Assessment of high-quality counterfeit stamp impressions generated by inkjet printers via texture analysis and likelihood ratio

High-quality counterfeit stamp impressions made by inkjet printers remain challenging in questioned document examination and forensic analyses. A dataset comprised of various printed stamp impressions, using ten options of conditions and materials, and hand stamped impressions was generated. In this...

Full description

Saved in:
Bibliographic Details
Published inForensic science international Vol. 344; p. 111573
Main Authors Tao, Yi-Min, Tang, Hao, Yang, Xu, Chen, Xiao-Hong
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.03.2023
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-quality counterfeit stamp impressions made by inkjet printers remain challenging in questioned document examination and forensic analyses. A dataset comprised of various printed stamp impressions, using ten options of conditions and materials, and hand stamped impressions was generated. In this paper, we report printed impressions in pure color and high-quality printing mode are very similar to hand stamped impressions in terms of their microscopic characteristics. These similarities may lead to incorrect conclusions via traditional identification methods. Here, we proposed a method for identifying counterfeit stamp impressions via texture features and image quality parameters extracted from impressions. First, the statistical analysis methods were used to verify a significant difference between the printed and hand stamped impressions. Principal component analysis (PCA) was used to show the variation between the impressions, and the differences between printed and hand stamped impressions were obvious in the three-dimensional plot. After filtering the background of the stamp impressions, image processing analysis was introduced to extract features of gray level co-occurrence matrix (GLCM), segmentation-based fractal texture analysis (SFTA), local binary pattern (LBP), and image quality metrics (IQM), which were used to characterize the stamp impressions. Finally, specific cases were simulated by random selection, based on the dataset of stamp impressions, and an evaluation system for stamp evidence was established to calculate the likelihood ratios (LRs) under two alternative hypotheses. The likelihood ratio interprets calibrated evaluations on the strength of stamp impressions as evidence. We can also balance these LRs against the rates of misleading evidence with a reasonable performance (equal error rate = 0.048). This paper provides a system to differentiate high-quality printed and hand stamped impressions with reasonable performance. [Display omitted] •This paper reported the potential challenge a high-quality stamp impression poses to questioned document examination.•A comprehensive image processing properly demonstrates the difference between genuine and counterfeit stamp impressions.•Evidence evaluation helps to rigorously evaluate the strength of stamp impression evidence with a scientific interpretation.
AbstractList High-quality counterfeit stamp impressions made by inkjet printers remain challenging in questioned document examination and forensic analyses. A dataset comprised of various printed stamp impressions, using ten options of conditions and materials, and hand stamped impressions was generated. In this paper, we report printed impressions in pure color and high-quality printing mode are very similar to hand stamped impressions in terms of their microscopic characteristics. These similarities may lead to incorrect conclusions via traditional identification methods. Here, we proposed a method for identifying counterfeit stamp impressions via texture features and image quality parameters extracted from impressions. First, the statistical analysis methods were used to verify a significant difference between the printed and hand stamped impressions. Principal component analysis (PCA) was used to show the variation between the impressions, and the differences between printed and hand stamped impressions were obvious in the three-dimensional plot. After filtering the background of the stamp impressions, image processing analysis was introduced to extract features of gray level co-occurrence matrix (GLCM), segmentation-based fractal texture analysis (SFTA), local binary pattern (LBP), and image quality metrics (IQM), which were used to characterize the stamp impressions. Finally, specific cases were simulated by random selection, based on the dataset of stamp impressions, and an evaluation system for stamp evidence was established to calculate the likelihood ratios (LRs) under two alternative hypotheses. The likelihood ratio interprets calibrated evaluations on the strength of stamp impressions as evidence. We can also balance these LRs against the rates of misleading evidence with a reasonable performance (equal error rate = 0.048). This paper provides a system to differentiate high-quality printed and hand stamped impressions with reasonable performance.High-quality counterfeit stamp impressions made by inkjet printers remain challenging in questioned document examination and forensic analyses. A dataset comprised of various printed stamp impressions, using ten options of conditions and materials, and hand stamped impressions was generated. In this paper, we report printed impressions in pure color and high-quality printing mode are very similar to hand stamped impressions in terms of their microscopic characteristics. These similarities may lead to incorrect conclusions via traditional identification methods. Here, we proposed a method for identifying counterfeit stamp impressions via texture features and image quality parameters extracted from impressions. First, the statistical analysis methods were used to verify a significant difference between the printed and hand stamped impressions. Principal component analysis (PCA) was used to show the variation between the impressions, and the differences between printed and hand stamped impressions were obvious in the three-dimensional plot. After filtering the background of the stamp impressions, image processing analysis was introduced to extract features of gray level co-occurrence matrix (GLCM), segmentation-based fractal texture analysis (SFTA), local binary pattern (LBP), and image quality metrics (IQM), which were used to characterize the stamp impressions. Finally, specific cases were simulated by random selection, based on the dataset of stamp impressions, and an evaluation system for stamp evidence was established to calculate the likelihood ratios (LRs) under two alternative hypotheses. The likelihood ratio interprets calibrated evaluations on the strength of stamp impressions as evidence. We can also balance these LRs against the rates of misleading evidence with a reasonable performance (equal error rate = 0.048). This paper provides a system to differentiate high-quality printed and hand stamped impressions with reasonable performance.
High-quality counterfeit stamp impressions made by inkjet printers remain challenging in questioned document examination and forensic analyses. A dataset comprised of various printed stamp impressions, using ten options of conditions and materials, and hand stamped impressions was generated. In this paper, we report printed impressions in pure color and high-quality printing mode are very similar to hand stamped impressions in terms of their microscopic characteristics. These similarities may lead to incorrect conclusions via traditional identification methods. Here, we proposed a method for identifying counterfeit stamp impressions via texture features and image quality parameters extracted from impressions. First, the statistical analysis methods were used to verify a significant difference between the printed and hand stamped impressions. Principal component analysis (PCA) was used to show the variation between the impressions, and the differences between printed and hand stamped impressions were obvious in the three-dimensional plot. After filtering the background of the stamp impressions, image processing analysis was introduced to extract features of gray level co-occurrence matrix (GLCM), segmentation-based fractal texture analysis (SFTA), local binary pattern (LBP), and image quality metrics (IQM), which were used to characterize the stamp impressions. Finally, specific cases were simulated by random selection, based on the dataset of stamp impressions, and an evaluation system for stamp evidence was established to calculate the likelihood ratios (LRs) under two alternative hypotheses. The likelihood ratio interprets calibrated evaluations on the strength of stamp impressions as evidence. We can also balance these LRs against the rates of misleading evidence with a reasonable performance (equal error rate = 0.048). This paper provides a system to differentiate high-quality printed and hand stamped impressions with reasonable performance. [Display omitted] •This paper reported the potential challenge a high-quality stamp impression poses to questioned document examination.•A comprehensive image processing properly demonstrates the difference between genuine and counterfeit stamp impressions.•Evidence evaluation helps to rigorously evaluate the strength of stamp impression evidence with a scientific interpretation.
High-quality counterfeit stamp impressions made by inkjet printers remain challenging in questioned document examination and forensic analyses. A dataset comprised of various printed stamp impressions, using ten options of conditions and materials, and hand stamped impressions was generated. In this paper, we report printed impressions in pure color and high-quality printing mode are very similar to hand stamped impressions in terms of their microscopic characteristics. These similarities may lead to incorrect conclusions via traditional identification methods. Here, we proposed a method for identifying counterfeit stamp impressions via texture features and image quality parameters extracted from impressions. First, the statistical analysis methods were used to verify a significant difference between the printed and hand stamped impressions. Principal component analysis (PCA) was used to show the variation between the impressions, and the differences between printed and hand stamped impressions were obvious in the three-dimensional plot. After filtering the background of the stamp impressions, image processing analysis was introduced to extract features of gray level co-occurrence matrix (GLCM), segmentation-based fractal texture analysis (SFTA), local binary pattern (LBP), and image quality metrics (IQM), which were used to characterize the stamp impressions. Finally, specific cases were simulated by random selection, based on the dataset of stamp impressions, and an evaluation system for stamp evidence was established to calculate the likelihood ratios (LRs) under two alternative hypotheses. The likelihood ratio interprets calibrated evaluations on the strength of stamp impressions as evidence. We can also balance these LRs against the rates of misleading evidence with a reasonable performance (equal error rate = 0.048). This paper provides a system to differentiate high-quality printed and hand stamped impressions with reasonable performance.
ArticleNumber 111573
Author Yang, Xu
Tao, Yi-Min
Chen, Xiao-Hong
Tang, Hao
Author_xml – sequence: 1
  givenname: Yi-Min
  surname: Tao
  fullname: Tao, Yi-Min
  organization: Shanghai Forensic Science Center, No. 86 Caobao Road, Shanghai 200031, China
– sequence: 2
  givenname: Hao
  surname: Tang
  fullname: Tang, Hao
  organization: Academy of Forensic Science, 1347, West Guangfu Road, Shanghai 200063, China
– sequence: 3
  givenname: Xu
  surname: Yang
  fullname: Yang, Xu
  email: yangx@ssfjd.cn
  organization: Academy of Forensic Science, 1347, West Guangfu Road, Shanghai 200063, China
– sequence: 4
  givenname: Xiao-Hong
  surname: Chen
  fullname: Chen, Xiao-Hong
  email: chenxh@ssfjd.cn
  organization: Academy of Forensic Science, 1347, West Guangfu Road, Shanghai 200063, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36731221$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFvwCW2LDJ4MfktUBoVNGCVIkNrC3HuencTGJPbadqVvx1HE3LYjZ05bv4zrHOORfkzDoLhHzgbM0ZLz736875YBBtXAsm5JpznpfyFVnxqhRZISp5RlZMlnXGSlmdk4sQesZYnoviDTmXRSm5EHxF_mxDgBBGsJG6ju7wbpfdT3rAOFPjJhvBd4CRhqjHA8Xx4BONzgZ6Bxa8jtDSZqZo9z1EevC4KAJ9QE0jPMbJA9VWD3PAkI6WDriHAXfOtTSJ0b0lrzs9BHj39F6S39fffl19z25_3vy42t5mZpPnMYOScVYKoQuTV1rXshKgC2EqMKwG1nQaZF0xvoGy0Tk0gjW1NK3mDTNFvgF5ST4dfQ_e3U8QohoxGBgGbcFNQYlyaSQveJ3Qjydo7yafQixUxYvUasUS9f6JmpoRWpWij9rP6rnaBHw5Asa7EDx0ymBcItvoNQ6KM7VMqXr1b0q1TKmOUyZ9eaJ__uL_yu1RCanQBwSvEgTWQIseTFStwxd4fD3xMANaNHrYw_wih781rNZX
CitedBy_id crossref_primary_10_1016_j_forsciint_2024_112186
crossref_primary_10_1016_j_forsciint_2024_112183
crossref_primary_10_1007_s00216_023_05121_8
crossref_primary_10_3390_electronics13214160
Cites_doi 10.1016/j.scijus.2014.04.008
10.1201/9780429447273
10.1016/S0167-6393(99)00078-3
10.1002/9780470061589.fsa122
10.1007/978-1-4757-3121-7
10.1016/j.scijus.2017.07.002
10.1016/j.forsciint.2013.04.014
10.1109/SIBGRAPI.2012.15
10.1016/j.forsciint.2019.03.043
10.1111/1556-4029.12105
10.1016/j.forsciint.2017.11.022
10.1109/TPAMI.2002.1017623
10.1111/1556-4029.14909
10.1111/j.1556-4029.2010.01602.x
10.1016/j.forsciint.2013.09.006
10.1016/j.forsciint.2011.09.013
10.1111/1556-4029.13746
10.1111/1556-4029.14290
10.2352/J.ImagingSci.Technol.1998.42.1.art00007
10.1016/j.csl.2005.08.001
10.1016/0379-0738(89)90093-5
10.1016/S0015-7368(85)72359-6
10.1002/9780470061589.fsa327
10.1093/lpr/mgu022
10.1016/j.scijus.2012.11.001
10.1016/j.forc.2021.100377
10.1111/1556-4029.12680
10.1016/j.forsciint.2015.01.033
10.1016/j.forsciint.2014.11.030
10.1016/j.forsciint.2011.12.009
10.1016/j.talanta.2018.02.027
10.1016/j.forsciint.2014.04.005
10.1093/bioinformatics/bti623
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
2023. Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
– notice: 2023. Elsevier B.V.
DBID AAYXX
CITATION
NPM
3V.
7QP
7RV
7U7
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2O
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.forsciint.2023.111573
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Nursing & Allied Health Database
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Research Library Prep

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1872-6283
ExternalDocumentID 36731221
10_1016_j_forsciint_2023_111573
S0379073823000233
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.4L
.FO
.GJ
.~1
04C
0R~
186
1B1
1P~
1RT
1~.
1~5
29H
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
7RV
7X7
88E
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
9JO
AABNK
AAEDT
AAEDW
AAFJI
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABMMH
ABMZM
ABOCM
ABUDA
ABUWG
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADFRT
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJSZI
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOMHK
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKEYQ
BKOJK
BLXMC
BMSDO
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EIHBH
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HDY
HMCUK
HMK
HMO
HVGLF
HZ~
I-F
IAO
IEA
IHE
ILT
IOF
ITC
J1W
KOM
LK8
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OG0
OGGZJ
OS0
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PRBVW
PROAC
PSQYO
PUEGO
Q38
R2-
RNS
ROL
RPZ
SAE
SCB
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSB
SSH
SSK
SSO
SSP
SSU
SSZ
T5K
TAE
TN5
UKHRP
ULE
WH7
WOW
WUQ
Z5R
ZGI
~02
~G-
AFCTW
AGRNS
ALIPV
RIG
AAYXX
CITATION
3V.
AACTN
AFKWA
AJOXV
AMFUW
NPM
PKN
7QP
7U7
7XB
8FK
C1K
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c455t-e7010722a6c58aa9382ea62c8ec09e0bfae398014e7ba5eb20b93cda1b0c654e3
IEDL.DBID 7X7
ISSN 0379-0738
1872-6283
IngestDate Sun Aug 24 03:49:33 EDT 2025
Wed Aug 13 11:29:14 EDT 2025
Wed Feb 19 02:24:50 EST 2025
Tue Jul 01 00:48:00 EDT 2025
Thu Apr 24 23:12:04 EDT 2025
Sun May 18 06:42:49 EDT 2025
Tue Aug 26 20:31:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Questioned document examination
Statistical analysis
Image processing
Bayesian interpretation
Stamp impression
Language English
License Copyright © 2023 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-e7010722a6c58aa9382ea62c8ec09e0bfae398014e7ba5eb20b93cda1b0c654e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 36731221
PQID 2781603780
PQPubID 1226354
ParticipantIDs proquest_miscellaneous_2773125619
proquest_journals_2781603780
pubmed_primary_36731221
crossref_citationtrail_10_1016_j_forsciint_2023_111573
crossref_primary_10_1016_j_forsciint_2023_111573
elsevier_sciencedirect_doi_10_1016_j_forsciint_2023_111573
elsevier_clinicalkey_doi_10_1016_j_forsciint_2023_111573
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
2023-Mar
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
– name: Amsterdam
PublicationTitle Forensic science international
PublicationTitleAlternate Forensic Sci Int
PublicationYear 2023
Publisher Elsevier B.V
Elsevier Limited
Publisher_xml – name: Elsevier B.V
– name: Elsevier Limited
References Rulli, Marquis, Fürbach, Weyermann (bib6) 2019; 301
Peng, Ting Li, Long (bib15) 2015; 60
Raza, Saha (bib2) 2013; 53
Hepler, Saunders, Davis, Buscaglia (bib26) 2012; 219
Davis, Saunders, Hepler, Buscaglia (bib28) 2012; 216
hong Chen, Yang, wen Luo, hua Zhang (bib14) 2021; 325
Le (bib13) 1998; 42
Jasuja, Singla, Seema (bib11) 1989; 42
Wei, Simko, Levy, Xie, Jin, Zemla (bib21) 2017; 56
A. David, J. Curran, Multivariate Likelihood Ratio Calculation and Evaluation, (2020) 1– 13. https:// cran.r- project. org/ web/packages/comparison/comparison.pdf.
Supreme court of the United States, Impression Products Inc. vs Lexmark International Inc., (2017).
keung Li, sze Hui (bib4) 2020; 65
Ojala, Pietikäinen, Mäenpää (bib17) 2002; 24
Chen, Champod, Yang, Shi, Luo, Wang, Wang, Lu (bib29) 2018; 282
A. Martin, A. Martin, G. Doddington, T. Kamm, M. Ordowski, M. Przybocki, The DET Curve in Assessment of Detection Task Performance, 4 (1997) 1895–1898.
C. Springs, ANSI / ASB Standard 117, First Edition Standard for Examination of Stamping Devices and Stamp Impressions, (2020).
Brümmer, Preez (bib35) 2006; 20
Biedermann, Bozza, Taroni (bib34) 2018; 58
Wang, He, Lv, He, Li, Cai (bib8) 2022; 67
C. Sievert, Interactive Web-Based Data Visualization with R, plotly, and shiny, Interact. Web- Based Data Vis. with R, Plotly, Shiny, (2020). doi
Alberink, de Jongh, Rodriguez (bib32) 2014; 59
R. García-Ródenas, álvaro, Franco, Manuel, Vivo, Juana-María, Fernández-Breis, Jesualdo T. ,Font, DET: Representation of DET Curve with Confidence Intervals, R Package Version 3.0.1., (2021). https://cran.r- project.org/package=DET.
Herkt (bib1) 1985; 25
Król, Kula, Kościelniak (bib9) 2013; 233
Champod, Meuwly (bib25) 2000; 31
Ramos, Gonzalez-Rodriguez (bib37) 2013; 230
keung Li, sze Hui, Pang (bib5) 2018; 63
D.E. Bicknell, G.M. Laporte, Forged and Counterfeit Documents, 2009. https://doi.org/10.1002/9780470061589.fsa327.
Champod, Evett (bib24) 2009
W.N. Venables, B.D. Ripley, Statistics Complements to Modern Applied Statis-tics with S- Plus, second ed., 1999. .〈https://www.stats.ox.ac.uk/pub/MASS2/VR2stat.pdf〉.
.
Marquis, Bozza, Schmittbuhl, Taroni (bib27) 2011; 56
Sharma, Garg, Chophi, Singh (bib10) 2021; 26
A. Ferraz Costa, G. Humpire-Mamani, A. Juci, M. Traina, An Efficient Algorithm for Fractal Analysis of Textures, (2012).
Sing, Sander, Beerenwinkel, Lengauer (bib41) 2005; 21
J.L. Barret Schloerke, Di Cook, A. Francois Briatte, Moritz Marbach, Edwin Thoen, E. , J. Crowley, GGally: Extension to “ggplot2,” (2021).
bib19
Vergeer, Bolck, Peschier, Berger, Hendrikse (bib30) 2014; 54
Martire, Kemp, Sayle, Newell (bib33) 2014; 240
Ferreira, Navarro, Pinheiro, do. Santos, Rocha (bib16) 2015; 247
Corzo, Hoffman, Weis, Franco-Pedroso, Ramos, Almirall (bib31) 2018; 186
Lucena-Molina, Ramos-Castro, Gonzalez-Rodriguez (bib36) 2014; 14
Haraksim, Ramos, Meuwly, Berger (bib42) 2015; 249
Jasuja (10.1016/j.forsciint.2023.111573_bib11) 1989; 42
Sing (10.1016/j.forsciint.2023.111573_bib41) 2005; 21
Wang (10.1016/j.forsciint.2023.111573_bib8) 2022; 67
Lucena-Molina (10.1016/j.forsciint.2023.111573_bib36) 2014; 14
Raza (10.1016/j.forsciint.2023.111573_bib2) 2013; 53
Champod (10.1016/j.forsciint.2023.111573_bib24) 2009
Marquis (10.1016/j.forsciint.2023.111573_bib27) 2011; 56
Ojala (10.1016/j.forsciint.2023.111573_bib17) 2002; 24
keung Li (10.1016/j.forsciint.2023.111573_bib5) 2018; 63
Chen (10.1016/j.forsciint.2023.111573_bib29) 2018; 282
10.1016/j.forsciint.2023.111573_bib12
keung Li (10.1016/j.forsciint.2023.111573_bib4) 2020; 65
Davis (10.1016/j.forsciint.2023.111573_bib28) 2012; 216
Hepler (10.1016/j.forsciint.2023.111573_bib26) 2012; 219
10.1016/j.forsciint.2023.111573_bib39
Herkt (10.1016/j.forsciint.2023.111573_bib1) 1985; 25
10.1016/j.forsciint.2023.111573_bib18
Peng (10.1016/j.forsciint.2023.111573_bib15) 2015; 60
Wei (10.1016/j.forsciint.2023.111573_bib21) 2017; 56
Biedermann (10.1016/j.forsciint.2023.111573_bib34) 2018; 58
10.1016/j.forsciint.2023.111573_bib38
Ferreira (10.1016/j.forsciint.2023.111573_bib16) 2015; 247
Brümmer (10.1016/j.forsciint.2023.111573_bib35) 2006; 20
Król (10.1016/j.forsciint.2023.111573_bib9) 2013; 233
Martire (10.1016/j.forsciint.2023.111573_bib33) 2014; 240
Vergeer (10.1016/j.forsciint.2023.111573_bib30) 2014; 54
Rulli (10.1016/j.forsciint.2023.111573_bib6) 2019; 301
Alberink (10.1016/j.forsciint.2023.111573_bib32) 2014; 59
10.1016/j.forsciint.2023.111573_bib3
Corzo (10.1016/j.forsciint.2023.111573_bib31) 2018; 186
Ramos (10.1016/j.forsciint.2023.111573_bib37) 2013; 230
Le (10.1016/j.forsciint.2023.111573_bib13) 1998; 42
Champod (10.1016/j.forsciint.2023.111573_bib25) 2000; 31
Sharma (10.1016/j.forsciint.2023.111573_bib10) 2021; 26
10.1016/j.forsciint.2023.111573_bib22
10.1016/j.forsciint.2023.111573_bib23
hong Chen (10.1016/j.forsciint.2023.111573_bib14) 2021; 325
10.1016/j.forsciint.2023.111573_bib20
10.1016/j.forsciint.2023.111573_bib7
10.1016/j.forsciint.2023.111573_bib40
Haraksim (10.1016/j.forsciint.2023.111573_bib42) 2015; 249
References_xml – volume: 247
  start-page: 105
  year: 2015
  end-page: 125
  ident: bib16
  article-title: Laser printer attribution: exploring new features and beyond
  publication-title: Forensic Sci. Int.
– volume: 59
  start-page: 70
  year: 2014
  end-page: 81
  ident: bib32
  article-title: Fingermark evidence evaluation based on automated fingerprint identification system matching scores: the effect of different types of conditioning on likelihood ratios
  publication-title: J. Forensic Sci.
– reference: A. Ferraz Costa, G. Humpire-Mamani, A. Juci, M. Traina, An Efficient Algorithm for Fractal Analysis of Textures, (2012).
– reference: J.L. Barret Schloerke, Di Cook, A. Francois Briatte, Moritz Marbach, Edwin Thoen, E. , J. Crowley, GGally: Extension to “ggplot2,” (2021).
– ident: bib19
– volume: 230
  start-page: 156
  year: 2013
  end-page: 169
  ident: bib37
  article-title: Reliable support: measuring calibration of likelihood ratios
  publication-title: Forensic Sci. Int.
– volume: 233
  start-page: 140
  year: 2013
  end-page: 148
  ident: bib9
  article-title: Application of MECC-DAD and CZE-MS to examination of color stamp inks for forensic purposes
  publication-title: Forensic Sci. Int.
– volume: 24
  start-page: 971
  year: 2002
  end-page: 987
  ident: bib17
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: C. Springs, ANSI / ASB Standard 117, First Edition Standard for Examination of Stamping Devices and Stamp Impressions, (2020).
– volume: 42
  start-page: 255
  year: 1989
  end-page: 262
  ident: bib11
  article-title: Thin-layer chromatographic analysis of Indian stamp pad inks
  publication-title: Forensic Sci. Int.
– volume: 53
  start-page: 332
  year: 2013
  end-page: 338
  ident: bib2
  article-title: Application of Raman spectroscopy in forensic investigation of questioned documents involving stamp inks
  publication-title: Sci. Justice
– volume: 249
  start-page: 123
  year: 2015
  end-page: 132
  ident: bib42
  article-title: Measuring coherence of computer-assisted likelihood ratio methods
  publication-title: Forensic Sci. Int.
– volume: 25
  start-page: 23
  year: 1985
  end-page: 38
  ident: bib1
  article-title: Rubber stamps. Manufacture and identification
  publication-title: J. Forensic Sci. Soc.
– volume: 65
  start-page: 1328
  year: 2020
  end-page: 1336
  ident: bib4
  article-title: Could defects on a rubber stamp be reproduced on a duplicated rubber stamp ?
  publication-title: J. Forensic Sci.
– volume: 216
  start-page: 146
  year: 2012
  end-page: 157
  ident: bib28
  article-title: Using subsampling to estimate the strength of handwriting evidence via score-based likelihood ratios
  publication-title: Forensic Sci. Int.
– volume: 325
  year: 2021
  ident: bib14
  article-title: Inkjet classification based on a few letters
  publication-title: Forensic Sci. Int.
– reference: W.N. Venables, B.D. Ripley, Statistics Complements to Modern Applied Statis-tics with S- Plus, second ed., 1999. .〈https://www.stats.ox.ac.uk/pub/MASS2/VR2stat.pdf〉.
– volume: 26
  year: 2021
  ident: bib10
  article-title: On the spectroscopic investigation of stamp inks using ATR-FTIR and chemometrics: Application in forensic document examination
  publication-title: Forensic Chem.
– volume: 20
  start-page: 230
  year: 2006
  end-page: 275
  ident: bib35
  article-title: Application-independent evaluation of speaker detection
  publication-title: Comput. Speech Lang.
– reference: A. David, J. Curran, Multivariate Likelihood Ratio Calculation and Evaluation, (2020) 1– 13. https:// cran.r- project. org/ web/packages/comparison/comparison.pdf.
– volume: 282
  start-page: 101
  year: 2018
  end-page: 110
  ident: bib29
  article-title: Assessment of signature handwriting evidence via score-based likelihood ratio based on comparative measurement of relevant dynamic features
  publication-title: Forensic Sci. Int.
– reference: 〉.
– volume: 31
  start-page: 193
  year: 2000
  end-page: 203
  ident: bib25
  article-title: Inference of identity in forensic speaker recognition
  publication-title: Speech Commun.
– reference: R. García-Ródenas, álvaro, Franco, Manuel, Vivo, Juana-María, Fernández-Breis, Jesualdo T. ,Font, DET: Representation of DET Curve with Confidence Intervals, R Package Version 3.0.1., (2021). https://cran.r- project.org/package=DET.
– reference: C. Sievert, Interactive Web-Based Data Visualization with R, plotly, and shiny, Interact. Web- Based Data Vis. with R, Plotly, Shiny, (2020). doi: 
– reference: D.E. Bicknell, G.M. Laporte, Forged and Counterfeit Documents, 2009. https://doi.org/10.1002/9780470061589.fsa327.
– volume: 67
  start-page: 550
  year: 2022
  end-page: 561
  ident: bib8
  article-title: Classification modeling method for hyperspectral stamp-pad ink data based on one-dimensional convolutional neural network
  publication-title: J. Forensic Sci.
– reference: Supreme court of the United States, Impression Products Inc. vs Lexmark International Inc., (2017).
– volume: 58
  start-page: 159
  year: 2018
  end-page: 165
  ident: bib34
  article-title: Analysing and exemplifying forensic conclusion criteria in terms of Bayesian decision theory
  publication-title: Sci. Justice
– volume: 42
  start-page: 49
  year: 1998
  end-page: 62
  ident: bib13
  article-title: Progress and trends in ink-jet printing technology
  publication-title: J. Imaging Sci. Technol.
– volume: 60
  start-page: 435
  year: 2015
  end-page: 443
  ident: bib15
  article-title: Identification of natural images and computer-generated graphics based on statistical and textural features
  publication-title: J. Forensic Sci.
– volume: 56
  start-page: 316
  year: 2017
  end-page: 324
  ident: bib21
  article-title: R package “corrplot”: visualization of a Correlation Matrix
  publication-title: Statistician
– volume: 219
  start-page: 129
  year: 2012
  end-page: 140
  ident: bib26
  article-title: Score-based likelihood ratios for handwriting evidence
  publication-title: Forensic Sci. Int.
– reference: .
– volume: 240
  start-page: 61
  year: 2014
  end-page: 68
  ident: bib33
  article-title: On the interpretation of likelihood ratios in forensic science evidence: presentation formats and the weak evidence effect
  publication-title: Forensic Sci. Int.
– volume: 14
  start-page: 175
  year: 2014
  end-page: 192
  ident: bib36
  article-title: Performance of likelihood ratios considering bounds on the probability of observing misleading evidence
  publication-title: Law Probab. Risk
– volume: 186
  start-page: 655
  year: 2018
  end-page: 661
  ident: bib31
  article-title: The use of LA-ICP-MS databases to calculate likelihood ratios for the forensic analysis of glass evidence
  publication-title: Talanta
– volume: 21
  start-page: 3940
  year: 2005
  end-page: 3941
  ident: bib41
  article-title: ROCR: visualizing classifier performance in R
  publication-title: Bioinformatics
– volume: 63
  start-page: 1556
  year: 2018
  end-page: 1560
  ident: bib5
  article-title: Organizing a proficiency testing program on stamp impressions examination in accordance with ISO/IEC 17043 requirements
  publication-title: J. Forensic Sci.
– reference: A. Martin, A. Martin, G. Doddington, T. Kamm, M. Ordowski, M. Przybocki, The DET Curve in Assessment of Detection Task Performance, 4 (1997) 1895–1898. 〈
– volume: 54
  start-page: 401
  year: 2014
  end-page: 411
  ident: bib30
  article-title: Science and Justice Likelihood ratio methods for forensic comparison of evaporated gasoline residues
  publication-title: Sci. Justice
– volume: 301
  year: 2019
  ident: bib6
  article-title: Variability of stamp impression measurements under different apposition conditions
  publication-title: Forensic Sci. Int.
– year: 2009
  ident: bib24
  article-title: Evidence interpretation: a logical approach
  publication-title: Wiley Encycl. Forensic Sci.
– volume: 56
  start-page: 238
  year: 2011
  end-page: 242
  ident: bib27
  article-title: Handwriting evidence evaluation based on the shape of characters: application of multivariate likelihood ratios
  publication-title: J. Forensic Sci.
– ident: 10.1016/j.forsciint.2023.111573_bib40
– ident: 10.1016/j.forsciint.2023.111573_bib23
– volume: 54
  start-page: 401
  year: 2014
  ident: 10.1016/j.forsciint.2023.111573_bib30
  article-title: Science and Justice Likelihood ratio methods for forensic comparison of evaporated gasoline residues
  publication-title: Sci. Justice
  doi: 10.1016/j.scijus.2014.04.008
– ident: 10.1016/j.forsciint.2023.111573_bib22
  doi: 10.1201/9780429447273
– ident: 10.1016/j.forsciint.2023.111573_bib3
– volume: 325
  year: 2021
  ident: 10.1016/j.forsciint.2023.111573_bib14
  article-title: Inkjet classification based on a few letters
  publication-title: Forensic Sci. Int.
– volume: 31
  start-page: 193
  year: 2000
  ident: 10.1016/j.forsciint.2023.111573_bib25
  article-title: Inference of identity in forensic speaker recognition
  publication-title: Speech Commun.
  doi: 10.1016/S0167-6393(99)00078-3
– year: 2009
  ident: 10.1016/j.forsciint.2023.111573_bib24
  article-title: Evidence interpretation: a logical approach
  publication-title: Wiley Encycl. Forensic Sci.
  doi: 10.1002/9780470061589.fsa122
– ident: 10.1016/j.forsciint.2023.111573_bib20
  doi: 10.1007/978-1-4757-3121-7
– volume: 58
  start-page: 159
  year: 2018
  ident: 10.1016/j.forsciint.2023.111573_bib34
  article-title: Analysing and exemplifying forensic conclusion criteria in terms of Bayesian decision theory
  publication-title: Sci. Justice
  doi: 10.1016/j.scijus.2017.07.002
– volume: 56
  start-page: 316
  year: 2017
  ident: 10.1016/j.forsciint.2023.111573_bib21
  article-title: R package “corrplot”: visualization of a Correlation Matrix
  publication-title: Statistician
– volume: 230
  start-page: 156
  year: 2013
  ident: 10.1016/j.forsciint.2023.111573_bib37
  article-title: Reliable support: measuring calibration of likelihood ratios
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2013.04.014
– ident: 10.1016/j.forsciint.2023.111573_bib18
  doi: 10.1109/SIBGRAPI.2012.15
– volume: 301
  year: 2019
  ident: 10.1016/j.forsciint.2023.111573_bib6
  article-title: Variability of stamp impression measurements under different apposition conditions
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2019.03.043
– volume: 59
  start-page: 70
  year: 2014
  ident: 10.1016/j.forsciint.2023.111573_bib32
  article-title: Fingermark evidence evaluation based on automated fingerprint identification system matching scores: the effect of different types of conditioning on likelihood ratios
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.12105
– volume: 282
  start-page: 101
  year: 2018
  ident: 10.1016/j.forsciint.2023.111573_bib29
  article-title: Assessment of signature handwriting evidence via score-based likelihood ratio based on comparative measurement of relevant dynamic features
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2017.11.022
– volume: 24
  start-page: 971
  year: 2002
  ident: 10.1016/j.forsciint.2023.111573_bib17
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017623
– ident: 10.1016/j.forsciint.2023.111573_bib38
– volume: 67
  start-page: 550
  year: 2022
  ident: 10.1016/j.forsciint.2023.111573_bib8
  article-title: Classification modeling method for hyperspectral stamp-pad ink data based on one-dimensional convolutional neural network
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.14909
– volume: 56
  start-page: 238
  year: 2011
  ident: 10.1016/j.forsciint.2023.111573_bib27
  article-title: Handwriting evidence evaluation based on the shape of characters: application of multivariate likelihood ratios
  publication-title: J. Forensic Sci.
  doi: 10.1111/j.1556-4029.2010.01602.x
– volume: 233
  start-page: 140
  year: 2013
  ident: 10.1016/j.forsciint.2023.111573_bib9
  article-title: Application of MECC-DAD and CZE-MS to examination of color stamp inks for forensic purposes
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2013.09.006
– volume: 216
  start-page: 146
  year: 2012
  ident: 10.1016/j.forsciint.2023.111573_bib28
  article-title: Using subsampling to estimate the strength of handwriting evidence via score-based likelihood ratios
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2011.09.013
– volume: 63
  start-page: 1556
  year: 2018
  ident: 10.1016/j.forsciint.2023.111573_bib5
  article-title: Organizing a proficiency testing program on stamp impressions examination in accordance with ISO/IEC 17043 requirements
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.13746
– volume: 65
  start-page: 1328
  year: 2020
  ident: 10.1016/j.forsciint.2023.111573_bib4
  article-title: Could defects on a rubber stamp be reproduced on a duplicated rubber stamp ?
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.14290
– volume: 42
  start-page: 49
  year: 1998
  ident: 10.1016/j.forsciint.2023.111573_bib13
  article-title: Progress and trends in ink-jet printing technology
  publication-title: J. Imaging Sci. Technol.
  doi: 10.2352/J.ImagingSci.Technol.1998.42.1.art00007
– volume: 20
  start-page: 230
  year: 2006
  ident: 10.1016/j.forsciint.2023.111573_bib35
  article-title: Application-independent evaluation of speaker detection
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2005.08.001
– volume: 42
  start-page: 255
  year: 1989
  ident: 10.1016/j.forsciint.2023.111573_bib11
  article-title: Thin-layer chromatographic analysis of Indian stamp pad inks
  publication-title: Forensic Sci. Int.
  doi: 10.1016/0379-0738(89)90093-5
– volume: 25
  start-page: 23
  year: 1985
  ident: 10.1016/j.forsciint.2023.111573_bib1
  article-title: Rubber stamps. Manufacture and identification
  publication-title: J. Forensic Sci. Soc.
  doi: 10.1016/S0015-7368(85)72359-6
– ident: 10.1016/j.forsciint.2023.111573_bib7
  doi: 10.1002/9780470061589.fsa327
– volume: 14
  start-page: 175
  year: 2014
  ident: 10.1016/j.forsciint.2023.111573_bib36
  article-title: Performance of likelihood ratios considering bounds on the probability of observing misleading evidence
  publication-title: Law Probab. Risk
  doi: 10.1093/lpr/mgu022
– volume: 53
  start-page: 332
  year: 2013
  ident: 10.1016/j.forsciint.2023.111573_bib2
  article-title: Application of Raman spectroscopy in forensic investigation of questioned documents involving stamp inks
  publication-title: Sci. Justice
  doi: 10.1016/j.scijus.2012.11.001
– volume: 26
  year: 2021
  ident: 10.1016/j.forsciint.2023.111573_bib10
  article-title: On the spectroscopic investigation of stamp inks using ATR-FTIR and chemometrics: Application in forensic document examination
  publication-title: Forensic Chem.
  doi: 10.1016/j.forc.2021.100377
– volume: 60
  start-page: 435
  year: 2015
  ident: 10.1016/j.forsciint.2023.111573_bib15
  article-title: Identification of natural images and computer-generated graphics based on statistical and textural features
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.12680
– ident: 10.1016/j.forsciint.2023.111573_bib12
– volume: 249
  start-page: 123
  year: 2015
  ident: 10.1016/j.forsciint.2023.111573_bib42
  article-title: Measuring coherence of computer-assisted likelihood ratio methods
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2015.01.033
– volume: 247
  start-page: 105
  year: 2015
  ident: 10.1016/j.forsciint.2023.111573_bib16
  article-title: Laser printer attribution: exploring new features and beyond
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2014.11.030
– volume: 219
  start-page: 129
  year: 2012
  ident: 10.1016/j.forsciint.2023.111573_bib26
  article-title: Score-based likelihood ratios for handwriting evidence
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2011.12.009
– volume: 186
  start-page: 655
  year: 2018
  ident: 10.1016/j.forsciint.2023.111573_bib31
  article-title: The use of LA-ICP-MS databases to calculate likelihood ratios for the forensic analysis of glass evidence
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.02.027
– volume: 240
  start-page: 61
  year: 2014
  ident: 10.1016/j.forsciint.2023.111573_bib33
  article-title: On the interpretation of likelihood ratios in forensic science evidence: presentation formats and the weak evidence effect
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2014.04.005
– ident: 10.1016/j.forsciint.2023.111573_bib39
– volume: 21
  start-page: 3940
  year: 2005
  ident: 10.1016/j.forsciint.2023.111573_bib41
  article-title: ROCR: visualizing classifier performance in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti623
SSID ssj0005526
Score 2.3999705
Snippet High-quality counterfeit stamp impressions made by inkjet printers remain challenging in questioned document examination and forensic analyses. A dataset...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111573
SubjectTerms Analytical chemistry
Bayesian interpretation
Counterfeit
Counterfeiting
Datasets
Digitization
Feature extraction
Forensic science
Forensic sciences
Fractal analysis
Hypotheses
Identification methods
Image processing
Image quality
Image segmentation
Ink jet printers
Inkjet printing
Laser printers
Likelihood ratio
Mathematical analysis
Parameter identification
Principal components analysis
Printers
Printers (data processing)
Quality assessment
Questioned document examination
Spectrum analysis
Stamp impression
Statistical analysis
Statistical methods
Texture
Third party
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhp0IpbfraNgkq9OqurIcl9xZCQyi0lzaQm5Hs2eJ041023kIuyV_vjCWb5BBS6MXYlkfImtFoRpr5xNhHBaoJaGlkQlnItNQ2Cx6VobUid01jfF5ScvK378Xpmf56bs532PGYC0NhlUn3R50-aOv0Zp56c75u2_kPrB09O9rHGlBbCPFTa0tS_unmTpiHkXG_0lKyjnL3YrzQLsSq246CKqUi9WGsemiGesgCHWaik-fsWTIh-VFs5Qu2A90eexrX33hMK3rJbo8myE2-WnBCJc5iAuU1H86HgM0C2p6jcXi55u1lioftrvivAYgaDVEerjl6qhfQc1r9IxhO_qf1nGJFthvgPuGZ4E3Dl-1vWLaEkcwHmXrFzk6-_Dw-zdJhC1mtjekzQOYIK6UvauO8L7FfwReydlCLEkRYeFAlQc2ADd6gPy5CqerG50HUhdGgXrPdbtXBW8abvPRC1ApcEXRTSocOuy20DfmisXidsWLs4KpOSOR0IMayGkPOLqqJMxVxpoqcmTExEa4jGMfjJG7kYDXmmqJ2rHDCeJz080R6TyT_jXh_FJcqaYWrSlpHp3pbJ2bsw1SM45k2aXwHqy19YxUanejXztibKGbTv6qCymT-7n9a9p49oacYR7fPdvvNFg7QsOrD4TBy_gJ3uSRx
  priority: 102
  providerName: Elsevier
Title Assessment of high-quality counterfeit stamp impressions generated by inkjet printers via texture analysis and likelihood ratio
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0379073823000233
https://dx.doi.org/10.1016/j.forsciint.2023.111573
https://www.ncbi.nlm.nih.gov/pubmed/36731221
https://www.proquest.com/docview/2781603780
https://www.proquest.com/docview/2773125619
Volume 344
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbY9oKEEL8pG5WReA04dhI7e5kK2lSoqNDERN8iO7lOGV1a2hRpL-xf5y5xMvEwxkscybkoyV3O39nn7xh7q0AVDpFGIJSGIJKRDpxFZ6i1CE1RxDZMaXPyl2kyPos-z-KZn3Db-LTKzic2jrpY5jRH_l5qQxWRtRFHq58BVY2i1VVfQmOH7RF1GVm1numbFI9YJn_ldCEOxIGlrCiJUipyF7FWt41ItyHOZuQ5ecQeesjIR62OH7N7UD1hD9r5Nt5uI3rKrkc9xSZfzjmxEAfthskr3tSDgPUcypojGLxc8fLS579WG37eEE8j8OTuimNkegE1p9k-ot3kv0rLKTdkuwZuPX8JnhR8Uf6ARUmcyLyxoWfs7OT428dx4IsrBHkUx3UAqAyhpbRJHhtrU2Uk2ETmBnKRgnBzCyolahnQzsYYfwuXqrywoRN5EkegnrPdalnBS8aLMLVC5ApM4qIilQYDdJ1E2oXzQuNxwJLuA2e5Zx6nAhiLrEsxu8h6zWSkmazVzICJXnDVkm_cLWI6DWbd3lL0hhkOEHeLHvaiHn60sOL_hA86c8m8F9hkNzY7YG_6bvx_aVHGVrDc0jVaIcjEOHbAXrRm1r-rSqhPhq_-ffN9dp-epM2MO2C79XoLrxEq1W7Idt79DofNXzFke6NPk_GU2snp9wm2H46nX0__AMMrHYY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgCpQrwJFFgkOFqsd22vjYRQRalS-ji1Um7Lrj1BLqmTJk6rnPhH_EZmvLarHkq59GJZcsZyPLMz36xnvmHsvQJVOEQagVAagkhGOnAWnaHWIkyLIrZhRs3JB4fJ8Dj6PopHa-xP1wtDZZWdT2wcdTHNaY_8o9QpTUTWqfgyOwtoahR9Xe1GaHiz2IPVBaZsi8-726jfD1LufDv6OgzaqQJBHsVxHQA-hdBS2iSPU2szlUqwicxTyEUGwo0tqIw4VUA7G2PiKVym8sKGTuRJHIHC-95hdzHwCkr29EhflpTEMrlSQ4a4EwNZWVHRplTknmKtrouA1yHcJtLtPGQPWojKt7xNPWJrUD1mG35_j_u2pSfs91ZP6cmnY06sx4Fv0FzxZv4EzMdQ1hzB5-mMl6dtvW214D8bomsEutytOGbCJ1Bz2l0kmk9-XlpOtSjLOXDb8qXgScEn5S-YlMTBzBubfcqOb-W1P2Pr1bSCF4wXYWaFyBWkiYuKTKbg0E1G2oXjQuNxwJLuBZu8ZTqngRsT05W0nZheM4Y0Y7xmBkz0gjNP9nGzSNpp0HS9rOh9DQakm0U_9aIt3PEw5v-ENztzMa3XWZjLNTJg7_rL6C_oI5CtYLqk32iFoBbz5gF77s2s_68qoWsyfPnvm79l94ZHB_tmf_dw7xW7T0_lq_I22Xo9X8JrhGm1e9OsDc5-3PZi_AvUBVVK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEF7qFUQQ8Wc9rbqCPoZudpNsIoi0tkdr9ShioW9xN5lI6jV33uWUe_L_8q_rTDZJ8aHWl76EQDIhyczOfrM78w1jrxSo3CLS8ITS4AUy0J416Ay1Fn6c56HxEypO_jSO9o-DDyfhyRr709XCUFpl5xMbR51PM1oj35I6po7IOhZbRZsWcbQ7ejf74VEHKdpp7dppOBM5hNUvDN8Wbw92UdevpRztfXm_77UdBrwsCMPaA3wjoaU0URbGxiQqlmAimcWQiQSELQyohPhVQFsTYhAqbKKy3PhWZFEYgMLn3mDrmqKiAVvf2Rsffb5IMAll9FdGGaJQnNbKilI4pSJnFWp12Xx4Gd5t5r3RXXanBax821nYPbYG1X122632cVfE9ID93u4JPvm04MSB7LlyzRVvulHAvICy5ghFz2a8PGuzb6sF_9bQXiPs5XbFMS4-hZrTWiORfvKfpeGkguUcuGnZU_Ak55PyO0xKYmTmjQU_ZMfX8uMfsUE1reAx47mfGCEyBXFkgzyRMVh0moG2fpFrPA5Z1P3gNGt5z6n9xiTtEtxO014zKWkmdZoZMtELzhz1x9UicafBtKtsRV-c4vR0teibXrQFPw7U_J_wZmcuaeuDFunFiBmyl_1l9B60JWQqmC7pHq0Q4mIUPWQbzsz6b1URXZP-k38__AW7iQMx_XgwPnzKbtFLuRS9TTao50t4hpitts_bwcHZ1-sej-cruVrl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+high-quality+counterfeit+stamp+impressions+generated+by+inkjet+printers+via+texture+analysis+and+likelihood+ratio&rft.jtitle=Forensic+science+international&rft.au=Tao%2C+Yi-Min&rft.au=Tang%2C+Hao&rft.au=Yang%2C+Xu&rft.au=Chen%2C+Xiao-Hong&rft.date=2023-03-01&rft.issn=1872-6283&rft.eissn=1872-6283&rft.volume=344&rft.spage=111573&rft_id=info:doi/10.1016%2Fj.forsciint.2023.111573&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0379-0738&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0379-0738&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0379-0738&client=summon