Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period
•The cloud computing capability of GEE improves the efficiency of obtaining national-scale grassland information.•Time series NDVI can assist in the selection of optimal phenological periods and improve computational efficiency.•Optimal feature selection can reduce the number of features and improve...
Saved in:
Published in | Ecological indicators Vol. 135; p. 108529 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The cloud computing capability of GEE improves the efficiency of obtaining national-scale grassland information.•Time series NDVI can assist in the selection of optimal phenological periods and improve computational efficiency.•Optimal feature selection can reduce the number of features and improve the classification accuracy.•Elevation was found to be the most critical feature for the classification of Zambian grasslands.
It is important to conduct grassland resource surveys for the scientific management of grassland resources. Currently, remote sensing technology is widely used to classify land cover. The fine classification datasets of grasslands with high spatial and temporal resolutions are very necessary for scientific research. In order to use remote sensing data conveniently, this study selected the Google Earth Engine platform to select 100-m resolution PROBA-V remote sensing images from 2018 of Zambia, in central Africa. The differences in the normalized vegetation index time-series curves of the different types of grasslands were combined, and June to October was identified as the best phenological classification period. Using the random forest feature importance selection algorithm, the original feature indices and identification of the different grass types were optimized. The results indicate that using the optimal feature combination selected by the random forest feature importance selection algorithm to refine the classification of grasslands improves computational efficiency with an overall accuracy of 83%, which is 3% higher than that of the original feature combination. Among the optimal feature combinations, elevation contributes the most to the improvement classification accuracy. The most significant improvement in the producer’s accuracy was found for grassland (30% increase) and savanna (22% increase). Adjustment of the appropriate phenological periods according to the seasonal characteristics of different regions, the methodology established in this study can be easily applied to other areas for the fine classification of grasslands and the subsequent calculation of grassland biomass and carbon storage. |
---|---|
AbstractList | It is important to conduct grassland resource surveys for the scientific management of grassland resources. Currently, remote sensing technology is widely used to classify land cover. The fine classification datasets of grasslands with high spatial and temporal resolutions are very necessary for scientific research. In order to use remote sensing data conveniently, this study selected the Google Earth Engine platform to select 100-m resolution PROBA-V remote sensing images from 2018 of Zambia, in central Africa. The differences in the normalized vegetation index time-series curves of the different types of grasslands were combined, and June to October was identified as the best phenological classification period. Using the random forest feature importance selection algorithm, the original feature indices and identification of the different grass types were optimized. The results indicate that using the optimal feature combination selected by the random forest feature importance selection algorithm to refine the classification of grasslands improves computational efficiency with an overall accuracy of 83%, which is 3% higher than that of the original feature combination. Among the optimal feature combinations, elevation contributes the most to the improvement classification accuracy. The most significant improvement in the producer’s accuracy was found for grassland (30% increase) and savanna (22% increase). Adjustment of the appropriate phenological periods according to the seasonal characteristics of different regions, the methodology established in this study can be easily applied to other areas for the fine classification of grasslands and the subsequent calculation of grassland biomass and carbon storage. •The cloud computing capability of GEE improves the efficiency of obtaining national-scale grassland information.•Time series NDVI can assist in the selection of optimal phenological periods and improve computational efficiency.•Optimal feature selection can reduce the number of features and improve the classification accuracy.•Elevation was found to be the most critical feature for the classification of Zambian grasslands. It is important to conduct grassland resource surveys for the scientific management of grassland resources. Currently, remote sensing technology is widely used to classify land cover. The fine classification datasets of grasslands with high spatial and temporal resolutions are very necessary for scientific research. In order to use remote sensing data conveniently, this study selected the Google Earth Engine platform to select 100-m resolution PROBA-V remote sensing images from 2018 of Zambia, in central Africa. The differences in the normalized vegetation index time-series curves of the different types of grasslands were combined, and June to October was identified as the best phenological classification period. Using the random forest feature importance selection algorithm, the original feature indices and identification of the different grass types were optimized. The results indicate that using the optimal feature combination selected by the random forest feature importance selection algorithm to refine the classification of grasslands improves computational efficiency with an overall accuracy of 83%, which is 3% higher than that of the original feature combination. Among the optimal feature combinations, elevation contributes the most to the improvement classification accuracy. The most significant improvement in the producer’s accuracy was found for grassland (30% increase) and savanna (22% increase). Adjustment of the appropriate phenological periods according to the seasonal characteristics of different regions, the methodology established in this study can be easily applied to other areas for the fine classification of grasslands and the subsequent calculation of grassland biomass and carbon storage. |
ArticleNumber | 108529 |
Author | Zhao, Yifan Liu, Wenjun Wei, Panpan Fang, Peng Wu, Qirui Yan, Nana Zhang, Xiwang Zhao, Hao Zhu, Weiwei |
Author_xml | – sequence: 1 givenname: Yifan surname: Zhao fullname: Zhao, Yifan organization: Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China – sequence: 2 givenname: Weiwei surname: Zhu fullname: Zhu, Weiwei organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China – sequence: 3 givenname: Panpan surname: Wei fullname: Wei, Panpan organization: Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China – sequence: 4 givenname: Peng surname: Fang fullname: Fang, Peng organization: Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China – sequence: 5 givenname: Xiwang surname: Zhang fullname: Zhang, Xiwang email: zhangxiwang@vip.henu.edu.cn organization: Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China – sequence: 6 givenname: Nana surname: Yan fullname: Yan, Nana email: yannn@radi.ac.cn organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China – sequence: 7 givenname: Wenjun surname: Liu fullname: Liu, Wenjun organization: School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China – sequence: 8 givenname: Hao surname: Zhao fullname: Zhao, Hao organization: Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China – sequence: 9 givenname: Qirui surname: Wu fullname: Wu, Qirui organization: Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China |
BookMark | eNqFkUuPFCEUhVmMiTOjP8GEpZtuoYpHERfGdHxMMokbTYwbQlGXHjoUlECZmPjjpbsmLtzMCrjccw7c7wZdxRQBoVeU7Cmh4s1pDzYFH6d9RzraagPv1BW6pkySHRXk-3N0U8qJtF6lxDX6cwimFO-8NdWniJPDP8w8ehPxMbebYOJU8Fp8POLc9mnGLmUoFTswdc2A_bykXE20gAsEsBebac1nRX0AnJbqZxPw8gAxhXRsSe0A2afpBXrmTCjw8nG9Rd8-fvh6-Ly7__Lp7vD-fmcZ53UHHZfcdpI7xcgA3PYK-oGPI7FuYKxno1UjkYwTJgQo66QYjOLOitGoflT9LbrbfKdkTnrJ7T35t07G60sh5aM2uXobQLOhh9H0hABIRqk1womOAJeMtGxDm9frzWvJ6efaBqFnXyyENihIa9Gd6MVApFSytfKt1eZUSgb3L5oSfaalT_qRlj7T0hutpnv7n876esFTs_HhSfW7TQ1tor88ZF2sh4Zn8rnRaV_2Tzj8BQVzum8 |
CitedBy_id | crossref_primary_10_1038_s41598_024_68991_7 crossref_primary_10_3390_rs17060973 crossref_primary_10_1016_j_ejrh_2024_101739 crossref_primary_10_1016_j_scitotenv_2024_174597 crossref_primary_10_3390_agriculture13020455 crossref_primary_10_3390_rs16061052 crossref_primary_10_1016_j_engappai_2023_106367 crossref_primary_10_1080_01431161_2024_2413539 crossref_primary_10_1016_j_foreco_2025_122536 crossref_primary_10_47456_bjpe_v10i2_44374 crossref_primary_10_1016_j_compag_2025_110007 crossref_primary_10_1016_j_oregeorev_2024_106396 crossref_primary_10_3390_land13030392 crossref_primary_10_1134_S1061830922601088 crossref_primary_10_1016_j_compag_2025_110120 crossref_primary_10_3390_agronomy12081948 crossref_primary_10_3390_land12010099 crossref_primary_10_1111_aje_13300 crossref_primary_10_3390_rs17071146 crossref_primary_10_3390_met14040428 crossref_primary_10_3390_rs16244730 crossref_primary_10_1080_17538947_2023_2270459 crossref_primary_10_1016_j_renene_2022_07_016 crossref_primary_10_3390_rs14215458 crossref_primary_10_3390_rs16010031 crossref_primary_10_3390_app132011225 crossref_primary_10_3390_rs14205130 crossref_primary_10_1016_j_dajour_2023_100238 crossref_primary_10_1016_j_ecolind_2022_108961 crossref_primary_10_1016_j_jwpe_2025_107251 crossref_primary_10_1016_j_ecolind_2023_111392 crossref_primary_10_3390_agriculture14030389 crossref_primary_10_3390_rs15143675 crossref_primary_10_1016_j_jwpe_2023_104102 crossref_primary_10_1080_15481603_2024_2385170 crossref_primary_10_1016_j_asoc_2024_112497 crossref_primary_10_3390_su15086949 crossref_primary_10_1038_s41597_024_03990_x crossref_primary_10_3390_rs15030750 crossref_primary_10_3390_d16080448 crossref_primary_10_3390_rs14112722 crossref_primary_10_1186_s12302_024_00901_0 crossref_primary_10_3390_agriculture12081087 crossref_primary_10_3390_agriculture13010098 crossref_primary_10_3390_w15183222 crossref_primary_10_3390_rs15174140 crossref_primary_10_1016_j_ecolind_2023_109868 crossref_primary_10_1007_s12145_023_01135_z crossref_primary_10_1016_j_eswa_2023_119539 crossref_primary_10_1016_j_ecolind_2025_113081 crossref_primary_10_1002_rra_4335 crossref_primary_10_1115_1_4054969 crossref_primary_10_1111_ffe_14325 crossref_primary_10_3390_ani14182646 crossref_primary_10_1016_j_ymssp_2025_112564 crossref_primary_10_1021_acsomega_4c04901 crossref_primary_10_3390_drones8110639 crossref_primary_10_3390_rs14051059 crossref_primary_10_1016_j_jenvman_2024_122095 crossref_primary_10_1109_JSTARS_2024_3380580 crossref_primary_10_1016_j_marpol_2025_106631 crossref_primary_10_1016_j_ecolind_2023_109891 crossref_primary_10_1016_j_ejrs_2023_04_002 crossref_primary_10_1016_j_jenvman_2023_118376 crossref_primary_10_1016_j_iswa_2024_200472 crossref_primary_10_3390_land14010184 crossref_primary_10_3390_molecules30051092 crossref_primary_10_3390_land12091686 crossref_primary_10_1016_j_mlwa_2023_100516 crossref_primary_10_1088_1755_1315_1109_1_012059 crossref_primary_10_1016_j_aap_2023_107043 crossref_primary_10_1038_s41598_023_40564_0 crossref_primary_10_3390_biology11111654 crossref_primary_10_1109_TITS_2024_3474745 crossref_primary_10_3390_rs16132479 crossref_primary_10_4995_raet_2024_20831 crossref_primary_10_3390_rs15205026 |
Cites_doi | 10.1038/s41467-019-08636-w 10.1016/S2095-3119(19)62615-8 10.1002/ecs2.2582 10.1016/j.rse.2020.111916 10.1080/01431160412331269698 10.14214/sf.369 10.1080/01431161.2014.883097 10.1093/jpe/rtw005 10.1016/j.rse.2006.01.003 10.3390/rs13142755 10.4236/ijg.2017.84033 10.3390/rs13081433 10.1016/j.patrec.2010.03.014 10.1080/01431161.2018.1430914 10.1007/s11356-021-12806-z 10.3390/rs8050365 10.1007/s11769-020-1119-y 10.1016/j.ecolind.2020.106310 10.1016/j.rse.2008.06.006 10.1080/01431169008955053 10.3390/rs11020164 10.3390/rs13132565 10.3390/app10155075 10.1038/s43017-021-00207-2 10.1201/9781003108894 10.1016/0034-4257(79)90013-0 10.1201/9781003109037 10.1201/9781003108931 10.3758/BF03213026 10.1007/s11356-020-09091-7 10.1016/j.rse.2017.06.031 10.3390/rs13030443 10.1201/9781003109013 10.1016/j.compag.2020.105355 10.3390/rs1040620 10.1016/0034-4257(88)90106-X 10.1016/j.jaridenv.2005.08.005 10.1016/j.isprsjprs.2012.03.005 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.ecolind.2021.108529 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
ExternalDocumentID | oai_doaj_org_article_483eba300ee7411ca6f620e5740408a1 10_1016_j_ecolind_2021_108529 S1470160X21011948 |
GeographicLocations | Central Africa Zambia |
GeographicLocations_xml | – name: Central Africa – name: Zambia |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEIPS AEKER AENEX AEQOU AFJKZ AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSH SSJ SSZ T5K ~02 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c455t-e2575c275f9408e5c39e385bb0cf84434bc9b07450466e9cf768a95fc6ba93b93 |
IEDL.DBID | DOA |
ISSN | 1470-160X |
IngestDate | Wed Aug 27 01:29:46 EDT 2025 Fri Jul 11 06:07:02 EDT 2025 Tue Jul 01 04:26:53 EDT 2025 Thu Apr 24 22:59:33 EDT 2025 Sun Apr 06 06:54:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Optimal feature selection Grassland classification PROBA-V GEE |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-e2575c275f9408e5c39e385bb0cf84434bc9b07450466e9cf768a95fc6ba93b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/483eba300ee7411ca6f620e5740408a1 |
PQID | 2636807797 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_483eba300ee7411ca6f620e5740408a1 proquest_miscellaneous_2636807797 crossref_primary_10_1016_j_ecolind_2021_108529 crossref_citationtrail_10_1016_j_ecolind_2021_108529 elsevier_sciencedirect_doi_10_1016_j_ecolind_2021_108529 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 20220201 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Ecological indicators |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Zhang, Liu, Qin, Qin (b0075) 2019; 18 Tucker (b0105) 1979; 8 Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., Turan, V., 2021c. Sustainable Soil and Land Management and Climate Change. Sustainable Soil and Land Management and Climate Change. Fang, Yan, Wei, Zhao, Zhang (b0165) 2021; 13 Lyu, Li, Dang, Dou, Xuan, Liu, Li, Gong (b0050) 2020; 114 Jiang, Huete, Chen, Chen, Li, Yan, Zhang (b0130) 2006; 101 Mengist (b0080) 2019; 2 Ghorbanian, Zaghian, Asiyabi, Amani, Mohammadzadeh, Jamali (b0055) 2021; 13 Huete (b0120) 1988; 25 Shaharum, Shafri, Ghani, Samsatli, Al-Habshi, Yusuf (b0145) 2020; 17 Ali, Qazi, Aslam (b0045) 2018; 21 Li, Li, Zhang, Xin, Huawei (b0180) 2019; 46 Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., & Turan, V. (2021). Climate Change and Plants: Biodiversity, Growth and Interactions (S. Fahad, Ed.) (1st ed.). CRC Press. Yang H. 2019. Comparative study of object-oriented forest classification methods considering feature type and feature selection. Master's Thesis, Xi'an: Shaanxi Normal University. Fernandez-Buces, Siebe, Cram, Palacio (b0135) 2006; 65 Jiang, Huete, Didan, Miura (b0110) 2008; 112 Xie, Chen, Lu, Li, Chen (b0150) 2019; 11 Hüttich, Gessner, Herold, Strohbach, Schmidt, Keil, Dech (b0210) 2009; 1 He, Zhang, Wu, Xing (b0220) 2019; 05 Zhang, Xiao, Wang, Xu, Chen, Wang, Ma, Zhao, Li (b0250) 2020; 247 Bengtsson, Bullock, Egoh, Everson, Everson, O'Connor, O'Farrell, Smith, Lindborg (b0005) 2019; 10 Dierckx, Sterckx, Benhadj, Livens, Duhoux, Van Achteren, Francois, Mellab, Saint (b0095) 2014; 35 Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (b0140) 2017; 202 Zeng, Wu, Wang, Musakwa, Tian, Mashimbye, Poona, Syndey (b0085) 2020; 30 Yang, Tilman, Furey, Lehman (b0010) 2019; 10 Wu, Tian, Li (b0155) 2004; 8 Naidoo, Cho, Mathieu, Asner (b0215) 2012; 69 Shetty, Gupta, Belgiu, Srivastav (b0040) 2021; 13 MohanRajan, Loganathan, Manoharan (b0035) 2020; 27 Liu, Heiskanen, Aynekulu, Maeda, Pellikka (b0160) 2016; 8 Pal (b0195) 2005; 26 Wu, Shi, Zhuo, Zhang, Zhou, Xia, Tao, Gao, Tian (b0255) 2021; 13 Rwanga, Ndambuki (b0030) 2017; 08 Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., Turan, V., 2021b. Developing Climate-Resilient Crops. Developing Climate-Resilient Crops. Ali, Cawkwell, Dwyer, Barrett, Green (b0025) 2016; 9 Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., Turan, V., 2021a. Plant growth. Regulators for Climate-smart agriculture. Plant Growth Regulators for Climate-Smart Agriculture. Zawadzki, Cieszewski, Zasada (b0245) 2005; 39 Islam, Talukdar, Mahato, Ziaul, Eibek, Akhter, Pham, Mohammadi, Karimi, Linh (b0170) 2021; 28 Mallick, Singh, Shashtri, Rahman, Mukherjee (b0115) 2012; 19 Genuer, Poggi, Tuleau-Malot (b0190) 2010; 31 Zhang, Qiu, Qin (b0070) 2019; 76 Bardgett, Bullock, Lavorel, Manning, Schaffner, Ostle, Chomel, Durigan, L. Fry, Johnson, Lavallee, Le Provost, Luo, Png, Sankaran, Hou, Zhou, Ma, Ren, Li, Ding, Li, Shi (b0020) 2021; 2 Hong, Abd El-Hamid (b0100) 2020; 172 Lin, Wang, Wang (b0185) 2021 MARTIN DZEKEDZEKE, Martin. Environmental Status and Management of Zambia-Brief introduction and discussion on forestry and land management [C]. Proceedings of the 2nd Oasis Forum.2011:252-274. Jiang X. 2018, Method and Application of Improving the Accuracy of Land Cover Classification based on Terrain Factors: A Case Study of MODIS Land Cover Product in Beijing-Tianjin-Hebei Region. Master's Thesis, Kaifeng: Henan University. Ibrahim, Balzter, Tansey, Tsutsumida, Mathieu (b0205) 2018; 39 “Grassland Carbon Management | Climate Change Resource Center”. www.fs.usda.gov. Retrieved 2021-08-20. Fang, Zhang, Wei, Wang, Zhang, Liu, Zhao (b0065) 2020; 10 Townsend (b0200) 1971; 9 Major, Baret, Guyot (b0125) 1990; 11 Zhang (10.1016/j.ecolind.2021.108529_b0075) 2019; 18 10.1016/j.ecolind.2021.108529_b0235 Hong (10.1016/j.ecolind.2021.108529_b0100) 2020; 172 Islam (10.1016/j.ecolind.2021.108529_b0170) 2021; 28 Lin (10.1016/j.ecolind.2021.108529_b0185) 2021 Ali (10.1016/j.ecolind.2021.108529_b0045) 2018; 21 Wu (10.1016/j.ecolind.2021.108529_b0155) 2004; 8 Xie (10.1016/j.ecolind.2021.108529_b0150) 2019; 11 Ali (10.1016/j.ecolind.2021.108529_b0025) 2016; 9 Ibrahim (10.1016/j.ecolind.2021.108529_b0205) 2018; 39 Mengist (10.1016/j.ecolind.2021.108529_b0080) 2019; 2 10.1016/j.ecolind.2021.108529_b0230 Li (10.1016/j.ecolind.2021.108529_b0180) 2019; 46 Bengtsson (10.1016/j.ecolind.2021.108529_b0005) 2019; 10 10.1016/j.ecolind.2021.108529_b0225 Dierckx (10.1016/j.ecolind.2021.108529_b0095) 2014; 35 Lyu (10.1016/j.ecolind.2021.108529_b0050) 2020; 114 Pal (10.1016/j.ecolind.2021.108529_b0195) 2005; 26 10.1016/j.ecolind.2021.108529_b0060 Jiang (10.1016/j.ecolind.2021.108529_b0130) 2006; 101 10.1016/j.ecolind.2021.108529_b0015 Fang (10.1016/j.ecolind.2021.108529_b0065) 2020; 10 Fernandez-Buces (10.1016/j.ecolind.2021.108529_b0135) 2006; 65 Liu (10.1016/j.ecolind.2021.108529_b0160) 2016; 8 Wu (10.1016/j.ecolind.2021.108529_b0255) 2021; 13 Townsend (10.1016/j.ecolind.2021.108529_b0200) 1971; 9 Zawadzki (10.1016/j.ecolind.2021.108529_b0245) 2005; 39 Zhang (10.1016/j.ecolind.2021.108529_b0250) 2020; 247 10.1016/j.ecolind.2021.108529_b0090 Yang (10.1016/j.ecolind.2021.108529_b0010) 2019; 10 Tucker (10.1016/j.ecolind.2021.108529_b0105) 1979; 8 Fang (10.1016/j.ecolind.2021.108529_b0165) 2021; 13 Major (10.1016/j.ecolind.2021.108529_b0125) 1990; 11 10.1016/j.ecolind.2021.108529_b0175 Ghorbanian (10.1016/j.ecolind.2021.108529_b0055) 2021; 13 Bardgett (10.1016/j.ecolind.2021.108529_b0020) 2021; 2 Hüttich (10.1016/j.ecolind.2021.108529_b0210) 2009; 1 Genuer (10.1016/j.ecolind.2021.108529_b0190) 2010; 31 Huete (10.1016/j.ecolind.2021.108529_b0120) 1988; 25 Gorelick (10.1016/j.ecolind.2021.108529_b0140) 2017; 202 He (10.1016/j.ecolind.2021.108529_b0220) 2019; 05 Jiang (10.1016/j.ecolind.2021.108529_b0110) 2008; 112 MohanRajan (10.1016/j.ecolind.2021.108529_b0035) 2020; 27 Shetty (10.1016/j.ecolind.2021.108529_b0040) 2021; 13 Naidoo (10.1016/j.ecolind.2021.108529_b0215) 2012; 69 Shaharum (10.1016/j.ecolind.2021.108529_b0145) 2020; 17 Rwanga (10.1016/j.ecolind.2021.108529_b0030) 2017; 08 10.1016/j.ecolind.2021.108529_b0240 Zhang (10.1016/j.ecolind.2021.108529_b0070) 2019; 76 Mallick (10.1016/j.ecolind.2021.108529_b0115) 2012; 19 Zeng (10.1016/j.ecolind.2021.108529_b0085) 2020; 30 |
References_xml | – volume: 25 start-page: 295 year: 1988 end-page: 309 ident: b0120 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. – volume: 21 start-page: S29 year: 2018 end-page: S35 ident: b0045 article-title: A comparative study of ALOS-2 PALSAR and landsat-8 imagery for land cover classification using maximum likelihood classifier publication-title: Egypt. J. Remote Sens. Space Sci. – volume: 9 start-page: 40 year: 1971 end-page: 50 ident: b0200 article-title: Theoretical analysis of an alphabetic confusion matrix publication-title: Percept. Psychophys. – volume: 2 start-page: 720 year: 2021 end-page: 735 ident: b0020 article-title: Combatting global grassland degradation publication-title: Nat. Rev. Earth Environ. – volume: 05 start-page: 752 year: 2019 end-page: 766 ident: b0220 article-title: Remote sensing extraction of summer harvest crops in Jiangsu Province, supported by Google Earth Engine publication-title: J. Earth Inf. Sci. – volume: 11 start-page: 164 year: 2019 ident: b0150 article-title: Classification of land cover, forest, and tree species classes with ZiYuan-3 multispectral and stereo data[J] publication-title: Remote Sens. – reference: Yang H. 2019. Comparative study of object-oriented forest classification methods considering feature type and feature selection. Master's Thesis, Xi'an: Shaanxi Normal University. – volume: 28 start-page: 34450 year: 2021 end-page: 34471 ident: b0170 article-title: Machine learning algorithm-based risk assessment of riparian wetlands in Padma River Basin of Northwest Bangladesh publication-title: Environ. Sci. Pollut. Res. – reference: Jiang X. 2018, Method and Application of Improving the Accuracy of Land Cover Classification based on Terrain Factors: A Case Study of MODIS Land Cover Product in Beijing-Tianjin-Hebei Region. Master's Thesis, Kaifeng: Henan University. – volume: 26 start-page: 217 year: 2005 end-page: 222 ident: b0195 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Remote Sens. – volume: 18 start-page: 2628 year: 2019 end-page: 2643 ident: b0075 article-title: Winter wheat identification by integrating spectral and temporal information derived from multi-resolution remote sensing data[J] publication-title: J. Integr. Agric. – volume: 202 start-page: 18 year: 2017 end-page: 27 ident: b0140 article-title: Google earth engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. – volume: 46 start-page: 212 year: 2019 end-page: 215 ident: b0180 article-title: A feature selection method incorporating ant colony algorithm and random forest [J] publication-title: Comput. Sci. – volume: 13 start-page: 2755 year: 2021 ident: b0165 article-title: Aboveground biomass mapping of crops supported by improved CASA model and sentinel-2 multispectral imagery publication-title: Remote Sens. – volume: 101 start-page: 366 year: 2006 end-page: 378 ident: b0130 article-title: Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction publication-title: Remote Sens. Environ. – volume: 76 start-page: 26 year: 2019 end-page: 39 ident: b0070 article-title: Identification and mapping of winter wheat by integrating temporal change information and Kullback-Leibler divergence publication-title: Int. J. Appl. Earth Obs. Geoinf. – reference: MARTIN DZEKEDZEKE, Martin. Environmental Status and Management of Zambia-Brief introduction and discussion on forestry and land management [C]. Proceedings of the 2nd Oasis Forum.2011:252-274. – volume: 17 year: 2020 ident: b0145 article-title: Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms publication-title: Remote Sens. Appl.: Soc. Environ. – volume: 1 start-page: 620 year: 2009 end-page: 643 ident: b0210 article-title: On the suitability of MODIS time series metrics to map vegetation types in dry savanna ecosystems: a case study in the Kalahari of NE Namibia publication-title: Remote Sens. – volume: 10 start-page: e02582 year: 2019 ident: b0005 article-title: Grasslands—more important for ecosystem services than you might think [J] publication-title: Ecosphere – volume: 39 start-page: 599 year: 2005 ident: b0245 article-title: Applying geostatistics for investigations of forest ecosystems using remote sensing imagery[J] publication-title: Silva Fennica – volume: 247 year: 2020 ident: b0250 article-title: Quantifying expansion and removal of Spartina alterniflora on Chongming Island, China, using time series Landsat images during 1995–2018 publication-title: Remote Sens. Environ. – volume: 8 start-page: 570 year: 2004 end-page: 580 ident: b0155 article-title: GVG, a crop type proportion sampling instrument publication-title: J. Remote Sens. – volume: 08 start-page: 611 year: 2017 end-page: 622 ident: b0030 article-title: Accuracy assessment of land use/land cover classification using remote sensing and GIS publication-title: Int. J. Geosci. – reference: Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., Turan, V., 2021b. Developing Climate-Resilient Crops. Developing Climate-Resilient Crops. – reference: Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., Turan, V., 2021c. Sustainable Soil and Land Management and Climate Change. Sustainable Soil and Land Management and Climate Change. – reference: Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., Turan, V., 2021a. Plant growth. Regulators for Climate-smart agriculture. Plant Growth Regulators for Climate-Smart Agriculture. – volume: 13 start-page: 443 year: 2021 ident: b0255 article-title: A classification of tidal flat wetland vegetation combining phenological features with google earth engine[J] publication-title: Remote Sens. – volume: 19 start-page: 348 year: 2012 end-page: 358 ident: b0115 article-title: Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city publication-title: J. Appl. Earth Observat. – volume: 65 start-page: 644 year: 2006 end-page: 667 ident: b0135 article-title: Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico publication-title: J. Arid Environ. – volume: 39 start-page: 2718 year: 2018 end-page: 2745 ident: b0205 article-title: Estimating fractional cover of plant functional types in African savannah from harmonic analysis of MODIS time-series data publication-title: Int. J. Remote Sens. – volume: 114 start-page: 106310 year: 2020 ident: b0050 article-title: A new method for grassland degradation monitoring by vegetation species composition using hyperspectral remote sensing publication-title: Ecol. Ind. – volume: 13 start-page: 1433 year: 2021 ident: b0040 article-title: Assessing the effect of training sampling design on the performance of machine learning classifiers for land cover mapping using multi-temporal remote sensing data and google earth engine publication-title: Remote Sens. – year: 2021 ident: b0185 article-title: Extraction of planting information from navel orange orchards based on random forest and Landsat8 OLI images[J] publication-title: Geospatial Information – volume: 2 start-page: 51 year: 2019 end-page: 62 ident: b0080 article-title: An overview of the major vegetation classification in africa and the new vegetation classification in Ethiopia publication-title: Am. J. Zool. – volume: 27 start-page: 29900 year: 2020 end-page: 29926 ident: b0035 article-title: Survey on land use/land cover (LU/LC) change analysis in remote sensing and GIS environment: techniques and challenges publication-title: Environ. Sci. Pollut. Res. – volume: 31 start-page: 2225 year: 2010 end-page: 2236 ident: b0190 article-title: Variable selection using random forests[J] publication-title: Pattern Recogn. Lett. – volume: 112 start-page: 3833 year: 2008 end-page: 3845 ident: b0110 article-title: Development of a two-band enhanced vegetation index without a blue band publication-title: Remote Sens. Environ. – volume: 8 start-page: 127 year: 1979 end-page: 150 ident: b0105 article-title: Red and Photographic Infrared l, lnear Combinations for Monitoring Vegetation publication-title: Remote Sens. Environ. – volume: 10 start-page: 718 year: 2019 ident: b0010 article-title: Soil carbon sequestration accelerated by restoration of grassland biodiversity [J] publication-title: Nat. Commun. – volume: 10 start-page: 5075 year: 2020 ident: b0065 article-title: The classification performance and mechanism of machine learning algorithms in winter wheat mapping using Sentinel-2 10 m resolution imagery publication-title: Appl. Sci. – volume: 9 start-page: 649 year: 2016 end-page: 671 ident: b0025 article-title: Satellite remote sensing of grasslands: from observation to management publication-title: J. Plant Ecol. – reference: Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., & Turan, V. (2021). Climate Change and Plants: Biodiversity, Growth and Interactions (S. Fahad, Ed.) (1st ed.). CRC Press. – reference: “Grassland Carbon Management | Climate Change Resource Center”. www.fs.usda.gov. Retrieved 2021-08-20. – volume: 13 start-page: 2565 year: 2021 ident: b0055 article-title: Mangrove ecosystem mapping using sentinel-1 and sentinel-2 satellite images and random forest algorithm in google earth engine publication-title: Remote Sens. – volume: 172 start-page: 105355 year: 2020 ident: b0100 article-title: Hyperspectral imaging using multivariate analysis for simulation and prediction of agricultural crops in Ningxia, China publication-title: Comput. Electron. Agric. – volume: 35 start-page: 2589 year: 2014 end-page: 2614 ident: b0095 article-title: PROBA-V mission for global vegetation monitoring: standard products and image quality publication-title: Int. J. Remote Sens. – volume: 30 start-page: 397 year: 2020 end-page: 409 ident: b0085 article-title: A synthesizing land-cover classification method based on Google earth engine: a case study in nzhelele and levhuvu catchments, South Africa publication-title: Chin. Geogr. Sci. – volume: 8 start-page: 365 year: 2016 ident: b0160 article-title: Land cover characterization in West Sudanian Savannas using seasonal features from annual Landsat time series publication-title: Remote Sens. – volume: 69 start-page: 167 year: 2012 end-page: 179 ident: b0215 article-title: Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and Lidar data in a Random Forest data mining environment publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 11 start-page: 727 year: 1990 end-page: 740 ident: b0125 article-title: A ratio vegetation index adjusted for soil brightness publication-title: Int. J. Remote Sens. – volume: 19 start-page: 348 year: 2012 ident: 10.1016/j.ecolind.2021.108529_b0115 article-title: Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city publication-title: J. Appl. Earth Observat. – year: 2021 ident: 10.1016/j.ecolind.2021.108529_b0185 article-title: Extraction of planting information from navel orange orchards based on random forest and Landsat8 OLI images[J] publication-title: Geospatial Information – volume: 17 year: 2020 ident: 10.1016/j.ecolind.2021.108529_b0145 article-title: Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms publication-title: Remote Sens. Appl.: Soc. Environ. – volume: 10 start-page: 718 year: 2019 ident: 10.1016/j.ecolind.2021.108529_b0010 article-title: Soil carbon sequestration accelerated by restoration of grassland biodiversity [J] publication-title: Nat. Commun. doi: 10.1038/s41467-019-08636-w – volume: 18 start-page: 2628 issue: 11 year: 2019 ident: 10.1016/j.ecolind.2021.108529_b0075 article-title: Winter wheat identification by integrating spectral and temporal information derived from multi-resolution remote sensing data[J] publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(19)62615-8 – volume: 10 start-page: e02582 issue: 2 year: 2019 ident: 10.1016/j.ecolind.2021.108529_b0005 article-title: Grasslands—more important for ecosystem services than you might think [J] publication-title: Ecosphere doi: 10.1002/ecs2.2582 – ident: 10.1016/j.ecolind.2021.108529_b0090 – volume: 247 year: 2020 ident: 10.1016/j.ecolind.2021.108529_b0250 article-title: Quantifying expansion and removal of Spartina alterniflora on Chongming Island, China, using time series Landsat images during 1995–2018 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111916 – volume: 26 start-page: 217 issue: 1 year: 2005 ident: 10.1016/j.ecolind.2021.108529_b0195 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431160412331269698 – volume: 39 start-page: 599 issue: 4 year: 2005 ident: 10.1016/j.ecolind.2021.108529_b0245 article-title: Applying geostatistics for investigations of forest ecosystems using remote sensing imagery[J] publication-title: Silva Fennica doi: 10.14214/sf.369 – volume: 76 start-page: 26 year: 2019 ident: 10.1016/j.ecolind.2021.108529_b0070 article-title: Identification and mapping of winter wheat by integrating temporal change information and Kullback-Leibler divergence publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 35 start-page: 2589 year: 2014 ident: 10.1016/j.ecolind.2021.108529_b0095 article-title: PROBA-V mission for global vegetation monitoring: standard products and image quality publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.883097 – volume: 9 start-page: 649 issue: 6 year: 2016 ident: 10.1016/j.ecolind.2021.108529_b0025 article-title: Satellite remote sensing of grasslands: from observation to management publication-title: J. Plant Ecol. doi: 10.1093/jpe/rtw005 – volume: 101 start-page: 366 issue: 3 year: 2006 ident: 10.1016/j.ecolind.2021.108529_b0130 article-title: Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.01.003 – volume: 13 start-page: 2755 issue: 14 year: 2021 ident: 10.1016/j.ecolind.2021.108529_b0165 article-title: Aboveground biomass mapping of crops supported by improved CASA model and sentinel-2 multispectral imagery publication-title: Remote Sens. doi: 10.3390/rs13142755 – volume: 08 start-page: 611 issue: 04 year: 2017 ident: 10.1016/j.ecolind.2021.108529_b0030 article-title: Accuracy assessment of land use/land cover classification using remote sensing and GIS publication-title: Int. J. Geosci. doi: 10.4236/ijg.2017.84033 – volume: 13 start-page: 1433 issue: 8 year: 2021 ident: 10.1016/j.ecolind.2021.108529_b0040 article-title: Assessing the effect of training sampling design on the performance of machine learning classifiers for land cover mapping using multi-temporal remote sensing data and google earth engine publication-title: Remote Sens. doi: 10.3390/rs13081433 – volume: 31 start-page: 2225 issue: 14 year: 2010 ident: 10.1016/j.ecolind.2021.108529_b0190 article-title: Variable selection using random forests[J] publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2010.03.014 – volume: 39 start-page: 2718 issue: 9 year: 2018 ident: 10.1016/j.ecolind.2021.108529_b0205 article-title: Estimating fractional cover of plant functional types in African savannah from harmonic analysis of MODIS time-series data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1430914 – volume: 28 start-page: 34450 issue: 26 year: 2021 ident: 10.1016/j.ecolind.2021.108529_b0170 article-title: Machine learning algorithm-based risk assessment of riparian wetlands in Padma River Basin of Northwest Bangladesh publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-12806-z – ident: 10.1016/j.ecolind.2021.108529_b0175 – volume: 8 start-page: 365 issue: 5 year: 2016 ident: 10.1016/j.ecolind.2021.108529_b0160 article-title: Land cover characterization in West Sudanian Savannas using seasonal features from annual Landsat time series publication-title: Remote Sens. doi: 10.3390/rs8050365 – volume: 05 start-page: 752 year: 2019 ident: 10.1016/j.ecolind.2021.108529_b0220 article-title: Remote sensing extraction of summer harvest crops in Jiangsu Province, supported by Google Earth Engine publication-title: J. Earth Inf. Sci. – volume: 30 start-page: 397 issue: 3 year: 2020 ident: 10.1016/j.ecolind.2021.108529_b0085 article-title: A synthesizing land-cover classification method based on Google earth engine: a case study in nzhelele and levhuvu catchments, South Africa publication-title: Chin. Geogr. Sci. doi: 10.1007/s11769-020-1119-y – ident: 10.1016/j.ecolind.2021.108529_b0015 – volume: 114 start-page: 106310 year: 2020 ident: 10.1016/j.ecolind.2021.108529_b0050 article-title: A new method for grassland degradation monitoring by vegetation species composition using hyperspectral remote sensing publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2020.106310 – volume: 112 start-page: 3833 issue: 10 year: 2008 ident: 10.1016/j.ecolind.2021.108529_b0110 article-title: Development of a two-band enhanced vegetation index without a blue band publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.06.006 – volume: 11 start-page: 727 issue: 5 year: 1990 ident: 10.1016/j.ecolind.2021.108529_b0125 article-title: A ratio vegetation index adjusted for soil brightness publication-title: Int. J. Remote Sens. doi: 10.1080/01431169008955053 – volume: 11 start-page: 164 issue: 2 year: 2019 ident: 10.1016/j.ecolind.2021.108529_b0150 article-title: Classification of land cover, forest, and tree species classes with ZiYuan-3 multispectral and stereo data[J] publication-title: Remote Sens. doi: 10.3390/rs11020164 – volume: 13 start-page: 2565 issue: 13 year: 2021 ident: 10.1016/j.ecolind.2021.108529_b0055 article-title: Mangrove ecosystem mapping using sentinel-1 and sentinel-2 satellite images and random forest algorithm in google earth engine publication-title: Remote Sens. doi: 10.3390/rs13132565 – volume: 10 start-page: 5075 issue: 15 year: 2020 ident: 10.1016/j.ecolind.2021.108529_b0065 article-title: The classification performance and mechanism of machine learning algorithms in winter wheat mapping using Sentinel-2 10 m resolution imagery publication-title: Appl. Sci. doi: 10.3390/app10155075 – volume: 2 start-page: 720 issue: 10 year: 2021 ident: 10.1016/j.ecolind.2021.108529_b0020 article-title: Combatting global grassland degradation publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-021-00207-2 – ident: 10.1016/j.ecolind.2021.108529_b0235 doi: 10.1201/9781003108894 – volume: 8 start-page: 127 year: 1979 ident: 10.1016/j.ecolind.2021.108529_b0105 article-title: Red and Photographic Infrared l, lnear Combinations for Monitoring Vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 – ident: 10.1016/j.ecolind.2021.108529_b0230 doi: 10.1201/9781003109037 – volume: 46 start-page: 212 issue: S2 year: 2019 ident: 10.1016/j.ecolind.2021.108529_b0180 article-title: A feature selection method incorporating ant colony algorithm and random forest [J] publication-title: Comput. Sci. – ident: 10.1016/j.ecolind.2021.108529_b0240 doi: 10.1201/9781003108931 – volume: 8 start-page: 570 year: 2004 ident: 10.1016/j.ecolind.2021.108529_b0155 article-title: GVG, a crop type proportion sampling instrument publication-title: J. Remote Sens. – volume: 21 start-page: S29 year: 2018 ident: 10.1016/j.ecolind.2021.108529_b0045 article-title: A comparative study of ALOS-2 PALSAR and landsat-8 imagery for land cover classification using maximum likelihood classifier publication-title: Egypt. J. Remote Sens. Space Sci. – volume: 9 start-page: 40 issue: 1 year: 1971 ident: 10.1016/j.ecolind.2021.108529_b0200 article-title: Theoretical analysis of an alphabetic confusion matrix publication-title: Percept. Psychophys. doi: 10.3758/BF03213026 – volume: 27 start-page: 29900 issue: 24 year: 2020 ident: 10.1016/j.ecolind.2021.108529_b0035 article-title: Survey on land use/land cover (LU/LC) change analysis in remote sensing and GIS environment: techniques and challenges publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-09091-7 – volume: 202 start-page: 18 year: 2017 ident: 10.1016/j.ecolind.2021.108529_b0140 article-title: Google earth engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 13 start-page: 443 issue: 3 year: 2021 ident: 10.1016/j.ecolind.2021.108529_b0255 article-title: A classification of tidal flat wetland vegetation combining phenological features with google earth engine[J] publication-title: Remote Sens. doi: 10.3390/rs13030443 – ident: 10.1016/j.ecolind.2021.108529_b0225 doi: 10.1201/9781003109013 – volume: 172 start-page: 105355 year: 2020 ident: 10.1016/j.ecolind.2021.108529_b0100 article-title: Hyperspectral imaging using multivariate analysis for simulation and prediction of agricultural crops in Ningxia, China publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105355 – volume: 1 start-page: 620 issue: 4 year: 2009 ident: 10.1016/j.ecolind.2021.108529_b0210 article-title: On the suitability of MODIS time series metrics to map vegetation types in dry savanna ecosystems: a case study in the Kalahari of NE Namibia publication-title: Remote Sens. doi: 10.3390/rs1040620 – volume: 2 start-page: 51 issue: 4 year: 2019 ident: 10.1016/j.ecolind.2021.108529_b0080 article-title: An overview of the major vegetation classification in africa and the new vegetation classification in Ethiopia publication-title: Am. J. Zool. – volume: 25 start-page: 295 issue: 3 year: 1988 ident: 10.1016/j.ecolind.2021.108529_b0120 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – ident: 10.1016/j.ecolind.2021.108529_b0060 – volume: 65 start-page: 644 issue: 4 year: 2006 ident: 10.1016/j.ecolind.2021.108529_b0135 article-title: Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2005.08.005 – volume: 69 start-page: 167 year: 2012 ident: 10.1016/j.ecolind.2021.108529_b0215 article-title: Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and Lidar data in a Random Forest data mining environment publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2012.03.005 |
SSID | ssj0016996 |
Score | 2.5911808 |
Snippet | •The cloud computing capability of GEE improves the efficiency of obtaining national-scale grassland information.•Time series NDVI can assist in the selection... It is important to conduct grassland resource surveys for the scientific management of grassland resources. Currently, remote sensing technology is widely used... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108529 |
SubjectTerms | algorithms biomass carbon sequestration Central Africa data collection GEE grasses Grassland classification grasslands Internet land cover Optimal feature selection phenology PROBA-V range management savannas time series analysis vegetation index Zambia |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEBUhp1xK2zTUbVNU6HVt7UpaScc0JIQcemkDphchaSXjUHuD7dxKf3tntFqb9BLIdT-kRTOaecO-eSLka1DcaO9klWSMleiErrwzqfKN0V1qAoIAZFt8b2_uxO1czo_I5dgLg7TKEvuHmJ6jdbkyK6s5e1guZz9qoVAebQ5FSw2lODb8CqHQy6d_9zSPujVm6DBSrMKnD108s_spVHgA5lAwtKmRbScz0jzkpyzj_yRN_Rewcxa6fk1eFfhIL4YvfEOO4votObs6dKvBzbJdt6fkTz7yEslAef1pn-gvt0KVcbrYwJ3c50uR-r6gkLO6fkUBw8K0NMUs-EmXq4zPYTi6zSfm4DBDayMF6Eh7iDgrmBOZYmMYpSie3HfvyN311c_Lm6oct1AFIeWuirB7ZWiUTEYwHWXgJnItvWchaSG48MF4QBwSSuo2mpCgUnFGptCCdbk3_Iwcr_t1fE9o0IkFySBDiiSy3ox0nXRaCu6hQvMTIsZFtqFokeORGL_tSDq7t8U2Fm1jB9tMyHT_2sMgxvHcC9_QgvuHUUs7X-g3C1ucyQrNo3ecsRjBM-vg2tQ2LEolIMBpV0-IHu1vn7gmDLV8bv4vo79Y2Lb4L8atY_-4tU3LW82UMurDy4f_SE4a7MbIJPJP5Hi3eYzngJF2_nPeBP8AjKASDg priority: 102 providerName: Elsevier |
Title | Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period |
URI | https://dx.doi.org/10.1016/j.ecolind.2021.108529 https://www.proquest.com/docview/2636807797 https://doaj.org/article/483eba300ee7411ca6f620e5740408a1 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagXLig8qgIj8hIXDd11h6vfSyoVQCpJypFXCzba1etSLZq0hvit3fGu9sAl1y4rtcPecaeb-SZbxj7GBtpTfBQZUipUq0yVfA2V6G2ps11JBBA0RbnenGhvi5h-UepL4oJ6-mB-407Vkam4KUQKWG_efQ661okaBSqn_HF8UGbNzpTw_uBtrbPK2pENddiucvdOb6eoV-HEI5oQus5xdhBwZc7q1TI-_8yTv9c08X2nB2yZwNo5Cf9Yp-zR2n9gh2d7nLUsHE4pJuX7FcpdEkhQGXXeZf5D78ibnF-eYstJbuXU8D7JUdL1XYrjsgVp-U5FZpPfrUqqByH45tSJ4eG6RMaOQJG3uE9s8I5KT5svDw5USZ37St2cXb6_fOiGoosVFEBbKuEZxZi3UC2uJ8JorRJGghBxGyUkipEGxBnADrSOtmY0T_xFnLUKFMZrDxiB-tunV4zHk0WEQTaRZVVYZkB34I3oGRAvyxMmBo32cWBgZwKYfx0Y6jZtRtk40g2rpfNhM0eut30FBz7OnwiCT78TAza5QPqlRv0yu3Tqwkzo_zdAEZ6kIFDXe2b_8OoLw4PK73A-HXq7jau1lIb0TS2efM_1viWPa0pG6MEkb9jB9vbu_QeMdI2TNnj2e_5lD05-fJtcT4th-MenEkSPA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqcoAL4lURnkaC4ya7a3vXPnDg0SqlpRdaKeJibK8dpSLZKkmFkBB_ij_IjNebqFwqIfW6D3vjsb-ZUb75hpDXrmZKWiOyILzPeMNlZo0KmS2VbELpMAhAtsVJNT7jnyZiskP-9LUwSKtM2N9hekTrdGWUVnN0MZuNvhS8Rnm0CSQtBaTiMjErj_zPH5C3rd4efgQjvynLg_3TD-MstRbIHBdinXnYqcKVtQiK59ILx5RnUlibuyA5Z9w6ZcG7CkgfK69cgKjcKBFcBb-EWVRgAty_xQEusG3C8PeGV1JUSnUlTXWe4edty4ZG50NIKSF6RIXSskB6n4ih7dYhxr4BV_ziPx4iur2De-Ruilfpu25J7pMdv3hA9va35XFwM-HD6iH5FXtsIvsoGpy2gX41c5Q1p9Ml3ImFxRS59lMKTrJp5xSCZpiWBh8VRulsHhMCGI6uYoseHKarpaQQq9IWIG4OcyI1rcdtimrNbfOInN2IEfbI7qJd-MeEOhlyJ3JwyTzwKHAjTCOMFJxZSAntgPB-kbVL4ufYg-O77llu5zrZRqNtdGebARluXrvo1D-ue-E9WnDzMIp3xwvtcqrT7tVcMm8Ny3Pv4SgUzlShKnMvag6IKk0xILK3v75yFmCo2XXzv-r3iwacwD9_zMK3lytdVqySeV2r-sn_D_-S3B6ffj7Wx4cnR0_JnRJLQSKD_RnZXS8v_XMI0Nb2RTwQlHy76RP4FybGTpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Zambian+grasslands+using+random+forest+feature+importance+selection+during+the+optimal+phenological+period&rft.jtitle=Ecological+indicators&rft.au=Zhao%2C+Yifan&rft.au=Zhu%2C+Weiwei&rft.au=Wei%2C+Panpan&rft.au=Fang%2C+Peng&rft.date=2022-02-01&rft.issn=1470-160X&rft.volume=135+p.108529-&rft_id=info:doi/10.1016%2Fj.ecolind.2021.108529&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon |