Constrained linear basis sets for HRF modelling using Variational Bayes

FMRI modelling requires flexible haemodynamic response function (HRF) modelling, with the HRF being allowed to vary spatially and between subjects. To achieve this flexibility, voxelwise parameterised HRFs have been proposed; however, inference on such models is very slow. An alternative approach is...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 21; no. 4; pp. 1748 - 1761
Main Authors Woolrich, Mark W., Behrens, Timothy E.J., Smith, Stephen M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2004
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract FMRI modelling requires flexible haemodynamic response function (HRF) modelling, with the HRF being allowed to vary spatially and between subjects. To achieve this flexibility, voxelwise parameterised HRFs have been proposed; however, inference on such models is very slow. An alternative approach is to use basis functions allowing inference to proceed in the more manageable General Linear Model (GLM) framework. However, a large amount of the subspace spanned by the basis functions produces nonsensical HRF shapes. In this work we propose a technique for choosing a basis set, and then the means to constrain the subspace spanned by the basis set to only include sensible HRF shapes. Penny et al. [NeuroImage (2003)] showed how Variational Bayes can be used to infer on the GLM for FMRI. Here we extend the work of Penny et al. to give inference on the GLM with constrained HRF basis functions and with spatial Markov Random Fields on the autoregressive noise parameters. Constraining the subspace spanned by the basis set allows for far superior separation of activating voxels from nonactivating voxels in FMRI data. We use spatial mixture modelling to produce final probabilities of activation and demonstrate increased sensitivity on an FMRI dataset.
AbstractList FMRI modelling requires flexible haemodynamic response function (HRF) modelling, with the HRF being allowed to vary spatially and between subjects. To achieve this flexibility, voxelwise parameterised HRFs have been proposed; however, inference on such models is very slow. An alternative approach is to use basis functions allowing inference to proceed in the more manageable General Linear Model (GLM) framework. However, a large amount of the subspace spanned by the basis functions produces nonsensical HRF shapes. In this work we propose a technique for choosing a basis set, and then the means to constrain the subspace spanned by the basis set to only include sensible HRF shapes. Penny et al. showed how Variational Bayes can be used to infer on the GLM for FMRI. Here we extend the work of Penny et al. to give inference on the GLM with constrained HRF basis functions and with spatial Markov Random Fields on the autoregressive noise parameters. Constraining the subspace spanned by the basis set allows for far superior separation of activating voxels from nonactivating voxels in FMRI data. We use spatial mixture modelling to produce final probabilities of activation and demonstrate increased sensitivity on an FMRI dataset.
FMRI modelling requires flexible haemodynamic response function (HRF) modelling, with the HRF being allowed to vary spatially and between subjects. To achieve this flexibility, voxelwise parameterised HRFs have been proposed; however, inference on such models is very slow. An alternative approach is to use basis functions allowing inference to proceed in the more manageable General Linear Model (GLM) framework. However, a large amount of the subspace spanned by the basis functions produces nonsensical HRF shapes. In this work we propose a technique for choosing a basis set, and then the means to constrain the subspace spanned by the basis set to only include sensible HRF shapes. Penny et al. [NeuroImage (2003)] showed how Variational Bayes can be used to infer on the GLM for FMRI. Here we extend the work of Penny et al. to give inference on the GLM with constrained HRF basis functions and with spatial Markov Random Fields on the autoregressive noise parameters. Constraining the subspace spanned by the basis set allows for far superior separation of activating voxels from nonactivating voxels in FMRI data. We use spatial mixture modelling to produce final probabilities of activation and demonstrate increased sensitivity on an FMRI dataset.
FMRI modelling requires flexible haemodynamic response function (HRF) modelling, with the HRF being allowed to vary spatially and between subjects. To achieve this flexibility, voxelwise parameterised HRFs have been proposed; however, inference on such models is very slow. An alternative approach is to use basis functions allowing inference to proceed in the more manageable General Linear Model (GLM) framework. However, a large amount of the subspace spanned by the basis functions produces nonsensical HRF shapes. In this work we propose a technique for choosing a basis set, and then the means to constrain the subspace spanned by the basis set to only include sensible HRF shapes. Penny et al. showed how Variational Bayes can be used to infer on the GLM for FMRI. Here we extend the work of Penny et al. to give inference on the GLM with constrained HRF basis functions and with spatial Markov Random Fields on the autoregressive noise parameters. Constraining the subspace spanned by the basis set allows for far superior separation of activating voxels from nonactivating voxels in FMRI data. We use spatial mixture modelling to produce final probabilities of activation and demonstrate increased sensitivity on an FMRI dataset.FMRI modelling requires flexible haemodynamic response function (HRF) modelling, with the HRF being allowed to vary spatially and between subjects. To achieve this flexibility, voxelwise parameterised HRFs have been proposed; however, inference on such models is very slow. An alternative approach is to use basis functions allowing inference to proceed in the more manageable General Linear Model (GLM) framework. However, a large amount of the subspace spanned by the basis functions produces nonsensical HRF shapes. In this work we propose a technique for choosing a basis set, and then the means to constrain the subspace spanned by the basis set to only include sensible HRF shapes. Penny et al. showed how Variational Bayes can be used to infer on the GLM for FMRI. Here we extend the work of Penny et al. to give inference on the GLM with constrained HRF basis functions and with spatial Markov Random Fields on the autoregressive noise parameters. Constraining the subspace spanned by the basis set allows for far superior separation of activating voxels from nonactivating voxels in FMRI data. We use spatial mixture modelling to produce final probabilities of activation and demonstrate increased sensitivity on an FMRI dataset.
Author Behrens, Timothy E.J.
Smith, Stephen M.
Woolrich, Mark W.
Author_xml – sequence: 1
  givenname: Mark W.
  surname: Woolrich
  fullname: Woolrich, Mark W.
  email: woolrich@fmrib.ox.ac.uk
  organization: Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
– sequence: 2
  givenname: Timothy E.J.
  surname: Behrens
  fullname: Behrens, Timothy E.J.
  organization: Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
– sequence: 3
  givenname: Stephen M.
  surname: Smith
  fullname: Smith, Stephen M.
  organization: Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15050595$$D View this record in MEDLINE/PubMed
BookMark eNqNkd1q3DAQhUVJaH6aVyiCQu_samRLlm5Km6VJCoFAaXMrZHkctPVaqWQH9u0rZxMCe7UIRgP65jA654wcjWFEQiiwEhjIL-tyxDkGv7EPWHLGqhJ4yXj9jpwC06LQouFHSy-qQgHoE3KW0poxpqFW78kJCJaPFqfkehXGNEXrR-zokKuNtLXJJ5pwSrQPkd78uqKb0OGQnx_onJZ6b6O3kw-jHeil3WL6QI57OyS8eLnPyZ-rH79XN8Xt3fXP1ffbwtVCTEVfo-YoK8VkIxyAU7KX0HMumXOVQKsEVwiIAiRUXHQ9tlVtldNYt00L1Tn5vNN9jOHfjGkyG59c3s2OGOZkGmgapZnO4Kc9cB3mmPdNJv9eStaAFJn6-ELN7QY78xizp3FrXg3KgNoBLoaUIvZvCDNLFmZt3rIwSxYGuMlZ5NGve6POT8-mLX4Phwhc7gQwG_rkMZrkPI4OOx_RTaYL_hCRb3siLufonR3-4vYwif8jxMDi
CitedBy_id crossref_primary_10_1016_j_pscychresns_2009_11_010
crossref_primary_10_1016_j_neuroimage_2004_06_011
crossref_primary_10_1214_09_STS282
crossref_primary_10_1016_j_neuroimage_2012_02_015
crossref_primary_10_1080_01621459_2015_1133425
crossref_primary_10_1016_j_neuron_2014_01_002
crossref_primary_10_1038_s41598_020_60268_z
crossref_primary_10_1016_j_neuroimage_2013_09_003
crossref_primary_10_1016_j_neuroimage_2009_12_085
crossref_primary_10_1016_j_neuroimage_2011_09_002
crossref_primary_10_1016_j_pscychresns_2018_04_001
crossref_primary_10_1038_s42003_022_03273_4
crossref_primary_10_1016_j_neuroimage_2004_07_051
crossref_primary_10_1016_j_neuroimage_2020_117226
crossref_primary_10_1007_s11517_008_0347_6
crossref_primary_10_3389_fnhum_2016_00261
crossref_primary_10_1038_s41398_020_01063_2
crossref_primary_10_1097_j_pain_0000000000002327
crossref_primary_10_1214_12_AOAS609
crossref_primary_10_1371_journal_pone_0059655
crossref_primary_10_1016_j_neuroimage_2010_08_041
crossref_primary_10_1016_j_neuroimage_2010_12_027
crossref_primary_10_1002_mrm_21039
crossref_primary_10_1007_s11336_012_9294_0
crossref_primary_10_1002_jmri_22180
crossref_primary_10_1016_j_neulet_2008_01_058
crossref_primary_10_1136_bmjopen_2016_012174
crossref_primary_10_1186_s40359_023_01335_8
crossref_primary_10_1002_hbm_70192
crossref_primary_10_3390_nu16010041
crossref_primary_10_1371_journal_pone_0068196
crossref_primary_10_1016_j_neuroimage_2014_04_017
crossref_primary_10_3389_fnhum_2024_1440177
crossref_primary_10_1002_hbm_26751
crossref_primary_10_1038_s41597_020_00595_y
crossref_primary_10_1016_j_neuroimage_2017_01_041
crossref_primary_10_1016_j_tics_2016_03_014
crossref_primary_10_1016_j_media_2006_09_003
crossref_primary_10_1016_j_neuroimage_2022_119758
crossref_primary_10_3389_fnhum_2023_1105703
crossref_primary_10_1093_cercor_bhy011
crossref_primary_10_3389_fnins_2015_00168
crossref_primary_10_1109_TFUZZ_2019_2936807
crossref_primary_10_1371_journal_pone_0121791
crossref_primary_10_1016_j_neuroimage_2008_10_065
crossref_primary_10_1016_j_neuroimage_2018_04_015
crossref_primary_10_1016_j_neuroimage_2008_07_065
crossref_primary_10_1007_s00330_009_1456_9
crossref_primary_10_1152_jn_00220_2011
crossref_primary_10_1016_j_neuroimage_2013_05_105
crossref_primary_10_1002_hbm_20246
crossref_primary_10_1109_TMI_2004_836545
crossref_primary_10_3389_fncom_2023_1241455
crossref_primary_10_1088_0967_3334_30_5_N01
crossref_primary_10_1016_j_neuroimage_2008_12_027
crossref_primary_10_1093_scan_nsm006
crossref_primary_10_1155_2007_15635
crossref_primary_10_1162_imag_a_00227
crossref_primary_10_1016_j_neuroimage_2015_05_013
crossref_primary_10_1109_TMI_2010_2044512
crossref_primary_10_3389_fnhum_2020_509258
crossref_primary_10_1093_cercor_bht153
crossref_primary_10_1016_j_neuroimage_2021_118418
crossref_primary_10_1177_0956797612457380
crossref_primary_10_1016_j_brainres_2009_12_019
crossref_primary_10_1016_j_neuroimage_2008_10_055
crossref_primary_10_1016_j_brainres_2010_09_093
crossref_primary_10_1016_j_neuroimage_2014_09_060
crossref_primary_10_1002_hbm_20310
crossref_primary_10_1016_j_neuroimage_2016_12_045
crossref_primary_10_1109_TMI_2010_2042064
crossref_primary_10_1002_hbm_20311
crossref_primary_10_1155_2013_643129
crossref_primary_10_1016_j_neuroimage_2011_04_041
crossref_primary_10_1016_j_neuroimage_2012_06_054
crossref_primary_10_1016_j_media_2014_03_005
crossref_primary_10_1016_j_neuroimage_2011_10_047
crossref_primary_10_3389_fncom_2015_00054
crossref_primary_10_1016_j_neuroimage_2007_08_012
crossref_primary_10_1002_hbm_20391
crossref_primary_10_1016_j_mri_2011_07_011
crossref_primary_10_7554_eLife_11945
crossref_primary_10_1016_j_neuroimage_2009_11_014
crossref_primary_10_1016_j_neuroimage_2009_08_051
crossref_primary_10_3174_ajnr_A4229
crossref_primary_10_1016_j_neuroimage_2022_118964
crossref_primary_10_1109_TNB_2016_2572401
crossref_primary_10_1002_jmri_20579
crossref_primary_10_1016_j_neuropsychologia_2024_108999
crossref_primary_10_7554_eLife_67304
crossref_primary_10_1002_acn3_658
crossref_primary_10_1016_j_neuroimage_2018_12_012
crossref_primary_10_1093_dote_doac021
crossref_primary_10_1016_j_neuroimage_2004_08_034
crossref_primary_10_1177_0271678X211056702
crossref_primary_10_1109_TMI_2006_880682
crossref_primary_10_1109_TSP_2008_2005752
crossref_primary_10_1109_TBME_2007_902591
crossref_primary_10_1155_2012_190359
crossref_primary_10_1002_hbm_70043
crossref_primary_10_1016_j_neuroimage_2015_01_013
crossref_primary_10_1016_j_neuroimage_2022_119440
crossref_primary_10_1016_j_neuroimage_2019_05_036
crossref_primary_10_1007_s13311_016_0467_x
crossref_primary_10_3390_medicina60081370
crossref_primary_10_1080_02664760802443962
crossref_primary_10_3390_neurolint16050069
crossref_primary_10_1016_j_neuroimage_2009_12_042
crossref_primary_10_1038_s41592_020_0941_6
crossref_primary_10_1002_hbm_23608
crossref_primary_10_1007_s11682_013_9246_z
crossref_primary_10_1016_j_neuroimage_2020_117303
crossref_primary_10_1162_imag_a_00282
crossref_primary_10_1016_j_neuroimage_2009_10_038
crossref_primary_10_1016_j_neuroimage_2021_118513
crossref_primary_10_1038_s41398_024_03120_6
crossref_primary_10_1007_s12021_020_09472_w
crossref_primary_10_7554_eLife_65590
crossref_primary_10_1002_hbm_25226
crossref_primary_10_1093_cercor_bhaa117
crossref_primary_10_1016_j_neuroimage_2009_02_035
crossref_primary_10_1109_JSTSP_2008_2007819
crossref_primary_10_1016_j_bbi_2015_11_010
crossref_primary_10_1016_j_neuroimage_2022_119041
crossref_primary_10_1016_j_neuroimage_2017_01_005
crossref_primary_10_1117_1_NPh_4_3_031215
crossref_primary_10_1038_s41591_021_01663_5
crossref_primary_10_1016_j_neuroimage_2013_02_048
crossref_primary_10_1016_j_future_2009_07_014
crossref_primary_10_1214_16_AOAS926
crossref_primary_10_1523_JNEUROSCI_1395_23_2024
crossref_primary_10_1038_s41562_023_01729_z
crossref_primary_10_1016_j_pneurobio_2021_102174
crossref_primary_10_1111_rssc_12320
crossref_primary_10_1016_j_neuroimage_2020_117652
crossref_primary_10_1016_j_cub_2009_04_057
crossref_primary_10_1162_imag_a_00455
crossref_primary_10_1523_JNEUROSCI_1235_23_2023
crossref_primary_10_1002_mrm_22711
crossref_primary_10_1016_j_csda_2016_07_006
crossref_primary_10_1002_hbm_20327
crossref_primary_10_1002_wics_1339
crossref_primary_10_1016_j_neuroimage_2014_04_052
crossref_primary_10_1038_s41596_022_00696_5
crossref_primary_10_1080_03610926_2020_1776327
crossref_primary_10_1016_j_neuroimage_2005_10_019
crossref_primary_10_1016_j_neuroimage_2009_11_064
crossref_primary_10_1109_TBME_2008_923918
crossref_primary_10_1146_annurev_statistics_022513_115611
crossref_primary_10_1002_hbm_23597
crossref_primary_10_3389_fninf_2018_00096
crossref_primary_10_3389_fnins_2016_00322
crossref_primary_10_1016_j_neuroimage_2011_07_054
crossref_primary_10_1016_j_neuroimage_2018_07_023
crossref_primary_10_1016_j_mri_2008_01_008
crossref_primary_10_1016_j_neuroimage_2011_10_070
crossref_primary_10_1002_jnr_24115
crossref_primary_10_3389_fnhum_2023_1263292
crossref_primary_10_1016_j_neuroimage_2009_07_047
crossref_primary_10_1016_j_neuroimage_2020_117519
crossref_primary_10_1016_j_neuroimage_2018_11_006
crossref_primary_10_1002_nbm_4916
crossref_primary_10_1016_j_neuroimage_2008_02_017
crossref_primary_10_1002_hbm_21289
crossref_primary_10_1016_j_neuroimage_2018_06_056
crossref_primary_10_1038_s41598_022_17601_5
crossref_primary_10_1177_19417381221079339
crossref_primary_10_7554_eLife_12047
crossref_primary_10_1109_TSP_2024_3374115
crossref_primary_10_1007_s12561_017_9205_0
crossref_primary_10_1002_hbm_20471
crossref_primary_10_1073_pnas_1705120114
crossref_primary_10_1007_s00429_017_1576_y
crossref_primary_10_1016_j_neuroimage_2017_10_043
crossref_primary_10_1002_hbm_22804
crossref_primary_10_1016_j_neuroimage_2019_04_012
crossref_primary_10_3389_fncom_2017_00063
crossref_primary_10_1016_j_neuroimage_2015_02_026
crossref_primary_10_1111_pan_12606
crossref_primary_10_1016_j_neuroimage_2018_12_054
crossref_primary_10_1038_jcbfm_2008_21
crossref_primary_10_1371_journal_pcbi_1000709
crossref_primary_10_1016_j_bbr_2019_112435
crossref_primary_10_1109_TSP_2005_853303
crossref_primary_10_1007_s11682_017_9733_8
crossref_primary_10_1016_j_neuroimage_2011_10_008
crossref_primary_10_1016_j_neuroimage_2012_08_014
crossref_primary_10_1016_j_neuroimage_2022_119293
crossref_primary_10_1186_2045_5380_3_18
Cites_doi 10.1006/nimg.2001.0795
10.1006/nimg.2000.0630
10.1002/mrm.1910390109
10.1006/nimg.2001.0931
10.1002/(SICI)1097-0193(1997)5:4<243::AID-HBM7>3.0.CO;2-3
10.1006/nimg.2001.1044
10.1002/hbm.460010306
10.1016/S1053-8119(03)00071-5
10.1523/JNEUROSCI.16-13-04207.1996
10.1006/nimg.1997.0278
10.1006/nimg.2002.1132
10.1006/nimg.2001.0933
10.1006/nimg.1995.1018
10.1006/nimg.1997.0306
10.1002/(SICI)1097-0193(1999)7:1<1::AID-HBM1>3.0.CO;2-H
10.1109/TMI.2003.823065
10.1016/S1053-8119(03)00077-6
10.1002/1097-0193(200012)11:4<233::AID-HBM10>3.0.CO;2-F
10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5
10.1002/mrm.1910390602
10.2307/2669445
ContentType Journal Article
Copyright 2004 Elsevier Inc.
Copyright Elsevier Limited Apr 1, 2004
Copyright_xml – notice: 2004 Elsevier Inc.
– notice: Copyright Elsevier Limited Apr 1, 2004
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2003.12.024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
ProQuest - Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

ProQuest One Psychology
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1761
ExternalDocumentID 3244232231
15050595
10_1016_j_neuroimage_2003_12_024
S1053811903007900
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c455t-f4e92e6380675c11c86f61f2260cc35ea8528e1ee5161325dfeb34a8c9e4b7b13
IEDL.DBID AIKHN
ISSN 1053-8119
IngestDate Mon Jul 21 10:34:02 EDT 2025
Sat Aug 23 13:04:02 EDT 2025
Wed Feb 19 01:37:27 EST 2025
Tue Jul 01 00:49:24 EDT 2025
Thu Apr 24 22:53:28 EDT 2025
Fri Feb 23 02:29:06 EST 2024
Tue Aug 26 18:14:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords GLM
Basis sets
Markov random field
Variational Bayes
HRF
FMRI
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-f4e92e6380675c11c86f61f2260cc35ea8528e1ee5161325dfeb34a8c9e4b7b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 15050595
PQID 1506607165
PQPubID 2031077
PageCount 14
ParticipantIDs proquest_miscellaneous_71778909
proquest_journals_1506607165
pubmed_primary_15050595
crossref_primary_10_1016_j_neuroimage_2003_12_024
crossref_citationtrail_10_1016_j_neuroimage_2003_12_024
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2003_12_024
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2003_12_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-04-01
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: 2004-04-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2004
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Gössl, Auer, Fahrmeir (BIB16) 2001; 14
Friston, Mechelli, Turner, Price (BIB13) 2000; 12
Woolrich, Jenkinson, Brady, Smith (BIB26) 2004; 22
Woolrich, Behrens, Beckmann, Smith (BIB25) 2004
Friman, Borga, Lundberg, Knutsson (BIB7) 2003; 19
Hossein-Zadeh, Ardekani (BIB18) 2002
Cohen (BIB3) 1997; 6
Cressie (BIB4) 1993
Jenkinson, Bannister, Brady, Smith (BIB20) 2002; 17
Dale, Buckner (BIB5) 1997; 5
Friston (BIB8) 2002; 16
Golub, Van Loan (BIB15) 1996
Genovese (BIB14) 2000; 95
Buxton, Wong, Frank (BIB2) 1998; 39
Friston, Fletcher, Josephs, Holmes, Rugg, Turner (BIB11) 1998; 7
Friston, Josephs, Rees, Turner (BIB12) 1998; 39
Penny, Kiebel, Friston (BIB23) 2003; 19
Worsley, Liao, Aston, Petre, Duncan, Morales, Evans (BIB27) 2002; 15
Everitt, Bullmore (BIB6) 1999; 7
Friston, Frith, Turner, Frackowiak (BIB10) 1995; 2
Hartvig, Jensen (BIB17) 2000; 11
Boynton, Engel, Glover, Heeger (BIB1) 1996; 16
Jordan (BIB21) 1999
Woolrich, Ripley, Brady, Smith (BIB24) 2001; 14
Josephs, Turner, Friston (BIB22) 1997; 5
Friston, Worsley, Frackowiak, Mazziotta, Evans (BIB9) 1994; 1
Dale (10.1016/j.neuroimage.2003.12.024_BIB5) 1997; 5
Gössl (10.1016/j.neuroimage.2003.12.024_BIB16) 2001; 14
Boynton (10.1016/j.neuroimage.2003.12.024_BIB1) 1996; 16
Cohen (10.1016/j.neuroimage.2003.12.024_BIB3) 1997; 6
Friston (10.1016/j.neuroimage.2003.12.024_BIB10) 1995; 2
Friston (10.1016/j.neuroimage.2003.12.024_BIB12) 1998; 39
Everitt (10.1016/j.neuroimage.2003.12.024_BIB6) 1999; 7
Friston (10.1016/j.neuroimage.2003.12.024_BIB9) 1994; 1
Hartvig (10.1016/j.neuroimage.2003.12.024_BIB17) 2000; 11
Penny (10.1016/j.neuroimage.2003.12.024_BIB23) 2003; 19
Hossein-Zadeh (10.1016/j.neuroimage.2003.12.024_BIB18) 2002
Worsley (10.1016/j.neuroimage.2003.12.024_BIB27) 2002; 15
Woolrich (10.1016/j.neuroimage.2003.12.024_BIB25) 2004
Friston (10.1016/j.neuroimage.2003.12.024_BIB11) 1998; 7
Josephs (10.1016/j.neuroimage.2003.12.024_BIB22) 1997; 5
Jenkinson (10.1016/j.neuroimage.2003.12.024_BIB20) 2002; 17
Friston (10.1016/j.neuroimage.2003.12.024_BIB8) 2002; 16
Buxton (10.1016/j.neuroimage.2003.12.024_BIB2) 1998; 39
Woolrich (10.1016/j.neuroimage.2003.12.024_BIB26) 2004; 22
Golub (10.1016/j.neuroimage.2003.12.024_BIB15) 1996
Cressie (10.1016/j.neuroimage.2003.12.024_BIB4) 1993
Friston (10.1016/j.neuroimage.2003.12.024_BIB13) 2000; 12
Jordan (10.1016/j.neuroimage.2003.12.024_BIB21) 1999
Friman (10.1016/j.neuroimage.2003.12.024_BIB7) 2003; 19
Genovese (10.1016/j.neuroimage.2003.12.024_BIB14) 2000; 95
Woolrich (10.1016/j.neuroimage.2003.12.024_BIB24) 2001; 14
References_xml – volume: 16
  start-page: 4207
  year: 1996
  end-page: 4221
  ident: BIB1
  article-title: Linear systems analysis of functional magnetic resonance imaging in human V1
  publication-title: J. Neurosci.
– volume: 39
  start-page: 41
  year: 1998
  end-page: 52
  ident: BIB12
  article-title: Nonlinear event-related responses in fMRI
  publication-title: Magn. Reson. Med.
– volume: 2
  start-page: 157
  year: 1995
  end-page: 165
  ident: BIB10
  article-title: Characterizing evoked hemodynamics with fMRI
  publication-title: NeuroImage
– volume: 11
  start-page: 233
  year: 2000
  end-page: 248
  ident: BIB17
  article-title: Spatial mixture modelling of fMRI data
  publication-title: Hum. Brain Mapp.
– volume: 14
  start-page: 140
  year: 2001
  end-page: 148
  ident: BIB16
  article-title: Bayesian modeling of the haemodynamic response function in BOLD fMRI
  publication-title: NeuroImage
– volume: 7
  start-page: 30
  year: 1998
  end-page: 40
  ident: BIB11
  article-title: Event-related fMRI: characterizing differential responses
  publication-title: NeuroImage
– volume: 1
  start-page: 214
  year: 1994
  end-page: 220
  ident: BIB9
  article-title: Assessing the significance of focal activations using their spatial extent
  publication-title: Hum. Brain Mapp.
– year: 1996
  ident: BIB15
  article-title: Matrix Computations
– volume: 7
  start-page: 1
  year: 1999
  end-page: 14
  ident: BIB6
  article-title: Mixture model mapping of brain activation in functional magnetic resonance images
  publication-title: Hum. Brain Mapp.
– year: 2004
  ident: BIB25
  article-title: Mixture models with adaptive spatial regularisation for segmentation with an application to FMRI data
  publication-title: Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology
– year: 1999
  ident: BIB21
  article-title: Learning in Graphical Models
– volume: 19
  start-page: 1477
  year: 2003
  end-page: 1491
  ident: BIB23
  article-title: Variational Bayesian inference for fMRI time series
  publication-title: NeuroImage
– volume: 39
  start-page: 855
  year: 1998
  end-page: 864
  ident: BIB2
  article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model
  publication-title: Magn. Reson. Med.
– volume: 14
  start-page: 1370
  year: 2001
  end-page: 1386
  ident: BIB24
  article-title: Temporal autocorrelation in univariate linear modelling of FMRI data
  publication-title: NeuroImage
– volume: 16
  start-page: 513
  year: 2002
  end-page: 530
  ident: BIB8
  article-title: Bayesian estimation of dynamical systems: an application to fMRI
  publication-title: NeuroImage
– volume: 15
  start-page: 1
  year: 2002
  end-page: 15
  ident: BIB27
  article-title: A general statistical analysis for fMRI data
  publication-title: NeuroImage
– volume: 5
  start-page: 329
  year: 1997
  end-page: 340
  ident: BIB5
  article-title: Selective averaging of rapidly presented individual trials using fMRI
  publication-title: Hum. Brain Mapp.
– volume: 19
  start-page: 837
  year: 2003
  end-page: 845
  ident: BIB7
  article-title: Adaptive analysis of fMRI data
  publication-title: NeuroImage
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: BIB20
  article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
– volume: 95
  start-page: 691
  year: 2000
  end-page: 703
  ident: BIB14
  article-title: A Bayesian time-course model for functional magnetic resonance imaging data
  publication-title: J. Am. Stat. Assoc.
– year: 2002
  ident: BIB18
  article-title: A signal subspace for modeling the hamodynamic response function in fMRI
  publication-title: NeuroImage
– volume: 12
  start-page: 466
  year: 2000
  end-page: 477
  ident: BIB13
  article-title: Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics
  publication-title: NeuroImage
– volume: 5
  start-page: 1
  year: 1997
  end-page: 7
  ident: BIB22
  article-title: Event-related fMRI
  publication-title: Hum. Brain Mapp.
– volume: 22
  year: 2004
  ident: BIB26
  article-title: Fully Bayesian spatio-temporal modelling of FMRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 6
  start-page: 93
  year: 1997
  end-page: 103
  ident: BIB3
  article-title: Parametric analysis of fMRI data using linear systems methods
  publication-title: NeuroImage
– year: 1993
  ident: BIB4
  article-title: Statistics for Spatial Data
– volume: 14
  start-page: 140
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2003.12.024_BIB16
  article-title: Bayesian modeling of the haemodynamic response function in BOLD fMRI
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0795
– volume: 12
  start-page: 466
  year: 2000
  ident: 10.1016/j.neuroimage.2003.12.024_BIB13
  article-title: Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0630
– year: 1993
  ident: 10.1016/j.neuroimage.2003.12.024_BIB4
– volume: 39
  start-page: 41
  year: 1998
  ident: 10.1016/j.neuroimage.2003.12.024_BIB12
  article-title: Nonlinear event-related responses in fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390109
– volume: 14
  start-page: 1370
  issue: 6
  year: 2001
  ident: 10.1016/j.neuroimage.2003.12.024_BIB24
  article-title: Temporal autocorrelation in univariate linear modelling of FMRI data
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0931
– volume: 5
  start-page: 1
  year: 1997
  ident: 10.1016/j.neuroimage.2003.12.024_BIB22
  article-title: Event-related fMRI
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1997)5:4<243::AID-HBM7>3.0.CO;2-3
– volume: 16
  start-page: 513
  year: 2002
  ident: 10.1016/j.neuroimage.2003.12.024_BIB8
  article-title: Bayesian estimation of dynamical systems: an application to fMRI
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.1044
– year: 2004
  ident: 10.1016/j.neuroimage.2003.12.024_BIB25
  article-title: Mixture models with adaptive spatial regularisation for segmentation with an application to FMRI data
– volume: 1
  start-page: 214
  year: 1994
  ident: 10.1016/j.neuroimage.2003.12.024_BIB9
  article-title: Assessing the significance of focal activations using their spatial extent
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460010306
– volume: 19
  start-page: 1477
  issue: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2003.12.024_BIB23
  article-title: Variational Bayesian inference for fMRI time series
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00071-5
– volume: 16
  start-page: 4207
  year: 1996
  ident: 10.1016/j.neuroimage.2003.12.024_BIB1
  article-title: Linear systems analysis of functional magnetic resonance imaging in human V1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-13-04207.1996
– year: 2002
  ident: 10.1016/j.neuroimage.2003.12.024_BIB18
  article-title: A signal subspace for modeling the hamodynamic response function in fMRI
  publication-title: NeuroImage
– volume: 6
  start-page: 93
  year: 1997
  ident: 10.1016/j.neuroimage.2003.12.024_BIB3
  article-title: Parametric analysis of fMRI data using linear systems methods
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0278
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.neuroimage.2003.12.024_BIB20
  article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
– year: 1999
  ident: 10.1016/j.neuroimage.2003.12.024_BIB21
– volume: 15
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2003.12.024_BIB27
  article-title: A general statistical analysis for fMRI data
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0933
– volume: 2
  start-page: 157
  year: 1995
  ident: 10.1016/j.neuroimage.2003.12.024_BIB10
  article-title: Characterizing evoked hemodynamics with fMRI
  publication-title: NeuroImage
  doi: 10.1006/nimg.1995.1018
– volume: 7
  start-page: 30
  year: 1998
  ident: 10.1016/j.neuroimage.2003.12.024_BIB11
  article-title: Event-related fMRI: characterizing differential responses
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0306
– year: 1996
  ident: 10.1016/j.neuroimage.2003.12.024_BIB15
– volume: 7
  start-page: 1
  year: 1999
  ident: 10.1016/j.neuroimage.2003.12.024_BIB6
  article-title: Mixture model mapping of brain activation in functional magnetic resonance images
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)7:1<1::AID-HBM1>3.0.CO;2-H
– volume: 22
  issue: 2
  year: 2004
  ident: 10.1016/j.neuroimage.2003.12.024_BIB26
  article-title: Fully Bayesian spatio-temporal modelling of FMRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.823065
– volume: 19
  start-page: 837
  issue: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2003.12.024_BIB7
  article-title: Adaptive analysis of fMRI data
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00077-6
– volume: 11
  start-page: 233
  issue: 4
  year: 2000
  ident: 10.1016/j.neuroimage.2003.12.024_BIB17
  article-title: Spatial mixture modelling of fMRI data
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/1097-0193(200012)11:4<233::AID-HBM10>3.0.CO;2-F
– volume: 5
  start-page: 329
  year: 1997
  ident: 10.1016/j.neuroimage.2003.12.024_BIB5
  article-title: Selective averaging of rapidly presented individual trials using fMRI
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5
– volume: 39
  start-page: 855
  year: 1998
  ident: 10.1016/j.neuroimage.2003.12.024_BIB2
  article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390602
– volume: 95
  start-page: 691
  year: 2000
  ident: 10.1016/j.neuroimage.2003.12.024_BIB14
  article-title: A Bayesian time-course model for functional magnetic resonance imaging data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.2307/2669445
SSID ssj0009148
Score 2.2499344
Snippet FMRI modelling requires flexible haemodynamic response function (HRF) modelling, with the HRF being allowed to vary spatially and between subjects. To achieve...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1748
SubjectTerms Algorithms
Basis sets
Bayes Theorem
Bayesian analysis
Brain - physiology
Brain Mapping
Computer Simulation
Economic models
Evoked Potentials - physiology
FMRI
GLM
HRF
Humans
Image Interpretation, Computer-Assisted
Linear Models
Magnetic Resonance Imaging - statistics & numerical data
Markov Chains
Markov random field
Mathematical Computing
Models, Statistical
Noise
Pain Threshold - physiology
Pattern Recognition, Visual - physiology
Power plants
Sensitivity and Specificity
Thermosensing - physiology
Variational Bayes
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF61qVT1gqAPCATYQ69WWe-uH-KAABEipPRQNVVuK--rAkES4uTAv2dmvY5PoJztseR9zTezM99HyE_jtdA2zSA2KXQiAGEnuuI28Vp7ZnNemUApNP6djSbibiqnMeFWx7LK9kwMB7WdG8yR_0ImPORCy-TF4jlB1Si8XY0SGh_JJ6Quw5KufJp3pLtMNK1wkicFvBAreZr6rsAXef8EuzawgoakYCreck9vwc_ghoa7ZCfiR3rZTPge-eBmX8nncbwh_0ZuUYEz6D44SxFCVksKnuq-prVb1RQgKh39GdIggIOd6BQL3__TfxAyx7QgvapeXP2dTIY3f69HSRRLSIyQcpV44crUwW7CEMAwZorMZ8wDujozhktXFTItHHNOAsbjqbQewmhRFaZ0Quea8R-kN5vP3AGhwljvAReeWcCGFU9REz3LwdF7mXMrdJ_k7RgpE5nE8cceVVsy9qC60UWhS65YqmB0-4RtLBcNm8YWNmU7DartFoXzTcGRv4Xt-cY2IooGKWxpPWhnXcWdXatuHfbJ6eYx7Em8aKlmbr6uFYTI2F9c9sl-s1a6n5WoHFjKw_c_fUS-dBVCA9JbLdfuGMDPSp-EFf4KeAQC_A
  priority: 102
  providerName: ProQuest
Title Constrained linear basis sets for HRF modelling using Variational Bayes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811903007900
https://dx.doi.org/10.1016/j.neuroimage.2003.12.024
https://www.ncbi.nlm.nih.gov/pubmed/15050595
https://www.proquest.com/docview/1506607165
https://www.proquest.com/docview/71778909
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xkBAXtDx2KY_iA9fQOrbzECeoKIVdKlQe6s2KHRsVQUGkHLjsb2ecOK04IFXikkiJRrLHnplv7HkAHGqruMrDCH2TRAUcEXagMpYHVilL85hluiwpdNWPenf8ciiGC9Cpc2FcWKXX_ZVOL7W1_9Ly3Gy9jkatG0QGaG7QoDG0c2kb_fblkKURbu3lk4u_vf6s9i7lVUacYIEj8AE9VZhXWTZy9IzCWxYHLc8GQ_6dlfoOhZbWqPsL1jyMJCfVSNdhwYw3YOXKX5RvwrlrxFm2fzA5cUgyeyNosEYFKcykIIhUSW_QJWUfHJeQTlz8-wO5R8_Znw6S0-zDFFtw1z277fQC3zMh0FyISWC5SUODQuU8AU2pTiIbUYsgq601EyZLRJgYaoxAqMdCkVv0pnmW6NRwFSvKfsPS-GVstoFwnVuL8LCdI0TMWOhao0cx2nsrYpZz1YC45pHUvqC4m9iTrCPHHuWMu67fJZM0lMjdBtAp5WtVVGMOmrReBlknjaKak6j556A9ntJ-2VxzUu_Vqy69gBfSFWZ0pfki0YCD6W8UTXffko3Ny3sh0VN2acZpA_5Ue2U2WeEaCKZi50cD24XVWRzRHixN3t7NPkKkiWrC4tF_is94GDdRHDqDf9dNLxb4Pj3rXw8-AR3SFMQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gkigX4ttFkD7ocSL9mkeIMYKsi7AbQ8Bwa6dfBgK7wCwx_Cl_o9UzPTsnzF44T6qTrq6p-qq7qj6A98ZroS1LMTfJdSIQYSe65DbxWntqM16aeqTQaJwOT8T3U3m6BH_bXphQVtn6xNpR26kJd-QfwyS8MAstlZ-vrpPAGhVeV1sKjcYsDtzdH0zZqk_7X_F8PzA22DveHSaRVSAxQspZ4oUrmEOzC1jZUGry1KfUIwzZMoZLV-aS5Y46JxEMcSatx3xTlLkpnNCZphzXfQTLgmMq04Plnb3xj6NuzC8VTfOd5ElOaRFrh5qKsnpC5dkl-ol6Dml9DcnEfQHxPsBbB77BU1iNiJV8aUzsGSy5yXN4PIpv8i_gW-D8rJkmnCUBtJY3BGPjWUUqN6sIgmIyPBqQmnIn9L6TUGr_m_zEJD1eRJKd8s5VL-HkQRT5CnqT6cS9ASKM9R6R6JZFNFpyFljY0wyhhZcZt0L3IWt1pEycXR42dqHaIrVz1Wk3UGtyRZlC7faBziWvmvkdC8gU7TGotj8VParCILOA7PZcNmKYBpssKL3enrqKvqRSneX3YXP-Gb1AeNopJ256WylMykNHc9GH142tdJuVgauwkGv_X3oTngyPR4fqcH988BZWuvqkdejNbm7dBkKvmX4X7Z3Ar4f-xf4BdMFArQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8WCvUBjlHr2M5DCCGgLFtKK4Qo2puJX6io3S3NVqh_jV_HjONsTkV76TmaSLbn8Y09Mx_ACxuMNC4vMDepTCYRYWemES4LxgTuStHYOFLo4LCYHMlPUzVdg799LwyVVfY-MTpqN7d0R75Nk_BoFlqhtkMqi_iyO35z9jsjBil6ae3pNDoV2feXfzB9a1_v7eJZv8zz8Ydv7ydZYhjIrFRqkQXp69yjChJutpzbqggFDwhJdqwVyjeVyivPvVcIjESuXMDcUzaVrb00peEC_3sDbpZCcbKxcloOA3-57NrwlMgqzutURdTVlsVZlcen6DHiRNJ4IZnLq0LjVdA3hsDxHbidsCt72ynbXVjzs3uwcZBe5-_DR2L_jJwT3jGCr805wyh53LLWL1qG8JhNvo5ZJN-hLnhGRfc_2XdM19OVJHvXXPr2ARxdyzY-hPXZfOYfA5PWhYCYdMchLm1ETnzsRYkgI6hSOGlGUPZ7pG2aYk4LO9F9udovPewukWwKzXONuzsCvpQ86yZ5rCBT98eg-05V9K0aw80Ksq-WsgnNdChlRenN_tR18iqtHmxgBFvLz-gP6JGnmfn5RasxPafe5noEjzpdGRariLWwVk_-_-st2EDD0p_3Dvefwq2hUGkT1hfnF_4ZYrCFeR6VncGP67auf-STQ30
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+linear+basis+sets+for+HRF+modelling+using+Variational+Bayes&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Woolrich%2C+Mark+W.&rft.au=Behrens%2C+Timothy+E.J.&rft.au=Smith%2C+Stephen+M.&rft.date=2004-04-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=21&rft.issue=4&rft.spage=1748&rft.epage=1761&rft_id=info:doi/10.1016%2Fj.neuroimage.2003.12.024&rft.externalDocID=S1053811903007900
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon