Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode

The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic–lithiophobic gradient interfacial layer strategy in which the bott...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 3729 - 11
Main Authors Zhang, Huimin, Liao, Xiaobin, Guan, Yuepeng, Xiang, Yu, Li, Meng, Zhang, Wenfeng, Zhu, Xiayu, Ming, Hai, Lu, Lin, Qiu, Jingyi, Huang, Yaqin, Cao, Gaoping, Yang, Yusheng, Mai, Liqiang, Zhao, Yan, Zhang, Hao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.09.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic–lithiophobic gradient interfacial layer strategy in which the bottom lithiophilic zinc oxide/carbon nanotube sublayer tightly anchors the whole layer onto the lithium foil, facilitating the formation of a stable solid electrolyte interphase, and prevents the formation of an intermediate mossy lithium corrosion layer. Together with the top lithiophobic carbon nanotube sublayer, this gradient interfacial layer can effectively suppress dendrite growth and ensure ultralong-term stable lithium stripping/plating. This strategy is further demonstrated to provide substantially improved cycle performance in copper current collector, 10 cm 2 pouch cell and lithium–sulfur batteries, which, coupled with a simple fabrication process and wide applicability in various materials for lithium-metal protection, makes the lithiophilic–lithiophobic gradient interfacial layer a favored strategy for next-generation lithium-metal batteries. Lithium metal batteries suffer from the dendrite growth upon electrochemical cycling. Here the authors introduce a lithiophilic-lithiophobic gradient interfacial ZnO/CNT layer, which facilitates the formation of a stable solid electrolyte interphase, and suppresses the growth of lithium dendrite.
AbstractList The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic–lithiophobic gradient interfacial layer strategy in which the bottom lithiophilic zinc oxide/carbon nanotube sublayer tightly anchors the whole layer onto the lithium foil, facilitating the formation of a stable solid electrolyte interphase, and prevents the formation of an intermediate mossy lithium corrosion layer. Together with the top lithiophobic carbon nanotube sublayer, this gradient interfacial layer can effectively suppress dendrite growth and ensure ultralong-term stable lithium stripping/plating. This strategy is further demonstrated to provide substantially improved cycle performance in copper current collector, 10 cm 2 pouch cell and lithium–sulfur batteries, which, coupled with a simple fabrication process and wide applicability in various materials for lithium-metal protection, makes the lithiophilic–lithiophobic gradient interfacial layer a favored strategy for next-generation lithium-metal batteries.
The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic–lithiophobic gradient interfacial layer strategy in which the bottom lithiophilic zinc oxide/carbon nanotube sublayer tightly anchors the whole layer onto the lithium foil, facilitating the formation of a stable solid electrolyte interphase, and prevents the formation of an intermediate mossy lithium corrosion layer. Together with the top lithiophobic carbon nanotube sublayer, this gradient interfacial layer can effectively suppress dendrite growth and ensure ultralong-term stable lithium stripping/plating. This strategy is further demonstrated to provide substantially improved cycle performance in copper current collector, 10 cm 2 pouch cell and lithium–sulfur batteries, which, coupled with a simple fabrication process and wide applicability in various materials for lithium-metal protection, makes the lithiophilic–lithiophobic gradient interfacial layer a favored strategy for next-generation lithium-metal batteries. Lithium metal batteries suffer from the dendrite growth upon electrochemical cycling. Here the authors introduce a lithiophilic-lithiophobic gradient interfacial ZnO/CNT layer, which facilitates the formation of a stable solid electrolyte interphase, and suppresses the growth of lithium dendrite.
Lithium metal batteries suffer from the dendrite growth upon electrochemical cycling. Here the authors introduce a lithiophilic-lithiophobic gradient interfacial ZnO/CNT layer, which facilitates the formation of a stable solid electrolyte interphase, and suppresses the growth of lithium dendrite.
The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic-lithiophobic gradient interfacial layer strategy in which the bottom lithiophilic zinc oxide/carbon nanotube sublayer tightly anchors the whole layer onto the lithium foil, facilitating the formation of a stable solid electrolyte interphase, and prevents the formation of an intermediate mossy lithium corrosion layer. Together with the top lithiophobic carbon nanotube sublayer, this gradient interfacial layer can effectively suppress dendrite growth and ensure ultralong-term stable lithium stripping/plating. This strategy is further demonstrated to provide substantially improved cycle performance in copper current collector, 10 cm pouch cell and lithium-sulfur batteries, which, coupled with a simple fabrication process and wide applicability in various materials for lithium-metal protection, makes the lithiophilic-lithiophobic gradient interfacial layer a favored strategy for next-generation lithium-metal batteries.
The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic–lithiophobic gradient interfacial layer strategy in which the bottom lithiophilic zinc oxide/carbon nanotube sublayer tightly anchors the whole layer onto the lithium foil, facilitating the formation of a stable solid electrolyte interphase, and prevents the formation of an intermediate mossy lithium corrosion layer. Together with the top lithiophobic carbon nanotube sublayer, this gradient interfacial layer can effectively suppress dendrite growth and ensure ultralong-term stable lithium stripping/plating. This strategy is further demonstrated to provide substantially improved cycle performance in copper current collector, 10 cm2 pouch cell and lithium–sulfur batteries, which, coupled with a simple fabrication process and wide applicability in various materials for lithium-metal protection, makes the lithiophilic–lithiophobic gradient interfacial layer a favored strategy for next-generation lithium-metal batteries.
The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic-lithiophobic gradient interfacial layer strategy in which the bottom lithiophilic zinc oxide/carbon nanotube sublayer tightly anchors the whole layer onto the lithium foil, facilitating the formation of a stable solid electrolyte interphase, and prevents the formation of an intermediate mossy lithium corrosion layer. Together with the top lithiophobic carbon nanotube sublayer, this gradient interfacial layer can effectively suppress dendrite growth and ensure ultralong-term stable lithium stripping/plating. This strategy is further demonstrated to provide substantially improved cycle performance in copper current collector, 10 cm2 pouch cell and lithium-sulfur batteries, which, coupled with a simple fabrication process and wide applicability in various materials for lithium-metal protection, makes the lithiophilic-lithiophobic gradient interfacial layer a favored strategy for next-generation lithium-metal batteries.The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic-lithiophobic gradient interfacial layer strategy in which the bottom lithiophilic zinc oxide/carbon nanotube sublayer tightly anchors the whole layer onto the lithium foil, facilitating the formation of a stable solid electrolyte interphase, and prevents the formation of an intermediate mossy lithium corrosion layer. Together with the top lithiophobic carbon nanotube sublayer, this gradient interfacial layer can effectively suppress dendrite growth and ensure ultralong-term stable lithium stripping/plating. This strategy is further demonstrated to provide substantially improved cycle performance in copper current collector, 10 cm2 pouch cell and lithium-sulfur batteries, which, coupled with a simple fabrication process and wide applicability in various materials for lithium-metal protection, makes the lithiophilic-lithiophobic gradient interfacial layer a favored strategy for next-generation lithium-metal batteries.
ArticleNumber 3729
Author Zhang, Huimin
Li, Meng
Qiu, Jingyi
Lu, Lin
Xiang, Yu
Zhang, Wenfeng
Zhang, Hao
Liao, Xiaobin
Zhu, Xiayu
Mai, Liqiang
Guan, Yuepeng
Cao, Gaoping
Yang, Yusheng
Ming, Hai
Zhao, Yan
Huang, Yaqin
Author_xml – sequence: 1
  givenname: Huimin
  surname: Zhang
  fullname: Zhang, Huimin
  organization: Research Institute of Chemical Defense, Beijing Institute of Technology
– sequence: 2
  givenname: Xiaobin
  surname: Liao
  fullname: Liao, Xiaobin
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology
– sequence: 3
  givenname: Yuepeng
  surname: Guan
  fullname: Guan, Yuepeng
  organization: State Key Laboratory of Chemical Resource Engineering, The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology
– sequence: 4
  givenname: Yu
  surname: Xiang
  fullname: Xiang, Yu
  organization: Research Institute of Chemical Defense
– sequence: 5
  givenname: Meng
  surname: Li
  fullname: Li, Meng
  organization: Research Institute of Chemical Defense
– sequence: 6
  givenname: Wenfeng
  surname: Zhang
  fullname: Zhang, Wenfeng
  organization: Research Institute of Chemical Defense
– sequence: 7
  givenname: Xiayu
  surname: Zhu
  fullname: Zhu, Xiayu
  organization: Research Institute of Chemical Defense
– sequence: 8
  givenname: Hai
  surname: Ming
  fullname: Ming, Hai
  organization: Research Institute of Chemical Defense
– sequence: 9
  givenname: Lin
  surname: Lu
  fullname: Lu, Lin
  organization: Research Institute of Chemical Defense
– sequence: 10
  givenname: Jingyi
  surname: Qiu
  fullname: Qiu, Jingyi
  organization: Research Institute of Chemical Defense
– sequence: 11
  givenname: Yaqin
  surname: Huang
  fullname: Huang, Yaqin
  organization: State Key Laboratory of Chemical Resource Engineering, The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology
– sequence: 12
  givenname: Gaoping
  surname: Cao
  fullname: Cao, Gaoping
  organization: Research Institute of Chemical Defense
– sequence: 13
  givenname: Yusheng
  surname: Yang
  fullname: Yang, Yusheng
  organization: Research Institute of Chemical Defense
– sequence: 14
  givenname: Liqiang
  orcidid: 0000-0003-4259-7725
  surname: Mai
  fullname: Mai, Liqiang
  email: mlq518@whut.edu.cn
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology
– sequence: 15
  givenname: Yan
  orcidid: 0000-0002-1234-4455
  surname: Zhao
  fullname: Zhao, Yan
  email: yan2000@whut.edu.cn
  organization: State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology
– sequence: 16
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  email: dr.h.zhang@hotmail.com
  organization: Research Institute of Chemical Defense
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30213936$$D View this record in MEDLINE/PubMed
BookMark eNp9Uktv1DAYtFARLUv_AAcUiQuXgB07iX1BQhWPSitxgRuS5ceXxCsnXuws0u6vx7tZSttDffBzZr6xPS_RxRQmQOg1we8JpvxDYoQ1bYkJL3FDqqY8PENXFWakJG1FL-7NL9F1ShucGxWEM_YCXVJcESpoc4V-rd08uLAdnHem9OdF0M4UfVTWwTQXbpohdso45Quv9hCLLsRCFYPrB78v0qy0h-LE3Y3FCHPGqSlYeIWed8onuD6PK_Tzy-cfN9_K9fevtzef1qVhdX0oCXCmRYOFxayBuuXM1hZ0RzVnVZU9Y6OEahUVVhhorVWCdBiAVlgw3hm6QreLrg1qI7fRjSruZVBOnjZC7KWKszMeJFaQ65ham7ZmojOaU0YrDURzzUhns9bHRWu70yNYkx8gKv9A9OHJ5AbZhz-yIbQluVuhd2eBGH7vIM1ydMmA92qCsEuyIrjGDaa0ztC3j6CbsItTfqojijY1J6LJqDf3Hd1Z-feJGVAtABNDShG6OwjB8hgWuYRF5rDIU1jkIZP4I5Jxs5pdON7K-aepdKGmXGfqIf63_QTrL2Zs1WE
CitedBy_id crossref_primary_10_1002_ente_202000694
crossref_primary_10_1016_j_jallcom_2021_160882
crossref_primary_10_1002_adma_202309339
crossref_primary_10_1002_smll_202102347
crossref_primary_10_1002_anie_202116048
crossref_primary_10_1021_acsami_0c05065
crossref_primary_10_1002_adma_202409062
crossref_primary_10_1002_adfm_202409812
crossref_primary_10_1016_j_cej_2022_138570
crossref_primary_10_1002_aenm_202403640
crossref_primary_10_1002_smll_201900687
crossref_primary_10_1007_s12274_019_2519_0
crossref_primary_10_1016_j_jechem_2024_07_062
crossref_primary_10_1002_adma_202206228
crossref_primary_10_1016_j_jechem_2020_06_004
crossref_primary_10_1002_smll_202300868
crossref_primary_10_1039_D1EE01140E
crossref_primary_10_1007_s41918_020_00071_6
crossref_primary_10_1021_acsaem_3c02291
crossref_primary_10_1021_acs_nanolett_1c03207
crossref_primary_10_1039_D1TA09070D
crossref_primary_10_1016_j_ensm_2024_103606
crossref_primary_10_1039_D0NR08343G
crossref_primary_10_1039_D4TA02003K
crossref_primary_10_1007_s40820_023_01177_4
crossref_primary_10_1002_sstr_202400311
crossref_primary_10_1016_j_joule_2019_07_025
crossref_primary_10_1016_j_cej_2024_151559
crossref_primary_10_1002_eem2_12056
crossref_primary_10_1016_j_ensm_2021_03_008
crossref_primary_10_1016_j_isci_2019_04_028
crossref_primary_10_1016_j_cej_2024_156790
crossref_primary_10_3390_nano14131158
crossref_primary_10_1002_aenm_201900487
crossref_primary_10_7498_aps_69_20200906
crossref_primary_10_1002_cnma_202300202
crossref_primary_10_1016_j_mtener_2024_101672
crossref_primary_10_1002_smll_202001784
crossref_primary_10_1002_smll_202000699
crossref_primary_10_1016_j_jechem_2020_11_034
crossref_primary_10_1021_acsami_9b05056
crossref_primary_10_1002_ente_202400374
crossref_primary_10_1002_smll_202312150
crossref_primary_10_1002_adfm_202205304
crossref_primary_10_1016_j_mtener_2020_100465
crossref_primary_10_1039_D1TA10257E
crossref_primary_10_1021_acsaem_9b00014
crossref_primary_10_1016_j_ensm_2021_07_032
crossref_primary_10_1007_s11426_022_1421_7
crossref_primary_10_1016_j_jechem_2020_07_036
crossref_primary_10_1039_D1TA06747H
crossref_primary_10_1002_adma_202004128
crossref_primary_10_1016_j_cej_2021_130107
crossref_primary_10_1021_acsami_0c08355
crossref_primary_10_1002_anie_201813905
crossref_primary_10_1021_acsami_0c18831
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1002_adfm_202400348
crossref_primary_10_1021_acs_chemrev_0c01100
crossref_primary_10_1021_acsami_1c21783
crossref_primary_10_1016_j_jpowsour_2019_227214
crossref_primary_10_1016_j_jcis_2022_12_010
crossref_primary_10_1038_s41467_019_12952_6
crossref_primary_10_1002_inf2_12597
crossref_primary_10_1016_j_ensm_2019_06_019
crossref_primary_10_1016_j_jallcom_2024_178118
crossref_primary_10_1002_smll_202001992
crossref_primary_10_1002_cey2_95
crossref_primary_10_1016_j_jechem_2021_07_001
crossref_primary_10_1039_D0CS00867B
crossref_primary_10_1126_sciadv_adf1550
crossref_primary_10_1007_s11581_024_05421_8
crossref_primary_10_1016_j_matchemphys_2023_128235
crossref_primary_10_1038_s41467_020_14505_8
crossref_primary_10_1021_acs_nanolett_0c03206
crossref_primary_10_1002_smll_202205233
crossref_primary_10_1021_jacs_3c08733
crossref_primary_10_1002_adfm_202101261
crossref_primary_10_1016_j_cej_2021_134380
crossref_primary_10_1002_idm2_12042
crossref_primary_10_1002_smll_202406357
crossref_primary_10_3390_electrochem4020013
crossref_primary_10_1016_j_electacta_2021_139668
crossref_primary_10_1021_acsaem_1c03976
crossref_primary_10_1016_j_cej_2022_135416
crossref_primary_10_1021_acs_energyfuels_1c01602
crossref_primary_10_1002_cey2_147
crossref_primary_10_1002_advs_202104829
crossref_primary_10_1021_acsami_9b09551
crossref_primary_10_1016_j_jechem_2019_07_010
crossref_primary_10_1021_acs_nanolett_0c00618
crossref_primary_10_1039_C9RA09481D
crossref_primary_10_1016_j_jmst_2020_11_003
crossref_primary_10_1016_j_carbon_2020_06_073
crossref_primary_10_1016_j_electacta_2021_139787
crossref_primary_10_1002_aenm_201902697
crossref_primary_10_1038_s41467_019_09932_1
crossref_primary_10_1039_C9TA11250B
crossref_primary_10_20964_2021_04_08
crossref_primary_10_1016_j_est_2021_103641
crossref_primary_10_1002_eem2_12387
crossref_primary_10_1002_adfm_202420014
crossref_primary_10_1002_adma_202201801
crossref_primary_10_1002_celc_202000858
crossref_primary_10_1016_j_electacta_2022_140333
crossref_primary_10_1021_acsenergylett_1c00551
crossref_primary_10_1002_smll_201904216
crossref_primary_10_1039_C9TA08798B
crossref_primary_10_1016_j_apsusc_2021_150247
crossref_primary_10_1021_acsami_1c19199
crossref_primary_10_1016_j_jpowsour_2023_233887
crossref_primary_10_1021_acsami_0c22046
crossref_primary_10_1002_aesr_202100186
crossref_primary_10_1002_aenm_202303046
crossref_primary_10_1016_j_cej_2024_149781
crossref_primary_10_1016_j_ensm_2021_08_023
crossref_primary_10_1016_j_jpowsour_2020_228461
crossref_primary_10_1002_aenm_202002297
crossref_primary_10_1016_j_jmst_2020_03_040
crossref_primary_10_1002_ange_201905251
crossref_primary_10_1002_eem2_12132
crossref_primary_10_1021_acsmaterialslett_0c00001
crossref_primary_10_1002_ange_202116048
crossref_primary_10_1016_j_jechem_2018_12_013
crossref_primary_10_1002_smll_202103744
crossref_primary_10_1002_aenm_201901932
crossref_primary_10_1116_6_0004174
crossref_primary_10_1016_j_cej_2023_142627
crossref_primary_10_1016_j_ensm_2023_03_030
crossref_primary_10_1016_j_esci_2022_02_003
crossref_primary_10_1016_j_isci_2020_101586
crossref_primary_10_1016_j_esci_2022_02_002
crossref_primary_10_1016_j_est_2023_108767
crossref_primary_10_1016_j_jcis_2024_03_081
crossref_primary_10_1002_admi_201902113
crossref_primary_10_3390_inorganics10010005
crossref_primary_10_1039_D0TA06853E
crossref_primary_10_1016_j_jechem_2019_09_028
crossref_primary_10_1016_j_ensm_2025_104200
crossref_primary_10_1016_j_ensm_2021_03_016
crossref_primary_10_1002_adfm_202006380
crossref_primary_10_1016_j_jmst_2022_12_055
crossref_primary_10_1016_j_ensm_2024_103191
crossref_primary_10_1002_aenm_202403623
crossref_primary_10_1016_j_ensm_2024_103192
crossref_primary_10_1021_acsnano_0c05636
crossref_primary_10_1002_aenm_202400108
crossref_primary_10_1021_jacs_0c09649
crossref_primary_10_1016_j_ssi_2023_116360
crossref_primary_10_1021_acs_nanolett_0c01085
crossref_primary_10_1016_j_jechem_2019_09_031
crossref_primary_10_1021_acs_chemmater_0c03529
crossref_primary_10_1039_D2RA08027C
crossref_primary_10_1002_advs_202300985
crossref_primary_10_1039_D0NR00971G
crossref_primary_10_1021_acsnano_9b06653
crossref_primary_10_1016_j_cej_2021_130939
crossref_primary_10_1021_acs_nanolett_9b01334
crossref_primary_10_1039_D1TA06836A
crossref_primary_10_1039_D0TA10884G
crossref_primary_10_1002_smll_202301731
crossref_primary_10_1016_j_carbon_2024_118941
crossref_primary_10_1016_j_jechem_2022_10_026
crossref_primary_10_1002_cssc_202400569
crossref_primary_10_1039_D0EE02827D
crossref_primary_10_1002_aenm_201900260
crossref_primary_10_1021_acsnano_1c04642
crossref_primary_10_1039_D0TA07552C
crossref_primary_10_1016_j_jechem_2022_08_013
crossref_primary_10_1002_smll_202102196
crossref_primary_10_1016_j_electacta_2023_142268
crossref_primary_10_1002_sus2_95
crossref_primary_10_1039_D0NR02258F
crossref_primary_10_1016_j_cej_2019_04_068
crossref_primary_10_1016_j_jcis_2025_01_095
crossref_primary_10_1039_C9TA09396F
crossref_primary_10_1002_adfm_201908868
crossref_primary_10_1021_acsami_0c20099
crossref_primary_10_1039_D4EB00034J
crossref_primary_10_1186_s11671_021_03508_z
crossref_primary_10_1039_D3CS00495C
crossref_primary_10_1002_adfm_202202771
crossref_primary_10_1002_smll_202106427
crossref_primary_10_1016_j_jechem_2020_11_016
crossref_primary_10_1002_smll_202006578
crossref_primary_10_1002_smll_202300076
crossref_primary_10_1002_aenm_202204075
crossref_primary_10_1016_j_jechem_2020_09_004
crossref_primary_10_1039_C9TA11311H
crossref_primary_10_1016_j_cej_2020_126861
crossref_primary_10_1016_j_cej_2021_129739
crossref_primary_10_1002_adsu_202300061
crossref_primary_10_1002_advs_201900943
crossref_primary_10_1002_advs_202403797
crossref_primary_10_1002_aenm_202002926
crossref_primary_10_1016_j_ensm_2020_07_015
crossref_primary_10_1016_j_cej_2023_142713
crossref_primary_10_1016_j_jechem_2019_08_008
crossref_primary_10_1016_j_jechem_2022_12_004
crossref_primary_10_1021_jacs_1c04222
crossref_primary_10_1002_aenm_202103187
crossref_primary_10_1007_s12274_022_4261_2
crossref_primary_10_1002_adma_202210447
crossref_primary_10_1016_j_cej_2022_137401
crossref_primary_10_1021_acscentsci_0c00351
crossref_primary_10_1039_C9TA09232C
crossref_primary_10_1016_j_est_2023_108178
crossref_primary_10_1002_aenm_202303088
crossref_primary_10_1016_j_cej_2021_133689
crossref_primary_10_1039_D2CP04032H
crossref_primary_10_1021_acsaem_0c01080
crossref_primary_10_1002_bte2_20230070
crossref_primary_10_1002_adfm_201907343
crossref_primary_10_1007_s41918_023_00185_7
crossref_primary_10_1002_aenm_202003689
crossref_primary_10_1016_j_ensm_2021_02_043
crossref_primary_10_1021_acs_iecr_3c02202
crossref_primary_10_1002_cey2_15
crossref_primary_10_1016_j_ensm_2024_103205
crossref_primary_10_1007_s12274_020_2625_z
crossref_primary_10_1039_C9TA09505E
crossref_primary_10_1016_j_jechem_2020_08_034
crossref_primary_10_1016_j_jcis_2025_01_151
crossref_primary_10_1016_j_enchem_2021_100063
crossref_primary_10_3389_fchem_2019_00721
crossref_primary_10_1016_j_jmps_2024_105878
crossref_primary_10_1002_adfm_202211180
crossref_primary_10_1002_adfm_202110110
crossref_primary_10_1002_advs_202002212
crossref_primary_10_1039_D1EE01341F
crossref_primary_10_1016_j_enchem_2024_100117
crossref_primary_10_3389_fmats_2020_00071
crossref_primary_10_1021_acsami_9b09373
crossref_primary_10_1002_adma_202106565
crossref_primary_10_3390_nano13233007
crossref_primary_10_1002_aenm_202302687
crossref_primary_10_1002_adma_202006702
crossref_primary_10_1002_eom2_12010
crossref_primary_10_1016_j_matt_2020_10_014
crossref_primary_10_1039_D3EE04358D
crossref_primary_10_1002_anie_201905251
crossref_primary_10_1002_aenm_202001257
crossref_primary_10_1039_D1MA00065A
crossref_primary_10_1016_j_matt_2022_01_017
crossref_primary_10_1021_acs_energyfuels_1c01202
crossref_primary_10_1016_j_memsci_2022_120287
crossref_primary_10_1039_C9TA04240G
crossref_primary_10_1002_batt_202200394
crossref_primary_10_1002_nano_202000003
crossref_primary_10_1002_adfm_201905940
crossref_primary_10_1002_adfm_202204768
crossref_primary_10_1007_s12598_023_02565_w
crossref_primary_10_1016_j_jechem_2021_06_027
crossref_primary_10_1021_acsnano_4c04507
crossref_primary_10_1016_j_nanoen_2020_105308
crossref_primary_10_1016_j_ensm_2019_08_024
crossref_primary_10_1021_acsaem_9b01032
crossref_primary_10_1021_acsami_2c11673
crossref_primary_10_3390_batteries9010030
crossref_primary_10_1002_ece2_55
crossref_primary_10_1016_j_jiec_2023_01_046
crossref_primary_10_1002_adma_202105029
crossref_primary_10_1007_s10853_020_04633_3
crossref_primary_10_3390_en18020261
crossref_primary_10_1002_ange_201813905
crossref_primary_10_1002_chem_201904631
crossref_primary_10_1016_j_ensm_2019_12_014
crossref_primary_10_1021_acsami_9b16363
crossref_primary_10_1039_C9CS00636B
crossref_primary_10_1016_j_jechem_2020_04_038
crossref_primary_10_1021_acsami_1c08858
crossref_primary_10_1016_j_cej_2024_158554
crossref_primary_10_1007_s10853_019_04218_9
crossref_primary_10_1177_09506608251318467
crossref_primary_10_1021_acsnano_2c09037
crossref_primary_10_1007_s40843_021_1764_x
crossref_primary_10_1038_s41467_022_31943_8
crossref_primary_10_1002_adfm_202409431
crossref_primary_10_1016_j_ensm_2022_12_016
crossref_primary_10_1021_acsami_2c18752
crossref_primary_10_1002_aenm_202002580
crossref_primary_10_1021_acsnano_2c04025
crossref_primary_10_1016_j_mtener_2022_101134
crossref_primary_10_3389_fenrg_2019_00071
crossref_primary_10_1016_j_jechem_2021_04_044
crossref_primary_10_1021_acs_inorgchem_3c03745
crossref_primary_10_1016_j_cej_2020_127872
crossref_primary_10_1002_aenm_202200799
crossref_primary_10_1016_j_electacta_2022_139976
crossref_primary_10_1016_j_ensm_2019_03_029
crossref_primary_10_1016_j_jpowsour_2019_227632
crossref_primary_10_1002_adfm_202010499
crossref_primary_10_1016_j_cej_2021_132156
crossref_primary_10_1016_j_mtnano_2019_100049
crossref_primary_10_1039_D3CC00412K
crossref_primary_10_1002_adfm_201902499
crossref_primary_10_1021_acsaem_3c00179
crossref_primary_10_1039_C9TA12910C
crossref_primary_10_1002_smll_202205142
crossref_primary_10_1002_smtd_201900177
crossref_primary_10_1002_adfm_202315201
crossref_primary_10_1002_bte2_20230030
crossref_primary_10_1016_j_memsci_2020_118996
crossref_primary_10_1002_adma_202002550
crossref_primary_10_1039_C9TA13678A
crossref_primary_10_1002_adfm_202401442
crossref_primary_10_1016_j_ensm_2021_05_030
crossref_primary_10_1038_s41467_023_36386_3
crossref_primary_10_1016_j_cclet_2023_109122
crossref_primary_10_1002_adfm_202408758
crossref_primary_10_1002_smtd_201800551
crossref_primary_10_1039_D2NR04158H
crossref_primary_10_1039_C9SE00561G
crossref_primary_10_1002_smtd_201800546
crossref_primary_10_1002_adfm_202000585
crossref_primary_10_1016_j_jpowsour_2020_228055
crossref_primary_10_1016_j_jallcom_2022_164925
crossref_primary_10_1002_eem2_12525
crossref_primary_10_1016_j_ensm_2021_05_027
crossref_primary_10_1021_acsami_9b20777
crossref_primary_10_1016_j_nxnano_2023_100008
crossref_primary_10_1021_acsami_3c08109
crossref_primary_10_1016_j_carbon_2023_118498
crossref_primary_10_1016_j_cclet_2021_08_097
crossref_primary_10_1002_adfm_202008044
crossref_primary_10_1002_adma_202401482
crossref_primary_10_1149_1945_7111_ab6b11
crossref_primary_10_1016_j_gee_2022_08_002
crossref_primary_10_1016_j_xcrp_2020_100119
crossref_primary_10_1039_C9TA13778E
crossref_primary_10_1016_j_enchem_2019_100003
crossref_primary_10_1021_acsami_0c00431
crossref_primary_10_1021_acs_nanolett_8b04919
crossref_primary_10_1007_s12274_023_6187_8
crossref_primary_10_1016_j_nanoen_2019_05_011
crossref_primary_10_34133_2022_9846537
crossref_primary_10_1002_aenm_201803722
crossref_primary_10_1002_aenm_201804019
crossref_primary_10_1016_j_carbon_2024_119870
crossref_primary_10_1016_j_jpowsour_2021_229773
crossref_primary_10_1021_acsnano_2c01186
crossref_primary_10_1039_D0EE03181J
crossref_primary_10_1016_j_cej_2023_146489
crossref_primary_10_1002_celc_202100678
crossref_primary_10_1016_j_est_2024_111618
crossref_primary_10_1016_j_mtnano_2020_100103
crossref_primary_10_1039_D0TA03929B
crossref_primary_10_1016_j_ensm_2022_02_003
crossref_primary_10_1039_C9TA05335B
crossref_primary_10_23919_IEN_2022_0029
crossref_primary_10_1038_s41467_019_09211_z
crossref_primary_10_1002_cey2_181
crossref_primary_10_1039_D2CE00595F
crossref_primary_10_1038_s41565_019_0427_9
crossref_primary_10_1016_j_cej_2022_138209
crossref_primary_10_1002_aenm_202101544
crossref_primary_10_3389_fenrg_2019_00157
crossref_primary_10_1002_adfm_201910532
crossref_primary_10_1039_C9TA08721D
crossref_primary_10_1016_j_ensm_2019_07_021
crossref_primary_10_1021_acsaem_1c00664
crossref_primary_10_1016_j_cclet_2024_110186
crossref_primary_10_1016_j_scib_2020_12_029
crossref_primary_10_1039_D1SC06181J
crossref_primary_10_1016_j_ensm_2019_02_001
crossref_primary_10_1021_acsaem_2c01621
crossref_primary_10_1039_C9TA12337G
Cites_doi 10.1038/35104644
10.1021/cr020731c
10.1021/jacs.6b13314
10.1016/j.ensm.2017.06.016
10.1016/0013-4686(90)87055-7
10.1149/1.2401708
10.1021/nl503125u
10.1039/C0JM02305A
10.1038/451652a
10.1039/C3EE40795K
10.1038/ncomms9058
10.1016/j.nanoen.2017.05.015
10.1021/ja312241y
10.1021/acs.chemrev.7b00115
10.1149/1.1502684
10.1016/j.ensm.2017.01.006
10.1038/ncomms4710
10.1016/0013-4686(77)85057-3
10.1038/nnano.2017.16
10.1126/sciadv.aao3170
10.1038/nmat3066
10.1038/nature11475
10.1038/nnano.2016.32
10.1038/nmat3602
10.1016/j.nanoen.2017.06.030
10.1021/acs.nanolett.6b04695
10.1038/ncomms10992
10.1038/ncomms3255
10.1002/adma.201504526
10.1016/j.ensm.2017.10.016
10.1038/nnano.2014.152
10.1016/j.joule.2017.10.007
10.1021/nl5046318
10.1038/nenergy.2017.91
10.1149/1.2129354
10.1039/C7TA03699J
10.1016/S0167-2738(02)00080-2
10.1038/ncomms7362
10.1038/ncomms8436
10.1016/j.ensm.2016.02.004
10.1016/j.ensm.2016.01.007
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-018-06126-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef



PubMed
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_0ae09dc5bc7549fcb83432be1b8b41fd
PMC6137161
30213936
10_1038_s41467_018_06126_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c455z-1e84b9609d046e5784d5debf3b84229180ca9a7a39d9ce7dda91f0ee320948fc3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:32:48 EDT 2025
Thu Aug 21 14:14:44 EDT 2025
Tue Aug 05 11:18:38 EDT 2025
Wed Aug 13 07:35:33 EDT 2025
Thu Apr 03 07:05:55 EDT 2025
Tue Jul 01 02:21:17 EDT 2025
Thu Apr 24 23:06:35 EDT 2025
Fri Feb 21 02:39:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455z-1e84b9609d046e5784d5debf3b84229180ca9a7a39d9ce7dda91f0ee320948fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4259-7725
0000-0002-1234-4455
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-018-06126-z
PMID 30213936
PQID 2103658196
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_0ae09dc5bc7549fcb83432be1b8b41fd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6137161
proquest_miscellaneous_2105060335
proquest_journals_2103658196
pubmed_primary_30213936
crossref_primary_10_1038_s41467_018_06126_z
crossref_citationtrail_10_1038_s41467_018_06126_z
springer_journals_10_1038_s41467_018_06126_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180913
PublicationDateYYYYMMDD 2018-09-13
PublicationDate_xml – month: 9
  year: 2018
  text: 20180913
  day: 13
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Tarascon, Armand (CR1) 2001; 414
Jiao (CR42) 2018; 2
Lin (CR26) 2016; 11
Ding (CR37) 2013; 135
Zheng (CR10) 2014; 9
Luo, Fang, Wu (CR32) 2017; 6
Kamaya (CR20) 2011; 10
Armand, Tarascon (CR2) 2008; 451
Aurbach (CR39) 1990; 35
Rauh, Brummer (CR7) 1977; 22
Zhao (CR24) 2016; 3
Xu (CR11) 2014; 7
Freunberger (CR41) 2017; 2
Epelboin, Froment, Garreau, Thevenin, Warin (CR6) 1980; 127
Lang, Qi, Luo, Wu (CR19) 2017; 7
Lin, Liu, Cui (CR18) 2017; 12
Li, Yin, Yang, Guo (CR36) 2016; 28
Mukherjee (CR14) 2014; 5
Wang (CR28) 2018; 11
Selim, Bro (CR5) 1974; 121
Yan (CR30) 2014; 14
Liu (CR34) 2017; 139
Jin (CR29) 2017; 37
Cheng, Zhang, Zhao, Zhang (CR17) 2017; 117
Umeda (CR38) 2011; 21
Hu (CR40) 2017; 17
Whittingham (CR4) 2004; 104
Baloch (CR23) 2017; 9
Qian (CR12) 2015; 6
Aurbach (CR9) 2002; 149
Liu (CR25) 2016; 7
Huang, Tang, Najafabadi, Chen, Ren (CR33) 2017; 38
Li (CR13) 2015; 6
Bouchet (CR22) 2013; 12
Aurbach, Zinigrad, Cohen, Teller (CR8) 2002; 148
Xie (CR35) 2017; 3
Yang, Yin, Zhang, Li, Guo (CR15) 2015; 6
Liang (CR31) 2015; 15
Shui (CR16) 2013; 4
Chu, Majumdar (CR3) 2012; 488
Sheng (CR27) 2017; 5
Wan (CR21) 2016; 4
S Jiao (6126_CR42) 2018; 2
DC Lin (6126_CR18) 2017; 12
S Chu (6126_CR3) 2012; 488
XB Cheng (6126_CR17) 2017; 117
HL Wan (6126_CR21) 2016; 4
L Hu (6126_CR40) 2017; 17
MS Whittingham (6126_CR4) 2004; 104
DC Lin (6126_CR26) 2016; 11
CZ Zhao (6126_CR24) 2016; 3
J Qian (6126_CR12) 2015; 6
M Armand (6126_CR2) 2008; 451
LY Wang (6126_CR28) 2018; 11
GA Umeda (6126_CR38) 2011; 21
W Li (6126_CR13) 2015; 6
SY Huang (6126_CR33) 2017; 38
RD Rauh (6126_CR7) 1977; 22
S Freunberger (6126_CR41) 2017; 2
K Liu (6126_CR34) 2017; 139
JM Tarascon (6126_CR1) 2001; 414
M Baloch (6126_CR23) 2017; 9
G Zheng (6126_CR10) 2014; 9
R Mukherjee (6126_CR14) 2014; 5
JL Shui (6126_CR16) 2013; 4
CB Jin (6126_CR29) 2017; 37
NW Li (6126_CR36) 2016; 28
JL Lang (6126_CR19) 2017; 7
Z Liang (6126_CR31) 2015; 15
D Aurbach (6126_CR39) 1990; 35
I Epelboin (6126_CR6) 1980; 127
W Xu (6126_CR11) 2014; 7
N Kamaya (6126_CR20) 2011; 10
K Yan (6126_CR30) 2014; 14
CP Yang (6126_CR15) 2015; 6
J Luo (6126_CR32) 2017; 6
F Ding (6126_CR37) 2013; 135
D Aurbach (6126_CR8) 2002; 148
O Sheng (6126_CR27) 2017; 5
R Bouchet (6126_CR22) 2013; 12
YY Liu (6126_CR25) 2016; 7
J Xie (6126_CR35) 2017; 3
R Selim (6126_CR5) 1974; 121
D Aurbach (6126_CR9) 2002; 149
25822282 - Nano Lett. 2015 May 13;15(5):2910-6
26299379 - Nat Commun. 2015 Aug 24;6:8058
25064396 - Nat Nanotechnol. 2014 Aug;9(8):618-23
26698171 - Adv Mater. 2016 Mar 2;28(9):1853-8
27936780 - Nano Lett. 2017 Jan 11;17(1):565-571
28753298 - Chem Rev. 2017 Aug 9;117(15):10403-10473
15669156 - Chem Rev. 2004 Oct;104(10):4271-301
23929396 - Nat Commun. 2013;4:2255
24751669 - Nat Commun. 2014 Apr 22;5:3710
26081242 - Nat Commun. 2015 Jun 17;6:7436
23542871 - Nat Mater. 2013 May;12(5):452-7
26987481 - Nat Commun. 2016 Mar 18;7:10992
26999479 - Nat Nanotechnol. 2016 Jul;11(7):626-32
11713543 - Nature. 2001 Nov 15;414(6861):359-67
28265117 - Nat Nanotechnol. 2017 Mar 7;12(3):194-206
28303712 - J Am Chem Soc. 2017 Apr 5;139(13):4815-4820
23448508 - J Am Chem Soc. 2013 Mar 20;135(11):4450-6
25166749 - Nano Lett. 2014 Oct 8;14(10):6016-22
21804556 - Nat Mater. 2011 Jul 31;10(9):682-6
25698340 - Nat Commun. 2015 Feb 20;6:6362
29202031 - Sci Adv. 2017 Nov 29;3(11):eaao3170
22895334 - Nature. 2012 Aug 16;488(7411):294-303
18256660 - Nature. 2008 Feb 7;451(7179):652-7
References_xml – volume: 414
  start-page: 359
  year: 2001
  end-page: 367
  ident: CR1
  article-title: Issues and challenges facing rechargeable lithium batteries
  publication-title: Nature
  doi: 10.1038/35104644
– volume: 104
  start-page: 4271
  year: 2004
  end-page: 4302
  ident: CR4
  article-title: Lithium batteries and cathode materials
  publication-title: Chem. Rev.
  doi: 10.1021/cr020731c
– volume: 139
  start-page: 4815
  year: 2017
  end-page: 4820
  ident: CR34
  article-title: Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b13314
– volume: 9
  start-page: 141
  year: 2017
  end-page: 149
  ident: CR23
  article-title: Variations on Li N protective coating using ex-situ and in-situ techniques for Li in sulphur batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.06.016
– volume: 35
  start-page: 625
  year: 1990
  end-page: 638
  ident: CR39
  article-title: The electrochemical behaviour of 1,3-dioxolane—LiClO4solutions—I. Uncontaminated solutions
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(90)87055-7
– volume: 121
  start-page: 1457
  year: 1974
  end-page: 1459
  ident: CR5
  article-title: Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2401708
– volume: 14
  start-page: 6016
  year: 2014
  end-page: 6022
  ident: CR30
  article-title: Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode
  publication-title: Nano Lett.
  doi: 10.1021/nl503125u
– volume: 6
  start-page: 1701482
  year: 2017
  end-page: 1701488
  ident: CR32
  article-title: High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes
  publication-title: Adv. Energy Mater.
– volume: 21
  start-page: 1593
  year: 2011
  end-page: 1599
  ident: CR38
  article-title: Protection of lithium metal surfaces using tetraethoxysilane
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM02305A
– volume: 451
  start-page: 652
  year: 2008
  end-page: 657
  ident: CR2
  article-title: Building better batteries
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 7
  start-page: 513
  year: 2014
  end-page: 537
  ident: CR11
  article-title: Lithium metal anodes for rechargeable batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE40795K
– volume: 6
  start-page: 8058
  year: 2015
  end-page: 8066
  ident: CR15
  article-title: Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9058
– volume: 37
  start-page: 177
  year: 2017
  end-page: 186
  ident: CR29
  article-title: 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.015
– volume: 135
  start-page: 4450
  year: 2013
  end-page: 4456
  ident: CR37
  article-title: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312241y
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  ident: CR17
  article-title: Toward safe lithium metal anode in rechargeable batteries: a review
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00115
– volume: 149
  start-page: A1267
  year: 2002
  end-page: A1277
  ident: CR9
  article-title: Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1502684
– volume: 7
  start-page: 115
  year: 2017
  end-page: 129
  ident: CR19
  article-title: High performance lithium metal anode: progress and prospects
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.01.006
– volume: 5
  start-page: 3710
  year: 2014
  end-page: 3719
  ident: CR14
  article-title: Defect-induced plating of lithium metal within porous graphene networks
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4710
– volume: 22
  start-page: 75
  year: 1977
  end-page: 83
  ident: CR7
  article-title: The effect of additives on lithium cycling in propylene carbonate
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(77)85057-3
– volume: 12
  start-page: 194
  year: 2017
  end-page: 206
  ident: CR18
  article-title: Reviving the lithium metal anode for high-energy batteries
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.16
– volume: 3
  start-page: 3170
  year: 2017
  end-page: 3178
  ident: CR35
  article-title: Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao3170
– volume: 10
  start-page: 682
  year: 2011
  end-page: 686
  ident: CR20
  article-title: A lithium superionic conductor
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3066
– volume: 488
  start-page: 294
  year: 2012
  end-page: 303
  ident: CR3
  article-title: Opportunities and challenges for a sustainable energy future
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 11
  start-page: 626
  year: 2016
  end-page: 632
  ident: CR26
  article-title: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.32
– volume: 12
  start-page: 452
  year: 2013
  end-page: 457
  ident: CR22
  article-title: Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3602
– volume: 38
  start-page: 504
  year: 2017
  end-page: 509
  ident: CR33
  article-title: A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.030
– volume: 17
  start-page: 565
  year: 2017
  end-page: 571
  ident: CR40
  article-title: Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04695
– volume: 7
  start-page: 10992
  year: 2016
  end-page: 11000
  ident: CR25
  article-title: Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10992
– volume: 4
  start-page: 2255
  year: 2013
  end-page: 2261
  ident: CR16
  article-title: Reversibility of anodic lithium in rechargeable lithium–oxygen batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3255
– volume: 28
  start-page: 1853
  year: 2016
  end-page: 1858
  ident: CR36
  article-title: An artificial solid electrolyte interphase layer for stable lithium metal anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504526
– volume: 11
  start-page: 191
  year: 2018
  end-page: 196
  ident: CR28
  article-title: ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.10.016
– volume: 9
  start-page: 618
  year: 2014
  end-page: 623
  ident: CR10
  article-title: Interconnected hollow carbon nanospheres for stable lithium metal anodes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.152
– volume: 2
  start-page: 1
  year: 2018
  end-page: 15
  ident: CR42
  article-title: Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2017.10.007
– volume: 15
  start-page: 2910
  year: 2015
  end-page: 2916
  ident: CR31
  article-title: Polymer nanofiber-guided uniform lithium deposition for battery electrodes
  publication-title: Nano Lett.
  doi: 10.1021/nl5046318
– volume: 2
  start-page: 17091
  year: 2017
  ident: CR41
  article-title: True performance metrics in beyond-intercalation batteries
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.91
– volume: 127
  start-page: 2100
  year: 1980
  end-page: 2104
  ident: CR6
  article-title: Behavior of secondary lithium and aluminum-lithium electrodes in propylene carbonate
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2129354
– volume: 5
  start-page: 12934
  year: 2017
  end-page: 12942
  ident: CR27
  article-title: Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03699J
– volume: 148
  start-page: 405
  year: 2002
  end-page: 416
  ident: CR8
  article-title: A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(02)00080-2
– volume: 6
  start-page: 6362
  year: 2015
  end-page: 6370
  ident: CR12
  article-title: High rate and stable cycling of lithium metal anode
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7362
– volume: 6
  start-page: 7436
  year: 2015
  end-page: 7444
  ident: CR13
  article-title: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8436
– volume: 4
  start-page: 59
  year: 2016
  end-page: 65
  ident: CR21
  article-title: Cu ZnSnS /graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.02.004
– volume: 3
  start-page: 77
  year: 2016
  end-page: 84
  ident: CR24
  article-title: Li S -based ternary-salt electrolyte for robust lithium metal anode
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.01.007
– volume: 414
  start-page: 359
  year: 2001
  ident: 6126_CR1
  publication-title: Nature
  doi: 10.1038/35104644
– volume: 15
  start-page: 2910
  year: 2015
  ident: 6126_CR31
  publication-title: Nano Lett.
  doi: 10.1021/nl5046318
– volume: 3
  start-page: 77
  year: 2016
  ident: 6126_CR24
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.01.007
– volume: 12
  start-page: 452
  year: 2013
  ident: 6126_CR22
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3602
– volume: 37
  start-page: 177
  year: 2017
  ident: 6126_CR29
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.015
– volume: 6
  start-page: 1701482
  year: 2017
  ident: 6126_CR32
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 3710
  year: 2014
  ident: 6126_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4710
– volume: 9
  start-page: 141
  year: 2017
  ident: 6126_CR23
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.06.016
– volume: 4
  start-page: 2255
  year: 2013
  ident: 6126_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3255
– volume: 7
  start-page: 115
  year: 2017
  ident: 6126_CR19
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.01.006
– volume: 149
  start-page: A1267
  year: 2002
  ident: 6126_CR9
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1502684
– volume: 488
  start-page: 294
  year: 2012
  ident: 6126_CR3
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 451
  start-page: 652
  year: 2008
  ident: 6126_CR2
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 11
  start-page: 191
  year: 2018
  ident: 6126_CR28
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.10.016
– volume: 6
  start-page: 7436
  year: 2015
  ident: 6126_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8436
– volume: 14
  start-page: 6016
  year: 2014
  ident: 6126_CR30
  publication-title: Nano Lett.
  doi: 10.1021/nl503125u
– volume: 22
  start-page: 75
  year: 1977
  ident: 6126_CR7
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(77)85057-3
– volume: 127
  start-page: 2100
  year: 1980
  ident: 6126_CR6
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2129354
– volume: 12
  start-page: 194
  year: 2017
  ident: 6126_CR18
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.16
– volume: 121
  start-page: 1457
  year: 1974
  ident: 6126_CR5
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2401708
– volume: 6
  start-page: 8058
  year: 2015
  ident: 6126_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9058
– volume: 38
  start-page: 504
  year: 2017
  ident: 6126_CR33
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.030
– volume: 4
  start-page: 59
  year: 2016
  ident: 6126_CR21
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.02.004
– volume: 104
  start-page: 4271
  year: 2004
  ident: 6126_CR4
  publication-title: Chem. Rev.
  doi: 10.1021/cr020731c
– volume: 28
  start-page: 1853
  year: 2016
  ident: 6126_CR36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504526
– volume: 17
  start-page: 565
  year: 2017
  ident: 6126_CR40
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04695
– volume: 117
  start-page: 10403
  year: 2017
  ident: 6126_CR17
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00115
– volume: 6
  start-page: 6362
  year: 2015
  ident: 6126_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7362
– volume: 9
  start-page: 618
  year: 2014
  ident: 6126_CR10
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.152
– volume: 148
  start-page: 405
  year: 2002
  ident: 6126_CR8
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(02)00080-2
– volume: 3
  start-page: 3170
  year: 2017
  ident: 6126_CR35
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao3170
– volume: 2
  start-page: 1
  year: 2018
  ident: 6126_CR42
  publication-title: Joule
  doi: 10.1016/j.joule.2017.10.007
– volume: 35
  start-page: 625
  year: 1990
  ident: 6126_CR39
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(90)87055-7
– volume: 10
  start-page: 682
  year: 2011
  ident: 6126_CR20
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3066
– volume: 139
  start-page: 4815
  year: 2017
  ident: 6126_CR34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b13314
– volume: 11
  start-page: 626
  year: 2016
  ident: 6126_CR26
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.32
– volume: 135
  start-page: 4450
  year: 2013
  ident: 6126_CR37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312241y
– volume: 5
  start-page: 12934
  year: 2017
  ident: 6126_CR27
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03699J
– volume: 21
  start-page: 1593
  year: 2011
  ident: 6126_CR38
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM02305A
– volume: 2
  start-page: 17091
  year: 2017
  ident: 6126_CR41
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.91
– volume: 7
  start-page: 10992
  year: 2016
  ident: 6126_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10992
– volume: 7
  start-page: 513
  year: 2014
  ident: 6126_CR11
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE40795K
– reference: 28265117 - Nat Nanotechnol. 2017 Mar 7;12(3):194-206
– reference: 25698340 - Nat Commun. 2015 Feb 20;6:6362
– reference: 15669156 - Chem Rev. 2004 Oct;104(10):4271-301
– reference: 23542871 - Nat Mater. 2013 May;12(5):452-7
– reference: 26081242 - Nat Commun. 2015 Jun 17;6:7436
– reference: 28753298 - Chem Rev. 2017 Aug 9;117(15):10403-10473
– reference: 26299379 - Nat Commun. 2015 Aug 24;6:8058
– reference: 23448508 - J Am Chem Soc. 2013 Mar 20;135(11):4450-6
– reference: 25064396 - Nat Nanotechnol. 2014 Aug;9(8):618-23
– reference: 11713543 - Nature. 2001 Nov 15;414(6861):359-67
– reference: 24751669 - Nat Commun. 2014 Apr 22;5:3710
– reference: 26698171 - Adv Mater. 2016 Mar 2;28(9):1853-8
– reference: 28303712 - J Am Chem Soc. 2017 Apr 5;139(13):4815-4820
– reference: 26999479 - Nat Nanotechnol. 2016 Jul;11(7):626-32
– reference: 29202031 - Sci Adv. 2017 Nov 29;3(11):eaao3170
– reference: 21804556 - Nat Mater. 2011 Jul 31;10(9):682-6
– reference: 26987481 - Nat Commun. 2016 Mar 18;7:10992
– reference: 25166749 - Nano Lett. 2014 Oct 8;14(10):6016-22
– reference: 25822282 - Nano Lett. 2015 May 13;15(5):2910-6
– reference: 23929396 - Nat Commun. 2013;4:2255
– reference: 22895334 - Nature. 2012 Aug 16;488(7411):294-303
– reference: 18256660 - Nature. 2008 Feb 7;451(7179):652-7
– reference: 27936780 - Nano Lett. 2017 Jan 11;17(1):565-571
SSID ssj0000391844
Score 2.6724133
Snippet The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for...
Lithium metal batteries suffer from the dendrite growth upon electrochemical cycling. Here the authors introduce a lithiophilic-lithiophobic gradient...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3729
SubjectTerms 147/135
639/4077
639/925
Anodes
Anodic dissolution
Carbon nanotubes
Corrosion prevention
Dendrites
Dendritic structure
Dissolution
Fabrication
Flux density
Foils
Humanities and Social Sciences
Lithium
Lithium batteries
Metals
multidisciplinary
Nanotubes
Science
Science (multidisciplinary)
Solid electrolytes
Strategy
Sulfur
Zinc oxide
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEDaLGsb2xjy2iqhBwolIPSJYfE7pSmlTb3UP31zPjZJcuzwvHxHbkzMP-xo9vGHs9mxndeNCl1K0vlQ1QBkssoom4X2obdSYw_fR5dnKqPpzpsxupvuhM2EgPPAruoPJQ2RR1iA2GMm0Mhq5CBhDBBCXaRKMvznk3gqk8BkuLoYuabslU0hxcqTwmVMJQMoN6Vq53ZqJM2P87lPnrYcmfdkzzRHR8j92dECQ_HHt-n92C_gG7PeaUvH7Ivn6cL8_nwyUtlMSymx6GMI_82yKf71py4ohYtJ5Wy3nnEXRzhK7cc-Iu7q45AsbQAc9tVxf8AhCgc98PCR6x0-P3X96dlFMKhTIqrdelAKMCkcoljIMBvVMlnSC0MhhV1yijKnrrGy9tshGalLwVbQUgUabKtFE-Znv90MNTxinzVEPxlxJBBY8fMQE0PfsW6kYXTGzE6eLEL05pLjqX97mlcaMKHKrAZRW4dcHebNtcjuwaf619RFra1iRm7PwC7cVN9uL-ZS8F29_o2E3ueuUw7pUIxXA0KtirbTE6Gu2e-B6GVa5DZIxS4p8-GU1i2xOJSElaia2bHWPZ6epuST8_z2TeCKcwZBUFe7sxqx_d-rMonv0PUTxnd-rsD7YUcp_tLRcreIEQaxleZm_6DnD0JD8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6txbG-cEwLEUiHgRKUekCy_0q60TZZ9HLq_nhnHm2p59JjEjmzPjP3N2P6GkNeTiVa1jYoJ1VomGxeZa5BFNCD3S9V4lQhMv32fHJ_IL6fqNAfcVvlY5W5OTBN16D3GyI_ANRGwWoLCvFv8Ypg1CndXcwqNm-QWh5UGj3Tp6ecxxoLs51rKfFemFPpoJdPMUHKNKQ2qCdvurUeJtv9fWPPvI5N_7Jum5Wh6j9zNOJK-HwR_n9yI3QNye8gsefmQ_Pw6W5_P-gWGSzyb54fezTw9W6ZTXmuKTBHL1mLMnM4tQG8KAJZaigzG80sKsNHNI011Nxf0IgJMp7brQ3xETqaffnw8ZjmRAvNSqS3jUUuH1HIBvOEINiqDCtG1wmlZVTBGpbeNra1oQuNjHYJteFvGKCpw_nTrxWNy0PVdfEoo5p-q0QuT3Eln4SfaRYXPto1VrQrCd8NpfGYZx2QXc5N2u4U2gwgMiMAkEZhtQd6MdRYDx8a1pT-glMaSyI-dXvTLM5PNzZQ2Qm-9cr4GB7j1TuMFWhe5007yNhTkcCdjk412Za5UrCCvxs9gbriHYrvYb1IZpGQUAnr6ZFCJsSUC8JJoBNSu95Rlr6n7X7rZeaL0BlAFjisvyNudWl016_9D8ez6Xjwnd6qk6Q3j4pAcrJeb-AIg1Nq9THbyG8JxGpM
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiHcDBRmJG0TEsb1xjguiqlbABSr1gGTZzqRdKU2q7e6h--uZcR5ooSBxdGxHtmfG_saPbxh7M5sZXTjQqdS1S1XpIfUlsYhWxP2Sl0FHAtMvX2cnp2pxps_2WD6-hYmX9iOlZZymx9th769VNOlMGIpFkM_S7R12QFTtqNsH8_ni22LaWSHOc6PU8EImk-aWyjurUCTrvw1h_nlR8rfT0rgIHT9g9wf0yOd9ex-yPWgfsbt9PMmbx-zH5-X6Ytld0SZJSJsh0fll4OereLdrzYkfYlU72innjUPAzRG2cseJt7i54QgWfQM81t1c8ktAcM5d21XwhJ0ef_r-8SQdwiekQWm9TQUY5YlQrkIfGNAyVaUr8LX0RuU5jlEWXOkKJ8uqDFBUlStFnQHIHF0-Uwf5lO23XQuHjFPUqYJ8LyW88g5_YjxoSrsa8kInTIzDacPALU4hLhobz7ilsb0ILIrARhHYbcLeTnWuemaNf5b-QFKaShIrdvzQrc7toCU2c4C9DdqHAt3eOnhDz2Y9CG-8EnWVsKNRxnYw1WuLPq9EGIYzUcJeT9loZHRy4lroNrEMETFKiT191qvE1BKJKEmWEmsXO8qy09TdnHZ5EYm8EUqhuyoS9m5Uq1_N-vtQPP-_4i_YvTxqfpkKecT216sNvEQgtfavBsv5CbrKGkQ
  priority: 102
  providerName: Springer Nature
Title Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode
URI https://link.springer.com/article/10.1038/s41467-018-06126-z
https://www.ncbi.nlm.nih.gov/pubmed/30213936
https://www.proquest.com/docview/2103658196
https://www.proquest.com/docview/2105060335
https://pubmed.ncbi.nlm.nih.gov/PMC6137161
https://doaj.org/article/0ae09dc5bc7549fcb83432be1b8b41fd
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aRaC9IK4jMCoj8QaBJrYT5wGhrlqZKjYhoFIfkCLbcbZKWTKyVqL99Rw7SadC4YGXREnsxDmX-Dt2_B2AV1EkeCwN9ynPpc8SZXyVWBbRzHK_hInmjsD07Dw6nbDxlE93oEt31ArwZmtoZ_NJTeri7c8fyw_o8O-bJePi3Q1z7t4PhM1TEEb-ahf2sWeKbUaDsxbuuy8zTTCgYe3ame1VD-AuxX6PJo60-barcoz-22Don39T_jal6nqq0X2410JMMmhs4gHsmPIh3GmSTi4fwfdPs_nlrLq2IynaL9qDSs00uajdD2BzYkkk6lza4XRSSETlBLEtkcSSGxdLgohSFYa4uosrcmVQeESWVWYew2R08m146rc5FnzNOF_5gRFMWda5DANlg-7LMp4ZlVMlWBiiuPpaJjKWNMkSbeIsk0mQ942hIcaFItf0CeyVVWmeArGpqWIboLFAMSXxJkIZbo9lbsKYexB04kx1S0Bu82AUqZsIpyJttJGiNlKnjXTlwet1neuGfuOfpY-tltYlLXW2O1HVF2nriWlfGnxbzZWOMTbOtRJ2ba0ygRKKBXnmwVGn47QzxxQDY4pYDT9XHrxcX0ZPtNMrsjTVwpWxbI2U4pseNiaxbklnUh7EG8ay0dTNK-Xs0rF9I97CmDbw4E1nVrfN-rsonv33g57DQej8IfEDegR783phXiDwmqse7MbTGLdi9LEH-4PB-OsY98cn55-_4NlhNOy5IY2e87pf1pUyEg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYJLxZuUAkaCE0RNYnvjHBDitWzptqdW6gHJtR2nXSlNln0I7f4ofiMzTrLV8uitRye2ZXs-2zNj-xtCXvV6UqTaiZCJQoc8My40GbKI5sj9kmRWeALTg8Pe4Jh_OxEnG-RX9xYGr1V2a6JfqPPaoo98F0wTBrslAOb9-EeIUaPwdLULodHAYt8tfoLJNn239xnk-zpJ-l-OPg3CNqpAaLkQyzB2khvkWcvBNHQAWJ6L3JmCGcmTJItlZHWmU82yPLMuzXOdxUXkHEvAEpKFZVDvDXKTM9jJ8WV6_-vKp4Ns65Lz9m1OxOTulPuVKIolhlBIeuFybf_zYQL-pdv-fUXzj3Nav_3175KtVm-lHxqg3SMbrrpPbjWRLBcPyPfhaHY-qsfonrFh2SZqM7L0bOJvlc0oMlNMCo0-elpqUPUpKMxUU2RMLhcU1FRTOurLzi_ohQOzgOqqzt1DcnwtQ_yIbFZ15Z4QivGuUrT6eGy40VCJNE5gWhcuSUVA4m44lW1ZzTG4Rqn86TqTqhGBAhEoLwK1DMibVZlxw-lxZe6PKKVVTuTj9h_qyZlqp7eKtIPeWmFsCgZ3YY3EB7vGxUYaHhd5QHY6Gat2kZiqS0gH5OXqN0xvPLPRlavnPg9SQDIGPX3cQGLVEgb6GcsYlE7XwLLW1PU_1ejcU4iDEgeGchyQtx2sLpv1_6HYvroXL8jtwdHBUA33DvefkjuJR30WxmyHbM4mc_cM1LeZee7nDCWn1z1JfwO4uFfd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiDcLBYwEJ4h2E9sb54AQpV21tKwqRKUekFzbcdqV0mTZh9DuT-PXMeM8quXRW49ObMv2zNjz-fENIa8HAyli7UTARKYDnhgXmARZRFPkfokSKzyB6ZfRYO-Yfz4RJxvkV_MWBq9VNnOin6jT0uIeeQ-gCYPVEhSml9XXIo52hh8mPwKMIIUnrU04jUpFDtzyJ8C32fv9HZD1myga7n77tBfUEQYCy4VYBaGT3CDnWgow0YHy8lSkzmTMSB5FSSj7Vic61ixJE-viNNVJmPWdYxGgIplZBvXeIJsxoqIO2dzeHR19bXd4kHtdcl6_1Okz2ZtxPy_1Q4kBFaJBsFpbDX3QgH95un9f2Pzj1NYvhsO75E7txdKPldrdIxuuuE9uVnEtlw_I98Px_HxcTnCzxgZ5nSjN2NKzqb9jNqfIUzHNNO7Y01yD40_BfaaaIn9yvqTgtJrcUV92cUEvHIAEqosydQ_J8bUM8iPSKcrCPSEUo1_FiAF5aLjRUIk0TmBaZy6KRZeEzXAqW3OcY6iNXPmzdiZVJQIFIlBeBGrVJW_bMpOK4ePK3NsopTYnsnP7D-X0TNXGrvraQW-tMDYG-J1ZI_H5rnGhkYaHWdolW42MVT1lzNSlgnfJq_Y3GDue4OjClQufBwkhGYOePq5Uom0JA2-NJQxKx2vKstbU9T_F-NwTioNLB7A57JJ3jVpdNuv_Q_H06l68JLfAQNXh_ujgGbkdeaVPgpBtkc58unDPwZebmxe10VByet12-htsFF1v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithiophilic-lithiophobic+gradient+interfacial+layer+for+a+highly+stable+lithium+metal+anode&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Huimin&rft.au=Liao%2C+Xiaobin&rft.au=Guan%2C+Yuepeng&rft.au=Xiang%2C+Yu&rft.date=2018-09-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=9&rft_id=info:doi/10.1038%2Fs41467-018-06126-z&rft_id=info%3Apmid%2F30213936&rft.externalDocID=PMC6137161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon