Development of a hydrophobic coating for the porous gas diffusion layer in a PEM-based electrochemical hydrogen pump to mitigate anode flooding

Anode flooding is one of the critical issues in developing a proton exchange membrane (PEM)-based electrochemical hydrogen pump. Improving the hydrophobicity of the gas diffusion layer (GDL) has been studied as an approach to mitigating anode flooding in electrochemical pumps. A mixture of Nafion™ a...

Full description

Saved in:
Bibliographic Details
Published inElectrochemistry communications Vol. 100; pp. 39 - 42
Main Authors Lee, Myoungseok, Huang, Xinyu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Anode flooding is one of the critical issues in developing a proton exchange membrane (PEM)-based electrochemical hydrogen pump. Improving the hydrophobicity of the gas diffusion layer (GDL) has been studied as an approach to mitigating anode flooding in electrochemical pumps. A mixture of Nafion™ and oxidized carbon nanotubes (O-CNT) has been applied to the porous gas diffusion medium in the hydrogen pump cell. The coating renders the GDL hydrophobic with an effective contact angle of 130°. Electrochemical pump testing has shown that, with the help of the coating, the flood-recovery performance of the hydrogen pump was greatly improved. A hydrogen pump cell with an uncoated GDL was not able to recover from a flooded state, while a hydrogen pump cell with a coated GDL was able to recover its performance in about 100 s. •Anode flooding is a critical issue in low-temperature electrochemical hydrogen pumps based on proton exchange membranes.•Coating the gas diffusion medium with a mixture of Nafion and oxidized carbon nanotubes (O-CNT) renders it highly hydrophobic.•The Nafion/O-CNT coating effectively eliminated anode flooding.
AbstractList Anode flooding is one of the critical issues in developing a proton exchange membrane (PEM)-based electrochemical hydrogen pump. Improving the hydrophobicity of the gas diffusion layer (GDL) has been studied as an approach to mitigating anode flooding in electrochemical pumps. A mixture of Nafion™ and oxidized carbon nanotubes (O-CNT) has been applied to the porous gas diffusion medium in the hydrogen pump cell. The coating renders the GDL hydrophobic with an effective contact angle of 130°. Electrochemical pump testing has shown that, with the help of the coating, the flood-recovery performance of the hydrogen pump was greatly improved. A hydrogen pump cell with an uncoated GDL was not able to recover from a flooded state, while a hydrogen pump cell with a coated GDL was able to recover its performance in about 100 s. •Anode flooding is a critical issue in low-temperature electrochemical hydrogen pumps based on proton exchange membranes.•Coating the gas diffusion medium with a mixture of Nafion and oxidized carbon nanotubes (O-CNT) renders it highly hydrophobic.•The Nafion/O-CNT coating effectively eliminated anode flooding.
Anode flooding is one of the critical issues in developing a proton exchange membrane (PEM)-based electrochemical hydrogen pump. Improving the hydrophobicity of the gas diffusion layer (GDL) has been studied as an approach to mitigating anode flooding in electrochemical pumps. A mixture of Nafion™ and oxidized carbon nanotubes (O-CNT) has been applied to the porous gas diffusion medium in the hydrogen pump cell. The coating renders the GDL hydrophobic with an effective contact angle of 130°. Electrochemical pump testing has shown that, with the help of the coating, the flood-recovery performance of the hydrogen pump was greatly improved. A hydrogen pump cell with an uncoated GDL was not able to recover from a flooded state, while a hydrogen pump cell with a coated GDL was able to recover its performance in about 100 s. Keywords: Proton exchange membrane (PEM) hydrogen pump, Porous media, Hydrophobicity, Gas diffusion layer, Anode flooding, Hydrophobic coating
Author Lee, Myoungseok
Huang, Xinyu
Author_xml – sequence: 1
  givenname: Myoungseok
  surname: Lee
  fullname: Lee, Myoungseok
– sequence: 2
  givenname: Xinyu
  surname: Huang
  fullname: Huang, Xinyu
  email: HUANGXIN@mailbox.sc.edu
BookMark eNqFkc9u1DAQxiNUJNrCG3DwC2SxE-cfByRUWqhUBAc4W5PxOOtVkokcb6V9ir4yXoI4cCjSSDOy9P1m_H1X2cXMM2XZWyV3Sqr63WFHIyFPu0KqbidVquZFdqnapsxVJ4uLNJdtmxe6Va-yq3U9SKmKrisvs6dP9EgjLxPNUbATIPYnG3jZc-9RIEP08yAcBxH3JBYOfFzFAKuw3rnj6nkWI5woCD8n7ffbr3kPK1lxPigGxj1NHmHcqAPNYjlOi4gsJh_9AJEEzGxJuJHZplWvs5cOxpXe_OnX2c-72x83X_KHb5_vbz4-5KirKua26aGsS4ta6wJUjU51RVPVgNCgJKpcTeA0ybpAV6G2RQ8OodWgqHcoy-vsfuNahoNZgp8gnAyDN78fOAwGQvQ4knEOHUlZuroutXJpnUKoWuplZyuJOrH0xsLA6xrI_eUpac4BmYPZAjLngIxUqZoke_-PDH1MfvMcA_jxf-IPm5iSSY-eglnR04xkfUjOp1_45wG_AO0itWE
CitedBy_id crossref_primary_10_1177_09544054231187675
crossref_primary_10_1007_s10853_024_09467_x
crossref_primary_10_1021_acssuschemeng_2c04941
crossref_primary_10_1016_j_cej_2024_150733
crossref_primary_10_1016_j_jpowsour_2021_229743
crossref_primary_10_1021_acs_energyfuels_3c03823
crossref_primary_10_1016_j_etran_2025_100407
crossref_primary_10_1002_celc_201902115
crossref_primary_10_1016_j_ijhydene_2022_04_134
crossref_primary_10_1016_j_jpowsour_2022_232342
crossref_primary_10_1016_j_jpowsour_2019_226975
crossref_primary_10_1016_j_elecom_2020_106777
crossref_primary_10_1007_s11242_021_01542_0
crossref_primary_10_1038_s41467_020_17584_9
crossref_primary_10_1088_1755_1315_403_1_012058
crossref_primary_10_1002_er_7437
crossref_primary_10_1016_j_ijhydene_2020_09_239
crossref_primary_10_1021_acsaem_2c00023
crossref_primary_10_1149_1945_7111_abc58e
crossref_primary_10_1002_er_6724
crossref_primary_10_1007_s41918_020_00077_0
crossref_primary_10_1016_j_ijhydene_2023_03_109
Cites_doi 10.1016/j.jclepro.2017.08.012
10.1063/1.4802804
10.1016/j.jpowsour.2007.11.059
10.4061/2011/905901
10.1016/j.jpowsour.2006.03.021
10.1016/j.fusengdes.2015.12.011
10.1016/j.electacta.2007.04.115
10.1149/2.0411514jes
10.1016/j.jpowsour.2004.01.007
10.1007/s10800-006-9266-0
10.1007/s12666-011-0034-4
10.1016/j.electacta.2008.11.010
10.1016/j.ijhydene.2004.12.011
10.1016/j.ijhydene.2014.12.009
10.1016/j.jpowsour.2013.09.136
10.1016/j.ijhydene.2012.07.011
10.1016/j.ijhydene.2012.10.045
ContentType Journal Article
Copyright 2019 The Authors
Copyright_xml – notice: 2019 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.elecom.2019.01.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-1902
EndPage 42
ExternalDocumentID oai_doaj_org_article_ffcfe003f66341f2a11ca58eb09d50c4
10_1016_j_elecom_2019_01_017
S1388248119300219
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SSG
SSK
SSZ
T5K
UNMZH
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c455t-d7ba363dc4442a16cf192756aca7c0ee5f6eaf4e062cf5c4d2bafca84a1ebfc03
IEDL.DBID DOA
ISSN 1388-2481
IngestDate Wed Aug 27 01:19:05 EDT 2025
Tue Jul 01 03:04:59 EDT 2025
Thu Apr 24 23:05:10 EDT 2025
Fri Feb 23 02:28:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Porous media
Hydrophobicity
Hydrophobic coating
Gas diffusion layer
Proton exchange membrane (PEM) hydrogen pump
Anode flooding
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-d7ba363dc4442a16cf192756aca7c0ee5f6eaf4e062cf5c4d2bafca84a1ebfc03
OpenAccessLink https://doaj.org/article/ffcfe003f66341f2a11ca58eb09d50c4
PageCount 4
ParticipantIDs doaj_primary_oai_doaj_org_article_ffcfe003f66341f2a11ca58eb09d50c4
crossref_primary_10_1016_j_elecom_2019_01_017
crossref_citationtrail_10_1016_j_elecom_2019_01_017
elsevier_sciencedirect_doi_10_1016_j_elecom_2019_01_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Electrochemistry communications
PublicationYear 2019
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Perry, Eisman, Benicewicz (bb0060) 2008; 177
Shimpalee, Beuscher, Van Zee (bb0080) 2007; 52
Yang, Ye, Cheng (bb0055) 2012; 37
U. Bossel, B. Eliasson, Hydrogen Economy, (n.d.).
Yang, Chung (bb0030) 2013; 38
Buie, Posner, Fabian, Cha, Kim, Prinz, Eaton, Santiago (bb0090) 2006; 161
Huth, Schaar, Oekermann (bb0065) 2009; 54
Vijay, Seshadri, Haridoss (bb0110) 2011; 64
The Hydrogen Economy: A Non-Technical Review, (n.d.).
Acha, Requies, Cambra (bb0045) 2015
Chen, Matsuura, Hori (bb0105) 2004; 131
Pasierb, Rekas (bb0025) 2011; 2011
Bhuiya, Kumar, Kim (bb0050) 2015; 40
Sadeghifar, Djilali, Bahrami (bb0095) 2014; 248
Liemberger, Groß, Miltner, Harasek (bb0040) 2017; 167
Kumbur, Mench (bb0085) 2009
(accessed December 1, 2017).
Winter (bb0015) 2005; 30
Van Nguyen, Ahosseini, Wang, Yarlagadda, Kwong, Weber, Deevanhxay, Tsushima, Hirai (bb0100) 2015; 162
(accessed December 12, 2017).
Hydrogen Market: Global Industry Analysis and Forecast 2015–2021, (n.d.).
Cristescu (bb0035) 2016; 109–111
Dai, Huang, Yang, Li, Sightler, Yang, Li (bb0115) 2013; 102
Barbir, Gorgon (bb0070) 2007; 37
Kandlikar, Garofalo, Lu (bb0075) 2011; 11
Barbir (10.1016/j.elecom.2019.01.017_bb0070) 2007; 37
Buie (10.1016/j.elecom.2019.01.017_bb0090) 2006; 161
Sadeghifar (10.1016/j.elecom.2019.01.017_bb0095) 2014; 248
10.1016/j.elecom.2019.01.017_bb0010
10.1016/j.elecom.2019.01.017_bb0005
Bhuiya (10.1016/j.elecom.2019.01.017_bb0050) 2015; 40
Kumbur (10.1016/j.elecom.2019.01.017_bb0085) 2009
Van Nguyen (10.1016/j.elecom.2019.01.017_bb0100) 2015; 162
Kandlikar (10.1016/j.elecom.2019.01.017_bb0075) 2011; 11
Shimpalee (10.1016/j.elecom.2019.01.017_bb0080) 2007; 52
10.1016/j.elecom.2019.01.017_bb0020
Yang (10.1016/j.elecom.2019.01.017_bb0055) 2012; 37
Acha (10.1016/j.elecom.2019.01.017_bb0045) 2015
Chen (10.1016/j.elecom.2019.01.017_bb0105) 2004; 131
Pasierb (10.1016/j.elecom.2019.01.017_bb0025) 2011; 2011
Perry (10.1016/j.elecom.2019.01.017_bb0060) 2008; 177
Winter (10.1016/j.elecom.2019.01.017_bb0015) 2005; 30
Cristescu (10.1016/j.elecom.2019.01.017_bb0035) 2016; 109–111
Dai (10.1016/j.elecom.2019.01.017_bb0115) 2013; 102
Huth (10.1016/j.elecom.2019.01.017_bb0065) 2009; 54
Yang (10.1016/j.elecom.2019.01.017_bb0030) 2013; 38
Liemberger (10.1016/j.elecom.2019.01.017_bb0040) 2017; 167
Vijay (10.1016/j.elecom.2019.01.017_bb0110) 2011; 64
References_xml – volume: 177
  start-page: 478
  year: 2008
  end-page: 484
  ident: bb0060
  article-title: Electrochemical hydrogen pumping using a high-temperature polybenzimidazole (PBI) membrane
  publication-title: J. Power Sources
– reference: Hydrogen Market: Global Industry Analysis and Forecast 2015–2021, (n.d.).
– volume: 37
  start-page: 359
  year: 2007
  end-page: 365
  ident: bb0070
  article-title: Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack
  publication-title: J. Appl. Electrochem.
– reference: (accessed December 1, 2017).
– volume: 109–111
  start-page: 1404
  year: 2016
  end-page: 1407
  ident: bb0035
  article-title: Enhanced configuration of a water detritiation system; impact on ITER Isotope Separation System based cryogenic distillation
  publication-title: Fusion Eng. Des.
– volume: 167
  start-page: 896
  year: 2017
  end-page: 907
  ident: bb0040
  article-title: Experimental analysis of membrane and pressure swing adsorption (PSA) for the hydrogen separation from natural gas
  publication-title: J. Clean. Prod.
– start-page: 395
  year: 2015
  end-page: 417
  ident: bb0045
  article-title: Hydrogen purification methods
  publication-title: Compend. Hydrog. Energy
– volume: 40
  start-page: 2231
  year: 2015
  end-page: 2247
  ident: bb0050
  article-title: Metal hydrides in engineering systems, processes, and devices: a review of non-storage applications
  publication-title: Int. J. Hydrog. Energy
– volume: 38
  start-page: 229
  year: 2013
  end-page: 239
  ident: bb0030
  article-title: High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor
  publication-title: Int. J. Hydrog. Energy
– volume: 248
  start-page: 632
  year: 2014
  end-page: 641
  ident: bb0095
  article-title: Effect of polytetrafluoroethylene (PTFE) and micro porous layer (MPL) on thermal conductivity of fuel cell gas diffusion layers: modeling and experiments
  publication-title: J. Power Sources
– volume: 64
  start-page: 175
  year: 2011
  end-page: 179
  ident: bb0110
  article-title: Gas diffusion layer with PTFE gradients for effective water management in PEM fuel cells
  publication-title: Trans. Indian Inst. Metals
– reference: (accessed December 12, 2017).
– volume: 54
  start-page: 2774
  year: 2009
  end-page: 2780
  ident: bb0065
  article-title: A “proton pump” concept for the investigation of proton transport and anode kinetics in proton exchange membrane fuel cells
  publication-title: Electrochim. Acta
– volume: 52
  start-page: 6748
  year: 2007
  end-page: 6754
  ident: bb0080
  article-title: Analysis of GDL flooding effects on PEMFC performance
  publication-title: Electrochim. Acta
– start-page: 828
  year: 2009
  end-page: 847
  ident: bb0085
  article-title: Fuel cells — proton exchange membrane fuel cells|water management
  publication-title: Encyclopedia of Electrochemical Power Sources
– reference: The Hydrogen Economy: A Non-Technical Review, (n.d.).
– volume: 162
  start-page: F1451
  year: 2015
  end-page: F1460
  ident: bb0100
  article-title: Hydrophobic gas-diffusion media for polymer-electrolyte fuel cells by direct fluorination
  publication-title: J. Electrochem. Soc.
– volume: 11
  start-page: 814
  year: 2011
  end-page: 823
  ident: bb0075
  article-title: Water management in a PEMFC: water transport mechanism and material degradation in gas diffusion layers
  publication-title: Fuel Cells — From Fundamentals to Systems
– volume: 30
  start-page: 681
  year: 2005
  end-page: 685
  ident: bb0015
  article-title: Into the hydrogen energy economy—milestones
  publication-title: Int. J. Hydrog. Energy
– volume: 102
  year: 2013
  ident: bb0115
  article-title: Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings
  publication-title: Appl. Phys. Lett.
– volume: 161
  start-page: 191
  year: 2006
  end-page: 202
  ident: bb0090
  article-title: Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping
  publication-title: J. Power Sources
– volume: 2011
  start-page: 905901
  year: 2011
  ident: bb0025
  article-title: High-temperature electrochemical hydrogen pumps and separators
  publication-title: Int. J. Electrochem.
– volume: 131
  start-page: 155
  year: 2004
  end-page: 161
  ident: bb0105
  article-title: Novel gas diffusion layer with water management function for PEMFC
  publication-title: J. Power Sources
– reference: / (accessed December 12, 2017).
– volume: 37
  start-page: 14439
  year: 2012
  end-page: 14453
  ident: bb0055
  article-title: Hydrogen pumping effect induced by fuel starvation in a single cell of a PEM fuel cell stack at galvanostatic operation
  publication-title: Int. J. Hydrog. Energy
– reference: U. Bossel, B. Eliasson, Hydrogen Economy, (n.d.).
– volume: 167
  start-page: 896
  year: 2017
  ident: 10.1016/j.elecom.2019.01.017_bb0040
  article-title: Experimental analysis of membrane and pressure swing adsorption (PSA) for the hydrogen separation from natural gas
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.08.012
– start-page: 828
  year: 2009
  ident: 10.1016/j.elecom.2019.01.017_bb0085
  article-title: Fuel cells — proton exchange membrane fuel cells|water management
– start-page: 395
  year: 2015
  ident: 10.1016/j.elecom.2019.01.017_bb0045
  article-title: Hydrogen purification methods
– volume: 102
  year: 2013
  ident: 10.1016/j.elecom.2019.01.017_bb0115
  article-title: Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4802804
– volume: 177
  start-page: 478
  year: 2008
  ident: 10.1016/j.elecom.2019.01.017_bb0060
  article-title: Electrochemical hydrogen pumping using a high-temperature polybenzimidazole (PBI) membrane
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.11.059
– volume: 11
  start-page: 814
  year: 2011
  ident: 10.1016/j.elecom.2019.01.017_bb0075
  article-title: Water management in a PEMFC: water transport mechanism and material degradation in gas diffusion layers
– ident: 10.1016/j.elecom.2019.01.017_bb0010
– volume: 2011
  start-page: 905901
  year: 2011
  ident: 10.1016/j.elecom.2019.01.017_bb0025
  article-title: High-temperature electrochemical hydrogen pumps and separators
  publication-title: Int. J. Electrochem.
  doi: 10.4061/2011/905901
– volume: 161
  start-page: 191
  year: 2006
  ident: 10.1016/j.elecom.2019.01.017_bb0090
  article-title: Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.03.021
– volume: 109–111
  start-page: 1404
  year: 2016
  ident: 10.1016/j.elecom.2019.01.017_bb0035
  article-title: Enhanced configuration of a water detritiation system; impact on ITER Isotope Separation System based cryogenic distillation
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2015.12.011
– volume: 52
  start-page: 6748
  year: 2007
  ident: 10.1016/j.elecom.2019.01.017_bb0080
  article-title: Analysis of GDL flooding effects on PEMFC performance
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.04.115
– volume: 162
  start-page: F1451
  year: 2015
  ident: 10.1016/j.elecom.2019.01.017_bb0100
  article-title: Hydrophobic gas-diffusion media for polymer-electrolyte fuel cells by direct fluorination
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0411514jes
– volume: 131
  start-page: 155
  year: 2004
  ident: 10.1016/j.elecom.2019.01.017_bb0105
  article-title: Novel gas diffusion layer with water management function for PEMFC
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.01.007
– volume: 37
  start-page: 359
  year: 2007
  ident: 10.1016/j.elecom.2019.01.017_bb0070
  article-title: Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-006-9266-0
– volume: 64
  start-page: 175
  year: 2011
  ident: 10.1016/j.elecom.2019.01.017_bb0110
  article-title: Gas diffusion layer with PTFE gradients for effective water management in PEM fuel cells
  publication-title: Trans. Indian Inst. Metals
  doi: 10.1007/s12666-011-0034-4
– volume: 54
  start-page: 2774
  year: 2009
  ident: 10.1016/j.elecom.2019.01.017_bb0065
  article-title: A “proton pump” concept for the investigation of proton transport and anode kinetics in proton exchange membrane fuel cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.11.010
– volume: 30
  start-page: 681
  year: 2005
  ident: 10.1016/j.elecom.2019.01.017_bb0015
  article-title: Into the hydrogen energy economy—milestones
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2004.12.011
– volume: 40
  start-page: 2231
  year: 2015
  ident: 10.1016/j.elecom.2019.01.017_bb0050
  article-title: Metal hydrides in engineering systems, processes, and devices: a review of non-storage applications
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2014.12.009
– volume: 248
  start-page: 632
  year: 2014
  ident: 10.1016/j.elecom.2019.01.017_bb0095
  article-title: Effect of polytetrafluoroethylene (PTFE) and micro porous layer (MPL) on thermal conductivity of fuel cell gas diffusion layers: modeling and experiments
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.09.136
– ident: 10.1016/j.elecom.2019.01.017_bb0020
– ident: 10.1016/j.elecom.2019.01.017_bb0005
– volume: 37
  start-page: 14439
  year: 2012
  ident: 10.1016/j.elecom.2019.01.017_bb0055
  article-title: Hydrogen pumping effect induced by fuel starvation in a single cell of a PEM fuel cell stack at galvanostatic operation
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2012.07.011
– volume: 38
  start-page: 229
  year: 2013
  ident: 10.1016/j.elecom.2019.01.017_bb0030
  article-title: High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2012.10.045
SSID ssj0012993
Score 2.408396
Snippet Anode flooding is one of the critical issues in developing a proton exchange membrane (PEM)-based electrochemical hydrogen pump. Improving the hydrophobicity...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 39
SubjectTerms Anode flooding
Gas diffusion layer
Hydrophobic coating
Hydrophobicity
Porous media
Proton exchange membrane (PEM) hydrogen pump
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqXsoFQQGxvDQHrmbjjR_ZI6xaVUhFSFCpt8ie2G1QiVfL9tBL_wJ_mbHjLMsFJKRcYo3txDOa-RLNfMPYW9VYtBVqrh1WXApRc6td4BTbHCrpvcp0DOef9NmF_HipLg_YaqqFSWmVxfePPj176zIyL6c5X_f9_IuoCR3KRhAESZEqFfFJaZKVv7vfpXlQOMvEu0mYJ-mpfC7neKVWMzHVo4tlJu_Mbct-h6fM4r8XpfYiz-kj9rBARng_PtVjduCHY3a0mjq1PWE_9zJ_IAawcH3XbeL6OroeAaNNqc1A6BQI7QEBbvrahyv7A1J3lNv0uwxuLEFv6Aea-_nknKfY1kFpkYOFU2BclQwO1mQDsI3wvc8MHR7sEDsPISXB01ZP2cXpydfVGS-NFjhKpba8M87Wuu5QSrmwQmMg3GeUJjUarEhfQXsbpK_0AoNC2S2cDWgbaYV3Aav6GTsc4uCfMzDYee8cSkOa1qis0wQJgm0CLpZG-Bmrp_NtsbCQp2YYN-2UbvatHbXSJq20laDLzBjfzVqPLBz_kP-QVLeTTRzaeSBurtpiRG0IGDw5tUCgS4pALy7Qqsa7atmpCuWMmUnx7R8mSUv1f93-xX_PfMkepLsxye0VO9xubv1rQj1b9yab9S9KxgUP
  priority: 102
  providerName: Elsevier
Title Development of a hydrophobic coating for the porous gas diffusion layer in a PEM-based electrochemical hydrogen pump to mitigate anode flooding
URI https://dx.doi.org/10.1016/j.elecom.2019.01.017
https://doaj.org/article/ffcfe003f66341f2a11ca58eb09d50c4
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUKPZQLKm1Rty2rOXB1G29sJ3ukCLSAQD0UiVs0ntiwFSQruhy48Bf4yx07Cd0TXJByivwR-Y0yz8n4PSF2TYmEGVlpHWVSK5VLtC5Izm2OjPbeJDmG0zM7O9fHF-Zixeor1oR18sDdwv0IgYLn0AucGrUKE1SK0JTeZdPaZJSUQDnnDZup_v8Bv2RTaX0e40CXajg0lyq7osFMG0-hq2mS7ExmZf-TUtLuX8lNK_nm8L3Y7Iki7HUPuCXe-OaDeLc_-LN9FI8r9T7QBkC4uq9v28VV6-YE1GIsaAbmpMAcD5hm8x4fLvEvRE-Uu_iRDK6RCTfMG-776-BUxoxWQ2-MQ72SQDcqhxksGHlYtnAzT7ocHrBpaw8hlr7zVJ_E-eHB7_2Z7O0VJGljlrIuHOY2r0lrzctqKTDbK4xl8ArKGKVgPQbtMzuhYEjXE4eBsNSovAuU5dtivWkb_1lAQbX3zpEuGF9LBp1lIhCwDDSZFsqPRD6sb0W99ni0wLiuhiKzP1WHShVRqTLFVzES8qnXotPeeKH9zwjdU9uonJ1ucDxVfTxVL8XTSBQD8FVPQjpywUPNn53-y2tM_1VsxCG7KrdvYn15e-d3mPYs3VisfX9QY_F27-hkdjZO8f4P-74HKA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4imWpw9wNBsntrN74ACl1ZZ2KyRaqbdgT-w2qMSrfQj1wl_gx_AHGTvOslxAQqqUU2I7jmcy8yX6PB8hL-VIg85AMWUgY4LzgmllHMPcZkAKa2UsxzA9VpNT8eFMnm2Rn_1emECrTLG_i-kxWqczw7Saw1nTDD_xAtGhGHGEICFTjROz8tBefcPvtsWbg_do5Fd5vr93sjthSVqAgZByyerS6EIVNQghcs0VOEQ6pVQ48RIynKFTVjthM5WDkyDq3GgHeiQ0t8ZBVuC4N8hNgeEiyCa8_r7mlWD-jJV-w-xYmF6_Xy-SyoK2jQ8b4Pk4VguNOmm_82GUDdhIixupbv8OuZ0wKn3bLcNdsmXbe2Rnt5eGu09-bFCNqHdU04ureu5nF940QMHrwKWmCIcpwkuKCN-vFvRcL2iQY1mF_3P0UiPWp02LfT_uTVlIpjVNmjyQihh0o6KH0xk6HV16-rWJJUEs1a2vLXWBdY-3ekBOr2X5H5Lt1rf2EaEl1NYaA6JE11IgtVGIQZweOcjHJbcDUvTrW0Eqex7UNy6rnt_2peqsUgWrVBnHoxwQtu4168p-_KP9u2C6ddtQtDue8PPzKnlt5Rw4i1HUIcoT3OGDc9ByZE02rmUGYkDK3vDVH-8ADtX89faP_7vnC7IzOZkeVUcHx4dPyK1wpWPYPSXby_nKPkPItTTPo4tT8vm636lf0KVFMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+hydrophobic+coating+for+the+porous+gas+diffusion+layer+in+a+PEM-based+electrochemical+hydrogen+pump+to+mitigate+anode+flooding&rft.jtitle=Electrochemistry+communications&rft.au=Lee%2C+Myoungseok&rft.au=Huang%2C+Xinyu&rft.date=2019-03-01&rft.issn=1388-2481&rft.volume=100&rft.spage=39&rft.epage=42&rft_id=info:doi/10.1016%2Fj.elecom.2019.01.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_elecom_2019_01_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2481&client=summon