Deep Neural Networks for Chronological Age Estimation From OPG Images

Chronological age estimation is crucial labour in many clinical procedures, where the teeth have proven to be one of the best estimators. Although some methods to estimate the age from tooth measurements in orthopantomogram (OPG) images have been developed, they rely on time-consuming manual process...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 39; no. 7; pp. 2374 - 2384
Main Authors Vila-Blanco, Nicolas, Carreira, Maria J., Varas-Quintana, Paulina, Balsa-Castro, Carlos, Tomas, Inmaculada
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chronological age estimation is crucial labour in many clinical procedures, where the teeth have proven to be one of the best estimators. Although some methods to estimate the age from tooth measurements in orthopantomogram (OPG) images have been developed, they rely on time-consuming manual processes whose results are affected by the observer subjectivity. Furthermore, all those approaches have been tested only on OPG image sets of good radiological quality without any conditioning dental characteristic. In this work, two fully automatic methods to estimate the chronological age of a subject from the OPG image are proposed. The first (DANet) consists of a sequential Convolutional Neural Network (CNN) path to predict the age, while the second (DASNet) adds a second CNN path to predict the sex and uses sex-specific features with the aim of improving the age prediction performance. Both methods were tested on a set of 2289 OPG images of subjects from 4.5 to 89.2 years old, where both bad radiological quality images and images showing conditioning dental characteristics were not discarded. The results showed that the DASNet outperforms the DANet in every aspect, reducing the median Error (E) and the median Absolute Error (AE) by about 4 months in the entire database. When evaluating the DASNet in the reduced datasets, the AE values decrease as the real age of the subjects decreases, until reaching a median of about 8 months in the subjects younger than 15. The DASNet method was also compared to the state-of-the-art manual age estimation methods, showing significantly less over- or under-estimation problems. Consequently, we conclude that the DASNet can be used to automatically predict the chronological age of a subject accurately, especially in young subjects with developing dentitions.
AbstractList Chronological age estimation is crucial labour in many clinical procedures, where the teeth have proven to be one of the best estimators. Although some methods to estimate the age from tooth measurements in orthopantomogram (OPG) images have been developed, they rely on time-consuming manual processes whose results are affected by the observer subjectivity. Furthermore, all those approaches have been tested only on OPG image sets of good radiological quality without any conditioning dental characteristic. In this work, two fully automatic methods to estimate the chronological age of a subject from the OPG image are proposed. The first (DANet) consists of a sequential Convolutional Neural Network (CNN) path to predict the age, while the second (DASNet) adds a second CNN path to predict the sex and uses sex-specific features with the aim of improving the age prediction performance. Both methods were tested on a set of 2289 OPG images of subjects from 4.5 to 89.2 years old, where both bad radiological quality images and images showing conditioning dental characteristics were not discarded. The results showed that the DASNet outperforms the DANet in every aspect, reducing the median Error (E) and the median Absolute Error (AE) by about 4 months in the entire database. When evaluating the DASNet in the reduced datasets, the AE values decrease as the real age of the subjects decreases, until reaching a median of about 8 months in the subjects younger than 15. The DASNet method was also compared to the state-of-the-art manual age estimation methods, showing significantly less over- or under-estimation problems. Consequently, we conclude that the DASNet can be used to automatically predict the chronological age of a subject accurately, especially in young subjects with developing dentitions.Chronological age estimation is crucial labour in many clinical procedures, where the teeth have proven to be one of the best estimators. Although some methods to estimate the age from tooth measurements in orthopantomogram (OPG) images have been developed, they rely on time-consuming manual processes whose results are affected by the observer subjectivity. Furthermore, all those approaches have been tested only on OPG image sets of good radiological quality without any conditioning dental characteristic. In this work, two fully automatic methods to estimate the chronological age of a subject from the OPG image are proposed. The first (DANet) consists of a sequential Convolutional Neural Network (CNN) path to predict the age, while the second (DASNet) adds a second CNN path to predict the sex and uses sex-specific features with the aim of improving the age prediction performance. Both methods were tested on a set of 2289 OPG images of subjects from 4.5 to 89.2 years old, where both bad radiological quality images and images showing conditioning dental characteristics were not discarded. The results showed that the DASNet outperforms the DANet in every aspect, reducing the median Error (E) and the median Absolute Error (AE) by about 4 months in the entire database. When evaluating the DASNet in the reduced datasets, the AE values decrease as the real age of the subjects decreases, until reaching a median of about 8 months in the subjects younger than 15. The DASNet method was also compared to the state-of-the-art manual age estimation methods, showing significantly less over- or under-estimation problems. Consequently, we conclude that the DASNet can be used to automatically predict the chronological age of a subject accurately, especially in young subjects with developing dentitions.
Chronological age estimation is crucial labour in many clinical procedures, where the teeth have proven to be one of the best estimators. Although some methods to estimate the age from tooth measurements in orthopantomogram (OPG) images have been developed, they rely on time-consuming manual processes whose results are affected by the observer subjectivity. Furthermore, all those approaches have been tested only on OPG image sets of good radiological quality without any conditioning dental characteristic. In this work, two fully automatic methods to estimate the chronological age of a subject from the OPG image are proposed. The first (DANet) consists of a sequential Convolutional Neural Network (CNN) path to predict the age, while the second (DASNet) adds a second CNN path to predict the sex and uses sex-specific features with the aim of improving the age prediction performance. Both methods were tested on a set of 2289 OPG images of subjects from 4.5 to 89.2 years old, where both bad radiological quality images and images showing conditioning dental characteristics were not discarded. The results showed that the DASNet outperforms the DANet in every aspect, reducing the median Error (E) and the median Absolute Error (AE) by about 4 months in the entire database. When evaluating the DASNet in the reduced datasets, the AE values decrease as the real age of the subjects decreases, until reaching a median of about 8 months in the subjects younger than 15. The DASNet method was also compared to the state-of-the-art manual age estimation methods, showing significantly less over- or under-estimation problems. Consequently, we conclude that the DASNet can be used to automatically predict the chronological age of a subject accurately, especially in young subjects with developing dentitions.
Author Tomas, Inmaculada
Balsa-Castro, Carlos
Carreira, Maria J.
Vila-Blanco, Nicolas
Varas-Quintana, Paulina
Author_xml – sequence: 1
  givenname: Nicolas
  orcidid: 0000-0001-5865-9973
  surname: Vila-Blanco
  fullname: Vila-Blanco, Nicolas
  email: nicolas.vila@usc.es
  organization: Centro Singular de Investigación en Tecnoloxías Intelixentes, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
– sequence: 2
  givenname: Maria J.
  orcidid: 0000-0003-0532-2351
  surname: Carreira
  fullname: Carreira, Maria J.
  email: mariajose.carreira@usc.es
  organization: Centro Singular de Investigación en Tecnoloxías Intelixentes, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
– sequence: 3
  givenname: Paulina
  orcidid: 0000-0003-1333-0810
  surname: Varas-Quintana
  fullname: Varas-Quintana, Paulina
  email: paulina.varas@rai.usc.es
  organization: Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
– sequence: 4
  givenname: Carlos
  orcidid: 0000-0001-7937-6673
  surname: Balsa-Castro
  fullname: Balsa-Castro, Carlos
  email: cbalsa@coitt.es
  organization: Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
– sequence: 5
  givenname: Inmaculada
  surname: Tomas
  fullname: Tomas, Inmaculada
  email: inmaculada.tomas@usc.es
  organization: Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32012002$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1URLeFOxISisSFS5bx2E7sY7Vsy0qFcigSN8vrTJaUJN7aiRD_HpfdcuiB0xzme08z752xkzGMxNhrDkvOwXy4_bxZIiAs0VS6rtQztuBK6RKV_H7CFoC1LgEqPGVnKd0BcKnAvGCnAoEjAC7Y-iPRvvhCc3R9HtOvEH-mog2xWP2IYQx92HU-ry52VKzT1A1u6sJYXMYwFDdfr4rN4HaUXrLnresTvTrOc_btcn27-lRe31xtVhfXpZdKTWWjGy0bp4SkWhqsnSEEo6gR6LVALVvlSGtP6AU50eqtM4Bac-M8J7EV5-z9wXcfw_1MabJDlzz1vRspzMmiUKCNkQIz-u4JehfmOObrLEpupJFVDZl6e6Tm7UCN3cf8YfxtHwPKQHUAfAwpRWqt76a_GUzRdb3lYB-asLkJ-9CEPTaRhfBE-Oj9H8mbg6Qjon-4NnWtQIo_6RKQpg
CODEN ITMID4
CitedBy_id crossref_primary_10_1007_s00194_025_00751_x
crossref_primary_10_1007_s00330_025_11373_y
crossref_primary_10_1186_s12903_023_02817_2
crossref_primary_10_1007_s00414_022_02796_z
crossref_primary_10_1016_j_legalmed_2020_101826
crossref_primary_10_1007_s10006_025_01334_6
crossref_primary_10_1109_ACCESS_2024_3466953
crossref_primary_10_1109_ACCESS_2022_3187959
crossref_primary_10_1007_s11042_023_17776_7
crossref_primary_10_3390_computation11020018
crossref_primary_10_1109_JBHI_2023_3297610
crossref_primary_10_35414_akufemubid_1451334
crossref_primary_10_1111_1556_4029_15473
crossref_primary_10_1080_03772063_2023_2165177
crossref_primary_10_1007_s00414_024_03162_x
crossref_primary_10_1007_s00784_024_05598_2
crossref_primary_10_7759_cureus_73028
crossref_primary_10_1016_j_eswa_2022_116968
crossref_primary_10_3390_jimaging10100239
crossref_primary_10_1016_j_compbiomed_2022_106072
crossref_primary_10_3390_oral5010003
crossref_primary_10_1016_j_forsciint_2023_111704
crossref_primary_10_1007_s10278_023_00956_0
crossref_primary_10_3390_electronics12143066
crossref_primary_10_1007_s00414_024_03167_6
crossref_primary_10_1186_s41935_022_00314_1
crossref_primary_10_1038_s41598_023_48960_2
crossref_primary_10_3390_diagnostics15030314
crossref_primary_10_1038_s41598_023_27950_4
crossref_primary_10_3390_healthcare11141979
crossref_primary_10_1007_s00414_024_03204_4
crossref_primary_10_1007_s00414_025_03452_y
crossref_primary_10_3390_healthcare11081068
crossref_primary_10_1016_j_arr_2023_102144
crossref_primary_10_1111_1556_4029_15629
crossref_primary_10_3390_jcm12030937
crossref_primary_10_1186_s12859_022_04935_0
crossref_primary_10_1186_s12903_022_02652_x
crossref_primary_10_1016_j_jflm_2024_102679
crossref_primary_10_32604_cmc_2023_029914
crossref_primary_10_4103_sjhs_sjhs_124_23
crossref_primary_10_17694_bajece_1351546
crossref_primary_10_1007_s00521_022_07981_0
crossref_primary_10_1007_s00414_025_03432_2
crossref_primary_10_1186_s12903_024_03928_0
crossref_primary_10_1186_s12903_021_01996_0
crossref_primary_10_3390_app14167014
crossref_primary_10_1016_j_compbiomed_2024_108927
crossref_primary_10_3390_healthcare12131311
crossref_primary_10_1259_dmfr_20220363
crossref_primary_10_1007_s00414_020_02489_5
crossref_primary_10_1016_j_media_2022_102470
crossref_primary_10_1038_s41746_022_00681_y
crossref_primary_10_18231_j_idjsr_2023_012
crossref_primary_10_1007_s11042_023_17048_4
crossref_primary_10_1007_s00414_023_03140_9
crossref_primary_10_18231_j_ijfmts_2024_014
crossref_primary_10_1109_JSEN_2023_3334555
crossref_primary_10_3390_app13063860
crossref_primary_10_3389_fpubh_2022_1068253
crossref_primary_10_5937_bjdm2303181A
crossref_primary_10_1080_08839514_2022_2073724
crossref_primary_10_1007_s00414_022_02928_5
crossref_primary_10_1016_j_eswa_2021_116038
crossref_primary_10_3390_diagnostics14080806
crossref_primary_10_1007_s11548_021_02474_2
crossref_primary_10_4274_mirt_galenos_2022_63644
crossref_primary_10_1007_s00414_023_02960_z
crossref_primary_10_1016_j_neucom_2022_09_080
crossref_primary_10_3390_biology12111403
crossref_primary_10_1007_s10489_023_05096_0
crossref_primary_10_1111_coin_12660
crossref_primary_10_1016_j_compmedimag_2024_102329
crossref_primary_10_1038_s41598_024_54877_1
crossref_primary_10_1007_s42452_023_05503_8
crossref_primary_10_18231_j_ijfmts_2024_026
crossref_primary_10_3390_ijerph20054620
crossref_primary_10_1038_s41598_024_70621_1
Cites_doi 10.1109/EMBC.2018.8512755
10.1016/j.forsciint.2017.08.032
10.1142/9789812772558_0013
10.1111/j.1600-0722.1991.tb01029.x
10.4258/hir.2018.24.3.236
10.1002/ajpa.1330130206
10.1259/dmfr.20170362
10.1177/00220345630420062701
10.1007/s00414-004-0489-5
10.1016/j.forsciint.2007.03.009
10.3109/00016358608997720
10.1177/00220345590380010601
10.1001/jama.2013.281053
10.1016/j.forsciint.2016.11.009
10.1016/j.media.2017.07.005
10.1186/1472-6831-14-160
10.1016/S0379-0738(00)00154-7
10.1016/j.future.2019.01.057
10.1016/j.jflm.2015.09.001
10.1109/5.726791
10.1080/00085030.2017.1281632
10.1109/EMBC.2018.8512732
10.1016/j.jflm.2015.11.011
10.1007/s00414-010-0515-8
10.1007/s00414-008-0279-6
10.1080/00016359850142862
10.1007/s11749-018-0611-5
10.1016/j.forsciint.2006.02.019
10.1080/03014467600001671
10.1017/CBO9780511542565.004
10.1016/j.jflm.2017.03.005
10.1016/j.forsciint.2007.09.001
10.1016/j.eswa.2018.04.001
10.1007/s00414-005-0047-9
10.1016/S1353-1131(99)90170-0
10.1166/jmihi.2017.2257
10.1016/S0379-0738(98)00034-6
10.1007/s00414-007-0179-1
10.1016/j.forsciint.2016.10.001
10.1093/ejo/cjn081
10.1093/ejo/7.1.25
10.1111/j.1834-7819.2002.tb00333.x
10.1109/ICCV.2017.74
10.1007/s00414-009-0380-5
10.1111/j.1556-4029.2008.00778.x
10.1259/dmfr.20180051
10.1016/j.jflm.2018.07.014
10.1007/s00414-005-0530-3
10.1016/j.forsciint.2008.03.014
10.1177/00220345730520030701
10.1109/SIBGRAPI.2018.00058
10.1016/j.media.2016.10.010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2020.2968765
DatabaseName Accès UT - IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1558-254X
EndPage 2384
ExternalDocumentID 32012002
10_1109_TMI_2020_2968765
8977504
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Potential
  grantid: ED431B 2017/029
– fundername: European Regional Development Fund (ERDF)
  funderid: 10.13039/501100008530
– fundername: Consellería de Cultura, Educación e Ordenación Universitaria
  grantid: ED431G/08
  funderid: 10.13039/501100008425
– fundername: N Vila-Blanco
  grantid: ED481A-2017
– fundername: Competitive Reference
  grantid: ED431C 2017/69
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c455t-d8d84da534e74927a9e2095ed32c83284f5ae88ce2c3ea3f8ba9028819ac1e3b3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Fri Jul 11 04:27:18 EDT 2025
Mon Jun 30 06:32:36 EDT 2025
Thu Apr 03 07:00:38 EDT 2025
Tue Jul 01 03:16:03 EDT 2025
Thu Apr 24 22:54:18 EDT 2025
Wed Aug 27 02:37:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-d8d84da534e74927a9e2095ed32c83284f5ae88ce2c3ea3f8ba9028819ac1e3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7937-6673
0000-0001-5865-9973
0000-0003-0532-2351
0000-0003-1333-0810
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8977504
PMID 32012002
PQID 2419494670
PQPubID 85460
PageCount 11
ParticipantIDs crossref_primary_10_1109_TMI_2020_2968765
crossref_citationtrail_10_1109_TMI_2020_2968765
proquest_miscellaneous_2350899432
pubmed_primary_32012002
proquest_journals_2419494670
ieee_primary_8977504
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref14
ref11
ref17
ref16
ref19
ref18
tanner (ref2) 1975; 16
ref50
roche (ref3) 1988
ref46
ref45
ref48
ref42
ref44
ref43
ref49
association (ref47) 2013; 310
ref8
ref7
ref4
ref5
ref40
ref35
ref34
ref37
gg (ref15) 1985; 7
ref36
ref31
greulich (ref1) 1959; 2
ref30
ref33
ref32
haavikko (ref10) 1970; 66
ref39
ref38
ioffe (ref53) 2015
nolla (ref6) 1960; 27
glorot (ref54) 2010
zeiler (ref55) 2012
oktay (ref41) 2017
ref24
ref23
ref26
ref25
nair (ref52) 2010
ref64
ref20
demirjian (ref13) 1973; 45
ref63
ref66
ref22
ref65
ref21
lewis (ref12) 1960; 30
ref28
chollet (ref51) 2015
ref27
ref29
capitaneanu (ref67) 2017; 35
ref60
ref62
ref61
haavikko (ref9) 1974; 70
References_xml – ident: ref45
  doi: 10.1109/EMBC.2018.8512755
– ident: ref35
  doi: 10.1016/j.forsciint.2017.08.032
– year: 2015
  ident: ref53
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv 1502 03167
– ident: ref56
  doi: 10.1142/9789812772558_0013
– ident: ref17
  doi: 10.1111/j.1600-0722.1991.tb01029.x
– ident: ref46
  doi: 10.4258/hir.2018.24.3.236
– ident: ref11
  doi: 10.1002/ajpa.1330130206
– ident: ref34
  doi: 10.1259/dmfr.20170362
– ident: ref7
  doi: 10.1177/00220345630420062701
– ident: ref23
  doi: 10.1007/s00414-004-0489-5
– start-page: 807
  year: 2010
  ident: ref52
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learn (ICML)
– ident: ref25
  doi: 10.1016/j.forsciint.2007.03.009
– ident: ref16
  doi: 10.3109/00016358608997720
– ident: ref31
  doi: 10.1177/00220345590380010601
– volume: 310
  start-page: 2191
  year: 2013
  ident: ref47
  article-title: World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects
  publication-title: JAMA
  doi: 10.1001/jama.2013.281053
– ident: ref27
  doi: 10.1016/j.forsciint.2016.11.009
– ident: ref49
  doi: 10.1016/j.media.2017.07.005
– ident: ref48
  doi: 10.1186/1472-6831-14-160
– ident: ref21
  doi: 10.1016/S0379-0738(00)00154-7
– ident: ref5
  doi: 10.1016/j.future.2019.01.057
– ident: ref66
  doi: 10.1016/j.jflm.2015.09.001
– year: 1988
  ident: ref3
  publication-title: Assessing the Skeletal Maturity of the Hand-Wrist FELS Method
– volume: 30
  start-page: 70
  year: 1960
  ident: ref12
  article-title: The relationship between tooth formation and other maturational factors
  publication-title: Angle Orthodontist
– ident: ref50
  doi: 10.1109/5.726791
– ident: ref30
  doi: 10.1080/00085030.2017.1281632
– ident: ref44
  doi: 10.1109/EMBC.2018.8512732
– ident: ref28
  doi: 10.1016/j.jflm.2015.11.011
– volume: 70
  start-page: 9
  year: 1974
  ident: ref9
  article-title: Tooth formation age estimated on a few selected teeth. A simple method for clinical use
  publication-title: Proc Finn Dent Soc
– ident: ref26
  doi: 10.1007/s00414-010-0515-8
– ident: ref33
  doi: 10.1007/s00414-008-0279-6
– ident: ref19
  doi: 10.1080/00016359850142862
– ident: ref57
  doi: 10.1007/s11749-018-0611-5
– ident: ref24
  doi: 10.1016/j.forsciint.2006.02.019
– ident: ref14
  doi: 10.1080/03014467600001671
– ident: ref32
  doi: 10.1017/CBO9780511542565.004
– start-page: 249
  year: 2010
  ident: ref54
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Statist
– ident: ref29
  doi: 10.1016/j.jflm.2017.03.005
– ident: ref59
  doi: 10.1016/j.forsciint.2007.09.001
– volume: 2
  year: 1959
  ident: ref1
  publication-title: Radiographic Atlas of Skeletal Development of the Hand and Wrist
– ident: ref39
  doi: 10.1016/j.eswa.2018.04.001
– ident: ref8
  doi: 10.1007/s00414-005-0047-9
– volume: 66
  start-page: 103
  year: 1970
  ident: ref10
  article-title: The formation and the alveolar and clinical eruption of the permanent teeth. An orthopantomographic study
  publication-title: Suom Hammaslaak Toim
– ident: ref20
  doi: 10.1016/S1353-1131(99)90170-0
– start-page: 1
  year: 2017
  ident: ref41
  article-title: Tooth detection with convolutional neural networks
  publication-title: Proc Med Technol Nat Congr (TIPTEKNO)
– ident: ref43
  doi: 10.1166/jmihi.2017.2257
– ident: ref18
  doi: 10.1016/S0379-0738(98)00034-6
– ident: ref38
  doi: 10.1007/s00414-007-0179-1
– ident: ref37
  doi: 10.1016/j.forsciint.2016.10.001
– year: 2012
  ident: ref55
  article-title: ADADELTA: An adaptive learning rate method
  publication-title: arXiv 1212 5701
– volume: 45
  start-page: 211
  year: 1973
  ident: ref13
  article-title: A new system of dental age assessment
  publication-title: Hum Biol
– volume: 27
  start-page: 66
  year: 1960
  ident: ref6
  article-title: The development of the human dentition
  publication-title: J Dent Child
– volume: 16
  year: 1975
  ident: ref2
  publication-title: Assessment of Skeletal Maturity and Prediction of Adult Height (TW2 Method)
– year: 2015
  ident: ref51
  publication-title: Keras
– ident: ref61
  doi: 10.1093/ejo/cjn081
– volume: 7
  start-page: 25
  year: 1985
  ident: ref15
  article-title: Dental maturity as an indicator of chronological age: The accuracy and precision of three methods
  publication-title: Eur J Orthodontics
  doi: 10.1093/ejo/7.1.25
– ident: ref22
  doi: 10.1111/j.1834-7819.2002.tb00333.x
– ident: ref58
  doi: 10.1109/ICCV.2017.74
– ident: ref62
  doi: 10.1007/s00414-009-0380-5
– ident: ref63
  doi: 10.1111/j.1556-4029.2008.00778.x
– ident: ref42
  doi: 10.1259/dmfr.20180051
– volume: 35
  start-page: 1
  year: 2017
  ident: ref67
  article-title: A systematic review of odontological sex estimation methods
  publication-title: J Forensic Odonto- Stomat
– ident: ref36
  doi: 10.1016/j.jflm.2018.07.014
– ident: ref60
  doi: 10.1007/s00414-005-0530-3
– ident: ref64
  doi: 10.1016/j.forsciint.2008.03.014
– ident: ref65
  doi: 10.1177/00220345730520030701
– ident: ref40
  doi: 10.1109/SIBGRAPI.2018.00058
– ident: ref4
  doi: 10.1016/j.media.2016.10.010
SSID ssj0014509
Score 2.5860882
Snippet Chronological age estimation is crucial labour in many clinical procedures, where the teeth have proven to be one of the best estimators. Although some methods...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2374
SubjectTerms Age
Age determination
Artificial neural networks
Biomedical imaging
chronological age
Chronology
Conditioning
Convolution
Deep learning
dental age
Dentistry
Estimation
forensic age
Forensic odontology
Image quality
Manuals
Neural networks
panoramic images
Sex
Task analysis
Teeth
Title Deep Neural Networks for Chronological Age Estimation From OPG Images
URI https://ieeexplore.ieee.org/document/8977504
https://www.ncbi.nlm.nih.gov/pubmed/32012002
https://www.proquest.com/docview/2419494670
https://www.proquest.com/docview/2350899432
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RDm050HZpIZQiI_VSqdkN_kjsIyq7BaQFDiBxixx70kPLLmJ3L_x6xnESFdRWvUWKnTgej_0mM_MG4DOdMQrrQoTiLjqVVY6pPrQ-1U6SdYDaV00QzfQ8P7mWZzfqZg2-9rkwiNgEn-EwXDa-fD93q_CrbKQJrKhA_vmCDLeYq9V7DKSK4Rw8MMZmOe9ckpkZXU1PyRDk2ZCbnJRfPTmCmpoqf4eXzTEzeQPTboAxuuTncLWshu7hGXfj_37BW9hs8SY7igvkHazhbACvjkOMUCjzNoCN3xgJB_By2vrat2B8jHjHAnkH9T-P0eILRhiXNYS63abJjn4gG9NGEXMg2eR-fssuLr-z01vaqhbv4Xoyvvp2krZFF1InlVqmXnstvVVCYiENL6xBTjAMveCOtF_LWlnU2iF3Aq2odWUDAQwBC-sOUVTiA6zP5jPcAUa3M6XqvPK8lsYJnVlvhDSFqQh3yjyBUSeH0rWM5KEwxq-ysUwyU5LkyiC5spVcAl_6HneRjeMfbbfC_Pft2qlPYK8Tddmq66IkGGMkjajIEjjob5OiBe-JneF8RW2ECi5SKXgC23GJ9M8WPOQgZ3z3z-_8CK_DyGKU7x6sL-9X-ImwzLLabxbxI62B7HE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9Nm8TgYUDHIDDASLwgkTb1R2I_TqylhaXw0El7ixz7wgOsndb2hb-ec74ECBBvkWInjs_n-zl39zuA12RjFFaZCMVddCzLFGM9tj7WTtLpALUv6yCafJHOLuWHK3W1B2_7XBhErIPPcBgua1--X7td-FU20gRWVCD_PCC7r8ZNtlbvM5CqCejggTM2SXnnlEzMaJnP6SjIkyE3Kam_-sUI1VVV_g4wa0MzvQ95N8QmvuTrcLcth-77b-yN__sND-CoRZzsrFkiD2EPVwM4PA9RQqHQ2wDu_cRJOIA7eettP4bJOeINC_Qd1H_RxItvGKFcVlPqdtsmO_uCbEJbRZMFyaa362v26fN7Nr-mzWrzCC6nk-W7WdyWXYgdzeo29tpr6a0SEjNpeGYNcgJi6AV3pP9aVsqi1g65E2hFpUsbKGAIWlg3RlGKE9hfrVf4BBjdTpSq0tLzShondGK9EdJkpiTkKdMIRp0cCtdykofSGN-K-mySmIIkVwTJFa3kInjT97hp-Dj-0fY4zH_frp36CE47URetwm4KAjJG0oiyJIJX_W1SteA_sStc76iNUMFJKgWP4HGzRPpnCx6ykBP-9M_vfAmHs2V-UVzMFx-fwd0wyibm9xT2t7c7fE7IZlu-qBf0DyvV77o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Networks+for+Chronological+Age+Estimation+From+OPG+Images&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Vila-Blanco%2C+Nicolas&rft.au=Carreira%2C+Maria+J&rft.au=Varas-Quintana%2C+Paulina&rft.au=Balsa-Castro%2C+Carlos&rft.date=2020-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=39&rft.issue=7&rft.spage=2374&rft_id=info:doi/10.1109%2FTMI.2020.2968765&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon