IL-6 and PD-L1 blockade combination inhibits hepatocellular carcinoma cancer development in mouse model
Limited efficacy of immune checkpoint inhibitors in hepatocellular carcinoma (HCC) was observed in clinical trials, thus prompting investigation into combination therapy. Interleukin-6 (IL-6) has important roles in modeling immune responses in cancers. Here, we hypothesized that IL-6 blockade would...
Saved in:
Published in | Biochemical and biophysical research communications Vol. 486; no. 2; pp. 239 - 244 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
29.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Limited efficacy of immune checkpoint inhibitors in hepatocellular carcinoma (HCC) was observed in clinical trials, thus prompting investigation into combination therapy. Interleukin-6 (IL-6) has important roles in modeling immune responses in cancers. Here, we hypothesized that IL-6 blockade would enhance antitumor immunity of HCC and synergize with anti-programmed death-1-ligand 1 (PD-L1) checkpoint inhibitor in treating HCC. The sources and immune modulating effects of IL-6 were investigated in HCC models. Combination of anti-IL-6 and anti-PD-L1 was tested in HCC bearing mice. We found that IL-6 is mainly secreted by cancer associated fibroblast (CAFs), but not tumor cells in HCC. High IL-6 expression CAFs could induce strong immunosuppression in HCC microenvironment by recruiting immunosuppressive cells, such as myeloid derived suppressive cells. In addition, high IL-6 expression CAFs also impaired tumor infiltrating T-cell function via upregulating inhibitory immune checkpoints. Using IL-6 blockade could reverse anti-PD-L1 resistance in HCC tumor model. In conclusion, our study indicates that targeted inhibition of IL-6 may enhance the efficacy of anti-PD-L1 in HCC, providing a potential strategy to overcoming anti-PD-L1 resistance in HCC.
•IL-6 was highly expressed in CAFs but not HCC tumor cells.•IL-6 expressed by CAFs promoted the development of HCC in mouse model.•IL-6 expressed by CAFs promoted the recruiting of immunosuppressive cells in HCC.•IL-6 expressed by CAFs impaired tumor-infiltrating T cells' function.•IL-6 reversed anti-PD-L1 resistance in HCC mouse model. |
---|---|
AbstractList | Limited efficacy of immune checkpoint inhibitors in hepatocellular carcinoma (HCC) was observed in clinical trials, thus prompting investigation into combination therapy. Interleukin-6 (IL-6) has important roles in modeling immune responses in cancers. Here, we hypothesized that IL-6 blockade would enhance antitumor immunity of HCC and synergize with anti-programmed death-1-ligand 1 (PD-L1) checkpoint inhibitor in treating HCC. The sources and immune modulating effects of IL-6 were investigated in HCC models. Combination of anti-IL-6 and anti-PD-L1 was tested in HCC bearing mice. We found that IL-6 is mainly secreted by cancer associated fibroblast (CAFs), but not tumor cells in HCC. High IL-6 expression CAFs could induce strong immunosuppression in HCC microenvironment by recruiting immunosuppressive cells, such as myeloid derived suppressive cells. In addition, high IL-6 expression CAFs also impaired tumor infiltrating T-cell function via upregulating inhibitory immune checkpoints. Using IL-6 blockade could reverse anti-PD-L1 resistance in HCC tumor model. In conclusion, our study indicates that targeted inhibition of IL-6 may enhance the efficacy of anti-PD-L1 in HCC, providing a potential strategy to overcoming anti-PD-L1 resistance in HCC.
•IL-6 was highly expressed in CAFs but not HCC tumor cells.•IL-6 expressed by CAFs promoted the development of HCC in mouse model.•IL-6 expressed by CAFs promoted the recruiting of immunosuppressive cells in HCC.•IL-6 expressed by CAFs impaired tumor-infiltrating T cells' function.•IL-6 reversed anti-PD-L1 resistance in HCC mouse model. Limited efficacy of immune checkpoint inhibitors in hepatocellular carcinoma (HCC) was observed in clinical trials, thus prompting investigation into combination therapy. Interleukin-6 (IL-6) has important roles in modeling immune responses in cancers. Here, we hypothesized that IL-6 blockade would enhance antitumor immunity of HCC and synergize with anti-programmed death-1-ligand 1 (PD-L1) checkpoint inhibitor in treating HCC. The sources and immune modulating effects of IL-6 were investigated in HCC models. Combination of anti-IL-6 and anti-PD-L1 was tested in HCC bearing mice. We found that IL-6 is mainly secreted by cancer associated fibroblast (CAFs), but not tumor cells in HCC. High IL-6 expression CAFs could induce strong immunosuppression in HCC microenvironment by recruiting immunosuppressive cells, such as myeloid derived suppressive cells. In addition, high IL-6 expression CAFs also impaired tumor infiltrating T-cell function via upregulating inhibitory immune checkpoints. Using IL-6 blockade could reverse anti-PD-L1 resistance in HCC tumor model. In conclusion, our study indicates that targeted inhibition of IL-6 may enhance the efficacy of anti-PD-L1 in HCC, providing a potential strategy to overcoming anti-PD-L1 resistance in HCC. |
Author | Shen, Jun Liu, Hu Lu, Kai |
Author_xml | – sequence: 1 givenname: Hu surname: Liu fullname: Liu, Hu organization: Department of Laparoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China – sequence: 2 givenname: Jun surname: Shen fullname: Shen, Jun organization: The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China – sequence: 3 givenname: Kai surname: Lu fullname: Lu, Kai email: kl_6guo@126.com organization: Department of Laparoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28254435$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtvVDEQhS0URDaPP0CBXNLci8d7fR8SDQoJibQSFCDRWX6MiZd77cX2RuLf42WTJkWamSnON5o554ychBiQkLfAWmDQf9i2WifTcgZDy3gLfHxFVsAm1nBg3QlZMcb6hk_w85Sc5bxlDKDrpzfklI9cdN1arMivu03TUxUs_fa52QDVczS_lUVq4qJ9UMXHQH2499qXTO9xp0o0OM_7WSVqVDI-xEXVKRhM1OIDznG3YCgVokvcZ6zV4nxBXjs1Z7x87Ofkx83196vbZvP1y93Vp01jOiFK43BwegDnDFjW18_EOGreI4q17kGJSdn6BXMAo5v0YFWn2TCaOkzT2jqxPifvj3t3Kf7ZYy5y8flwsApYr5G8etKBYLyv0neP0r1e0Mpd8otKf-WTOVUwHgUmxZwTOml8-e9IScrPEpg85CC38pCDPOQgGZc1h4ryZ-jT9hehj0cIq0EPHpPMxmM11vqEpkgb_Uv4PyLhoTk |
CitedBy_id | crossref_primary_10_3389_fimmu_2021_671595 crossref_primary_10_1016_j_isci_2024_109783 crossref_primary_10_1111_cpr_12776 crossref_primary_10_1186_s13058_023_01684_7 crossref_primary_10_1016_j_prp_2020_152884 crossref_primary_10_3390_cancers14051154 crossref_primary_10_1007_s40674_019_00131_z crossref_primary_10_1038_nrclinonc_2018_8 crossref_primary_10_1016_j_yexcr_2019_04_019 crossref_primary_10_1186_s12943_021_01428_1 crossref_primary_10_3390_diagnostics14182054 crossref_primary_10_1097_CM9_0000000000003060 crossref_primary_10_3389_fphar_2022_990445 crossref_primary_10_2174_1381612826666200122122804 crossref_primary_10_3389_fimmu_2021_670391 crossref_primary_10_1016_j_semcancer_2019_10_002 crossref_primary_10_2139_ssrn_4165619 crossref_primary_10_3390_polym13162726 crossref_primary_10_1002_cam4_3124 crossref_primary_10_2139_ssrn_4176353 crossref_primary_10_1172_JCI176567 crossref_primary_10_1016_j_xcrm_2022_100878 crossref_primary_10_1111_cas_14752 crossref_primary_10_1016_j_ejca_2022_11_035 crossref_primary_10_1158_1078_0432_CCR_18_2402 crossref_primary_10_1111_cas_15041 crossref_primary_10_4110_in_2020_20_e27 crossref_primary_10_1007_s00281_021_00861_0 crossref_primary_10_1016_j_cej_2021_130867 crossref_primary_10_1538_expanim_23_0149 crossref_primary_10_3389_fonc_2022_988956 crossref_primary_10_1016_j_cytogfr_2018_04_004 crossref_primary_10_3390_cancers11040440 crossref_primary_10_3389_fonc_2021_760971 crossref_primary_10_1038_s41575_021_00568_5 crossref_primary_10_1186_s12943_024_02183_9 crossref_primary_10_1002_adbi_202300587 crossref_primary_10_1111_febs_15028 crossref_primary_10_1007_s10147_019_01539_2 crossref_primary_10_3390_ijms22147255 crossref_primary_10_1002_jcla_24797 crossref_primary_10_1111_hepr_13191 crossref_primary_10_1007_s10585_019_09959_0 crossref_primary_10_1002_mco2_323 crossref_primary_10_1016_j_praneu_2023_01_011 crossref_primary_10_1038_s41698_023_00380_1 crossref_primary_10_1158_0008_5472_CAN_18_0118 crossref_primary_10_1007_s13402_022_00667_8 crossref_primary_10_1002_path_5357 crossref_primary_10_3389_fimmu_2017_01482 crossref_primary_10_1111_bph_16405 crossref_primary_10_1158_1055_9965_EPI_19_0672 crossref_primary_10_1042_BST20180136 crossref_primary_10_1016_j_intimp_2022_109005 crossref_primary_10_1016_j_pharmthera_2020_107752 crossref_primary_10_1016_j_heliyon_2023_e19799 crossref_primary_10_3390_cancers11091257 crossref_primary_10_1016_j_phrs_2024_107560 crossref_primary_10_1016_j_canlet_2020_05_035 crossref_primary_10_1007_s10238_024_01375_3 crossref_primary_10_1002_cbin_11414 crossref_primary_10_3389_fimmu_2021_795372 crossref_primary_10_1016_j_bbcan_2017_10_007 crossref_primary_10_1136_jitc_2020_000842 crossref_primary_10_1016_j_molimm_2022_09_010 crossref_primary_10_1016_j_cyto_2022_155976 crossref_primary_10_1136_jitc_2024_009092 crossref_primary_10_1186_s12943_020_01258_7 crossref_primary_10_3389_fimmu_2022_1074477 crossref_primary_10_1136_jitc_2022_005841 crossref_primary_10_1002_cam4_4659 crossref_primary_10_1021_acs_molpharmaceut_2c00474 crossref_primary_10_3889_oamjms_2022_8460 crossref_primary_10_1016_j_jcmgh_2023_01_006 crossref_primary_10_1080_08941939_2019_1637975 crossref_primary_10_1016_j_cyto_2023_156271 crossref_primary_10_1136_jitc_2023_007885 crossref_primary_10_1111_1759_7714_12815 crossref_primary_10_1136_jitc_2021_002508 crossref_primary_10_1136_jitc_2020_000949 crossref_primary_10_1016_j_suronc_2018_01_002 crossref_primary_10_3389_fimmu_2024_1418527 crossref_primary_10_3390_life13051189 crossref_primary_10_1177_17588359221096219 crossref_primary_10_1186_s13578_020_00488_y crossref_primary_10_1002_lci2_70 crossref_primary_10_3390_ijms22189889 crossref_primary_10_1186_s12943_021_01363_1 crossref_primary_10_1016_j_intimp_2024_111854 crossref_primary_10_3389_fimmu_2022_810832 crossref_primary_10_1080_15384047_2024_2315655 crossref_primary_10_1186_s40364_024_00622_9 crossref_primary_10_1002_adhm_202002104 crossref_primary_10_1158_0008_5472_CAN_17_0740 crossref_primary_10_3390_cancers11101479 crossref_primary_10_1080_2162402X_2021_1898104 crossref_primary_10_1016_j_cellimm_2020_104254 crossref_primary_10_1186_s12967_024_05552_6 crossref_primary_10_1016_j_ejphar_2020_173445 crossref_primary_10_1186_s13045_019_0782_x crossref_primary_10_3390_diagnostics11081382 crossref_primary_10_1016_j_prp_2024_155266 crossref_primary_10_1097_COC_0000000000000787 crossref_primary_10_3389_fimmu_2023_1192506 crossref_primary_10_3389_fimmu_2023_1323581 crossref_primary_10_3389_fimmu_2022_956224 crossref_primary_10_1016_j_jconrel_2021_02_002 crossref_primary_10_1002_hep_31812 crossref_primary_10_1016_j_drudis_2020_07_006 crossref_primary_10_1111_1759_7714_12633 crossref_primary_10_3390_molecules24213845 crossref_primary_10_3389_fimmu_2023_1157537 crossref_primary_10_5812_iranjradiol_133070 crossref_primary_10_1016_j_jconrel_2022_05_057 crossref_primary_10_1038_s41571_020_0352_8 |
Cites_doi | 10.1016/j.ccr.2009.12.041 10.1136/gutjnl-2016-311585 10.1038/530042a 10.1200/JCO.2008.20.7753 10.1016/S0140-6736(11)61347-0 10.1016/j.immuni.2013.07.012 10.1016/j.ccr.2009.01.009 10.1200/JCO.2014.59.4358 10.1016/j.ccr.2009.01.001 10.1073/pnas.1320318110 10.1038/nrc.2016.73 10.1158/0008-5472.CAN-16-2379 10.4161/cc.4.2.1413 10.1016/j.coi.2011.12.009 10.1016/j.immuni.2016.06.001 10.1158/2159-8290.CD-15-0563 10.1056/NEJMp068087 10.1159/000449342 |
ContentType | Journal Article |
Copyright | 2017 Copyright © 2017. Published by Elsevier Inc. |
Copyright_xml | – notice: 2017 – notice: Copyright © 2017. Published by Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 |
DOI | 10.1016/j.bbrc.2017.02.128 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1090-2104 |
EndPage | 244 |
ExternalDocumentID | 28254435 10_1016_j_bbrc_2017_02_128 S0006291X17304199 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 D0L DM4 DOVZS EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K TWZ WH7 XPP XSW ZA5 ZMT ~02 ~G- .55 .GJ .HR 1CY 3O- 9M8 AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF FEDTE FGOYB G-2 HLW HVGLF HZ~ MVM OHT R2- SBG SEW SSH UQL WUQ X7M Y6R ZGI ZKB ~KM CGR CUY CVF ECM EIF NPM 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c455t-fe7fb71ffc1d06201588b26ee53b61a59ad0010f118f9b7da4b078c7da993df53 |
IEDL.DBID | .~1 |
ISSN | 0006-291X |
IngestDate | Tue Aug 05 10:17:24 EDT 2025 Thu Apr 03 07:06:32 EDT 2025 Tue Jul 01 03:10:18 EDT 2025 Thu Apr 24 22:52:59 EDT 2025 Fri Feb 23 02:30:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Immune checkpoint blockades Hepatocellular carcinoma Immunology Drug resistance Combinational therapy IL-6 |
Language | English |
License | Copyright © 2017. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-fe7fb71ffc1d06201588b26ee53b61a59ad0010f118f9b7da4b078c7da993df53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28254435 |
PQID | 2000415026 |
PQPubID | 24069 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2000415026 pubmed_primary_28254435 crossref_citationtrail_10_1016_j_bbrc_2017_02_128 crossref_primary_10_1016_j_bbrc_2017_02_128 elsevier_sciencedirect_doi_10_1016_j_bbrc_2017_02_128 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-29 |
PublicationDateYYYYMMDD | 2017-04-29 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemical and biophysical research communications |
PublicationTitleAlternate | Biochem Biophys Res Commun |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Becker, Fantini, Wirtz, Nikolaev, Lehr, Galle (bib15) 2005; 4 Altekruse, McGlynn, Reichman (bib2) 2009; 27 Ribas (bib8) 2015; 5 Wagner (bib11) 2016; 530 Feig, Jones, Kraman, Wells, Deonarine, Chan (bib14) 2013; 110 Topalian, Drake, Pardoll (bib18) 2012; 24 Seluanov, Vaidya, Gorbunova (bib10) 2010; 44 Bromberg, Wang (bib17) 2009; 15 Pitt, Vetizou, Daillere, Roberti, Yamazaki, Routy (bib7) 2016; 44 Postow, Callahan, Wolchok (bib4) 2015; 33 Erez, Truitt, Olson, Arron, Hanahan (bib13) 2010; 17 Kudo (bib5) 2016; 6 Kalluri (bib12) 2016; 16 Chen, Mellman (bib3) 2013; 39 Grivennikov, Karin, Terzic, Mucida, Yu, Vallabhapurapu (bib16) 2009; 15 Mace, Shakya, Pitarresi, Swanson, McQuinn, Loftus (bib9) 2016 Sharpe, Abbas (bib19) 2006; 355 Forner, Llovet, Bruix (bib1) 2012; 379 Zhao, Subramanian (bib6) 2017 Zhao (10.1016/j.bbrc.2017.02.128_bib6) 2017 Grivennikov (10.1016/j.bbrc.2017.02.128_bib16) 2009; 15 Forner (10.1016/j.bbrc.2017.02.128_bib1) 2012; 379 Mace (10.1016/j.bbrc.2017.02.128_bib9) 2016 Chen (10.1016/j.bbrc.2017.02.128_bib3) 2013; 39 Seluanov (10.1016/j.bbrc.2017.02.128_bib10) 2010; 44 Feig (10.1016/j.bbrc.2017.02.128_bib14) 2013; 110 Kalluri (10.1016/j.bbrc.2017.02.128_bib12) 2016; 16 Ribas (10.1016/j.bbrc.2017.02.128_bib8) 2015; 5 Becker (10.1016/j.bbrc.2017.02.128_bib15) 2005; 4 Topalian (10.1016/j.bbrc.2017.02.128_bib18) 2012; 24 Kudo (10.1016/j.bbrc.2017.02.128_bib5) 2016; 6 Sharpe (10.1016/j.bbrc.2017.02.128_bib19) 2006; 355 Postow (10.1016/j.bbrc.2017.02.128_bib4) 2015; 33 Altekruse (10.1016/j.bbrc.2017.02.128_bib2) 2009; 27 Bromberg (10.1016/j.bbrc.2017.02.128_bib17) 2009; 15 Wagner (10.1016/j.bbrc.2017.02.128_bib11) 2016; 530 Pitt (10.1016/j.bbrc.2017.02.128_bib7) 2016; 44 Erez (10.1016/j.bbrc.2017.02.128_bib13) 2010; 17 |
References_xml | – volume: 17 start-page: 135 year: 2010 end-page: 147 ident: bib13 article-title: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner publication-title: Cancer cell – volume: 4 start-page: 217 year: 2005 end-page: 220 ident: bib15 article-title: IL-6 signaling promotes tumor growth in colorectal cancer publication-title: Cell cycle (Georgetown, Tex) – volume: 24 start-page: 207 year: 2012 end-page: 212 ident: bib18 article-title: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity publication-title: Curr. Opin. Immunol. – volume: 27 start-page: 1485 year: 2009 end-page: 1491 ident: bib2 article-title: Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005 publication-title: J. Clinical Oncol. Off. J. Am. Soc. Clin. Oncol. – volume: 16 start-page: 582 year: 2016 end-page: 598 ident: bib12 article-title: The biology and function of fibroblasts in cancer publication-title: Nat. Rev. Cancer – volume: 5 start-page: 915 year: 2015 end-page: 919 ident: bib8 article-title: Adaptive immune resistance: how cancer protects from immune attack publication-title: Cancer Discov. – volume: 355 start-page: 973 year: 2006 end-page: 975 ident: bib19 article-title: T-cell costimulation–biology, therapeutic potential, and challenges publication-title: N. Engl. J. Med. – volume: 39 start-page: 1 year: 2013 end-page: 10 ident: bib3 article-title: Oncology meets immunology: the cancer-immunity cycle publication-title: Immunity – volume: 379 start-page: 1245 year: 2012 end-page: 1255 ident: bib1 article-title: Hepatocellular carcinoma publication-title: Lancet (London, England) – year: 2016 ident: bib9 article-title: IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer publication-title: Gut – volume: 530 start-page: 42 year: 2016 end-page: 43 ident: bib11 article-title: Cancer: fibroblasts for all seasons publication-title: Nature – volume: 15 start-page: 79 year: 2009 end-page: 80 ident: bib17 article-title: Inflammation and cancer: IL-6 and STAT3 complete the link publication-title: Cancer cell – year: 2017 ident: bib6 article-title: Intrinsic resistance of solid tumors to immune checkpoint blockade therapy publication-title: Cancer Res. – volume: 6 start-page: 1 year: 2016 end-page: 12 ident: bib5 article-title: Immune checkpoint blockade in hepatocellular carcinoma: 2017 update publication-title: Liver cancer – volume: 44 start-page: 1255 year: 2016 end-page: 1269 ident: bib7 article-title: Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors publication-title: Immunity – volume: 15 start-page: 103 year: 2009 end-page: 113 ident: bib16 article-title: IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer publication-title: Cancer cell – volume: 33 start-page: 1974 year: 2015 end-page: 1982 ident: bib4 article-title: Immune checkpoint blockade in cancer therapy publication-title: J. Clinical Oncol. Off. J. Am. Soc. Clin. Oncol. – volume: 44 year: 2010 ident: bib10 article-title: Establishing primary adult fibroblast cultures from rodents publication-title: J. Visualized Experiments. JoVE – volume: 110 start-page: 20212 year: 2013 end-page: 20217 ident: bib14 article-title: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 17 start-page: 135 issue: 2 year: 2010 ident: 10.1016/j.bbrc.2017.02.128_bib13 article-title: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner publication-title: Cancer cell doi: 10.1016/j.ccr.2009.12.041 – year: 2016 ident: 10.1016/j.bbrc.2017.02.128_bib9 article-title: IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer publication-title: Gut doi: 10.1136/gutjnl-2016-311585 – volume: 530 start-page: 42 issue: 7588 year: 2016 ident: 10.1016/j.bbrc.2017.02.128_bib11 article-title: Cancer: fibroblasts for all seasons publication-title: Nature doi: 10.1038/530042a – volume: 27 start-page: 1485 issue: 9 year: 2009 ident: 10.1016/j.bbrc.2017.02.128_bib2 article-title: Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005 publication-title: J. Clinical Oncol. Off. J. Am. Soc. Clin. Oncol. doi: 10.1200/JCO.2008.20.7753 – volume: 44 year: 2010 ident: 10.1016/j.bbrc.2017.02.128_bib10 article-title: Establishing primary adult fibroblast cultures from rodents publication-title: J. Visualized Experiments. JoVE – volume: 379 start-page: 1245 issue: 9822 year: 2012 ident: 10.1016/j.bbrc.2017.02.128_bib1 article-title: Hepatocellular carcinoma publication-title: Lancet (London, England) doi: 10.1016/S0140-6736(11)61347-0 – volume: 39 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.bbrc.2017.02.128_bib3 article-title: Oncology meets immunology: the cancer-immunity cycle publication-title: Immunity doi: 10.1016/j.immuni.2013.07.012 – volume: 15 start-page: 79 issue: 2 year: 2009 ident: 10.1016/j.bbrc.2017.02.128_bib17 article-title: Inflammation and cancer: IL-6 and STAT3 complete the link publication-title: Cancer cell doi: 10.1016/j.ccr.2009.01.009 – volume: 33 start-page: 1974 issue: 17 year: 2015 ident: 10.1016/j.bbrc.2017.02.128_bib4 article-title: Immune checkpoint blockade in cancer therapy publication-title: J. Clinical Oncol. Off. J. Am. Soc. Clin. Oncol. doi: 10.1200/JCO.2014.59.4358 – volume: 15 start-page: 103 issue: 2 year: 2009 ident: 10.1016/j.bbrc.2017.02.128_bib16 article-title: IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer publication-title: Cancer cell doi: 10.1016/j.ccr.2009.01.001 – volume: 110 start-page: 20212 issue: 50 year: 2013 ident: 10.1016/j.bbrc.2017.02.128_bib14 article-title: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1320318110 – volume: 16 start-page: 582 issue: 9 year: 2016 ident: 10.1016/j.bbrc.2017.02.128_bib12 article-title: The biology and function of fibroblasts in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.73 – year: 2017 ident: 10.1016/j.bbrc.2017.02.128_bib6 article-title: Intrinsic resistance of solid tumors to immune checkpoint blockade therapy publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-2379 – volume: 4 start-page: 217 issue: 2 year: 2005 ident: 10.1016/j.bbrc.2017.02.128_bib15 article-title: IL-6 signaling promotes tumor growth in colorectal cancer publication-title: Cell cycle (Georgetown, Tex) doi: 10.4161/cc.4.2.1413 – volume: 24 start-page: 207 issue: 2 year: 2012 ident: 10.1016/j.bbrc.2017.02.128_bib18 article-title: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2011.12.009 – volume: 44 start-page: 1255 issue: 6 year: 2016 ident: 10.1016/j.bbrc.2017.02.128_bib7 article-title: Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors publication-title: Immunity doi: 10.1016/j.immuni.2016.06.001 – volume: 5 start-page: 915 issue: 9 year: 2015 ident: 10.1016/j.bbrc.2017.02.128_bib8 article-title: Adaptive immune resistance: how cancer protects from immune attack publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-0563 – volume: 355 start-page: 973 issue: 10 year: 2006 ident: 10.1016/j.bbrc.2017.02.128_bib19 article-title: T-cell costimulation–biology, therapeutic potential, and challenges publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp068087 – volume: 6 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.bbrc.2017.02.128_bib5 article-title: Immune checkpoint blockade in hepatocellular carcinoma: 2017 update publication-title: Liver cancer doi: 10.1159/000449342 |
SSID | ssj0011469 |
Score | 2.5518832 |
Snippet | Limited efficacy of immune checkpoint inhibitors in hepatocellular carcinoma (HCC) was observed in clinical trials, thus prompting investigation into... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 239 |
SubjectTerms | animal models Animals Antibodies, Neoplasm - pharmacology Antibodies, Neutralizing - pharmacology Antineoplastic Combined Chemotherapy Protocols B7-H1 Antigen - antagonists & inhibitors B7-H1 Antigen - genetics B7-H1 Antigen - immunology Cancer-Associated Fibroblasts - drug effects Cancer-Associated Fibroblasts - immunology Cancer-Associated Fibroblasts - pathology carcinogenesis Carcinoma, Hepatocellular - genetics Carcinoma, Hepatocellular - immunology Carcinoma, Hepatocellular - pathology Carcinoma, Hepatocellular - therapy Cell Line, Tumor clinical trials Combinational therapy Disease Models, Animal Drug resistance Drug Resistance, Neoplasm - drug effects Drug Synergism fibroblasts Gene Expression Regulation, Neoplastic Hepatocellular carcinoma hepatoma Humans IL-6 Immune checkpoint blockades immune response Immunology immunomodulators immunosuppression Injections, Subcutaneous interleukin-6 Interleukin-6 - antagonists & inhibitors Interleukin-6 - genetics Interleukin-6 - immunology Liver Neoplasms - genetics Liver Neoplasms - immunology Liver Neoplasms - pathology Liver Neoplasms - therapy Male Mice Mice, Inbred BALB C Molecular Targeted Therapy neoplasm cells Signal Transduction T-lymphocytes therapeutics Tumor Microenvironment - drug effects |
Title | IL-6 and PD-L1 blockade combination inhibits hepatocellular carcinoma cancer development in mouse model |
URI | https://dx.doi.org/10.1016/j.bbrc.2017.02.128 https://www.ncbi.nlm.nih.gov/pubmed/28254435 https://www.proquest.com/docview/2000415026 |
Volume | 486 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VqVC5VKUpkLZEi4S4oCVZe23HxxCIEghRD0TKbbXrXVND40Spe-ilv70zfgRVghy4-bErr-Yb7TezngfAO9NPjef7miM3BlxS8VmNRMS1n0QWGRMn0Tnk93k4Wcivy2B5AKMmF4bCKuu9v9rTy926ftKrpdnbZBnl-PZDLxZLgUoqRUxJfFJGpOUfH3ZhHpR0W5vAIafRdeJMFeNlzJbKGIqI6nYK6sj-d3L6l_FZktD4BI5r65ENqwW-gAOXn0J7mKPnvLpn71kZz1kelJ_Cs0_N1dGo6erWhp_TGQ-Zzi27-sxnghkks9_aOoYCQCe5xIll-XVmsuKWXSNZFWs63KdoVZZQ46F8vdJ4hYLaMvsn5AgnMTpGcKxsrnMGi_GXH6MJr5st8EQGQcFTF6UmEmmaCItyRSthMDBe6Fzgm1DoINaW_McUHZI0NpHV0qB1gYBqtHBsGvgvoZWvc_caWF9b4YWJj28HEjk41giDFonvm9i42HRANFJWSV2JnBpi3Kgm5OyXImQUIaP6nkJkOvBhN2dT1eHYOzpowFNPtEkhUeyd97ZBWiEuJF6dO5QddeukYgbosXbgVaUCu3VQ-q9Es_P8P796Ac_pjv5RefEltIrtnXuDpk5huqUud-FwOP02mT8CufT8gA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4hUAWXigKlaWm7SG0v1ULWz-yhB8pDSQmoB5ByW3a96-ICDgpGiAt_qn-wM_Y6VSXggMTNir3Jar7JfDPreQB8Mt3cBGGoOXJjzCNqPquRiLgOs9QiY-IiOoc8OEz6x9GPUTyagT9tLQylVXrb39j02lr7Tza9NDcvi4JqfLtJIMVIoJJGQkqfWbnvbm8wbrv6NthBkD8Hwd7u0Xaf-9ECPIviuOK5S3OTijzPhMVvQU7s9UyQOBeHJhE6ltpStJSj-51Lk1odGeRS3L5GPrc5jYpAuz8XobmgsQkbd9O8Eqry9T53wml7vlKnSSozZkJ9E0VKjUIFjYC_nw0f8nZr1ttbhJfeXWVbjURewYwrl2B5q8RQ_eKWfWF1Aml9Mr8EL763V_Pb7Ri5Zfg1GPKE6dKynzt8KJhB9jzT1jGUOEbltWKwojwtTFFdsVNkx2pMbxMoPZZlNOmoHF9ovEJkJsz-y3HCRYzOLRyrp_mswPGzQPAaZstx6d4A62orgiQL8W4vQtKXGmHQIgtDI42TpgOilbLKfOtzmsBxrtoct9-KkFGEjOoGCpHpwNfpmsum8cejT8cteOo_9VXITI-uW2-RVogLiVeXDmVH40GpewKGyB1YbVRgug-qN47Qz337xF_9CPP9o4OhGg4O99_BAt2hF2SBXIPZanLt3qOfVZkPtV4zOHnuP9JfTgo4tQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IL-6+and+PD-L1+blockade+combination+inhibits+hepatocellular+carcinoma+cancer+development+in+mouse+model&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Liu%2C+Hu&rft.au=Shen%2C+Jun&rft.au=Lu%2C+Kai&rft.date=2017-04-29&rft.eissn=1090-2104&rft.volume=486&rft.issue=2&rft.spage=239&rft_id=info:doi/10.1016%2Fj.bbrc.2017.02.128&rft_id=info%3Apmid%2F28254435&rft.externalDocID=28254435 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon |