Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode
The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic–lithiophobic gradient interfacial layer strategy in which the bott...
Saved in:
Published in | Nature communications Vol. 9; no. 1; pp. 3729 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.09.2018
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic–lithiophobic gradient interfacial layer strategy in which the bottom lithiophilic zinc oxide/carbon nanotube sublayer tightly anchors the whole layer onto the lithium foil, facilitating the formation of a stable solid electrolyte interphase, and prevents the formation of an intermediate mossy lithium corrosion layer. Together with the top lithiophobic carbon nanotube sublayer, this gradient interfacial layer can effectively suppress dendrite growth and ensure ultralong-term stable lithium stripping/plating. This strategy is further demonstrated to provide substantially improved cycle performance in copper current collector, 10 cm
2
pouch cell and lithium–sulfur batteries, which, coupled with a simple fabrication process and wide applicability in various materials for lithium-metal protection, makes the lithiophilic–lithiophobic gradient interfacial layer a favored strategy for next-generation lithium-metal batteries.
Lithium metal batteries suffer from the dendrite growth upon electrochemical cycling. Here the authors introduce a lithiophilic-lithiophobic gradient interfacial ZnO/CNT layer, which facilitates the formation of a stable solid electrolyte interphase, and suppresses the growth of lithium dendrite. |
---|---|
AbstractList | The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic–lithiophobic gradient interfacial layer strategy in which the bottom lithiophilic zinc oxide/carbon nanotube sublayer tightly anchors the whole layer onto the lithium foil, facilitating the formation of a stable solid electrolyte interphase, and prevents the formation of an intermediate mossy lithium corrosion layer. Together with the top lithiophobic carbon nanotube sublayer, this gradient interfacial layer can effectively suppress dendrite growth and ensure ultralong-term stable lithium stripping/plating. This strategy is further demonstrated to provide substantially improved cycle performance in copper current collector, 10 cm
2
pouch cell and lithium–sulfur batteries, which, coupled with a simple fabrication process and wide applicability in various materials for lithium-metal protection, makes the lithiophilic–lithiophobic gradient interfacial layer a favored strategy for next-generation lithium-metal batteries. The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic–lithiophobic gradient interfacial layer strategy in which the bottom lithiophilic zinc oxide/carbon nanotube sublayer tightly anchors the whole layer onto the lithium foil, facilitating the formation of a stable solid electrolyte interphase, and prevents the formation of an intermediate mossy lithium corrosion layer. Together with the top lithiophobic carbon nanotube sublayer, this gradient interfacial layer can effectively suppress dendrite growth and ensure ultralong-term stable lithium stripping/plating. This strategy is further demonstrated to provide substantially improved cycle performance in copper current collector, 10 cm 2 pouch cell and lithium–sulfur batteries, which, coupled with a simple fabrication process and wide applicability in various materials for lithium-metal protection, makes the lithiophilic–lithiophobic gradient interfacial layer a favored strategy for next-generation lithium-metal batteries. Lithium metal batteries suffer from the dendrite growth upon electrochemical cycling. Here the authors introduce a lithiophilic-lithiophobic gradient interfacial ZnO/CNT layer, which facilitates the formation of a stable solid electrolyte interphase, and suppresses the growth of lithium dendrite. Lithium metal batteries suffer from the dendrite growth upon electrochemical cycling. Here the authors introduce a lithiophilic-lithiophobic gradient interfacial ZnO/CNT layer, which facilitates the formation of a stable solid electrolyte interphase, and suppresses the growth of lithium dendrite. The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic-lithiophobic gradient interfacial layer strategy in which the bottom lithiophilic zinc oxide/carbon nanotube sublayer tightly anchors the whole layer onto the lithium foil, facilitating the formation of a stable solid electrolyte interphase, and prevents the formation of an intermediate mossy lithium corrosion layer. Together with the top lithiophobic carbon nanotube sublayer, this gradient interfacial layer can effectively suppress dendrite growth and ensure ultralong-term stable lithium stripping/plating. This strategy is further demonstrated to provide substantially improved cycle performance in copper current collector, 10 cm pouch cell and lithium-sulfur batteries, which, coupled with a simple fabrication process and wide applicability in various materials for lithium-metal protection, makes the lithiophilic-lithiophobic gradient interfacial layer a favored strategy for next-generation lithium-metal batteries. The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic–lithiophobic gradient interfacial layer strategy in which the bottom lithiophilic zinc oxide/carbon nanotube sublayer tightly anchors the whole layer onto the lithium foil, facilitating the formation of a stable solid electrolyte interphase, and prevents the formation of an intermediate mossy lithium corrosion layer. Together with the top lithiophobic carbon nanotube sublayer, this gradient interfacial layer can effectively suppress dendrite growth and ensure ultralong-term stable lithium stripping/plating. This strategy is further demonstrated to provide substantially improved cycle performance in copper current collector, 10 cm2 pouch cell and lithium–sulfur batteries, which, coupled with a simple fabrication process and wide applicability in various materials for lithium-metal protection, makes the lithiophilic–lithiophobic gradient interfacial layer a favored strategy for next-generation lithium-metal batteries. The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic-lithiophobic gradient interfacial layer strategy in which the bottom lithiophilic zinc oxide/carbon nanotube sublayer tightly anchors the whole layer onto the lithium foil, facilitating the formation of a stable solid electrolyte interphase, and prevents the formation of an intermediate mossy lithium corrosion layer. Together with the top lithiophobic carbon nanotube sublayer, this gradient interfacial layer can effectively suppress dendrite growth and ensure ultralong-term stable lithium stripping/plating. This strategy is further demonstrated to provide substantially improved cycle performance in copper current collector, 10 cm2 pouch cell and lithium-sulfur batteries, which, coupled with a simple fabrication process and wide applicability in various materials for lithium-metal protection, makes the lithiophilic-lithiophobic gradient interfacial layer a favored strategy for next-generation lithium-metal batteries.The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic-lithiophobic gradient interfacial layer strategy in which the bottom lithiophilic zinc oxide/carbon nanotube sublayer tightly anchors the whole layer onto the lithium foil, facilitating the formation of a stable solid electrolyte interphase, and prevents the formation of an intermediate mossy lithium corrosion layer. Together with the top lithiophobic carbon nanotube sublayer, this gradient interfacial layer can effectively suppress dendrite growth and ensure ultralong-term stable lithium stripping/plating. This strategy is further demonstrated to provide substantially improved cycle performance in copper current collector, 10 cm2 pouch cell and lithium-sulfur batteries, which, coupled with a simple fabrication process and wide applicability in various materials for lithium-metal protection, makes the lithiophilic-lithiophobic gradient interfacial layer a favored strategy for next-generation lithium-metal batteries. |
ArticleNumber | 3729 |
Author | Zhang, Huimin Li, Meng Qiu, Jingyi Lu, Lin Xiang, Yu Zhang, Wenfeng Zhang, Hao Liao, Xiaobin Zhu, Xiayu Mai, Liqiang Guan, Yuepeng Cao, Gaoping Yang, Yusheng Ming, Hai Zhao, Yan Huang, Yaqin |
Author_xml | – sequence: 1 givenname: Huimin surname: Zhang fullname: Zhang, Huimin organization: Research Institute of Chemical Defense, Beijing Institute of Technology – sequence: 2 givenname: Xiaobin surname: Liao fullname: Liao, Xiaobin organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology – sequence: 3 givenname: Yuepeng surname: Guan fullname: Guan, Yuepeng organization: State Key Laboratory of Chemical Resource Engineering, The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology – sequence: 4 givenname: Yu surname: Xiang fullname: Xiang, Yu organization: Research Institute of Chemical Defense – sequence: 5 givenname: Meng surname: Li fullname: Li, Meng organization: Research Institute of Chemical Defense – sequence: 6 givenname: Wenfeng surname: Zhang fullname: Zhang, Wenfeng organization: Research Institute of Chemical Defense – sequence: 7 givenname: Xiayu surname: Zhu fullname: Zhu, Xiayu organization: Research Institute of Chemical Defense – sequence: 8 givenname: Hai surname: Ming fullname: Ming, Hai organization: Research Institute of Chemical Defense – sequence: 9 givenname: Lin surname: Lu fullname: Lu, Lin organization: Research Institute of Chemical Defense – sequence: 10 givenname: Jingyi surname: Qiu fullname: Qiu, Jingyi organization: Research Institute of Chemical Defense – sequence: 11 givenname: Yaqin surname: Huang fullname: Huang, Yaqin organization: State Key Laboratory of Chemical Resource Engineering, The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology – sequence: 12 givenname: Gaoping surname: Cao fullname: Cao, Gaoping organization: Research Institute of Chemical Defense – sequence: 13 givenname: Yusheng surname: Yang fullname: Yang, Yusheng organization: Research Institute of Chemical Defense – sequence: 14 givenname: Liqiang orcidid: 0000-0003-4259-7725 surname: Mai fullname: Mai, Liqiang email: mlq518@whut.edu.cn organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology – sequence: 15 givenname: Yan orcidid: 0000-0002-1234-4455 surname: Zhao fullname: Zhao, Yan email: yan2000@whut.edu.cn organization: State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology – sequence: 16 givenname: Hao surname: Zhang fullname: Zhang, Hao email: dr.h.zhang@hotmail.com organization: Research Institute of Chemical Defense |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30213936$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uktv1DAYtFARLUv_AAcUiQuXgB07iX1BQhWPSitxgRuS5ceXxCsnXuws0u6vx7tZSttDffBzZr6xPS_RxRQmQOg1we8JpvxDYoQ1bYkJL3FDqqY8PENXFWakJG1FL-7NL9F1ShucGxWEM_YCXVJcESpoc4V-rd08uLAdnHem9OdF0M4UfVTWwTQXbpohdso45Quv9hCLLsRCFYPrB78v0qy0h-LE3Y3FCHPGqSlYeIWed8onuD6PK_Tzy-cfN9_K9fevtzef1qVhdX0oCXCmRYOFxayBuuXM1hZ0RzVnVZU9Y6OEahUVVhhorVWCdBiAVlgw3hm6QreLrg1qI7fRjSruZVBOnjZC7KWKszMeJFaQ65ham7ZmojOaU0YrDURzzUhns9bHRWu70yNYkx8gKv9A9OHJ5AbZhz-yIbQluVuhd2eBGH7vIM1ydMmA92qCsEuyIrjGDaa0ztC3j6CbsItTfqojijY1J6LJqDf3Hd1Z-feJGVAtABNDShG6OwjB8hgWuYRF5rDIU1jkIZP4I5Jxs5pdON7K-aepdKGmXGfqIf63_QTrL2Zs1WE |
CitedBy_id | crossref_primary_10_1002_ente_202000694 crossref_primary_10_1016_j_jallcom_2021_160882 crossref_primary_10_1002_adma_202309339 crossref_primary_10_1002_smll_202102347 crossref_primary_10_1002_anie_202116048 crossref_primary_10_1021_acsami_0c05065 crossref_primary_10_1002_adma_202409062 crossref_primary_10_1002_adfm_202409812 crossref_primary_10_1016_j_cej_2022_138570 crossref_primary_10_1002_aenm_202403640 crossref_primary_10_1002_smll_201900687 crossref_primary_10_1007_s12274_019_2519_0 crossref_primary_10_1016_j_jechem_2024_07_062 crossref_primary_10_1002_adma_202206228 crossref_primary_10_1016_j_jechem_2020_06_004 crossref_primary_10_1002_smll_202300868 crossref_primary_10_1039_D1EE01140E crossref_primary_10_1007_s41918_020_00071_6 crossref_primary_10_1021_acsaem_3c02291 crossref_primary_10_1021_acs_nanolett_1c03207 crossref_primary_10_1039_D1TA09070D crossref_primary_10_1016_j_ensm_2024_103606 crossref_primary_10_1039_D0NR08343G crossref_primary_10_1039_D4TA02003K crossref_primary_10_1007_s40820_023_01177_4 crossref_primary_10_1002_sstr_202400311 crossref_primary_10_1016_j_joule_2019_07_025 crossref_primary_10_1016_j_cej_2024_151559 crossref_primary_10_1002_eem2_12056 crossref_primary_10_1016_j_ensm_2021_03_008 crossref_primary_10_1016_j_isci_2019_04_028 crossref_primary_10_1016_j_cej_2024_156790 crossref_primary_10_3390_nano14131158 crossref_primary_10_1002_aenm_201900487 crossref_primary_10_7498_aps_69_20200906 crossref_primary_10_1002_cnma_202300202 crossref_primary_10_1016_j_mtener_2024_101672 crossref_primary_10_1002_smll_202001784 crossref_primary_10_1002_smll_202000699 crossref_primary_10_1016_j_jechem_2020_11_034 crossref_primary_10_1021_acsami_9b05056 crossref_primary_10_1002_ente_202400374 crossref_primary_10_1002_smll_202312150 crossref_primary_10_1002_adfm_202205304 crossref_primary_10_1016_j_mtener_2020_100465 crossref_primary_10_1039_D1TA10257E crossref_primary_10_1021_acsaem_9b00014 crossref_primary_10_1016_j_ensm_2021_07_032 crossref_primary_10_1007_s11426_022_1421_7 crossref_primary_10_1016_j_jechem_2020_07_036 crossref_primary_10_1039_D1TA06747H crossref_primary_10_1002_adma_202004128 crossref_primary_10_1016_j_cej_2021_130107 crossref_primary_10_1021_acsami_0c08355 crossref_primary_10_1002_anie_201813905 crossref_primary_10_1021_acsami_0c18831 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1002_adfm_202400348 crossref_primary_10_1021_acs_chemrev_0c01100 crossref_primary_10_1021_acsami_1c21783 crossref_primary_10_1016_j_jpowsour_2019_227214 crossref_primary_10_1016_j_jcis_2022_12_010 crossref_primary_10_1038_s41467_019_12952_6 crossref_primary_10_1002_inf2_12597 crossref_primary_10_1016_j_ensm_2019_06_019 crossref_primary_10_1016_j_jallcom_2024_178118 crossref_primary_10_1002_smll_202001992 crossref_primary_10_1002_cey2_95 crossref_primary_10_1016_j_jechem_2021_07_001 crossref_primary_10_1039_D0CS00867B crossref_primary_10_1126_sciadv_adf1550 crossref_primary_10_1007_s11581_024_05421_8 crossref_primary_10_1016_j_matchemphys_2023_128235 crossref_primary_10_1038_s41467_020_14505_8 crossref_primary_10_1021_acs_nanolett_0c03206 crossref_primary_10_1002_smll_202205233 crossref_primary_10_1021_jacs_3c08733 crossref_primary_10_1002_adfm_202101261 crossref_primary_10_1016_j_cej_2021_134380 crossref_primary_10_1002_idm2_12042 crossref_primary_10_1002_smll_202406357 crossref_primary_10_3390_electrochem4020013 crossref_primary_10_1016_j_electacta_2021_139668 crossref_primary_10_1021_acsaem_1c03976 crossref_primary_10_1016_j_cej_2022_135416 crossref_primary_10_1021_acs_energyfuels_1c01602 crossref_primary_10_1002_cey2_147 crossref_primary_10_1002_advs_202104829 crossref_primary_10_1021_acsami_9b09551 crossref_primary_10_1016_j_jechem_2019_07_010 crossref_primary_10_1021_acs_nanolett_0c00618 crossref_primary_10_1039_C9RA09481D crossref_primary_10_1016_j_jmst_2020_11_003 crossref_primary_10_1016_j_carbon_2020_06_073 crossref_primary_10_1016_j_electacta_2021_139787 crossref_primary_10_1002_aenm_201902697 crossref_primary_10_1038_s41467_019_09932_1 crossref_primary_10_1039_C9TA11250B crossref_primary_10_20964_2021_04_08 crossref_primary_10_1016_j_est_2021_103641 crossref_primary_10_1002_eem2_12387 crossref_primary_10_1002_adfm_202420014 crossref_primary_10_1002_adma_202201801 crossref_primary_10_1002_celc_202000858 crossref_primary_10_1016_j_electacta_2022_140333 crossref_primary_10_1021_acsenergylett_1c00551 crossref_primary_10_1002_smll_201904216 crossref_primary_10_1039_C9TA08798B crossref_primary_10_1016_j_apsusc_2021_150247 crossref_primary_10_1021_acsami_1c19199 crossref_primary_10_1016_j_jpowsour_2023_233887 crossref_primary_10_1021_acsami_0c22046 crossref_primary_10_1002_aesr_202100186 crossref_primary_10_1002_aenm_202303046 crossref_primary_10_1016_j_cej_2024_149781 crossref_primary_10_1016_j_ensm_2021_08_023 crossref_primary_10_1016_j_jpowsour_2020_228461 crossref_primary_10_1002_aenm_202002297 crossref_primary_10_1016_j_jmst_2020_03_040 crossref_primary_10_1002_ange_201905251 crossref_primary_10_1002_eem2_12132 crossref_primary_10_1021_acsmaterialslett_0c00001 crossref_primary_10_1002_ange_202116048 crossref_primary_10_1016_j_jechem_2018_12_013 crossref_primary_10_1002_smll_202103744 crossref_primary_10_1002_aenm_201901932 crossref_primary_10_1116_6_0004174 crossref_primary_10_1016_j_cej_2023_142627 crossref_primary_10_1016_j_ensm_2023_03_030 crossref_primary_10_1016_j_esci_2022_02_003 crossref_primary_10_1016_j_isci_2020_101586 crossref_primary_10_1016_j_esci_2022_02_002 crossref_primary_10_1016_j_est_2023_108767 crossref_primary_10_1016_j_jcis_2024_03_081 crossref_primary_10_1002_admi_201902113 crossref_primary_10_3390_inorganics10010005 crossref_primary_10_1039_D0TA06853E crossref_primary_10_1016_j_jechem_2019_09_028 crossref_primary_10_1016_j_ensm_2025_104200 crossref_primary_10_1016_j_ensm_2021_03_016 crossref_primary_10_1002_adfm_202006380 crossref_primary_10_1016_j_jmst_2022_12_055 crossref_primary_10_1016_j_ensm_2024_103191 crossref_primary_10_1002_aenm_202403623 crossref_primary_10_1016_j_ensm_2024_103192 crossref_primary_10_1021_acsnano_0c05636 crossref_primary_10_1002_aenm_202400108 crossref_primary_10_1021_jacs_0c09649 crossref_primary_10_1016_j_ssi_2023_116360 crossref_primary_10_1021_acs_nanolett_0c01085 crossref_primary_10_1016_j_jechem_2019_09_031 crossref_primary_10_1021_acs_chemmater_0c03529 crossref_primary_10_1039_D2RA08027C crossref_primary_10_1002_advs_202300985 crossref_primary_10_1039_D0NR00971G crossref_primary_10_1021_acsnano_9b06653 crossref_primary_10_1016_j_cej_2021_130939 crossref_primary_10_1021_acs_nanolett_9b01334 crossref_primary_10_1039_D1TA06836A crossref_primary_10_1039_D0TA10884G crossref_primary_10_1002_smll_202301731 crossref_primary_10_1016_j_carbon_2024_118941 crossref_primary_10_1016_j_jechem_2022_10_026 crossref_primary_10_1002_cssc_202400569 crossref_primary_10_1039_D0EE02827D crossref_primary_10_1002_aenm_201900260 crossref_primary_10_1021_acsnano_1c04642 crossref_primary_10_1039_D0TA07552C crossref_primary_10_1016_j_jechem_2022_08_013 crossref_primary_10_1002_smll_202102196 crossref_primary_10_1016_j_electacta_2023_142268 crossref_primary_10_1002_sus2_95 crossref_primary_10_1039_D0NR02258F crossref_primary_10_1016_j_cej_2019_04_068 crossref_primary_10_1016_j_jcis_2025_01_095 crossref_primary_10_1039_C9TA09396F crossref_primary_10_1002_adfm_201908868 crossref_primary_10_1021_acsami_0c20099 crossref_primary_10_1039_D4EB00034J crossref_primary_10_1186_s11671_021_03508_z crossref_primary_10_1039_D3CS00495C crossref_primary_10_1002_adfm_202202771 crossref_primary_10_1002_smll_202106427 crossref_primary_10_1016_j_jechem_2020_11_016 crossref_primary_10_1002_smll_202006578 crossref_primary_10_1002_smll_202300076 crossref_primary_10_1002_aenm_202204075 crossref_primary_10_1016_j_jechem_2020_09_004 crossref_primary_10_1039_C9TA11311H crossref_primary_10_1016_j_cej_2020_126861 crossref_primary_10_1016_j_cej_2021_129739 crossref_primary_10_1002_adsu_202300061 crossref_primary_10_1002_advs_201900943 crossref_primary_10_1002_advs_202403797 crossref_primary_10_1002_aenm_202002926 crossref_primary_10_1016_j_ensm_2020_07_015 crossref_primary_10_1016_j_cej_2023_142713 crossref_primary_10_1016_j_jechem_2019_08_008 crossref_primary_10_1016_j_jechem_2022_12_004 crossref_primary_10_1021_jacs_1c04222 crossref_primary_10_1002_aenm_202103187 crossref_primary_10_1007_s12274_022_4261_2 crossref_primary_10_1002_adma_202210447 crossref_primary_10_1016_j_cej_2022_137401 crossref_primary_10_1021_acscentsci_0c00351 crossref_primary_10_1039_C9TA09232C crossref_primary_10_1016_j_est_2023_108178 crossref_primary_10_1002_aenm_202303088 crossref_primary_10_1016_j_cej_2021_133689 crossref_primary_10_1039_D2CP04032H crossref_primary_10_1021_acsaem_0c01080 crossref_primary_10_1002_bte2_20230070 crossref_primary_10_1002_adfm_201907343 crossref_primary_10_1007_s41918_023_00185_7 crossref_primary_10_1002_aenm_202003689 crossref_primary_10_1016_j_ensm_2021_02_043 crossref_primary_10_1021_acs_iecr_3c02202 crossref_primary_10_1002_cey2_15 crossref_primary_10_1016_j_ensm_2024_103205 crossref_primary_10_1007_s12274_020_2625_z crossref_primary_10_1039_C9TA09505E crossref_primary_10_1016_j_jechem_2020_08_034 crossref_primary_10_1016_j_jcis_2025_01_151 crossref_primary_10_1016_j_enchem_2021_100063 crossref_primary_10_3389_fchem_2019_00721 crossref_primary_10_1016_j_jmps_2024_105878 crossref_primary_10_1002_adfm_202211180 crossref_primary_10_1002_adfm_202110110 crossref_primary_10_1002_advs_202002212 crossref_primary_10_1039_D1EE01341F crossref_primary_10_1016_j_enchem_2024_100117 crossref_primary_10_3389_fmats_2020_00071 crossref_primary_10_1021_acsami_9b09373 crossref_primary_10_1002_adma_202106565 crossref_primary_10_3390_nano13233007 crossref_primary_10_1002_aenm_202302687 crossref_primary_10_1002_adma_202006702 crossref_primary_10_1002_eom2_12010 crossref_primary_10_1016_j_matt_2020_10_014 crossref_primary_10_1039_D3EE04358D crossref_primary_10_1002_anie_201905251 crossref_primary_10_1002_aenm_202001257 crossref_primary_10_1039_D1MA00065A crossref_primary_10_1016_j_matt_2022_01_017 crossref_primary_10_1021_acs_energyfuels_1c01202 crossref_primary_10_1016_j_memsci_2022_120287 crossref_primary_10_1039_C9TA04240G crossref_primary_10_1002_batt_202200394 crossref_primary_10_1002_nano_202000003 crossref_primary_10_1002_adfm_201905940 crossref_primary_10_1002_adfm_202204768 crossref_primary_10_1007_s12598_023_02565_w crossref_primary_10_1016_j_jechem_2021_06_027 crossref_primary_10_1021_acsnano_4c04507 crossref_primary_10_1016_j_nanoen_2020_105308 crossref_primary_10_1016_j_ensm_2019_08_024 crossref_primary_10_1021_acsaem_9b01032 crossref_primary_10_1021_acsami_2c11673 crossref_primary_10_3390_batteries9010030 crossref_primary_10_1002_ece2_55 crossref_primary_10_1016_j_jiec_2023_01_046 crossref_primary_10_1002_adma_202105029 crossref_primary_10_1007_s10853_020_04633_3 crossref_primary_10_3390_en18020261 crossref_primary_10_1002_ange_201813905 crossref_primary_10_1002_chem_201904631 crossref_primary_10_1016_j_ensm_2019_12_014 crossref_primary_10_1021_acsami_9b16363 crossref_primary_10_1039_C9CS00636B crossref_primary_10_1016_j_jechem_2020_04_038 crossref_primary_10_1021_acsami_1c08858 crossref_primary_10_1016_j_cej_2024_158554 crossref_primary_10_1007_s10853_019_04218_9 crossref_primary_10_1177_09506608251318467 crossref_primary_10_1021_acsnano_2c09037 crossref_primary_10_1007_s40843_021_1764_x crossref_primary_10_1038_s41467_022_31943_8 crossref_primary_10_1002_adfm_202409431 crossref_primary_10_1016_j_ensm_2022_12_016 crossref_primary_10_1021_acsami_2c18752 crossref_primary_10_1002_aenm_202002580 crossref_primary_10_1021_acsnano_2c04025 crossref_primary_10_1016_j_mtener_2022_101134 crossref_primary_10_3389_fenrg_2019_00071 crossref_primary_10_1016_j_jechem_2021_04_044 crossref_primary_10_1021_acs_inorgchem_3c03745 crossref_primary_10_1016_j_cej_2020_127872 crossref_primary_10_1002_aenm_202200799 crossref_primary_10_1016_j_electacta_2022_139976 crossref_primary_10_1016_j_ensm_2019_03_029 crossref_primary_10_1016_j_jpowsour_2019_227632 crossref_primary_10_1002_adfm_202010499 crossref_primary_10_1016_j_cej_2021_132156 crossref_primary_10_1016_j_mtnano_2019_100049 crossref_primary_10_1039_D3CC00412K crossref_primary_10_1002_adfm_201902499 crossref_primary_10_1021_acsaem_3c00179 crossref_primary_10_1039_C9TA12910C crossref_primary_10_1002_smll_202205142 crossref_primary_10_1002_smtd_201900177 crossref_primary_10_1002_adfm_202315201 crossref_primary_10_1002_bte2_20230030 crossref_primary_10_1016_j_memsci_2020_118996 crossref_primary_10_1002_adma_202002550 crossref_primary_10_1039_C9TA13678A crossref_primary_10_1002_adfm_202401442 crossref_primary_10_1016_j_ensm_2021_05_030 crossref_primary_10_1038_s41467_023_36386_3 crossref_primary_10_1016_j_cclet_2023_109122 crossref_primary_10_1002_adfm_202408758 crossref_primary_10_1002_smtd_201800551 crossref_primary_10_1039_D2NR04158H crossref_primary_10_1039_C9SE00561G crossref_primary_10_1002_smtd_201800546 crossref_primary_10_1002_adfm_202000585 crossref_primary_10_1016_j_jpowsour_2020_228055 crossref_primary_10_1016_j_jallcom_2022_164925 crossref_primary_10_1002_eem2_12525 crossref_primary_10_1016_j_ensm_2021_05_027 crossref_primary_10_1021_acsami_9b20777 crossref_primary_10_1016_j_nxnano_2023_100008 crossref_primary_10_1021_acsami_3c08109 crossref_primary_10_1016_j_carbon_2023_118498 crossref_primary_10_1016_j_cclet_2021_08_097 crossref_primary_10_1002_adfm_202008044 crossref_primary_10_1002_adma_202401482 crossref_primary_10_1149_1945_7111_ab6b11 crossref_primary_10_1016_j_gee_2022_08_002 crossref_primary_10_1016_j_xcrp_2020_100119 crossref_primary_10_1039_C9TA13778E crossref_primary_10_1016_j_enchem_2019_100003 crossref_primary_10_1021_acsami_0c00431 crossref_primary_10_1021_acs_nanolett_8b04919 crossref_primary_10_1007_s12274_023_6187_8 crossref_primary_10_1016_j_nanoen_2019_05_011 crossref_primary_10_34133_2022_9846537 crossref_primary_10_1002_aenm_201803722 crossref_primary_10_1002_aenm_201804019 crossref_primary_10_1016_j_carbon_2024_119870 crossref_primary_10_1016_j_jpowsour_2021_229773 crossref_primary_10_1021_acsnano_2c01186 crossref_primary_10_1039_D0EE03181J crossref_primary_10_1016_j_cej_2023_146489 crossref_primary_10_1002_celc_202100678 crossref_primary_10_1016_j_est_2024_111618 crossref_primary_10_1016_j_mtnano_2020_100103 crossref_primary_10_1039_D0TA03929B crossref_primary_10_1016_j_ensm_2022_02_003 crossref_primary_10_1039_C9TA05335B crossref_primary_10_23919_IEN_2022_0029 crossref_primary_10_1038_s41467_019_09211_z crossref_primary_10_1002_cey2_181 crossref_primary_10_1039_D2CE00595F crossref_primary_10_1038_s41565_019_0427_9 crossref_primary_10_1016_j_cej_2022_138209 crossref_primary_10_1002_aenm_202101544 crossref_primary_10_3389_fenrg_2019_00157 crossref_primary_10_1002_adfm_201910532 crossref_primary_10_1039_C9TA08721D crossref_primary_10_1016_j_ensm_2019_07_021 crossref_primary_10_1021_acsaem_1c00664 crossref_primary_10_1016_j_cclet_2024_110186 crossref_primary_10_1016_j_scib_2020_12_029 crossref_primary_10_1039_D1SC06181J crossref_primary_10_1016_j_ensm_2019_02_001 crossref_primary_10_1021_acsaem_2c01621 crossref_primary_10_1039_C9TA12337G |
Cites_doi | 10.1038/35104644 10.1021/cr020731c 10.1021/jacs.6b13314 10.1016/j.ensm.2017.06.016 10.1016/0013-4686(90)87055-7 10.1149/1.2401708 10.1021/nl503125u 10.1039/C0JM02305A 10.1038/451652a 10.1039/C3EE40795K 10.1038/ncomms9058 10.1016/j.nanoen.2017.05.015 10.1021/ja312241y 10.1021/acs.chemrev.7b00115 10.1149/1.1502684 10.1016/j.ensm.2017.01.006 10.1038/ncomms4710 10.1016/0013-4686(77)85057-3 10.1038/nnano.2017.16 10.1126/sciadv.aao3170 10.1038/nmat3066 10.1038/nature11475 10.1038/nnano.2016.32 10.1038/nmat3602 10.1016/j.nanoen.2017.06.030 10.1021/acs.nanolett.6b04695 10.1038/ncomms10992 10.1038/ncomms3255 10.1002/adma.201504526 10.1016/j.ensm.2017.10.016 10.1038/nnano.2014.152 10.1016/j.joule.2017.10.007 10.1021/nl5046318 10.1038/nenergy.2017.91 10.1149/1.2129354 10.1039/C7TA03699J 10.1016/S0167-2738(02)00080-2 10.1038/ncomms7362 10.1038/ncomms8436 10.1016/j.ensm.2016.02.004 10.1016/j.ensm.2016.01.007 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-018-06126-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_0ae09dc5bc7549fcb83432be1b8b41fd PMC6137161 30213936 10_1038_s41467_018_06126_z |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c455z-1e84b9609d046e5784d5debf3b84229180ca9a7a39d9ce7dda91f0ee320948fc3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:32:48 EDT 2025 Thu Aug 21 14:14:44 EDT 2025 Tue Aug 05 11:18:38 EDT 2025 Wed Aug 13 07:35:33 EDT 2025 Thu Apr 03 07:05:55 EDT 2025 Tue Jul 01 02:21:17 EDT 2025 Thu Apr 24 23:06:35 EDT 2025 Fri Feb 21 02:39:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455z-1e84b9609d046e5784d5debf3b84229180ca9a7a39d9ce7dda91f0ee320948fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4259-7725 0000-0002-1234-4455 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-018-06126-z |
PMID | 30213936 |
PQID | 2103658196 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0ae09dc5bc7549fcb83432be1b8b41fd pubmedcentral_primary_oai_pubmedcentral_nih_gov_6137161 proquest_miscellaneous_2105060335 proquest_journals_2103658196 pubmed_primary_30213936 crossref_primary_10_1038_s41467_018_06126_z crossref_citationtrail_10_1038_s41467_018_06126_z springer_journals_10_1038_s41467_018_06126_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180913 |
PublicationDateYYYYMMDD | 2018-09-13 |
PublicationDate_xml | – month: 9 year: 2018 text: 20180913 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Tarascon, Armand (CR1) 2001; 414 Jiao (CR42) 2018; 2 Lin (CR26) 2016; 11 Ding (CR37) 2013; 135 Zheng (CR10) 2014; 9 Luo, Fang, Wu (CR32) 2017; 6 Kamaya (CR20) 2011; 10 Armand, Tarascon (CR2) 2008; 451 Aurbach (CR39) 1990; 35 Rauh, Brummer (CR7) 1977; 22 Zhao (CR24) 2016; 3 Xu (CR11) 2014; 7 Freunberger (CR41) 2017; 2 Epelboin, Froment, Garreau, Thevenin, Warin (CR6) 1980; 127 Lang, Qi, Luo, Wu (CR19) 2017; 7 Lin, Liu, Cui (CR18) 2017; 12 Li, Yin, Yang, Guo (CR36) 2016; 28 Mukherjee (CR14) 2014; 5 Wang (CR28) 2018; 11 Selim, Bro (CR5) 1974; 121 Yan (CR30) 2014; 14 Liu (CR34) 2017; 139 Jin (CR29) 2017; 37 Cheng, Zhang, Zhao, Zhang (CR17) 2017; 117 Umeda (CR38) 2011; 21 Hu (CR40) 2017; 17 Whittingham (CR4) 2004; 104 Baloch (CR23) 2017; 9 Qian (CR12) 2015; 6 Aurbach (CR9) 2002; 149 Liu (CR25) 2016; 7 Huang, Tang, Najafabadi, Chen, Ren (CR33) 2017; 38 Li (CR13) 2015; 6 Bouchet (CR22) 2013; 12 Aurbach, Zinigrad, Cohen, Teller (CR8) 2002; 148 Xie (CR35) 2017; 3 Yang, Yin, Zhang, Li, Guo (CR15) 2015; 6 Liang (CR31) 2015; 15 Shui (CR16) 2013; 4 Chu, Majumdar (CR3) 2012; 488 Sheng (CR27) 2017; 5 Wan (CR21) 2016; 4 S Jiao (6126_CR42) 2018; 2 DC Lin (6126_CR18) 2017; 12 S Chu (6126_CR3) 2012; 488 XB Cheng (6126_CR17) 2017; 117 HL Wan (6126_CR21) 2016; 4 L Hu (6126_CR40) 2017; 17 MS Whittingham (6126_CR4) 2004; 104 DC Lin (6126_CR26) 2016; 11 CZ Zhao (6126_CR24) 2016; 3 J Qian (6126_CR12) 2015; 6 M Armand (6126_CR2) 2008; 451 LY Wang (6126_CR28) 2018; 11 GA Umeda (6126_CR38) 2011; 21 W Li (6126_CR13) 2015; 6 SY Huang (6126_CR33) 2017; 38 RD Rauh (6126_CR7) 1977; 22 S Freunberger (6126_CR41) 2017; 2 K Liu (6126_CR34) 2017; 139 JM Tarascon (6126_CR1) 2001; 414 M Baloch (6126_CR23) 2017; 9 G Zheng (6126_CR10) 2014; 9 R Mukherjee (6126_CR14) 2014; 5 JL Shui (6126_CR16) 2013; 4 CB Jin (6126_CR29) 2017; 37 NW Li (6126_CR36) 2016; 28 JL Lang (6126_CR19) 2017; 7 Z Liang (6126_CR31) 2015; 15 D Aurbach (6126_CR39) 1990; 35 I Epelboin (6126_CR6) 1980; 127 W Xu (6126_CR11) 2014; 7 N Kamaya (6126_CR20) 2011; 10 K Yan (6126_CR30) 2014; 14 CP Yang (6126_CR15) 2015; 6 J Luo (6126_CR32) 2017; 6 F Ding (6126_CR37) 2013; 135 D Aurbach (6126_CR8) 2002; 148 O Sheng (6126_CR27) 2017; 5 R Bouchet (6126_CR22) 2013; 12 YY Liu (6126_CR25) 2016; 7 J Xie (6126_CR35) 2017; 3 R Selim (6126_CR5) 1974; 121 D Aurbach (6126_CR9) 2002; 149 25822282 - Nano Lett. 2015 May 13;15(5):2910-6 26299379 - Nat Commun. 2015 Aug 24;6:8058 25064396 - Nat Nanotechnol. 2014 Aug;9(8):618-23 26698171 - Adv Mater. 2016 Mar 2;28(9):1853-8 27936780 - Nano Lett. 2017 Jan 11;17(1):565-571 28753298 - Chem Rev. 2017 Aug 9;117(15):10403-10473 15669156 - Chem Rev. 2004 Oct;104(10):4271-301 23929396 - Nat Commun. 2013;4:2255 24751669 - Nat Commun. 2014 Apr 22;5:3710 26081242 - Nat Commun. 2015 Jun 17;6:7436 23542871 - Nat Mater. 2013 May;12(5):452-7 26987481 - Nat Commun. 2016 Mar 18;7:10992 26999479 - Nat Nanotechnol. 2016 Jul;11(7):626-32 11713543 - Nature. 2001 Nov 15;414(6861):359-67 28265117 - Nat Nanotechnol. 2017 Mar 7;12(3):194-206 28303712 - J Am Chem Soc. 2017 Apr 5;139(13):4815-4820 23448508 - J Am Chem Soc. 2013 Mar 20;135(11):4450-6 25166749 - Nano Lett. 2014 Oct 8;14(10):6016-22 21804556 - Nat Mater. 2011 Jul 31;10(9):682-6 25698340 - Nat Commun. 2015 Feb 20;6:6362 29202031 - Sci Adv. 2017 Nov 29;3(11):eaao3170 22895334 - Nature. 2012 Aug 16;488(7411):294-303 18256660 - Nature. 2008 Feb 7;451(7179):652-7 |
References_xml | – volume: 414 start-page: 359 year: 2001 end-page: 367 ident: CR1 article-title: Issues and challenges facing rechargeable lithium batteries publication-title: Nature doi: 10.1038/35104644 – volume: 104 start-page: 4271 year: 2004 end-page: 4302 ident: CR4 article-title: Lithium batteries and cathode materials publication-title: Chem. Rev. doi: 10.1021/cr020731c – volume: 139 start-page: 4815 year: 2017 end-page: 4820 ident: CR34 article-title: Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b13314 – volume: 9 start-page: 141 year: 2017 end-page: 149 ident: CR23 article-title: Variations on Li N protective coating using ex-situ and in-situ techniques for Li in sulphur batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.06.016 – volume: 35 start-page: 625 year: 1990 end-page: 638 ident: CR39 article-title: The electrochemical behaviour of 1,3-dioxolane—LiClO4solutions—I. Uncontaminated solutions publication-title: Electrochim. Acta doi: 10.1016/0013-4686(90)87055-7 – volume: 121 start-page: 1457 year: 1974 end-page: 1459 ident: CR5 article-title: Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte publication-title: J. Electrochem. Soc. doi: 10.1149/1.2401708 – volume: 14 start-page: 6016 year: 2014 end-page: 6022 ident: CR30 article-title: Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode publication-title: Nano Lett. doi: 10.1021/nl503125u – volume: 6 start-page: 1701482 year: 2017 end-page: 1701488 ident: CR32 article-title: High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes publication-title: Adv. Energy Mater. – volume: 21 start-page: 1593 year: 2011 end-page: 1599 ident: CR38 article-title: Protection of lithium metal surfaces using tetraethoxysilane publication-title: J. Mater. Chem. doi: 10.1039/C0JM02305A – volume: 451 start-page: 652 year: 2008 end-page: 657 ident: CR2 article-title: Building better batteries publication-title: Nature doi: 10.1038/451652a – volume: 7 start-page: 513 year: 2014 end-page: 537 ident: CR11 article-title: Lithium metal anodes for rechargeable batteries publication-title: Energy Environ. Sci. doi: 10.1039/C3EE40795K – volume: 6 start-page: 8058 year: 2015 end-page: 8066 ident: CR15 article-title: Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes publication-title: Nat. Commun. doi: 10.1038/ncomms9058 – volume: 37 start-page: 177 year: 2017 end-page: 186 ident: CR29 article-title: 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.015 – volume: 135 start-page: 4450 year: 2013 end-page: 4456 ident: CR37 article-title: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312241y – volume: 117 start-page: 10403 year: 2017 end-page: 10473 ident: CR17 article-title: Toward safe lithium metal anode in rechargeable batteries: a review publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00115 – volume: 149 start-page: A1267 year: 2002 end-page: A1277 ident: CR9 article-title: Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.1502684 – volume: 7 start-page: 115 year: 2017 end-page: 129 ident: CR19 article-title: High performance lithium metal anode: progress and prospects publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.01.006 – volume: 5 start-page: 3710 year: 2014 end-page: 3719 ident: CR14 article-title: Defect-induced plating of lithium metal within porous graphene networks publication-title: Nat. Commun. doi: 10.1038/ncomms4710 – volume: 22 start-page: 75 year: 1977 end-page: 83 ident: CR7 article-title: The effect of additives on lithium cycling in propylene carbonate publication-title: Electrochim. Acta doi: 10.1016/0013-4686(77)85057-3 – volume: 12 start-page: 194 year: 2017 end-page: 206 ident: CR18 article-title: Reviving the lithium metal anode for high-energy batteries publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.16 – volume: 3 start-page: 3170 year: 2017 end-page: 3178 ident: CR35 article-title: Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode publication-title: Sci. Adv. doi: 10.1126/sciadv.aao3170 – volume: 10 start-page: 682 year: 2011 end-page: 686 ident: CR20 article-title: A lithium superionic conductor publication-title: Nat. Mater. doi: 10.1038/nmat3066 – volume: 488 start-page: 294 year: 2012 end-page: 303 ident: CR3 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature doi: 10.1038/nature11475 – volume: 11 start-page: 626 year: 2016 end-page: 632 ident: CR26 article-title: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.32 – volume: 12 start-page: 452 year: 2013 end-page: 457 ident: CR22 article-title: Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries publication-title: Nat. Mater. doi: 10.1038/nmat3602 – volume: 38 start-page: 504 year: 2017 end-page: 509 ident: CR33 article-title: A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.030 – volume: 17 start-page: 565 year: 2017 end-page: 571 ident: CR40 article-title: Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04695 – volume: 7 start-page: 10992 year: 2016 end-page: 11000 ident: CR25 article-title: Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode publication-title: Nat. Commun. doi: 10.1038/ncomms10992 – volume: 4 start-page: 2255 year: 2013 end-page: 2261 ident: CR16 article-title: Reversibility of anodic lithium in rechargeable lithium–oxygen batteries publication-title: Nat. Commun. doi: 10.1038/ncomms3255 – volume: 28 start-page: 1853 year: 2016 end-page: 1858 ident: CR36 article-title: An artificial solid electrolyte interphase layer for stable lithium metal anodes publication-title: Adv. Mater. doi: 10.1002/adma.201504526 – volume: 11 start-page: 191 year: 2018 end-page: 196 ident: CR28 article-title: ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.10.016 – volume: 9 start-page: 618 year: 2014 end-page: 623 ident: CR10 article-title: Interconnected hollow carbon nanospheres for stable lithium metal anodes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.152 – volume: 2 start-page: 1 year: 2018 end-page: 15 ident: CR42 article-title: Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries publication-title: Joule doi: 10.1016/j.joule.2017.10.007 – volume: 15 start-page: 2910 year: 2015 end-page: 2916 ident: CR31 article-title: Polymer nanofiber-guided uniform lithium deposition for battery electrodes publication-title: Nano Lett. doi: 10.1021/nl5046318 – volume: 2 start-page: 17091 year: 2017 ident: CR41 article-title: True performance metrics in beyond-intercalation batteries publication-title: Nat. Energy doi: 10.1038/nenergy.2017.91 – volume: 127 start-page: 2100 year: 1980 end-page: 2104 ident: CR6 article-title: Behavior of secondary lithium and aluminum-lithium electrodes in propylene carbonate publication-title: J. Electrochem. Soc. doi: 10.1149/1.2129354 – volume: 5 start-page: 12934 year: 2017 end-page: 12942 ident: CR27 article-title: Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03699J – volume: 148 start-page: 405 year: 2002 end-page: 416 ident: CR8 article-title: A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions publication-title: Solid State Ion. doi: 10.1016/S0167-2738(02)00080-2 – volume: 6 start-page: 6362 year: 2015 end-page: 6370 ident: CR12 article-title: High rate and stable cycling of lithium metal anode publication-title: Nat. Commun. doi: 10.1038/ncomms7362 – volume: 6 start-page: 7436 year: 2015 end-page: 7444 ident: CR13 article-title: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth publication-title: Nat. Commun. doi: 10.1038/ncomms8436 – volume: 4 start-page: 59 year: 2016 end-page: 65 ident: CR21 article-title: Cu ZnSnS /graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.02.004 – volume: 3 start-page: 77 year: 2016 end-page: 84 ident: CR24 article-title: Li S -based ternary-salt electrolyte for robust lithium metal anode publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.01.007 – volume: 414 start-page: 359 year: 2001 ident: 6126_CR1 publication-title: Nature doi: 10.1038/35104644 – volume: 15 start-page: 2910 year: 2015 ident: 6126_CR31 publication-title: Nano Lett. doi: 10.1021/nl5046318 – volume: 3 start-page: 77 year: 2016 ident: 6126_CR24 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.01.007 – volume: 12 start-page: 452 year: 2013 ident: 6126_CR22 publication-title: Nat. Mater. doi: 10.1038/nmat3602 – volume: 37 start-page: 177 year: 2017 ident: 6126_CR29 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.015 – volume: 6 start-page: 1701482 year: 2017 ident: 6126_CR32 publication-title: Adv. Energy Mater. – volume: 5 start-page: 3710 year: 2014 ident: 6126_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms4710 – volume: 9 start-page: 141 year: 2017 ident: 6126_CR23 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.06.016 – volume: 4 start-page: 2255 year: 2013 ident: 6126_CR16 publication-title: Nat. Commun. doi: 10.1038/ncomms3255 – volume: 7 start-page: 115 year: 2017 ident: 6126_CR19 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.01.006 – volume: 149 start-page: A1267 year: 2002 ident: 6126_CR9 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1502684 – volume: 488 start-page: 294 year: 2012 ident: 6126_CR3 publication-title: Nature doi: 10.1038/nature11475 – volume: 451 start-page: 652 year: 2008 ident: 6126_CR2 publication-title: Nature doi: 10.1038/451652a – volume: 11 start-page: 191 year: 2018 ident: 6126_CR28 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.10.016 – volume: 6 start-page: 7436 year: 2015 ident: 6126_CR13 publication-title: Nat. Commun. doi: 10.1038/ncomms8436 – volume: 14 start-page: 6016 year: 2014 ident: 6126_CR30 publication-title: Nano Lett. doi: 10.1021/nl503125u – volume: 22 start-page: 75 year: 1977 ident: 6126_CR7 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(77)85057-3 – volume: 127 start-page: 2100 year: 1980 ident: 6126_CR6 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2129354 – volume: 12 start-page: 194 year: 2017 ident: 6126_CR18 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.16 – volume: 121 start-page: 1457 year: 1974 ident: 6126_CR5 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2401708 – volume: 6 start-page: 8058 year: 2015 ident: 6126_CR15 publication-title: Nat. Commun. doi: 10.1038/ncomms9058 – volume: 38 start-page: 504 year: 2017 ident: 6126_CR33 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.030 – volume: 4 start-page: 59 year: 2016 ident: 6126_CR21 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.02.004 – volume: 104 start-page: 4271 year: 2004 ident: 6126_CR4 publication-title: Chem. Rev. doi: 10.1021/cr020731c – volume: 28 start-page: 1853 year: 2016 ident: 6126_CR36 publication-title: Adv. Mater. doi: 10.1002/adma.201504526 – volume: 17 start-page: 565 year: 2017 ident: 6126_CR40 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04695 – volume: 117 start-page: 10403 year: 2017 ident: 6126_CR17 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00115 – volume: 6 start-page: 6362 year: 2015 ident: 6126_CR12 publication-title: Nat. Commun. doi: 10.1038/ncomms7362 – volume: 9 start-page: 618 year: 2014 ident: 6126_CR10 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.152 – volume: 148 start-page: 405 year: 2002 ident: 6126_CR8 publication-title: Solid State Ion. doi: 10.1016/S0167-2738(02)00080-2 – volume: 3 start-page: 3170 year: 2017 ident: 6126_CR35 publication-title: Sci. Adv. doi: 10.1126/sciadv.aao3170 – volume: 2 start-page: 1 year: 2018 ident: 6126_CR42 publication-title: Joule doi: 10.1016/j.joule.2017.10.007 – volume: 35 start-page: 625 year: 1990 ident: 6126_CR39 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(90)87055-7 – volume: 10 start-page: 682 year: 2011 ident: 6126_CR20 publication-title: Nat. Mater. doi: 10.1038/nmat3066 – volume: 139 start-page: 4815 year: 2017 ident: 6126_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b13314 – volume: 11 start-page: 626 year: 2016 ident: 6126_CR26 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.32 – volume: 135 start-page: 4450 year: 2013 ident: 6126_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312241y – volume: 5 start-page: 12934 year: 2017 ident: 6126_CR27 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03699J – volume: 21 start-page: 1593 year: 2011 ident: 6126_CR38 publication-title: J. Mater. Chem. doi: 10.1039/C0JM02305A – volume: 2 start-page: 17091 year: 2017 ident: 6126_CR41 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.91 – volume: 7 start-page: 10992 year: 2016 ident: 6126_CR25 publication-title: Nat. Commun. doi: 10.1038/ncomms10992 – volume: 7 start-page: 513 year: 2014 ident: 6126_CR11 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE40795K – reference: 28265117 - Nat Nanotechnol. 2017 Mar 7;12(3):194-206 – reference: 25698340 - Nat Commun. 2015 Feb 20;6:6362 – reference: 15669156 - Chem Rev. 2004 Oct;104(10):4271-301 – reference: 23542871 - Nat Mater. 2013 May;12(5):452-7 – reference: 26081242 - Nat Commun. 2015 Jun 17;6:7436 – reference: 28753298 - Chem Rev. 2017 Aug 9;117(15):10403-10473 – reference: 26299379 - Nat Commun. 2015 Aug 24;6:8058 – reference: 23448508 - J Am Chem Soc. 2013 Mar 20;135(11):4450-6 – reference: 25064396 - Nat Nanotechnol. 2014 Aug;9(8):618-23 – reference: 11713543 - Nature. 2001 Nov 15;414(6861):359-67 – reference: 24751669 - Nat Commun. 2014 Apr 22;5:3710 – reference: 26698171 - Adv Mater. 2016 Mar 2;28(9):1853-8 – reference: 28303712 - J Am Chem Soc. 2017 Apr 5;139(13):4815-4820 – reference: 26999479 - Nat Nanotechnol. 2016 Jul;11(7):626-32 – reference: 29202031 - Sci Adv. 2017 Nov 29;3(11):eaao3170 – reference: 21804556 - Nat Mater. 2011 Jul 31;10(9):682-6 – reference: 26987481 - Nat Commun. 2016 Mar 18;7:10992 – reference: 25166749 - Nano Lett. 2014 Oct 8;14(10):6016-22 – reference: 25822282 - Nano Lett. 2015 May 13;15(5):2910-6 – reference: 23929396 - Nat Commun. 2013;4:2255 – reference: 22895334 - Nature. 2012 Aug 16;488(7411):294-303 – reference: 18256660 - Nature. 2008 Feb 7;451(7179):652-7 – reference: 27936780 - Nano Lett. 2017 Jan 11;17(1):565-571 |
SSID | ssj0000391844 |
Score | 2.6724133 |
Snippet | The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for... Lithium metal batteries suffer from the dendrite growth upon electrochemical cycling. Here the authors introduce a lithiophilic-lithiophobic gradient... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3729 |
SubjectTerms | 147/135 639/4077 639/925 Anodes Anodic dissolution Carbon nanotubes Corrosion prevention Dendrites Dendritic structure Dissolution Fabrication Flux density Foils Humanities and Social Sciences Lithium Lithium batteries Metals multidisciplinary Nanotubes Science Science (multidisciplinary) Solid electrolytes Strategy Sulfur Zinc oxide |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEDaLGsb2xjy2iqhBwolIPSJYfE7pSmlTb3UP31zPjZJcuzwvHxHbkzMP-xo9vGHs9mxndeNCl1K0vlQ1QBkssoom4X2obdSYw_fR5dnKqPpzpsxupvuhM2EgPPAruoPJQ2RR1iA2GMm0Mhq5CBhDBBCXaRKMvznk3gqk8BkuLoYuabslU0hxcqTwmVMJQMoN6Vq53ZqJM2P87lPnrYcmfdkzzRHR8j92dECQ_HHt-n92C_gG7PeaUvH7Ivn6cL8_nwyUtlMSymx6GMI_82yKf71py4ohYtJ5Wy3nnEXRzhK7cc-Iu7q45AsbQAc9tVxf8AhCgc98PCR6x0-P3X96dlFMKhTIqrdelAKMCkcoljIMBvVMlnSC0MhhV1yijKnrrGy9tshGalLwVbQUgUabKtFE-Znv90MNTxinzVEPxlxJBBY8fMQE0PfsW6kYXTGzE6eLEL05pLjqX97mlcaMKHKrAZRW4dcHebNtcjuwaf619RFra1iRm7PwC7cVN9uL-ZS8F29_o2E3ueuUw7pUIxXA0KtirbTE6Gu2e-B6GVa5DZIxS4p8-GU1i2xOJSElaia2bHWPZ6epuST8_z2TeCKcwZBUFe7sxqx_d-rMonv0PUTxnd-rsD7YUcp_tLRcreIEQaxleZm_6DnD0JD8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6txbG-cEwLEUiHgRKUekCy_0q60TZZ9HLq_nhnHm2p59JjEjmzPjP3N2P6GkNeTiVa1jYoJ1VomGxeZa5BFNCD3S9V4lQhMv32fHJ_IL6fqNAfcVvlY5W5OTBN16D3GyI_ANRGwWoLCvFv8Ypg1CndXcwqNm-QWh5UGj3Tp6ecxxoLs51rKfFemFPpoJdPMUHKNKQ2qCdvurUeJtv9fWPPvI5N_7Jum5Wh6j9zNOJK-HwR_n9yI3QNye8gsefmQ_Pw6W5_P-gWGSzyb54fezTw9W6ZTXmuKTBHL1mLMnM4tQG8KAJZaigzG80sKsNHNI011Nxf0IgJMp7brQ3xETqaffnw8ZjmRAvNSqS3jUUuH1HIBvOEINiqDCtG1wmlZVTBGpbeNra1oQuNjHYJteFvGKCpw_nTrxWNy0PVdfEoo5p-q0QuT3Eln4SfaRYXPto1VrQrCd8NpfGYZx2QXc5N2u4U2gwgMiMAkEZhtQd6MdRYDx8a1pT-glMaSyI-dXvTLM5PNzZQ2Qm-9cr4GB7j1TuMFWhe5007yNhTkcCdjk412Za5UrCCvxs9gbriHYrvYb1IZpGQUAnr6ZFCJsSUC8JJoBNSu95Rlr6n7X7rZeaL0BlAFjisvyNudWl016_9D8ez6Xjwnd6qk6Q3j4pAcrJeb-AIg1Nq9THbyG8JxGpM priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiHcDBRmJG0TEsb1xjguiqlbABSr1gGTZzqRdKU2q7e6h--uZcR5ooSBxdGxHtmfG_saPbxh7M5sZXTjQqdS1S1XpIfUlsYhWxP2Sl0FHAtMvX2cnp2pxps_2WD6-hYmX9iOlZZymx9th769VNOlMGIpFkM_S7R12QFTtqNsH8_ni22LaWSHOc6PU8EImk-aWyjurUCTrvw1h_nlR8rfT0rgIHT9g9wf0yOd9ex-yPWgfsbt9PMmbx-zH5-X6Ytld0SZJSJsh0fll4OereLdrzYkfYlU72innjUPAzRG2cseJt7i54QgWfQM81t1c8ktAcM5d21XwhJ0ef_r-8SQdwiekQWm9TQUY5YlQrkIfGNAyVaUr8LX0RuU5jlEWXOkKJ8uqDFBUlStFnQHIHF0-Uwf5lO23XQuHjFPUqYJ8LyW88g5_YjxoSrsa8kInTIzDacPALU4hLhobz7ilsb0ILIrARhHYbcLeTnWuemaNf5b-QFKaShIrdvzQrc7toCU2c4C9DdqHAt3eOnhDz2Y9CG-8EnWVsKNRxnYw1WuLPq9EGIYzUcJeT9loZHRy4lroNrEMETFKiT191qvE1BKJKEmWEmsXO8qy09TdnHZ5EYm8EUqhuyoS9m5Uq1_N-vtQPP-_4i_YvTxqfpkKecT216sNvEQgtfavBsv5CbrKGkQ priority: 102 providerName: Springer Nature |
Title | Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode |
URI | https://link.springer.com/article/10.1038/s41467-018-06126-z https://www.ncbi.nlm.nih.gov/pubmed/30213936 https://www.proquest.com/docview/2103658196 https://www.proquest.com/docview/2105060335 https://pubmed.ncbi.nlm.nih.gov/PMC6137161 https://doaj.org/article/0ae09dc5bc7549fcb83432be1b8b41fd |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aRaC9IK4jMCoj8QaBJrYT5wGhrlqZKjYhoFIfkCLbcbZKWTKyVqL99Rw7SadC4YGXREnsxDmX-Dt2_B2AV1EkeCwN9ynPpc8SZXyVWBbRzHK_hInmjsD07Dw6nbDxlE93oEt31ArwZmtoZ_NJTeri7c8fyw_o8O-bJePi3Q1z7t4PhM1TEEb-ahf2sWeKbUaDsxbuuy8zTTCgYe3ame1VD-AuxX6PJo60-barcoz-22Don39T_jal6nqq0X2410JMMmhs4gHsmPIh3GmSTi4fwfdPs_nlrLq2IynaL9qDSs00uajdD2BzYkkk6lza4XRSSETlBLEtkcSSGxdLgohSFYa4uosrcmVQeESWVWYew2R08m146rc5FnzNOF_5gRFMWda5DANlg-7LMp4ZlVMlWBiiuPpaJjKWNMkSbeIsk0mQ942hIcaFItf0CeyVVWmeArGpqWIboLFAMSXxJkIZbo9lbsKYexB04kx1S0Bu82AUqZsIpyJttJGiNlKnjXTlwet1neuGfuOfpY-tltYlLXW2O1HVF2nriWlfGnxbzZWOMTbOtRJ2ba0ygRKKBXnmwVGn47QzxxQDY4pYDT9XHrxcX0ZPtNMrsjTVwpWxbI2U4pseNiaxbklnUh7EG8ay0dTNK-Xs0rF9I97CmDbw4E1nVrfN-rsonv33g57DQej8IfEDegR783phXiDwmqse7MbTGLdi9LEH-4PB-OsY98cn55-_4NlhNOy5IY2e87pf1pUyEg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYJLxZuUAkaCE0RNYnvjHBDitWzptqdW6gHJtR2nXSlNln0I7f4ofiMzTrLV8uitRye2ZXs-2zNj-xtCXvV6UqTaiZCJQoc8My40GbKI5sj9kmRWeALTg8Pe4Jh_OxEnG-RX9xYGr1V2a6JfqPPaoo98F0wTBrslAOb9-EeIUaPwdLULodHAYt8tfoLJNn239xnk-zpJ-l-OPg3CNqpAaLkQyzB2khvkWcvBNHQAWJ6L3JmCGcmTJItlZHWmU82yPLMuzXOdxUXkHEvAEpKFZVDvDXKTM9jJ8WV6_-vKp4Ns65Lz9m1OxOTulPuVKIolhlBIeuFybf_zYQL-pdv-fUXzj3Nav_3175KtVm-lHxqg3SMbrrpPbjWRLBcPyPfhaHY-qsfonrFh2SZqM7L0bOJvlc0oMlNMCo0-elpqUPUpKMxUU2RMLhcU1FRTOurLzi_ohQOzgOqqzt1DcnwtQ_yIbFZ15Z4QivGuUrT6eGy40VCJNE5gWhcuSUVA4m44lW1ZzTG4Rqn86TqTqhGBAhEoLwK1DMibVZlxw-lxZe6PKKVVTuTj9h_qyZlqp7eKtIPeWmFsCgZ3YY3EB7vGxUYaHhd5QHY6Gat2kZiqS0gH5OXqN0xvPLPRlavnPg9SQDIGPX3cQGLVEgb6GcsYlE7XwLLW1PU_1ejcU4iDEgeGchyQtx2sLpv1_6HYvroXL8jtwdHBUA33DvefkjuJR30WxmyHbM4mc_cM1LeZee7nDCWn1z1JfwO4uFfd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiDcLBYwEJ4h2E9sb54AQpV21tKwqRKUekFzbcdqV0mTZh9DuT-PXMeM8quXRW49ObMv2zNjz-fENIa8HAyli7UTARKYDnhgXmARZRFPkfokSKzyB6ZfRYO-Yfz4RJxvkV_MWBq9VNnOin6jT0uIeeQ-gCYPVEhSml9XXIo52hh8mPwKMIIUnrU04jUpFDtzyJ8C32fv9HZD1myga7n77tBfUEQYCy4VYBaGT3CDnWgow0YHy8lSkzmTMSB5FSSj7Vic61ixJE-viNNVJmPWdYxGgIplZBvXeIJsxoqIO2dzeHR19bXd4kHtdcl6_1Okz2ZtxPy_1Q4kBFaJBsFpbDX3QgH95un9f2Pzj1NYvhsO75E7txdKPldrdIxuuuE9uVnEtlw_I98Px_HxcTnCzxgZ5nSjN2NKzqb9jNqfIUzHNNO7Y01yD40_BfaaaIn9yvqTgtJrcUV92cUEvHIAEqosydQ_J8bUM8iPSKcrCPSEUo1_FiAF5aLjRUIk0TmBaZy6KRZeEzXAqW3OcY6iNXPmzdiZVJQIFIlBeBGrVJW_bMpOK4ePK3NsopTYnsnP7D-X0TNXGrvraQW-tMDYG-J1ZI_H5rnGhkYaHWdolW42MVT1lzNSlgnfJq_Y3GDue4OjClQufBwkhGYOePq5Uom0JA2-NJQxKx2vKstbU9T_F-NwTioNLB7A57JJ3jVpdNuv_Q_H06l68JLfAQNXh_ujgGbkdeaVPgpBtkc58unDPwZebmxe10VByet12-htsFF1v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithiophilic-lithiophobic+gradient+interfacial+layer+for+a+highly+stable+lithium+metal+anode&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Huimin&rft.au=Liao%2C+Xiaobin&rft.au=Guan%2C+Yuepeng&rft.au=Xiang%2C+Yu&rft.date=2018-09-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=9&rft_id=info:doi/10.1038%2Fs41467-018-06126-z&rft_id=info%3Apmid%2F30213936&rft.externalDocID=PMC6137161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |