Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period

•The cloud computing capability of GEE improves the efficiency of obtaining national-scale grassland information.•Time series NDVI can assist in the selection of optimal phenological periods and improve computational efficiency.•Optimal feature selection can reduce the number of features and improve...

Full description

Saved in:
Bibliographic Details
Published inEcological indicators Vol. 135; p. 108529
Main Authors Zhao, Yifan, Zhu, Weiwei, Wei, Panpan, Fang, Peng, Zhang, Xiwang, Yan, Nana, Liu, Wenjun, Zhao, Hao, Wu, Qirui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The cloud computing capability of GEE improves the efficiency of obtaining national-scale grassland information.•Time series NDVI can assist in the selection of optimal phenological periods and improve computational efficiency.•Optimal feature selection can reduce the number of features and improve the classification accuracy.•Elevation was found to be the most critical feature for the classification of Zambian grasslands. It is important to conduct grassland resource surveys for the scientific management of grassland resources. Currently, remote sensing technology is widely used to classify land cover. The fine classification datasets of grasslands with high spatial and temporal resolutions are very necessary for scientific research. In order to use remote sensing data conveniently, this study selected the Google Earth Engine platform to select 100-m resolution PROBA-V remote sensing images from 2018 of Zambia, in central Africa. The differences in the normalized vegetation index time-series curves of the different types of grasslands were combined, and June to October was identified as the best phenological classification period. Using the random forest feature importance selection algorithm, the original feature indices and identification of the different grass types were optimized. The results indicate that using the optimal feature combination selected by the random forest feature importance selection algorithm to refine the classification of grasslands improves computational efficiency with an overall accuracy of 83%, which is 3% higher than that of the original feature combination. Among the optimal feature combinations, elevation contributes the most to the improvement classification accuracy. The most significant improvement in the producer’s accuracy was found for grassland (30% increase) and savanna (22% increase). Adjustment of the appropriate phenological periods according to the seasonal characteristics of different regions, the methodology established in this study can be easily applied to other areas for the fine classification of grasslands and the subsequent calculation of grassland biomass and carbon storage.
AbstractList It is important to conduct grassland resource surveys for the scientific management of grassland resources. Currently, remote sensing technology is widely used to classify land cover. The fine classification datasets of grasslands with high spatial and temporal resolutions are very necessary for scientific research. In order to use remote sensing data conveniently, this study selected the Google Earth Engine platform to select 100-m resolution PROBA-V remote sensing images from 2018 of Zambia, in central Africa. The differences in the normalized vegetation index time-series curves of the different types of grasslands were combined, and June to October was identified as the best phenological classification period. Using the random forest feature importance selection algorithm, the original feature indices and identification of the different grass types were optimized. The results indicate that using the optimal feature combination selected by the random forest feature importance selection algorithm to refine the classification of grasslands improves computational efficiency with an overall accuracy of 83%, which is 3% higher than that of the original feature combination. Among the optimal feature combinations, elevation contributes the most to the improvement classification accuracy. The most significant improvement in the producer’s accuracy was found for grassland (30% increase) and savanna (22% increase). Adjustment of the appropriate phenological periods according to the seasonal characteristics of different regions, the methodology established in this study can be easily applied to other areas for the fine classification of grasslands and the subsequent calculation of grassland biomass and carbon storage.
•The cloud computing capability of GEE improves the efficiency of obtaining national-scale grassland information.•Time series NDVI can assist in the selection of optimal phenological periods and improve computational efficiency.•Optimal feature selection can reduce the number of features and improve the classification accuracy.•Elevation was found to be the most critical feature for the classification of Zambian grasslands. It is important to conduct grassland resource surveys for the scientific management of grassland resources. Currently, remote sensing technology is widely used to classify land cover. The fine classification datasets of grasslands with high spatial and temporal resolutions are very necessary for scientific research. In order to use remote sensing data conveniently, this study selected the Google Earth Engine platform to select 100-m resolution PROBA-V remote sensing images from 2018 of Zambia, in central Africa. The differences in the normalized vegetation index time-series curves of the different types of grasslands were combined, and June to October was identified as the best phenological classification period. Using the random forest feature importance selection algorithm, the original feature indices and identification of the different grass types were optimized. The results indicate that using the optimal feature combination selected by the random forest feature importance selection algorithm to refine the classification of grasslands improves computational efficiency with an overall accuracy of 83%, which is 3% higher than that of the original feature combination. Among the optimal feature combinations, elevation contributes the most to the improvement classification accuracy. The most significant improvement in the producer’s accuracy was found for grassland (30% increase) and savanna (22% increase). Adjustment of the appropriate phenological periods according to the seasonal characteristics of different regions, the methodology established in this study can be easily applied to other areas for the fine classification of grasslands and the subsequent calculation of grassland biomass and carbon storage.
ArticleNumber 108529
Author Zhao, Yifan
Liu, Wenjun
Wei, Panpan
Fang, Peng
Wu, Qirui
Yan, Nana
Zhang, Xiwang
Zhao, Hao
Zhu, Weiwei
Author_xml – sequence: 1
  givenname: Yifan
  surname: Zhao
  fullname: Zhao, Yifan
  organization: Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
– sequence: 2
  givenname: Weiwei
  surname: Zhu
  fullname: Zhu, Weiwei
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 3
  givenname: Panpan
  surname: Wei
  fullname: Wei, Panpan
  organization: Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
– sequence: 4
  givenname: Peng
  surname: Fang
  fullname: Fang, Peng
  organization: Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
– sequence: 5
  givenname: Xiwang
  surname: Zhang
  fullname: Zhang, Xiwang
  email: zhangxiwang@vip.henu.edu.cn
  organization: Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
– sequence: 6
  givenname: Nana
  surname: Yan
  fullname: Yan, Nana
  email: yannn@radi.ac.cn
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 7
  givenname: Wenjun
  surname: Liu
  fullname: Liu, Wenjun
  organization: School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
– sequence: 8
  givenname: Hao
  surname: Zhao
  fullname: Zhao, Hao
  organization: Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
– sequence: 9
  givenname: Qirui
  surname: Wu
  fullname: Wu, Qirui
  organization: Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
BookMark eNqFkUuPFCEUhVmMiTOjP8GEpZtuoYpHERfGdHxMMokbTYwbQlGXHjoUlECZmPjjpbsmLtzMCrjccw7c7wZdxRQBoVeU7Cmh4s1pDzYFH6d9RzraagPv1BW6pkySHRXk-3N0U8qJtF6lxDX6cwimFO-8NdWniJPDP8w8ehPxMbebYOJU8Fp8POLc9mnGLmUoFTswdc2A_bykXE20gAsEsBebac1nRX0AnJbqZxPw8gAxhXRsSe0A2afpBXrmTCjw8nG9Rd8-fvh6-Ly7__Lp7vD-fmcZ53UHHZfcdpI7xcgA3PYK-oGPI7FuYKxno1UjkYwTJgQo66QYjOLOitGoflT9LbrbfKdkTnrJ7T35t07G60sh5aM2uXobQLOhh9H0hABIRqk1womOAJeMtGxDm9frzWvJ6efaBqFnXyyENihIa9Gd6MVApFSytfKt1eZUSgb3L5oSfaalT_qRlj7T0hutpnv7n876esFTs_HhSfW7TQ1tor88ZF2sh4Zn8rnRaV_2Tzj8BQVzum8
CitedBy_id crossref_primary_10_1038_s41598_024_68991_7
crossref_primary_10_3390_rs17060973
crossref_primary_10_1016_j_ejrh_2024_101739
crossref_primary_10_1016_j_scitotenv_2024_174597
crossref_primary_10_3390_agriculture13020455
crossref_primary_10_3390_rs16061052
crossref_primary_10_1016_j_engappai_2023_106367
crossref_primary_10_1080_01431161_2024_2413539
crossref_primary_10_1016_j_foreco_2025_122536
crossref_primary_10_47456_bjpe_v10i2_44374
crossref_primary_10_1016_j_compag_2025_110007
crossref_primary_10_1016_j_oregeorev_2024_106396
crossref_primary_10_3390_land13030392
crossref_primary_10_1134_S1061830922601088
crossref_primary_10_1016_j_compag_2025_110120
crossref_primary_10_3390_agronomy12081948
crossref_primary_10_3390_land12010099
crossref_primary_10_1111_aje_13300
crossref_primary_10_3390_rs17071146
crossref_primary_10_3390_met14040428
crossref_primary_10_3390_rs16244730
crossref_primary_10_1080_17538947_2023_2270459
crossref_primary_10_1016_j_renene_2022_07_016
crossref_primary_10_3390_rs14215458
crossref_primary_10_3390_rs16010031
crossref_primary_10_3390_app132011225
crossref_primary_10_3390_rs14205130
crossref_primary_10_1016_j_dajour_2023_100238
crossref_primary_10_1016_j_ecolind_2022_108961
crossref_primary_10_1016_j_jwpe_2025_107251
crossref_primary_10_1016_j_ecolind_2023_111392
crossref_primary_10_3390_agriculture14030389
crossref_primary_10_3390_rs15143675
crossref_primary_10_1016_j_jwpe_2023_104102
crossref_primary_10_1080_15481603_2024_2385170
crossref_primary_10_1016_j_asoc_2024_112497
crossref_primary_10_3390_su15086949
crossref_primary_10_1038_s41597_024_03990_x
crossref_primary_10_3390_rs15030750
crossref_primary_10_3390_d16080448
crossref_primary_10_3390_rs14112722
crossref_primary_10_1186_s12302_024_00901_0
crossref_primary_10_3390_agriculture12081087
crossref_primary_10_3390_agriculture13010098
crossref_primary_10_3390_w15183222
crossref_primary_10_3390_rs15174140
crossref_primary_10_1016_j_ecolind_2023_109868
crossref_primary_10_1007_s12145_023_01135_z
crossref_primary_10_1016_j_eswa_2023_119539
crossref_primary_10_1016_j_ecolind_2025_113081
crossref_primary_10_1002_rra_4335
crossref_primary_10_1115_1_4054969
crossref_primary_10_1111_ffe_14325
crossref_primary_10_3390_ani14182646
crossref_primary_10_1016_j_ymssp_2025_112564
crossref_primary_10_1021_acsomega_4c04901
crossref_primary_10_3390_drones8110639
crossref_primary_10_3390_rs14051059
crossref_primary_10_1016_j_jenvman_2024_122095
crossref_primary_10_1109_JSTARS_2024_3380580
crossref_primary_10_1016_j_marpol_2025_106631
crossref_primary_10_1016_j_ecolind_2023_109891
crossref_primary_10_1016_j_ejrs_2023_04_002
crossref_primary_10_1016_j_jenvman_2023_118376
crossref_primary_10_1016_j_iswa_2024_200472
crossref_primary_10_3390_land14010184
crossref_primary_10_3390_molecules30051092
crossref_primary_10_3390_land12091686
crossref_primary_10_1016_j_mlwa_2023_100516
crossref_primary_10_1088_1755_1315_1109_1_012059
crossref_primary_10_1016_j_aap_2023_107043
crossref_primary_10_1038_s41598_023_40564_0
crossref_primary_10_3390_biology11111654
crossref_primary_10_1109_TITS_2024_3474745
crossref_primary_10_3390_rs16132479
crossref_primary_10_4995_raet_2024_20831
crossref_primary_10_3390_rs15205026
Cites_doi 10.1038/s41467-019-08636-w
10.1016/S2095-3119(19)62615-8
10.1002/ecs2.2582
10.1016/j.rse.2020.111916
10.1080/01431160412331269698
10.14214/sf.369
10.1080/01431161.2014.883097
10.1093/jpe/rtw005
10.1016/j.rse.2006.01.003
10.3390/rs13142755
10.4236/ijg.2017.84033
10.3390/rs13081433
10.1016/j.patrec.2010.03.014
10.1080/01431161.2018.1430914
10.1007/s11356-021-12806-z
10.3390/rs8050365
10.1007/s11769-020-1119-y
10.1016/j.ecolind.2020.106310
10.1016/j.rse.2008.06.006
10.1080/01431169008955053
10.3390/rs11020164
10.3390/rs13132565
10.3390/app10155075
10.1038/s43017-021-00207-2
10.1201/9781003108894
10.1016/0034-4257(79)90013-0
10.1201/9781003109037
10.1201/9781003108931
10.3758/BF03213026
10.1007/s11356-020-09091-7
10.1016/j.rse.2017.06.031
10.3390/rs13030443
10.1201/9781003109013
10.1016/j.compag.2020.105355
10.3390/rs1040620
10.1016/0034-4257(88)90106-X
10.1016/j.jaridenv.2005.08.005
10.1016/j.isprsjprs.2012.03.005
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.ecolind.2021.108529
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
ExternalDocumentID oai_doaj_org_article_483eba300ee7411ca6f620e5740408a1
10_1016_j_ecolind_2021_108529
S1470160X21011948
GeographicLocations Central Africa
Zambia
GeographicLocations_xml – name: Central Africa
– name: Zambia
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSH
SSJ
SSZ
T5K
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c455t-e2575c275f9408e5c39e385bb0cf84434bc9b07450466e9cf768a95fc6ba93b93
IEDL.DBID DOA
ISSN 1470-160X
IngestDate Wed Aug 27 01:29:46 EDT 2025
Fri Jul 11 06:07:02 EDT 2025
Tue Jul 01 04:26:53 EDT 2025
Thu Apr 24 22:59:33 EDT 2025
Sun Apr 06 06:54:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Optimal feature selection
Grassland classification
PROBA-V
GEE
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-e2575c275f9408e5c39e385bb0cf84434bc9b07450466e9cf768a95fc6ba93b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/483eba300ee7411ca6f620e5740408a1
PQID 2636807797
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_483eba300ee7411ca6f620e5740408a1
proquest_miscellaneous_2636807797
crossref_primary_10_1016_j_ecolind_2021_108529
crossref_citationtrail_10_1016_j_ecolind_2021_108529
elsevier_sciencedirect_doi_10_1016_j_ecolind_2021_108529
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Ecological indicators
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zhang, Liu, Qin, Qin (b0075) 2019; 18
Tucker (b0105) 1979; 8
Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., Turan, V., 2021c. Sustainable Soil and Land Management and Climate Change. Sustainable Soil and Land Management and Climate Change.
Fang, Yan, Wei, Zhao, Zhang (b0165) 2021; 13
Lyu, Li, Dang, Dou, Xuan, Liu, Li, Gong (b0050) 2020; 114
Jiang, Huete, Chen, Chen, Li, Yan, Zhang (b0130) 2006; 101
Mengist (b0080) 2019; 2
Ghorbanian, Zaghian, Asiyabi, Amani, Mohammadzadeh, Jamali (b0055) 2021; 13
Huete (b0120) 1988; 25
Shaharum, Shafri, Ghani, Samsatli, Al-Habshi, Yusuf (b0145) 2020; 17
Ali, Qazi, Aslam (b0045) 2018; 21
Li, Li, Zhang, Xin, Huawei (b0180) 2019; 46
Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., & Turan, V. (2021). Climate Change and Plants: Biodiversity, Growth and Interactions (S. Fahad, Ed.) (1st ed.). CRC Press.
Yang H. 2019. Comparative study of object-oriented forest classification methods considering feature type and feature selection. Master's Thesis, Xi'an: Shaanxi Normal University.
Fernandez-Buces, Siebe, Cram, Palacio (b0135) 2006; 65
Jiang, Huete, Didan, Miura (b0110) 2008; 112
Xie, Chen, Lu, Li, Chen (b0150) 2019; 11
Hüttich, Gessner, Herold, Strohbach, Schmidt, Keil, Dech (b0210) 2009; 1
He, Zhang, Wu, Xing (b0220) 2019; 05
Zhang, Xiao, Wang, Xu, Chen, Wang, Ma, Zhao, Li (b0250) 2020; 247
Bengtsson, Bullock, Egoh, Everson, Everson, O'Connor, O'Farrell, Smith, Lindborg (b0005) 2019; 10
Dierckx, Sterckx, Benhadj, Livens, Duhoux, Van Achteren, Francois, Mellab, Saint (b0095) 2014; 35
Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (b0140) 2017; 202
Zeng, Wu, Wang, Musakwa, Tian, Mashimbye, Poona, Syndey (b0085) 2020; 30
Yang, Tilman, Furey, Lehman (b0010) 2019; 10
Wu, Tian, Li (b0155) 2004; 8
Naidoo, Cho, Mathieu, Asner (b0215) 2012; 69
Shetty, Gupta, Belgiu, Srivastav (b0040) 2021; 13
MohanRajan, Loganathan, Manoharan (b0035) 2020; 27
Liu, Heiskanen, Aynekulu, Maeda, Pellikka (b0160) 2016; 8
Pal (b0195) 2005; 26
Wu, Shi, Zhuo, Zhang, Zhou, Xia, Tao, Gao, Tian (b0255) 2021; 13
Rwanga, Ndambuki (b0030) 2017; 08
Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., Turan, V., 2021b. Developing Climate-Resilient Crops. Developing Climate-Resilient Crops.
Ali, Cawkwell, Dwyer, Barrett, Green (b0025) 2016; 9
Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., Turan, V., 2021a. Plant growth. Regulators for Climate-smart agriculture. Plant Growth Regulators for Climate-Smart Agriculture.
Zawadzki, Cieszewski, Zasada (b0245) 2005; 39
Islam, Talukdar, Mahato, Ziaul, Eibek, Akhter, Pham, Mohammadi, Karimi, Linh (b0170) 2021; 28
Mallick, Singh, Shashtri, Rahman, Mukherjee (b0115) 2012; 19
Genuer, Poggi, Tuleau-Malot (b0190) 2010; 31
Zhang, Qiu, Qin (b0070) 2019; 76
Bardgett, Bullock, Lavorel, Manning, Schaffner, Ostle, Chomel, Durigan, L. Fry, Johnson, Lavallee, Le Provost, Luo, Png, Sankaran, Hou, Zhou, Ma, Ren, Li, Ding, Li, Shi (b0020) 2021; 2
Hong, Abd El-Hamid (b0100) 2020; 172
Lin, Wang, Wang (b0185) 2021
MARTIN DZEKEDZEKE, Martin. Environmental Status and Management of Zambia-Brief introduction and discussion on forestry and land management [C]. Proceedings of the 2nd Oasis Forum.2011:252-274.
Jiang X. 2018, Method and Application of Improving the Accuracy of Land Cover Classification based on Terrain Factors: A Case Study of MODIS Land Cover Product in Beijing-Tianjin-Hebei Region. Master's Thesis, Kaifeng: Henan University.
Ibrahim, Balzter, Tansey, Tsutsumida, Mathieu (b0205) 2018; 39
“Grassland Carbon Management | Climate Change Resource Center”. www.fs.usda.gov. Retrieved 2021-08-20.
Fang, Zhang, Wei, Wang, Zhang, Liu, Zhao (b0065) 2020; 10
Townsend (b0200) 1971; 9
Major, Baret, Guyot (b0125) 1990; 11
Zhang (10.1016/j.ecolind.2021.108529_b0075) 2019; 18
10.1016/j.ecolind.2021.108529_b0235
Hong (10.1016/j.ecolind.2021.108529_b0100) 2020; 172
Islam (10.1016/j.ecolind.2021.108529_b0170) 2021; 28
Lin (10.1016/j.ecolind.2021.108529_b0185) 2021
Ali (10.1016/j.ecolind.2021.108529_b0045) 2018; 21
Wu (10.1016/j.ecolind.2021.108529_b0155) 2004; 8
Xie (10.1016/j.ecolind.2021.108529_b0150) 2019; 11
Ali (10.1016/j.ecolind.2021.108529_b0025) 2016; 9
Ibrahim (10.1016/j.ecolind.2021.108529_b0205) 2018; 39
Mengist (10.1016/j.ecolind.2021.108529_b0080) 2019; 2
10.1016/j.ecolind.2021.108529_b0230
Li (10.1016/j.ecolind.2021.108529_b0180) 2019; 46
Bengtsson (10.1016/j.ecolind.2021.108529_b0005) 2019; 10
10.1016/j.ecolind.2021.108529_b0225
Dierckx (10.1016/j.ecolind.2021.108529_b0095) 2014; 35
Lyu (10.1016/j.ecolind.2021.108529_b0050) 2020; 114
Pal (10.1016/j.ecolind.2021.108529_b0195) 2005; 26
10.1016/j.ecolind.2021.108529_b0060
Jiang (10.1016/j.ecolind.2021.108529_b0130) 2006; 101
10.1016/j.ecolind.2021.108529_b0015
Fang (10.1016/j.ecolind.2021.108529_b0065) 2020; 10
Fernandez-Buces (10.1016/j.ecolind.2021.108529_b0135) 2006; 65
Liu (10.1016/j.ecolind.2021.108529_b0160) 2016; 8
Wu (10.1016/j.ecolind.2021.108529_b0255) 2021; 13
Townsend (10.1016/j.ecolind.2021.108529_b0200) 1971; 9
Zawadzki (10.1016/j.ecolind.2021.108529_b0245) 2005; 39
Zhang (10.1016/j.ecolind.2021.108529_b0250) 2020; 247
10.1016/j.ecolind.2021.108529_b0090
Yang (10.1016/j.ecolind.2021.108529_b0010) 2019; 10
Tucker (10.1016/j.ecolind.2021.108529_b0105) 1979; 8
Fang (10.1016/j.ecolind.2021.108529_b0165) 2021; 13
Major (10.1016/j.ecolind.2021.108529_b0125) 1990; 11
10.1016/j.ecolind.2021.108529_b0175
Ghorbanian (10.1016/j.ecolind.2021.108529_b0055) 2021; 13
Bardgett (10.1016/j.ecolind.2021.108529_b0020) 2021; 2
Hüttich (10.1016/j.ecolind.2021.108529_b0210) 2009; 1
Genuer (10.1016/j.ecolind.2021.108529_b0190) 2010; 31
Huete (10.1016/j.ecolind.2021.108529_b0120) 1988; 25
Gorelick (10.1016/j.ecolind.2021.108529_b0140) 2017; 202
He (10.1016/j.ecolind.2021.108529_b0220) 2019; 05
Jiang (10.1016/j.ecolind.2021.108529_b0110) 2008; 112
MohanRajan (10.1016/j.ecolind.2021.108529_b0035) 2020; 27
Shetty (10.1016/j.ecolind.2021.108529_b0040) 2021; 13
Naidoo (10.1016/j.ecolind.2021.108529_b0215) 2012; 69
Shaharum (10.1016/j.ecolind.2021.108529_b0145) 2020; 17
Rwanga (10.1016/j.ecolind.2021.108529_b0030) 2017; 08
10.1016/j.ecolind.2021.108529_b0240
Zhang (10.1016/j.ecolind.2021.108529_b0070) 2019; 76
Mallick (10.1016/j.ecolind.2021.108529_b0115) 2012; 19
Zeng (10.1016/j.ecolind.2021.108529_b0085) 2020; 30
References_xml – volume: 25
  start-page: 295
  year: 1988
  end-page: 309
  ident: b0120
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
– volume: 21
  start-page: S29
  year: 2018
  end-page: S35
  ident: b0045
  article-title: A comparative study of ALOS-2 PALSAR and landsat-8 imagery for land cover classification using maximum likelihood classifier
  publication-title: Egypt. J. Remote Sens. Space Sci.
– volume: 9
  start-page: 40
  year: 1971
  end-page: 50
  ident: b0200
  article-title: Theoretical analysis of an alphabetic confusion matrix
  publication-title: Percept. Psychophys.
– volume: 2
  start-page: 720
  year: 2021
  end-page: 735
  ident: b0020
  article-title: Combatting global grassland degradation
  publication-title: Nat. Rev. Earth Environ.
– volume: 05
  start-page: 752
  year: 2019
  end-page: 766
  ident: b0220
  article-title: Remote sensing extraction of summer harvest crops in Jiangsu Province, supported by Google Earth Engine
  publication-title: J. Earth Inf. Sci.
– volume: 11
  start-page: 164
  year: 2019
  ident: b0150
  article-title: Classification of land cover, forest, and tree species classes with ZiYuan-3 multispectral and stereo data[J]
  publication-title: Remote Sens.
– reference: Yang H. 2019. Comparative study of object-oriented forest classification methods considering feature type and feature selection. Master's Thesis, Xi'an: Shaanxi Normal University.
– volume: 28
  start-page: 34450
  year: 2021
  end-page: 34471
  ident: b0170
  article-title: Machine learning algorithm-based risk assessment of riparian wetlands in Padma River Basin of Northwest Bangladesh
  publication-title: Environ. Sci. Pollut. Res.
– reference: Jiang X. 2018, Method and Application of Improving the Accuracy of Land Cover Classification based on Terrain Factors: A Case Study of MODIS Land Cover Product in Beijing-Tianjin-Hebei Region. Master's Thesis, Kaifeng: Henan University.
– volume: 26
  start-page: 217
  year: 2005
  end-page: 222
  ident: b0195
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Remote Sens.
– volume: 18
  start-page: 2628
  year: 2019
  end-page: 2643
  ident: b0075
  article-title: Winter wheat identification by integrating spectral and temporal information derived from multi-resolution remote sensing data[J]
  publication-title: J. Integr. Agric.
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: b0140
  article-title: Google earth engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 46
  start-page: 212
  year: 2019
  end-page: 215
  ident: b0180
  article-title: A feature selection method incorporating ant colony algorithm and random forest [J]
  publication-title: Comput. Sci.
– volume: 13
  start-page: 2755
  year: 2021
  ident: b0165
  article-title: Aboveground biomass mapping of crops supported by improved CASA model and sentinel-2 multispectral imagery
  publication-title: Remote Sens.
– volume: 101
  start-page: 366
  year: 2006
  end-page: 378
  ident: b0130
  article-title: Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction
  publication-title: Remote Sens. Environ.
– volume: 76
  start-page: 26
  year: 2019
  end-page: 39
  ident: b0070
  article-title: Identification and mapping of winter wheat by integrating temporal change information and Kullback-Leibler divergence
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– reference: MARTIN DZEKEDZEKE, Martin. Environmental Status and Management of Zambia-Brief introduction and discussion on forestry and land management [C]. Proceedings of the 2nd Oasis Forum.2011:252-274.
– volume: 17
  year: 2020
  ident: b0145
  article-title: Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms
  publication-title: Remote Sens. Appl.: Soc. Environ.
– volume: 1
  start-page: 620
  year: 2009
  end-page: 643
  ident: b0210
  article-title: On the suitability of MODIS time series metrics to map vegetation types in dry savanna ecosystems: a case study in the Kalahari of NE Namibia
  publication-title: Remote Sens.
– volume: 10
  start-page: e02582
  year: 2019
  ident: b0005
  article-title: Grasslands—more important for ecosystem services than you might think [J]
  publication-title: Ecosphere
– volume: 39
  start-page: 599
  year: 2005
  ident: b0245
  article-title: Applying geostatistics for investigations of forest ecosystems using remote sensing imagery[J]
  publication-title: Silva Fennica
– volume: 247
  year: 2020
  ident: b0250
  article-title: Quantifying expansion and removal of Spartina alterniflora on Chongming Island, China, using time series Landsat images during 1995–2018
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 570
  year: 2004
  end-page: 580
  ident: b0155
  article-title: GVG, a crop type proportion sampling instrument
  publication-title: J. Remote Sens.
– volume: 08
  start-page: 611
  year: 2017
  end-page: 622
  ident: b0030
  article-title: Accuracy assessment of land use/land cover classification using remote sensing and GIS
  publication-title: Int. J. Geosci.
– reference: Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., Turan, V., 2021b. Developing Climate-Resilient Crops. Developing Climate-Resilient Crops.
– reference: Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., Turan, V., 2021c. Sustainable Soil and Land Management and Climate Change. Sustainable Soil and Land Management and Climate Change.
– reference: Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., Turan, V., 2021a. Plant growth. Regulators for Climate-smart agriculture. Plant Growth Regulators for Climate-Smart Agriculture.
– volume: 13
  start-page: 443
  year: 2021
  ident: b0255
  article-title: A classification of tidal flat wetland vegetation combining phenological features with google earth engine[J]
  publication-title: Remote Sens.
– volume: 19
  start-page: 348
  year: 2012
  end-page: 358
  ident: b0115
  article-title: Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city
  publication-title: J. Appl. Earth Observat.
– volume: 65
  start-page: 644
  year: 2006
  end-page: 667
  ident: b0135
  article-title: Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico
  publication-title: J. Arid Environ.
– volume: 39
  start-page: 2718
  year: 2018
  end-page: 2745
  ident: b0205
  article-title: Estimating fractional cover of plant functional types in African savannah from harmonic analysis of MODIS time-series data
  publication-title: Int. J. Remote Sens.
– volume: 114
  start-page: 106310
  year: 2020
  ident: b0050
  article-title: A new method for grassland degradation monitoring by vegetation species composition using hyperspectral remote sensing
  publication-title: Ecol. Ind.
– volume: 13
  start-page: 1433
  year: 2021
  ident: b0040
  article-title: Assessing the effect of training sampling design on the performance of machine learning classifiers for land cover mapping using multi-temporal remote sensing data and google earth engine
  publication-title: Remote Sens.
– year: 2021
  ident: b0185
  article-title: Extraction of planting information from navel orange orchards based on random forest and Landsat8 OLI images[J]
  publication-title: Geospatial Information
– volume: 2
  start-page: 51
  year: 2019
  end-page: 62
  ident: b0080
  article-title: An overview of the major vegetation classification in africa and the new vegetation classification in Ethiopia
  publication-title: Am. J. Zool.
– volume: 27
  start-page: 29900
  year: 2020
  end-page: 29926
  ident: b0035
  article-title: Survey on land use/land cover (LU/LC) change analysis in remote sensing and GIS environment: techniques and challenges
  publication-title: Environ. Sci. Pollut. Res.
– volume: 31
  start-page: 2225
  year: 2010
  end-page: 2236
  ident: b0190
  article-title: Variable selection using random forests[J]
  publication-title: Pattern Recogn. Lett.
– volume: 112
  start-page: 3833
  year: 2008
  end-page: 3845
  ident: b0110
  article-title: Development of a two-band enhanced vegetation index without a blue band
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 127
  year: 1979
  end-page: 150
  ident: b0105
  article-title: Red and Photographic Infrared l, lnear Combinations for Monitoring Vegetation
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 718
  year: 2019
  ident: b0010
  article-title: Soil carbon sequestration accelerated by restoration of grassland biodiversity [J]
  publication-title: Nat. Commun.
– volume: 10
  start-page: 5075
  year: 2020
  ident: b0065
  article-title: The classification performance and mechanism of machine learning algorithms in winter wheat mapping using Sentinel-2 10 m resolution imagery
  publication-title: Appl. Sci.
– volume: 9
  start-page: 649
  year: 2016
  end-page: 671
  ident: b0025
  article-title: Satellite remote sensing of grasslands: from observation to management
  publication-title: J. Plant Ecol.
– reference: Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., & Turan, V. (2021). Climate Change and Plants: Biodiversity, Growth and Interactions (S. Fahad, Ed.) (1st ed.). CRC Press.
– reference: “Grassland Carbon Management | Climate Change Resource Center”. www.fs.usda.gov. Retrieved 2021-08-20.
– volume: 13
  start-page: 2565
  year: 2021
  ident: b0055
  article-title: Mangrove ecosystem mapping using sentinel-1 and sentinel-2 satellite images and random forest algorithm in google earth engine
  publication-title: Remote Sens.
– volume: 172
  start-page: 105355
  year: 2020
  ident: b0100
  article-title: Hyperspectral imaging using multivariate analysis for simulation and prediction of agricultural crops in Ningxia, China
  publication-title: Comput. Electron. Agric.
– volume: 35
  start-page: 2589
  year: 2014
  end-page: 2614
  ident: b0095
  article-title: PROBA-V mission for global vegetation monitoring: standard products and image quality
  publication-title: Int. J. Remote Sens.
– volume: 30
  start-page: 397
  year: 2020
  end-page: 409
  ident: b0085
  article-title: A synthesizing land-cover classification method based on Google earth engine: a case study in nzhelele and levhuvu catchments, South Africa
  publication-title: Chin. Geogr. Sci.
– volume: 8
  start-page: 365
  year: 2016
  ident: b0160
  article-title: Land cover characterization in West Sudanian Savannas using seasonal features from annual Landsat time series
  publication-title: Remote Sens.
– volume: 69
  start-page: 167
  year: 2012
  end-page: 179
  ident: b0215
  article-title: Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and Lidar data in a Random Forest data mining environment
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 11
  start-page: 727
  year: 1990
  end-page: 740
  ident: b0125
  article-title: A ratio vegetation index adjusted for soil brightness
  publication-title: Int. J. Remote Sens.
– volume: 19
  start-page: 348
  year: 2012
  ident: 10.1016/j.ecolind.2021.108529_b0115
  article-title: Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city
  publication-title: J. Appl. Earth Observat.
– year: 2021
  ident: 10.1016/j.ecolind.2021.108529_b0185
  article-title: Extraction of planting information from navel orange orchards based on random forest and Landsat8 OLI images[J]
  publication-title: Geospatial Information
– volume: 17
  year: 2020
  ident: 10.1016/j.ecolind.2021.108529_b0145
  article-title: Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms
  publication-title: Remote Sens. Appl.: Soc. Environ.
– volume: 10
  start-page: 718
  year: 2019
  ident: 10.1016/j.ecolind.2021.108529_b0010
  article-title: Soil carbon sequestration accelerated by restoration of grassland biodiversity [J]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08636-w
– volume: 18
  start-page: 2628
  issue: 11
  year: 2019
  ident: 10.1016/j.ecolind.2021.108529_b0075
  article-title: Winter wheat identification by integrating spectral and temporal information derived from multi-resolution remote sensing data[J]
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(19)62615-8
– volume: 10
  start-page: e02582
  issue: 2
  year: 2019
  ident: 10.1016/j.ecolind.2021.108529_b0005
  article-title: Grasslands—more important for ecosystem services than you might think [J]
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2582
– ident: 10.1016/j.ecolind.2021.108529_b0090
– volume: 247
  year: 2020
  ident: 10.1016/j.ecolind.2021.108529_b0250
  article-title: Quantifying expansion and removal of Spartina alterniflora on Chongming Island, China, using time series Landsat images during 1995–2018
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111916
– volume: 26
  start-page: 217
  issue: 1
  year: 2005
  ident: 10.1016/j.ecolind.2021.108529_b0195
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160412331269698
– volume: 39
  start-page: 599
  issue: 4
  year: 2005
  ident: 10.1016/j.ecolind.2021.108529_b0245
  article-title: Applying geostatistics for investigations of forest ecosystems using remote sensing imagery[J]
  publication-title: Silva Fennica
  doi: 10.14214/sf.369
– volume: 76
  start-page: 26
  year: 2019
  ident: 10.1016/j.ecolind.2021.108529_b0070
  article-title: Identification and mapping of winter wheat by integrating temporal change information and Kullback-Leibler divergence
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 35
  start-page: 2589
  year: 2014
  ident: 10.1016/j.ecolind.2021.108529_b0095
  article-title: PROBA-V mission for global vegetation monitoring: standard products and image quality
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.883097
– volume: 9
  start-page: 649
  issue: 6
  year: 2016
  ident: 10.1016/j.ecolind.2021.108529_b0025
  article-title: Satellite remote sensing of grasslands: from observation to management
  publication-title: J. Plant Ecol.
  doi: 10.1093/jpe/rtw005
– volume: 101
  start-page: 366
  issue: 3
  year: 2006
  ident: 10.1016/j.ecolind.2021.108529_b0130
  article-title: Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.01.003
– volume: 13
  start-page: 2755
  issue: 14
  year: 2021
  ident: 10.1016/j.ecolind.2021.108529_b0165
  article-title: Aboveground biomass mapping of crops supported by improved CASA model and sentinel-2 multispectral imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs13142755
– volume: 08
  start-page: 611
  issue: 04
  year: 2017
  ident: 10.1016/j.ecolind.2021.108529_b0030
  article-title: Accuracy assessment of land use/land cover classification using remote sensing and GIS
  publication-title: Int. J. Geosci.
  doi: 10.4236/ijg.2017.84033
– volume: 13
  start-page: 1433
  issue: 8
  year: 2021
  ident: 10.1016/j.ecolind.2021.108529_b0040
  article-title: Assessing the effect of training sampling design on the performance of machine learning classifiers for land cover mapping using multi-temporal remote sensing data and google earth engine
  publication-title: Remote Sens.
  doi: 10.3390/rs13081433
– volume: 31
  start-page: 2225
  issue: 14
  year: 2010
  ident: 10.1016/j.ecolind.2021.108529_b0190
  article-title: Variable selection using random forests[J]
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2010.03.014
– volume: 39
  start-page: 2718
  issue: 9
  year: 2018
  ident: 10.1016/j.ecolind.2021.108529_b0205
  article-title: Estimating fractional cover of plant functional types in African savannah from harmonic analysis of MODIS time-series data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1430914
– volume: 28
  start-page: 34450
  issue: 26
  year: 2021
  ident: 10.1016/j.ecolind.2021.108529_b0170
  article-title: Machine learning algorithm-based risk assessment of riparian wetlands in Padma River Basin of Northwest Bangladesh
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-12806-z
– ident: 10.1016/j.ecolind.2021.108529_b0175
– volume: 8
  start-page: 365
  issue: 5
  year: 2016
  ident: 10.1016/j.ecolind.2021.108529_b0160
  article-title: Land cover characterization in West Sudanian Savannas using seasonal features from annual Landsat time series
  publication-title: Remote Sens.
  doi: 10.3390/rs8050365
– volume: 05
  start-page: 752
  year: 2019
  ident: 10.1016/j.ecolind.2021.108529_b0220
  article-title: Remote sensing extraction of summer harvest crops in Jiangsu Province, supported by Google Earth Engine
  publication-title: J. Earth Inf. Sci.
– volume: 30
  start-page: 397
  issue: 3
  year: 2020
  ident: 10.1016/j.ecolind.2021.108529_b0085
  article-title: A synthesizing land-cover classification method based on Google earth engine: a case study in nzhelele and levhuvu catchments, South Africa
  publication-title: Chin. Geogr. Sci.
  doi: 10.1007/s11769-020-1119-y
– ident: 10.1016/j.ecolind.2021.108529_b0015
– volume: 114
  start-page: 106310
  year: 2020
  ident: 10.1016/j.ecolind.2021.108529_b0050
  article-title: A new method for grassland degradation monitoring by vegetation species composition using hyperspectral remote sensing
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2020.106310
– volume: 112
  start-page: 3833
  issue: 10
  year: 2008
  ident: 10.1016/j.ecolind.2021.108529_b0110
  article-title: Development of a two-band enhanced vegetation index without a blue band
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.06.006
– volume: 11
  start-page: 727
  issue: 5
  year: 1990
  ident: 10.1016/j.ecolind.2021.108529_b0125
  article-title: A ratio vegetation index adjusted for soil brightness
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169008955053
– volume: 11
  start-page: 164
  issue: 2
  year: 2019
  ident: 10.1016/j.ecolind.2021.108529_b0150
  article-title: Classification of land cover, forest, and tree species classes with ZiYuan-3 multispectral and stereo data[J]
  publication-title: Remote Sens.
  doi: 10.3390/rs11020164
– volume: 13
  start-page: 2565
  issue: 13
  year: 2021
  ident: 10.1016/j.ecolind.2021.108529_b0055
  article-title: Mangrove ecosystem mapping using sentinel-1 and sentinel-2 satellite images and random forest algorithm in google earth engine
  publication-title: Remote Sens.
  doi: 10.3390/rs13132565
– volume: 10
  start-page: 5075
  issue: 15
  year: 2020
  ident: 10.1016/j.ecolind.2021.108529_b0065
  article-title: The classification performance and mechanism of machine learning algorithms in winter wheat mapping using Sentinel-2 10 m resolution imagery
  publication-title: Appl. Sci.
  doi: 10.3390/app10155075
– volume: 2
  start-page: 720
  issue: 10
  year: 2021
  ident: 10.1016/j.ecolind.2021.108529_b0020
  article-title: Combatting global grassland degradation
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-021-00207-2
– ident: 10.1016/j.ecolind.2021.108529_b0235
  doi: 10.1201/9781003108894
– volume: 8
  start-page: 127
  year: 1979
  ident: 10.1016/j.ecolind.2021.108529_b0105
  article-title: Red and Photographic Infrared l, lnear Combinations for Monitoring Vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
– ident: 10.1016/j.ecolind.2021.108529_b0230
  doi: 10.1201/9781003109037
– volume: 46
  start-page: 212
  issue: S2
  year: 2019
  ident: 10.1016/j.ecolind.2021.108529_b0180
  article-title: A feature selection method incorporating ant colony algorithm and random forest [J]
  publication-title: Comput. Sci.
– ident: 10.1016/j.ecolind.2021.108529_b0240
  doi: 10.1201/9781003108931
– volume: 8
  start-page: 570
  year: 2004
  ident: 10.1016/j.ecolind.2021.108529_b0155
  article-title: GVG, a crop type proportion sampling instrument
  publication-title: J. Remote Sens.
– volume: 21
  start-page: S29
  year: 2018
  ident: 10.1016/j.ecolind.2021.108529_b0045
  article-title: A comparative study of ALOS-2 PALSAR and landsat-8 imagery for land cover classification using maximum likelihood classifier
  publication-title: Egypt. J. Remote Sens. Space Sci.
– volume: 9
  start-page: 40
  issue: 1
  year: 1971
  ident: 10.1016/j.ecolind.2021.108529_b0200
  article-title: Theoretical analysis of an alphabetic confusion matrix
  publication-title: Percept. Psychophys.
  doi: 10.3758/BF03213026
– volume: 27
  start-page: 29900
  issue: 24
  year: 2020
  ident: 10.1016/j.ecolind.2021.108529_b0035
  article-title: Survey on land use/land cover (LU/LC) change analysis in remote sensing and GIS environment: techniques and challenges
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-09091-7
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.ecolind.2021.108529_b0140
  article-title: Google earth engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 13
  start-page: 443
  issue: 3
  year: 2021
  ident: 10.1016/j.ecolind.2021.108529_b0255
  article-title: A classification of tidal flat wetland vegetation combining phenological features with google earth engine[J]
  publication-title: Remote Sens.
  doi: 10.3390/rs13030443
– ident: 10.1016/j.ecolind.2021.108529_b0225
  doi: 10.1201/9781003109013
– volume: 172
  start-page: 105355
  year: 2020
  ident: 10.1016/j.ecolind.2021.108529_b0100
  article-title: Hyperspectral imaging using multivariate analysis for simulation and prediction of agricultural crops in Ningxia, China
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105355
– volume: 1
  start-page: 620
  issue: 4
  year: 2009
  ident: 10.1016/j.ecolind.2021.108529_b0210
  article-title: On the suitability of MODIS time series metrics to map vegetation types in dry savanna ecosystems: a case study in the Kalahari of NE Namibia
  publication-title: Remote Sens.
  doi: 10.3390/rs1040620
– volume: 2
  start-page: 51
  issue: 4
  year: 2019
  ident: 10.1016/j.ecolind.2021.108529_b0080
  article-title: An overview of the major vegetation classification in africa and the new vegetation classification in Ethiopia
  publication-title: Am. J. Zool.
– volume: 25
  start-page: 295
  issue: 3
  year: 1988
  ident: 10.1016/j.ecolind.2021.108529_b0120
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– ident: 10.1016/j.ecolind.2021.108529_b0060
– volume: 65
  start-page: 644
  issue: 4
  year: 2006
  ident: 10.1016/j.ecolind.2021.108529_b0135
  article-title: Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2005.08.005
– volume: 69
  start-page: 167
  year: 2012
  ident: 10.1016/j.ecolind.2021.108529_b0215
  article-title: Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and Lidar data in a Random Forest data mining environment
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2012.03.005
SSID ssj0016996
Score 2.5911808
Snippet •The cloud computing capability of GEE improves the efficiency of obtaining national-scale grassland information.•Time series NDVI can assist in the selection...
It is important to conduct grassland resource surveys for the scientific management of grassland resources. Currently, remote sensing technology is widely used...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108529
SubjectTerms algorithms
biomass
carbon sequestration
Central Africa
data collection
GEE
grasses
Grassland classification
grasslands
Internet
land cover
Optimal feature selection
phenology
PROBA-V
range management
savannas
time series analysis
vegetation index
Zambia
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEBUhp1xK2zTUbVNU6HVt7UpaScc0JIQcemkDphchaSXjUHuD7dxKf3tntFqb9BLIdT-kRTOaecO-eSLka1DcaO9klWSMleiErrwzqfKN0V1qAoIAZFt8b2_uxO1czo_I5dgLg7TKEvuHmJ6jdbkyK6s5e1guZz9qoVAebQ5FSw2lODb8CqHQy6d_9zSPujVm6DBSrMKnD108s_spVHgA5lAwtKmRbScz0jzkpyzj_yRN_Rewcxa6fk1eFfhIL4YvfEOO4votObs6dKvBzbJdt6fkTz7yEslAef1pn-gvt0KVcbrYwJ3c50uR-r6gkLO6fkUBw8K0NMUs-EmXq4zPYTi6zSfm4DBDayMF6Eh7iDgrmBOZYmMYpSie3HfvyN311c_Lm6oct1AFIeWuirB7ZWiUTEYwHWXgJnItvWchaSG48MF4QBwSSuo2mpCgUnFGptCCdbk3_Iwcr_t1fE9o0IkFySBDiiSy3ox0nXRaCu6hQvMTIsZFtqFokeORGL_tSDq7t8U2Fm1jB9tMyHT_2sMgxvHcC9_QgvuHUUs7X-g3C1ucyQrNo3ecsRjBM-vg2tQ2LEolIMBpV0-IHu1vn7gmDLV8bv4vo79Y2Lb4L8atY_-4tU3LW82UMurDy4f_SE4a7MbIJPJP5Hi3eYzngJF2_nPeBP8AjKASDg
  priority: 102
  providerName: Elsevier
Title Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period
URI https://dx.doi.org/10.1016/j.ecolind.2021.108529
https://www.proquest.com/docview/2636807797
https://doaj.org/article/483eba300ee7411ca6f620e5740408a1
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagXLig8qgIj8hIXDd11h6vfSyoVQCpJypFXCzba1etSLZq0hvit3fGu9sAl1y4rtcPecaeb-SZbxj7GBtpTfBQZUipUq0yVfA2V6G2ps11JBBA0RbnenGhvi5h-UepL4oJ6-mB-407Vkam4KUQKWG_efQ661okaBSqn_HF8UGbNzpTw_uBtrbPK2pENddiucvdOb6eoV-HEI5oQus5xdhBwZc7q1TI-_8yTv9c08X2nB2yZwNo5Cf9Yp-zR2n9gh2d7nLUsHE4pJuX7FcpdEkhQGXXeZf5D78ibnF-eYstJbuXU8D7JUdL1XYrjsgVp-U5FZpPfrUqqByH45tSJ4eG6RMaOQJG3uE9s8I5KT5svDw5USZ37St2cXb6_fOiGoosVFEBbKuEZxZi3UC2uJ8JorRJGghBxGyUkipEGxBnADrSOtmY0T_xFnLUKFMZrDxiB-tunV4zHk0WEQTaRZVVYZkB34I3oGRAvyxMmBo32cWBgZwKYfx0Y6jZtRtk40g2rpfNhM0eut30FBz7OnwiCT78TAza5QPqlRv0yu3Tqwkzo_zdAEZ6kIFDXe2b_8OoLw4PK73A-HXq7jau1lIb0TS2efM_1viWPa0pG6MEkb9jB9vbu_QeMdI2TNnj2e_5lD05-fJtcT4th-MenEkSPA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqcoAL4lURnkaC4ya7a3vXPnDg0SqlpRdaKeJibK8dpSLZKkmFkBB_ij_IjNebqFwqIfW6D3vjsb-ZUb75hpDXrmZKWiOyILzPeMNlZo0KmS2VbELpMAhAtsVJNT7jnyZiskP-9LUwSKtM2N9hekTrdGWUVnN0MZuNvhS8Rnm0CSQtBaTiMjErj_zPH5C3rd4efgQjvynLg_3TD-MstRbIHBdinXnYqcKVtQiK59ILx5RnUlibuyA5Z9w6ZcG7CkgfK69cgKjcKBFcBb-EWVRgAty_xQEusG3C8PeGV1JUSnUlTXWe4edty4ZG50NIKSF6RIXSskB6n4ih7dYhxr4BV_ziPx4iur2De-Ruilfpu25J7pMdv3hA9va35XFwM-HD6iH5FXtsIvsoGpy2gX41c5Q1p9Ml3ImFxRS59lMKTrJp5xSCZpiWBh8VRulsHhMCGI6uYoseHKarpaQQq9IWIG4OcyI1rcdtimrNbfOInN2IEfbI7qJd-MeEOhlyJ3JwyTzwKHAjTCOMFJxZSAntgPB-kbVL4ufYg-O77llu5zrZRqNtdGebARluXrvo1D-ue-E9WnDzMIp3xwvtcqrT7tVcMm8Ny3Pv4SgUzlShKnMvag6IKk0xILK3v75yFmCo2XXzv-r3iwacwD9_zMK3lytdVqySeV2r-sn_D_-S3B6ffj7Wx4cnR0_JnRJLQSKD_RnZXS8v_XMI0Nb2RTwQlHy76RP4FybGTpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Zambian+grasslands+using+random+forest+feature+importance+selection+during+the+optimal+phenological+period&rft.jtitle=Ecological+indicators&rft.au=Zhao%2C+Yifan&rft.au=Zhu%2C+Weiwei&rft.au=Wei%2C+Panpan&rft.au=Fang%2C+Peng&rft.date=2022-02-01&rft.issn=1470-160X&rft.volume=135+p.108529-&rft_id=info:doi/10.1016%2Fj.ecolind.2021.108529&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon