Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives

The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features, we introduced alkali metal halides (salts) as additives into the perovskite precursor solution used in a two-step preparation method. These al...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 4; no. 5; pp. 1591 - 1597
Main Authors Boopathi, Karunakara Moorthy, Mohan, Ramesh, Huang, Tzu-Yen, Budiawan, Widhya, Lin, Ming-Yi, Lee, Chih-Hao, Ho, Kuo-Chuan, Chu, Chih-Wei
Format Journal Article
LanguageEnglish
Published 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features, we introduced alkali metal halides (salts) as additives into the perovskite precursor solution used in a two-step preparation method. These alkali metal halides chelate with Pb 2+ ions and enhance the crystal growth of PbI 2 films, resulting in nanostructured morphologies. The nanostructured PbI 2 films promote homogeneous nucleation and larger crystallite sizes, thereby enhancing the morphology and crystallinity of the perovskite films. The alkali metal halides recrystallize the small grains and passivate the grain boundaries and interface states, allowing effective charge generation and dissociation in perovskite films. Photoluminescence measurements indicated that perovskite films prepared with salt additives featured fewer charge traps and defects. The power conversion efficiency of the device incorporating a small amount of a salt additive increased by approximately 33%-from 11.4 to 15.08%. This device was more stable than a corresponding device prepared without the additive, with only 16.5% degradation occurring over a period of 50 days. Alkali metal halide additives chelate with Pb 2+ ions during film formation promoting homogeneous nucleation, which greatly enhances the power conversion efficiency (15.08%) and stability (over 50 days) of planar perovskite solar cells.
AbstractList The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features, we introduced alkali metal halides (salts) as additives into the perovskite precursor solution used in a two-step preparation method. These alkali metal halides chelate with Pb 2+ ions and enhance the crystal growth of PbI 2 films, resulting in nanostructured morphologies. The nanostructured PbI 2 films promote homogeneous nucleation and larger crystallite sizes, thereby enhancing the morphology and crystallinity of the perovskite films. The alkali metal halides recrystallize the small grains and passivate the grain boundaries and interface states, allowing effective charge generation and dissociation in perovskite films. Photoluminescence measurements indicated that perovskite films prepared with salt additives featured fewer charge traps and defects. The power conversion efficiency of the device incorporating a small amount of a salt additive increased by approximately 33%—from 11.4 to 15.08%. This device was more stable than a corresponding device prepared without the additive, with only 16.5% degradation occurring over a period of 50 days.
The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features, we introduced alkali metal halides (salts) as additives into the perovskite precursor solution used in a two-step preparation method. These alkali metal halides chelate with Pb²⁺ ions and enhance the crystal growth of PbI₂ films, resulting in nanostructured morphologies. The nanostructured PbI₂ films promote homogeneous nucleation and larger crystallite sizes, thereby enhancing the morphology and crystallinity of the perovskite films. The alkali metal halides recrystallize the small grains and passivate the grain boundaries and interface states, allowing effective charge generation and dissociation in perovskite films. Photoluminescence measurements indicated that perovskite films prepared with salt additives featured fewer charge traps and defects. The power conversion efficiency of the device incorporating a small amount of a salt additive increased by approximately 33%—from 11.4 to 15.08%. This device was more stable than a corresponding device prepared without the additive, with only 16.5% degradation occurring over a period of 50 days.
The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features, we introduced alkali metal halides (salts) as additives into the perovskite precursor solution used in a two-step preparation method. These alkali metal halides chelate with Pb2+ ions and enhance the crystal growth of PbI2 films, resulting in nanostructured morphologies. The nanostructured PbI2 films promote homogeneous nucleation and larger crystallite sizes, thereby enhancing the morphology and crystallinity of the perovskite films. The alkali metal halides recrystallize the small grains and passivate the grain boundaries and interface states, allowing effective charge generation and dissociation in perovskite films. Photoluminescence measurements indicated that perovskite films prepared with salt additives featured fewer charge traps and defects. The power conversion efficiency of the device incorporating a small amount of a salt additive increased by approximately 33%-from 11.4 to 15.08%. This device was more stable than a corresponding device prepared without the additive, with only 16.5% degradation occurring over a period of 50 days.
The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features, we introduced alkali metal halides (salts) as additives into the perovskite precursor solution used in a two-step preparation method. These alkali metal halides chelate with Pb 2+ ions and enhance the crystal growth of PbI 2 films, resulting in nanostructured morphologies. The nanostructured PbI 2 films promote homogeneous nucleation and larger crystallite sizes, thereby enhancing the morphology and crystallinity of the perovskite films. The alkali metal halides recrystallize the small grains and passivate the grain boundaries and interface states, allowing effective charge generation and dissociation in perovskite films. Photoluminescence measurements indicated that perovskite films prepared with salt additives featured fewer charge traps and defects. The power conversion efficiency of the device incorporating a small amount of a salt additive increased by approximately 33%-from 11.4 to 15.08%. This device was more stable than a corresponding device prepared without the additive, with only 16.5% degradation occurring over a period of 50 days. Alkali metal halide additives chelate with Pb 2+ ions during film formation promoting homogeneous nucleation, which greatly enhances the power conversion efficiency (15.08%) and stability (over 50 days) of planar perovskite solar cells.
Author Mohan, Ramesh
Ho, Kuo-Chuan
Budiawan, Widhya
Lee, Chih-Hao
Chu, Chih-Wei
Boopathi, Karunakara Moorthy
Huang, Tzu-Yen
Lin, Ming-Yi
AuthorAffiliation Taiwan International Graduate Program
National Taiwan University
Department of Engineering and Systems Science
Nano Science and Technology Program
National Tsing Hua University
Academia Sinica
Academia Sinica and National Tsing Hua University
Research Center for Applied Science
Department of Chemical Engineering
AuthorAffiliation_xml – sequence: 0
  name: National Tsing Hua University
– sequence: 0
  name: Nano Science and Technology Program
– sequence: 0
  name: Taiwan International Graduate Program
– sequence: 0
  name: Academia Sinica
– sequence: 0
  name: Department of Engineering and Systems Science
– sequence: 0
  name: National Taiwan University
– sequence: 0
  name: Research Center for Applied Science
– sequence: 0
  name: Academia Sinica and National Tsing Hua University
– sequence: 0
  name: Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Karunakara Moorthy
  surname: Boopathi
  fullname: Boopathi, Karunakara Moorthy
– sequence: 2
  givenname: Ramesh
  surname: Mohan
  fullname: Mohan, Ramesh
– sequence: 3
  givenname: Tzu-Yen
  surname: Huang
  fullname: Huang, Tzu-Yen
– sequence: 4
  givenname: Widhya
  surname: Budiawan
  fullname: Budiawan, Widhya
– sequence: 5
  givenname: Ming-Yi
  surname: Lin
  fullname: Lin, Ming-Yi
– sequence: 6
  givenname: Chih-Hao
  surname: Lee
  fullname: Lee, Chih-Hao
– sequence: 7
  givenname: Kuo-Chuan
  surname: Ho
  fullname: Ho, Kuo-Chuan
– sequence: 8
  givenname: Chih-Wei
  surname: Chu
  fullname: Chu, Chih-Wei
BookMark eNqNkstrGzEQh0VxIM9L7gUdQ8DtaGVptcdg0heBHJKcl4l2ZOTuSo4km_i_7zouKYRCMpffwHwzzOuYTUIMxNi5gC8CZPPVqoICKmOWn9hRBQqm9azRk1ffmEN2lvMSRjMAummO2PPdNlBa-Fy85X5YpbihgULJ3AeeCz763pctx9DxFSUX04DBEo-O94Qd97HzHe1CcZN_-0I8xx4Tt9T3uxI2plVMWHxY8Ix94dh1vvgN5VN24LDPdPZXT9jDt-v7-Y_pze33n_Orm6mdKVWmzlndWV1bVFriKFIDKuhqAkcgpaMazEw8CiWkU65uGi21sEZL0CitkCfsYl93HO1pTbm0g8-79jBQXOe2qmphhABTvYsKUyml1UzBB1Aw436buhlR2KM2xZwTudb6Mm4khpLQ962Adne9dq7ur16u92tMuXyTskp-wLT9P_x5D6dsX7l_ryD_AGk2p-8
CitedBy_id crossref_primary_10_1002_advs_201700131
crossref_primary_10_1039_C6TA06851K
crossref_primary_10_1021_acs_chemrev_8b00558
crossref_primary_10_1038_s41467_022_34332_3
crossref_primary_10_1186_s11671_020_03356_3
crossref_primary_10_1016_j_jallcom_2019_153539
crossref_primary_10_1016_j_orgel_2021_106080
crossref_primary_10_1039_C7TA01798G
crossref_primary_10_1016_j_tsf_2018_10_001
crossref_primary_10_1016_j_jpowsour_2017_11_070
crossref_primary_10_1016_j_jpowsour_2020_229073
crossref_primary_10_1021_acs_cgd_8b00686
crossref_primary_10_1038_ncomms15218
crossref_primary_10_1063_5_0012141
crossref_primary_10_1016_j_orgel_2020_106009
crossref_primary_10_1016_j_jpowsour_2017_05_083
crossref_primary_10_1002_eem2_12459
crossref_primary_10_1016_j_ceramint_2022_10_092
crossref_primary_10_1039_C8TA00308D
crossref_primary_10_1002_adfm_202000778
crossref_primary_10_1021_acs_jpclett_4c02826
crossref_primary_10_1021_acsami_6b03276
crossref_primary_10_1002_idm2_12147
crossref_primary_10_1016_j_joule_2020_11_020
crossref_primary_10_1007_s10854_020_03771_3
crossref_primary_10_1002_advs_201700387
crossref_primary_10_1021_acs_nanolett_7b00050
crossref_primary_10_1039_C8TA05593A
crossref_primary_10_1016_j_solener_2019_08_033
crossref_primary_10_1021_acs_chemmater_2c01422
crossref_primary_10_1007_s10854_019_01444_4
crossref_primary_10_3390_nano12203625
crossref_primary_10_1016_j_tsf_2019_137563
crossref_primary_10_1016_j_trechm_2019_04_010
crossref_primary_10_1039_C7EE01674C
crossref_primary_10_1088_1361_6528_ac9f4f
crossref_primary_10_1021_acsenergylett_9b02810
crossref_primary_10_1021_acsaem_0c02441
crossref_primary_10_1002_admi_201901748
crossref_primary_10_1038_s41467_018_05076_w
crossref_primary_10_1002_adfm_202104482
crossref_primary_10_1016_j_nanoen_2021_106141
crossref_primary_10_1016_j_solener_2021_09_012
crossref_primary_10_1039_D2TC02553A
crossref_primary_10_1021_acs_jpcc_7b11245
crossref_primary_10_1016_j_jallcom_2018_12_369
crossref_primary_10_1021_acsanm_0c00888
crossref_primary_10_1007_s11426_020_9812_6
crossref_primary_10_1007_s11664_021_09304_w
crossref_primary_10_1021_acsami_7b06607
crossref_primary_10_1134_S1063785020030153
crossref_primary_10_1007_s12274_016_1405_2
crossref_primary_10_1016_j_apsusc_2016_06_187
crossref_primary_10_1016_j_dyepig_2018_12_054
crossref_primary_10_1021_acs_jpclett_0c01776
crossref_primary_10_1016_j_jmst_2020_05_029
crossref_primary_10_1002_solr_202000331
crossref_primary_10_1039_C7TA09740A
crossref_primary_10_3390_app12031710
crossref_primary_10_1016_j_electacta_2017_07_078
crossref_primary_10_1016_j_electacta_2017_09_003
crossref_primary_10_1016_j_rser_2018_04_069
crossref_primary_10_3390_ma13214851
crossref_primary_10_1016_j_jechem_2018_01_030
crossref_primary_10_1063_5_0078958
crossref_primary_10_1016_j_orgel_2021_106226
crossref_primary_10_3390_nano9050666
crossref_primary_10_1016_j_jechem_2019_11_008
crossref_primary_10_1007_s12613_023_2742_2
crossref_primary_10_1016_j_cej_2024_149442
crossref_primary_10_1016_j_orgel_2022_106543
crossref_primary_10_1016_j_solener_2020_07_059
crossref_primary_10_1016_j_nanoen_2016_09_041
crossref_primary_10_1039_C9TA08130E
crossref_primary_10_1039_D4NR03140G
crossref_primary_10_1039_C6TA08021A
crossref_primary_10_1039_D0SE00382D
crossref_primary_10_1039_D0TA00123F
crossref_primary_10_1007_s11664_020_08249_w
crossref_primary_10_1088_1674_4926_38_1_014001
crossref_primary_10_1039_D0CS01316A
crossref_primary_10_3390_cryst7090272
crossref_primary_10_1039_C6CP05006A
crossref_primary_10_1039_C8TC04525A
crossref_primary_10_1021_acsami_6b08783
crossref_primary_10_1007_s42247_024_00796_w
crossref_primary_10_1016_j_apsusc_2020_145790
crossref_primary_10_1002_aenm_202100378
crossref_primary_10_1021_acs_jpclett_2c01506
crossref_primary_10_1002_ente_202401684
crossref_primary_10_1016_j_apsusc_2022_155787
crossref_primary_10_1002_aesr_202100050
crossref_primary_10_1021_acsami_8b00079
crossref_primary_10_1016_j_orgel_2018_12_042
crossref_primary_10_1039_D0TA08656H
crossref_primary_10_1002_adma_202003137
crossref_primary_10_1039_C8TA11515J
crossref_primary_10_3390_en14092656
crossref_primary_10_1002_ente_201901114
crossref_primary_10_1002_smtd_201900569
crossref_primary_10_1063_1_4997325
crossref_primary_10_1002_celc_201800861
crossref_primary_10_1080_00958972_2022_2079410
crossref_primary_10_1002_admi_202000950
crossref_primary_10_1021_acsaem_3c02369
crossref_primary_10_1002_smll_201604153
crossref_primary_10_1016_j_mtcomm_2021_102159
crossref_primary_10_1039_C7TC04673A
crossref_primary_10_1016_j_ijleo_2021_168294
crossref_primary_10_1039_C9TA06688H
crossref_primary_10_1016_j_solmat_2017_10_024
crossref_primary_10_1002_aenm_201800275
crossref_primary_10_1016_j_jpowsour_2019_04_009
crossref_primary_10_1016_j_rser_2018_09_016
crossref_primary_10_1039_C9NR10548D
crossref_primary_10_1016_j_jpowsour_2020_228067
crossref_primary_10_1002_adma_201803019
crossref_primary_10_1016_j_omx_2024_100331
crossref_primary_10_1002_ente_201600486
crossref_primary_10_1016_j_orgel_2018_12_012
crossref_primary_10_1007_s12274_021_3408_x
crossref_primary_10_1016_j_jphotochemrev_2021_100405
crossref_primary_10_1016_j_cej_2024_151876
crossref_primary_10_1021_acsami_8b04329
crossref_primary_10_1007_s10854_018_0477_z
crossref_primary_10_1002_smll_202310455
crossref_primary_10_1002_appl_202200077
crossref_primary_10_3390_nano10061226
crossref_primary_10_1039_C7TA06679A
crossref_primary_10_1016_j_jechem_2021_01_001
crossref_primary_10_1039_C9TC04067F
crossref_primary_10_1021_acs_cgd_0c01280
crossref_primary_10_1021_acsaem_9b00058
crossref_primary_10_1002_cssc_202101089
crossref_primary_10_1016_j_solmat_2017_04_043
crossref_primary_10_1039_C6RA17197D
crossref_primary_10_1002_adma_201707350
crossref_primary_10_1002_adma_201902037
crossref_primary_10_1016_j_mtphys_2022_100822
crossref_primary_10_1016_j_solmat_2020_110409
crossref_primary_10_1016_j_apenergy_2017_11_005
crossref_primary_10_3390_cryst11070814
crossref_primary_10_1039_D0MH00512F
crossref_primary_10_1016_j_nanoen_2019_06_024
crossref_primary_10_1016_j_solmat_2022_111779
crossref_primary_10_1002_aenm_202000768
crossref_primary_10_1002_anie_201603694
crossref_primary_10_1021_acsaem_0c02625
crossref_primary_10_1016_j_electacta_2017_12_135
crossref_primary_10_1039_C7TA05560A
crossref_primary_10_1039_C9TA09101G
crossref_primary_10_1039_D1NJ02627E
crossref_primary_10_1016_j_orgel_2020_106028
crossref_primary_10_1016_j_solener_2020_01_069
crossref_primary_10_1016_j_jpowsour_2017_04_025
crossref_primary_10_1002_cssc_201701827
crossref_primary_10_1021_acsami_9b10602
crossref_primary_10_1002_ente_201900991
crossref_primary_10_1016_j_solener_2022_06_021
crossref_primary_10_3390_app9204393
crossref_primary_10_1002_ese3_1084
crossref_primary_10_1039_C8NR10125F
crossref_primary_10_1021_acs_jpclett_7b00372
crossref_primary_10_1021_acsami_0c17893
crossref_primary_10_1039_C6TA02609E
crossref_primary_10_1002_ange_201603694
crossref_primary_10_1002_cplu_201800543
crossref_primary_10_1016_j_physb_2022_414591
crossref_primary_10_3390_molecules28207120
crossref_primary_10_1002_flm2_39
crossref_primary_10_1021_acsami_7b16349
crossref_primary_10_1063_5_0050512
crossref_primary_10_1039_C7TA00042A
crossref_primary_10_3788_COL202422_022502
crossref_primary_10_1016_j_joule_2019_06_014
crossref_primary_10_1016_j_orgel_2022_106731
crossref_primary_10_1039_C7EE00358G
crossref_primary_10_1063_1_5094041
Cites_doi 10.1021/ja411509g
10.1021/nl404252e
10.1039/c3ee40810h
10.1038/nature12340
10.1016/j.nanoen.2015.02.028
10.1002/aenm.201401229
10.1038/nmat3911
10.1039/C4EE02465F
10.1039/C4TA06392A
10.1021/nn406020d
10.1038/nmat4014
10.1002/adfm.201404007
10.1021/acs.jpclett.5b00732
10.1002/adma.201403751
10.1021/am506886d
10.1002/adma.201400231
10.1021/ja809598r
10.1002/aenm.201400355
10.1039/C4TA05012F
10.1021/acsami.5b01049
10.1021/nl400286w
10.1021/acs.nanolett.5b00235
10.1126/science.1243167
10.1016/j.nanoen.2014.04.017
10.1038/nnano.2014.149
10.1016/j.nanoen.2015.05.027
10.1038/nature12509
10.1038/srep06953
10.1038/nphoton.2013.342
10.1016/j.nanoen.2015.04.039
10.1126/science.1243982
10.1039/C4EE00233D
10.1002/adma.201402461
10.1039/C4NR02425G
10.1038/ncomms6784
10.1063/1.4906073
10.1038/nature13435
10.1038/nmat4271
10.1021/acsami.5b00052
10.1126/science.1228604
10.1126/science.aaa9272
10.1038/nmat3789
ContentType Journal Article
DBID AAYXX
CITATION
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
DOI 10.1039/c5ta10288j
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
Materials Research Database
Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 1597
ExternalDocumentID 10_1039_C5TA10288J
c5ta10288j
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AUNWK
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
J3G
J3H
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c455t-ffc6dc67ca563a7ca360a50d7e0fe033fe70841b1513f5f7996361c86306a3c13
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 00:13:06 EDT 2025
Fri Jul 11 05:45:03 EDT 2025
Fri Jul 11 02:55:32 EDT 2025
Tue Jul 01 04:18:02 EDT 2025
Thu Apr 24 23:10:41 EDT 2025
Tue Dec 17 20:59:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c455t-ffc6dc67ca563a7ca360a50d7e0fe033fe70841b1513f5f7996361c86306a3c13
Notes 10.1039/c5ta10288j
Electronic supplementary information (ESI) available: Experimental details, device fabrication, solar testing, salt concentration optimization, comparison table and XPS data. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1808699979
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_2271811082
crossref_primary_10_1039_C5TA10288J
rsc_primary_c5ta10288j
crossref_citationtrail_10_1039_C5TA10288J
proquest_miscellaneous_1825565450
proquest_miscellaneous_1808699979
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2016
References Liu (C5TA10288J-(cit24)/*[position()=1]) 2014; 8
Lee (C5TA10288J-(cit2)/*[position()=1]) 2012; 338
Kim (C5TA10288J-(cit29)/*[position()=1]) 2015; 5
Major (C5TA10288J-(cit38)/*[position()=1]) 2014; 511
Xing (C5TA10288J-(cit16)/*[position()=1]) 2013; 342
Jaramillo-Quintero (C5TA10288J-(cit10)/*[position()=1]) 2015; 6
Jeon (C5TA10288J-(cit21)/*[position()=1]) 2014; 4
Wang (C5TA10288J-(cit42)/*[position()=1]) 2014; 7
Kim (C5TA10288J-(cit5)/*[position()=1]) 2013; 13
Docampo (C5TA10288J-(cit26)/*[position()=1]) 2014; 4
Chen (C5TA10288J-(cit20)/*[position()=1]) 2014; 26
Stranks (C5TA10288J-(cit15)/*[position()=1]) 2013; 342
Wang (C5TA10288J-(cit36)/*[position()=1]) 2015; 25
Tan (C5TA10288J-(cit9)/*[position()=1]) 2014; 9
Gonzalez-Pedro (C5TA10288J-(cit17)/*[position()=1]) 2014; 14
Chueh (C5TA10288J-(cit34)/*[position()=1]) 2015; 3
Shao (C5TA10288J-(cit41)/*[position()=1]) 2014; 5
Song (C5TA10288J-(cit35)/*[position()=1]) 2015; 106
Unger (C5TA10288J-(cit40)/*[position()=1]) 2014; 7
Chang (C5TA10288J-(cit33)/*[position()=1]) 2015; 7
Choi (C5TA10288J-(cit30)/*[position()=1]) 2014; 7
Yang (C5TA10288J-(cit8)/*[position()=1]) 2015; 15
Liang (C5TA10288J-(cit31)/*[position()=1]) 2014; 26
Li (C5TA10288J-(cit12)/*[position()=1]) 2015; 15
Xing (C5TA10288J-(cit13)/*[position()=1]) 2014; 13
Yang (C5TA10288J-(cit37)/*[position()=1]) 2015; 7
Burschka (C5TA10288J-(cit4)/*[position()=1]) 2013; 499
Yang (C5TA10288J-(cit18)/*[position()=1]) 2015; 348
Ramesh (C5TA10288J-(cit28)/*[position()=1]) 2015; 7
Zuo (C5TA10288J-(cit32)/*[position()=1]) 2014; 6
Jeon (C5TA10288J-(cit23)/*[position()=1]) 2014; 13
Chirilă (C5TA10288J-(cit39)/*[position()=1]) 2013; 12
Ball (C5TA10288J-(cit3)/*[position()=1]) 2013; 6
Kojima (C5TA10288J-(cit1)/*[position()=1]) 2009; 131
Liu (C5TA10288J-(cit6)/*[position()=1]) 2013; 501
Della Gaspera (C5TA10288J-(cit7)/*[position()=1]) 2015; 13
Boopathi (C5TA10288J-(cit27)/*[position()=1]) 2015; 3
Zhu (C5TA10288J-(cit14)/*[position()=1]) 2015; 14
Chen (C5TA10288J-(cit19)/*[position()=1]) 2013; 136
Zhu (C5TA10288J-(cit25)/*[position()=1]) 2015; 15
Kim (C5TA10288J-(cit11)/*[position()=1]) 2015; 27
You (C5TA10288J-(cit22)/*[position()=1]) 2014; 8
References_xml – volume: 136
  start-page: 622
  year: 2013
  ident: C5TA10288J-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411509g
– volume: 14
  start-page: 888
  year: 2014
  ident: C5TA10288J-(cit17)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl404252e
– volume: 6
  start-page: 1739
  year: 2013
  ident: C5TA10288J-(cit3)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40810h
– volume: 499
  start-page: 316
  year: 2013
  ident: C5TA10288J-(cit4)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12340
– volume: 13
  start-page: 249
  year: 2015
  ident: C5TA10288J-(cit7)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.02.028
– volume: 5
  start-page: 1401229
  year: 2015
  ident: C5TA10288J-(cit29)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401229
– volume: 13
  start-page: 476
  year: 2014
  ident: C5TA10288J-(cit13)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3911
– volume: 7
  start-page: 3690
  year: 2014
  ident: C5TA10288J-(cit40)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02465F
– volume: 3
  start-page: 9257
  year: 2015
  ident: C5TA10288J-(cit27)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06392A
– volume: 8
  start-page: 1674
  year: 2014
  ident: C5TA10288J-(cit22)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn406020d
– volume: 13
  start-page: 897
  year: 2014
  ident: C5TA10288J-(cit23)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4014
– volume: 25
  start-page: 1120
  year: 2015
  ident: C5TA10288J-(cit36)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201404007
– volume: 6
  start-page: 18831
  year: 2015
  ident: C5TA10288J-(cit10)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00732
– volume: 27
  start-page: 1248
  year: 2015
  ident: C5TA10288J-(cit11)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403751
– volume: 7
  start-page: 2359
  year: 2015
  ident: C5TA10288J-(cit28)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am506886d
– volume: 26
  start-page: 3748
  year: 2014
  ident: C5TA10288J-(cit31)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400231
– volume: 131
  start-page: 6050
  year: 2009
  ident: C5TA10288J-(cit1)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 4
  start-page: 1
  year: 2014
  ident: C5TA10288J-(cit26)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400355
– volume: 3
  start-page: 9058
  year: 2015
  ident: C5TA10288J-(cit34)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05012F
– volume: 7
  start-page: 14614
  year: 2015
  ident: C5TA10288J-(cit37)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01049
– volume: 13
  start-page: 2412
  year: 2013
  ident: C5TA10288J-(cit5)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl400286w
– volume: 15
  start-page: 2640
  year: 2015
  ident: C5TA10288J-(cit12)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00235
– volume: 342
  start-page: 344
  year: 2013
  ident: C5TA10288J-(cit16)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1243167
– volume: 7
  start-page: 80
  year: 2014
  ident: C5TA10288J-(cit30)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.04.017
– volume: 9
  start-page: 687
  year: 2014
  ident: C5TA10288J-(cit9)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.149
– volume: 15
  start-page: 670
  year: 2015
  ident: C5TA10288J-(cit8)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.05.027
– volume: 501
  start-page: 395
  year: 2013
  ident: C5TA10288J-(cit6)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12509
– volume: 4
  start-page: 6953
  year: 2014
  ident: C5TA10288J-(cit21)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep06953
– volume: 8
  start-page: 133
  year: 2014
  ident: C5TA10288J-(cit24)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.342
– volume: 15
  start-page: 540
  year: 2015
  ident: C5TA10288J-(cit25)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.04.039
– volume: 342
  start-page: 341
  year: 2013
  ident: C5TA10288J-(cit15)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1243982
– volume: 7
  start-page: 2359
  year: 2014
  ident: C5TA10288J-(cit42)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00233D
– volume: 26
  start-page: 6647
  year: 2014
  ident: C5TA10288J-(cit20)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402461
– volume: 6
  start-page: 9935
  year: 2014
  ident: C5TA10288J-(cit32)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR02425G
– volume: 5
  start-page: 5784
  year: 2014
  ident: C5TA10288J-(cit41)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6784
– volume: 106
  start-page: 033901
  year: 2015
  ident: C5TA10288J-(cit35)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4906073
– volume: 511
  start-page: 334
  year: 2014
  ident: C5TA10288J-(cit38)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature13435
– volume: 14
  start-page: 636
  year: 2015
  ident: C5TA10288J-(cit14)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4271
– volume: 7
  start-page: 4955
  year: 2015
  ident: C5TA10288J-(cit33)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00052
– volume: 338
  start-page: 643
  year: 2012
  ident: C5TA10288J-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1228604
– volume: 348
  start-page: 1234
  year: 2015
  ident: C5TA10288J-(cit18)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa9272
– volume: 12
  start-page: 1107
  year: 2013
  ident: C5TA10288J-(cit39)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3789
SSID ssj0000800699
Score 2.5329258
Snippet The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features,...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1591
SubjectTerms Additives
Alkali metals
Charge
crystal structure
crystallites
Devices
dissociation
Halides
ions
lead
Morphology
Nanostructure
Perovskites
photoluminescence
small cereal grains
solar cells
Title Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives
URI https://www.proquest.com/docview/1808699979
https://www.proquest.com/docview/1825565450
https://www.proquest.com/docview/2271811082
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOiFfFUkBGcEFRihPHeRyXqqhUwIVUlFPkOIl2YZVUu0mh_bf8E2aclwtbVLhkN45jOZ7P4_F4HoS8zGDNCKNU2o5Sqe2lfobnu6EdSkd5QZaytEDf4Q8f_aMT7_hUnE4mPw2rpaZO99XlRr-S_6EqlAFd0Uv2Hyg7NAoF8B_oC1egMFxvRONPF-i5p0Mto7vjqtLBv2tt4gpSn7Z7beMrnRn-ASAeLoGy1qLKFlmOj6rzNSpxrTXucy3U5WMTqgtyrDUOcllbaHuE3HF9jUQLwm_71Zbq08jtW7PWI6h_oiOMt_6GWmXf-2_prg66garSmZI7b7WmlN_kSgL_wUOm0Wy5mneHWGjpOx8B2qnA48vG_jJ6ur1pYCp8b9_4vMjmF9LUeDimxkMzRpcJhjFQW76dm2Vtdtyes3sGgIXBpUGEc4wVH26DjasJ4xiM9UDEMxTDwuNxzeztBH5bSgcDR320z6NkfHeL7LiwkwFWvDM7jN-9HxSBKLL7Os_p8F19GF0evR4buCo4jbuhrVWfqkaLRPFdcqejPJ21wLxHJnl5n9w2Ilw-ID8MiFITonRR0gGiFKBADYjSqqAIUdpClI4QpRqiVEOUXoEoRYjSAaIPycnbw_jgyO6SfdjKE6K2i0L5mfIDJYXPJfxwn0nBsiBnRc44L_KAhZ6TgoTKC1EEsE_nvqNCH_a8kiuH75LtsirzR4TCEEqm8tATmcIEiqlwg0K5uJ46kReJKXnVj2Siukj4mJBlmfxJtil5MdQ9a-O_bKz1vCdIAtMLB0GWedWsEydkIVA3CqK_1cE4gLCVYdfXcV0QItFlx52SXaD40Bklaqk78fXxjbq6R26Nc-oJ2a5XTf4U5Oo6fdYh8xdDG9YI
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+improvements+in+stability+and+performance+of+lead+iodide+perovskite+solar+cells+incorporating+salt+additives&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Boopathi%2C+Karunakara+Moorthy&rft.au=Mohan%2C+Ramesh&rft.au=Huang%2C+Tzu-Yen&rft.au=Budiawan%2C+Widhya&rft.date=2016-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=4&rft.issue=5&rft.spage=1591&rft.epage=1597&rft_id=info:doi/10.1039%2FC5TA10288J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C5TA10288J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon