Utilizing LiDAR data to map tree canopy for urban ecosystem extent and condition accounts in Oslo
•LiDAR is an asset for ecosystem condition accounting & ecosystem service modeling.•LiDAR-based segmentation was used to measure tree height, canopy area & volume in Oslo.•Tree canopy in built-up areas increased by 17% from 2011 to 2017.•Despite tree felling restrictions, suburbs had a concu...
Saved in:
Published in | Ecological indicators Vol. 130; p. 108007 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •LiDAR is an asset for ecosystem condition accounting & ecosystem service modeling.•LiDAR-based segmentation was used to measure tree height, canopy area & volume in Oslo.•Tree canopy in built-up areas increased by 17% from 2011 to 2017.•Despite tree felling restrictions, suburbs had a concurrent loss of tall trees.•Field work & LiDAR campaigns should be coordinated in future ecosystem accounting.
LiDAR-based segmentation of urban tree canopies and their physical properties (canopy height, canopy diameter, 3D surface and volume) is a replicable, complementary and useful information source for urban ecosystem condition accounts, and an important basis for ecosystem service modeling and valuation. However, using available LiDAR data collected for municipal purposes other than vegetation mapping (such as for example engineering) entails a level of accuracy which may limit the usefulness of the data for change detection in ecosystem accounts. To account for changes in the urban tree canopy of Oslo (capital city of Norway) between 2011 and 2017, a segmentation model was developed based on available airborne LiDAR data scanned for general purposes. The results from the entire built-up area of Oslo indicate a general increase in the number of tall trees (>15 m) and a moderate increase in the number of small trees (<15 m), with the exception of trees between 6 and 10 m which seem to have a relatively constant development over the given period. The total tree canopy area within the built-up area increased by 17.15%, with a corresponding 21.35% increase in the tree canopy volume. The results for the Small House plan area, a policy focus area subject to urban densification and special regulations for felling of large trees, indicate a large increase in small trees (<10 m) and a moderate decrease in tall trees (>10 m). The total tree canopy area within the Small House plan area decreased by 1.04%, with a corresponding 2.13% decrease in the tree canopy volume. With respect to the segmentation accuracy, the changes in aggregate tree canopy cover are too small to determine canopy change with confidence. This study demonstrates the potential for identifying ecosystem condition indicators as well as the limitations of using general purpose LiDAR data to improve the precision of urban ecosystem accounting. For future ecosystem service accounting in urban environments, we recommend that municipalities implement data acquisition programs that combine concurrent field data sampling and LiDAR campaigns designed for urban tree canopy detection, as part of general urban structural inventorying. We recommend using LiDAR and satellite remote sensing data depending on canopy densities. We also recommend that future tree canopy segmentation is done within a cloud-computing environment to ensure sufficient geoprocessing capacity. |
---|---|
AbstractList | LiDAR-based segmentation of urban tree canopies and their physical properties (canopy height, canopy diameter, 3D surface and volume) is a replicable, complementary and useful information source for urban ecosystem condition accounts, and an important basis for ecosystem service modeling and valuation. However, using available LiDAR data collected for municipal purposes other than vegetation mapping (such as for example engineering) entails a level of accuracy which may limit the usefulness of the data for change detection in ecosystem accounts. To account for changes in the urban tree canopy of Oslo (capital city of Norway) between 2011 and 2017, a segmentation model was developed based on available airborne LiDAR data scanned for general purposes. The results from the entire built-up area of Oslo indicate a general increase in the number of tall trees (>15 m) and a moderate increase in the number of small trees (<15 m), with the exception of trees between 6 and 10 m which seem to have a relatively constant development over the given period. The total tree canopy area within the built-up area increased by 17.15%, with a corresponding 21.35% increase in the tree canopy volume. The results for the Small House plan area, a policy focus area subject to urban densification and special regulations for felling of large trees, indicate a large increase in small trees (<10 m) and a moderate decrease in tall trees (>10 m). The total tree canopy area within the Small House plan area decreased by 1.04%, with a corresponding 2.13% decrease in the tree canopy volume. With respect to the segmentation accuracy, the changes in aggregate tree canopy cover are too small to determine canopy change with confidence. This study demonstrates the potential for identifying ecosystem condition indicators as well as the limitations of using general purpose LiDAR data to improve the precision of urban ecosystem accounting. For future ecosystem service accounting in urban environments, we recommend that municipalities implement data acquisition programs that combine concurrent field data sampling and LiDAR campaigns designed for urban tree canopy detection, as part of general urban structural inventorying. We recommend using LiDAR and satellite remote sensing data depending on canopy densities. We also recommend that future tree canopy segmentation is done within a cloud-computing environment to ensure sufficient geoprocessing capacity. LiDAR-based segmentation of urban tree canopies and their physical properties (canopy height, canopy diameter, 3D surface and volume) is a replicable, complementary and useful information source for urban ecosystem condition accounts, and an important basis for ecosystem service modeling and valuation. However, using available LiDAR data collected for municipal purposes other than vegetation mapping (such as for example engineering) entails a level of accuracy which may limit the usefulness of the data for change detection in ecosystem accounts. To account for changes in the urban tree canopy of Oslo (capital city of Norway) between 2011 and 2017, a segmentation model was developed based on available airborne LiDAR data scanned for general purposes. The results from the entire built-up area of Oslo indicate a general increase in the number of tall trees (>15 m) and a moderate increase in the number of small trees (<15 m), with the exception of trees between 6 and 10 m which seem to have a relatively constant development over the given period. The total tree canopy area within the built-up area increased by 17.15%, with a corresponding 21.35% increase in the tree canopy volume. The results for the Small House plan area, a policy focus area subject to urban densification and special regulations for felling of large trees, indicate a large increase in small trees (<10 m) and a moderate decrease in tall trees (>10 m). The total tree canopy area within the Small House plan area decreased by 1.04%, with a corresponding 2.13% decrease in the tree canopy volume. With respect to the segmentation accuracy, the changes in aggregate tree canopy cover are too small to determine canopy change with confidence. This study demonstrates the potential for identifying ecosystem condition indicators as well as the limitations of using general purpose LiDAR data to improve the precision of urban ecosystem accounting. For future ecosystem service accounting in urban environments, we recommend that municipalities implement data acquisition programs that combine concurrent field data sampling and LiDAR campaigns designed for urban tree canopy detection, as part of general urban structural inventorying. We recommend using LiDAR and satellite remote sensing data depending on canopy densities. We also recommend that future tree canopy segmentation is done within a cloud-computing environment to ensure sufficient geoprocessing capacity. •LiDAR is an asset for ecosystem condition accounting & ecosystem service modeling.•LiDAR-based segmentation was used to measure tree height, canopy area & volume in Oslo.•Tree canopy in built-up areas increased by 17% from 2011 to 2017.•Despite tree felling restrictions, suburbs had a concurrent loss of tall trees.•Field work & LiDAR campaigns should be coordinated in future ecosystem accounting. LiDAR-based segmentation of urban tree canopies and their physical properties (canopy height, canopy diameter, 3D surface and volume) is a replicable, complementary and useful information source for urban ecosystem condition accounts, and an important basis for ecosystem service modeling and valuation. However, using available LiDAR data collected for municipal purposes other than vegetation mapping (such as for example engineering) entails a level of accuracy which may limit the usefulness of the data for change detection in ecosystem accounts. To account for changes in the urban tree canopy of Oslo (capital city of Norway) between 2011 and 2017, a segmentation model was developed based on available airborne LiDAR data scanned for general purposes. The results from the entire built-up area of Oslo indicate a general increase in the number of tall trees (>15 m) and a moderate increase in the number of small trees (<15 m), with the exception of trees between 6 and 10 m which seem to have a relatively constant development over the given period. The total tree canopy area within the built-up area increased by 17.15%, with a corresponding 21.35% increase in the tree canopy volume. The results for the Small House plan area, a policy focus area subject to urban densification and special regulations for felling of large trees, indicate a large increase in small trees (<10 m) and a moderate decrease in tall trees (>10 m). The total tree canopy area within the Small House plan area decreased by 1.04%, with a corresponding 2.13% decrease in the tree canopy volume. With respect to the segmentation accuracy, the changes in aggregate tree canopy cover are too small to determine canopy change with confidence. This study demonstrates the potential for identifying ecosystem condition indicators as well as the limitations of using general purpose LiDAR data to improve the precision of urban ecosystem accounting. For future ecosystem service accounting in urban environments, we recommend that municipalities implement data acquisition programs that combine concurrent field data sampling and LiDAR campaigns designed for urban tree canopy detection, as part of general urban structural inventorying. We recommend using LiDAR and satellite remote sensing data depending on canopy densities. We also recommend that future tree canopy segmentation is done within a cloud-computing environment to ensure sufficient geoprocessing capacity. |
ArticleNumber | 108007 |
Author | Cimburova, Zofie Hanssen, Frank Barton, David N. Nowell, Megan S. Venter, Zander S. |
Author_xml | – sequence: 1 givenname: Frank surname: Hanssen fullname: Hanssen, Frank email: frank.hanssen@nina.no organization: Norwegian Institute for Nature Research, Box. 5685 Torgarden, N-7485 Trondheim, Norway – sequence: 2 givenname: David N. surname: Barton fullname: Barton, David N. email: david.barton@nina.no organization: Norwegian Institute for Nature Research, Sognsveien 68, N-0855 Oslo, Norway – sequence: 3 givenname: Zander S. surname: Venter fullname: Venter, Zander S. email: zander.venter@nina.no organization: Norwegian Institute for Nature Research, Sognsveien 68, N-0855 Oslo, Norway – sequence: 4 givenname: Megan S. surname: Nowell fullname: Nowell, Megan S. email: megan.nowell@nina.no organization: Norwegian Institute for Nature Research, Sognsveien 68, N-0855 Oslo, Norway – sequence: 5 givenname: Zofie surname: Cimburova fullname: Cimburova, Zofie email: zofie.cimburova@nina.no organization: Norwegian Institute for Nature Research, Sognsveien 68, N-0855 Oslo, Norway |
BookMark | eNqFkU1rHDEMhk1JoPnoTyj42Mts7RmPx6aHEtKmCSwESgO9GY2tCV5m7a3tLd38-noz6aWXoIOF0PNK1ntOTkIMSMh7zlaccflxs0IbZx_cqmUtrzXF2PCGnHE1tM3AOnFSczGwhkv28y05z3nDKqe1PCPwUPzsn3x4pGv_5eo7dVCAlki3sKMlIVILIe4OdIqJ7tMIgdZh-ZALbin-KRgKheCojcH54mOgYG3ch5KpD_Q-z_GSnE4wZ3z38l6Qh5uvP65vm_X9t7vrq3VjRd-XxumpBgfLGFOyG5UAqaUYQfdOtZ2aoO0BFICDVqihG5iUPSgtGHDO0HYX5G7RdRE2Zpf8FtLBRPDmuRDTo4FUvJ3ROKWBjaO2rZOCczsOGrjmQkkuHO9V1fqwaO1S_LXHXMzWZ4vzDAHjPptWdrKrS3S8tn5aWm2KOSecjPUFjpcoCfxsODNHk8zGvJhkjiaZxaRK9__R_xZ_jfu8cFgv-ttjMtl6DBadT2hL_bJ_ReEv_OKwIA |
CitedBy_id | crossref_primary_10_1155_2022_6127388 crossref_primary_10_1016_j_ecoser_2024_101599 crossref_primary_10_3390_rs16061110 crossref_primary_10_3390_s22093269 crossref_primary_10_3897_oneeco_8_e85021 crossref_primary_10_1016_j_ecoser_2023_101576 crossref_primary_10_1016_j_ufug_2024_128518 crossref_primary_10_1007_s40808_022_01627_9 crossref_primary_10_1007_s41348_024_00861_w crossref_primary_10_3390_rs16142589 crossref_primary_10_1016_j_landurbplan_2023_104705 crossref_primary_10_3390_land11122325 crossref_primary_10_1080_10106049_2022_2028904 crossref_primary_10_3233_SJI_210834 crossref_primary_10_3390_agronomy12112700 crossref_primary_10_3390_s24227268 crossref_primary_10_1002_ppp3_10240 crossref_primary_10_1016_j_ufug_2023_127839 crossref_primary_10_3390_rs15041028 crossref_primary_10_1016_j_pdisas_2024_100328 crossref_primary_10_1109_TGRS_2023_3295802 crossref_primary_10_3390_rs16244618 crossref_primary_10_1007_s10651_023_00571_w crossref_primary_10_1016_j_landurbplan_2022_104395 crossref_primary_10_3390_rs17020196 crossref_primary_10_1016_j_cities_2024_105274 crossref_primary_10_1016_j_ecolind_2024_112727 crossref_primary_10_1016_j_ufug_2024_128659 crossref_primary_10_1016_j_ufug_2024_128239 |
Cites_doi | 10.1016/j.jag.2018.05.002 10.1016/j.ecolind.2018.12.033 10.1016/j.ecolind.2017.07.001 10.1016/j.ufug.2015.06.006 10.1016/j.ufug.2020.126801 10.1016/j.rse.2008.09.001 10.3390/rs9030231 10.1016/j.ecolecon.2012.08.019 10.1016/j.ecolind.2018.07.031 10.1016/j.ecolind.2013.11.012 10.3832/ifor3024-012 10.1016/j.ufug.2015.05.008 10.1016/j.ecoser.2020.101114 10.4324/9781315627106-11 10.1016/j.rse.2017.08.010 10.1016/j.jag.2012.07.020 10.1186/s40663-018-0146-y 10.1007/s12205-013-1178-z 10.3390/rs70607892 10.1016/j.jenvman.2012.12.002 10.1088/1748-9326/abb396 10.1016/j.ecolind.2018.10.059 10.1016/j.ecoser.2017.11.005 10.14358/PERS.72.8.923 10.1080/01431160701736349 10.2737/NRS-GTR-200 10.3897/ab.e12837 10.1016/S0378-1127(99)00113-9 10.1016/j.ufug.2016.06.026 10.3390/su12145589 10.3390/rs5094163 10.1080/00036846.2017.1409419 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.ecolind.2021.108007 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1872-7034 |
ExternalDocumentID | oai_doaj_org_article_d89a0bb9c2d6411cb79a19148614d158 10_1016_j_ecolind_2021_108007 S1470160X21006725 |
GeographicLocations | Norway |
GeographicLocations_xml | – name: Norway |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABVA AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSJ SSZ T5K ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c455t-d9f9f91ac000863b84a6964ba95d8238fa25aa8aada2487370665a8940a110ec3 |
IEDL.DBID | .~1 |
ISSN | 1470-160X |
IngestDate | Wed Aug 27 01:15:50 EDT 2025 Fri Jul 11 12:22:33 EDT 2025 Thu Apr 24 22:59:33 EDT 2025 Tue Jul 01 01:32:47 EDT 2025 Fri Feb 23 02:42:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ecosystem accounting Light Detection And Ranging (LiDAR) Ecosystem services Geographical Information Systems (GIS) Tree canopy segmentation Remote sensing |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-d9f9f91ac000863b84a6964ba95d8238fa25aa8aada2487370665a8940a110ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1470160X21006725 |
PQID | 2636387331 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d89a0bb9c2d6411cb79a19148614d158 proquest_miscellaneous_2636387331 crossref_citationtrail_10_1016_j_ecolind_2021_108007 crossref_primary_10_1016_j_ecolind_2021_108007 elsevier_sciencedirect_doi_10_1016_j_ecolind_2021_108007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 20211101 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Ecological indicators |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Li, Zhang, Li, Ricard, Meng, Zhang (b0145) 2015; 14 Liu, Coops, Aven, Pang (b0150) 2017; 200 ESRI, 2020f. Focal Flow, from https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-focal-flow-works.htm. Gill, Biging, Murphy (b0090) 2000; 126 Stange, E.V., Alexander Samuel, Benno Nikolaus Dillinger, Markus A.K. Sydenham, 2020. Kartlegging av grønnstrukturer for Nye Stavanger Kommune. NINA report 1706 (ISBN 978-82-426-3456-6). Pyysalo, Hyyppa, Sciences (b0260) 2002; 34 ESRI, 2019d. Focal statistics, from https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/focal-statistics.htm. Zhang, Zhou, Qiu (b0330) 2015; 7 Klobucar, Östberg, Jansson, Randrup (b0130) 2020; 12 Nowak (b0205) 1996; 42 Smith, S., Holland, D., Longley, P. Remote Sensing, Sciences, S.I., 2004. The importance of understanding error in LiDAR digital elevation models, 35, 996–1001. Jakubowski, Li, Guo, Kelly (b0115) 2013; 5 Vallecillo et al., 2018. Ecosystem services accounting: Part I - Outdoor recreation and crop pollination, from https://publications.jrc.ec.europa.eu/repository/handle/JRC110321. Obst, C., (Ed.) et al., 2017. SEEA Experimental Ecosystem Accounting: Technical Recommendations. Final Draft V3.0: 12 September, 2017, from https://seea.un.org/sites/seea.un.org/files/Presentations/Training_China_2017/seea_eea_tech_rec_final_v3.2_16oct2017.pdf. Schulp, C.J.E., Landuyt, D., 2017. Uncertainty measures and maps. In: B. Burkhard, J. Maes (Eds.), Mapping Ecosystem Services (pp. 263-270). [6.3] Pensoft Publishers. https://doi.org/10.3897/ab.e12837. Jenson, Domingue (b0120) 1988; 54 Morsdorf, Frey, Meier, Itten, Allgöwer (b0180) 2008; 29 Beucher, Lantuéjoul (b0020) 1979; 2 Mielcarek, Stereńczak, Khosravipour (b0170) 2018; 71 Paulin, Remme, de Nijs, Rutgers, Koopman, de Knegt, van der Hoek, Breure (b0245) 2020; 43 Rahman, Rashed (b0265) 2015; 14 Popescu, Wynne, Nelson (b0255) 2003; 29 URBAN EEA, 2020. URBAN EEA – Urban ecosystem accounting, from https://www.nina.no/english/Fields-of-research/Projects/Urban-EEA. Franceschi, S., 2017. Estimating forest structure and biomass through airborne laser scanning for silvicultural and natural hazards purposes (Doctoral dissertation thesis, Free University of Bozen-Bolzano, Italy). Chen, Baldocchi, Gong, Kelly (b0030) 2006; 72 Miller, Hauer, Werner (b0175) 2015 Oslo municipality, 2019. Report on green accounts: a measurement of green structure in Oslo's built-up area. from https://www.oslo.kommune.no/getfile.php/13300369-1539862391/Tjenester%20og%20tilbud/Politikk%20og%20administrasjon/Etater%2C%20foretak%20og%20ombud/Plan-%20og%20bygningsetaten/Gr%C3%B8ntregnskap%20-%20fagrapport.pdf. Næsset (b0185) 2009; 113 The Norwegian Mapping Authority, 2018. Laserinnsyn, from https://hoydedata.no/LaserInnsyn/. Artmann, Kohler, Meinel, Gan, Ioja (b0005) 2019; 96 Tanhuanpää, Vastaranta, Kankare, Holopainen, Hyyppä, Hyyppä, Alho, Raisio (b0305) 2014; 13 ESRI, 2019a. Spatial Analyst, from https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/an-overview-of-the-spatial-analyst-toolbox.htm. ESRI, 2019c. LAS Dataset to raster, from https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/las-dataset-to-raster-function.htm. Lof (b0155) 2019 Hunt, Doraiswamy, McMurtrey, Daughtry, Perry, Akhmedov (b0110) 2013; 21 Randrup (b0270) 2005 Wang J.S.F., Henry, M., Grenier, M., Schenau, S., Barton, D., Harris, R., Chan, J.Y., Keith, D., Obst, C., 2019. Discussion paper 1.2: Treatment of ecosystems assets in urban areas. In: Paper submitted to the SEEA EEA Technical Committee as input to the revision of the technical recommendations in support of the System on Environmental-Economic Accounting. Artmann, Inostroza, Fan (b0010) 2019; 96 The Norwegian Mapping Authority, 2020a. Area statistics for Norway, from https://www.kartverket.no/kunnskap/fakta-om-norge/arealstatistikk/arealstatistikk-norge/. ESRI, 2020b. LiDAR point classification from https://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/lidar-point-classification.htm. European Space Agency (ESA), Sentinel Online, 2020. From https://sentinel.esa.int/web/sentinel/missions/sentinel-2. Nowak, D., 2020. Understanding i-Tree: Summary of Programs and Methods. General Technical Report NRS-200, United States Department of Agriculture. Cimburova, Z., Barton, D.N., 2020. The potential of geospatial analysis and Bayesian networks to enable i-Tree Eco assessment of existing tree inventories. Urban For. Urban Green. 55, 126801. https://doi.org/10.1016/j.ufug.2020.126801. Strand, G.H., Bloch, V.V.H., 2009. Statistical grids for Norway. Documentation of national grids for analysis and visualisation of spatial data in Norway (2009/9). Statistics Norway. Suárez, Ontiveros, Smith, Snape (b0300) 2005; 31 Li, Ye, Song, Wang, Tao (b0140) 2014; 42 ESRI, 2020g. Watershed, from https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-watershed-works.htm. Tiede, D., Hochleitner, G., Blaschke, T., 2005. A full GIS-based workflow for tree identification and tree crown delineation using laser scanning, ISPRS Workshop CMRT, p. 2005. Chen, Wang, Li, Ma, Zhang (b0025) 2018; 95 ESRI, 2020e. Flow Direction. 2020, from https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/flow-direction.htm. Venter, Z.S., Barton, D.N., Gundersen, V., Figari, H. and Nowell, M., 2020. Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environmental Research Letters, 15(10), p.104075. La, Eo, Chang, Kim (b0135) 2015; 19 The Norwegian Mapping Authority, 2020b. Norge i bilder, from https://www.norgeibilder.no/. Barnes, Balzter, Barrett, Eddy, Milner, Suárez (b0015) 2017; 9 Stereńczak, K., Będkowski, K., Weinacker, H., 2008. Accuracy of crown segmentation and estimation of selected trees and forest stand parameters in order to resolution of used DSM and nDSM models generated from dense small footprint LiDAR data, ISPRS Congress, Beijing, China, Commission VI, WG VI/5, pp. 27–32. Nowak, D., 2020. iTree Eco User’s Manual v6.0. United States Department of Agriculture, from https://www.itreetools.org/documents/275/EcoV6_UsersManual_2020_04_06.pdf”. Gómez-Baggethun, Barton (b0095) 2013; 86 Oslo municipality, 2018. Småhusplanen – et verktøy for alle som vil opprettholde bomiljøer, from https://magasin.oslo.kommune.no/byplan/smahusplanen-et-verktoy-for-alle-som-vil-opprettholde-bomiljoer#gref. Matasci, Coops, Williams, Page (b0160) 2018; 5 Ciesielski, Sterenczak (b0035) 2019; 12 Hou, Burkhard, Müller (b0105) 2013; 127 Mei, Hite, Sohngen (b0165) 2018; 50 Zulian, Stange, Woods, Carvalho, Dick, Andrews, Baró, Vizcaino, Barton, Nowel, Rusch, Autunes, Fernandes, Ferraz, Ferreira dos Santos, Aszalós, Arany, Czúcz, Priess, Hoyer, Bürger-Patricio, Lapola, Mederly, Halabuk, Bezak, Kopperoinen, Viinikka (b0335) 2018; 29 Plowright, Coops, Eskelson, Sheppard, Aven (b0250) 2016; 19 Nowak, D., Francesco, van den Bosch, C.C., Fini, A., eds. Routledge handbook of urban forestry. New York, NY: Routledge: 152-163. Chapter 11, 2017. Assessing the benefits and economic values of trees, pp. 152–163. Kabisch, Selsam, Kirsten, Lausch, Bumberger (b0125) 2019; 99 Parlamentary proposition nr. 32 (2007–2008), About the Norwegian Planning and Building Procedure Act (“Plan- og bygningsloven”), from https://www.regjeringen.no/en/dokumenter/planning-building-act/id570450/. Hanssen, Barton, Nowell, Cimburova (b0100) 2019 Liu (10.1016/j.ecolind.2021.108007_b0150) 2017; 200 10.1016/j.ecolind.2021.108007_b0345 10.1016/j.ecolind.2021.108007_b0225 10.1016/j.ecolind.2021.108007_b0220 Zhang (10.1016/j.ecolind.2021.108007_b0330) 2015; 7 Gill (10.1016/j.ecolind.2021.108007_b0090) 2000; 126 Rahman (10.1016/j.ecolind.2021.108007_b0265) 2015; 14 10.1016/j.ecolind.2021.108007_b0340 10.1016/j.ecolind.2021.108007_b0065 Hunt (10.1016/j.ecolind.2021.108007_b0110) 2013; 21 Barnes (10.1016/j.ecolind.2021.108007_b0015) 2017; 9 10.1016/j.ecolind.2021.108007_b0060 Tanhuanpää (10.1016/j.ecolind.2021.108007_b0305) 2014; 13 Artmann (10.1016/j.ecolind.2021.108007_b0005) 2019; 96 Morsdorf (10.1016/j.ecolind.2021.108007_b0180) 2008; 29 Pyysalo (10.1016/j.ecolind.2021.108007_b0260) 2002; 34 10.1016/j.ecolind.2021.108007_b0235 Li (10.1016/j.ecolind.2021.108007_b0145) 2015; 14 10.1016/j.ecolind.2021.108007_b0315 10.1016/j.ecolind.2021.108007_b0275 10.1016/j.ecolind.2021.108007_b0310 10.1016/j.ecolind.2021.108007_b0195 10.1016/j.ecolind.2021.108007_b0075 10.1016/j.ecolind.2021.108007_b0230 10.1016/j.ecolind.2021.108007_b0190 10.1016/j.ecolind.2021.108007_b0070 Jenson (10.1016/j.ecolind.2021.108007_b0120) 1988; 54 Miller (10.1016/j.ecolind.2021.108007_b0175) 2015 Randrup (10.1016/j.ecolind.2021.108007_b0270) 2005 Artmann (10.1016/j.ecolind.2021.108007_b0010) 2019; 96 Klobucar (10.1016/j.ecolind.2021.108007_b0130) 2020; 12 Ciesielski (10.1016/j.ecolind.2021.108007_b0035) 2019; 12 Paulin (10.1016/j.ecolind.2021.108007_b0245) 2020; 43 Li (10.1016/j.ecolind.2021.108007_b0140) 2014; 42 Mei (10.1016/j.ecolind.2021.108007_b0165) 2018; 50 Matasci (10.1016/j.ecolind.2021.108007_b0160) 2018; 5 10.1016/j.ecolind.2021.108007_b0325 Gómez-Baggethun (10.1016/j.ecolind.2021.108007_b0095) 2013; 86 10.1016/j.ecolind.2021.108007_b0045 10.1016/j.ecolind.2021.108007_b0320 10.1016/j.ecolind.2021.108007_b0200 Chen (10.1016/j.ecolind.2021.108007_b0030) 2006; 72 Næsset (10.1016/j.ecolind.2021.108007_b0185) 2009; 113 10.1016/j.ecolind.2021.108007_b0040 10.1016/j.ecolind.2021.108007_b0085 10.1016/j.ecolind.2021.108007_b0240 10.1016/j.ecolind.2021.108007_b0285 10.1016/j.ecolind.2021.108007_b0080 10.1016/j.ecolind.2021.108007_b0280 Suárez (10.1016/j.ecolind.2021.108007_b0300) 2005; 31 Hou (10.1016/j.ecolind.2021.108007_b0105) 2013; 127 La (10.1016/j.ecolind.2021.108007_b0135) 2015; 19 Beucher (10.1016/j.ecolind.2021.108007_b0020) 1979; 2 Jakubowski (10.1016/j.ecolind.2021.108007_b0115) 2013; 5 Kabisch (10.1016/j.ecolind.2021.108007_b0125) 2019; 99 10.1016/j.ecolind.2021.108007_b0215 Zulian (10.1016/j.ecolind.2021.108007_b0335) 2018; 29 10.1016/j.ecolind.2021.108007_b0055 10.1016/j.ecolind.2021.108007_b0210 10.1016/j.ecolind.2021.108007_b0295 Hanssen (10.1016/j.ecolind.2021.108007_b0100) 2019 10.1016/j.ecolind.2021.108007_b0290 10.1016/j.ecolind.2021.108007_b0050 Lof (10.1016/j.ecolind.2021.108007_b0155) 2019 Plowright (10.1016/j.ecolind.2021.108007_b0250) 2016; 19 Chen (10.1016/j.ecolind.2021.108007_b0025) 2018; 95 Popescu (10.1016/j.ecolind.2021.108007_b0255) 2003; 29 Mielcarek (10.1016/j.ecolind.2021.108007_b0170) 2018; 71 Nowak (10.1016/j.ecolind.2021.108007_b0205) 1996; 42 |
References_xml | – volume: 5 start-page: 4163 year: 2013 end-page: 4186 ident: b0115 article-title: Delineating individual trees from LiDAR data: a comparison of vector- and raster-based segmentation approaches publication-title: Rem. Sens. – reference: ESRI, 2020g. Watershed, from https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-watershed-works.htm. – reference: The Norwegian Mapping Authority, 2020a. Area statistics for Norway, from https://www.kartverket.no/kunnskap/fakta-om-norge/arealstatistikk/arealstatistikk-norge/. – volume: 31 start-page: 253 year: 2005 end-page: 262 ident: b0300 article-title: Geosciences publication-title: Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry – volume: 200 start-page: 170 year: 2017 end-page: 182 ident: b0150 article-title: Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data publication-title: Rem. Sens. Environ. – volume: 72 start-page: 923 year: 2006 end-page: 932 ident: b0030 article-title: Isolating individual trees in a savanna woodland using small footprint LiDAR data publication-title: Photogramm. Eng. Rem. Sens. – volume: 21 start-page: 103 year: 2013 end-page: 112 ident: b0110 article-title: A visible band index for remote sensing leaf chlorophyll content at the canopy scale publication-title: Int. J. Appl. Earth Observ. Geoinform. – volume: 113 start-page: 148 year: 2009 end-page: 159 ident: b0185 article-title: Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data publication-title: Rem. Sens. Environ. – reference: Schulp, C.J.E., Landuyt, D., 2017. Uncertainty measures and maps. In: B. Burkhard, J. Maes (Eds.), Mapping Ecosystem Services (pp. 263-270). [6.3] Pensoft Publishers. https://doi.org/10.3897/ab.e12837. – volume: 95 start-page: 117 year: 2018 end-page: 126 ident: b0025 article-title: Understanding treescape changes as the basis of urban forest planning in fringe areas publication-title: Ecol. Indic. – volume: 42 start-page: 95 year: 2014 end-page: 103 ident: b0140 article-title: Assessing the changes in land use and ecosystem services in Changzhou municipality, Peoples' Republic of China, 1991–2006 publication-title: Ecol. Indic. – reference: Parlamentary proposition nr. 32 (2007–2008), About the Norwegian Planning and Building Procedure Act (“Plan- og bygningsloven”), from https://www.regjeringen.no/en/dokumenter/planning-building-act/id570450/. – volume: 19 start-page: 140 year: 2016 end-page: 150 ident: b0250 article-title: Assessing urban tree condition using airborne light detection and ranging publication-title: Urban For. Urban Green. – volume: 29 start-page: 1387 year: 2008 end-page: 1406 ident: b0180 article-title: Assessment of the influence of flying altitude and scan angle on biophysical vegetation products derived from airborne laser scanning publication-title: Int. J. Rem. Sens. – reference: Nowak, D., 2020. Understanding i-Tree: Summary of Programs and Methods. General Technical Report NRS-200, United States Department of Agriculture. – reference: ESRI, 2020e. Flow Direction. 2020, from https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/flow-direction.htm. – volume: 9 start-page: 231 year: 2017 ident: b0015 article-title: Individual tree crown delineation from airborne laser scanning for diseased larch forest stands publication-title: Rem. Sens. – volume: 50 start-page: 2804 year: 2018 end-page: 2811 ident: b0165 article-title: Estimation of house price differential of urban tree cover: an application of sample selection approach publication-title: Appl. Econ. – reference: Tiede, D., Hochleitner, G., Blaschke, T., 2005. A full GIS-based workflow for tree identification and tree crown delineation using laser scanning, ISPRS Workshop CMRT, p. 2005. – volume: 127 start-page: S117 year: 2013 end-page: S131 ident: b0105 article-title: Uncertainties in landscape analysis and ecosystem service assessment publication-title: J. Environ. Manage. – reference: Oslo municipality, 2019. Report on green accounts: a measurement of green structure in Oslo's built-up area. from https://www.oslo.kommune.no/getfile.php/13300369-1539862391/Tjenester%20og%20tilbud/Politikk%20og%20administrasjon/Etater%2C%20foretak%20og%20ombud/Plan-%20og%20bygningsetaten/Gr%C3%B8ntregnskap%20-%20fagrapport.pdf. – reference: Venter, Z.S., Barton, D.N., Gundersen, V., Figari, H. and Nowell, M., 2020. Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environmental Research Letters, 15(10), p.104075. – reference: ESRI, 2019c. LAS Dataset to raster, from https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/las-dataset-to-raster-function.htm. – volume: 29 start-page: 564 year: 2003 end-page: 577 ident: b0255 publication-title: Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass – volume: 19 start-page: 1078 year: 2015 end-page: 1087 ident: b0135 article-title: Extraction of individual tree crown using hyperspectral image and LiDAR data publication-title: KSCE J. Civil Eng. – reference: Obst, C., (Ed.) et al., 2017. SEEA Experimental Ecosystem Accounting: Technical Recommendations. Final Draft V3.0: 12 September, 2017, from https://seea.un.org/sites/seea.un.org/files/Presentations/Training_China_2017/seea_eea_tech_rec_final_v3.2_16oct2017.pdf. – volume: 86 start-page: 235 year: 2013 end-page: 245 ident: b0095 article-title: Classifying and valuing ecosystem services for urban planning publication-title: Ecol. Econ. – volume: 29 start-page: 465 year: 2018 end-page: 480 ident: b0335 article-title: Practical application of spatial ecosystem service models to aid decision support publication-title: Ecosyst. Serv. – volume: 7 start-page: 7892 year: 2015 end-page: 7913 ident: b0330 article-title: Individual Tree Segmentation from LiDAR Point Clouds for Urban Forest Inventory publication-title: Rem. Sens. – volume: 126 start-page: 405 year: 2000 end-page: 416 ident: b0090 article-title: Modeling conifer tree crown radius and estimating canopy cover publication-title: For. Ecol. Manage. – start-page: 88 year: 2019 ident: b0155 article-title: The SEEA-EEA ecosystem condition account for the Netherlands – year: 2015 ident: b0175 article-title: Urban Forestry: Planning and Managing Urban Greenspaces – reference: Wang J.S.F., Henry, M., Grenier, M., Schenau, S., Barton, D., Harris, R., Chan, J.Y., Keith, D., Obst, C., 2019. Discussion paper 1.2: Treatment of ecosystems assets in urban areas. In: Paper submitted to the SEEA EEA Technical Committee as input to the revision of the technical recommendations in support of the System on Environmental-Economic Accounting. – volume: 43 start-page: 101114 year: 2020 ident: b0245 article-title: Application of the Natural Capital Model to assess changes in ecosystem services from changes in green infrastructure in Amsterdam publication-title: Ecosyst. Serv. – reference: Stange, E.V., Alexander Samuel, Benno Nikolaus Dillinger, Markus A.K. Sydenham, 2020. Kartlegging av grønnstrukturer for Nye Stavanger Kommune. NINA report 1706 (ISBN 978-82-426-3456-6). – volume: 96 start-page: 3 year: 2019 end-page: 9 ident: b0010 article-title: Urban sprawl, compact urban development and green cities. How much do we know, how much do we agree? publication-title: Ecol. Indic. – volume: 2 start-page: 12 year: 1979 ident: b0020 article-title: Use of watersheds in contour detection publication-title: International Workshop on Image Processing – reference: Nowak, D., Francesco, van den Bosch, C.C., Fini, A., eds. Routledge handbook of urban forestry. New York, NY: Routledge: 152-163. Chapter 11, 2017. Assessing the benefits and economic values of trees, pp. 152–163. – volume: 96 start-page: 10 year: 2019 end-page: 22 ident: b0005 article-title: How smart growth and green infrastructure can mutually support each other - a conceptual framework for compact and green cities publication-title: Ecol. Indic. – reference: European Space Agency (ESA), Sentinel Online, 2020. From https://sentinel.esa.int/web/sentinel/missions/sentinel-2. – volume: 99 start-page: 273 year: 2019 end-page: 282 ident: b0125 article-title: A multi-sensor and multi-temporal remote sensing approach to detect land cover change dynamics in heterogeneous urban landscapes publication-title: Ecol. Indic. – volume: 12 start-page: 498 year: 2019 end-page: 510 ident: b0035 article-title: Accuracy of determining specific parameters of the urban forest using remote sensing publication-title: Iforest-Biogeosci. For. – volume: 54 start-page: 1593 year: 1988 end-page: 1600 ident: b0120 article-title: Extracting topographic structure from digital elevation data for geographic information system analysis publication-title: Photogramm. Eng. Rem. Sens. – reference: ESRI, 2019a. Spatial Analyst, from https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/an-overview-of-the-spatial-analyst-toolbox.htm. – reference: URBAN EEA, 2020. URBAN EEA – Urban ecosystem accounting, from https://www.nina.no/english/Fields-of-research/Projects/Urban-EEA. – reference: ESRI, 2019d. Focal statistics, from https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/focal-statistics.htm. – volume: 42 start-page: 504 year: 1996 end-page: 507 ident: b0205 article-title: Estimating leaf area and leaf biomass of open-grown deciduous urban trees publication-title: For. Sci. – reference: Strand, G.H., Bloch, V.V.H., 2009. Statistical grids for Norway. Documentation of national grids for analysis and visualisation of spatial data in Norway (2009/9). Statistics Norway. – volume: 14 start-page: 675 year: 2015 end-page: 685 ident: b0145 article-title: Assessing street-level urban greenery using Google Street View and a modified green view index publication-title: Urban For. Urban Green. – reference: ESRI, 2020f. Focal Flow, from https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-focal-flow-works.htm. – reference: Smith, S., Holland, D., Longley, P. Remote Sensing, Sciences, S.I., 2004. The importance of understanding error in LiDAR digital elevation models, 35, 996–1001. – reference: Franceschi, S., 2017. Estimating forest structure and biomass through airborne laser scanning for silvicultural and natural hazards purposes (Doctoral dissertation thesis, Free University of Bozen-Bolzano, Italy). – volume: 12 start-page: 5589 year: 2020 ident: b0130 article-title: Long-term validation and governance role in contemporary urban tree monitoring: a review publication-title: Sustainability – reference: Oslo municipality, 2018. Småhusplanen – et verktøy for alle som vil opprettholde bomiljøer, from https://magasin.oslo.kommune.no/byplan/smahusplanen-et-verktoy-for-alle-som-vil-opprettholde-bomiljoer#gref. – reference: ESRI, 2020b. LiDAR point classification from https://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/lidar-point-classification.htm. – year: 2005 ident: b0270 article-title: Development of a Danish Model for Plan Appraisal publication-title: J. Arboric. – start-page: 1677 year: 2019 ident: b0100 article-title: Mapping urban tree canopy cover using airborne laser scanning – reference: The Norwegian Mapping Authority, 2018. Laserinnsyn, from https://hoydedata.no/LaserInnsyn/. – volume: 13 start-page: 562 year: 2014 end-page: 570 ident: b0305 article-title: Mapping of urban roadside trees–a case study in the tree register update process in Helsinki publication-title: City. – reference: Vallecillo et al., 2018. Ecosystem services accounting: Part I - Outdoor recreation and crop pollination, from https://publications.jrc.ec.europa.eu/repository/handle/JRC110321. – volume: 34 start-page: 218 year: 2002 end-page: 221 ident: b0260 publication-title: Reconstructing tree crowns from laser scanner data for feature extraction – reference: Stereńczak, K., Będkowski, K., Weinacker, H., 2008. Accuracy of crown segmentation and estimation of selected trees and forest stand parameters in order to resolution of used DSM and nDSM models generated from dense small footprint LiDAR data, ISPRS Congress, Beijing, China, Commission VI, WG VI/5, pp. 27–32. – volume: 71 start-page: 132 year: 2018 end-page: 143 ident: b0170 article-title: Testing and evaluating different LiDAR-derived canopy height model generation methods for tree height estimation publication-title: Int. J. Appl. Earth Observ. Geoinform. – reference: Cimburova, Z., Barton, D.N., 2020. The potential of geospatial analysis and Bayesian networks to enable i-Tree Eco assessment of existing tree inventories. Urban For. Urban Green. 55, 126801. https://doi.org/10.1016/j.ufug.2020.126801. – reference: The Norwegian Mapping Authority, 2020b. Norge i bilder, from https://www.norgeibilder.no/. – volume: 5 year: 2018 ident: b0160 article-title: Mapping tree canopies in urban environments using airborne laser scanning (ALS): a Vancouver case study publication-title: For. Ecosyst. – reference: Nowak, D., 2020. iTree Eco User’s Manual v6.0. United States Department of Agriculture, from https://www.itreetools.org/documents/275/EcoV6_UsersManual_2020_04_06.pdf”. – volume: 14 start-page: 562 year: 2015 end-page: 572 ident: b0265 article-title: Urban tree damage estimation using airborne laser scanner data and geographic information systems: an example from 2007 Oklahoma ice storm publication-title: Urban For. Urban Green. – volume: 13 start-page: 562 issue: 3 year: 2014 ident: 10.1016/j.ecolind.2021.108007_b0305 article-title: Mapping of urban roadside trees–a case study in the tree register update process in Helsinki publication-title: City. – volume: 71 start-page: 132 year: 2018 ident: 10.1016/j.ecolind.2021.108007_b0170 article-title: Testing and evaluating different LiDAR-derived canopy height model generation methods for tree height estimation publication-title: Int. J. Appl. Earth Observ. Geoinform. doi: 10.1016/j.jag.2018.05.002 – volume: 99 start-page: 273 year: 2019 ident: 10.1016/j.ecolind.2021.108007_b0125 article-title: A multi-sensor and multi-temporal remote sensing approach to detect land cover change dynamics in heterogeneous urban landscapes publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.12.033 – ident: 10.1016/j.ecolind.2021.108007_b0290 – volume: 54 start-page: 1593 year: 1988 ident: 10.1016/j.ecolind.2021.108007_b0120 article-title: Extracting topographic structure from digital elevation data for geographic information system analysis publication-title: Photogramm. Eng. Rem. Sens. – start-page: 88 year: 2019 ident: 10.1016/j.ecolind.2021.108007_b0155 – ident: 10.1016/j.ecolind.2021.108007_b0345 – ident: 10.1016/j.ecolind.2021.108007_b0195 – ident: 10.1016/j.ecolind.2021.108007_b0280 – volume: 29 start-page: 564 issue: 5 year: 2003 ident: 10.1016/j.ecolind.2021.108007_b0255 publication-title: Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass – volume: 96 start-page: 10 year: 2019 ident: 10.1016/j.ecolind.2021.108007_b0005 article-title: How smart growth and green infrastructure can mutually support each other - a conceptual framework for compact and green cities publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.07.001 – ident: 10.1016/j.ecolind.2021.108007_b0200 – volume: 14 start-page: 675 issue: 3 year: 2015 ident: 10.1016/j.ecolind.2021.108007_b0145 article-title: Assessing street-level urban greenery using Google Street View and a modified green view index publication-title: Urban For. Urban Green. doi: 10.1016/j.ufug.2015.06.006 – ident: 10.1016/j.ecolind.2021.108007_b0040 doi: 10.1016/j.ufug.2020.126801 – volume: 34 start-page: 218 year: 2002 ident: 10.1016/j.ecolind.2021.108007_b0260 publication-title: Reconstructing tree crowns from laser scanner data for feature extraction – volume: 113 start-page: 148 issue: 1 year: 2009 ident: 10.1016/j.ecolind.2021.108007_b0185 article-title: Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data publication-title: Rem. Sens. Environ. doi: 10.1016/j.rse.2008.09.001 – volume: 9 start-page: 231 issue: 3 year: 2017 ident: 10.1016/j.ecolind.2021.108007_b0015 article-title: Individual tree crown delineation from airborne laser scanning for diseased larch forest stands publication-title: Rem. Sens. doi: 10.3390/rs9030231 – volume: 86 start-page: 235 year: 2013 ident: 10.1016/j.ecolind.2021.108007_b0095 article-title: Classifying and valuing ecosystem services for urban planning publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2012.08.019 – volume: 95 start-page: 117 year: 2018 ident: 10.1016/j.ecolind.2021.108007_b0025 article-title: Understanding treescape changes as the basis of urban forest planning in fringe areas publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.07.031 – volume: 42 start-page: 95 year: 2014 ident: 10.1016/j.ecolind.2021.108007_b0140 article-title: Assessing the changes in land use and ecosystem services in Changzhou municipality, Peoples' Republic of China, 1991–2006 publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2013.11.012 – ident: 10.1016/j.ecolind.2021.108007_b0285 – volume: 12 start-page: 498 issue: 6 year: 2019 ident: 10.1016/j.ecolind.2021.108007_b0035 article-title: Accuracy of determining specific parameters of the urban forest using remote sensing publication-title: Iforest-Biogeosci. For. doi: 10.3832/ifor3024-012 – volume: 42 start-page: 504 year: 1996 ident: 10.1016/j.ecolind.2021.108007_b0205 article-title: Estimating leaf area and leaf biomass of open-grown deciduous urban trees publication-title: For. Sci. – volume: 14 start-page: 562 issue: 3 year: 2015 ident: 10.1016/j.ecolind.2021.108007_b0265 article-title: Urban tree damage estimation using airborne laser scanner data and geographic information systems: an example from 2007 Oklahoma ice storm publication-title: Urban For. Urban Green. doi: 10.1016/j.ufug.2015.05.008 – volume: 43 start-page: 101114 year: 2020 ident: 10.1016/j.ecolind.2021.108007_b0245 article-title: Application of the Natural Capital Model to assess changes in ecosystem services from changes in green infrastructure in Amsterdam publication-title: Ecosyst. Serv. doi: 10.1016/j.ecoser.2020.101114 – ident: 10.1016/j.ecolind.2021.108007_b0210 doi: 10.4324/9781315627106-11 – ident: 10.1016/j.ecolind.2021.108007_b0295 – volume: 200 start-page: 170 year: 2017 ident: 10.1016/j.ecolind.2021.108007_b0150 article-title: Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data publication-title: Rem. Sens. Environ. doi: 10.1016/j.rse.2017.08.010 – ident: 10.1016/j.ecolind.2021.108007_b0310 – volume: 21 start-page: 103 year: 2013 ident: 10.1016/j.ecolind.2021.108007_b0110 article-title: A visible band index for remote sensing leaf chlorophyll content at the canopy scale publication-title: Int. J. Appl. Earth Observ. Geoinform. doi: 10.1016/j.jag.2012.07.020 – volume: 5 issue: 1 year: 2018 ident: 10.1016/j.ecolind.2021.108007_b0160 article-title: Mapping tree canopies in urban environments using airborne laser scanning (ALS): a Vancouver case study publication-title: For. Ecosyst. doi: 10.1186/s40663-018-0146-y – volume: 19 start-page: 1078 issue: 4 year: 2015 ident: 10.1016/j.ecolind.2021.108007_b0135 article-title: Extraction of individual tree crown using hyperspectral image and LiDAR data publication-title: KSCE J. Civil Eng. doi: 10.1007/s12205-013-1178-z – year: 2015 ident: 10.1016/j.ecolind.2021.108007_b0175 – ident: 10.1016/j.ecolind.2021.108007_b0240 – volume: 7 start-page: 7892 issue: 6 year: 2015 ident: 10.1016/j.ecolind.2021.108007_b0330 article-title: Individual Tree Segmentation from LiDAR Point Clouds for Urban Forest Inventory publication-title: Rem. Sens. doi: 10.3390/rs70607892 – volume: 2 start-page: 12 issue: 1-2 year: 1979 ident: 10.1016/j.ecolind.2021.108007_b0020 article-title: Use of watersheds in contour detection publication-title: International Workshop on Image Processing – volume: 127 start-page: S117 year: 2013 ident: 10.1016/j.ecolind.2021.108007_b0105 article-title: Uncertainties in landscape analysis and ecosystem service assessment publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2012.12.002 – ident: 10.1016/j.ecolind.2021.108007_b0325 doi: 10.1088/1748-9326/abb396 – ident: 10.1016/j.ecolind.2021.108007_b0045 – ident: 10.1016/j.ecolind.2021.108007_b0320 – volume: 96 start-page: 3 year: 2019 ident: 10.1016/j.ecolind.2021.108007_b0010 article-title: Urban sprawl, compact urban development and green cities. How much do we know, how much do we agree? publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.10.059 – year: 2005 ident: 10.1016/j.ecolind.2021.108007_b0270 article-title: Development of a Danish Model for Plan Appraisal publication-title: J. Arboric. – volume: 31 start-page: 253 issue: 2 year: 2005 ident: 10.1016/j.ecolind.2021.108007_b0300 article-title: Geosciences publication-title: Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry – volume: 29 start-page: 465 year: 2018 ident: 10.1016/j.ecolind.2021.108007_b0335 article-title: Practical application of spatial ecosystem service models to aid decision support publication-title: Ecosyst. Serv. doi: 10.1016/j.ecoser.2017.11.005 – ident: 10.1016/j.ecolind.2021.108007_b0080 – volume: 72 start-page: 923 issue: 8 year: 2006 ident: 10.1016/j.ecolind.2021.108007_b0030 article-title: Isolating individual trees in a savanna woodland using small footprint LiDAR data publication-title: Photogramm. Eng. Rem. Sens. doi: 10.14358/PERS.72.8.923 – volume: 29 start-page: 1387 issue: 5 year: 2008 ident: 10.1016/j.ecolind.2021.108007_b0180 article-title: Assessment of the influence of flying altitude and scan angle on biophysical vegetation products derived from airborne laser scanning publication-title: Int. J. Rem. Sens. doi: 10.1080/01431160701736349 – ident: 10.1016/j.ecolind.2021.108007_b0215 doi: 10.2737/NRS-GTR-200 – ident: 10.1016/j.ecolind.2021.108007_b0275 doi: 10.3897/ab.e12837 – ident: 10.1016/j.ecolind.2021.108007_b0235 – ident: 10.1016/j.ecolind.2021.108007_b0070 – volume: 126 start-page: 405 issue: 3 year: 2000 ident: 10.1016/j.ecolind.2021.108007_b0090 article-title: Modeling conifer tree crown radius and estimating canopy cover publication-title: For. Ecol. Manage. doi: 10.1016/S0378-1127(99)00113-9 – ident: 10.1016/j.ecolind.2021.108007_b0225 – ident: 10.1016/j.ecolind.2021.108007_b0315 – ident: 10.1016/j.ecolind.2021.108007_b0055 – volume: 19 start-page: 140 year: 2016 ident: 10.1016/j.ecolind.2021.108007_b0250 article-title: Assessing urban tree condition using airborne light detection and ranging publication-title: Urban For. Urban Green. doi: 10.1016/j.ufug.2016.06.026 – ident: 10.1016/j.ecolind.2021.108007_b0075 – ident: 10.1016/j.ecolind.2021.108007_b0220 – volume: 12 start-page: 5589 issue: 14 year: 2020 ident: 10.1016/j.ecolind.2021.108007_b0130 article-title: Long-term validation and governance role in contemporary urban tree monitoring: a review publication-title: Sustainability doi: 10.3390/su12145589 – ident: 10.1016/j.ecolind.2021.108007_b0340 doi: 10.1016/j.ufug.2020.126801 – ident: 10.1016/j.ecolind.2021.108007_b0190 – ident: 10.1016/j.ecolind.2021.108007_b0085 – ident: 10.1016/j.ecolind.2021.108007_b0060 – ident: 10.1016/j.ecolind.2021.108007_b0065 – ident: 10.1016/j.ecolind.2021.108007_b0230 – volume: 5 start-page: 4163 issue: 9 year: 2013 ident: 10.1016/j.ecolind.2021.108007_b0115 article-title: Delineating individual trees from LiDAR data: a comparison of vector- and raster-based segmentation approaches publication-title: Rem. Sens. doi: 10.3390/rs5094163 – start-page: 1677 year: 2019 ident: 10.1016/j.ecolind.2021.108007_b0100 – volume: 50 start-page: 2804 issue: 25 year: 2018 ident: 10.1016/j.ecolind.2021.108007_b0165 article-title: Estimation of house price differential of urban tree cover: an application of sample selection approach publication-title: Appl. Econ. doi: 10.1080/00036846.2017.1409419 – ident: 10.1016/j.ecolind.2021.108007_b0050 |
SSID | ssj0016996 |
Score | 2.466987 |
Snippet | •LiDAR is an asset for ecosystem condition accounting & ecosystem service modeling.•LiDAR-based segmentation was used to measure tree height, canopy area &... LiDAR-based segmentation of urban tree canopies and their physical properties (canopy height, canopy diameter, 3D surface and volume) is a replicable,... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108007 |
SubjectTerms | canopy canopy height data collection Ecosystem accounting Ecosystem services ecosystems Geographical Information Systems (GIS) information sources issues and policy lidar Light Detection And Ranging (LiDAR) Norway Remote sensing satellites Tree canopy segmentation trees urban areas vegetation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwviKcpLh8QaaBI7iccCRRVCICEqdbMucSqlKknVpgP8es520gJLF5QtiR3Ld777Lvdi7FrmmPiYjT0k_eJxQvheKkTu0VESGMdhTHLZRFu8RIMhfxqJ0Y9WXyYmzJUHdht3qxOJ3TSVWaAj7vtZGks0NckS0ivaFzbNl3Rea0w1_oNISpdXFHc9P-qO1rk7t5MbsusIwpkyoYFvY-xML9kfWskW7_-lnP6Iaat7HvfYbgMaoecWu8-28vKAHffXOWr0sDmki0OGw7qYFl-kk-C5eOi9gYkChbqCD5yBcUIDbWc1-wTCq7Ccp1gCrdWVdAb7U7wGLDWQpaxtQBegaymxgKKE18W0OmLDx_77_cBrOil4GRei9rQc00U0sSZMmCYcIxnxFKXQCSntMQYCMUHUGJAFE8bGIYOJ5F0keJBn4THbLqsyP2EgAukHRkpwRJ5JLkOah2xIHY15mKHfYbzdSZU1ZcZNt4upauPJJqohgDIEUI4AHXazGjZzdTY2DbgzZFq9bMpk2xvEPKphHrWJeTosaYmsGsThkARNVWz6_lXLFIpOpHGzYJlXy4UKopCEmumFefofazxjO-azLv_xnG3X82V-QUCoTi8tz38D370Dmg priority: 102 providerName: Directory of Open Access Journals |
Title | Utilizing LiDAR data to map tree canopy for urban ecosystem extent and condition accounts in Oslo |
URI | https://dx.doi.org/10.1016/j.ecolind.2021.108007 https://www.proquest.com/docview/2636387331 https://doaj.org/article/d89a0bb9c2d6411cb79a19148614d158 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw1JrGhQtiGxOFURmJa9o6sRP72H2pDDQkoFJv1kucokwlqdr0AIf9dt5znI5xmYRyimM7lt_z-_D7YuyDKUELKJYRIH-JJEr4Ua5UGeFRUpBlSYZ0mbwtbtPZXN4s1OKAXfSxMORWGWh_R9M9tQ4t47Cb43VVjb8JmVF6tAUqLWRPpEBzKTPC8tH93s1DpMZ0EUbZJKLeD1E847sRangozFHC0Fh4bzuqKvsXf_Jp_B-xqX8ItudC1y_ZiyA-8mm3wiN2UNbH7PTqIVoNP4bjuj1hMG-rVfUbuRP_XF1Ov3LyB-Vtw3_CmpM5muPGNutfHCVXvtvkUHNca5fcmfvr8ZZD7TjqzM67dnHoiktseVXzL9tV84rNr6--X8yiUFMhKqRSbeTMEh-EjldmklxLSE0qczDKaWTfS4gVgAZwEKMuk2RkmgFt5ARQUCiL5JQd1k1dvmZcxUbERC8kgCyMNAnOg9qkS5cyKUAMmOx30hYh4TjVvVjZ3rPszgYAWAKA7QAwYKP9sHWXceOpAecEpn1nSpjtG5rNDxswxjptYJLnpohdKoUo8swApbbTKJ44ofSA6R7I9hH-4VTVU_9_3yOFxbNJBheoy2a3tXGaIHmjqphv_n_6t-w5vXXxj2fssN3syncoCLX50GP6kD2bfvw0ux3664Q_tLwIQw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gFepvExUTbASLxmbRI7iR-7saljpUiwSn2zLnE6ZSpJ1aYP8NfvLnE6xssklDc7diyffR-5u98BfNY5Jj5mCw9JvniSNHwvVSr36CopjOMwJr7M0RbTaDyTX-dqvgfnXS4Mh1U63t_y9IZbu5aB283BqigGP30ZMzzanIwW9ieqZ7DP6FSqB_ujq-vxdOdMiLRuk4zioccDHhJ5BnenZOSRPseYoYHfBNxxYdm_RFSD5P9IUv3DsxtBdHkIB06DFKN2kS9hLy9fwdHFQ8Iadbobu3kNOKuLZfGHBJSYFF9GPwSHhIq6Er9wJdgjLWhvq9VvQcqr2K5TLAWttcV3Fs0f8lpgaQWZzbaJ7hLY1pfYiKIU3zfL6g3MLi9uzseeK6vgZVKp2rN6QQ8RqLFnwjSRGOlIpqiVTUiCLzBQiAmixYDMmTBm7wwmWg6RdIU8C4-gV1Zl_haECrQfMMuQiDLTUoc0DxmUNlrIMEO_D7LbSZM5zHEufbE0XXDZnXEEMEwA0xKgD6e7YasWdOOpAWdMpt3LjJndNFTrW-MOjbGJxmGa6iywkfT9LI01MrpdQhqK9VXSh6Qjsnl0BGmq4qnvf-oOhaHryT4XLPNquzFBFBKH48KY7_5_-o_wfHzzbWImV9PrY3jBPW065An06vU2f096UZ1-cOf-Hob7Cf8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+LiDAR+data+to+map+tree+canopy+for+urban+ecosystem+extent+and+condition+accounts+in+Oslo&rft.jtitle=Ecological+indicators&rft.au=Hanssen%2C+Frank&rft.au=Barton%2C+David+N.&rft.au=Venter%2C+Zander+S.&rft.au=Nowell%2C+Megan+S.&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=1470-160X&rft.eissn=1872-7034&rft.volume=130&rft_id=info:doi/10.1016%2Fj.ecolind.2021.108007&rft.externalDocID=S1470160X21006725 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon |