Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives
The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features, we introduced alkali metal halides (salts) as additives into the perovskite precursor solution used in a two-step preparation method. These al...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 4; no. 5; pp. 1591 - 1597 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features, we introduced alkali metal halides (salts) as additives into the perovskite precursor solution used in a two-step preparation method. These alkali metal halides chelate with Pb
2+
ions and enhance the crystal growth of PbI
2
films, resulting in nanostructured morphologies. The nanostructured PbI
2
films promote homogeneous nucleation and larger crystallite sizes, thereby enhancing the morphology and crystallinity of the perovskite films. The alkali metal halides recrystallize the small grains and passivate the grain boundaries and interface states, allowing effective charge generation and dissociation in perovskite films. Photoluminescence measurements indicated that perovskite films prepared with salt additives featured fewer charge traps and defects. The power conversion efficiency of the device incorporating a small amount of a salt additive increased by approximately 33%-from 11.4 to 15.08%. This device was more stable than a corresponding device prepared without the additive, with only 16.5% degradation occurring over a period of 50 days.
Alkali metal halide additives chelate with Pb
2+
ions during film formation promoting homogeneous nucleation, which greatly enhances the power conversion efficiency (15.08%) and stability (over 50 days) of planar perovskite solar cells. |
---|---|
AbstractList | The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features, we introduced alkali metal halides (salts) as additives into the perovskite precursor solution used in a two-step preparation method. These alkali metal halides chelate with Pb
2+
ions and enhance the crystal growth of PbI
2
films, resulting in nanostructured morphologies. The nanostructured PbI
2
films promote homogeneous nucleation and larger crystallite sizes, thereby enhancing the morphology and crystallinity of the perovskite films. The alkali metal halides recrystallize the small grains and passivate the grain boundaries and interface states, allowing effective charge generation and dissociation in perovskite films. Photoluminescence measurements indicated that perovskite films prepared with salt additives featured fewer charge traps and defects. The power conversion efficiency of the device incorporating a small amount of a salt additive increased by approximately 33%—from 11.4 to 15.08%. This device was more stable than a corresponding device prepared without the additive, with only 16.5% degradation occurring over a period of 50 days. The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features, we introduced alkali metal halides (salts) as additives into the perovskite precursor solution used in a two-step preparation method. These alkali metal halides chelate with Pb²⁺ ions and enhance the crystal growth of PbI₂ films, resulting in nanostructured morphologies. The nanostructured PbI₂ films promote homogeneous nucleation and larger crystallite sizes, thereby enhancing the morphology and crystallinity of the perovskite films. The alkali metal halides recrystallize the small grains and passivate the grain boundaries and interface states, allowing effective charge generation and dissociation in perovskite films. Photoluminescence measurements indicated that perovskite films prepared with salt additives featured fewer charge traps and defects. The power conversion efficiency of the device incorporating a small amount of a salt additive increased by approximately 33%—from 11.4 to 15.08%. This device was more stable than a corresponding device prepared without the additive, with only 16.5% degradation occurring over a period of 50 days. The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features, we introduced alkali metal halides (salts) as additives into the perovskite precursor solution used in a two-step preparation method. These alkali metal halides chelate with Pb2+ ions and enhance the crystal growth of PbI2 films, resulting in nanostructured morphologies. The nanostructured PbI2 films promote homogeneous nucleation and larger crystallite sizes, thereby enhancing the morphology and crystallinity of the perovskite films. The alkali metal halides recrystallize the small grains and passivate the grain boundaries and interface states, allowing effective charge generation and dissociation in perovskite films. Photoluminescence measurements indicated that perovskite films prepared with salt additives featured fewer charge traps and defects. The power conversion efficiency of the device incorporating a small amount of a salt additive increased by approximately 33%-from 11.4 to 15.08%. This device was more stable than a corresponding device prepared without the additive, with only 16.5% degradation occurring over a period of 50 days. The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features, we introduced alkali metal halides (salts) as additives into the perovskite precursor solution used in a two-step preparation method. These alkali metal halides chelate with Pb 2+ ions and enhance the crystal growth of PbI 2 films, resulting in nanostructured morphologies. The nanostructured PbI 2 films promote homogeneous nucleation and larger crystallite sizes, thereby enhancing the morphology and crystallinity of the perovskite films. The alkali metal halides recrystallize the small grains and passivate the grain boundaries and interface states, allowing effective charge generation and dissociation in perovskite films. Photoluminescence measurements indicated that perovskite films prepared with salt additives featured fewer charge traps and defects. The power conversion efficiency of the device incorporating a small amount of a salt additive increased by approximately 33%-from 11.4 to 15.08%. This device was more stable than a corresponding device prepared without the additive, with only 16.5% degradation occurring over a period of 50 days. Alkali metal halide additives chelate with Pb 2+ ions during film formation promoting homogeneous nucleation, which greatly enhances the power conversion efficiency (15.08%) and stability (over 50 days) of planar perovskite solar cells. |
Author | Mohan, Ramesh Ho, Kuo-Chuan Budiawan, Widhya Lee, Chih-Hao Chu, Chih-Wei Boopathi, Karunakara Moorthy Huang, Tzu-Yen Lin, Ming-Yi |
AuthorAffiliation | Taiwan International Graduate Program National Taiwan University Department of Engineering and Systems Science Nano Science and Technology Program National Tsing Hua University Academia Sinica Academia Sinica and National Tsing Hua University Research Center for Applied Science Department of Chemical Engineering |
AuthorAffiliation_xml | – sequence: 0 name: National Tsing Hua University – sequence: 0 name: Nano Science and Technology Program – sequence: 0 name: Taiwan International Graduate Program – sequence: 0 name: Academia Sinica – sequence: 0 name: Department of Engineering and Systems Science – sequence: 0 name: National Taiwan University – sequence: 0 name: Research Center for Applied Science – sequence: 0 name: Academia Sinica and National Tsing Hua University – sequence: 0 name: Department of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Karunakara Moorthy surname: Boopathi fullname: Boopathi, Karunakara Moorthy – sequence: 2 givenname: Ramesh surname: Mohan fullname: Mohan, Ramesh – sequence: 3 givenname: Tzu-Yen surname: Huang fullname: Huang, Tzu-Yen – sequence: 4 givenname: Widhya surname: Budiawan fullname: Budiawan, Widhya – sequence: 5 givenname: Ming-Yi surname: Lin fullname: Lin, Ming-Yi – sequence: 6 givenname: Chih-Hao surname: Lee fullname: Lee, Chih-Hao – sequence: 7 givenname: Kuo-Chuan surname: Ho fullname: Ho, Kuo-Chuan – sequence: 8 givenname: Chih-Wei surname: Chu fullname: Chu, Chih-Wei |
BookMark | eNqNkstrGzEQh0VxIM9L7gUdQ8DtaGVptcdg0heBHJKcl4l2ZOTuSo4km_i_7zouKYRCMpffwHwzzOuYTUIMxNi5gC8CZPPVqoICKmOWn9hRBQqm9azRk1ffmEN2lvMSRjMAummO2PPdNlBa-Fy85X5YpbihgULJ3AeeCz763pctx9DxFSUX04DBEo-O94Qd97HzHe1CcZN_-0I8xx4Tt9T3uxI2plVMWHxY8Ix94dh1vvgN5VN24LDPdPZXT9jDt-v7-Y_pze33n_Orm6mdKVWmzlndWV1bVFriKFIDKuhqAkcgpaMazEw8CiWkU65uGi21sEZL0CitkCfsYl93HO1pTbm0g8-79jBQXOe2qmphhABTvYsKUyml1UzBB1Aw436buhlR2KM2xZwTudb6Mm4khpLQ962Adne9dq7ur16u92tMuXyTskp-wLT9P_x5D6dsX7l_ryD_AGk2p-8 |
CitedBy_id | crossref_primary_10_1002_advs_201700131 crossref_primary_10_1039_C6TA06851K crossref_primary_10_1021_acs_chemrev_8b00558 crossref_primary_10_1038_s41467_022_34332_3 crossref_primary_10_1186_s11671_020_03356_3 crossref_primary_10_1016_j_jallcom_2019_153539 crossref_primary_10_1016_j_orgel_2021_106080 crossref_primary_10_1039_C7TA01798G crossref_primary_10_1016_j_tsf_2018_10_001 crossref_primary_10_1016_j_jpowsour_2017_11_070 crossref_primary_10_1016_j_jpowsour_2020_229073 crossref_primary_10_1021_acs_cgd_8b00686 crossref_primary_10_1038_ncomms15218 crossref_primary_10_1063_5_0012141 crossref_primary_10_1016_j_orgel_2020_106009 crossref_primary_10_1016_j_jpowsour_2017_05_083 crossref_primary_10_1002_eem2_12459 crossref_primary_10_1016_j_ceramint_2022_10_092 crossref_primary_10_1039_C8TA00308D crossref_primary_10_1002_adfm_202000778 crossref_primary_10_1021_acs_jpclett_4c02826 crossref_primary_10_1021_acsami_6b03276 crossref_primary_10_1002_idm2_12147 crossref_primary_10_1016_j_joule_2020_11_020 crossref_primary_10_1007_s10854_020_03771_3 crossref_primary_10_1002_advs_201700387 crossref_primary_10_1021_acs_nanolett_7b00050 crossref_primary_10_1039_C8TA05593A crossref_primary_10_1016_j_solener_2019_08_033 crossref_primary_10_1021_acs_chemmater_2c01422 crossref_primary_10_1007_s10854_019_01444_4 crossref_primary_10_3390_nano12203625 crossref_primary_10_1016_j_tsf_2019_137563 crossref_primary_10_1016_j_trechm_2019_04_010 crossref_primary_10_1039_C7EE01674C crossref_primary_10_1088_1361_6528_ac9f4f crossref_primary_10_1021_acsenergylett_9b02810 crossref_primary_10_1021_acsaem_0c02441 crossref_primary_10_1002_admi_201901748 crossref_primary_10_1038_s41467_018_05076_w crossref_primary_10_1002_adfm_202104482 crossref_primary_10_1016_j_nanoen_2021_106141 crossref_primary_10_1016_j_solener_2021_09_012 crossref_primary_10_1039_D2TC02553A crossref_primary_10_1021_acs_jpcc_7b11245 crossref_primary_10_1016_j_jallcom_2018_12_369 crossref_primary_10_1021_acsanm_0c00888 crossref_primary_10_1007_s11426_020_9812_6 crossref_primary_10_1007_s11664_021_09304_w crossref_primary_10_1021_acsami_7b06607 crossref_primary_10_1134_S1063785020030153 crossref_primary_10_1007_s12274_016_1405_2 crossref_primary_10_1016_j_apsusc_2016_06_187 crossref_primary_10_1016_j_dyepig_2018_12_054 crossref_primary_10_1021_acs_jpclett_0c01776 crossref_primary_10_1016_j_jmst_2020_05_029 crossref_primary_10_1002_solr_202000331 crossref_primary_10_1039_C7TA09740A crossref_primary_10_3390_app12031710 crossref_primary_10_1016_j_electacta_2017_07_078 crossref_primary_10_1016_j_electacta_2017_09_003 crossref_primary_10_1016_j_rser_2018_04_069 crossref_primary_10_3390_ma13214851 crossref_primary_10_1016_j_jechem_2018_01_030 crossref_primary_10_1063_5_0078958 crossref_primary_10_1016_j_orgel_2021_106226 crossref_primary_10_3390_nano9050666 crossref_primary_10_1016_j_jechem_2019_11_008 crossref_primary_10_1007_s12613_023_2742_2 crossref_primary_10_1016_j_cej_2024_149442 crossref_primary_10_1016_j_orgel_2022_106543 crossref_primary_10_1016_j_solener_2020_07_059 crossref_primary_10_1016_j_nanoen_2016_09_041 crossref_primary_10_1039_C9TA08130E crossref_primary_10_1039_D4NR03140G crossref_primary_10_1039_C6TA08021A crossref_primary_10_1039_D0SE00382D crossref_primary_10_1039_D0TA00123F crossref_primary_10_1007_s11664_020_08249_w crossref_primary_10_1088_1674_4926_38_1_014001 crossref_primary_10_1039_D0CS01316A crossref_primary_10_3390_cryst7090272 crossref_primary_10_1039_C6CP05006A crossref_primary_10_1039_C8TC04525A crossref_primary_10_1021_acsami_6b08783 crossref_primary_10_1007_s42247_024_00796_w crossref_primary_10_1016_j_apsusc_2020_145790 crossref_primary_10_1002_aenm_202100378 crossref_primary_10_1021_acs_jpclett_2c01506 crossref_primary_10_1002_ente_202401684 crossref_primary_10_1016_j_apsusc_2022_155787 crossref_primary_10_1002_aesr_202100050 crossref_primary_10_1021_acsami_8b00079 crossref_primary_10_1016_j_orgel_2018_12_042 crossref_primary_10_1039_D0TA08656H crossref_primary_10_1002_adma_202003137 crossref_primary_10_1039_C8TA11515J crossref_primary_10_3390_en14092656 crossref_primary_10_1002_ente_201901114 crossref_primary_10_1002_smtd_201900569 crossref_primary_10_1063_1_4997325 crossref_primary_10_1002_celc_201800861 crossref_primary_10_1080_00958972_2022_2079410 crossref_primary_10_1002_admi_202000950 crossref_primary_10_1021_acsaem_3c02369 crossref_primary_10_1002_smll_201604153 crossref_primary_10_1016_j_mtcomm_2021_102159 crossref_primary_10_1039_C7TC04673A crossref_primary_10_1016_j_ijleo_2021_168294 crossref_primary_10_1039_C9TA06688H crossref_primary_10_1016_j_solmat_2017_10_024 crossref_primary_10_1002_aenm_201800275 crossref_primary_10_1016_j_jpowsour_2019_04_009 crossref_primary_10_1016_j_rser_2018_09_016 crossref_primary_10_1039_C9NR10548D crossref_primary_10_1016_j_jpowsour_2020_228067 crossref_primary_10_1002_adma_201803019 crossref_primary_10_1016_j_omx_2024_100331 crossref_primary_10_1002_ente_201600486 crossref_primary_10_1016_j_orgel_2018_12_012 crossref_primary_10_1007_s12274_021_3408_x crossref_primary_10_1016_j_jphotochemrev_2021_100405 crossref_primary_10_1016_j_cej_2024_151876 crossref_primary_10_1021_acsami_8b04329 crossref_primary_10_1007_s10854_018_0477_z crossref_primary_10_1002_smll_202310455 crossref_primary_10_1002_appl_202200077 crossref_primary_10_3390_nano10061226 crossref_primary_10_1039_C7TA06679A crossref_primary_10_1016_j_jechem_2021_01_001 crossref_primary_10_1039_C9TC04067F crossref_primary_10_1021_acs_cgd_0c01280 crossref_primary_10_1021_acsaem_9b00058 crossref_primary_10_1002_cssc_202101089 crossref_primary_10_1016_j_solmat_2017_04_043 crossref_primary_10_1039_C6RA17197D crossref_primary_10_1002_adma_201707350 crossref_primary_10_1002_adma_201902037 crossref_primary_10_1016_j_mtphys_2022_100822 crossref_primary_10_1016_j_solmat_2020_110409 crossref_primary_10_1016_j_apenergy_2017_11_005 crossref_primary_10_3390_cryst11070814 crossref_primary_10_1039_D0MH00512F crossref_primary_10_1016_j_nanoen_2019_06_024 crossref_primary_10_1016_j_solmat_2022_111779 crossref_primary_10_1002_aenm_202000768 crossref_primary_10_1002_anie_201603694 crossref_primary_10_1021_acsaem_0c02625 crossref_primary_10_1016_j_electacta_2017_12_135 crossref_primary_10_1039_C7TA05560A crossref_primary_10_1039_C9TA09101G crossref_primary_10_1039_D1NJ02627E crossref_primary_10_1016_j_orgel_2020_106028 crossref_primary_10_1016_j_solener_2020_01_069 crossref_primary_10_1016_j_jpowsour_2017_04_025 crossref_primary_10_1002_cssc_201701827 crossref_primary_10_1021_acsami_9b10602 crossref_primary_10_1002_ente_201900991 crossref_primary_10_1016_j_solener_2022_06_021 crossref_primary_10_3390_app9204393 crossref_primary_10_1002_ese3_1084 crossref_primary_10_1039_C8NR10125F crossref_primary_10_1021_acs_jpclett_7b00372 crossref_primary_10_1021_acsami_0c17893 crossref_primary_10_1039_C6TA02609E crossref_primary_10_1002_ange_201603694 crossref_primary_10_1002_cplu_201800543 crossref_primary_10_1016_j_physb_2022_414591 crossref_primary_10_3390_molecules28207120 crossref_primary_10_1002_flm2_39 crossref_primary_10_1021_acsami_7b16349 crossref_primary_10_1063_5_0050512 crossref_primary_10_1039_C7TA00042A crossref_primary_10_3788_COL202422_022502 crossref_primary_10_1016_j_joule_2019_06_014 crossref_primary_10_1016_j_orgel_2022_106731 crossref_primary_10_1039_C7EE00358G crossref_primary_10_1063_1_5094041 |
Cites_doi | 10.1021/ja411509g 10.1021/nl404252e 10.1039/c3ee40810h 10.1038/nature12340 10.1016/j.nanoen.2015.02.028 10.1002/aenm.201401229 10.1038/nmat3911 10.1039/C4EE02465F 10.1039/C4TA06392A 10.1021/nn406020d 10.1038/nmat4014 10.1002/adfm.201404007 10.1021/acs.jpclett.5b00732 10.1002/adma.201403751 10.1021/am506886d 10.1002/adma.201400231 10.1021/ja809598r 10.1002/aenm.201400355 10.1039/C4TA05012F 10.1021/acsami.5b01049 10.1021/nl400286w 10.1021/acs.nanolett.5b00235 10.1126/science.1243167 10.1016/j.nanoen.2014.04.017 10.1038/nnano.2014.149 10.1016/j.nanoen.2015.05.027 10.1038/nature12509 10.1038/srep06953 10.1038/nphoton.2013.342 10.1016/j.nanoen.2015.04.039 10.1126/science.1243982 10.1039/C4EE00233D 10.1002/adma.201402461 10.1039/C4NR02425G 10.1038/ncomms6784 10.1063/1.4906073 10.1038/nature13435 10.1038/nmat4271 10.1021/acsami.5b00052 10.1126/science.1228604 10.1126/science.aaa9272 10.1038/nmat3789 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1039/c5ta10288j |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Materials Research Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 1597 |
ExternalDocumentID | 10_1039_C5TA10288J c5ta10288j |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AUNWK BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION J3G J3H 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c455t-ffc6dc67ca563a7ca360a50d7e0fe033fe70841b1513f5f7996361c86306a3c13 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 00:13:06 EDT 2025 Fri Jul 11 05:45:03 EDT 2025 Fri Jul 11 02:55:32 EDT 2025 Tue Jul 01 04:18:02 EDT 2025 Thu Apr 24 23:10:41 EDT 2025 Tue Dec 17 20:59:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c455t-ffc6dc67ca563a7ca360a50d7e0fe033fe70841b1513f5f7996361c86306a3c13 |
Notes | 10.1039/c5ta10288j Electronic supplementary information (ESI) available: Experimental details, device fabrication, solar testing, salt concentration optimization, comparison table and XPS data. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1808699979 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2271811082 crossref_primary_10_1039_C5TA10288J rsc_primary_c5ta10288j crossref_citationtrail_10_1039_C5TA10288J proquest_miscellaneous_1825565450 proquest_miscellaneous_1808699979 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2016 |
References | Liu (C5TA10288J-(cit24)/*[position()=1]) 2014; 8 Lee (C5TA10288J-(cit2)/*[position()=1]) 2012; 338 Kim (C5TA10288J-(cit29)/*[position()=1]) 2015; 5 Major (C5TA10288J-(cit38)/*[position()=1]) 2014; 511 Xing (C5TA10288J-(cit16)/*[position()=1]) 2013; 342 Jaramillo-Quintero (C5TA10288J-(cit10)/*[position()=1]) 2015; 6 Jeon (C5TA10288J-(cit21)/*[position()=1]) 2014; 4 Wang (C5TA10288J-(cit42)/*[position()=1]) 2014; 7 Kim (C5TA10288J-(cit5)/*[position()=1]) 2013; 13 Docampo (C5TA10288J-(cit26)/*[position()=1]) 2014; 4 Chen (C5TA10288J-(cit20)/*[position()=1]) 2014; 26 Stranks (C5TA10288J-(cit15)/*[position()=1]) 2013; 342 Wang (C5TA10288J-(cit36)/*[position()=1]) 2015; 25 Tan (C5TA10288J-(cit9)/*[position()=1]) 2014; 9 Gonzalez-Pedro (C5TA10288J-(cit17)/*[position()=1]) 2014; 14 Chueh (C5TA10288J-(cit34)/*[position()=1]) 2015; 3 Shao (C5TA10288J-(cit41)/*[position()=1]) 2014; 5 Song (C5TA10288J-(cit35)/*[position()=1]) 2015; 106 Unger (C5TA10288J-(cit40)/*[position()=1]) 2014; 7 Chang (C5TA10288J-(cit33)/*[position()=1]) 2015; 7 Choi (C5TA10288J-(cit30)/*[position()=1]) 2014; 7 Yang (C5TA10288J-(cit8)/*[position()=1]) 2015; 15 Liang (C5TA10288J-(cit31)/*[position()=1]) 2014; 26 Li (C5TA10288J-(cit12)/*[position()=1]) 2015; 15 Xing (C5TA10288J-(cit13)/*[position()=1]) 2014; 13 Yang (C5TA10288J-(cit37)/*[position()=1]) 2015; 7 Burschka (C5TA10288J-(cit4)/*[position()=1]) 2013; 499 Yang (C5TA10288J-(cit18)/*[position()=1]) 2015; 348 Ramesh (C5TA10288J-(cit28)/*[position()=1]) 2015; 7 Zuo (C5TA10288J-(cit32)/*[position()=1]) 2014; 6 Jeon (C5TA10288J-(cit23)/*[position()=1]) 2014; 13 Chirilă (C5TA10288J-(cit39)/*[position()=1]) 2013; 12 Ball (C5TA10288J-(cit3)/*[position()=1]) 2013; 6 Kojima (C5TA10288J-(cit1)/*[position()=1]) 2009; 131 Liu (C5TA10288J-(cit6)/*[position()=1]) 2013; 501 Della Gaspera (C5TA10288J-(cit7)/*[position()=1]) 2015; 13 Boopathi (C5TA10288J-(cit27)/*[position()=1]) 2015; 3 Zhu (C5TA10288J-(cit14)/*[position()=1]) 2015; 14 Chen (C5TA10288J-(cit19)/*[position()=1]) 2013; 136 Zhu (C5TA10288J-(cit25)/*[position()=1]) 2015; 15 Kim (C5TA10288J-(cit11)/*[position()=1]) 2015; 27 You (C5TA10288J-(cit22)/*[position()=1]) 2014; 8 |
References_xml | – volume: 136 start-page: 622 year: 2013 ident: C5TA10288J-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411509g – volume: 14 start-page: 888 year: 2014 ident: C5TA10288J-(cit17)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl404252e – volume: 6 start-page: 1739 year: 2013 ident: C5TA10288J-(cit3)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40810h – volume: 499 start-page: 316 year: 2013 ident: C5TA10288J-(cit4)/*[position()=1] publication-title: Nature doi: 10.1038/nature12340 – volume: 13 start-page: 249 year: 2015 ident: C5TA10288J-(cit7)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.02.028 – volume: 5 start-page: 1401229 year: 2015 ident: C5TA10288J-(cit29)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401229 – volume: 13 start-page: 476 year: 2014 ident: C5TA10288J-(cit13)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3911 – volume: 7 start-page: 3690 year: 2014 ident: C5TA10288J-(cit40)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02465F – volume: 3 start-page: 9257 year: 2015 ident: C5TA10288J-(cit27)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06392A – volume: 8 start-page: 1674 year: 2014 ident: C5TA10288J-(cit22)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn406020d – volume: 13 start-page: 897 year: 2014 ident: C5TA10288J-(cit23)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4014 – volume: 25 start-page: 1120 year: 2015 ident: C5TA10288J-(cit36)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201404007 – volume: 6 start-page: 18831 year: 2015 ident: C5TA10288J-(cit10)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00732 – volume: 27 start-page: 1248 year: 2015 ident: C5TA10288J-(cit11)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201403751 – volume: 7 start-page: 2359 year: 2015 ident: C5TA10288J-(cit28)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am506886d – volume: 26 start-page: 3748 year: 2014 ident: C5TA10288J-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201400231 – volume: 131 start-page: 6050 year: 2009 ident: C5TA10288J-(cit1)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 4 start-page: 1 year: 2014 ident: C5TA10288J-(cit26)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400355 – volume: 3 start-page: 9058 year: 2015 ident: C5TA10288J-(cit34)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05012F – volume: 7 start-page: 14614 year: 2015 ident: C5TA10288J-(cit37)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01049 – volume: 13 start-page: 2412 year: 2013 ident: C5TA10288J-(cit5)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl400286w – volume: 15 start-page: 2640 year: 2015 ident: C5TA10288J-(cit12)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00235 – volume: 342 start-page: 344 year: 2013 ident: C5TA10288J-(cit16)/*[position()=1] publication-title: Science doi: 10.1126/science.1243167 – volume: 7 start-page: 80 year: 2014 ident: C5TA10288J-(cit30)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.04.017 – volume: 9 start-page: 687 year: 2014 ident: C5TA10288J-(cit9)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.149 – volume: 15 start-page: 670 year: 2015 ident: C5TA10288J-(cit8)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.05.027 – volume: 501 start-page: 395 year: 2013 ident: C5TA10288J-(cit6)/*[position()=1] publication-title: Nature doi: 10.1038/nature12509 – volume: 4 start-page: 6953 year: 2014 ident: C5TA10288J-(cit21)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep06953 – volume: 8 start-page: 133 year: 2014 ident: C5TA10288J-(cit24)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.342 – volume: 15 start-page: 540 year: 2015 ident: C5TA10288J-(cit25)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.04.039 – volume: 342 start-page: 341 year: 2013 ident: C5TA10288J-(cit15)/*[position()=1] publication-title: Science doi: 10.1126/science.1243982 – volume: 7 start-page: 2359 year: 2014 ident: C5TA10288J-(cit42)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00233D – volume: 26 start-page: 6647 year: 2014 ident: C5TA10288J-(cit20)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201402461 – volume: 6 start-page: 9935 year: 2014 ident: C5TA10288J-(cit32)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR02425G – volume: 5 start-page: 5784 year: 2014 ident: C5TA10288J-(cit41)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms6784 – volume: 106 start-page: 033901 year: 2015 ident: C5TA10288J-(cit35)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4906073 – volume: 511 start-page: 334 year: 2014 ident: C5TA10288J-(cit38)/*[position()=1] publication-title: Nature doi: 10.1038/nature13435 – volume: 14 start-page: 636 year: 2015 ident: C5TA10288J-(cit14)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4271 – volume: 7 start-page: 4955 year: 2015 ident: C5TA10288J-(cit33)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00052 – volume: 338 start-page: 643 year: 2012 ident: C5TA10288J-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.1228604 – volume: 348 start-page: 1234 year: 2015 ident: C5TA10288J-(cit18)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa9272 – volume: 12 start-page: 1107 year: 2013 ident: C5TA10288J-(cit39)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3789 |
SSID | ssj0000800699 |
Score | 2.5329258 |
Snippet | The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features,... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1591 |
SubjectTerms | Additives Alkali metals Charge crystal structure crystallites Devices dissociation Halides ions lead Morphology Nanostructure Perovskites photoluminescence small cereal grains solar cells |
Title | Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives |
URI | https://www.proquest.com/docview/1808699979 https://www.proquest.com/docview/1825565450 https://www.proquest.com/docview/2271811082 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOiFfFUkBGcEFRihPHeRyXqqhUwIVUlFPkOIl2YZVUu0mh_bf8E2aclwtbVLhkN45jOZ7P4_F4HoS8zGDNCKNU2o5Sqe2lfobnu6EdSkd5QZaytEDf4Q8f_aMT7_hUnE4mPw2rpaZO99XlRr-S_6EqlAFd0Uv2Hyg7NAoF8B_oC1egMFxvRONPF-i5p0Mto7vjqtLBv2tt4gpSn7Z7beMrnRn-ASAeLoGy1qLKFlmOj6rzNSpxrTXucy3U5WMTqgtyrDUOcllbaHuE3HF9jUQLwm_71Zbq08jtW7PWI6h_oiOMt_6GWmXf-2_prg66garSmZI7b7WmlN_kSgL_wUOm0Wy5mneHWGjpOx8B2qnA48vG_jJ6ur1pYCp8b9_4vMjmF9LUeDimxkMzRpcJhjFQW76dm2Vtdtyes3sGgIXBpUGEc4wVH26DjasJ4xiM9UDEMxTDwuNxzeztBH5bSgcDR320z6NkfHeL7LiwkwFWvDM7jN-9HxSBKLL7Os_p8F19GF0evR4buCo4jbuhrVWfqkaLRPFdcqejPJ21wLxHJnl5n9w2Ilw-ID8MiFITonRR0gGiFKBADYjSqqAIUdpClI4QpRqiVEOUXoEoRYjSAaIPycnbw_jgyO6SfdjKE6K2i0L5mfIDJYXPJfxwn0nBsiBnRc44L_KAhZ6TgoTKC1EEsE_nvqNCH_a8kiuH75LtsirzR4TCEEqm8tATmcIEiqlwg0K5uJ46kReJKXnVj2Siukj4mJBlmfxJtil5MdQ9a-O_bKz1vCdIAtMLB0GWedWsEydkIVA3CqK_1cE4gLCVYdfXcV0QItFlx52SXaD40Bklaqk78fXxjbq6R26Nc-oJ2a5XTf4U5Oo6fdYh8xdDG9YI |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+improvements+in+stability+and+performance+of+lead+iodide+perovskite+solar+cells+incorporating+salt+additives&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Boopathi%2C+Karunakara+Moorthy&rft.au=Mohan%2C+Ramesh&rft.au=Huang%2C+Tzu-Yen&rft.au=Budiawan%2C+Widhya&rft.date=2016-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=4&rft.issue=5&rft.spage=1591&rft.epage=1597&rft_id=info:doi/10.1039%2FC5TA10288J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C5TA10288J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |