Development of a hydrophobic coating for the porous gas diffusion layer in a PEM-based electrochemical hydrogen pump to mitigate anode flooding
Anode flooding is one of the critical issues in developing a proton exchange membrane (PEM)-based electrochemical hydrogen pump. Improving the hydrophobicity of the gas diffusion layer (GDL) has been studied as an approach to mitigating anode flooding in electrochemical pumps. A mixture of Nafion™ a...
Saved in:
Published in | Electrochemistry communications Vol. 100; pp. 39 - 42 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Anode flooding is one of the critical issues in developing a proton exchange membrane (PEM)-based electrochemical hydrogen pump. Improving the hydrophobicity of the gas diffusion layer (GDL) has been studied as an approach to mitigating anode flooding in electrochemical pumps. A mixture of Nafion™ and oxidized carbon nanotubes (O-CNT) has been applied to the porous gas diffusion medium in the hydrogen pump cell. The coating renders the GDL hydrophobic with an effective contact angle of 130°. Electrochemical pump testing has shown that, with the help of the coating, the flood-recovery performance of the hydrogen pump was greatly improved. A hydrogen pump cell with an uncoated GDL was not able to recover from a flooded state, while a hydrogen pump cell with a coated GDL was able to recover its performance in about 100 s.
•Anode flooding is a critical issue in low-temperature electrochemical hydrogen pumps based on proton exchange membranes.•Coating the gas diffusion medium with a mixture of Nafion and oxidized carbon nanotubes (O-CNT) renders it highly hydrophobic.•The Nafion/O-CNT coating effectively eliminated anode flooding. |
---|---|
AbstractList | Anode flooding is one of the critical issues in developing a proton exchange membrane (PEM)-based electrochemical hydrogen pump. Improving the hydrophobicity of the gas diffusion layer (GDL) has been studied as an approach to mitigating anode flooding in electrochemical pumps. A mixture of Nafion™ and oxidized carbon nanotubes (O-CNT) has been applied to the porous gas diffusion medium in the hydrogen pump cell. The coating renders the GDL hydrophobic with an effective contact angle of 130°. Electrochemical pump testing has shown that, with the help of the coating, the flood-recovery performance of the hydrogen pump was greatly improved. A hydrogen pump cell with an uncoated GDL was not able to recover from a flooded state, while a hydrogen pump cell with a coated GDL was able to recover its performance in about 100 s.
•Anode flooding is a critical issue in low-temperature electrochemical hydrogen pumps based on proton exchange membranes.•Coating the gas diffusion medium with a mixture of Nafion and oxidized carbon nanotubes (O-CNT) renders it highly hydrophobic.•The Nafion/O-CNT coating effectively eliminated anode flooding. Anode flooding is one of the critical issues in developing a proton exchange membrane (PEM)-based electrochemical hydrogen pump. Improving the hydrophobicity of the gas diffusion layer (GDL) has been studied as an approach to mitigating anode flooding in electrochemical pumps. A mixture of Nafion™ and oxidized carbon nanotubes (O-CNT) has been applied to the porous gas diffusion medium in the hydrogen pump cell. The coating renders the GDL hydrophobic with an effective contact angle of 130°. Electrochemical pump testing has shown that, with the help of the coating, the flood-recovery performance of the hydrogen pump was greatly improved. A hydrogen pump cell with an uncoated GDL was not able to recover from a flooded state, while a hydrogen pump cell with a coated GDL was able to recover its performance in about 100 s. Keywords: Proton exchange membrane (PEM) hydrogen pump, Porous media, Hydrophobicity, Gas diffusion layer, Anode flooding, Hydrophobic coating |
Author | Lee, Myoungseok Huang, Xinyu |
Author_xml | – sequence: 1 givenname: Myoungseok surname: Lee fullname: Lee, Myoungseok – sequence: 2 givenname: Xinyu surname: Huang fullname: Huang, Xinyu email: HUANGXIN@mailbox.sc.edu |
BookMark | eNqFkc9u1DAQxiNUJNrCG3DwC2SxE-cfByRUWqhUBAc4W5PxOOtVkokcb6V9ir4yXoI4cCjSSDOy9P1m_H1X2cXMM2XZWyV3Sqr63WFHIyFPu0KqbidVquZFdqnapsxVJ4uLNJdtmxe6Va-yq3U9SKmKrisvs6dP9EgjLxPNUbATIPYnG3jZc-9RIEP08yAcBxH3JBYOfFzFAKuw3rnj6nkWI5woCD8n7ffbr3kPK1lxPigGxj1NHmHcqAPNYjlOi4gsJh_9AJEEzGxJuJHZplWvs5cOxpXe_OnX2c-72x83X_KHb5_vbz4-5KirKua26aGsS4ta6wJUjU51RVPVgNCgJKpcTeA0ybpAV6G2RQ8OodWgqHcoy-vsfuNahoNZgp8gnAyDN78fOAwGQvQ4knEOHUlZuroutXJpnUKoWuplZyuJOrH0xsLA6xrI_eUpac4BmYPZAjLngIxUqZoke_-PDH1MfvMcA_jxf-IPm5iSSY-eglnR04xkfUjOp1_45wG_AO0itWE |
CitedBy_id | crossref_primary_10_1177_09544054231187675 crossref_primary_10_1007_s10853_024_09467_x crossref_primary_10_1021_acssuschemeng_2c04941 crossref_primary_10_1016_j_cej_2024_150733 crossref_primary_10_1016_j_jpowsour_2021_229743 crossref_primary_10_1021_acs_energyfuels_3c03823 crossref_primary_10_1016_j_etran_2025_100407 crossref_primary_10_1002_celc_201902115 crossref_primary_10_1016_j_ijhydene_2022_04_134 crossref_primary_10_1016_j_jpowsour_2022_232342 crossref_primary_10_1016_j_jpowsour_2019_226975 crossref_primary_10_1016_j_elecom_2020_106777 crossref_primary_10_1007_s11242_021_01542_0 crossref_primary_10_1038_s41467_020_17584_9 crossref_primary_10_1088_1755_1315_403_1_012058 crossref_primary_10_1002_er_7437 crossref_primary_10_1016_j_ijhydene_2020_09_239 crossref_primary_10_1021_acsaem_2c00023 crossref_primary_10_1149_1945_7111_abc58e crossref_primary_10_1002_er_6724 crossref_primary_10_1007_s41918_020_00077_0 crossref_primary_10_1016_j_ijhydene_2023_03_109 |
Cites_doi | 10.1016/j.jclepro.2017.08.012 10.1063/1.4802804 10.1016/j.jpowsour.2007.11.059 10.4061/2011/905901 10.1016/j.jpowsour.2006.03.021 10.1016/j.fusengdes.2015.12.011 10.1016/j.electacta.2007.04.115 10.1149/2.0411514jes 10.1016/j.jpowsour.2004.01.007 10.1007/s10800-006-9266-0 10.1007/s12666-011-0034-4 10.1016/j.electacta.2008.11.010 10.1016/j.ijhydene.2004.12.011 10.1016/j.ijhydene.2014.12.009 10.1016/j.jpowsour.2013.09.136 10.1016/j.ijhydene.2012.07.011 10.1016/j.ijhydene.2012.10.045 |
ContentType | Journal Article |
Copyright | 2019 The Authors |
Copyright_xml | – notice: 2019 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.elecom.2019.01.017 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-1902 |
EndPage | 42 |
ExternalDocumentID | oai_doaj_org_article_ffcfe003f66341f2a11ca58eb09d50c4 10_1016_j_elecom_2019_01_017 S1388248119300219 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFPKN AFTJW AFZHZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCB SDF SDG SDP SES SEW SPC SSG SSK SSZ T5K UNMZH XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c455t-d7ba363dc4442a16cf192756aca7c0ee5f6eaf4e062cf5c4d2bafca84a1ebfc03 |
IEDL.DBID | DOA |
ISSN | 1388-2481 |
IngestDate | Wed Aug 27 01:19:05 EDT 2025 Tue Jul 01 03:04:59 EDT 2025 Thu Apr 24 23:05:10 EDT 2025 Fri Feb 23 02:28:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Porous media Hydrophobicity Hydrophobic coating Gas diffusion layer Proton exchange membrane (PEM) hydrogen pump Anode flooding |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-d7ba363dc4442a16cf192756aca7c0ee5f6eaf4e062cf5c4d2bafca84a1ebfc03 |
OpenAccessLink | https://doaj.org/article/ffcfe003f66341f2a11ca58eb09d50c4 |
PageCount | 4 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ffcfe003f66341f2a11ca58eb09d50c4 crossref_primary_10_1016_j_elecom_2019_01_017 crossref_citationtrail_10_1016_j_elecom_2019_01_017 elsevier_sciencedirect_doi_10_1016_j_elecom_2019_01_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Electrochemistry communications |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Perry, Eisman, Benicewicz (bb0060) 2008; 177 Shimpalee, Beuscher, Van Zee (bb0080) 2007; 52 Yang, Ye, Cheng (bb0055) 2012; 37 U. Bossel, B. Eliasson, Hydrogen Economy, (n.d.). Yang, Chung (bb0030) 2013; 38 Buie, Posner, Fabian, Cha, Kim, Prinz, Eaton, Santiago (bb0090) 2006; 161 Huth, Schaar, Oekermann (bb0065) 2009; 54 Vijay, Seshadri, Haridoss (bb0110) 2011; 64 The Hydrogen Economy: A Non-Technical Review, (n.d.). Acha, Requies, Cambra (bb0045) 2015 Chen, Matsuura, Hori (bb0105) 2004; 131 Pasierb, Rekas (bb0025) 2011; 2011 Bhuiya, Kumar, Kim (bb0050) 2015; 40 Sadeghifar, Djilali, Bahrami (bb0095) 2014; 248 Liemberger, Groß, Miltner, Harasek (bb0040) 2017; 167 Kumbur, Mench (bb0085) 2009 (accessed December 1, 2017). Winter (bb0015) 2005; 30 Van Nguyen, Ahosseini, Wang, Yarlagadda, Kwong, Weber, Deevanhxay, Tsushima, Hirai (bb0100) 2015; 162 (accessed December 12, 2017). Hydrogen Market: Global Industry Analysis and Forecast 2015–2021, (n.d.). Cristescu (bb0035) 2016; 109–111 Dai, Huang, Yang, Li, Sightler, Yang, Li (bb0115) 2013; 102 Barbir, Gorgon (bb0070) 2007; 37 Kandlikar, Garofalo, Lu (bb0075) 2011; 11 Barbir (10.1016/j.elecom.2019.01.017_bb0070) 2007; 37 Buie (10.1016/j.elecom.2019.01.017_bb0090) 2006; 161 Sadeghifar (10.1016/j.elecom.2019.01.017_bb0095) 2014; 248 10.1016/j.elecom.2019.01.017_bb0010 10.1016/j.elecom.2019.01.017_bb0005 Bhuiya (10.1016/j.elecom.2019.01.017_bb0050) 2015; 40 Kumbur (10.1016/j.elecom.2019.01.017_bb0085) 2009 Van Nguyen (10.1016/j.elecom.2019.01.017_bb0100) 2015; 162 Kandlikar (10.1016/j.elecom.2019.01.017_bb0075) 2011; 11 Shimpalee (10.1016/j.elecom.2019.01.017_bb0080) 2007; 52 10.1016/j.elecom.2019.01.017_bb0020 Yang (10.1016/j.elecom.2019.01.017_bb0055) 2012; 37 Acha (10.1016/j.elecom.2019.01.017_bb0045) 2015 Chen (10.1016/j.elecom.2019.01.017_bb0105) 2004; 131 Pasierb (10.1016/j.elecom.2019.01.017_bb0025) 2011; 2011 Perry (10.1016/j.elecom.2019.01.017_bb0060) 2008; 177 Winter (10.1016/j.elecom.2019.01.017_bb0015) 2005; 30 Cristescu (10.1016/j.elecom.2019.01.017_bb0035) 2016; 109–111 Dai (10.1016/j.elecom.2019.01.017_bb0115) 2013; 102 Huth (10.1016/j.elecom.2019.01.017_bb0065) 2009; 54 Yang (10.1016/j.elecom.2019.01.017_bb0030) 2013; 38 Liemberger (10.1016/j.elecom.2019.01.017_bb0040) 2017; 167 Vijay (10.1016/j.elecom.2019.01.017_bb0110) 2011; 64 |
References_xml | – volume: 177 start-page: 478 year: 2008 end-page: 484 ident: bb0060 article-title: Electrochemical hydrogen pumping using a high-temperature polybenzimidazole (PBI) membrane publication-title: J. Power Sources – reference: Hydrogen Market: Global Industry Analysis and Forecast 2015–2021, (n.d.). – volume: 37 start-page: 359 year: 2007 end-page: 365 ident: bb0070 article-title: Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack publication-title: J. Appl. Electrochem. – reference: (accessed December 1, 2017). – volume: 109–111 start-page: 1404 year: 2016 end-page: 1407 ident: bb0035 article-title: Enhanced configuration of a water detritiation system; impact on ITER Isotope Separation System based cryogenic distillation publication-title: Fusion Eng. Des. – volume: 167 start-page: 896 year: 2017 end-page: 907 ident: bb0040 article-title: Experimental analysis of membrane and pressure swing adsorption (PSA) for the hydrogen separation from natural gas publication-title: J. Clean. Prod. – start-page: 395 year: 2015 end-page: 417 ident: bb0045 article-title: Hydrogen purification methods publication-title: Compend. Hydrog. Energy – volume: 40 start-page: 2231 year: 2015 end-page: 2247 ident: bb0050 article-title: Metal hydrides in engineering systems, processes, and devices: a review of non-storage applications publication-title: Int. J. Hydrog. Energy – volume: 38 start-page: 229 year: 2013 end-page: 239 ident: bb0030 article-title: High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor publication-title: Int. J. Hydrog. Energy – volume: 248 start-page: 632 year: 2014 end-page: 641 ident: bb0095 article-title: Effect of polytetrafluoroethylene (PTFE) and micro porous layer (MPL) on thermal conductivity of fuel cell gas diffusion layers: modeling and experiments publication-title: J. Power Sources – volume: 64 start-page: 175 year: 2011 end-page: 179 ident: bb0110 article-title: Gas diffusion layer with PTFE gradients for effective water management in PEM fuel cells publication-title: Trans. Indian Inst. Metals – reference: (accessed December 12, 2017). – volume: 54 start-page: 2774 year: 2009 end-page: 2780 ident: bb0065 article-title: A “proton pump” concept for the investigation of proton transport and anode kinetics in proton exchange membrane fuel cells publication-title: Electrochim. Acta – volume: 52 start-page: 6748 year: 2007 end-page: 6754 ident: bb0080 article-title: Analysis of GDL flooding effects on PEMFC performance publication-title: Electrochim. Acta – start-page: 828 year: 2009 end-page: 847 ident: bb0085 article-title: Fuel cells — proton exchange membrane fuel cells|water management publication-title: Encyclopedia of Electrochemical Power Sources – reference: The Hydrogen Economy: A Non-Technical Review, (n.d.). – volume: 162 start-page: F1451 year: 2015 end-page: F1460 ident: bb0100 article-title: Hydrophobic gas-diffusion media for polymer-electrolyte fuel cells by direct fluorination publication-title: J. Electrochem. Soc. – volume: 11 start-page: 814 year: 2011 end-page: 823 ident: bb0075 article-title: Water management in a PEMFC: water transport mechanism and material degradation in gas diffusion layers publication-title: Fuel Cells — From Fundamentals to Systems – volume: 30 start-page: 681 year: 2005 end-page: 685 ident: bb0015 article-title: Into the hydrogen energy economy—milestones publication-title: Int. J. Hydrog. Energy – volume: 102 year: 2013 ident: bb0115 article-title: Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings publication-title: Appl. Phys. Lett. – volume: 161 start-page: 191 year: 2006 end-page: 202 ident: bb0090 article-title: Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping publication-title: J. Power Sources – volume: 2011 start-page: 905901 year: 2011 ident: bb0025 article-title: High-temperature electrochemical hydrogen pumps and separators publication-title: Int. J. Electrochem. – volume: 131 start-page: 155 year: 2004 end-page: 161 ident: bb0105 article-title: Novel gas diffusion layer with water management function for PEMFC publication-title: J. Power Sources – reference: / (accessed December 12, 2017). – volume: 37 start-page: 14439 year: 2012 end-page: 14453 ident: bb0055 article-title: Hydrogen pumping effect induced by fuel starvation in a single cell of a PEM fuel cell stack at galvanostatic operation publication-title: Int. J. Hydrog. Energy – reference: U. Bossel, B. Eliasson, Hydrogen Economy, (n.d.). – volume: 167 start-page: 896 year: 2017 ident: 10.1016/j.elecom.2019.01.017_bb0040 article-title: Experimental analysis of membrane and pressure swing adsorption (PSA) for the hydrogen separation from natural gas publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.08.012 – start-page: 828 year: 2009 ident: 10.1016/j.elecom.2019.01.017_bb0085 article-title: Fuel cells — proton exchange membrane fuel cells|water management – start-page: 395 year: 2015 ident: 10.1016/j.elecom.2019.01.017_bb0045 article-title: Hydrogen purification methods – volume: 102 year: 2013 ident: 10.1016/j.elecom.2019.01.017_bb0115 article-title: Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings publication-title: Appl. Phys. Lett. doi: 10.1063/1.4802804 – volume: 177 start-page: 478 year: 2008 ident: 10.1016/j.elecom.2019.01.017_bb0060 article-title: Electrochemical hydrogen pumping using a high-temperature polybenzimidazole (PBI) membrane publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.11.059 – volume: 11 start-page: 814 year: 2011 ident: 10.1016/j.elecom.2019.01.017_bb0075 article-title: Water management in a PEMFC: water transport mechanism and material degradation in gas diffusion layers – ident: 10.1016/j.elecom.2019.01.017_bb0010 – volume: 2011 start-page: 905901 year: 2011 ident: 10.1016/j.elecom.2019.01.017_bb0025 article-title: High-temperature electrochemical hydrogen pumps and separators publication-title: Int. J. Electrochem. doi: 10.4061/2011/905901 – volume: 161 start-page: 191 year: 2006 ident: 10.1016/j.elecom.2019.01.017_bb0090 article-title: Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.03.021 – volume: 109–111 start-page: 1404 year: 2016 ident: 10.1016/j.elecom.2019.01.017_bb0035 article-title: Enhanced configuration of a water detritiation system; impact on ITER Isotope Separation System based cryogenic distillation publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2015.12.011 – volume: 52 start-page: 6748 year: 2007 ident: 10.1016/j.elecom.2019.01.017_bb0080 article-title: Analysis of GDL flooding effects on PEMFC performance publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.04.115 – volume: 162 start-page: F1451 year: 2015 ident: 10.1016/j.elecom.2019.01.017_bb0100 article-title: Hydrophobic gas-diffusion media for polymer-electrolyte fuel cells by direct fluorination publication-title: J. Electrochem. Soc. doi: 10.1149/2.0411514jes – volume: 131 start-page: 155 year: 2004 ident: 10.1016/j.elecom.2019.01.017_bb0105 article-title: Novel gas diffusion layer with water management function for PEMFC publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.01.007 – volume: 37 start-page: 359 year: 2007 ident: 10.1016/j.elecom.2019.01.017_bb0070 article-title: Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-006-9266-0 – volume: 64 start-page: 175 year: 2011 ident: 10.1016/j.elecom.2019.01.017_bb0110 article-title: Gas diffusion layer with PTFE gradients for effective water management in PEM fuel cells publication-title: Trans. Indian Inst. Metals doi: 10.1007/s12666-011-0034-4 – volume: 54 start-page: 2774 year: 2009 ident: 10.1016/j.elecom.2019.01.017_bb0065 article-title: A “proton pump” concept for the investigation of proton transport and anode kinetics in proton exchange membrane fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.11.010 – volume: 30 start-page: 681 year: 2005 ident: 10.1016/j.elecom.2019.01.017_bb0015 article-title: Into the hydrogen energy economy—milestones publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2004.12.011 – volume: 40 start-page: 2231 year: 2015 ident: 10.1016/j.elecom.2019.01.017_bb0050 article-title: Metal hydrides in engineering systems, processes, and devices: a review of non-storage applications publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.12.009 – volume: 248 start-page: 632 year: 2014 ident: 10.1016/j.elecom.2019.01.017_bb0095 article-title: Effect of polytetrafluoroethylene (PTFE) and micro porous layer (MPL) on thermal conductivity of fuel cell gas diffusion layers: modeling and experiments publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.09.136 – ident: 10.1016/j.elecom.2019.01.017_bb0020 – ident: 10.1016/j.elecom.2019.01.017_bb0005 – volume: 37 start-page: 14439 year: 2012 ident: 10.1016/j.elecom.2019.01.017_bb0055 article-title: Hydrogen pumping effect induced by fuel starvation in a single cell of a PEM fuel cell stack at galvanostatic operation publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2012.07.011 – volume: 38 start-page: 229 year: 2013 ident: 10.1016/j.elecom.2019.01.017_bb0030 article-title: High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2012.10.045 |
SSID | ssj0012993 |
Score | 2.408396 |
Snippet | Anode flooding is one of the critical issues in developing a proton exchange membrane (PEM)-based electrochemical hydrogen pump. Improving the hydrophobicity... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 39 |
SubjectTerms | Anode flooding Gas diffusion layer Hydrophobic coating Hydrophobicity Porous media Proton exchange membrane (PEM) hydrogen pump |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqXsoFQQGxvDQHrmbjjR_ZI6xaVUhFSFCpt8ie2G1QiVfL9tBL_wJ_mbHjLMsFJKRcYo3txDOa-RLNfMPYW9VYtBVqrh1WXApRc6td4BTbHCrpvcp0DOef9NmF_HipLg_YaqqFSWmVxfePPj176zIyL6c5X_f9_IuoCR3KRhAESZEqFfFJaZKVv7vfpXlQOMvEu0mYJ-mpfC7neKVWMzHVo4tlJu_Mbct-h6fM4r8XpfYiz-kj9rBARng_PtVjduCHY3a0mjq1PWE_9zJ_IAawcH3XbeL6OroeAaNNqc1A6BQI7QEBbvrahyv7A1J3lNv0uwxuLEFv6Aea-_nknKfY1kFpkYOFU2BclQwO1mQDsI3wvc8MHR7sEDsPISXB01ZP2cXpydfVGS-NFjhKpba8M87Wuu5QSrmwQmMg3GeUJjUarEhfQXsbpK_0AoNC2S2cDWgbaYV3Aav6GTsc4uCfMzDYee8cSkOa1qis0wQJgm0CLpZG-Bmrp_NtsbCQp2YYN-2UbvatHbXSJq20laDLzBjfzVqPLBz_kP-QVLeTTRzaeSBurtpiRG0IGDw5tUCgS4pALy7Qqsa7atmpCuWMmUnx7R8mSUv1f93-xX_PfMkepLsxye0VO9xubv1rQj1b9yab9S9KxgUP priority: 102 providerName: Elsevier |
Title | Development of a hydrophobic coating for the porous gas diffusion layer in a PEM-based electrochemical hydrogen pump to mitigate anode flooding |
URI | https://dx.doi.org/10.1016/j.elecom.2019.01.017 https://doaj.org/article/ffcfe003f66341f2a11ca58eb09d50c4 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUKPZQLKm1Rty2rOXB1G29sJ3ukCLSAQD0UiVs0ntiwFSQruhy48Bf4yx07Cd0TXJByivwR-Y0yz8n4PSF2TYmEGVlpHWVSK5VLtC5Izm2OjPbeJDmG0zM7O9fHF-Zixeor1oR18sDdwv0IgYLn0AucGrUKE1SK0JTeZdPaZJSUQDnnDZup_v8Bv2RTaX0e40CXajg0lyq7osFMG0-hq2mS7ExmZf-TUtLuX8lNK_nm8L3Y7Iki7HUPuCXe-OaDeLc_-LN9FI8r9T7QBkC4uq9v28VV6-YE1GIsaAbmpMAcD5hm8x4fLvEvRE-Uu_iRDK6RCTfMG-776-BUxoxWQ2-MQ72SQDcqhxksGHlYtnAzT7ocHrBpaw8hlr7zVJ_E-eHB7_2Z7O0VJGljlrIuHOY2r0lrzctqKTDbK4xl8ArKGKVgPQbtMzuhYEjXE4eBsNSovAuU5dtivWkb_1lAQbX3zpEuGF9LBp1lIhCwDDSZFsqPRD6sb0W99ni0wLiuhiKzP1WHShVRqTLFVzES8qnXotPeeKH9zwjdU9uonJ1ucDxVfTxVL8XTSBQD8FVPQjpywUPNn53-y2tM_1VsxCG7KrdvYn15e-d3mPYs3VisfX9QY_F27-hkdjZO8f4P-74HKA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4imWpw9wNBsntrN74ACl1ZZ2KyRaqbdgT-w2qMSrfQj1wl_gx_AHGTvOslxAQqqUU2I7jmcy8yX6PB8hL-VIg85AMWUgY4LzgmllHMPcZkAKa2UsxzA9VpNT8eFMnm2Rn_1emECrTLG_i-kxWqczw7Saw1nTDD_xAtGhGHGEICFTjROz8tBefcPvtsWbg_do5Fd5vr93sjthSVqAgZByyerS6EIVNQghcs0VOEQ6pVQ48RIynKFTVjthM5WDkyDq3GgHeiQ0t8ZBVuC4N8hNgeEiyCa8_r7mlWD-jJV-w-xYmF6_Xy-SyoK2jQ8b4Pk4VguNOmm_82GUDdhIixupbv8OuZ0wKn3bLcNdsmXbe2Rnt5eGu09-bFCNqHdU04ureu5nF940QMHrwKWmCIcpwkuKCN-vFvRcL2iQY1mF_3P0UiPWp02LfT_uTVlIpjVNmjyQihh0o6KH0xk6HV16-rWJJUEs1a2vLXWBdY-3ekBOr2X5H5Lt1rf2EaEl1NYaA6JE11IgtVGIQZweOcjHJbcDUvTrW0Eqex7UNy6rnt_2peqsUgWrVBnHoxwQtu4168p-_KP9u2C6ddtQtDue8PPzKnlt5Rw4i1HUIcoT3OGDc9ByZE02rmUGYkDK3vDVH-8ADtX89faP_7vnC7IzOZkeVUcHx4dPyK1wpWPYPSXby_nKPkPItTTPo4tT8vm636lf0KVFMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+hydrophobic+coating+for+the+porous+gas+diffusion+layer+in+a+PEM-based+electrochemical+hydrogen+pump+to+mitigate+anode+flooding&rft.jtitle=Electrochemistry+communications&rft.au=Lee%2C+Myoungseok&rft.au=Huang%2C+Xinyu&rft.date=2019-03-01&rft.issn=1388-2481&rft.volume=100&rft.spage=39&rft.epage=42&rft_id=info:doi/10.1016%2Fj.elecom.2019.01.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_elecom_2019_01_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2481&client=summon |