Utilizing LiDAR data to map tree canopy for urban ecosystem extent and condition accounts in Oslo

•LiDAR is an asset for ecosystem condition accounting & ecosystem service modeling.•LiDAR-based segmentation was used to measure tree height, canopy area & volume in Oslo.•Tree canopy in built-up areas increased by 17% from 2011 to 2017.•Despite tree felling restrictions, suburbs had a concu...

Full description

Saved in:
Bibliographic Details
Published inEcological indicators Vol. 130; p. 108007
Main Authors Hanssen, Frank, Barton, David N., Venter, Zander S., Nowell, Megan S., Cimburova, Zofie
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •LiDAR is an asset for ecosystem condition accounting & ecosystem service modeling.•LiDAR-based segmentation was used to measure tree height, canopy area & volume in Oslo.•Tree canopy in built-up areas increased by 17% from 2011 to 2017.•Despite tree felling restrictions, suburbs had a concurrent loss of tall trees.•Field work & LiDAR campaigns should be coordinated in future ecosystem accounting. LiDAR-based segmentation of urban tree canopies and their physical properties (canopy height, canopy diameter, 3D surface and volume) is a replicable, complementary and useful information source for urban ecosystem condition accounts, and an important basis for ecosystem service modeling and valuation. However, using available LiDAR data collected for municipal purposes other than vegetation mapping (such as for example engineering) entails a level of accuracy which may limit the usefulness of the data for change detection in ecosystem accounts. To account for changes in the urban tree canopy of Oslo (capital city of Norway) between 2011 and 2017, a segmentation model was developed based on available airborne LiDAR data scanned for general purposes. The results from the entire built-up area of Oslo indicate a general increase in the number of tall trees (>15 m) and a moderate increase in the number of small trees (<15 m), with the exception of trees between 6 and 10 m which seem to have a relatively constant development over the given period. The total tree canopy area within the built-up area increased by 17.15%, with a corresponding 21.35% increase in the tree canopy volume. The results for the Small House plan area, a policy focus area subject to urban densification and special regulations for felling of large trees, indicate a large increase in small trees (<10 m) and a moderate decrease in tall trees (>10 m). The total tree canopy area within the Small House plan area decreased by 1.04%, with a corresponding 2.13% decrease in the tree canopy volume. With respect to the segmentation accuracy, the changes in aggregate tree canopy cover are too small to determine canopy change with confidence. This study demonstrates the potential for identifying ecosystem condition indicators as well as the limitations of using general purpose LiDAR data to improve the precision of urban ecosystem accounting. For future ecosystem service accounting in urban environments, we recommend that municipalities implement data acquisition programs that combine concurrent field data sampling and LiDAR campaigns designed for urban tree canopy detection, as part of general urban structural inventorying. We recommend using LiDAR and satellite remote sensing data depending on canopy densities. We also recommend that future tree canopy segmentation is done within a cloud-computing environment to ensure sufficient geoprocessing capacity.
AbstractList LiDAR-based segmentation of urban tree canopies and their physical properties (canopy height, canopy diameter, 3D surface and volume) is a replicable, complementary and useful information source for urban ecosystem condition accounts, and an important basis for ecosystem service modeling and valuation. However, using available LiDAR data collected for municipal purposes other than vegetation mapping (such as for example engineering) entails a level of accuracy which may limit the usefulness of the data for change detection in ecosystem accounts. To account for changes in the urban tree canopy of Oslo (capital city of Norway) between 2011 and 2017, a segmentation model was developed based on available airborne LiDAR data scanned for general purposes. The results from the entire built-up area of Oslo indicate a general increase in the number of tall trees (>15 m) and a moderate increase in the number of small trees (<15 m), with the exception of trees between 6 and 10 m which seem to have a relatively constant development over the given period. The total tree canopy area within the built-up area increased by 17.15%, with a corresponding 21.35% increase in the tree canopy volume. The results for the Small House plan area, a policy focus area subject to urban densification and special regulations for felling of large trees, indicate a large increase in small trees (<10 m) and a moderate decrease in tall trees (>10 m). The total tree canopy area within the Small House plan area decreased by 1.04%, with a corresponding 2.13% decrease in the tree canopy volume. With respect to the segmentation accuracy, the changes in aggregate tree canopy cover are too small to determine canopy change with confidence. This study demonstrates the potential for identifying ecosystem condition indicators as well as the limitations of using general purpose LiDAR data to improve the precision of urban ecosystem accounting. For future ecosystem service accounting in urban environments, we recommend that municipalities implement data acquisition programs that combine concurrent field data sampling and LiDAR campaigns designed for urban tree canopy detection, as part of general urban structural inventorying. We recommend using LiDAR and satellite remote sensing data depending on canopy densities. We also recommend that future tree canopy segmentation is done within a cloud-computing environment to ensure sufficient geoprocessing capacity.
LiDAR-based segmentation of urban tree canopies and their physical properties (canopy height, canopy diameter, 3D surface and volume) is a replicable, complementary and useful information source for urban ecosystem condition accounts, and an important basis for ecosystem service modeling and valuation. However, using available LiDAR data collected for municipal purposes other than vegetation mapping (such as for example engineering) entails a level of accuracy which may limit the usefulness of the data for change detection in ecosystem accounts. To account for changes in the urban tree canopy of Oslo (capital city of Norway) between 2011 and 2017, a segmentation model was developed based on available airborne LiDAR data scanned for general purposes. The results from the entire built-up area of Oslo indicate a general increase in the number of tall trees (>15 m) and a moderate increase in the number of small trees (<15 m), with the exception of trees between 6 and 10 m which seem to have a relatively constant development over the given period. The total tree canopy area within the built-up area increased by 17.15%, with a corresponding 21.35% increase in the tree canopy volume. The results for the Small House plan area, a policy focus area subject to urban densification and special regulations for felling of large trees, indicate a large increase in small trees (<10 m) and a moderate decrease in tall trees (>10 m). The total tree canopy area within the Small House plan area decreased by 1.04%, with a corresponding 2.13% decrease in the tree canopy volume. With respect to the segmentation accuracy, the changes in aggregate tree canopy cover are too small to determine canopy change with confidence. This study demonstrates the potential for identifying ecosystem condition indicators as well as the limitations of using general purpose LiDAR data to improve the precision of urban ecosystem accounting. For future ecosystem service accounting in urban environments, we recommend that municipalities implement data acquisition programs that combine concurrent field data sampling and LiDAR campaigns designed for urban tree canopy detection, as part of general urban structural inventorying. We recommend using LiDAR and satellite remote sensing data depending on canopy densities. We also recommend that future tree canopy segmentation is done within a cloud-computing environment to ensure sufficient geoprocessing capacity.
•LiDAR is an asset for ecosystem condition accounting & ecosystem service modeling.•LiDAR-based segmentation was used to measure tree height, canopy area & volume in Oslo.•Tree canopy in built-up areas increased by 17% from 2011 to 2017.•Despite tree felling restrictions, suburbs had a concurrent loss of tall trees.•Field work & LiDAR campaigns should be coordinated in future ecosystem accounting. LiDAR-based segmentation of urban tree canopies and their physical properties (canopy height, canopy diameter, 3D surface and volume) is a replicable, complementary and useful information source for urban ecosystem condition accounts, and an important basis for ecosystem service modeling and valuation. However, using available LiDAR data collected for municipal purposes other than vegetation mapping (such as for example engineering) entails a level of accuracy which may limit the usefulness of the data for change detection in ecosystem accounts. To account for changes in the urban tree canopy of Oslo (capital city of Norway) between 2011 and 2017, a segmentation model was developed based on available airborne LiDAR data scanned for general purposes. The results from the entire built-up area of Oslo indicate a general increase in the number of tall trees (>15 m) and a moderate increase in the number of small trees (<15 m), with the exception of trees between 6 and 10 m which seem to have a relatively constant development over the given period. The total tree canopy area within the built-up area increased by 17.15%, with a corresponding 21.35% increase in the tree canopy volume. The results for the Small House plan area, a policy focus area subject to urban densification and special regulations for felling of large trees, indicate a large increase in small trees (<10 m) and a moderate decrease in tall trees (>10 m). The total tree canopy area within the Small House plan area decreased by 1.04%, with a corresponding 2.13% decrease in the tree canopy volume. With respect to the segmentation accuracy, the changes in aggregate tree canopy cover are too small to determine canopy change with confidence. This study demonstrates the potential for identifying ecosystem condition indicators as well as the limitations of using general purpose LiDAR data to improve the precision of urban ecosystem accounting. For future ecosystem service accounting in urban environments, we recommend that municipalities implement data acquisition programs that combine concurrent field data sampling and LiDAR campaigns designed for urban tree canopy detection, as part of general urban structural inventorying. We recommend using LiDAR and satellite remote sensing data depending on canopy densities. We also recommend that future tree canopy segmentation is done within a cloud-computing environment to ensure sufficient geoprocessing capacity.
ArticleNumber 108007
Author Cimburova, Zofie
Hanssen, Frank
Barton, David N.
Nowell, Megan S.
Venter, Zander S.
Author_xml – sequence: 1
  givenname: Frank
  surname: Hanssen
  fullname: Hanssen, Frank
  email: frank.hanssen@nina.no
  organization: Norwegian Institute for Nature Research, Box. 5685 Torgarden, N-7485 Trondheim, Norway
– sequence: 2
  givenname: David N.
  surname: Barton
  fullname: Barton, David N.
  email: david.barton@nina.no
  organization: Norwegian Institute for Nature Research, Sognsveien 68, N-0855 Oslo, Norway
– sequence: 3
  givenname: Zander S.
  surname: Venter
  fullname: Venter, Zander S.
  email: zander.venter@nina.no
  organization: Norwegian Institute for Nature Research, Sognsveien 68, N-0855 Oslo, Norway
– sequence: 4
  givenname: Megan S.
  surname: Nowell
  fullname: Nowell, Megan S.
  email: megan.nowell@nina.no
  organization: Norwegian Institute for Nature Research, Sognsveien 68, N-0855 Oslo, Norway
– sequence: 5
  givenname: Zofie
  surname: Cimburova
  fullname: Cimburova, Zofie
  email: zofie.cimburova@nina.no
  organization: Norwegian Institute for Nature Research, Sognsveien 68, N-0855 Oslo, Norway
BookMark eNqFkU1rHDEMhk1JoPnoTyj42Mts7RmPx6aHEtKmCSwESgO9GY2tCV5m7a3tLd38-noz6aWXoIOF0PNK1ntOTkIMSMh7zlaccflxs0IbZx_cqmUtrzXF2PCGnHE1tM3AOnFSczGwhkv28y05z3nDKqe1PCPwUPzsn3x4pGv_5eo7dVCAlki3sKMlIVILIe4OdIqJ7tMIgdZh-ZALbin-KRgKheCojcH54mOgYG3ch5KpD_Q-z_GSnE4wZ3z38l6Qh5uvP65vm_X9t7vrq3VjRd-XxumpBgfLGFOyG5UAqaUYQfdOtZ2aoO0BFICDVqihG5iUPSgtGHDO0HYX5G7RdRE2Zpf8FtLBRPDmuRDTo4FUvJ3ROKWBjaO2rZOCczsOGrjmQkkuHO9V1fqwaO1S_LXHXMzWZ4vzDAHjPptWdrKrS3S8tn5aWm2KOSecjPUFjpcoCfxsODNHk8zGvJhkjiaZxaRK9__R_xZ_jfu8cFgv-ttjMtl6DBadT2hL_bJ_ReEv_OKwIA
CitedBy_id crossref_primary_10_1155_2022_6127388
crossref_primary_10_1016_j_ecoser_2024_101599
crossref_primary_10_3390_rs16061110
crossref_primary_10_3390_s22093269
crossref_primary_10_3897_oneeco_8_e85021
crossref_primary_10_1016_j_ecoser_2023_101576
crossref_primary_10_1016_j_ufug_2024_128518
crossref_primary_10_1007_s40808_022_01627_9
crossref_primary_10_1007_s41348_024_00861_w
crossref_primary_10_3390_rs16142589
crossref_primary_10_1016_j_landurbplan_2023_104705
crossref_primary_10_3390_land11122325
crossref_primary_10_1080_10106049_2022_2028904
crossref_primary_10_3233_SJI_210834
crossref_primary_10_3390_agronomy12112700
crossref_primary_10_3390_s24227268
crossref_primary_10_1002_ppp3_10240
crossref_primary_10_1016_j_ufug_2023_127839
crossref_primary_10_3390_rs15041028
crossref_primary_10_1016_j_pdisas_2024_100328
crossref_primary_10_1109_TGRS_2023_3295802
crossref_primary_10_3390_rs16244618
crossref_primary_10_1007_s10651_023_00571_w
crossref_primary_10_1016_j_landurbplan_2022_104395
crossref_primary_10_3390_rs17020196
crossref_primary_10_1016_j_cities_2024_105274
crossref_primary_10_1016_j_ecolind_2024_112727
crossref_primary_10_1016_j_ufug_2024_128659
crossref_primary_10_1016_j_ufug_2024_128239
Cites_doi 10.1016/j.jag.2018.05.002
10.1016/j.ecolind.2018.12.033
10.1016/j.ecolind.2017.07.001
10.1016/j.ufug.2015.06.006
10.1016/j.ufug.2020.126801
10.1016/j.rse.2008.09.001
10.3390/rs9030231
10.1016/j.ecolecon.2012.08.019
10.1016/j.ecolind.2018.07.031
10.1016/j.ecolind.2013.11.012
10.3832/ifor3024-012
10.1016/j.ufug.2015.05.008
10.1016/j.ecoser.2020.101114
10.4324/9781315627106-11
10.1016/j.rse.2017.08.010
10.1016/j.jag.2012.07.020
10.1186/s40663-018-0146-y
10.1007/s12205-013-1178-z
10.3390/rs70607892
10.1016/j.jenvman.2012.12.002
10.1088/1748-9326/abb396
10.1016/j.ecolind.2018.10.059
10.1016/j.ecoser.2017.11.005
10.14358/PERS.72.8.923
10.1080/01431160701736349
10.2737/NRS-GTR-200
10.3897/ab.e12837
10.1016/S0378-1127(99)00113-9
10.1016/j.ufug.2016.06.026
10.3390/su12145589
10.3390/rs5094163
10.1080/00036846.2017.1409419
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.ecolind.2021.108007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1872-7034
ExternalDocumentID oai_doaj_org_article_d89a0bb9c2d6411cb79a19148614d158
10_1016_j_ecolind_2021_108007
S1470160X21006725
GeographicLocations Norway
GeographicLocations_xml – name: Norway
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c455t-d9f9f91ac000863b84a6964ba95d8238fa25aa8aada2487370665a8940a110ec3
IEDL.DBID .~1
ISSN 1470-160X
IngestDate Wed Aug 27 01:15:50 EDT 2025
Fri Jul 11 12:22:33 EDT 2025
Thu Apr 24 22:59:33 EDT 2025
Tue Jul 01 01:32:47 EDT 2025
Fri Feb 23 02:42:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ecosystem accounting
Light Detection And Ranging (LiDAR)
Ecosystem services
Geographical Information Systems (GIS)
Tree canopy segmentation
Remote sensing
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-d9f9f91ac000863b84a6964ba95d8238fa25aa8aada2487370665a8940a110ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1470160X21006725
PQID 2636387331
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_d89a0bb9c2d6411cb79a19148614d158
proquest_miscellaneous_2636387331
crossref_citationtrail_10_1016_j_ecolind_2021_108007
crossref_primary_10_1016_j_ecolind_2021_108007
elsevier_sciencedirect_doi_10_1016_j_ecolind_2021_108007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Ecological indicators
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Li, Zhang, Li, Ricard, Meng, Zhang (b0145) 2015; 14
Liu, Coops, Aven, Pang (b0150) 2017; 200
ESRI, 2020f. Focal Flow, from https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-focal-flow-works.htm.
Gill, Biging, Murphy (b0090) 2000; 126
Stange, E.V., Alexander Samuel, Benno Nikolaus Dillinger, Markus A.K. Sydenham, 2020. Kartlegging av grønnstrukturer for Nye Stavanger Kommune. NINA report 1706 (ISBN 978-82-426-3456-6).
Pyysalo, Hyyppa, Sciences (b0260) 2002; 34
ESRI, 2019d. Focal statistics, from https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/focal-statistics.htm.
Zhang, Zhou, Qiu (b0330) 2015; 7
Klobucar, Östberg, Jansson, Randrup (b0130) 2020; 12
Nowak (b0205) 1996; 42
Smith, S., Holland, D., Longley, P. Remote Sensing, Sciences, S.I., 2004. The importance of understanding error in LiDAR digital elevation models, 35, 996–1001.
Jakubowski, Li, Guo, Kelly (b0115) 2013; 5
Vallecillo et al., 2018. Ecosystem services accounting: Part I - Outdoor recreation and crop pollination, from https://publications.jrc.ec.europa.eu/repository/handle/JRC110321.
Obst, C., (Ed.) et al., 2017. SEEA Experimental Ecosystem Accounting: Technical Recommendations. Final Draft V3.0: 12 September, 2017, from https://seea.un.org/sites/seea.un.org/files/Presentations/Training_China_2017/seea_eea_tech_rec_final_v3.2_16oct2017.pdf.
Schulp, C.J.E., Landuyt, D., 2017. Uncertainty measures and maps. In: B. Burkhard, J. Maes (Eds.), Mapping Ecosystem Services (pp. 263-270). [6.3] Pensoft Publishers. https://doi.org/10.3897/ab.e12837.
Jenson, Domingue (b0120) 1988; 54
Morsdorf, Frey, Meier, Itten, Allgöwer (b0180) 2008; 29
Beucher, Lantuéjoul (b0020) 1979; 2
Mielcarek, Stereńczak, Khosravipour (b0170) 2018; 71
Paulin, Remme, de Nijs, Rutgers, Koopman, de Knegt, van der Hoek, Breure (b0245) 2020; 43
Rahman, Rashed (b0265) 2015; 14
Popescu, Wynne, Nelson (b0255) 2003; 29
URBAN EEA, 2020. URBAN EEA – Urban ecosystem accounting, from https://www.nina.no/english/Fields-of-research/Projects/Urban-EEA.
Franceschi, S., 2017. Estimating forest structure and biomass through airborne laser scanning for silvicultural and natural hazards purposes (Doctoral dissertation thesis, Free University of Bozen-Bolzano, Italy).
Chen, Baldocchi, Gong, Kelly (b0030) 2006; 72
Miller, Hauer, Werner (b0175) 2015
Oslo municipality, 2019. Report on green accounts: a measurement of green structure in Oslo's built-up area. from https://www.oslo.kommune.no/getfile.php/13300369-1539862391/Tjenester%20og%20tilbud/Politikk%20og%20administrasjon/Etater%2C%20foretak%20og%20ombud/Plan-%20og%20bygningsetaten/Gr%C3%B8ntregnskap%20-%20fagrapport.pdf.
Næsset (b0185) 2009; 113
The Norwegian Mapping Authority, 2018. Laserinnsyn, from https://hoydedata.no/LaserInnsyn/.
Artmann, Kohler, Meinel, Gan, Ioja (b0005) 2019; 96
Tanhuanpää, Vastaranta, Kankare, Holopainen, Hyyppä, Hyyppä, Alho, Raisio (b0305) 2014; 13
ESRI, 2019a. Spatial Analyst, from https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/an-overview-of-the-spatial-analyst-toolbox.htm.
ESRI, 2019c. LAS Dataset to raster, from https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/las-dataset-to-raster-function.htm.
Lof (b0155) 2019
Hunt, Doraiswamy, McMurtrey, Daughtry, Perry, Akhmedov (b0110) 2013; 21
Randrup (b0270) 2005
Wang J.S.F., Henry, M., Grenier, M., Schenau, S., Barton, D., Harris, R., Chan, J.Y., Keith, D., Obst, C., 2019. Discussion paper 1.2: Treatment of ecosystems assets in urban areas. In: Paper submitted to the SEEA EEA Technical Committee as input to the revision of the technical recommendations in support of the System on Environmental-Economic Accounting.
Artmann, Inostroza, Fan (b0010) 2019; 96
The Norwegian Mapping Authority, 2020a. Area statistics for Norway, from https://www.kartverket.no/kunnskap/fakta-om-norge/arealstatistikk/arealstatistikk-norge/.
ESRI, 2020b. LiDAR point classification from https://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/lidar-point-classification.htm.
European Space Agency (ESA), Sentinel Online, 2020. From https://sentinel.esa.int/web/sentinel/missions/sentinel-2.
Nowak, D., 2020. Understanding i-Tree: Summary of Programs and Methods. General Technical Report NRS-200, United States Department of Agriculture.
Cimburova, Z., Barton, D.N., 2020. The potential of geospatial analysis and Bayesian networks to enable i-Tree Eco assessment of existing tree inventories. Urban For. Urban Green. 55, 126801. https://doi.org/10.1016/j.ufug.2020.126801.
Strand, G.H., Bloch, V.V.H., 2009. Statistical grids for Norway. Documentation of national grids for analysis and visualisation of spatial data in Norway (2009/9). Statistics Norway.
Suárez, Ontiveros, Smith, Snape (b0300) 2005; 31
Li, Ye, Song, Wang, Tao (b0140) 2014; 42
ESRI, 2020g. Watershed, from https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-watershed-works.htm.
Tiede, D., Hochleitner, G., Blaschke, T., 2005. A full GIS-based workflow for tree identification and tree crown delineation using laser scanning, ISPRS Workshop CMRT, p. 2005.
Chen, Wang, Li, Ma, Zhang (b0025) 2018; 95
ESRI, 2020e. Flow Direction. 2020, from https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/flow-direction.htm.
Venter, Z.S., Barton, D.N., Gundersen, V., Figari, H. and Nowell, M., 2020. Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environmental Research Letters, 15(10), p.104075.
La, Eo, Chang, Kim (b0135) 2015; 19
The Norwegian Mapping Authority, 2020b. Norge i bilder, from https://www.norgeibilder.no/.
Barnes, Balzter, Barrett, Eddy, Milner, Suárez (b0015) 2017; 9
Stereńczak, K., Będkowski, K., Weinacker, H., 2008. Accuracy of crown segmentation and estimation of selected trees and forest stand parameters in order to resolution of used DSM and nDSM models generated from dense small footprint LiDAR data, ISPRS Congress, Beijing, China, Commission VI, WG VI/5, pp. 27–32.
Nowak, D., 2020. iTree Eco User’s Manual v6.0. United States Department of Agriculture, from https://www.itreetools.org/documents/275/EcoV6_UsersManual_2020_04_06.pdf”.
Gómez-Baggethun, Barton (b0095) 2013; 86
Oslo municipality, 2018. Småhusplanen – et verktøy for alle som vil opprettholde bomiljøer, from https://magasin.oslo.kommune.no/byplan/smahusplanen-et-verktoy-for-alle-som-vil-opprettholde-bomiljoer#gref.
Matasci, Coops, Williams, Page (b0160) 2018; 5
Ciesielski, Sterenczak (b0035) 2019; 12
Hou, Burkhard, Müller (b0105) 2013; 127
Mei, Hite, Sohngen (b0165) 2018; 50
Zulian, Stange, Woods, Carvalho, Dick, Andrews, Baró, Vizcaino, Barton, Nowel, Rusch, Autunes, Fernandes, Ferraz, Ferreira dos Santos, Aszalós, Arany, Czúcz, Priess, Hoyer, Bürger-Patricio, Lapola, Mederly, Halabuk, Bezak, Kopperoinen, Viinikka (b0335) 2018; 29
Plowright, Coops, Eskelson, Sheppard, Aven (b0250) 2016; 19
Nowak, D., Francesco, van den Bosch, C.C., Fini, A., eds. Routledge handbook of urban forestry. New York, NY: Routledge: 152-163. Chapter 11, 2017. Assessing the benefits and economic values of trees, pp. 152–163.
Kabisch, Selsam, Kirsten, Lausch, Bumberger (b0125) 2019; 99
Parlamentary proposition nr. 32 (2007–2008), About the Norwegian Planning and Building Procedure Act (“Plan- og bygningsloven”), from https://www.regjeringen.no/en/dokumenter/planning-building-act/id570450/.
Hanssen, Barton, Nowell, Cimburova (b0100) 2019
Liu (10.1016/j.ecolind.2021.108007_b0150) 2017; 200
10.1016/j.ecolind.2021.108007_b0345
10.1016/j.ecolind.2021.108007_b0225
10.1016/j.ecolind.2021.108007_b0220
Zhang (10.1016/j.ecolind.2021.108007_b0330) 2015; 7
Gill (10.1016/j.ecolind.2021.108007_b0090) 2000; 126
Rahman (10.1016/j.ecolind.2021.108007_b0265) 2015; 14
10.1016/j.ecolind.2021.108007_b0340
10.1016/j.ecolind.2021.108007_b0065
Hunt (10.1016/j.ecolind.2021.108007_b0110) 2013; 21
Barnes (10.1016/j.ecolind.2021.108007_b0015) 2017; 9
10.1016/j.ecolind.2021.108007_b0060
Tanhuanpää (10.1016/j.ecolind.2021.108007_b0305) 2014; 13
Artmann (10.1016/j.ecolind.2021.108007_b0005) 2019; 96
Morsdorf (10.1016/j.ecolind.2021.108007_b0180) 2008; 29
Pyysalo (10.1016/j.ecolind.2021.108007_b0260) 2002; 34
10.1016/j.ecolind.2021.108007_b0235
Li (10.1016/j.ecolind.2021.108007_b0145) 2015; 14
10.1016/j.ecolind.2021.108007_b0315
10.1016/j.ecolind.2021.108007_b0275
10.1016/j.ecolind.2021.108007_b0310
10.1016/j.ecolind.2021.108007_b0195
10.1016/j.ecolind.2021.108007_b0075
10.1016/j.ecolind.2021.108007_b0230
10.1016/j.ecolind.2021.108007_b0190
10.1016/j.ecolind.2021.108007_b0070
Jenson (10.1016/j.ecolind.2021.108007_b0120) 1988; 54
Miller (10.1016/j.ecolind.2021.108007_b0175) 2015
Randrup (10.1016/j.ecolind.2021.108007_b0270) 2005
Artmann (10.1016/j.ecolind.2021.108007_b0010) 2019; 96
Klobucar (10.1016/j.ecolind.2021.108007_b0130) 2020; 12
Ciesielski (10.1016/j.ecolind.2021.108007_b0035) 2019; 12
Paulin (10.1016/j.ecolind.2021.108007_b0245) 2020; 43
Li (10.1016/j.ecolind.2021.108007_b0140) 2014; 42
Mei (10.1016/j.ecolind.2021.108007_b0165) 2018; 50
Matasci (10.1016/j.ecolind.2021.108007_b0160) 2018; 5
10.1016/j.ecolind.2021.108007_b0325
Gómez-Baggethun (10.1016/j.ecolind.2021.108007_b0095) 2013; 86
10.1016/j.ecolind.2021.108007_b0045
10.1016/j.ecolind.2021.108007_b0320
10.1016/j.ecolind.2021.108007_b0200
Chen (10.1016/j.ecolind.2021.108007_b0030) 2006; 72
Næsset (10.1016/j.ecolind.2021.108007_b0185) 2009; 113
10.1016/j.ecolind.2021.108007_b0040
10.1016/j.ecolind.2021.108007_b0085
10.1016/j.ecolind.2021.108007_b0240
10.1016/j.ecolind.2021.108007_b0285
10.1016/j.ecolind.2021.108007_b0080
10.1016/j.ecolind.2021.108007_b0280
Suárez (10.1016/j.ecolind.2021.108007_b0300) 2005; 31
Hou (10.1016/j.ecolind.2021.108007_b0105) 2013; 127
La (10.1016/j.ecolind.2021.108007_b0135) 2015; 19
Beucher (10.1016/j.ecolind.2021.108007_b0020) 1979; 2
Jakubowski (10.1016/j.ecolind.2021.108007_b0115) 2013; 5
Kabisch (10.1016/j.ecolind.2021.108007_b0125) 2019; 99
10.1016/j.ecolind.2021.108007_b0215
Zulian (10.1016/j.ecolind.2021.108007_b0335) 2018; 29
10.1016/j.ecolind.2021.108007_b0055
10.1016/j.ecolind.2021.108007_b0210
10.1016/j.ecolind.2021.108007_b0295
Hanssen (10.1016/j.ecolind.2021.108007_b0100) 2019
10.1016/j.ecolind.2021.108007_b0290
10.1016/j.ecolind.2021.108007_b0050
Lof (10.1016/j.ecolind.2021.108007_b0155) 2019
Plowright (10.1016/j.ecolind.2021.108007_b0250) 2016; 19
Chen (10.1016/j.ecolind.2021.108007_b0025) 2018; 95
Popescu (10.1016/j.ecolind.2021.108007_b0255) 2003; 29
Mielcarek (10.1016/j.ecolind.2021.108007_b0170) 2018; 71
Nowak (10.1016/j.ecolind.2021.108007_b0205) 1996; 42
References_xml – volume: 5
  start-page: 4163
  year: 2013
  end-page: 4186
  ident: b0115
  article-title: Delineating individual trees from LiDAR data: a comparison of vector- and raster-based segmentation approaches
  publication-title: Rem. Sens.
– reference: ESRI, 2020g. Watershed, from https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-watershed-works.htm.
– reference: The Norwegian Mapping Authority, 2020a. Area statistics for Norway, from https://www.kartverket.no/kunnskap/fakta-om-norge/arealstatistikk/arealstatistikk-norge/.
– volume: 31
  start-page: 253
  year: 2005
  end-page: 262
  ident: b0300
  article-title: Geosciences
  publication-title: Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry
– volume: 200
  start-page: 170
  year: 2017
  end-page: 182
  ident: b0150
  article-title: Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data
  publication-title: Rem. Sens. Environ.
– volume: 72
  start-page: 923
  year: 2006
  end-page: 932
  ident: b0030
  article-title: Isolating individual trees in a savanna woodland using small footprint LiDAR data
  publication-title: Photogramm. Eng. Rem. Sens.
– volume: 21
  start-page: 103
  year: 2013
  end-page: 112
  ident: b0110
  article-title: A visible band index for remote sensing leaf chlorophyll content at the canopy scale
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
– volume: 113
  start-page: 148
  year: 2009
  end-page: 159
  ident: b0185
  article-title: Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data
  publication-title: Rem. Sens. Environ.
– reference: Schulp, C.J.E., Landuyt, D., 2017. Uncertainty measures and maps. In: B. Burkhard, J. Maes (Eds.), Mapping Ecosystem Services (pp. 263-270). [6.3] Pensoft Publishers. https://doi.org/10.3897/ab.e12837.
– volume: 95
  start-page: 117
  year: 2018
  end-page: 126
  ident: b0025
  article-title: Understanding treescape changes as the basis of urban forest planning in fringe areas
  publication-title: Ecol. Indic.
– volume: 42
  start-page: 95
  year: 2014
  end-page: 103
  ident: b0140
  article-title: Assessing the changes in land use and ecosystem services in Changzhou municipality, Peoples' Republic of China, 1991–2006
  publication-title: Ecol. Indic.
– reference: Parlamentary proposition nr. 32 (2007–2008), About the Norwegian Planning and Building Procedure Act (“Plan- og bygningsloven”), from https://www.regjeringen.no/en/dokumenter/planning-building-act/id570450/.
– volume: 19
  start-page: 140
  year: 2016
  end-page: 150
  ident: b0250
  article-title: Assessing urban tree condition using airborne light detection and ranging
  publication-title: Urban For. Urban Green.
– volume: 29
  start-page: 1387
  year: 2008
  end-page: 1406
  ident: b0180
  article-title: Assessment of the influence of flying altitude and scan angle on biophysical vegetation products derived from airborne laser scanning
  publication-title: Int. J. Rem. Sens.
– reference: Nowak, D., 2020. Understanding i-Tree: Summary of Programs and Methods. General Technical Report NRS-200, United States Department of Agriculture.
– reference: ESRI, 2020e. Flow Direction. 2020, from https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/flow-direction.htm.
– volume: 9
  start-page: 231
  year: 2017
  ident: b0015
  article-title: Individual tree crown delineation from airborne laser scanning for diseased larch forest stands
  publication-title: Rem. Sens.
– volume: 50
  start-page: 2804
  year: 2018
  end-page: 2811
  ident: b0165
  article-title: Estimation of house price differential of urban tree cover: an application of sample selection approach
  publication-title: Appl. Econ.
– reference: Tiede, D., Hochleitner, G., Blaschke, T., 2005. A full GIS-based workflow for tree identification and tree crown delineation using laser scanning, ISPRS Workshop CMRT, p. 2005.
– volume: 127
  start-page: S117
  year: 2013
  end-page: S131
  ident: b0105
  article-title: Uncertainties in landscape analysis and ecosystem service assessment
  publication-title: J. Environ. Manage.
– reference: Oslo municipality, 2019. Report on green accounts: a measurement of green structure in Oslo's built-up area. from https://www.oslo.kommune.no/getfile.php/13300369-1539862391/Tjenester%20og%20tilbud/Politikk%20og%20administrasjon/Etater%2C%20foretak%20og%20ombud/Plan-%20og%20bygningsetaten/Gr%C3%B8ntregnskap%20-%20fagrapport.pdf.
– reference: Venter, Z.S., Barton, D.N., Gundersen, V., Figari, H. and Nowell, M., 2020. Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environmental Research Letters, 15(10), p.104075.
– reference: ESRI, 2019c. LAS Dataset to raster, from https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/las-dataset-to-raster-function.htm.
– volume: 29
  start-page: 564
  year: 2003
  end-page: 577
  ident: b0255
  publication-title: Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass
– volume: 19
  start-page: 1078
  year: 2015
  end-page: 1087
  ident: b0135
  article-title: Extraction of individual tree crown using hyperspectral image and LiDAR data
  publication-title: KSCE J. Civil Eng.
– reference: Obst, C., (Ed.) et al., 2017. SEEA Experimental Ecosystem Accounting: Technical Recommendations. Final Draft V3.0: 12 September, 2017, from https://seea.un.org/sites/seea.un.org/files/Presentations/Training_China_2017/seea_eea_tech_rec_final_v3.2_16oct2017.pdf.
– volume: 86
  start-page: 235
  year: 2013
  end-page: 245
  ident: b0095
  article-title: Classifying and valuing ecosystem services for urban planning
  publication-title: Ecol. Econ.
– volume: 29
  start-page: 465
  year: 2018
  end-page: 480
  ident: b0335
  article-title: Practical application of spatial ecosystem service models to aid decision support
  publication-title: Ecosyst. Serv.
– volume: 7
  start-page: 7892
  year: 2015
  end-page: 7913
  ident: b0330
  article-title: Individual Tree Segmentation from LiDAR Point Clouds for Urban Forest Inventory
  publication-title: Rem. Sens.
– volume: 126
  start-page: 405
  year: 2000
  end-page: 416
  ident: b0090
  article-title: Modeling conifer tree crown radius and estimating canopy cover
  publication-title: For. Ecol. Manage.
– start-page: 88
  year: 2019
  ident: b0155
  article-title: The SEEA-EEA ecosystem condition account for the Netherlands
– year: 2015
  ident: b0175
  article-title: Urban Forestry: Planning and Managing Urban Greenspaces
– reference: Wang J.S.F., Henry, M., Grenier, M., Schenau, S., Barton, D., Harris, R., Chan, J.Y., Keith, D., Obst, C., 2019. Discussion paper 1.2: Treatment of ecosystems assets in urban areas. In: Paper submitted to the SEEA EEA Technical Committee as input to the revision of the technical recommendations in support of the System on Environmental-Economic Accounting.
– volume: 43
  start-page: 101114
  year: 2020
  ident: b0245
  article-title: Application of the Natural Capital Model to assess changes in ecosystem services from changes in green infrastructure in Amsterdam
  publication-title: Ecosyst. Serv.
– reference: Stange, E.V., Alexander Samuel, Benno Nikolaus Dillinger, Markus A.K. Sydenham, 2020. Kartlegging av grønnstrukturer for Nye Stavanger Kommune. NINA report 1706 (ISBN 978-82-426-3456-6).
– volume: 96
  start-page: 3
  year: 2019
  end-page: 9
  ident: b0010
  article-title: Urban sprawl, compact urban development and green cities. How much do we know, how much do we agree?
  publication-title: Ecol. Indic.
– volume: 2
  start-page: 12
  year: 1979
  ident: b0020
  article-title: Use of watersheds in contour detection
  publication-title: International Workshop on Image Processing
– reference: Nowak, D., Francesco, van den Bosch, C.C., Fini, A., eds. Routledge handbook of urban forestry. New York, NY: Routledge: 152-163. Chapter 11, 2017. Assessing the benefits and economic values of trees, pp. 152–163.
– volume: 96
  start-page: 10
  year: 2019
  end-page: 22
  ident: b0005
  article-title: How smart growth and green infrastructure can mutually support each other - a conceptual framework for compact and green cities
  publication-title: Ecol. Indic.
– reference: European Space Agency (ESA), Sentinel Online, 2020. From https://sentinel.esa.int/web/sentinel/missions/sentinel-2.
– volume: 99
  start-page: 273
  year: 2019
  end-page: 282
  ident: b0125
  article-title: A multi-sensor and multi-temporal remote sensing approach to detect land cover change dynamics in heterogeneous urban landscapes
  publication-title: Ecol. Indic.
– volume: 12
  start-page: 498
  year: 2019
  end-page: 510
  ident: b0035
  article-title: Accuracy of determining specific parameters of the urban forest using remote sensing
  publication-title: Iforest-Biogeosci. For.
– volume: 54
  start-page: 1593
  year: 1988
  end-page: 1600
  ident: b0120
  article-title: Extracting topographic structure from digital elevation data for geographic information system analysis
  publication-title: Photogramm. Eng. Rem. Sens.
– reference: ESRI, 2019a. Spatial Analyst, from https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/an-overview-of-the-spatial-analyst-toolbox.htm.
– reference: URBAN EEA, 2020. URBAN EEA – Urban ecosystem accounting, from https://www.nina.no/english/Fields-of-research/Projects/Urban-EEA.
– reference: ESRI, 2019d. Focal statistics, from https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/focal-statistics.htm.
– volume: 42
  start-page: 504
  year: 1996
  end-page: 507
  ident: b0205
  article-title: Estimating leaf area and leaf biomass of open-grown deciduous urban trees
  publication-title: For. Sci.
– reference: Strand, G.H., Bloch, V.V.H., 2009. Statistical grids for Norway. Documentation of national grids for analysis and visualisation of spatial data in Norway (2009/9). Statistics Norway.
– volume: 14
  start-page: 675
  year: 2015
  end-page: 685
  ident: b0145
  article-title: Assessing street-level urban greenery using Google Street View and a modified green view index
  publication-title: Urban For. Urban Green.
– reference: ESRI, 2020f. Focal Flow, from https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-focal-flow-works.htm.
– reference: Smith, S., Holland, D., Longley, P. Remote Sensing, Sciences, S.I., 2004. The importance of understanding error in LiDAR digital elevation models, 35, 996–1001.
– reference: Franceschi, S., 2017. Estimating forest structure and biomass through airborne laser scanning for silvicultural and natural hazards purposes (Doctoral dissertation thesis, Free University of Bozen-Bolzano, Italy).
– volume: 12
  start-page: 5589
  year: 2020
  ident: b0130
  article-title: Long-term validation and governance role in contemporary urban tree monitoring: a review
  publication-title: Sustainability
– reference: Oslo municipality, 2018. Småhusplanen – et verktøy for alle som vil opprettholde bomiljøer, from https://magasin.oslo.kommune.no/byplan/smahusplanen-et-verktoy-for-alle-som-vil-opprettholde-bomiljoer#gref.
– reference: ESRI, 2020b. LiDAR point classification from https://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/lidar-point-classification.htm.
– year: 2005
  ident: b0270
  article-title: Development of a Danish Model for Plan Appraisal
  publication-title: J. Arboric.
– start-page: 1677
  year: 2019
  ident: b0100
  article-title: Mapping urban tree canopy cover using airborne laser scanning
– reference: The Norwegian Mapping Authority, 2018. Laserinnsyn, from https://hoydedata.no/LaserInnsyn/.
– volume: 13
  start-page: 562
  year: 2014
  end-page: 570
  ident: b0305
  article-title: Mapping of urban roadside trees–a case study in the tree register update process in Helsinki
  publication-title: City.
– reference: Vallecillo et al., 2018. Ecosystem services accounting: Part I - Outdoor recreation and crop pollination, from https://publications.jrc.ec.europa.eu/repository/handle/JRC110321.
– volume: 34
  start-page: 218
  year: 2002
  end-page: 221
  ident: b0260
  publication-title: Reconstructing tree crowns from laser scanner data for feature extraction
– reference: Stereńczak, K., Będkowski, K., Weinacker, H., 2008. Accuracy of crown segmentation and estimation of selected trees and forest stand parameters in order to resolution of used DSM and nDSM models generated from dense small footprint LiDAR data, ISPRS Congress, Beijing, China, Commission VI, WG VI/5, pp. 27–32.
– volume: 71
  start-page: 132
  year: 2018
  end-page: 143
  ident: b0170
  article-title: Testing and evaluating different LiDAR-derived canopy height model generation methods for tree height estimation
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
– reference: Cimburova, Z., Barton, D.N., 2020. The potential of geospatial analysis and Bayesian networks to enable i-Tree Eco assessment of existing tree inventories. Urban For. Urban Green. 55, 126801. https://doi.org/10.1016/j.ufug.2020.126801.
– reference: The Norwegian Mapping Authority, 2020b. Norge i bilder, from https://www.norgeibilder.no/.
– volume: 5
  year: 2018
  ident: b0160
  article-title: Mapping tree canopies in urban environments using airborne laser scanning (ALS): a Vancouver case study
  publication-title: For. Ecosyst.
– reference: Nowak, D., 2020. iTree Eco User’s Manual v6.0. United States Department of Agriculture, from https://www.itreetools.org/documents/275/EcoV6_UsersManual_2020_04_06.pdf”.
– volume: 14
  start-page: 562
  year: 2015
  end-page: 572
  ident: b0265
  article-title: Urban tree damage estimation using airborne laser scanner data and geographic information systems: an example from 2007 Oklahoma ice storm
  publication-title: Urban For. Urban Green.
– volume: 13
  start-page: 562
  issue: 3
  year: 2014
  ident: 10.1016/j.ecolind.2021.108007_b0305
  article-title: Mapping of urban roadside trees–a case study in the tree register update process in Helsinki
  publication-title: City.
– volume: 71
  start-page: 132
  year: 2018
  ident: 10.1016/j.ecolind.2021.108007_b0170
  article-title: Testing and evaluating different LiDAR-derived canopy height model generation methods for tree height estimation
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
  doi: 10.1016/j.jag.2018.05.002
– volume: 99
  start-page: 273
  year: 2019
  ident: 10.1016/j.ecolind.2021.108007_b0125
  article-title: A multi-sensor and multi-temporal remote sensing approach to detect land cover change dynamics in heterogeneous urban landscapes
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.12.033
– ident: 10.1016/j.ecolind.2021.108007_b0290
– volume: 54
  start-page: 1593
  year: 1988
  ident: 10.1016/j.ecolind.2021.108007_b0120
  article-title: Extracting topographic structure from digital elevation data for geographic information system analysis
  publication-title: Photogramm. Eng. Rem. Sens.
– start-page: 88
  year: 2019
  ident: 10.1016/j.ecolind.2021.108007_b0155
– ident: 10.1016/j.ecolind.2021.108007_b0345
– ident: 10.1016/j.ecolind.2021.108007_b0195
– ident: 10.1016/j.ecolind.2021.108007_b0280
– volume: 29
  start-page: 564
  issue: 5
  year: 2003
  ident: 10.1016/j.ecolind.2021.108007_b0255
  publication-title: Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass
– volume: 96
  start-page: 10
  year: 2019
  ident: 10.1016/j.ecolind.2021.108007_b0005
  article-title: How smart growth and green infrastructure can mutually support each other - a conceptual framework for compact and green cities
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2017.07.001
– ident: 10.1016/j.ecolind.2021.108007_b0200
– volume: 14
  start-page: 675
  issue: 3
  year: 2015
  ident: 10.1016/j.ecolind.2021.108007_b0145
  article-title: Assessing street-level urban greenery using Google Street View and a modified green view index
  publication-title: Urban For. Urban Green.
  doi: 10.1016/j.ufug.2015.06.006
– ident: 10.1016/j.ecolind.2021.108007_b0040
  doi: 10.1016/j.ufug.2020.126801
– volume: 34
  start-page: 218
  year: 2002
  ident: 10.1016/j.ecolind.2021.108007_b0260
  publication-title: Reconstructing tree crowns from laser scanner data for feature extraction
– volume: 113
  start-page: 148
  issue: 1
  year: 2009
  ident: 10.1016/j.ecolind.2021.108007_b0185
  article-title: Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data
  publication-title: Rem. Sens. Environ.
  doi: 10.1016/j.rse.2008.09.001
– volume: 9
  start-page: 231
  issue: 3
  year: 2017
  ident: 10.1016/j.ecolind.2021.108007_b0015
  article-title: Individual tree crown delineation from airborne laser scanning for diseased larch forest stands
  publication-title: Rem. Sens.
  doi: 10.3390/rs9030231
– volume: 86
  start-page: 235
  year: 2013
  ident: 10.1016/j.ecolind.2021.108007_b0095
  article-title: Classifying and valuing ecosystem services for urban planning
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2012.08.019
– volume: 95
  start-page: 117
  year: 2018
  ident: 10.1016/j.ecolind.2021.108007_b0025
  article-title: Understanding treescape changes as the basis of urban forest planning in fringe areas
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.07.031
– volume: 42
  start-page: 95
  year: 2014
  ident: 10.1016/j.ecolind.2021.108007_b0140
  article-title: Assessing the changes in land use and ecosystem services in Changzhou municipality, Peoples' Republic of China, 1991–2006
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2013.11.012
– ident: 10.1016/j.ecolind.2021.108007_b0285
– volume: 12
  start-page: 498
  issue: 6
  year: 2019
  ident: 10.1016/j.ecolind.2021.108007_b0035
  article-title: Accuracy of determining specific parameters of the urban forest using remote sensing
  publication-title: Iforest-Biogeosci. For.
  doi: 10.3832/ifor3024-012
– volume: 42
  start-page: 504
  year: 1996
  ident: 10.1016/j.ecolind.2021.108007_b0205
  article-title: Estimating leaf area and leaf biomass of open-grown deciduous urban trees
  publication-title: For. Sci.
– volume: 14
  start-page: 562
  issue: 3
  year: 2015
  ident: 10.1016/j.ecolind.2021.108007_b0265
  article-title: Urban tree damage estimation using airborne laser scanner data and geographic information systems: an example from 2007 Oklahoma ice storm
  publication-title: Urban For. Urban Green.
  doi: 10.1016/j.ufug.2015.05.008
– volume: 43
  start-page: 101114
  year: 2020
  ident: 10.1016/j.ecolind.2021.108007_b0245
  article-title: Application of the Natural Capital Model to assess changes in ecosystem services from changes in green infrastructure in Amsterdam
  publication-title: Ecosyst. Serv.
  doi: 10.1016/j.ecoser.2020.101114
– ident: 10.1016/j.ecolind.2021.108007_b0210
  doi: 10.4324/9781315627106-11
– ident: 10.1016/j.ecolind.2021.108007_b0295
– volume: 200
  start-page: 170
  year: 2017
  ident: 10.1016/j.ecolind.2021.108007_b0150
  article-title: Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data
  publication-title: Rem. Sens. Environ.
  doi: 10.1016/j.rse.2017.08.010
– ident: 10.1016/j.ecolind.2021.108007_b0310
– volume: 21
  start-page: 103
  year: 2013
  ident: 10.1016/j.ecolind.2021.108007_b0110
  article-title: A visible band index for remote sensing leaf chlorophyll content at the canopy scale
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
  doi: 10.1016/j.jag.2012.07.020
– volume: 5
  issue: 1
  year: 2018
  ident: 10.1016/j.ecolind.2021.108007_b0160
  article-title: Mapping tree canopies in urban environments using airborne laser scanning (ALS): a Vancouver case study
  publication-title: For. Ecosyst.
  doi: 10.1186/s40663-018-0146-y
– volume: 19
  start-page: 1078
  issue: 4
  year: 2015
  ident: 10.1016/j.ecolind.2021.108007_b0135
  article-title: Extraction of individual tree crown using hyperspectral image and LiDAR data
  publication-title: KSCE J. Civil Eng.
  doi: 10.1007/s12205-013-1178-z
– year: 2015
  ident: 10.1016/j.ecolind.2021.108007_b0175
– ident: 10.1016/j.ecolind.2021.108007_b0240
– volume: 7
  start-page: 7892
  issue: 6
  year: 2015
  ident: 10.1016/j.ecolind.2021.108007_b0330
  article-title: Individual Tree Segmentation from LiDAR Point Clouds for Urban Forest Inventory
  publication-title: Rem. Sens.
  doi: 10.3390/rs70607892
– volume: 2
  start-page: 12
  issue: 1-2
  year: 1979
  ident: 10.1016/j.ecolind.2021.108007_b0020
  article-title: Use of watersheds in contour detection
  publication-title: International Workshop on Image Processing
– volume: 127
  start-page: S117
  year: 2013
  ident: 10.1016/j.ecolind.2021.108007_b0105
  article-title: Uncertainties in landscape analysis and ecosystem service assessment
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2012.12.002
– ident: 10.1016/j.ecolind.2021.108007_b0325
  doi: 10.1088/1748-9326/abb396
– ident: 10.1016/j.ecolind.2021.108007_b0045
– ident: 10.1016/j.ecolind.2021.108007_b0320
– volume: 96
  start-page: 3
  year: 2019
  ident: 10.1016/j.ecolind.2021.108007_b0010
  article-title: Urban sprawl, compact urban development and green cities. How much do we know, how much do we agree?
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.10.059
– year: 2005
  ident: 10.1016/j.ecolind.2021.108007_b0270
  article-title: Development of a Danish Model for Plan Appraisal
  publication-title: J. Arboric.
– volume: 31
  start-page: 253
  issue: 2
  year: 2005
  ident: 10.1016/j.ecolind.2021.108007_b0300
  article-title: Geosciences
  publication-title: Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry
– volume: 29
  start-page: 465
  year: 2018
  ident: 10.1016/j.ecolind.2021.108007_b0335
  article-title: Practical application of spatial ecosystem service models to aid decision support
  publication-title: Ecosyst. Serv.
  doi: 10.1016/j.ecoser.2017.11.005
– ident: 10.1016/j.ecolind.2021.108007_b0080
– volume: 72
  start-page: 923
  issue: 8
  year: 2006
  ident: 10.1016/j.ecolind.2021.108007_b0030
  article-title: Isolating individual trees in a savanna woodland using small footprint LiDAR data
  publication-title: Photogramm. Eng. Rem. Sens.
  doi: 10.14358/PERS.72.8.923
– volume: 29
  start-page: 1387
  issue: 5
  year: 2008
  ident: 10.1016/j.ecolind.2021.108007_b0180
  article-title: Assessment of the influence of flying altitude and scan angle on biophysical vegetation products derived from airborne laser scanning
  publication-title: Int. J. Rem. Sens.
  doi: 10.1080/01431160701736349
– ident: 10.1016/j.ecolind.2021.108007_b0215
  doi: 10.2737/NRS-GTR-200
– ident: 10.1016/j.ecolind.2021.108007_b0275
  doi: 10.3897/ab.e12837
– ident: 10.1016/j.ecolind.2021.108007_b0235
– ident: 10.1016/j.ecolind.2021.108007_b0070
– volume: 126
  start-page: 405
  issue: 3
  year: 2000
  ident: 10.1016/j.ecolind.2021.108007_b0090
  article-title: Modeling conifer tree crown radius and estimating canopy cover
  publication-title: For. Ecol. Manage.
  doi: 10.1016/S0378-1127(99)00113-9
– ident: 10.1016/j.ecolind.2021.108007_b0225
– ident: 10.1016/j.ecolind.2021.108007_b0315
– ident: 10.1016/j.ecolind.2021.108007_b0055
– volume: 19
  start-page: 140
  year: 2016
  ident: 10.1016/j.ecolind.2021.108007_b0250
  article-title: Assessing urban tree condition using airborne light detection and ranging
  publication-title: Urban For. Urban Green.
  doi: 10.1016/j.ufug.2016.06.026
– ident: 10.1016/j.ecolind.2021.108007_b0075
– ident: 10.1016/j.ecolind.2021.108007_b0220
– volume: 12
  start-page: 5589
  issue: 14
  year: 2020
  ident: 10.1016/j.ecolind.2021.108007_b0130
  article-title: Long-term validation and governance role in contemporary urban tree monitoring: a review
  publication-title: Sustainability
  doi: 10.3390/su12145589
– ident: 10.1016/j.ecolind.2021.108007_b0340
  doi: 10.1016/j.ufug.2020.126801
– ident: 10.1016/j.ecolind.2021.108007_b0190
– ident: 10.1016/j.ecolind.2021.108007_b0085
– ident: 10.1016/j.ecolind.2021.108007_b0060
– ident: 10.1016/j.ecolind.2021.108007_b0065
– ident: 10.1016/j.ecolind.2021.108007_b0230
– volume: 5
  start-page: 4163
  issue: 9
  year: 2013
  ident: 10.1016/j.ecolind.2021.108007_b0115
  article-title: Delineating individual trees from LiDAR data: a comparison of vector- and raster-based segmentation approaches
  publication-title: Rem. Sens.
  doi: 10.3390/rs5094163
– start-page: 1677
  year: 2019
  ident: 10.1016/j.ecolind.2021.108007_b0100
– volume: 50
  start-page: 2804
  issue: 25
  year: 2018
  ident: 10.1016/j.ecolind.2021.108007_b0165
  article-title: Estimation of house price differential of urban tree cover: an application of sample selection approach
  publication-title: Appl. Econ.
  doi: 10.1080/00036846.2017.1409419
– ident: 10.1016/j.ecolind.2021.108007_b0050
SSID ssj0016996
Score 2.466987
Snippet •LiDAR is an asset for ecosystem condition accounting & ecosystem service modeling.•LiDAR-based segmentation was used to measure tree height, canopy area &...
LiDAR-based segmentation of urban tree canopies and their physical properties (canopy height, canopy diameter, 3D surface and volume) is a replicable,...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108007
SubjectTerms canopy
canopy height
data collection
Ecosystem accounting
Ecosystem services
ecosystems
Geographical Information Systems (GIS)
information sources
issues and policy
lidar
Light Detection And Ranging (LiDAR)
Norway
Remote sensing
satellites
Tree canopy segmentation
trees
urban areas
vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwviKcpLh8QaaBI7iccCRRVCICEqdbMucSqlKknVpgP8es520gJLF5QtiR3Ld777Lvdi7FrmmPiYjT0k_eJxQvheKkTu0VESGMdhTHLZRFu8RIMhfxqJ0Y9WXyYmzJUHdht3qxOJ3TSVWaAj7vtZGks0NckS0ivaFzbNl3Rea0w1_oNISpdXFHc9P-qO1rk7t5MbsusIwpkyoYFvY-xML9kfWskW7_-lnP6Iaat7HvfYbgMaoecWu8-28vKAHffXOWr0sDmki0OGw7qYFl-kk-C5eOi9gYkChbqCD5yBcUIDbWc1-wTCq7Ccp1gCrdWVdAb7U7wGLDWQpaxtQBegaymxgKKE18W0OmLDx_77_cBrOil4GRei9rQc00U0sSZMmCYcIxnxFKXQCSntMQYCMUHUGJAFE8bGIYOJ5F0keJBn4THbLqsyP2EgAukHRkpwRJ5JLkOah2xIHY15mKHfYbzdSZU1ZcZNt4upauPJJqohgDIEUI4AHXazGjZzdTY2DbgzZFq9bMpk2xvEPKphHrWJeTosaYmsGsThkARNVWz6_lXLFIpOpHGzYJlXy4UKopCEmumFefofazxjO-azLv_xnG3X82V-QUCoTi8tz38D370Dmg
  priority: 102
  providerName: Directory of Open Access Journals
Title Utilizing LiDAR data to map tree canopy for urban ecosystem extent and condition accounts in Oslo
URI https://dx.doi.org/10.1016/j.ecolind.2021.108007
https://www.proquest.com/docview/2636387331
https://doaj.org/article/d89a0bb9c2d6411cb79a19148614d158
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw1JrGhQtiGxOFURmJa9o6sRP72H2pDDQkoFJv1kucokwlqdr0AIf9dt5znI5xmYRyimM7lt_z-_D7YuyDKUELKJYRIH-JJEr4Ua5UGeFRUpBlSYZ0mbwtbtPZXN4s1OKAXfSxMORWGWh_R9M9tQ4t47Cb43VVjb8JmVF6tAUqLWRPpEBzKTPC8tH93s1DpMZ0EUbZJKLeD1E847sRangozFHC0Fh4bzuqKvsXf_Jp_B-xqX8ItudC1y_ZiyA-8mm3wiN2UNbH7PTqIVoNP4bjuj1hMG-rVfUbuRP_XF1Ov3LyB-Vtw3_CmpM5muPGNutfHCVXvtvkUHNca5fcmfvr8ZZD7TjqzM67dnHoiktseVXzL9tV84rNr6--X8yiUFMhKqRSbeTMEh-EjldmklxLSE0qczDKaWTfS4gVgAZwEKMuk2RkmgFt5ARQUCiL5JQd1k1dvmZcxUbERC8kgCyMNAnOg9qkS5cyKUAMmOx30hYh4TjVvVjZ3rPszgYAWAKA7QAwYKP9sHWXceOpAecEpn1nSpjtG5rNDxswxjptYJLnpohdKoUo8swApbbTKJ44ofSA6R7I9hH-4VTVU_9_3yOFxbNJBheoy2a3tXGaIHmjqphv_n_6t-w5vXXxj2fssN3syncoCLX50GP6kD2bfvw0ux3664Q_tLwIQw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gFepvExUTbASLxmbRI7iR-7saljpUiwSn2zLnE6ZSpJ1aYP8NfvLnE6xssklDc7diyffR-5u98BfNY5Jj5mCw9JvniSNHwvVSr36CopjOMwJr7M0RbTaDyTX-dqvgfnXS4Mh1U63t_y9IZbu5aB283BqigGP30ZMzzanIwW9ieqZ7DP6FSqB_ujq-vxdOdMiLRuk4zioccDHhJ5BnenZOSRPseYoYHfBNxxYdm_RFSD5P9IUv3DsxtBdHkIB06DFKN2kS9hLy9fwdHFQ8Iadbobu3kNOKuLZfGHBJSYFF9GPwSHhIq6Er9wJdgjLWhvq9VvQcqr2K5TLAWttcV3Fs0f8lpgaQWZzbaJ7hLY1pfYiKIU3zfL6g3MLi9uzseeK6vgZVKp2rN6QQ8RqLFnwjSRGOlIpqiVTUiCLzBQiAmixYDMmTBm7wwmWg6RdIU8C4-gV1Zl_haECrQfMMuQiDLTUoc0DxmUNlrIMEO_D7LbSZM5zHEufbE0XXDZnXEEMEwA0xKgD6e7YasWdOOpAWdMpt3LjJndNFTrW-MOjbGJxmGa6iywkfT9LI01MrpdQhqK9VXSh6Qjsnl0BGmq4qnvf-oOhaHryT4XLPNquzFBFBKH48KY7_5_-o_wfHzzbWImV9PrY3jBPW065An06vU2f096UZ1-cOf-Hob7Cf8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+LiDAR+data+to+map+tree+canopy+for+urban+ecosystem+extent+and+condition+accounts+in+Oslo&rft.jtitle=Ecological+indicators&rft.au=Hanssen%2C+Frank&rft.au=Barton%2C+David+N.&rft.au=Venter%2C+Zander+S.&rft.au=Nowell%2C+Megan+S.&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=1470-160X&rft.eissn=1872-7034&rft.volume=130&rft_id=info:doi/10.1016%2Fj.ecolind.2021.108007&rft.externalDocID=S1470160X21006725
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon