
  end-page: 337
  ident: CR14
  article-title: Homogeneously dispersed, multimetal oxygen-evolving catalysts
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 5
  year: 2014
  ident: CR17
  article-title: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5477
– volume: 138
  start-page: 5603
  year: 2016
  end-page: 5614
  ident: CR33
  article-title: Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00332
– volume: 11
  start-page: 9550
  year: 2017
  end-page: 9557
  ident: CR21
  article-title: Metallic transition metal selenide holey nanosheets for efficient oxygen evolution electrocatalysis
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.7b05481
– volume: 2
  start-page: 1242
  year: 2018
  ident: CR48
  article-title: Single-atom catalysts: synthetic strategies and electrochemical applications
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.019
– volume: 7
  start-page: 2639
  year: 2016
  end-page: 2645
  ident: CR36
  article-title: The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC04486C
– volume: 140
  start-page: 6745
  year: 2018
  end-page: 6748
  ident: CR44
  article-title: In silico discovery of new dopants for Fe-doped Ni oxyhydroxide (Ni Fe OOH) catalysts for oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02225
– volume: 8
  start-page: 2359
  year: 2018
  end-page: 2363
  ident: CR25
  article-title: Mo- and Fe-modified Ni(OH) /NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04226
– volume: 130
  start-page: 4084
  year: 2018
  end-page: 4088
  ident: CR13
  article-title: Synthesis of sub-2 nm iron-doped NiSe nanowires and their surface confined oxidation for oxygen evolution catalysis
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201800883
– volume: 3
  start-page: 2021
  year: 2018
  end-page: 2029
  ident: CR12
  article-title: 1D/1D hierarchical nickel sulfide/phosphide nanostructures for electrocatalytic water oxidation
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00982
– volume: 136
  start-page: 7077
  year: 2014
  end-page: 7708
  ident: CR15
  article-title: Efficient water oxidation using nanostructured α-Nickel-Hydroxide as an electrocatalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502128j
– volume: 110
  start-page: 6446
  year: 2010
  end-page: 6473
  ident: CR2
  article-title: Solar water splitting cells
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 36
  start-page: 8674
  year: 2011
  end-page: 8679
  ident: CR50
  article-title: Synthesis, characterization, and electrochemical properties of ultrafine β-Ni(OH) nanoparticles
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.03.144
– volume: 8
  start-page: 1703290
  year: 2018
  ident: CR10
  article-title: The role of sctive oxide species for electrochemical water oxidation on the surface of 3d-metal phosphides
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703290
– volume: 9
  year: 2018
  ident: CR18
  article-title: Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04788-3
– volume: 2
  start-page: 17031
  year: 2017
  ident: CR41
  article-title: Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.31
– volume: 4
  start-page: 794
  year: 2010
  end-page: 801
  ident: CR6
  article-title: Electrode-assisted catalytic water oxidation by a flavin derivative
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1439
– volume: 115
  start-page: 5872
  year: 2018
  end-page: 5877
  ident: CR55
  article-title: Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction
  publication-title: PNAS
  doi: 10.1073/pnas.1722034115
– volume: 139
  start-page: 2070
  year: 2017
  end-page: 2082
  ident: CR35
  article-title: Tracking catalyst redox states and reaction dynamics in Ni–Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12250
– volume: 134
  start-page: 377
  year: 1987
  end-page: 384
  ident: CR27
  article-title: The catalysis of the oxygen evolution reaction by iron impurities in thin-film nickel-oxide electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2100463
– volume: 30
  start-page: 1705045
  year: 2018
  ident: CR23
  article-title: A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705045
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR57
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phy. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 471
  start-page: 20140792
  year: 2014
  ident: CR49
  article-title: Nickel hydroxides and related materials: a review of their structures, synthesis and properties
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2014.0792
– volume: 140
  start-page: 6745
  year: 2018
  end-page: 6748
  ident: CR54
  article-title: In silico discovery of new dopants for Fe-doped Ni oxyhydroxide (Ni Fe OOH) catalysts for oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02225
– volume: 3
  start-page: 892
  year: 2018
  end-page: 898
  ident: CR20
  article-title: Phosphorus and aluminum codoped porous NiO nanosheets as highly efficient electrocatalysts for overall water splitting
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00174
– volume: 137
  start-page: 1305
  year: 2015
  end-page: 1313
  ident: CR31
  article-title: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511559d
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: CR59
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comp. Chem.
  doi: 10.1002/jcc.20495
– volume: 12
  start-page: 15217
  year: 2010
  end-page: 15224
  ident: CR40
  article-title: Impedance spectroscopy of H and OH adsorption on stepped single-crystal platinum electrodes in alkaline and acidic media
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp00104j
– volume: 135
  start-page: 11580
  year: 2013
  end-page: 11586
  ident: CR29
  article-title: Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403102j
– volume: 9
  year: 2018
  ident: CR45
  article-title: Cation vacancy stabilization of single-atomic-site Pt /Ni(OH) catalyst for diboration of alkynes and alkenes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03380-z
– volume: 28
  start-page: 1706319
  year: 2018
  ident: CR22
  article-title: Evidence that crystal facet orientation dictates oxygen evolution intermediates on rutile manganese oxide
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706319
– volume: 7
  start-page: 1601275
  year: 2017
  ident: CR4
  article-title: Electrocatalytic oxygen evolution reaction in acidic environments–reaction mechanisms and catalysts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601275
– volume: 334
  start-page: 1256
  year: 2011
  end-page: 1260
  ident: CR38
  article-title: Enhancing hydrogen evolution activity in water splitting by tailoring Li -Ni(OH) -Pt interfaces
  publication-title: Science
  doi: 10.1126/science.1211934
– volume: 9
  year: 2018
  ident: CR19
  article-title: Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05341-y
– volume: 11
  start-page: 744
  year: 2018
  end-page: 771
  ident: CR7
  article-title: Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03457A
– volume: 135
  start-page: 11580
  year: 2013
  ident: 9845_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403102j
– volume: 54
  start-page: 11169
  year: 1996
  ident: 9845_CR57
  publication-title: Phy. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 7
  start-page: 1601275
  year: 2017
  ident: 9845_CR4
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601275
– volume: 3
  start-page: 861
  year: 2018
  ident: 9845_CR8
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00342
– volume: 113
  start-page: 9901
  year: 2000
  ident: 9845_CR61
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 9
  year: 2018
  ident: 9845_CR45
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03380-z
– volume: 334
  start-page: 1256
  year: 2011
  ident: 9845_CR38
  publication-title: Science
  doi: 10.1126/science.1211934
– volume: 110
  start-page: 6446
  year: 2010
  ident: 9845_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 27
  start-page: 7549
  year: 2015
  ident: 9845_CR53
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03148
– volume: 9
  year: 2018
  ident: 9845_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04788-3
– volume: 139
  start-page: 10976
  year: 2017
  ident: 9845_CR46
  publication-title: J. Am. Chm. Soc.
  doi: 10.1021/jacs.7b05372
– volume: 116
  start-page: 6771
  year: 2012
  ident: 9845_CR51
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp303546r
– volume: 5
  year: 2014
  ident: 9845_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5477
– volume: 130
  start-page: 4084
  year: 2018
  ident: 9845_CR13
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201800883
– volume: 108
  start-page: 17886
  year: 2004
  ident: 9845_CR60
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 194
  start-page: 74
  year: 2016
  ident: 9845_CR52
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.04.048
– volume: 471
  start-page: 20140792
  year: 2014
  ident: 9845_CR49
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2014.0792
– volume: 334
  start-page: 1383
  year: 2011
  ident: 9845_CR5
  publication-title: Science
  doi: 10.1126/science.1212858
– volume: 51
  start-page: 12495
  year: 2012
  ident: 9845_CR39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204842
– volume: 137
  start-page: 15090
  year: 2015
  ident: 9845_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10699
– volume: 30
  start-page: 1800396
  year: 2018
  ident: 9845_CR47
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800396
– volume: 140
  start-page: 3876
  year: 2018
  ident: 9845_CR9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00752
– volume: 136
  start-page: 6744
  year: 2014
  ident: 9845_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502379c
– volume: 28
  start-page: 1706319
  year: 2018
  ident: 9845_CR22
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706319
– volume: 12
  start-page: 537
  year: 2005
  ident: 9845_CR56
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S0909049505012719
– volume: 352
  start-page: 333
  year: 2016
  ident: 9845_CR14
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 134
  start-page: 377
  year: 1987
  ident: 9845_CR27
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2100463
– volume: 3
  start-page: 892
  year: 2018
  ident: 9845_CR20
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00174
– volume: 139
  start-page: 2070
  year: 2017
  ident: 9845_CR35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12250
– volume: 115
  start-page: 5872
  year: 2018
  ident: 9845_CR55
  publication-title: PNAS
  doi: 10.1073/pnas.1722034115
– volume: 8
  start-page: 2359
  year: 2018
  ident: 9845_CR25
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04226
– volume: 77
  start-page: 3865
  year: 1997
  ident: 9845_CR58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 30
  start-page: 4321
  year: 2018
  ident: 9845_CR16
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01334
– volume: 13
  start-page: 81
  year: 2014
  ident: 9845_CR42
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3811
– volume: 9
  year: 2018
  ident: 9845_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02429-9
– volume: 7
  start-page: 2639
  year: 2016
  ident: 9845_CR36
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC04486C
– volume: 8
  start-page: 1703290
  year: 2018
  ident: 9845_CR10
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703290
– volume: 140
  start-page: 6745
  year: 2018
  ident: 9845_CR54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02225
– volume: 334
  start-page: 645
  year: 2011
  ident: 9845_CR3
  publication-title: Science
  doi: 10.1126/science.1209816
– volume: 36
  start-page: 8674
  year: 2011
  ident: 9845_CR50
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.03.144
– volume: 3
  start-page: 2021
  year: 2018
  ident: 9845_CR12
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00982
– volume: 2
  start-page: 17031
  year: 2017
  ident: 9845_CR41
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.31
– volume: 135
  start-page: 12329
  year: 2013
  ident: 9845_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405351s
– volume: 8
  start-page: 1702965
  year: 2018
  ident: 9845_CR26
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702965
– volume: 30
  start-page: 1705045
  year: 2018
  ident: 9845_CR23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705045
– volume: 2
  start-page: 1242
  year: 2018
  ident: 9845_CR48
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.019
– volume: 137
  start-page: 1305
  year: 2015
  ident: 9845_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511559d
– volume: 4
  start-page: 794
  year: 2010
  ident: 9845_CR6
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1439
– volume: 139
  start-page: 11361
  year: 2017
  ident: 9845_CR34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07117
– volume: 136
  start-page: 7077
  year: 2014
  ident: 9845_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502128j
– volume: 11
  start-page: 9550
  year: 2017
  ident: 9845_CR21
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.7b05481
– volume: 135
  start-page: 3662
  year: 2013
  ident: 9845_CR37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3126432
– volume: 11
  start-page: 744
  year: 2018
  ident: 9845_CR7
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03457A
– volume: 1
  start-page: 300
  year: 2018
  ident: 9845_CR11
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0043-3
– volume: 140
  start-page: 6745
  year: 2018
  ident: 9845_CR44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02225
– volume: 138
  start-page: 5603
  year: 2016
  ident: 9845_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00332
– volume: 8
  start-page: 1701686
  year: 2018
  ident: 9845_CR24
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701686
– volume: 103
  start-page: 15729
  year: 2006
  ident: 9845_CR1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0603395103
– volume: 12
  start-page: 15217
  year: 2010
  ident: 9845_CR40
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp00104j
– volume: 27
  start-page: 1787
  year: 2006
  ident: 9845_CR59
  publication-title: J. Comp. Chem.
  doi: 10.1002/jcc.20495
– volume: 9
  year: 2018
  ident: 9845_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05341-y
SSID ssj0000391844
Score 2.6889503
Snippet Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W 6+ doped Ni(OH) 2 nanosheet...
Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W doped Ni(OH) nanosheet sample...
Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W6+ doped Ni(OH)2 nanosheet sample...
Electrocatalytic water splitting for hydrogen and oxygen generation provides an attractive path to obtain clean energy, but the half reaction of oxygen...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2149
SubjectTerms 147/135
147/137
147/28
639/638/675
639/638/77/886
639/638/77/887
Clean energy
Current density
Density functional theory
Humanities and Social Sciences
multidisciplinary
Nanostructure
Nickel compounds
Oxidation
Oxygen
Oxygen evolution reactions
Science
Science (multidisciplinary)
Tungsten
Water splitting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PaxQxFH-UgtCLWK06tpYIPSgaOpkkk5ljWyyL0HrQQi8SkknCLqyzpd2l7X4rv4ifyZfM7Nr176XXSULC-_t7k7z3APaEtXURgqeqsIaiwXPU1M7RUAlTlOgfZBnznU9Oy8GZ-HAuz--0-opvwrrywB3h9o1HJ6VQdLxC51mgfAXjrArCVMKL4KL1RZ93J5hKNpjXGLqIPksm59X-lUg2IY85O3UlJJ2veKJUsP9PKPP3x5K_3JgmR3T8CB72CJIcdCffhDXfPoYHXU_J2yfw5ROuGnuCwfRXMkVVRja2xE0uvCOzcaxFOxy15Ps3ejp6_XHwpiCIWolvh-klAOm74qSfOre4AblGLHpJJjejrvfSFpwdv_98NKB9DwXaCCnn1Mk6ZgTWnqkylAh-rJfW8bphTkrlFLPMBJPnIbehcFw61fC8QS9uG9wVscNTWG8nrX8OxDNbiqq0DG2SYMwYyS0PCvFQZZn1JgO2oKdu-gLjsc_FWKeLbl7pjgcaeaATD_Q8g7fLNRddeY1_zj6MbFrOjKWx0wcUGN0LjP6fwGSws2Cy7vX1SseoN2YN5zyDV8th1LR4fWJaP5nFOWj_It5kGTzrZGJ5EgTJ8b63zkCtSMvKUVdH2tEwVfMuY61wLjJ4t5Crn8f6Oyle3AcptmGjSAohKRM7sD69nPmXiLGmdjep0w_oqyPA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bbtQwELWgFRIvFXdSCjISDyCwGsd2Lk8VRa1WSCwIqNQXZNmxza60TbZ7EXT_ih_hmzp2vKmWS19jR3E8M8fHHs8MQi-41lXmnCVFphUBwDNEVcYQV3KV5bA-iNzHO38Y5oMT_v5UnMYDt3m8VrnGxADUpq39Gfm-35f4uM6UHUzPia8a5b2rsYTGTbQNEFyChm8fHg0_fe5PWXz-85LzGC2TsnJ_zgM2pD52pyq5IKuNFSkk7v8X2_z70uQfntOwIB3fQTuRSeK3nejvohu2uYdudbUlL-6jb1_grYnFsKk-wwswaRBng007tQYvJz4n7Wjc4N-_yHD88uPgVYaBvWLbjMKNAByr44TDnQv4AP4BnHSG25_jrgbTA3RyfPT13YDEWgqk5kKsiBGVjwysLC1ylwMJ0lZow6qaGiEKU1BNlVNp6lLtMsOEKWqW1rCa6xq-ChziIdpq2sY-RthSnfMy1xSwiVOqlGCauQJ4UamptipBdD2fso6Jxn29i4kMDm9Wyk4GEmQggwzkKkGv-3emXZqNa3sfejH1PX2K7PCgnX2X0eKkssBuCsAcC8NkGQCTU0YXjquSW-5MgvbWQpbRbufySssS9LxvBovzbhTV2Hbp-wAOet5JE_So04l-JECWvd-3SlCxoS0bQ91sacajkNU79znDGU_Qm7VeXQ3r_1Oxe_1fPEG3s6DqglC-h7YWs6V9CixqoZ9FU7kEhAMcVg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UiuBLsV5HW4ngg6LBySSZy6MulkWwPmihLxKSSeIubGfKdhft_iv_iL_Jk8xFVqvg6yQhhzmXfDM55zsAT4UxVea9o0VmNMWAZ6murKW-FDrL8XyQeah3fn-cT0_Eu1N5ugPZUAsTk_YjpWUM00N22KsLEV06DSU3VSkk3VyD64G6PaTxTfLJ-F8lMJ6XQvT1MSkvr1i6dQZFqv6r8OWfaZK_3ZXGI-joFuz12JG87qTdhx3X3IYbXTfJyzvw-SOuWjiCn9FnZIVOjApsiG3PnSXrRWChnc0b8uM7PZ4_-zB9nhHEq8Q1s5gDQPp-OPF3ziVuQL4iCl2S9tu867p0F06O3n6aTGnfPYHWQsoNtbIKtYCVY0Xuc4Q9xkljeVUzK2VhC2aY9jpNfWp8Zrm0Rc3TGs9vU-OuiBruwW7TNu4BEMdMLsrcMIxGgjGtJTfcF4iESsOM0wmw4X2quqcWDx0uFipecfNSdTpQqAMVdaA2CbwY15x3xBr_nP0mqGmcGUix44N2-UX1RqK0QzxTYJRxKCbPMBR5bU3hhS6FE94mcDAoWfWeeqHC926oF055Ak_GYfSxcHGiG9euwxyMfAFpsgTudzYxSoLwONz0VgkUW9ayJer2SDOfRR7vPLCEc5HAy8Gufon191fx8P-mP4KbWTR9SZk4gN3Vcu0OEUetzOPoOD8BgPIZfg
  priority: 102
  providerName: Springer Nature
Title Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation
URI https://link.springer.com/article/10.1038/s41467-019-09845-z
https://www.ncbi.nlm.nih.gov/pubmed/31089139
https://www.proquest.com/docview/2225123503
https://www.proquest.com/docview/2231845611
https://pubmed.ncbi.nlm.nih.gov/PMC6517434
https://doaj.org/article/ae0827051e76432787fadb7f4a84e4fd
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7tQ6C9IN4ElspIHEAQiBM7Tg4IdastVaUtiKVST0R27NBKJYVuK7b9V_wRfhNjJykqdLkkUmLLE8_rc-yZAXjKlErDojC-CJX00eBpX6Za-0XCZBijf-CxjXc-G8S9IeuP-GgPmnJH9QRe7Fza2XpSw_n01eX31VtU-DdVyHjy-oI5dQ9sOE6aMO6v9-EQPZOwpRzOarjvLHOU4oKG1bEzu7sewXVEPHbzLt1yVS6j_y4Y-u9pyr-2VJ2n6t6EGzXEJO1KJm7Bnilvw7Wq6OTqDnw-x15TQ3C1_ZUsUNeRzyXR-NmaLKc2We14UpJfP_3B5Nn73nMSEsS1xJRjd1aA1HVz3G-fFY5AfiBanZPZ5aSqznQXht3TT52eX1dZ8HPG-drXPLUxg6mhIi5ihEfKcKWjNKeac6EFVVQWMgiKQBWhjrgWeRTk6OdVjqMiurgHB-WsNA-AGKpilsSKotVilErJIxUVAhFToqgy0gPaTGiW1ynIbSWMaea2wqMkq_iRIT8yx49s7cGLTZ9vVQKO_7Y-sXzatLTJs92D2fxLVutiJg3iHoHWyCCZUYgmq5BaiYLJhBlWaA-OGy5njUBmdl1s44qDyIMnm9eoi3aDRZZmtrRt0EJaREo9uF8JxYaSRqg8EFviskXq9ptyMnb5vmObTTxiHrxsBOsPWVdPxcMrSXgER6GTeO5TdgwHi_nSPEZotVAt2Bcjgdek-64Fh-12_7yP95PTwYeP-LQTd1rup0XL6dVvat4lTQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJtAASOBBAKrcWLHyQEhXtWWtsuBVtpLZezYYVdakmUfKrs_Cok_wm9i7Dyq5dFbr4mtOJ7P34w9nhmEHjOts6goLBGRVgQIzxCVGUOKlKkoAf3AExfvfNBPekfsw4APNtCPNhbGXatsOdETtalyd0a-7fYlLq4zjF9NvhFXNcp5V9sSGjUs9uzyBLZss5e770C-T6Jo5_3h2x5pqgqQnHG-IoZnLkYus1QkRQLmgLZcmzjLqeFcGEE1VYUKwyLURWRibkQehznoNZ3n1kQu0QFQ_gVQvKG7QigGojvTcdnWU8aa2JwwTrdnzDNR6CKFspRxslrTf75MwL9s27-vaP7hp_Xqb-cqutLYrfh1DbRraMOW19HFupLl8gY6_gS9xhbDFv4rngOBAHhKbKqJNXgxdhlwh6MS__pJ-qOnH3vPIgy2Mrbl0N8_wE0tHn-UtIQP4BOwgKe4-j6qKz7dREfnMse30GZZlfYOwpbqhKWJpsCEjFKleKzjQoAVlmqqrQoQbedT5k1ac1ddYyy9ez1OZS0DCTKQXgZyFaDnXZ9JndTjzNZvnJi6li4ht39QTb_IZn1LZcGWEsBwFoYZR0CDhTJaFEylzLLCBGirFbJsWGImTzEdoEfda1jfzmmjSlstXBtgXWfl0gDdrjHRjQQg6LzMWYDEGlrWhrr-phwNfQ7xxGUoj1mAXrS4Oh3W_6fi7tl_8RBd6h0e7Mv93f7ePXQ58rDnhLIttDmfLux9sN_m-oFfNBh9Pu9V-huV71hb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWi0BcEG_CLmAkkEBgNU7sODkgBCxVl4WCBCv1goId27RSNyl9aGn_FVd-BL-JsZN0VR5722vjKFPPzOfPHs8MQg-YUllkrSEiUpIA4GkiM62JTZmMElgfeOLynd_1k94hezPggy30s82FcdcqW0z0QK2rwp2Rd9y-xOV1hnHHNtciPux1n0--EddBykVa23YatYkcmOUxbN9mz_b3QNcPo6j7-tOrHmk6DJCCcb4immcuXy4zVCQ2AWqgDFc6zgqqORdaUEWllWFoQ2UjHXMtijgsYI1TRWF05IoeAPyfEzGIBr4kBmJ9vuMqr6eMNXk6YZx2ZsyjUuiyhrKUcbLaWAt9y4B_8dy_r2v-EbP1S2H3MrrUcFj8oja6K2jLlFfR-bqr5fIa-vwR3hobDNv5IzwHMAFDKrGuJkbjxdhVwx2OSvzrB-mPHr3vPY4w8GZsyqG_i4Cbvjz-WGkJH8DHwIanuPo-qrs_XUeHZzLHN9B2WZXmFsKGqoSliaKAioxSKXmsYiuAkaWKKiMDRNv5zIumxLnrtDHOfag9TvNaBznoIPc6yFcBerJ-Z1IX-Dh19EunpvVIV5zb_1BNv-aNr-fSAK8SgHYGxIwjgEQrtRKWyZQZZnWAdlsl5w1izPIT-w7Q_fVj8HUXwJGlqRZuDCCwY7w0QDdrm1hLAjTdRZyzAIkNa9kQdfNJORr6euKJq1YeswA9be3qRKz_T8Xt0__FPXQB_DN_u98_2EEXI2_1nFC2i7bn04W5A1Ruru56n8Hoy1k76W-eY1yR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+atom+tungsten+doped+ultrathin+%CE%B1-Ni%28OH%29+2+for+enhanced+electrocatalytic+water+oxidation&rft.jtitle=Nature+communications&rft.au=Yan%2C+Junqing&rft.au=Kong%2C+Lingqiao&rft.au=Ji%2C+Yujin&rft.au=White%2C+Jai&rft.date=2019-05-14&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=2149&rft_id=info:doi/10.1038%2Fs41467-019-09845-z&rft_id=info%3Apmid%2F31089139&rft.externalDocID=31089139
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon