Constrained linear basis sets for HRF modelling using Variational Bayes
FMRI modelling requires flexible haemodynamic response function (HRF) modelling, with the HRF being allowed to vary spatially and between subjects. To achieve this flexibility, voxelwise parameterised HRFs have been proposed; however, inference on such models is very slow. An alternative approach is...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 21; no. 4; pp. 1748 - 1761 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2004
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | FMRI modelling requires flexible haemodynamic response function (HRF) modelling, with the HRF being allowed to vary spatially and between subjects. To achieve this flexibility, voxelwise parameterised HRFs have been proposed; however, inference on such models is very slow. An alternative approach is to use basis functions allowing inference to proceed in the more manageable General Linear Model (GLM) framework. However, a large amount of the subspace spanned by the basis functions produces nonsensical HRF shapes. In this work we propose a technique for choosing a basis set, and then the means to constrain the subspace spanned by the basis set to only include sensible HRF shapes. Penny et al. [NeuroImage (2003)] showed how Variational Bayes can be used to infer on the GLM for FMRI. Here we extend the work of Penny et al. to give inference on the GLM with constrained HRF basis functions and with spatial Markov Random Fields on the autoregressive noise parameters. Constraining the subspace spanned by the basis set allows for far superior separation of activating voxels from nonactivating voxels in FMRI data. We use spatial mixture modelling to produce final probabilities of activation and demonstrate increased sensitivity on an FMRI dataset. |
---|---|
AbstractList | FMRI modelling requires flexible haemodynamic response function (HRF) modelling, with the HRF being allowed to vary spatially and between subjects. To achieve this flexibility, voxelwise parameterised HRFs have been proposed; however, inference on such models is very slow. An alternative approach is to use basis functions allowing inference to proceed in the more manageable General Linear Model (GLM) framework. However, a large amount of the subspace spanned by the basis functions produces nonsensical HRF shapes. In this work we propose a technique for choosing a basis set, and then the means to constrain the subspace spanned by the basis set to only include sensible HRF shapes. Penny et al. showed how Variational Bayes can be used to infer on the GLM for FMRI. Here we extend the work of Penny et al. to give inference on the GLM with constrained HRF basis functions and with spatial Markov Random Fields on the autoregressive noise parameters. Constraining the subspace spanned by the basis set allows for far superior separation of activating voxels from nonactivating voxels in FMRI data. We use spatial mixture modelling to produce final probabilities of activation and demonstrate increased sensitivity on an FMRI dataset. FMRI modelling requires flexible haemodynamic response function (HRF) modelling, with the HRF being allowed to vary spatially and between subjects. To achieve this flexibility, voxelwise parameterised HRFs have been proposed; however, inference on such models is very slow. An alternative approach is to use basis functions allowing inference to proceed in the more manageable General Linear Model (GLM) framework. However, a large amount of the subspace spanned by the basis functions produces nonsensical HRF shapes. In this work we propose a technique for choosing a basis set, and then the means to constrain the subspace spanned by the basis set to only include sensible HRF shapes. Penny et al. [NeuroImage (2003)] showed how Variational Bayes can be used to infer on the GLM for FMRI. Here we extend the work of Penny et al. to give inference on the GLM with constrained HRF basis functions and with spatial Markov Random Fields on the autoregressive noise parameters. Constraining the subspace spanned by the basis set allows for far superior separation of activating voxels from nonactivating voxels in FMRI data. We use spatial mixture modelling to produce final probabilities of activation and demonstrate increased sensitivity on an FMRI dataset. FMRI modelling requires flexible haemodynamic response function (HRF) modelling, with the HRF being allowed to vary spatially and between subjects. To achieve this flexibility, voxelwise parameterised HRFs have been proposed; however, inference on such models is very slow. An alternative approach is to use basis functions allowing inference to proceed in the more manageable General Linear Model (GLM) framework. However, a large amount of the subspace spanned by the basis functions produces nonsensical HRF shapes. In this work we propose a technique for choosing a basis set, and then the means to constrain the subspace spanned by the basis set to only include sensible HRF shapes. Penny et al. showed how Variational Bayes can be used to infer on the GLM for FMRI. Here we extend the work of Penny et al. to give inference on the GLM with constrained HRF basis functions and with spatial Markov Random Fields on the autoregressive noise parameters. Constraining the subspace spanned by the basis set allows for far superior separation of activating voxels from nonactivating voxels in FMRI data. We use spatial mixture modelling to produce final probabilities of activation and demonstrate increased sensitivity on an FMRI dataset.FMRI modelling requires flexible haemodynamic response function (HRF) modelling, with the HRF being allowed to vary spatially and between subjects. To achieve this flexibility, voxelwise parameterised HRFs have been proposed; however, inference on such models is very slow. An alternative approach is to use basis functions allowing inference to proceed in the more manageable General Linear Model (GLM) framework. However, a large amount of the subspace spanned by the basis functions produces nonsensical HRF shapes. In this work we propose a technique for choosing a basis set, and then the means to constrain the subspace spanned by the basis set to only include sensible HRF shapes. Penny et al. showed how Variational Bayes can be used to infer on the GLM for FMRI. Here we extend the work of Penny et al. to give inference on the GLM with constrained HRF basis functions and with spatial Markov Random Fields on the autoregressive noise parameters. Constraining the subspace spanned by the basis set allows for far superior separation of activating voxels from nonactivating voxels in FMRI data. We use spatial mixture modelling to produce final probabilities of activation and demonstrate increased sensitivity on an FMRI dataset. |
Author | Behrens, Timothy E.J. Smith, Stephen M. Woolrich, Mark W. |
Author_xml | – sequence: 1 givenname: Mark W. surname: Woolrich fullname: Woolrich, Mark W. email: woolrich@fmrib.ox.ac.uk organization: Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK – sequence: 2 givenname: Timothy E.J. surname: Behrens fullname: Behrens, Timothy E.J. organization: Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK – sequence: 3 givenname: Stephen M. surname: Smith fullname: Smith, Stephen M. organization: Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15050595$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd1q3DAQhUVJaH6aVyiCQu_samRLlm5Km6VJCoFAaXMrZHkctPVaqWQH9u0rZxMCe7UIRgP65jA654wcjWFEQiiwEhjIL-tyxDkGv7EPWHLGqhJ4yXj9jpwC06LQouFHSy-qQgHoE3KW0poxpqFW78kJCJaPFqfkehXGNEXrR-zokKuNtLXJJ5pwSrQPkd78uqKb0OGQnx_onJZ6b6O3kw-jHeil3WL6QI57OyS8eLnPyZ-rH79XN8Xt3fXP1ffbwtVCTEVfo-YoK8VkIxyAU7KX0HMumXOVQKsEVwiIAiRUXHQ9tlVtldNYt00L1Tn5vNN9jOHfjGkyG59c3s2OGOZkGmgapZnO4Kc9cB3mmPdNJv9eStaAFJn6-ELN7QY78xizp3FrXg3KgNoBLoaUIvZvCDNLFmZt3rIwSxYGuMlZ5NGve6POT8-mLX4Phwhc7gQwG_rkMZrkPI4OOx_RTaYL_hCRb3siLufonR3-4vYwif8jxMDi |
CitedBy_id | crossref_primary_10_1016_j_pscychresns_2009_11_010 crossref_primary_10_1016_j_neuroimage_2004_06_011 crossref_primary_10_1214_09_STS282 crossref_primary_10_1016_j_neuroimage_2012_02_015 crossref_primary_10_1080_01621459_2015_1133425 crossref_primary_10_1016_j_neuron_2014_01_002 crossref_primary_10_1038_s41598_020_60268_z crossref_primary_10_1016_j_neuroimage_2013_09_003 crossref_primary_10_1016_j_neuroimage_2009_12_085 crossref_primary_10_1016_j_neuroimage_2011_09_002 crossref_primary_10_1016_j_pscychresns_2018_04_001 crossref_primary_10_1038_s42003_022_03273_4 crossref_primary_10_1016_j_neuroimage_2004_07_051 crossref_primary_10_1016_j_neuroimage_2020_117226 crossref_primary_10_1007_s11517_008_0347_6 crossref_primary_10_3389_fnhum_2016_00261 crossref_primary_10_1038_s41398_020_01063_2 crossref_primary_10_1097_j_pain_0000000000002327 crossref_primary_10_1214_12_AOAS609 crossref_primary_10_1371_journal_pone_0059655 crossref_primary_10_1016_j_neuroimage_2010_08_041 crossref_primary_10_1016_j_neuroimage_2010_12_027 crossref_primary_10_1002_mrm_21039 crossref_primary_10_1007_s11336_012_9294_0 crossref_primary_10_1002_jmri_22180 crossref_primary_10_1016_j_neulet_2008_01_058 crossref_primary_10_1136_bmjopen_2016_012174 crossref_primary_10_1186_s40359_023_01335_8 crossref_primary_10_1002_hbm_70192 crossref_primary_10_3390_nu16010041 crossref_primary_10_1371_journal_pone_0068196 crossref_primary_10_1016_j_neuroimage_2014_04_017 crossref_primary_10_3389_fnhum_2024_1440177 crossref_primary_10_1002_hbm_26751 crossref_primary_10_1038_s41597_020_00595_y crossref_primary_10_1016_j_neuroimage_2017_01_041 crossref_primary_10_1016_j_tics_2016_03_014 crossref_primary_10_1016_j_media_2006_09_003 crossref_primary_10_1016_j_neuroimage_2022_119758 crossref_primary_10_3389_fnhum_2023_1105703 crossref_primary_10_1093_cercor_bhy011 crossref_primary_10_3389_fnins_2015_00168 crossref_primary_10_1109_TFUZZ_2019_2936807 crossref_primary_10_1371_journal_pone_0121791 crossref_primary_10_1016_j_neuroimage_2008_10_065 crossref_primary_10_1016_j_neuroimage_2018_04_015 crossref_primary_10_1016_j_neuroimage_2008_07_065 crossref_primary_10_1007_s00330_009_1456_9 crossref_primary_10_1152_jn_00220_2011 crossref_primary_10_1016_j_neuroimage_2013_05_105 crossref_primary_10_1002_hbm_20246 crossref_primary_10_1109_TMI_2004_836545 crossref_primary_10_3389_fncom_2023_1241455 crossref_primary_10_1088_0967_3334_30_5_N01 crossref_primary_10_1016_j_neuroimage_2008_12_027 crossref_primary_10_1093_scan_nsm006 crossref_primary_10_1155_2007_15635 crossref_primary_10_1162_imag_a_00227 crossref_primary_10_1016_j_neuroimage_2015_05_013 crossref_primary_10_1109_TMI_2010_2044512 crossref_primary_10_3389_fnhum_2020_509258 crossref_primary_10_1093_cercor_bht153 crossref_primary_10_1016_j_neuroimage_2021_118418 crossref_primary_10_1177_0956797612457380 crossref_primary_10_1016_j_brainres_2009_12_019 crossref_primary_10_1016_j_neuroimage_2008_10_055 crossref_primary_10_1016_j_brainres_2010_09_093 crossref_primary_10_1016_j_neuroimage_2014_09_060 crossref_primary_10_1002_hbm_20310 crossref_primary_10_1016_j_neuroimage_2016_12_045 crossref_primary_10_1109_TMI_2010_2042064 crossref_primary_10_1002_hbm_20311 crossref_primary_10_1155_2013_643129 crossref_primary_10_1016_j_neuroimage_2011_04_041 crossref_primary_10_1016_j_neuroimage_2012_06_054 crossref_primary_10_1016_j_media_2014_03_005 crossref_primary_10_1016_j_neuroimage_2011_10_047 crossref_primary_10_3389_fncom_2015_00054 crossref_primary_10_1016_j_neuroimage_2007_08_012 crossref_primary_10_1002_hbm_20391 crossref_primary_10_1016_j_mri_2011_07_011 crossref_primary_10_7554_eLife_11945 crossref_primary_10_1016_j_neuroimage_2009_11_014 crossref_primary_10_1016_j_neuroimage_2009_08_051 crossref_primary_10_3174_ajnr_A4229 crossref_primary_10_1016_j_neuroimage_2022_118964 crossref_primary_10_1109_TNB_2016_2572401 crossref_primary_10_1002_jmri_20579 crossref_primary_10_1016_j_neuropsychologia_2024_108999 crossref_primary_10_7554_eLife_67304 crossref_primary_10_1002_acn3_658 crossref_primary_10_1016_j_neuroimage_2018_12_012 crossref_primary_10_1093_dote_doac021 crossref_primary_10_1016_j_neuroimage_2004_08_034 crossref_primary_10_1177_0271678X211056702 crossref_primary_10_1109_TMI_2006_880682 crossref_primary_10_1109_TSP_2008_2005752 crossref_primary_10_1109_TBME_2007_902591 crossref_primary_10_1155_2012_190359 crossref_primary_10_1002_hbm_70043 crossref_primary_10_1016_j_neuroimage_2015_01_013 crossref_primary_10_1016_j_neuroimage_2022_119440 crossref_primary_10_1016_j_neuroimage_2019_05_036 crossref_primary_10_1007_s13311_016_0467_x crossref_primary_10_3390_medicina60081370 crossref_primary_10_1080_02664760802443962 crossref_primary_10_3390_neurolint16050069 crossref_primary_10_1016_j_neuroimage_2009_12_042 crossref_primary_10_1038_s41592_020_0941_6 crossref_primary_10_1002_hbm_23608 crossref_primary_10_1007_s11682_013_9246_z crossref_primary_10_1016_j_neuroimage_2020_117303 crossref_primary_10_1162_imag_a_00282 crossref_primary_10_1016_j_neuroimage_2009_10_038 crossref_primary_10_1016_j_neuroimage_2021_118513 crossref_primary_10_1038_s41398_024_03120_6 crossref_primary_10_1007_s12021_020_09472_w crossref_primary_10_7554_eLife_65590 crossref_primary_10_1002_hbm_25226 crossref_primary_10_1093_cercor_bhaa117 crossref_primary_10_1016_j_neuroimage_2009_02_035 crossref_primary_10_1109_JSTSP_2008_2007819 crossref_primary_10_1016_j_bbi_2015_11_010 crossref_primary_10_1016_j_neuroimage_2022_119041 crossref_primary_10_1016_j_neuroimage_2017_01_005 crossref_primary_10_1117_1_NPh_4_3_031215 crossref_primary_10_1038_s41591_021_01663_5 crossref_primary_10_1016_j_neuroimage_2013_02_048 crossref_primary_10_1016_j_future_2009_07_014 crossref_primary_10_1214_16_AOAS926 crossref_primary_10_1523_JNEUROSCI_1395_23_2024 crossref_primary_10_1038_s41562_023_01729_z crossref_primary_10_1016_j_pneurobio_2021_102174 crossref_primary_10_1111_rssc_12320 crossref_primary_10_1016_j_neuroimage_2020_117652 crossref_primary_10_1016_j_cub_2009_04_057 crossref_primary_10_1162_imag_a_00455 crossref_primary_10_1523_JNEUROSCI_1235_23_2023 crossref_primary_10_1002_mrm_22711 crossref_primary_10_1016_j_csda_2016_07_006 crossref_primary_10_1002_hbm_20327 crossref_primary_10_1002_wics_1339 crossref_primary_10_1016_j_neuroimage_2014_04_052 crossref_primary_10_1038_s41596_022_00696_5 crossref_primary_10_1080_03610926_2020_1776327 crossref_primary_10_1016_j_neuroimage_2005_10_019 crossref_primary_10_1016_j_neuroimage_2009_11_064 crossref_primary_10_1109_TBME_2008_923918 crossref_primary_10_1146_annurev_statistics_022513_115611 crossref_primary_10_1002_hbm_23597 crossref_primary_10_3389_fninf_2018_00096 crossref_primary_10_3389_fnins_2016_00322 crossref_primary_10_1016_j_neuroimage_2011_07_054 crossref_primary_10_1016_j_neuroimage_2018_07_023 crossref_primary_10_1016_j_mri_2008_01_008 crossref_primary_10_1016_j_neuroimage_2011_10_070 crossref_primary_10_1002_jnr_24115 crossref_primary_10_3389_fnhum_2023_1263292 crossref_primary_10_1016_j_neuroimage_2009_07_047 crossref_primary_10_1016_j_neuroimage_2020_117519 crossref_primary_10_1016_j_neuroimage_2018_11_006 crossref_primary_10_1002_nbm_4916 crossref_primary_10_1016_j_neuroimage_2008_02_017 crossref_primary_10_1002_hbm_21289 crossref_primary_10_1016_j_neuroimage_2018_06_056 crossref_primary_10_1038_s41598_022_17601_5 crossref_primary_10_1177_19417381221079339 crossref_primary_10_7554_eLife_12047 crossref_primary_10_1109_TSP_2024_3374115 crossref_primary_10_1007_s12561_017_9205_0 crossref_primary_10_1002_hbm_20471 crossref_primary_10_1073_pnas_1705120114 crossref_primary_10_1007_s00429_017_1576_y crossref_primary_10_1016_j_neuroimage_2017_10_043 crossref_primary_10_1002_hbm_22804 crossref_primary_10_1016_j_neuroimage_2019_04_012 crossref_primary_10_3389_fncom_2017_00063 crossref_primary_10_1016_j_neuroimage_2015_02_026 crossref_primary_10_1111_pan_12606 crossref_primary_10_1016_j_neuroimage_2018_12_054 crossref_primary_10_1038_jcbfm_2008_21 crossref_primary_10_1371_journal_pcbi_1000709 crossref_primary_10_1016_j_bbr_2019_112435 crossref_primary_10_1109_TSP_2005_853303 crossref_primary_10_1007_s11682_017_9733_8 crossref_primary_10_1016_j_neuroimage_2011_10_008 crossref_primary_10_1016_j_neuroimage_2012_08_014 crossref_primary_10_1016_j_neuroimage_2022_119293 crossref_primary_10_1186_2045_5380_3_18 |
Cites_doi | 10.1006/nimg.2001.0795 10.1006/nimg.2000.0630 10.1002/mrm.1910390109 10.1006/nimg.2001.0931 10.1002/(SICI)1097-0193(1997)5:4<243::AID-HBM7>3.0.CO;2-3 10.1006/nimg.2001.1044 10.1002/hbm.460010306 10.1016/S1053-8119(03)00071-5 10.1523/JNEUROSCI.16-13-04207.1996 10.1006/nimg.1997.0278 10.1006/nimg.2002.1132 10.1006/nimg.2001.0933 10.1006/nimg.1995.1018 10.1006/nimg.1997.0306 10.1002/(SICI)1097-0193(1999)7:1<1::AID-HBM1>3.0.CO;2-H 10.1109/TMI.2003.823065 10.1016/S1053-8119(03)00077-6 10.1002/1097-0193(200012)11:4<233::AID-HBM10>3.0.CO;2-F 10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5 10.1002/mrm.1910390602 10.2307/2669445 |
ContentType | Journal Article |
Copyright | 2004 Elsevier Inc. Copyright Elsevier Limited Apr 1, 2004 |
Copyright_xml | – notice: 2004 Elsevier Inc. – notice: Copyright Elsevier Limited Apr 1, 2004 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1016/j.neuroimage.2003.12.024 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database ProQuest - Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 1761 |
ExternalDocumentID | 3244232231 15050595 10_1016_j_neuroimage_2003_12_024 S1053811903007900 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c455t-f4e92e6380675c11c86f61f2260cc35ea8528e1ee5161325dfeb34a8c9e4b7b13 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 |
IngestDate | Mon Jul 21 10:34:02 EDT 2025 Sat Aug 23 13:04:02 EDT 2025 Wed Feb 19 01:37:27 EST 2025 Tue Jul 01 00:49:24 EDT 2025 Thu Apr 24 22:53:28 EDT 2025 Fri Feb 23 02:29:06 EST 2024 Tue Aug 26 18:14:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | GLM Basis sets Markov random field Variational Bayes HRF FMRI |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-f4e92e6380675c11c86f61f2260cc35ea8528e1ee5161325dfeb34a8c9e4b7b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 15050595 |
PQID | 1506607165 |
PQPubID | 2031077 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_71778909 proquest_journals_1506607165 pubmed_primary_15050595 crossref_primary_10_1016_j_neuroimage_2003_12_024 crossref_citationtrail_10_1016_j_neuroimage_2003_12_024 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2003_12_024 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2003_12_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-04-01 |
PublicationDateYYYYMMDD | 2004-04-01 |
PublicationDate_xml | – month: 04 year: 2004 text: 2004-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2004 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Gössl, Auer, Fahrmeir (BIB16) 2001; 14 Friston, Mechelli, Turner, Price (BIB13) 2000; 12 Woolrich, Jenkinson, Brady, Smith (BIB26) 2004; 22 Woolrich, Behrens, Beckmann, Smith (BIB25) 2004 Friman, Borga, Lundberg, Knutsson (BIB7) 2003; 19 Hossein-Zadeh, Ardekani (BIB18) 2002 Cohen (BIB3) 1997; 6 Cressie (BIB4) 1993 Jenkinson, Bannister, Brady, Smith (BIB20) 2002; 17 Dale, Buckner (BIB5) 1997; 5 Friston (BIB8) 2002; 16 Golub, Van Loan (BIB15) 1996 Genovese (BIB14) 2000; 95 Buxton, Wong, Frank (BIB2) 1998; 39 Friston, Fletcher, Josephs, Holmes, Rugg, Turner (BIB11) 1998; 7 Friston, Josephs, Rees, Turner (BIB12) 1998; 39 Penny, Kiebel, Friston (BIB23) 2003; 19 Worsley, Liao, Aston, Petre, Duncan, Morales, Evans (BIB27) 2002; 15 Everitt, Bullmore (BIB6) 1999; 7 Friston, Frith, Turner, Frackowiak (BIB10) 1995; 2 Hartvig, Jensen (BIB17) 2000; 11 Boynton, Engel, Glover, Heeger (BIB1) 1996; 16 Jordan (BIB21) 1999 Woolrich, Ripley, Brady, Smith (BIB24) 2001; 14 Josephs, Turner, Friston (BIB22) 1997; 5 Friston, Worsley, Frackowiak, Mazziotta, Evans (BIB9) 1994; 1 Dale (10.1016/j.neuroimage.2003.12.024_BIB5) 1997; 5 Gössl (10.1016/j.neuroimage.2003.12.024_BIB16) 2001; 14 Boynton (10.1016/j.neuroimage.2003.12.024_BIB1) 1996; 16 Cohen (10.1016/j.neuroimage.2003.12.024_BIB3) 1997; 6 Friston (10.1016/j.neuroimage.2003.12.024_BIB10) 1995; 2 Friston (10.1016/j.neuroimage.2003.12.024_BIB12) 1998; 39 Everitt (10.1016/j.neuroimage.2003.12.024_BIB6) 1999; 7 Friston (10.1016/j.neuroimage.2003.12.024_BIB9) 1994; 1 Hartvig (10.1016/j.neuroimage.2003.12.024_BIB17) 2000; 11 Penny (10.1016/j.neuroimage.2003.12.024_BIB23) 2003; 19 Hossein-Zadeh (10.1016/j.neuroimage.2003.12.024_BIB18) 2002 Worsley (10.1016/j.neuroimage.2003.12.024_BIB27) 2002; 15 Woolrich (10.1016/j.neuroimage.2003.12.024_BIB25) 2004 Friston (10.1016/j.neuroimage.2003.12.024_BIB11) 1998; 7 Josephs (10.1016/j.neuroimage.2003.12.024_BIB22) 1997; 5 Jenkinson (10.1016/j.neuroimage.2003.12.024_BIB20) 2002; 17 Friston (10.1016/j.neuroimage.2003.12.024_BIB8) 2002; 16 Buxton (10.1016/j.neuroimage.2003.12.024_BIB2) 1998; 39 Woolrich (10.1016/j.neuroimage.2003.12.024_BIB26) 2004; 22 Golub (10.1016/j.neuroimage.2003.12.024_BIB15) 1996 Cressie (10.1016/j.neuroimage.2003.12.024_BIB4) 1993 Friston (10.1016/j.neuroimage.2003.12.024_BIB13) 2000; 12 Jordan (10.1016/j.neuroimage.2003.12.024_BIB21) 1999 Friman (10.1016/j.neuroimage.2003.12.024_BIB7) 2003; 19 Genovese (10.1016/j.neuroimage.2003.12.024_BIB14) 2000; 95 Woolrich (10.1016/j.neuroimage.2003.12.024_BIB24) 2001; 14 |
References_xml | – volume: 16 start-page: 4207 year: 1996 end-page: 4221 ident: BIB1 article-title: Linear systems analysis of functional magnetic resonance imaging in human V1 publication-title: J. Neurosci. – volume: 39 start-page: 41 year: 1998 end-page: 52 ident: BIB12 article-title: Nonlinear event-related responses in fMRI publication-title: Magn. Reson. Med. – volume: 2 start-page: 157 year: 1995 end-page: 165 ident: BIB10 article-title: Characterizing evoked hemodynamics with fMRI publication-title: NeuroImage – volume: 11 start-page: 233 year: 2000 end-page: 248 ident: BIB17 article-title: Spatial mixture modelling of fMRI data publication-title: Hum. Brain Mapp. – volume: 14 start-page: 140 year: 2001 end-page: 148 ident: BIB16 article-title: Bayesian modeling of the haemodynamic response function in BOLD fMRI publication-title: NeuroImage – volume: 7 start-page: 30 year: 1998 end-page: 40 ident: BIB11 article-title: Event-related fMRI: characterizing differential responses publication-title: NeuroImage – volume: 1 start-page: 214 year: 1994 end-page: 220 ident: BIB9 article-title: Assessing the significance of focal activations using their spatial extent publication-title: Hum. Brain Mapp. – year: 1996 ident: BIB15 article-title: Matrix Computations – volume: 7 start-page: 1 year: 1999 end-page: 14 ident: BIB6 article-title: Mixture model mapping of brain activation in functional magnetic resonance images publication-title: Hum. Brain Mapp. – year: 2004 ident: BIB25 article-title: Mixture models with adaptive spatial regularisation for segmentation with an application to FMRI data publication-title: Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology – year: 1999 ident: BIB21 article-title: Learning in Graphical Models – volume: 19 start-page: 1477 year: 2003 end-page: 1491 ident: BIB23 article-title: Variational Bayesian inference for fMRI time series publication-title: NeuroImage – volume: 39 start-page: 855 year: 1998 end-page: 864 ident: BIB2 article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model publication-title: Magn. Reson. Med. – volume: 14 start-page: 1370 year: 2001 end-page: 1386 ident: BIB24 article-title: Temporal autocorrelation in univariate linear modelling of FMRI data publication-title: NeuroImage – volume: 16 start-page: 513 year: 2002 end-page: 530 ident: BIB8 article-title: Bayesian estimation of dynamical systems: an application to fMRI publication-title: NeuroImage – volume: 15 start-page: 1 year: 2002 end-page: 15 ident: BIB27 article-title: A general statistical analysis for fMRI data publication-title: NeuroImage – volume: 5 start-page: 329 year: 1997 end-page: 340 ident: BIB5 article-title: Selective averaging of rapidly presented individual trials using fMRI publication-title: Hum. Brain Mapp. – volume: 19 start-page: 837 year: 2003 end-page: 845 ident: BIB7 article-title: Adaptive analysis of fMRI data publication-title: NeuroImage – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: BIB20 article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage – volume: 95 start-page: 691 year: 2000 end-page: 703 ident: BIB14 article-title: A Bayesian time-course model for functional magnetic resonance imaging data publication-title: J. Am. Stat. Assoc. – year: 2002 ident: BIB18 article-title: A signal subspace for modeling the hamodynamic response function in fMRI publication-title: NeuroImage – volume: 12 start-page: 466 year: 2000 end-page: 477 ident: BIB13 article-title: Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics publication-title: NeuroImage – volume: 5 start-page: 1 year: 1997 end-page: 7 ident: BIB22 article-title: Event-related fMRI publication-title: Hum. Brain Mapp. – volume: 22 year: 2004 ident: BIB26 article-title: Fully Bayesian spatio-temporal modelling of FMRI data publication-title: IEEE Trans. Med. Imaging – volume: 6 start-page: 93 year: 1997 end-page: 103 ident: BIB3 article-title: Parametric analysis of fMRI data using linear systems methods publication-title: NeuroImage – year: 1993 ident: BIB4 article-title: Statistics for Spatial Data – volume: 14 start-page: 140 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2003.12.024_BIB16 article-title: Bayesian modeling of the haemodynamic response function in BOLD fMRI publication-title: NeuroImage doi: 10.1006/nimg.2001.0795 – volume: 12 start-page: 466 year: 2000 ident: 10.1016/j.neuroimage.2003.12.024_BIB13 article-title: Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics publication-title: NeuroImage doi: 10.1006/nimg.2000.0630 – year: 1993 ident: 10.1016/j.neuroimage.2003.12.024_BIB4 – volume: 39 start-page: 41 year: 1998 ident: 10.1016/j.neuroimage.2003.12.024_BIB12 article-title: Nonlinear event-related responses in fMRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390109 – volume: 14 start-page: 1370 issue: 6 year: 2001 ident: 10.1016/j.neuroimage.2003.12.024_BIB24 article-title: Temporal autocorrelation in univariate linear modelling of FMRI data publication-title: NeuroImage doi: 10.1006/nimg.2001.0931 – volume: 5 start-page: 1 year: 1997 ident: 10.1016/j.neuroimage.2003.12.024_BIB22 article-title: Event-related fMRI publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1997)5:4<243::AID-HBM7>3.0.CO;2-3 – volume: 16 start-page: 513 year: 2002 ident: 10.1016/j.neuroimage.2003.12.024_BIB8 article-title: Bayesian estimation of dynamical systems: an application to fMRI publication-title: NeuroImage doi: 10.1006/nimg.2001.1044 – year: 2004 ident: 10.1016/j.neuroimage.2003.12.024_BIB25 article-title: Mixture models with adaptive spatial regularisation for segmentation with an application to FMRI data – volume: 1 start-page: 214 year: 1994 ident: 10.1016/j.neuroimage.2003.12.024_BIB9 article-title: Assessing the significance of focal activations using their spatial extent publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460010306 – volume: 19 start-page: 1477 issue: 3 year: 2003 ident: 10.1016/j.neuroimage.2003.12.024_BIB23 article-title: Variational Bayesian inference for fMRI time series publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00071-5 – volume: 16 start-page: 4207 year: 1996 ident: 10.1016/j.neuroimage.2003.12.024_BIB1 article-title: Linear systems analysis of functional magnetic resonance imaging in human V1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-13-04207.1996 – year: 2002 ident: 10.1016/j.neuroimage.2003.12.024_BIB18 article-title: A signal subspace for modeling the hamodynamic response function in fMRI publication-title: NeuroImage – volume: 6 start-page: 93 year: 1997 ident: 10.1016/j.neuroimage.2003.12.024_BIB3 article-title: Parametric analysis of fMRI data using linear systems methods publication-title: NeuroImage doi: 10.1006/nimg.1997.0278 – volume: 17 start-page: 825 issue: 2 year: 2002 ident: 10.1016/j.neuroimage.2003.12.024_BIB20 article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – year: 1999 ident: 10.1016/j.neuroimage.2003.12.024_BIB21 – volume: 15 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2003.12.024_BIB27 article-title: A general statistical analysis for fMRI data publication-title: NeuroImage doi: 10.1006/nimg.2001.0933 – volume: 2 start-page: 157 year: 1995 ident: 10.1016/j.neuroimage.2003.12.024_BIB10 article-title: Characterizing evoked hemodynamics with fMRI publication-title: NeuroImage doi: 10.1006/nimg.1995.1018 – volume: 7 start-page: 30 year: 1998 ident: 10.1016/j.neuroimage.2003.12.024_BIB11 article-title: Event-related fMRI: characterizing differential responses publication-title: NeuroImage doi: 10.1006/nimg.1997.0306 – year: 1996 ident: 10.1016/j.neuroimage.2003.12.024_BIB15 – volume: 7 start-page: 1 year: 1999 ident: 10.1016/j.neuroimage.2003.12.024_BIB6 article-title: Mixture model mapping of brain activation in functional magnetic resonance images publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)7:1<1::AID-HBM1>3.0.CO;2-H – volume: 22 issue: 2 year: 2004 ident: 10.1016/j.neuroimage.2003.12.024_BIB26 article-title: Fully Bayesian spatio-temporal modelling of FMRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.823065 – volume: 19 start-page: 837 issue: 3 year: 2003 ident: 10.1016/j.neuroimage.2003.12.024_BIB7 article-title: Adaptive analysis of fMRI data publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00077-6 – volume: 11 start-page: 233 issue: 4 year: 2000 ident: 10.1016/j.neuroimage.2003.12.024_BIB17 article-title: Spatial mixture modelling of fMRI data publication-title: Hum. Brain Mapp. doi: 10.1002/1097-0193(200012)11:4<233::AID-HBM10>3.0.CO;2-F – volume: 5 start-page: 329 year: 1997 ident: 10.1016/j.neuroimage.2003.12.024_BIB5 article-title: Selective averaging of rapidly presented individual trials using fMRI publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5 – volume: 39 start-page: 855 year: 1998 ident: 10.1016/j.neuroimage.2003.12.024_BIB2 article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390602 – volume: 95 start-page: 691 year: 2000 ident: 10.1016/j.neuroimage.2003.12.024_BIB14 article-title: A Bayesian time-course model for functional magnetic resonance imaging data publication-title: J. Am. Stat. Assoc. doi: 10.2307/2669445 |
SSID | ssj0009148 |
Score | 2.2499344 |
Snippet | FMRI modelling requires flexible haemodynamic response function (HRF) modelling, with the HRF being allowed to vary spatially and between subjects. To achieve... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1748 |
SubjectTerms | Algorithms Basis sets Bayes Theorem Bayesian analysis Brain - physiology Brain Mapping Computer Simulation Economic models Evoked Potentials - physiology FMRI GLM HRF Humans Image Interpretation, Computer-Assisted Linear Models Magnetic Resonance Imaging - statistics & numerical data Markov Chains Markov random field Mathematical Computing Models, Statistical Noise Pain Threshold - physiology Pattern Recognition, Visual - physiology Power plants Sensitivity and Specificity Thermosensing - physiology Variational Bayes |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF61qVT1gqAPCATYQ69WWe-uH-KAABEipPRQNVVuK--rAkES4uTAv2dmvY5PoJztseR9zTezM99HyE_jtdA2zSA2KXQiAGEnuuI28Vp7ZnNemUApNP6djSbibiqnMeFWx7LK9kwMB7WdG8yR_0ImPORCy-TF4jlB1Si8XY0SGh_JJ6Quw5KufJp3pLtMNK1wkicFvBAreZr6rsAXef8EuzawgoakYCreck9vwc_ghoa7ZCfiR3rZTPge-eBmX8nncbwh_0ZuUYEz6D44SxFCVksKnuq-prVb1RQgKh39GdIggIOd6BQL3__TfxAyx7QgvapeXP2dTIY3f69HSRRLSIyQcpV44crUwW7CEMAwZorMZ8wDujozhktXFTItHHNOAsbjqbQewmhRFaZ0Quea8R-kN5vP3AGhwljvAReeWcCGFU9REz3LwdF7mXMrdJ_k7RgpE5nE8cceVVsy9qC60UWhS65YqmB0-4RtLBcNm8YWNmU7DartFoXzTcGRv4Xt-cY2IooGKWxpPWhnXcWdXatuHfbJ6eYx7Em8aKlmbr6uFYTI2F9c9sl-s1a6n5WoHFjKw_c_fUS-dBVCA9JbLdfuGMDPSp-EFf4KeAQC_A priority: 102 providerName: ProQuest |
Title | Constrained linear basis sets for HRF modelling using Variational Bayes |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811903007900 https://dx.doi.org/10.1016/j.neuroimage.2003.12.024 https://www.ncbi.nlm.nih.gov/pubmed/15050595 https://www.proquest.com/docview/1506607165 https://www.proquest.com/docview/71778909 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xkBAXtDx2KY_iA9fQOrbzECeoKIVdKlQe6s2KHRsVQUGkHLjsb2ecOK04IFXikkiJRrLHnplv7HkAHGqruMrDCH2TRAUcEXagMpYHVilL85hluiwpdNWPenf8ciiGC9Cpc2FcWKXX_ZVOL7W1_9Ly3Gy9jkatG0QGaG7QoDG0c2kb_fblkKURbu3lk4u_vf6s9i7lVUacYIEj8AE9VZhXWTZy9IzCWxYHLc8GQ_6dlfoOhZbWqPsL1jyMJCfVSNdhwYw3YOXKX5RvwrlrxFm2fzA5cUgyeyNosEYFKcykIIhUSW_QJWUfHJeQTlz8-wO5R8_Znw6S0-zDFFtw1z277fQC3zMh0FyISWC5SUODQuU8AU2pTiIbUYsgq601EyZLRJgYaoxAqMdCkVv0pnmW6NRwFSvKfsPS-GVstoFwnVuL8LCdI0TMWOhao0cx2nsrYpZz1YC45pHUvqC4m9iTrCPHHuWMu67fJZM0lMjdBtAp5WtVVGMOmrReBlknjaKak6j556A9ntJ-2VxzUu_Vqy69gBfSFWZ0pfki0YCD6W8UTXffko3Ny3sh0VN2acZpA_5Ue2U2WeEaCKZi50cD24XVWRzRHixN3t7NPkKkiWrC4tF_is94GDdRHDqDf9dNLxb4Pj3rXw8-AR3SFMQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gkigX4ttFkD7ocSL9mkeIMYKsi7AbQ8Bwa6dfBgK7wCwx_Cl_o9UzPTsnzF44T6qTrq6p-qq7qj6A98ZroS1LMTfJdSIQYSe65DbxWntqM16aeqTQaJwOT8T3U3m6BH_bXphQVtn6xNpR26kJd-QfwyS8MAstlZ-vrpPAGhVeV1sKjcYsDtzdH0zZqk_7X_F8PzA22DveHSaRVSAxQspZ4oUrmEOzC1jZUGry1KfUIwzZMoZLV-aS5Y46JxEMcSatx3xTlLkpnNCZphzXfQTLgmMq04Plnb3xj6NuzC8VTfOd5ElOaRFrh5qKsnpC5dkl-ol6Dml9DcnEfQHxPsBbB77BU1iNiJV8aUzsGSy5yXN4PIpv8i_gW-D8rJkmnCUBtJY3BGPjWUUqN6sIgmIyPBqQmnIn9L6TUGr_m_zEJD1eRJKd8s5VL-HkQRT5CnqT6cS9ASKM9R6R6JZFNFpyFljY0wyhhZcZt0L3IWt1pEycXR42dqHaIrVz1Wk3UGtyRZlC7faBziWvmvkdC8gU7TGotj8VParCILOA7PZcNmKYBpssKL3enrqKvqRSneX3YXP-Gb1AeNopJ256WylMykNHc9GH142tdJuVgauwkGv_X3oTngyPR4fqcH988BZWuvqkdejNbm7dBkKvmX4X7Z3Ar4f-xf4BdMFArQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8WCvUBjlHr2M5DCCGgLFtKK4Qo2puJX6io3S3NVqh_jV_HjONsTkV76TmaSLbn8Y09Mx_ACxuMNC4vMDepTCYRYWemES4LxgTuStHYOFLo4LCYHMlPUzVdg799LwyVVfY-MTpqN7d0R75Nk_BoFlqhtkMqi_iyO35z9jsjBil6ae3pNDoV2feXfzB9a1_v7eJZv8zz8Ydv7ydZYhjIrFRqkQXp69yjChJutpzbqggFDwhJdqwVyjeVyivPvVcIjESuXMDcUzaVrb00peEC_3sDbpZCcbKxcloOA3-57NrwlMgqzutURdTVlsVZlcen6DHiRNJ4IZnLq0LjVdA3hsDxHbidsCt72ynbXVjzs3uwcZBe5-_DR2L_jJwT3jGCr805wyh53LLWL1qG8JhNvo5ZJN-hLnhGRfc_2XdM19OVJHvXXPr2ARxdyzY-hPXZfOYfA5PWhYCYdMchLm1ETnzsRYkgI6hSOGlGUPZ7pG2aYk4LO9F9udovPewukWwKzXONuzsCvpQ86yZ5rCBT98eg-05V9K0aw80Ksq-WsgnNdChlRenN_tR18iqtHmxgBFvLz-gP6JGnmfn5RasxPafe5noEjzpdGRariLWwVk_-_-st2EDD0p_3Dvefwq2hUGkT1hfnF_4ZYrCFeR6VncGP67auf-STQ30 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+linear+basis+sets+for+HRF+modelling+using+Variational+Bayes&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Woolrich%2C+Mark+W.&rft.au=Behrens%2C+Timothy+E.J.&rft.au=Smith%2C+Stephen+M.&rft.date=2004-04-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=21&rft.issue=4&rft.spage=1748&rft.epage=1761&rft_id=info:doi/10.1016%2Fj.neuroimage.2003.12.024&rft.externalDocID=S1053811903007900 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |