Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation
Secondary bile acids (SBAs) are derived from primary bile acids (PBAs) in a process reliant on biosynthetic capabilities possessed by few microbes. To evaluate the role of BAs in intestinal inflammation, we performed metabolomic, microbiome, metagenomic, and transcriptomic profiling of stool from il...
Saved in:
Published in | Cell host & microbe Vol. 27; no. 4; pp. 659 - 670.e5 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
08.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Secondary bile acids (SBAs) are derived from primary bile acids (PBAs) in a process reliant on biosynthetic capabilities possessed by few microbes. To evaluate the role of BAs in intestinal inflammation, we performed metabolomic, microbiome, metagenomic, and transcriptomic profiling of stool from ileal pouches (surgically created resevoirs) in colectomy-treated patients with ulcerative colitis (UC) versus controls (familial adenomatous polyposis [FAP]). We show that relative to FAP, UC pouches have reduced levels of lithocholic acid and deoxycholic acid (normally the most abundant gut SBAs), genes required to convert PBAs to SBAs, and Ruminococcaceae (one of few taxa known to include SBA-producing bacteria). In three murine colitis models, SBA supplementation reduces intestinal inflammation. This anti-inflammatory effect is in part dependent on the TGR5 bile acid receptor. These data suggest that dysbiosis induces SBA deficiency in inflammatory-prone UC patients, which promotes a pro-inflammatory state within the intestine that may be treated by SBA restoration.
[Display omitted]
•Secondary bile acids (SBAs) are reduced in UC pouch patients, relative to FAP patients•Reduced Ruminococcaceae in UC pouches is associates with SBA deficiency•SBA supplementation ameliorates inflammation in animal models of colitis•The protective effect of SBAs is in part dependent on the TGR5 bile acid receptor
Secondary bile acids (SBAs) are some of the most concentrated bacterially derived gut metabolites. Sinha et al. find UC pouch patients have reduced SBAs and Ruminococcaceae (one of the few SBA-producing taxa) compared with FAP-control patients. In colitis models, SBAs ameliorate disease in a process reliant on the TGR5 bile acid receptor. |
---|---|
AbstractList | Secondary bile acids (SBAs) are derived from primary bile acids (PBAs) in a process reliant on biosynthetic capabilities possessed by few microbes. To evaluate the role of BAs in intestinal inflammation, we performed metabolomic, microbiome, metagenomic, and transcriptomic profiling of stool from ileal pouches (surgically created resevoirs) in colectomy-treated patients with ulcerative colitis (UC) versus controls (familial adenomatous polyposis [FAP]). We show that relative to FAP, UC pouches have reduced levels of lithocholic acid and deoxycholic acid (normally the most abundant gut SBAs), genes required to convert PBAs to SBAs, and Ruminococcaceae (one of few taxa known to include SBA-producing bacteria). In three murine colitis models, SBA supplementation reduces intestinal inflammation. This anti-inflammatory effect is in part dependent on the TGR5 bile acid receptor. These data suggest that dysbiosis induces SBA deficiency in inflammatory-prone UC patients, which promotes a pro-inflammatory state within the intestine that may be treated by SBA restoration. Secondary bile acids (SBAs) are derived from primary bile acids (PBAs) in a process reliant on biosynthetic capabilities possessed by few microbes. To evaluate the role of BAs in intestinal inflammation, we performed metabolomic, microbiome, metagenomic, and transcriptomic profiling of stool from ileal pouches (surgically created resevoirs) in colectomy-treated patients with ulcerative colitis (UC) versus controls (familial adenomatous polyposis, FAP). We show relative to FAP, UC pouches have reduced levels of lithocholic acid and deoxycholic acid (normally the most abundant gut SBAs), genes required to convert PBAs to SBAs, and Ruminococcaceae (one of few taxa known to include SBA-producing bacteria). In three murine colitis models, SBA supplementation reduces intestinal inflammation. This anti-inflammatory effect is in part dependent on the TGR5 bile acid receptor. These data suggest that dysbiosis induces SBA deficiency in inflammatory-prone UC patients, which promotes a pro-inflammatory state within the intestine that may be treated by SBA restoration. Secondary bile acids (SBAs) are some of the most concentrated bacterially-derived gut metabolites. Sinha et al. find UC pouch patients have reduced SBAs and Ruminococcaceae (one of few SBA-producing taxa) compared to FAP-control patients. In colitis models, SBAs ameliorate disease in a process reliant on the TGR5 bile acid receptor. Secondary bile acids (SBAs) are derived from primary bile acids (PBAs) in a process reliant on biosynthetic capabilities possessed by few microbes. To evaluate the role of BAs in intestinal inflammation, we performed metabolomic, microbiome, metagenomic, and transcriptomic profiling of stool from ileal pouches (surgically created resevoirs) in colectomy-treated patients with ulcerative colitis (UC) versus controls (familial adenomatous polyposis [FAP]). We show that relative to FAP, UC pouches have reduced levels of lithocholic acid and deoxycholic acid (normally the most abundant gut SBAs), genes required to convert PBAs to SBAs, and Ruminococcaceae (one of few taxa known to include SBA-producing bacteria). In three murine colitis models, SBA supplementation reduces intestinal inflammation. This anti-inflammatory effect is in part dependent on the TGR5 bile acid receptor. These data suggest that dysbiosis induces SBA deficiency in inflammatory-prone UC patients, which promotes a pro-inflammatory state within the intestine that may be treated by SBA restoration.Secondary bile acids (SBAs) are derived from primary bile acids (PBAs) in a process reliant on biosynthetic capabilities possessed by few microbes. To evaluate the role of BAs in intestinal inflammation, we performed metabolomic, microbiome, metagenomic, and transcriptomic profiling of stool from ileal pouches (surgically created resevoirs) in colectomy-treated patients with ulcerative colitis (UC) versus controls (familial adenomatous polyposis [FAP]). We show that relative to FAP, UC pouches have reduced levels of lithocholic acid and deoxycholic acid (normally the most abundant gut SBAs), genes required to convert PBAs to SBAs, and Ruminococcaceae (one of few taxa known to include SBA-producing bacteria). In three murine colitis models, SBA supplementation reduces intestinal inflammation. This anti-inflammatory effect is in part dependent on the TGR5 bile acid receptor. These data suggest that dysbiosis induces SBA deficiency in inflammatory-prone UC patients, which promotes a pro-inflammatory state within the intestine that may be treated by SBA restoration. Secondary bile acids (SBAs) are derived from primary bile acids (PBAs) in a process reliant on biosynthetic capabilities possessed by few microbes. To evaluate the role of BAs in intestinal inflammation, we performed metabolomic, microbiome, metagenomic, and transcriptomic profiling of stool from ileal pouches (surgically created resevoirs) in colectomy-treated patients with ulcerative colitis (UC) versus controls (familial adenomatous polyposis [FAP]). We show that relative to FAP, UC pouches have reduced levels of lithocholic acid and deoxycholic acid (normally the most abundant gut SBAs), genes required to convert PBAs to SBAs, and Ruminococcaceae (one of few taxa known to include SBA-producing bacteria). In three murine colitis models, SBA supplementation reduces intestinal inflammation. This anti-inflammatory effect is in part dependent on the TGR5 bile acid receptor. These data suggest that dysbiosis induces SBA deficiency in inflammatory-prone UC patients, which promotes a pro-inflammatory state within the intestine that may be treated by SBA restoration. [Display omitted] •Secondary bile acids (SBAs) are reduced in UC pouch patients, relative to FAP patients•Reduced Ruminococcaceae in UC pouches is associates with SBA deficiency•SBA supplementation ameliorates inflammation in animal models of colitis•The protective effect of SBAs is in part dependent on the TGR5 bile acid receptor Secondary bile acids (SBAs) are some of the most concentrated bacterially derived gut metabolites. Sinha et al. find UC pouch patients have reduced SBAs and Ruminococcaceae (one of the few SBA-producing taxa) compared with FAP-control patients. In colitis models, SBAs ameliorate disease in a process reliant on the TGR5 bile acid receptor. |
Author | Sonnenburg, Justin L. Sim, Davis Bittinger, Kyle Nguyen, Linh P. Tropini, Carolina Spear, Estelle T. Namkoong, Hong Jarr, Karolin Becker, Laren S. Singh, Gulshan Sinha, Sidhartha R. Habtezion, Aida Wang, Min Fischbach, Michael A. Haileselassie, Yeneneh |
AuthorAffiliation | 2 Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA 5 Chan Zuckerberg Biohub, San Francisco, CA 94158, USA 1 Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA 7 Lead Contact 4 Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA 6 These authors contributed equally 3 Department of Bioengineering, Stanford University, Stanford, CA 94305, USA |
AuthorAffiliation_xml | – name: 3 Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – name: 4 Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA – name: 7 Lead Contact – name: 5 Chan Zuckerberg Biohub, San Francisco, CA 94158, USA – name: 6 These authors contributed equally – name: 1 Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA – name: 2 Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA |
Author_xml | – sequence: 1 givenname: Sidhartha R. surname: Sinha fullname: Sinha, Sidhartha R. email: sidsinha@stanford.edu organization: Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 2 givenname: Yeneneh surname: Haileselassie fullname: Haileselassie, Yeneneh organization: Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 3 givenname: Linh P. surname: Nguyen fullname: Nguyen, Linh P. organization: Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 4 givenname: Carolina surname: Tropini fullname: Tropini, Carolina organization: Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 5 givenname: Min surname: Wang fullname: Wang, Min organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – sequence: 6 givenname: Laren S. surname: Becker fullname: Becker, Laren S. organization: Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 7 givenname: Davis surname: Sim fullname: Sim, Davis organization: Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 8 givenname: Karolin surname: Jarr fullname: Jarr, Karolin organization: Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 9 givenname: Estelle T. surname: Spear fullname: Spear, Estelle T. organization: Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 10 givenname: Gulshan surname: Singh fullname: Singh, Gulshan organization: Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 11 givenname: Hong surname: Namkoong fullname: Namkoong, Hong organization: Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 12 givenname: Kyle surname: Bittinger fullname: Bittinger, Kyle organization: Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA – sequence: 13 givenname: Michael A. surname: Fischbach fullname: Fischbach, Michael A. organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – sequence: 14 givenname: Justin L. surname: Sonnenburg fullname: Sonnenburg, Justin L. organization: Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 15 givenname: Aida surname: Habtezion fullname: Habtezion, Aida email: aidah@stanford.edu organization: Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32101703$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtv1DAQtlARfcAf4IBy5JLgR-wkEkLqg8dKlQABZ8uxx3RWiV3sbKX993h3SwUcehmP5O8xM98pOQoxACEvGW0YZerNurE3cW445bShrKGcPSEnbBBtragajvY9qwXj_TE5zXlNqZS0Y8_IseBFoKPihHy92uYRY8Zcr4LbWHDVN7AxOJO21QVOUJ1bdNUVeLQIwW6rLynOcYFcrUKpCwYzldZPZp7NgjE8J0-9mTK8uH_PyI8P779ffqqvP39cXZ5f17aVcqmdAiXaUnsP3isplJSMCTU45kZpneoG4ZxRZQXujVeDoj0de1C9GYELJc7Iu4Pu7WacwVkISzKTvk04l9l1NKj__Ql4o3_GO92zjgvJi8Dre4EUf23KKnrGbGGaTIC4ybqYKNV2vKUF-upvrweTP3csAH4A2BRzTuAfIIzqXVh6rXdh6V1YmjJdwiqk_j-SxWV_wzIvTo9T3x6oUC58h5B03scDDhPYRbuIj9F_AxWvsMU |
CitedBy_id | crossref_primary_10_1093_ibd_izad027 crossref_primary_10_1016_j_fct_2024_114830 crossref_primary_10_3390_nu15234864 crossref_primary_10_1002_jcp_30024 crossref_primary_10_1002_mnfr_202200649 crossref_primary_10_1186_s12967_024_05922_0 crossref_primary_10_1360_SSV_2021_0363 crossref_primary_10_1002_tkm2_1404 crossref_primary_10_1016_j_ijrobp_2022_08_007 crossref_primary_10_1186_s13020_023_00794_w crossref_primary_10_1016_j_jpha_2023_09_010 crossref_primary_10_1186_s40168_021_01137_3 crossref_primary_10_3389_fmicb_2022_1065608 crossref_primary_10_1016_j_jff_2024_106138 crossref_primary_10_1186_s13020_023_00815_8 crossref_primary_10_1016_j_chom_2020_05_013 crossref_primary_10_3389_fphar_2024_1361643 crossref_primary_10_1002_ppul_25967 crossref_primary_10_1039_D3FO04882A crossref_primary_10_3389_fnins_2024_1388748 crossref_primary_10_1016_j_tjnut_2024_08_005 crossref_primary_10_1093_ecco_jcc_jjae074 crossref_primary_10_1021_acs_jafc_2c08519 crossref_primary_10_3748_wjg_v29_i27_4252 crossref_primary_10_1128_mbio_01993_22 crossref_primary_10_1152_physrev_00020_2023 crossref_primary_10_5812_tms_136719 crossref_primary_10_5217_ir_2021_00054 crossref_primary_10_3389_fmicb_2022_932047 crossref_primary_10_1017_erm_2024_31 crossref_primary_10_1038_s41401_021_00850_x crossref_primary_10_1021_acs_jafc_3c09390 crossref_primary_10_1111_1750_3841_15812 crossref_primary_10_1177_10732748241263650 crossref_primary_10_1016_j_gpb_2022_05_006 crossref_primary_10_1093_ibd_izad288 crossref_primary_10_1016_j_jare_2024_11_003 crossref_primary_10_3390_nu14214463 crossref_primary_10_1038_s41396_022_01333_5 crossref_primary_10_1507_endocrj_EJ22_0544 crossref_primary_10_1016_j_jcmgh_2022_03_008 crossref_primary_10_1016_j_bbi_2024_12_003 crossref_primary_10_3390_antiox14010045 crossref_primary_10_1016_j_carbpol_2021_118558 crossref_primary_10_1080_10408398_2021_2015680 crossref_primary_10_1093_ibd_izae003 crossref_primary_10_1016_j_chom_2022_02_004 crossref_primary_10_3389_fnut_2024_1359644 crossref_primary_10_1007_s00018_022_04471_3 crossref_primary_10_1016_j_jgr_2022_03_006 crossref_primary_10_1080_10408398_2021_1879004 crossref_primary_10_1042_EBC20210038 crossref_primary_10_1155_2021_6634821 crossref_primary_10_3390_ijms25136863 crossref_primary_10_1038_s41598_024_75516_9 crossref_primary_10_3389_fcimb_2024_1392376 crossref_primary_10_1039_D3FO02286B crossref_primary_10_1038_s41598_025_92783_2 crossref_primary_10_3390_biomedicines12122910 crossref_primary_10_1038_s41385_020_00335_w crossref_primary_10_3389_fonc_2022_1033145 crossref_primary_10_3389_fmicb_2022_881508 crossref_primary_10_1136_gutjnl_2021_326541 crossref_primary_10_1002_imo2_70008 crossref_primary_10_3390_nu16142368 crossref_primary_10_1053_j_gastro_2020_05_067 crossref_primary_10_3390_ijms25020841 crossref_primary_10_2139_ssrn_4022526 crossref_primary_10_3390_foods11203177 crossref_primary_10_1080_19490976_2025_2473504 crossref_primary_10_3389_fcimb_2023_1130820 crossref_primary_10_1113_JP281727 crossref_primary_10_3892_ijo_2025_5730 crossref_primary_10_1146_annurev_pathmechdis_051122_094743 crossref_primary_10_1021_acs_jafc_3c00421 crossref_primary_10_3390_cancers17061044 crossref_primary_10_1002_jgh3_12374 crossref_primary_10_1016_j_heliyon_2024_e25995 crossref_primary_10_1186_s12890_023_02825_6 crossref_primary_10_1016_j_jhazmat_2023_131760 crossref_primary_10_1093_jleuko_qiae084 crossref_primary_10_3390_nu13062030 crossref_primary_10_1038_s41579_025_01163_0 crossref_primary_10_1016_j_cgh_2024_03_012 crossref_primary_10_1096_fj_202402262R crossref_primary_10_1080_29933935_2024_2393219 crossref_primary_10_1111_cpr_13488 crossref_primary_10_3389_fendo_2020_00575 crossref_primary_10_1080_19490976_2022_2107866 crossref_primary_10_1038_s44321_025_00202_w crossref_primary_10_1039_D3FO04863B crossref_primary_10_1002_JLB_1MA0122_513R crossref_primary_10_1016_j_cmet_2024_06_008 crossref_primary_10_1016_j_aninu_2024_01_010 crossref_primary_10_1016_j_foodres_2024_115543 crossref_primary_10_1177_10998004241256031 crossref_primary_10_1093_ecco_jcc_jjab096 crossref_primary_10_3389_fcimb_2023_1253447 crossref_primary_10_1016_j_envpol_2022_118837 crossref_primary_10_1186_s12014_023_09396_y crossref_primary_10_1016_j_heliyon_2024_e34349 crossref_primary_10_1002_mnfr_202300301 crossref_primary_10_1007_s12274_023_5969_3 crossref_primary_10_1002_tox_24287 crossref_primary_10_1016_j_heliyon_2024_e34352 crossref_primary_10_14309_ctg_0000000000000670 crossref_primary_10_3390_cells11050901 crossref_primary_10_1016_j_intimp_2023_110296 crossref_primary_10_3389_fphar_2024_1371574 crossref_primary_10_1080_19490976_2023_2232143 crossref_primary_10_3389_fmicb_2023_1143463 crossref_primary_10_1093_ecco_jcc_jjac079 crossref_primary_10_3389_fvets_2021_756910 crossref_primary_10_4014_jmb_2203_03022 crossref_primary_10_3389_fmed_2024_1491009 crossref_primary_10_5217_ir_2023_00080 crossref_primary_10_1039_D4FO02256D crossref_primary_10_3389_fimmu_2023_1277102 crossref_primary_10_3389_fcimb_2022_945263 crossref_primary_10_3389_fmicb_2022_810230 crossref_primary_10_1055_s_0042_1760680 crossref_primary_10_1016_j_micres_2024_127871 crossref_primary_10_1016_j_psj_2024_103649 crossref_primary_10_1016_j_csbj_2022_03_038 crossref_primary_10_3390_nu14245270 crossref_primary_10_1016_j_ccell_2023_12_003 crossref_primary_10_1080_17474124_2025_2464058 crossref_primary_10_3390_cells10020400 crossref_primary_10_1038_s41598_024_57251_3 crossref_primary_10_2174_011574888X250413230920051715 crossref_primary_10_3390_vetsci11010031 crossref_primary_10_3390_ijms23073832 crossref_primary_10_1039_D3FO05212E crossref_primary_10_3389_fmed_2022_773105 crossref_primary_10_3390_metabo13060707 crossref_primary_10_1152_ajpgi_00002_2022 crossref_primary_10_1080_19490976_2023_2287073 crossref_primary_10_1016_j_molmed_2021_12_006 crossref_primary_10_1016_j_cgh_2024_05_049 crossref_primary_10_1590_fst_00121 crossref_primary_10_23922_jarc_2023_033 crossref_primary_10_1186_s12882_024_03899_y crossref_primary_10_1136_jitc_2021_003334 crossref_primary_10_3390_ijms24043180 crossref_primary_10_1080_19490976_2022_2107387 crossref_primary_10_1002_adma_202204650 crossref_primary_10_3389_fimmu_2022_829525 crossref_primary_10_1016_j_gtc_2024_12_004 crossref_primary_10_1186_s13020_021_00437_y crossref_primary_10_1042_CS20230788 crossref_primary_10_1016_j_ijbiomac_2024_134370 crossref_primary_10_3389_fnut_2022_861854 crossref_primary_10_1016_j_gtc_2024_12_007 crossref_primary_10_1146_annurev_med_042320_021020 crossref_primary_10_1016_j_lfs_2023_122279 crossref_primary_10_1016_j_plipres_2024_101291 crossref_primary_10_1093_ibd_izaa283 crossref_primary_10_1016_j_sempedsurg_2023_151305 crossref_primary_10_1038_s41423_024_01189_z crossref_primary_10_21508_1027_4065_2023_68_3_46_54 crossref_primary_10_1007_s00253_020_10976_3 crossref_primary_10_3389_fphys_2022_888233 crossref_primary_10_20517_mrr_2023_41 crossref_primary_10_3390_ijms26062503 crossref_primary_10_1016_j_intimp_2022_109405 crossref_primary_10_1016_j_pharmthera_2024_108605 crossref_primary_10_1136_gutjnl_2022_327742 crossref_primary_10_12998_wjcc_v10_i34_12484 crossref_primary_10_3390_ani13233714 crossref_primary_10_1016_j_heliyon_2024_e30594 crossref_primary_10_3389_fnut_2022_827509 crossref_primary_10_1016_j_heliyon_2024_e32770 crossref_primary_10_1007_s13238_020_00745_3 crossref_primary_10_1186_s12916_023_02880_0 crossref_primary_10_3389_fphar_2022_867525 crossref_primary_10_3389_fphar_2024_1494210 crossref_primary_10_3390_nu14132664 crossref_primary_10_3390_cells10113243 crossref_primary_10_2174_1570159X22999240729092453 crossref_primary_10_4110_in_2023_23_e6 crossref_primary_10_1039_D1FO04387K crossref_primary_10_1097_FJC_0000000000001320 crossref_primary_10_1111_exd_14965 crossref_primary_10_1016_j_apsb_2024_04_027 crossref_primary_10_3389_fmicb_2022_875238 crossref_primary_10_3390_ph16060860 crossref_primary_10_1016_j_ijbiomac_2024_136401 crossref_primary_10_1080_00365521_2023_2200518 crossref_primary_10_1080_19490976_2024_2353399 crossref_primary_10_1128_mbio_02830_23 crossref_primary_10_1016_j_chom_2021_06_019 crossref_primary_10_3390_ani12243552 crossref_primary_10_3390_nu13113926 crossref_primary_10_3389_fnut_2022_930414 crossref_primary_10_3390_cimb45070351 crossref_primary_10_3390_nu15153340 crossref_primary_10_1093_ibd_izaa342 crossref_primary_10_14309_ajg_0000000000002801 crossref_primary_10_3389_fimmu_2023_1126117 crossref_primary_10_3390_molecules27227830 crossref_primary_10_1093_procel_pwad028 crossref_primary_10_1002_advs_202404697 crossref_primary_10_3390_jof7121030 crossref_primary_10_1096_fj_202300819RR crossref_primary_10_1016_j_micres_2024_127660 crossref_primary_10_3390_antiox11020253 crossref_primary_10_1186_s12985_024_02571_z crossref_primary_10_1186_s40168_024_02011_8 crossref_primary_10_7554_eLife_93273_3 crossref_primary_10_1248_bpb_b22_00373 crossref_primary_10_1016_j_ijbiomac_2024_136876 crossref_primary_10_1016_j_crfs_2023_100521 crossref_primary_10_1111_1751_2980_13131 crossref_primary_10_1016_j_carbpol_2020_117218 crossref_primary_10_1080_19490976_2023_2190304 crossref_primary_10_3390_nu13093143 crossref_primary_10_1128_spectrum_01972_22 crossref_primary_10_1016_j_cbpa_2024_102539 crossref_primary_10_1080_19490976_2023_2282789 crossref_primary_10_1016_j_ajt_2024_02_029 crossref_primary_10_3389_fmicb_2024_1475984 crossref_primary_10_3390_nu14040726 crossref_primary_10_1016_j_marpolbul_2024_116858 crossref_primary_10_3390_nu13030846 crossref_primary_10_1097_MOG_0000000000000820 crossref_primary_10_1093_jas_skac088 crossref_primary_10_1186_s12866_025_03810_1 crossref_primary_10_1002_efd2_70023 crossref_primary_10_1159_000525925 crossref_primary_10_1021_acs_jafc_3c00278 crossref_primary_10_3390_ph17050607 crossref_primary_10_3390_ijms23116072 crossref_primary_10_1016_j_ijbiomac_2022_11_256 crossref_primary_10_3389_fmicb_2024_1433910 crossref_primary_10_1016_j_gtc_2023_12_008 crossref_primary_10_1186_s40104_024_01037_0 crossref_primary_10_2139_ssrn_3944517 crossref_primary_10_3390_ijms241512123 crossref_primary_10_1186_s13048_024_01553_7 crossref_primary_10_1016_j_phymed_2022_153961 crossref_primary_10_3390_cells10113234 crossref_primary_10_1016_j_bioactmat_2024_01_016 crossref_primary_10_1038_s41398_024_03211_4 crossref_primary_10_3390_molecules28104042 crossref_primary_10_1093_ecco_jcc_jjae096 crossref_primary_10_1038_s41423_020_00592_6 crossref_primary_10_1016_j_it_2021_11_005 crossref_primary_10_1080_19490976_2023_2201155 crossref_primary_10_1002_ptr_7588 crossref_primary_10_23736_S2724_5985_21_02860_9 crossref_primary_10_1016_j_foodchem_2024_140832 crossref_primary_10_3389_fphar_2020_620724 crossref_primary_10_1016_j_phymed_2024_155812 crossref_primary_10_1007_s00592_023_02217_6 crossref_primary_10_1038_s41564_023_01493_w crossref_primary_10_1152_ajpgi_00362_2020 crossref_primary_10_1002_advs_202205563 crossref_primary_10_1016_j_foodres_2021_110875 crossref_primary_10_1124_pharmrev_124_000978 crossref_primary_10_1177_17562848241249449 crossref_primary_10_3168_jds_2021_21654 crossref_primary_10_3389_fcimb_2021_715396 crossref_primary_10_1080_19490976_2021_1990827 crossref_primary_10_5812_jjm_123331 crossref_primary_10_1016_j_soard_2024_04_011 crossref_primary_10_1039_D3FO00770G crossref_primary_10_3390_ijms24021406 crossref_primary_10_3389_fmicb_2023_1060458 crossref_primary_10_3390_nu14132610 crossref_primary_10_1016_j_xcrm_2025_102028 crossref_primary_10_3390_nu14153212 crossref_primary_10_1016_j_fbio_2021_101385 crossref_primary_10_1016_j_jpba_2025_116734 crossref_primary_10_2147_JIR_S298495 crossref_primary_10_3389_fimmu_2022_1046472 crossref_primary_10_1007_s12602_022_09911_x crossref_primary_10_1126_scisignal_adl1786 crossref_primary_10_1016_j_ijbiomac_2024_130062 crossref_primary_10_1016_j_aninu_2023_09_005 crossref_primary_10_1111_obr_13872 crossref_primary_10_1038_s41589_022_01122_3 crossref_primary_10_3390_nu12072156 crossref_primary_10_3390_microorganisms8050746 crossref_primary_10_1016_j_taap_2024_116946 crossref_primary_10_1093_jas_skad011 crossref_primary_10_1016_j_aninu_2024_11_011 crossref_primary_10_3389_fphar_2023_1120672 crossref_primary_10_1016_j_jhip_2024_01_001 crossref_primary_10_3390_foods14061054 crossref_primary_10_5009_gnl220471 crossref_primary_10_1016_j_apsb_2021_07_022 crossref_primary_10_3389_fmicb_2022_841920 crossref_primary_10_7555_JBR_36_20220198 crossref_primary_10_1080_19490976_2024_2356284 crossref_primary_10_3390_ijms24098024 crossref_primary_10_4110_in_2022_22_e46 crossref_primary_10_1016_j_fbio_2024_104297 crossref_primary_10_1038_s44321_025_00218_2 crossref_primary_10_1038_s41598_022_09307_5 crossref_primary_10_1080_1040841X_2022_2142091 crossref_primary_10_1128_spectrum_01999_24 crossref_primary_10_1097_HC9_0000000000000217 crossref_primary_10_1016_j_atherosclerosis_2024_117526 crossref_primary_10_1126_scisignal_abf6584 crossref_primary_10_1016_j_cell_2024_09_033 crossref_primary_10_1016_j_aninu_2024_11_016 crossref_primary_10_1016_j_celrep_2023_113324 crossref_primary_10_1021_acsinfecdis_0c00839 crossref_primary_10_1007_s10787_024_01472_5 crossref_primary_10_1080_19490976_2023_2290315 crossref_primary_10_3389_fmicb_2022_863407 crossref_primary_10_1039_D1FO03464B crossref_primary_10_1177_15353702211062507 crossref_primary_10_1016_j_phrs_2024_107564 crossref_primary_10_1039_D3FO00378G crossref_primary_10_18786_2072_0505_2023_51_007 crossref_primary_10_1016_j_cell_2021_12_035 crossref_primary_10_1016_j_tem_2020_05_001 crossref_primary_10_3389_fmicb_2021_703693 crossref_primary_10_1016_j_biopha_2024_117731 crossref_primary_10_3389_fimmu_2022_812996 crossref_primary_10_1016_j_lfs_2023_121919 crossref_primary_10_1038_s41467_024_52953_8 crossref_primary_10_1055_a_1330_9644 crossref_primary_10_1134_S0022093022060321 crossref_primary_10_1186_s40168_022_01326_8 crossref_primary_10_1016_j_biopha_2024_116410 crossref_primary_10_1155_2022_1940846 crossref_primary_10_1186_s40168_023_01529_7 crossref_primary_10_3389_fphar_2023_1143785 crossref_primary_10_1016_j_scitotenv_2024_173795 crossref_primary_10_1016_j_eng_2023_11_017 crossref_primary_10_1021_acs_est_3c07108 crossref_primary_10_1186_s12967_023_04214_3 crossref_primary_10_1016_j_scitotenv_2023_166837 crossref_primary_10_1136_gutjnl_2020_323565 crossref_primary_10_3389_fmicb_2023_1091060 crossref_primary_10_1093_toxsci_kfaa161 crossref_primary_10_1016_j_cca_2024_120004 crossref_primary_10_1038_s41392_024_01811_6 crossref_primary_10_1210_clinem_dgac555 crossref_primary_10_1002_wsbm_1540 crossref_primary_10_1016_j_ygeno_2022_110527 crossref_primary_10_1016_j_jff_2022_105381 crossref_primary_10_7717_peerj_14842 crossref_primary_10_3389_fmicb_2021_727681 crossref_primary_10_1002_advs_202205422 crossref_primary_10_1155_2022_2782112 crossref_primary_10_1136_gutjnl_2023_329969 crossref_primary_10_1016_j_aninu_2023_10_007 crossref_primary_10_3389_fmicb_2024_1373402 crossref_primary_10_1089_dna_2024_0101 crossref_primary_10_1080_10408398_2022_2067118 crossref_primary_10_1038_s41522_024_00585_7 crossref_primary_10_1016_j_pharmthera_2025_108831 crossref_primary_10_1080_19490976_2023_2221821 crossref_primary_10_1128_spectrum_03330_22 crossref_primary_10_3389_fcvm_2022_830781 crossref_primary_10_1016_j_apsb_2023_11_011 crossref_primary_10_1053_j_gastro_2020_09_056 crossref_primary_10_1016_j_mad_2023_111841 crossref_primary_10_1111_jpn_13571 crossref_primary_10_3390_biology13040230 crossref_primary_10_3390_ijms25084321 crossref_primary_10_1038_s41522_024_00551_3 crossref_primary_10_1038_s41368_021_00150_4 crossref_primary_10_1111_apt_16085 crossref_primary_10_1016_j_micpath_2023_106084 crossref_primary_10_1186_s40168_023_01713_9 crossref_primary_10_3389_fmicb_2024_1360225 crossref_primary_10_3389_fphar_2022_910493 crossref_primary_10_1371_journal_ppat_1012001 crossref_primary_10_1038_s41586_023_06906_8 crossref_primary_10_1016_j_phymed_2024_155897 crossref_primary_10_1126_scitranslmed_abn7491 crossref_primary_10_4110_in_2024_24_e40 crossref_primary_10_3390_immuno4040026 crossref_primary_10_1038_s41390_022_02149_x crossref_primary_10_3389_fphar_2023_1189971 crossref_primary_10_3389_fmed_2022_896409 crossref_primary_10_3390_metabo12070659 crossref_primary_10_1016_j_jaut_2023_103062 crossref_primary_10_1155_2022_1680008 crossref_primary_10_5534_wjmh_230337 crossref_primary_10_3389_fgene_2021_760501 crossref_primary_10_3390_nu15102339 crossref_primary_10_1128_IAI_00014_21 crossref_primary_10_3390_microorganisms11010136 crossref_primary_10_1016_j_gene_2022_146262 crossref_primary_10_3390_ijms241311004 crossref_primary_10_1002_advs_202200263 crossref_primary_10_3389_fmicb_2023_1088187 crossref_primary_10_1021_acs_jafc_3c08454 crossref_primary_10_3390_ijms24031864 crossref_primary_10_1016_j_intimp_2025_114034 crossref_primary_10_1097_MD_0000000000041262 crossref_primary_10_3389_fimmu_2022_984697 crossref_primary_10_1093_ecco_jcc_jjac173 crossref_primary_10_3390_membranes12111083 crossref_primary_10_1016_j_jare_2024_01_019 crossref_primary_10_2739_kurumemedj_MS7112001 crossref_primary_10_1186_s40168_022_01269_0 crossref_primary_10_1016_j_ese_2022_100185 crossref_primary_10_1128_jb_00426_23 crossref_primary_10_1128_msystems_00953_23 crossref_primary_10_3390_molecules28145498 crossref_primary_10_1186_s40779_022_00397_w crossref_primary_10_1080_19490976_2022_2128605 crossref_primary_10_3389_fcell_2023_1291686 crossref_primary_10_3389_fimmu_2024_1431990 crossref_primary_10_3389_fphys_2021_715506 crossref_primary_10_3389_fphys_2023_1166685 crossref_primary_10_1017_gmb_2023_15 crossref_primary_10_1097_MD_0000000000037091 crossref_primary_10_1016_j_mam_2025_101349 crossref_primary_10_1016_j_scitotenv_2023_167287 crossref_primary_10_1155_2022_9202491 crossref_primary_10_1016_j_phrs_2021_105767 crossref_primary_10_1016_j_chemosphere_2021_131681 crossref_primary_10_1016_j_micpath_2023_106272 crossref_primary_10_1080_13813455_2023_2212331 crossref_primary_10_1016_j_heliyon_2022_e08883 crossref_primary_10_1538_expanim_21_0182 crossref_primary_10_1016_j_foodchem_2024_140195 crossref_primary_10_1021_acschembio_2c00463 crossref_primary_10_14814_phy2_15752 crossref_primary_10_1152_ajpheart_00027_2022 crossref_primary_10_3390_metabo14070386 crossref_primary_10_3390_ijms222011243 crossref_primary_10_1016_j_intimp_2024_112846 crossref_primary_10_1016_j_jad_2024_09_130 crossref_primary_10_1038_s41467_020_18754_5 crossref_primary_10_1016_j_engreg_2024_04_003 crossref_primary_10_1124_jpet_123_002020 crossref_primary_10_3390_cancers14030530 crossref_primary_10_1016_j_bbadis_2022_166563 crossref_primary_10_1021_acs_jproteome_2c00820 crossref_primary_10_7554_eLife_93273 crossref_primary_10_1016_j_cej_2022_137204 crossref_primary_10_3390_life15010010 crossref_primary_10_1016_j_biochi_2024_11_003 crossref_primary_10_1016_j_plipres_2022_101210 crossref_primary_10_1002_jpn3_12327 crossref_primary_10_1016_j_chom_2024_06_014 crossref_primary_10_3390_nu14224930 crossref_primary_10_1128_msystems_00984_20 crossref_primary_10_1080_14737140_2024_2344649 crossref_primary_10_1016_j_etap_2021_103672 crossref_primary_10_1097_CM9_0000000000002291 crossref_primary_10_3390_ijms25021311 crossref_primary_10_1016_j_fbio_2024_105326 crossref_primary_10_1016_j_talanta_2021_122631 crossref_primary_10_3390_cancers13164054 crossref_primary_10_3389_fgene_2022_921972 crossref_primary_10_3390_ijms23158361 crossref_primary_10_1016_j_micpath_2023_106149 crossref_primary_10_1152_ajpgi_00152_2020 crossref_primary_10_1016_j_aninu_2024_10_002 crossref_primary_10_3389_fvets_2025_1493496 crossref_primary_10_2139_ssrn_3940829 crossref_primary_10_3390_metabo12100997 crossref_primary_10_3389_fphar_2024_1399829 crossref_primary_10_1097_DCR_0000000000003163 crossref_primary_10_1182_blood_2021015352 crossref_primary_10_1016_j_fbio_2024_105218 crossref_primary_10_1016_j_jep_2022_116067 crossref_primary_10_3389_fimmu_2022_836542 crossref_primary_10_1016_j_jep_2024_118968 crossref_primary_10_1016_j_jpba_2024_116424 crossref_primary_10_1080_19490976_2024_2350784 crossref_primary_10_1002_ctm2_70050 crossref_primary_10_1053_j_gastro_2020_12_030 crossref_primary_10_1016_j_ijbiomac_2025_141930 crossref_primary_10_1128_iai_00583_21 crossref_primary_10_3389_fresc_2022_1017180 crossref_primary_10_1016_j_fsi_2022_11_018 crossref_primary_10_3390_ani13081293 crossref_primary_10_1016_j_mib_2020_08_005 crossref_primary_10_4254_wjh_v15_i7_867 crossref_primary_10_1007_s11894_022_00850_9 crossref_primary_10_1016_j_chemosphere_2021_131001 crossref_primary_10_1016_j_jgg_2022_12_002 crossref_primary_10_1093_ecco_jcc_jjac105 crossref_primary_10_1186_s12931_024_02837_8 crossref_primary_10_3390_microorganisms10050949 crossref_primary_10_3389_fimmu_2022_974305 crossref_primary_10_3390_ijms23158343 crossref_primary_10_1021_acsami_4c18134 crossref_primary_10_1080_19490976_2023_2172671 crossref_primary_10_14309_ajg_0000000000002348 crossref_primary_10_3389_fphar_2022_677738 crossref_primary_10_1038_s41392_023_01673_4 crossref_primary_10_1152_physrev_00049_2019 crossref_primary_10_1016_j_medj_2024_08_003 crossref_primary_10_3389_fphar_2021_762603 crossref_primary_10_1016_j_jconrel_2023_10_039 crossref_primary_10_1016_j_fct_2020_111302 crossref_primary_10_1038_s41467_022_28126_w crossref_primary_10_1093_ecco_jcc_jjab020 crossref_primary_10_1093_gastro_goae033 crossref_primary_10_1016_j_isci_2022_105004 crossref_primary_10_1039_D4FO00961D crossref_primary_10_1093_jn_nxab401 crossref_primary_10_1093_ibd_izaf005 crossref_primary_10_1007_s10620_020_06650_3 crossref_primary_10_1038_s41575_024_00997_y |
Cites_doi | 10.1186/gb-2010-11-10-r106 10.1038/nri.2016.42 10.1016/j.phrs.2015.12.007 10.1016/j.jhep.2013.01.003 10.1038/nrgastro.2013.151 10.1016/S0022-2275(20)40615-7 10.1007/s00281-014-0454-4 10.1194/jlr.R500013-JLR200 10.1186/s40168-019-0740-4 10.1371/journal.pone.0196977 10.1053/j.gastro.2010.07.052 10.1371/journal.pone.0176715 10.1023/A:1024733500950 10.1093/nar/29.9.e45 10.1016/j.chom.2014.02.005 10.1016/j.cmet.2017.05.008 10.1016/j.dld.2013.10.021 10.3389/fcimb.2016.00191 10.1097/00000658-199710000-00012 10.1016/j.mam.2017.06.002 10.1038/nprot.2007.41 10.1111/imm.12045 10.1136/gutjnl-2012-302578 10.2147/JIR.S116088 10.3389/fimmu.2018.01853 10.1073/pnas.0706625104 10.1016/j.chom.2016.10.016 10.1093/ajcn/31.10.S243 10.1016/j.celrep.2019.02.019 10.1016/S1072-7515(03)00720-8 10.1371/journal.pone.0103337 10.1097/01.MIB.0000200323.38139.c6 10.1016/S0140-6736(17)32448-0 10.1093/ilar/ilv021 10.1002/ibd.21460 10.1136/gutjnl-2018-317842 10.1111/j.1365-2982.2010.01487.x 10.1099/00207713-51-1-39 10.1159/000450907 10.1002/path.1245 10.1038/srep32889 10.1111/den.12744 10.1002/ibd.21022 10.1016/j.nutres.2017.07.006 10.1016/j.cmet.2011.11.006 10.1128/AEM.71.12.8228-8235.2005 10.1038/nature13828 10.1371/journal.pone.0044328 10.1177/1756283X10370611 10.4161/gmic.25723 10.1053/j.gastro.2016.10.012 10.1152/ajpgi.00027.2007 10.1016/j.intimp.2012.11.017 10.1016/j.mayocp.2018.09.013 10.1038/ni.3079 10.1038/srep28786 10.1016/j.bbalip.2007.10.008 10.1053/j.gastro.2018.01.042 10.1128/mSphere.00045-15 10.1097/MD.0000000000000051 10.1007/s10620-018-5086-4 10.4254/wjh.v7.i28.2811 10.1111/j.1365-2982.2012.01893.x 10.1073/pnas.1102938108 10.1038/s41586-019-1237-9 10.1038/nchembio.1864 10.1111/j.1463-1318.2005.00833.x 10.1136/gut.2010.212159 10.1080/19490976.2014.1000080 10.1016/j.taap.2018.06.028 10.1016/j.chom.2019.03.008 10.1371/journal.pone.0066934 10.1016/S0016-5085(03)00171-9 10.1586/egh.09.37 10.1159/000338125 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.chom.2020.01.021 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1934-6069 |
EndPage | 670.e5 |
ExternalDocumentID | PMC8172352 32101703 10_1016_j_chom_2020_01_021 S1931312820300627 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK085025 – fundername: NIDDK NIH HHS grantid: L30 DK106876 – fundername: NCATS NIH HHS grantid: UL1 TR003142 – fundername: NCATS NIH HHS grantid: UL1 TR001085 – fundername: NCATS NIH HHS grantid: KL2 TR001083 – fundername: NIDDK NIH HHS grantid: R01 DK101119 – fundername: NCATS NIH HHS grantid: KL2 TR003143 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 5GY 62- 6J9 7-5 AACTN AAEDT AAEDW AAKRW AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ACGFO ACGFS ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGKMS AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG K97 M41 O-L O9- OK1 P2P ROL RPZ SES SSZ TR2 UNMZH 53G AAIKJ AAYWO AAYXX ABDGV ACVFH ADCNI AEUPX AFPUW AGCQF AGHFR AIGII AKBMS AKYEP APXCP CITATION HZ~ OZT RIG ZBA CGR CUY CVF ECM EIF NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c455t-d6e634d6e8feff65365511369d1db5cd6793dda69312faf696080b8e68abe2363 |
IEDL.DBID | IXB |
ISSN | 1931-3128 1934-6069 |
IngestDate | Thu Aug 21 14:01:31 EDT 2025 Wed Jul 30 10:43:00 EDT 2025 Thu Apr 03 06:59:41 EDT 2025 Tue Jul 01 02:44:22 EDT 2025 Thu Apr 24 23:03:56 EDT 2025 Sun Apr 06 06:53:23 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | colitis bile acids metabolomics pouchitis ulcerative colitis inflammatory bowel disease dysbiosis |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-d6e634d6e8feff65365511369d1db5cd6793dda69312faf696080b8e68abe2363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS SS and AH designed the study; SS, YH, LN, CT, GS, MW, DS, KB, ES, and HN performed experiments; SS, LN, CT, YH, DS, KB, KJ, LB, MF, JS, and AH analyzed and interpreted the data; SS, YH, LN, and CT wrote the paper with assistance from KB. SS, YH, ES, JS, and AH revised the paper. All authors had the opportunity to discuss the results, review, and comment on the final manuscript. |
OpenAccessLink | http://www.cell.com/article/S1931312820300627/pdf |
PMID | 32101703 |
PQID | 2366647240 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8172352 proquest_miscellaneous_2366647240 pubmed_primary_32101703 crossref_primary_10_1016_j_chom_2020_01_021 crossref_citationtrail_10_1016_j_chom_2020_01_021 elsevier_sciencedirect_doi_10_1016_j_chom_2020_01_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-08 |
PublicationDateYYYYMMDD | 2020-04-08 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell host & microbe |
PublicationTitleAlternate | Cell Host Microbe |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Banks, Bateman, Payne, Johnson, Sheron (bib3) 2003; 199 Tyler, Knox, Kabakchiev, Milgrom, Kirsch, Cohen, McLeod, Guttman, Krause, Silverberg (bib73) 2013; 8 Hamilton, Xie, Raufman, Hogan, Griffin, Packard, Chatfield, Hagey, Steinbach, Hofmann (bib20) 2007; 293 Yuan, Bambha (bib77) 2015; 7 Matsuoka, Kanai (bib37) 2015; 37 Maharshak, Ringel, Katibian, Lundqvist, Sartor, Carroll, Ringel-Kulka (bib35) 2018; 63 Nguyen, Pan, Dinh, Hadeiba, O’Hara, Ebtikar, Hertweck, Gökmen, Lord, Jenner (bib43) 2015; 16 Poole, Godfrey, Cattaruzza, Cottrell, Kirkland, Pelayo, Bunnett, Corvera (bib48) 2010; 22 Sartor, Wu (bib57) 2017; 152 Kang, Ridlon, Moore, Barnes, Hylemon (bib25) 2008; 1781 Rao, Wong, Camilleri, Odunsi-Shiyanbade, Mckinzie, Ryks, Burton, Carlson, Lamsam, Singh (bib52) 2010; 139 Nyam, Brillant, Dozois, Kelly, Pemberton, Wolff (bib44) 1997; 226 Rangan, Choi, Wei, Navarrete, Guen, Brandhorst, Enyati, Pasia, Maesincee, Ocon (bib51) 2019; 26 Duboc, Rainteau, Rajca, Humbert, Farabos, Maubert, Grondin, Jouet, Bouhassira, Seksik (bib10) 2012; 24 Ng, Shi, Hamidi, Underwood, Tang, Benchimol, Panaccione, Ghosh, Wu, Chan (bib42) 2018; 390 La Frano, Hernandez-Carretero, Weber, Borkowski, Pedersen, Osborn, Newman (bib27) 2017; 46 Long, Gahan, Joyce (bib32) 2017; 56 Zella, Hait, Glavan, Gevers, Ward, Kitts, Korzenik (bib78) 2011; 17 McLaughlin, Clark, Tekkis, Nicholls, Ciclitira (bib39) 2010; 3 Johnson, Rogers, Bruce, Lilley, von Herbay, Forbes, Ciclitira, Nicholls (bib22) 2009; 15 Kakiyama, Pandak, Gillevet, Hylemon, Heuman, Daita, Takei, Muto, Nittono, Ridlon (bib24) 2013; 58 Raufman, Cheng, Zimniak (bib53) 2003; 48 Rooks, Garrett (bib56) 2016; 16 Joyce, Gahan (bib23) 2017; 35 Pols, Puchner, Korkmaz, Vos, Soeters, de Vries (bib47) 2017; 12 Singh, Stroud, Holubar, Sandborn, Pardi (bib61) 2015 Ramos, Papadakis (bib50) 2019; 94 Stellwag, Hylemon (bib65) 1978; 31 La Merrill, Karey, Moshier, Lindtner, La Frano, Newman, Buettner (bib28) 2014; 9 Mullish, McDonald, Pechlivanis, Allegretti, Kao, Barker, Kapila, Petrof, Joyce, Gahan (bib40) 2019; 68 Ridlon, Alves, Hylemon, Bajaj (bib55) 2013; 4 Tomita, Freeman, Bronk, LeBrasseur, White, Hirsova, Ibrahim (bib72) 2016; 6 Frank, St Amand, Feldman, Boedeker, Harpaz, Pace (bib15) 2007; 104 Macpherson, Heikenwalder, Ganal-Vonarburg (bib34) 2016; 20 Fiorucci, Biagioli, Zampella, Distrutti (bib14) 2018; 9 Schaap, Trauner, Jansen (bib58) 2014; 11 Sokol, Seksik, Rigottier-Gois, Lay, Lepage, Podglajen, Marteau, Doré (bib63) 2006; 12 Studer, Desharnais, Beutler, Brugiroux, Terrazos, Menin, Schürch, McCoy, Kuehne, Minton (bib68) 2016; 6 Gionchetti, Rizzello, Helwig, Venturi, Lammers, Brigidi, Vitali, Poggioli, Miglioli, Campieri (bib18) 2003; 124 Goodman, Kallstrom, Faith, Reyes, Moore, Dantas, Gordon (bib19) 2011; 108 Shen, Lashner (bib60) 2008; 4 Ericsson, Franklin (bib13) 2015; 56 Stellwag, Hylemon (bib66) 1979; 20 Navaneethan, Shen (bib41) 2009; 3 Duboc, Taché, Hofmann (bib12) 2014; 46 Sun, Winglee, Gharaibeh, Gauthier, He, Tripathi, Avram, Bruner, Fodor, Jobin (bib69) 2018; 154 Chen, Wang, Zhou, Ng, Li, Huang, Zhou, Wang, Shen, A Kamm (bib7) 2014; 93 Ridlon, Kang, Hylemon (bib54) 2006; 47 Martínez-Moya, Romero-Calvo, Requena, Hernández-Chirlaque, Aranda, González, Zarzuelo, Suárez, Martínez-Augustin, Marín, de Medina (bib36) 2013; 15 McKenney, Yan, Vaubourgeix, Becattini, Lampen, Motzer, Larson, Dannaoui, Fujisawa, Xavier, Pamer (bib38) 2019; 25 Anderson (bib2) 2001; 26 Devlin, Fischbach (bib9) 2015; 11 Duboc, Rajca, Rainteau, Benarous, Maubert, Quervain, Thomas, Barbu, Humbert, Despras (bib11) 2013; 62 Kitahara, Takamine, Imamura, Benno (bib26) 2001; 51 Hata, Ishihara, Nozawa, Kawai, Kiyomatsu, Tanaka, Kishikawa, Anzai, Watanabe (bib21) 2017; 29 Wirtz, Neufert, Weigmann, Neurath (bib75) 2007; 2 Lloyd-Price, Arze, Ananthakrishnan, Schirmer, Avila-Pacheco, Poon, Andrews, Ajami, Bonham, Brislawn (bib31) 2019; 569 Lozupone, Knight (bib33) 2005; 71 Pols, Nomura, Harach, Lo Sasso, Oosterveer, Thomas, Rizzo, Gioiello, Adorini, Pellicciari (bib46) 2011; 14 Behr, Sperber, Jiang, Strauss, Kamp, Walk, Herold, Beekmann, Rietjens, van Ravenzwaay (bib4) 2018; 355 Gevers, Kugathasan, Denson, Vázquez-Baeza, Van Treuren, Ren, Schwager, Knights, Song, Yassour (bib17) 2014; 15 Shen (bib59) 2012; 30 Lane, Zisman, Suskind (bib29) 2017; 10 Pfaffl (bib45) 2001; 29 Liu, Shi, Du, Ge, Teng, Liu, Wang, Zhao (bib30) 2016; 6 Solbach, Chhatwal, Woltemate, Tacconelli, Buhl, Gerhard, Thoeringer, Vehreschild, Jazmati, Rupp (bib64) 2018; 13 Theriot, Bowman, Young (bib71) 2016; 1 Tang, Poles, Leung, Wolff, Davenport, Lee, Lim, Chua, Loke, Cho (bib70) 2015; 6 Buffie, Bucci, Stein, McKenney, Ling, Gobourne, No, Liu, Kinnebrew, Viale (bib5) 2015; 517 Smith, Coffey, Kell, O’Sullivan, Redmond, Kirwan (bib62) 2005; 7 Postler, Ghosh (bib49) 2017; 26 Anders, Huber (bib1) 2010; 11 Gadaleta, van Erpecum, Oldenburg, Willemsen, Renooij, Murzilli, Klomp, Siersema, Schipper, Danese (bib16) 2011; 60 Copple, Li (bib8) 2016; 104 Chassaing, Srinivasan, Delgado, Young, Gewirtz, Vijay-Kumar (bib6) 2012; 7 Wang, Martins, Sullivan, Friedman, Misic, El-Fahmawi, De Martinis, O’Brien, Chen, Bradley (bib74) 2019; 7 Yoneno, Hisamatsu, Shimamura, Kamada, Ichikawa, Kitazume, Mori, Uo, Namikawa, Matsuoka (bib76) 2013; 139 Strauch, Yamaguchi, Bass, Wang (bib67) 2003; 197 Studer (10.1016/j.chom.2020.01.021_bib68) 2016; 6 Tomita (10.1016/j.chom.2020.01.021_bib72) 2016; 6 Duboc (10.1016/j.chom.2020.01.021_bib10) 2012; 24 Anderson (10.1016/j.chom.2020.01.021_bib2) 2001; 26 Frank (10.1016/j.chom.2020.01.021_bib15) 2007; 104 Macpherson (10.1016/j.chom.2020.01.021_bib34) 2016; 20 Kakiyama (10.1016/j.chom.2020.01.021_bib24) 2013; 58 Kang (10.1016/j.chom.2020.01.021_bib25) 2008; 1781 Johnson (10.1016/j.chom.2020.01.021_bib22) 2009; 15 Martínez-Moya (10.1016/j.chom.2020.01.021_bib36) 2013; 15 Raufman (10.1016/j.chom.2020.01.021_bib53) 2003; 48 Strauch (10.1016/j.chom.2020.01.021_bib67) 2003; 197 Sun (10.1016/j.chom.2020.01.021_bib69) 2018; 154 Maharshak (10.1016/j.chom.2020.01.021_bib35) 2018; 63 Zella (10.1016/j.chom.2020.01.021_bib78) 2011; 17 Fiorucci (10.1016/j.chom.2020.01.021_bib14) 2018; 9 Liu (10.1016/j.chom.2020.01.021_bib30) 2016; 6 Postler (10.1016/j.chom.2020.01.021_bib49) 2017; 26 Matsuoka (10.1016/j.chom.2020.01.021_bib37) 2015; 37 Pfaffl (10.1016/j.chom.2020.01.021_bib45) 2001; 29 Mullish (10.1016/j.chom.2020.01.021_bib40) 2019; 68 Poole (10.1016/j.chom.2020.01.021_bib48) 2010; 22 Sartor (10.1016/j.chom.2020.01.021_bib57) 2017; 152 Banks (10.1016/j.chom.2020.01.021_bib3) 2003; 199 Lane (10.1016/j.chom.2020.01.021_bib29) 2017; 10 Pols (10.1016/j.chom.2020.01.021_bib46) 2011; 14 Gevers (10.1016/j.chom.2020.01.021_bib17) 2014; 15 Shen (10.1016/j.chom.2020.01.021_bib59) 2012; 30 Tyler (10.1016/j.chom.2020.01.021_bib73) 2013; 8 Gionchetti (10.1016/j.chom.2020.01.021_bib18) 2003; 124 Sokol (10.1016/j.chom.2020.01.021_bib63) 2006; 12 Smith (10.1016/j.chom.2020.01.021_bib62) 2005; 7 Wirtz (10.1016/j.chom.2020.01.021_bib75) 2007; 2 Yuan (10.1016/j.chom.2020.01.021_bib77) 2015; 7 Hamilton (10.1016/j.chom.2020.01.021_bib20) 2007; 293 La Frano (10.1016/j.chom.2020.01.021_bib27) 2017; 46 Shen (10.1016/j.chom.2020.01.021_bib60) 2008; 4 Behr (10.1016/j.chom.2020.01.021_bib4) 2018; 355 Nyam (10.1016/j.chom.2020.01.021_bib44) 1997; 226 Schaap (10.1016/j.chom.2020.01.021_bib58) 2014; 11 Devlin (10.1016/j.chom.2020.01.021_bib9) 2015; 11 Pols (10.1016/j.chom.2020.01.021_bib47) 2017; 12 Hata (10.1016/j.chom.2020.01.021_bib21) 2017; 29 Chassaing (10.1016/j.chom.2020.01.021_bib6) 2012; 7 Tang (10.1016/j.chom.2020.01.021_bib70) 2015; 6 Stellwag (10.1016/j.chom.2020.01.021_bib66) 1979; 20 Joyce (10.1016/j.chom.2020.01.021_bib23) 2017; 35 Duboc (10.1016/j.chom.2020.01.021_bib11) 2013; 62 Goodman (10.1016/j.chom.2020.01.021_bib19) 2011; 108 Ramos (10.1016/j.chom.2020.01.021_bib50) 2019; 94 Ridlon (10.1016/j.chom.2020.01.021_bib54) 2006; 47 Rao (10.1016/j.chom.2020.01.021_bib52) 2010; 139 Navaneethan (10.1016/j.chom.2020.01.021_bib41) 2009; 3 Long (10.1016/j.chom.2020.01.021_bib32) 2017; 56 Lozupone (10.1016/j.chom.2020.01.021_bib33) 2005; 71 Ericsson (10.1016/j.chom.2020.01.021_bib13) 2015; 56 Solbach (10.1016/j.chom.2020.01.021_bib64) 2018; 13 Gadaleta (10.1016/j.chom.2020.01.021_bib16) 2011; 60 Duboc (10.1016/j.chom.2020.01.021_bib12) 2014; 46 Rangan (10.1016/j.chom.2020.01.021_bib51) 2019; 26 Nguyen (10.1016/j.chom.2020.01.021_bib43) 2015; 16 Kitahara (10.1016/j.chom.2020.01.021_bib26) 2001; 51 Copple (10.1016/j.chom.2020.01.021_bib8) 2016; 104 McKenney (10.1016/j.chom.2020.01.021_bib38) 2019; 25 Ng (10.1016/j.chom.2020.01.021_bib42) 2018; 390 Wang (10.1016/j.chom.2020.01.021_bib74) 2019; 7 Buffie (10.1016/j.chom.2020.01.021_bib5) 2015; 517 Ridlon (10.1016/j.chom.2020.01.021_bib55) 2013; 4 Lloyd-Price (10.1016/j.chom.2020.01.021_bib31) 2019; 569 Chen (10.1016/j.chom.2020.01.021_bib7) 2014; 93 Theriot (10.1016/j.chom.2020.01.021_bib71) 2016; 1 Yoneno (10.1016/j.chom.2020.01.021_bib76) 2013; 139 La Merrill (10.1016/j.chom.2020.01.021_bib28) 2014; 9 Anders (10.1016/j.chom.2020.01.021_bib1) 2010; 11 McLaughlin (10.1016/j.chom.2020.01.021_bib39) 2010; 3 Singh (10.1016/j.chom.2020.01.021_bib61) 2015 Rooks (10.1016/j.chom.2020.01.021_bib56) 2016; 16 Stellwag (10.1016/j.chom.2020.01.021_bib65) 1978; 31 |
References_xml | – volume: 226 start-page: 514 year: 1997 end-page: 519, discussion 519–521 ident: bib44 article-title: Ileal pouch-anal canal anastomosis for familial adenomatous polyposis: early and late results publication-title: Ann. Surg. – volume: 6 start-page: 28786 year: 2016 ident: bib72 article-title: CXCL10-Mediates Macrophage, but not Other Innate Immune Cells-Associated Inflammation in Murine Nonalcoholic Steatohepatitis publication-title: Sci. Rep. – volume: 11 start-page: R106 year: 2010 ident: bib1 article-title: Differential expression analysis for sequence count data publication-title: Genome Biol. – volume: 56 start-page: 205 year: 2015 end-page: 217 ident: bib13 article-title: Manipulating the Gut Microbiota: Methods and Challenges publication-title: ILAR J. – volume: 13 start-page: e0196977 year: 2018 ident: bib64 article-title: BaiCD gene cluster abundance is negatively correlated with Clostridium difficile infection publication-title: PLoS ONE – volume: 1781 start-page: 16 year: 2008 end-page: 25 ident: bib25 article-title: Clostridium scindens baiCD and baiH genes encode stereo-specific 7alpha/7beta-hydroxy-3-oxo-delta4-cholenoic acid oxidoreductases publication-title: Biochim. Biophys. Acta – volume: 12 start-page: e0176715 year: 2017 ident: bib47 article-title: Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor publication-title: PLoS ONE – volume: 16 start-page: 341 year: 2016 end-page: 352 ident: bib56 article-title: Gut microbiota, metabolites and host immunity publication-title: Nat. Rev. Immunol. – volume: 26 start-page: 2704 year: 2019 end-page: 2719.e6 ident: bib51 article-title: Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology publication-title: Cell Rep. – volume: 517 start-page: 205 year: 2015 end-page: 208 ident: bib5 article-title: Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile publication-title: Nature – volume: 20 start-page: 325 year: 1979 end-page: 333 ident: bib66 article-title: 7alpha-Dehydroxylation of cholic acid and chenodeoxycholic acid by Clostridium leptum publication-title: J. Lipid Res. – volume: 24 start-page: 513 year: 2012 end-page: 520 ident: bib10 article-title: Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome publication-title: Neurogastroenterol Motil. – volume: 47 start-page: 241 year: 2006 end-page: 259 ident: bib54 article-title: Bile salt biotransformations by human intestinal bacteria publication-title: J. Lipid Res. – volume: 4 start-page: 355 year: 2008 end-page: 361 ident: bib60 article-title: Diagnosis and treatment of pouchitis publication-title: Gastroenterol. Hepatol. (N. Y.) – volume: 51 start-page: 39 year: 2001 end-page: 44 ident: bib26 article-title: Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7alpha-dehydroxylating activity publication-title: Int. J. Syst. Evol. Microbiol. – volume: 22 start-page: 814 year: 2010 end-page: 825 ident: bib48 article-title: Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system publication-title: Neurogastroenterol Motil. – volume: 6 start-page: 48 year: 2015 end-page: 56 ident: bib70 article-title: Inferred metagenomic comparison of mucosal and fecal microbiota from individuals undergoing routine screening colonoscopy reveals similar differences observed during active inflammation publication-title: Gut Microbes – volume: 6 start-page: 191 year: 2016 ident: bib68 article-title: Functional Intestinal Bile Acid 7α-Dehydroxylation by publication-title: Front. Cell. Infect. Microbiol. – volume: 139 start-page: 1549 year: 2010 end-page: 1558 ident: bib52 article-title: Chenodeoxycholate in females with irritable bowel syndrome-constipation: a pharmacodynamic and pharmacogenetic analysis publication-title: Gastroenterology. – volume: 15 start-page: 1803 year: 2009 end-page: 1811 ident: bib22 article-title: Bacterial community diversity in cultures derived from healthy and inflamed ileal pouches after restorative proctocolectomy publication-title: Inflamm. Bowel Dis. – volume: 197 start-page: 974 year: 2003 end-page: 984 ident: bib67 article-title: Bile salts regulate intestinal epithelial cell migration by nuclear factor-κ B-induced expression of transforming growth factor-β publication-title: J. Am. Coll. Surg. – volume: 46 start-page: 302 year: 2014 end-page: 312 ident: bib12 article-title: The bile acid TGR5 membrane receptor: from basic research to clinical application publication-title: Dig. Liver Dis. – volume: 124 start-page: 1202 year: 2003 end-page: 1209 ident: bib18 article-title: Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial publication-title: Gastroenterology – volume: 7 start-page: 2811 year: 2015 end-page: 2818 ident: bib77 article-title: Bile acid receptors and nonalcoholic fatty liver disease publication-title: World J. Hepatol. – volume: 35 start-page: 169 year: 2017 end-page: 177 ident: bib23 article-title: Disease-Associated Changes in Bile Acid Profiles and Links to Altered Gut Microbiota publication-title: Dig. Dis. – volume: 94 start-page: 155 year: 2019 end-page: 165 ident: bib50 article-title: Mechanisms of Disease: Inflammatory Bowel Diseases publication-title: Mayo Clin. Proc. – volume: 139 start-page: 19 year: 2013 end-page: 29 ident: bib76 article-title: TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn’s disease publication-title: Immunology – volume: 63 start-page: 1890 year: 2018 end-page: 1899 ident: bib35 article-title: Fecal and Mucosa-Associated Intestinal Microbiota in Patients with Diarrhea-Predominant Irritable Bowel Syndrome publication-title: Dig. Dis. Sci. – volume: 7 start-page: 563 year: 2005 end-page: 570 ident: bib62 article-title: A characterization of anaerobic colonization and associated mucosal adaptations in the undiseased ileal pouch publication-title: Colorectal Dis. – volume: 60 start-page: 463 year: 2011 end-page: 472 ident: bib16 article-title: Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease publication-title: Gut – volume: 108 start-page: 6252 year: 2011 end-page: 6257 ident: bib19 article-title: Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice publication-title: Proc. Natl. Acad. Sci. USA – volume: 58 start-page: 949 year: 2013 end-page: 955 ident: bib24 article-title: Modulation of the fecal bile acid profile by gut microbiota in cirrhosis publication-title: J. Hepatol. – volume: 14 start-page: 747 year: 2011 end-page: 757 ident: bib46 article-title: TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading publication-title: Cell Metab. – volume: 31 start-page: S243 year: 1978 end-page: S247 ident: bib65 article-title: Characterization of 7-alpha-dehydroxylase in Clostridium leptum publication-title: Am. J. Clin. Nutr. – volume: 154 start-page: 1751 year: 2018 end-page: 1763.e2 ident: bib69 article-title: Microbiota-Derived Metabolic Factors Reduce Campylobacteriosis in Mice publication-title: Gastroenterology – volume: 25 start-page: 695 year: 2019 end-page: 705.e5 ident: bib38 article-title: Intestinal Bile Acids Induce a Morphotype Switch in Vancomycin-Resistant Enterococcus that Facilitates Intestinal Colonization publication-title: Cell Host Microbe – volume: 56 start-page: 54 year: 2017 end-page: 65 ident: bib32 article-title: Interactions between gut bacteria and bile in health and disease publication-title: Mol. Aspects Med. – volume: 20 start-page: 561 year: 2016 end-page: 571 ident: bib34 article-title: The Liver at the Nexus of Host-Microbial Interactions publication-title: Cell Host Microbe – volume: 93 start-page: e51 year: 2014 ident: bib7 article-title: Characteristics of fecal and mucosa-associated microbiota in Chinese patients with inflammatory bowel disease publication-title: Medicine (Baltimore) – volume: 9 start-page: 1853 year: 2018 ident: bib14 article-title: Bile Acids Activated Receptors Regulate Innate Immunity publication-title: Front. Immunol. – volume: 12 start-page: 106 year: 2006 end-page: 111 ident: bib63 article-title: Specificities of the fecal microbiota in inflammatory bowel disease publication-title: Inflamm. Bowel Dis. – volume: 152 start-page: 327 year: 2017 end-page: 339.e4 ident: bib57 article-title: Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches publication-title: Gastroenterology – volume: 48 start-page: 1431 year: 2003 end-page: 1444 ident: bib53 article-title: Activation of muscarinic receptor signaling by bile acids: physiological and medical implications publication-title: Dig. Dis. Sci. – volume: 104 start-page: 9 year: 2016 end-page: 21 ident: bib8 article-title: Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules publication-title: Pharmacol. Res. – volume: 15 start-page: 372 year: 2013 end-page: 380 ident: bib36 article-title: Dose-dependent antiinflammatory effect of ursodeoxycholic acid in experimental colitis publication-title: Int. Immunopharmacol. – volume: 2 start-page: 541 year: 2007 end-page: 546 ident: bib75 article-title: Chemically induced mouse models of intestinal inflammation publication-title: Nat. Protoc. – volume: 26 start-page: 32 year: 2001 end-page: 46 ident: bib2 article-title: A new method for non-parametric multivariate analysis of variance publication-title: Austral Ecol. – volume: 199 start-page: 28 year: 2003 end-page: 35 ident: bib3 article-title: Chemokine expression in IBD. Mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn’s disease publication-title: J. Pathol. – volume: 6 start-page: 32889 year: 2016 ident: bib30 article-title: Vitamin D treatment attenuates 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis but not oxazolone-induced colitis publication-title: Sci. Rep. – volume: 62 start-page: 531 year: 2013 end-page: 539 ident: bib11 article-title: Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases publication-title: Gut – volume: 9 start-page: e103337 year: 2014 ident: bib28 article-title: Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring publication-title: PLoS ONE – volume: 8 start-page: e66934 year: 2013 ident: bib73 article-title: Characterization of the gut-associated microbiome in inflammatory pouch complications following ileal pouch-anal anastomosis publication-title: PLoS ONE – volume: 355 start-page: 198 year: 2018 end-page: 210 ident: bib4 article-title: Microbiome-related metabolite changes in gut tissue, cecum content and feces of rats treated with antibiotics publication-title: Toxicol. Appl. Pharmacol. – volume: 29 start-page: 26 year: 2017 end-page: 34 ident: bib21 article-title: Pouchitis after ileal pouch-anal anastomosis in ulcerative colitis: Diagnosis, management, risk factors, and incidence publication-title: Dig. Endosc. – volume: 68 start-page: 1791 year: 2019 end-page: 1800 ident: bib40 article-title: Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent publication-title: Gut – volume: 16 start-page: 207 year: 2015 end-page: 213 ident: bib43 article-title: Role and species-specific expression of colon T cell homing receptor GPR15 in colitis publication-title: Nat. Immunol. – volume: 7 start-page: e44328 year: 2012 ident: bib6 article-title: Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation publication-title: PLoS ONE – volume: 569 start-page: 655 year: 2019 end-page: 662 ident: bib31 article-title: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases publication-title: Nature – volume: 11 start-page: 685 year: 2015 end-page: 690 ident: bib9 article-title: A biosynthetic pathway for a prominent class of microbiota-derived bile acids publication-title: Nat. Chem. Biol. – volume: 26 start-page: 110 year: 2017 end-page: 130 ident: bib49 article-title: Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System publication-title: Cell Metab. – volume: 10 start-page: 63 year: 2017 end-page: 73 ident: bib29 article-title: The microbiota in inflammatory bowel disease: current and therapeutic insights publication-title: J. Inflamm. Res. – volume: 37 start-page: 47 year: 2015 end-page: 55 ident: bib37 article-title: The gut microbiota and inflammatory bowel disease publication-title: Semin. Immunopathol. – volume: 4 start-page: 382 year: 2013 end-page: 387 ident: bib55 article-title: Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship publication-title: Gut Microbes – volume: 30 start-page: 351 year: 2012 end-page: 357 ident: bib59 article-title: Bacteriology in the etiopathogenesis of pouchitis publication-title: Dig. Dis. – volume: 17 start-page: 1092 year: 2011 end-page: 1100 ident: bib78 article-title: Distinct microbiome in pouchitis compared to healthy pouches in ulcerative colitis and familial adenomatous polyposis publication-title: Inflamm. Bowel Dis. – volume: 11 start-page: 55 year: 2014 end-page: 67 ident: bib58 article-title: Bile acid receptors as targets for drug development publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 104 start-page: 13780 year: 2007 end-page: 13785 ident: bib15 article-title: Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases publication-title: Proc. Natl. Acad. Sci. USA – volume: 1 start-page: e00045-15 year: 2016 ident: bib71 article-title: Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine publication-title: MSphere – volume: 29 start-page: e45 year: 2001 ident: bib45 article-title: A new mathematical model for relative quantification in real-time RT-PCR publication-title: Nucleic Acids Res. – volume: 390 start-page: 2769 year: 2018 end-page: 2778 ident: bib42 article-title: Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies publication-title: Lancet – start-page: CD001176 year: 2015 ident: bib61 article-title: Treatment and prevention of pouchitis after ileal pouch-anal anastomosis for chronic ulcerative colitis publication-title: Cochrane Database Syst. Rev. – volume: 293 start-page: G256 year: 2007 end-page: G263 ident: bib20 article-title: Human cecal bile acids: concentration and spectrum publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 71 start-page: 8228 year: 2005 end-page: 8235 ident: bib33 article-title: UniFrac: a new phylogenetic method for comparing microbial communities publication-title: Appl. Environ. Microbiol. – volume: 15 start-page: 382 year: 2014 end-page: 392 ident: bib17 article-title: The treatment-naive microbiome in new-onset Crohn’s disease publication-title: Cell Host Microbe – volume: 3 start-page: 335 year: 2010 end-page: 348 ident: bib39 article-title: The bacterial pathogenesis and treatment of pouchitis publication-title: Therap. Adv. Gastroenterol. – volume: 7 start-page: 126 year: 2019 ident: bib74 article-title: Diet-induced remission in chronic enteropathy is associated with altered microbial community structure and synthesis of secondary bile acids publication-title: Microbiome – volume: 3 start-page: 547 year: 2009 end-page: 559 ident: bib41 article-title: Pros and cons of antibiotic therapy for pouchitis publication-title: Expert Rev. Gastroenterol. Hepatol. – volume: 46 start-page: 11 year: 2017 end-page: 21 ident: bib27 article-title: Diet-induced obesity and weight loss alter bile acid concentrations and bile acid-sensitive gene expression in insulin target tissues of C57BL/6J mice publication-title: Nutr. Res. – volume: 11 start-page: R106 year: 2010 ident: 10.1016/j.chom.2020.01.021_bib1 article-title: Differential expression analysis for sequence count data publication-title: Genome Biol. doi: 10.1186/gb-2010-11-10-r106 – volume: 16 start-page: 341 year: 2016 ident: 10.1016/j.chom.2020.01.021_bib56 article-title: Gut microbiota, metabolites and host immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.42 – volume: 104 start-page: 9 year: 2016 ident: 10.1016/j.chom.2020.01.021_bib8 article-title: Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2015.12.007 – volume: 58 start-page: 949 year: 2013 ident: 10.1016/j.chom.2020.01.021_bib24 article-title: Modulation of the fecal bile acid profile by gut microbiota in cirrhosis publication-title: J. Hepatol. doi: 10.1016/j.jhep.2013.01.003 – volume: 11 start-page: 55 year: 2014 ident: 10.1016/j.chom.2020.01.021_bib58 article-title: Bile acid receptors as targets for drug development publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2013.151 – volume: 20 start-page: 325 year: 1979 ident: 10.1016/j.chom.2020.01.021_bib66 article-title: 7alpha-Dehydroxylation of cholic acid and chenodeoxycholic acid by Clostridium leptum publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)40615-7 – volume: 37 start-page: 47 year: 2015 ident: 10.1016/j.chom.2020.01.021_bib37 article-title: The gut microbiota and inflammatory bowel disease publication-title: Semin. Immunopathol. doi: 10.1007/s00281-014-0454-4 – volume: 47 start-page: 241 year: 2006 ident: 10.1016/j.chom.2020.01.021_bib54 article-title: Bile salt biotransformations by human intestinal bacteria publication-title: J. Lipid Res. doi: 10.1194/jlr.R500013-JLR200 – volume: 4 start-page: 355 year: 2008 ident: 10.1016/j.chom.2020.01.021_bib60 article-title: Diagnosis and treatment of pouchitis publication-title: Gastroenterol. Hepatol. (N. Y.) – volume: 7 start-page: 126 year: 2019 ident: 10.1016/j.chom.2020.01.021_bib74 article-title: Diet-induced remission in chronic enteropathy is associated with altered microbial community structure and synthesis of secondary bile acids publication-title: Microbiome doi: 10.1186/s40168-019-0740-4 – volume: 13 start-page: e0196977 year: 2018 ident: 10.1016/j.chom.2020.01.021_bib64 article-title: BaiCD gene cluster abundance is negatively correlated with Clostridium difficile infection publication-title: PLoS ONE doi: 10.1371/journal.pone.0196977 – volume: 139 start-page: 1549 year: 2010 ident: 10.1016/j.chom.2020.01.021_bib52 article-title: Chenodeoxycholate in females with irritable bowel syndrome-constipation: a pharmacodynamic and pharmacogenetic analysis publication-title: Gastroenterology. doi: 10.1053/j.gastro.2010.07.052 – volume: 12 start-page: e0176715 year: 2017 ident: 10.1016/j.chom.2020.01.021_bib47 article-title: Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor publication-title: PLoS ONE doi: 10.1371/journal.pone.0176715 – volume: 48 start-page: 1431 year: 2003 ident: 10.1016/j.chom.2020.01.021_bib53 article-title: Activation of muscarinic receptor signaling by bile acids: physiological and medical implications publication-title: Dig. Dis. Sci. doi: 10.1023/A:1024733500950 – start-page: CD001176 year: 2015 ident: 10.1016/j.chom.2020.01.021_bib61 article-title: Treatment and prevention of pouchitis after ileal pouch-anal anastomosis for chronic ulcerative colitis publication-title: Cochrane Database Syst. Rev. – volume: 29 start-page: e45 year: 2001 ident: 10.1016/j.chom.2020.01.021_bib45 article-title: A new mathematical model for relative quantification in real-time RT-PCR publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.9.e45 – volume: 15 start-page: 382 year: 2014 ident: 10.1016/j.chom.2020.01.021_bib17 article-title: The treatment-naive microbiome in new-onset Crohn’s disease publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.02.005 – volume: 26 start-page: 110 year: 2017 ident: 10.1016/j.chom.2020.01.021_bib49 article-title: Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.05.008 – volume: 46 start-page: 302 year: 2014 ident: 10.1016/j.chom.2020.01.021_bib12 article-title: The bile acid TGR5 membrane receptor: from basic research to clinical application publication-title: Dig. Liver Dis. doi: 10.1016/j.dld.2013.10.021 – volume: 6 start-page: 191 year: 2016 ident: 10.1016/j.chom.2020.01.021_bib68 article-title: Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2016.00191 – volume: 226 start-page: 514 year: 1997 ident: 10.1016/j.chom.2020.01.021_bib44 article-title: Ileal pouch-anal canal anastomosis for familial adenomatous polyposis: early and late results publication-title: Ann. Surg. doi: 10.1097/00000658-199710000-00012 – volume: 56 start-page: 54 year: 2017 ident: 10.1016/j.chom.2020.01.021_bib32 article-title: Interactions between gut bacteria and bile in health and disease publication-title: Mol. Aspects Med. doi: 10.1016/j.mam.2017.06.002 – volume: 2 start-page: 541 year: 2007 ident: 10.1016/j.chom.2020.01.021_bib75 article-title: Chemically induced mouse models of intestinal inflammation publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.41 – volume: 139 start-page: 19 year: 2013 ident: 10.1016/j.chom.2020.01.021_bib76 article-title: TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn’s disease publication-title: Immunology doi: 10.1111/imm.12045 – volume: 62 start-page: 531 year: 2013 ident: 10.1016/j.chom.2020.01.021_bib11 article-title: Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases publication-title: Gut doi: 10.1136/gutjnl-2012-302578 – volume: 10 start-page: 63 year: 2017 ident: 10.1016/j.chom.2020.01.021_bib29 article-title: The microbiota in inflammatory bowel disease: current and therapeutic insights publication-title: J. Inflamm. Res. doi: 10.2147/JIR.S116088 – volume: 9 start-page: 1853 year: 2018 ident: 10.1016/j.chom.2020.01.021_bib14 article-title: Bile Acids Activated Receptors Regulate Innate Immunity publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01853 – volume: 104 start-page: 13780 year: 2007 ident: 10.1016/j.chom.2020.01.021_bib15 article-title: Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0706625104 – volume: 20 start-page: 561 year: 2016 ident: 10.1016/j.chom.2020.01.021_bib34 article-title: The Liver at the Nexus of Host-Microbial Interactions publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.10.016 – volume: 31 start-page: S243 year: 1978 ident: 10.1016/j.chom.2020.01.021_bib65 article-title: Characterization of 7-alpha-dehydroxylase in Clostridium leptum publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/31.10.S243 – volume: 26 start-page: 2704 year: 2019 ident: 10.1016/j.chom.2020.01.021_bib51 article-title: Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.02.019 – volume: 197 start-page: 974 year: 2003 ident: 10.1016/j.chom.2020.01.021_bib67 article-title: Bile salts regulate intestinal epithelial cell migration by nuclear factor-κ B-induced expression of transforming growth factor-β publication-title: J. Am. Coll. Surg. doi: 10.1016/S1072-7515(03)00720-8 – volume: 9 start-page: e103337 year: 2014 ident: 10.1016/j.chom.2020.01.021_bib28 article-title: Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring publication-title: PLoS ONE doi: 10.1371/journal.pone.0103337 – volume: 12 start-page: 106 year: 2006 ident: 10.1016/j.chom.2020.01.021_bib63 article-title: Specificities of the fecal microbiota in inflammatory bowel disease publication-title: Inflamm. Bowel Dis. doi: 10.1097/01.MIB.0000200323.38139.c6 – volume: 390 start-page: 2769 year: 2018 ident: 10.1016/j.chom.2020.01.021_bib42 article-title: Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies publication-title: Lancet doi: 10.1016/S0140-6736(17)32448-0 – volume: 56 start-page: 205 year: 2015 ident: 10.1016/j.chom.2020.01.021_bib13 article-title: Manipulating the Gut Microbiota: Methods and Challenges publication-title: ILAR J. doi: 10.1093/ilar/ilv021 – volume: 17 start-page: 1092 year: 2011 ident: 10.1016/j.chom.2020.01.021_bib78 article-title: Distinct microbiome in pouchitis compared to healthy pouches in ulcerative colitis and familial adenomatous polyposis publication-title: Inflamm. Bowel Dis. doi: 10.1002/ibd.21460 – volume: 68 start-page: 1791 year: 2019 ident: 10.1016/j.chom.2020.01.021_bib40 article-title: Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection publication-title: Gut doi: 10.1136/gutjnl-2018-317842 – volume: 22 start-page: 814 year: 2010 ident: 10.1016/j.chom.2020.01.021_bib48 article-title: Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system publication-title: Neurogastroenterol Motil. doi: 10.1111/j.1365-2982.2010.01487.x – volume: 51 start-page: 39 year: 2001 ident: 10.1016/j.chom.2020.01.021_bib26 article-title: Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7alpha-dehydroxylating activity publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/00207713-51-1-39 – volume: 35 start-page: 169 year: 2017 ident: 10.1016/j.chom.2020.01.021_bib23 article-title: Disease-Associated Changes in Bile Acid Profiles and Links to Altered Gut Microbiota publication-title: Dig. Dis. doi: 10.1159/000450907 – volume: 199 start-page: 28 year: 2003 ident: 10.1016/j.chom.2020.01.021_bib3 article-title: Chemokine expression in IBD. Mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn’s disease publication-title: J. Pathol. doi: 10.1002/path.1245 – volume: 6 start-page: 32889 year: 2016 ident: 10.1016/j.chom.2020.01.021_bib30 article-title: Vitamin D treatment attenuates 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis but not oxazolone-induced colitis publication-title: Sci. Rep. doi: 10.1038/srep32889 – volume: 29 start-page: 26 year: 2017 ident: 10.1016/j.chom.2020.01.021_bib21 article-title: Pouchitis after ileal pouch-anal anastomosis in ulcerative colitis: Diagnosis, management, risk factors, and incidence publication-title: Dig. Endosc. doi: 10.1111/den.12744 – volume: 15 start-page: 1803 year: 2009 ident: 10.1016/j.chom.2020.01.021_bib22 article-title: Bacterial community diversity in cultures derived from healthy and inflamed ileal pouches after restorative proctocolectomy publication-title: Inflamm. Bowel Dis. doi: 10.1002/ibd.21022 – volume: 46 start-page: 11 year: 2017 ident: 10.1016/j.chom.2020.01.021_bib27 article-title: Diet-induced obesity and weight loss alter bile acid concentrations and bile acid-sensitive gene expression in insulin target tissues of C57BL/6J mice publication-title: Nutr. Res. doi: 10.1016/j.nutres.2017.07.006 – volume: 14 start-page: 747 year: 2011 ident: 10.1016/j.chom.2020.01.021_bib46 article-title: TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.11.006 – volume: 71 start-page: 8228 year: 2005 ident: 10.1016/j.chom.2020.01.021_bib33 article-title: UniFrac: a new phylogenetic method for comparing microbial communities publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.12.8228-8235.2005 – volume: 517 start-page: 205 year: 2015 ident: 10.1016/j.chom.2020.01.021_bib5 article-title: Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile publication-title: Nature doi: 10.1038/nature13828 – volume: 7 start-page: e44328 year: 2012 ident: 10.1016/j.chom.2020.01.021_bib6 article-title: Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation publication-title: PLoS ONE doi: 10.1371/journal.pone.0044328 – volume: 3 start-page: 335 year: 2010 ident: 10.1016/j.chom.2020.01.021_bib39 article-title: The bacterial pathogenesis and treatment of pouchitis publication-title: Therap. Adv. Gastroenterol. doi: 10.1177/1756283X10370611 – volume: 4 start-page: 382 year: 2013 ident: 10.1016/j.chom.2020.01.021_bib55 article-title: Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship publication-title: Gut Microbes doi: 10.4161/gmic.25723 – volume: 152 start-page: 327 year: 2017 ident: 10.1016/j.chom.2020.01.021_bib57 article-title: Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.10.012 – volume: 293 start-page: G256 year: 2007 ident: 10.1016/j.chom.2020.01.021_bib20 article-title: Human cecal bile acids: concentration and spectrum publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00027.2007 – volume: 26 start-page: 32 year: 2001 ident: 10.1016/j.chom.2020.01.021_bib2 article-title: A new method for non-parametric multivariate analysis of variance publication-title: Austral Ecol. – volume: 15 start-page: 372 year: 2013 ident: 10.1016/j.chom.2020.01.021_bib36 article-title: Dose-dependent antiinflammatory effect of ursodeoxycholic acid in experimental colitis publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2012.11.017 – volume: 94 start-page: 155 year: 2019 ident: 10.1016/j.chom.2020.01.021_bib50 article-title: Mechanisms of Disease: Inflammatory Bowel Diseases publication-title: Mayo Clin. Proc. doi: 10.1016/j.mayocp.2018.09.013 – volume: 16 start-page: 207 year: 2015 ident: 10.1016/j.chom.2020.01.021_bib43 article-title: Role and species-specific expression of colon T cell homing receptor GPR15 in colitis publication-title: Nat. Immunol. doi: 10.1038/ni.3079 – volume: 6 start-page: 28786 year: 2016 ident: 10.1016/j.chom.2020.01.021_bib72 article-title: CXCL10-Mediates Macrophage, but not Other Innate Immune Cells-Associated Inflammation in Murine Nonalcoholic Steatohepatitis publication-title: Sci. Rep. doi: 10.1038/srep28786 – volume: 1781 start-page: 16 year: 2008 ident: 10.1016/j.chom.2020.01.021_bib25 article-title: Clostridium scindens baiCD and baiH genes encode stereo-specific 7alpha/7beta-hydroxy-3-oxo-delta4-cholenoic acid oxidoreductases publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2007.10.008 – volume: 154 start-page: 1751 year: 2018 ident: 10.1016/j.chom.2020.01.021_bib69 article-title: Microbiota-Derived Metabolic Factors Reduce Campylobacteriosis in Mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2018.01.042 – volume: 1 start-page: e00045-15 year: 2016 ident: 10.1016/j.chom.2020.01.021_bib71 article-title: Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine publication-title: MSphere doi: 10.1128/mSphere.00045-15 – volume: 93 start-page: e51 year: 2014 ident: 10.1016/j.chom.2020.01.021_bib7 article-title: Characteristics of fecal and mucosa-associated microbiota in Chinese patients with inflammatory bowel disease publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000000051 – volume: 63 start-page: 1890 year: 2018 ident: 10.1016/j.chom.2020.01.021_bib35 article-title: Fecal and Mucosa-Associated Intestinal Microbiota in Patients with Diarrhea-Predominant Irritable Bowel Syndrome publication-title: Dig. Dis. Sci. doi: 10.1007/s10620-018-5086-4 – volume: 7 start-page: 2811 year: 2015 ident: 10.1016/j.chom.2020.01.021_bib77 article-title: Bile acid receptors and nonalcoholic fatty liver disease publication-title: World J. Hepatol. doi: 10.4254/wjh.v7.i28.2811 – volume: 24 start-page: 513 year: 2012 ident: 10.1016/j.chom.2020.01.021_bib10 article-title: Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome publication-title: Neurogastroenterol Motil. doi: 10.1111/j.1365-2982.2012.01893.x – volume: 108 start-page: 6252 year: 2011 ident: 10.1016/j.chom.2020.01.021_bib19 article-title: Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1102938108 – volume: 569 start-page: 655 year: 2019 ident: 10.1016/j.chom.2020.01.021_bib31 article-title: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases publication-title: Nature doi: 10.1038/s41586-019-1237-9 – volume: 11 start-page: 685 year: 2015 ident: 10.1016/j.chom.2020.01.021_bib9 article-title: A biosynthetic pathway for a prominent class of microbiota-derived bile acids publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1864 – volume: 7 start-page: 563 year: 2005 ident: 10.1016/j.chom.2020.01.021_bib62 article-title: A characterization of anaerobic colonization and associated mucosal adaptations in the undiseased ileal pouch publication-title: Colorectal Dis. doi: 10.1111/j.1463-1318.2005.00833.x – volume: 60 start-page: 463 year: 2011 ident: 10.1016/j.chom.2020.01.021_bib16 article-title: Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease publication-title: Gut doi: 10.1136/gut.2010.212159 – volume: 6 start-page: 48 year: 2015 ident: 10.1016/j.chom.2020.01.021_bib70 article-title: Inferred metagenomic comparison of mucosal and fecal microbiota from individuals undergoing routine screening colonoscopy reveals similar differences observed during active inflammation publication-title: Gut Microbes doi: 10.1080/19490976.2014.1000080 – volume: 355 start-page: 198 year: 2018 ident: 10.1016/j.chom.2020.01.021_bib4 article-title: Microbiome-related metabolite changes in gut tissue, cecum content and feces of rats treated with antibiotics publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2018.06.028 – volume: 25 start-page: 695 year: 2019 ident: 10.1016/j.chom.2020.01.021_bib38 article-title: Intestinal Bile Acids Induce a Morphotype Switch in Vancomycin-Resistant Enterococcus that Facilitates Intestinal Colonization publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.03.008 – volume: 8 start-page: e66934 year: 2013 ident: 10.1016/j.chom.2020.01.021_bib73 article-title: Characterization of the gut-associated microbiome in inflammatory pouch complications following ileal pouch-anal anastomosis publication-title: PLoS ONE doi: 10.1371/journal.pone.0066934 – volume: 124 start-page: 1202 year: 2003 ident: 10.1016/j.chom.2020.01.021_bib18 article-title: Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial publication-title: Gastroenterology doi: 10.1016/S0016-5085(03)00171-9 – volume: 3 start-page: 547 year: 2009 ident: 10.1016/j.chom.2020.01.021_bib41 article-title: Pros and cons of antibiotic therapy for pouchitis publication-title: Expert Rev. Gastroenterol. Hepatol. doi: 10.1586/egh.09.37 – volume: 30 start-page: 351 year: 2012 ident: 10.1016/j.chom.2020.01.021_bib59 article-title: Bacteriology in the etiopathogenesis of pouchitis publication-title: Dig. Dis. doi: 10.1159/000338125 |
SSID | ssj0055071 |
Score | 2.7017913 |
Snippet | Secondary bile acids (SBAs) are derived from primary bile acids (PBAs) in a process reliant on biosynthetic capabilities possessed by few microbes. To evaluate... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 659 |
SubjectTerms | Adenomatous Polyposis Coli - microbiology Animals bile acids Bile Acids and Salts - metabolism Bile Acids and Salts - pharmacology colitis Colitis - etiology Colitis - microbiology Colonic Pouches - microbiology Disease Models, Animal dysbiosis Dysbiosis - complications Feces - microbiology Humans Inflammation - drug therapy Inflammation - etiology inflammatory bowel disease Intestines - drug effects Intestines - pathology metabolomics Metagenome Mice Microbiota pouchitis Receptors, G-Protein-Coupled - drug effects Receptors, G-Protein-Coupled - metabolism Ruminococcus - isolation & purification Transcriptome ulcerative colitis |
Title | Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation |
URI | https://dx.doi.org/10.1016/j.chom.2020.01.021 https://www.ncbi.nlm.nih.gov/pubmed/32101703 https://www.proquest.com/docview/2366647240 https://pubmed.ncbi.nlm.nih.gov/PMC8172352 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jIPgi3p03KvgmZU3TZtnjLo4pKMoc7C20TYIV6ca6Pezfe07TDqe4B18KbdOSnCRfvzTnfIeQWyEiytG51ecKFig-a7sRjCVXC5UEEdPcL7IoPD3z4Th4nISTGulVsTDoVlliv8X0Aq3LK83Sms1ZmjZHQD0oA3j14d0otgs4zAJRBPFNuhUao1wXtTvL1MXSZeCM9fHCfCSwRvQ9K91J__o4_SafP30ov32UBvtkr2STTsdW-IDUdHZIdmx-ydURee2v8jid5mnuYooOaKwzwgWwiuYrpwt44HSSVDl9jTISGIPpvBTeeTp38E8hzH58-0NmYNjYEMdjMh7cv_WGbplDwU2CMFy4imvOAjgKo43hIeNAkSjjbUVVHCaKw_xUKuJgHt9EhsOCRnix0FxEsfYZZyeknk0zfUacttEeVWHLKA0z3_htoYDf0EQnHFhEEjQIrYwnk1JgHPNcfMrKk-xDosElGlx6VILBG-Ru_czMymtsLR1WfSI3BokE_N_63E3VgRJmD26JRJmeLnMJLeQooB94DXJqO3RdD4xuogCIDdLa6Op1AVTm3ryTpe-FQrcAWgjM9vyf9b0gu3hWOAiJS1JfzJf6CrjPIr4uBvcXkOABwQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VIgSXClooKV-LBCdkxbu2N5sDh5RQJf0SqK2U22J7d1VXlRPViVB-F3-QGa8dkSJ6QOolh9jebGbGb9_aM28APiiVcknJrUIa3KCIqB-kGEuBVSaP08hKUXdRODmVo4v4cJJMNuBXWwtDaZUN9ntMr9G6-abbWLM7K4ruGVIPHiG8ChybxHabzMoju_yJ-7bq83iITv4oxMHX8y-joGktEORxkswDI62MYvxUzjonk0gic-CR7BtusiQ3EsPWmFTiTwiXOok8X4WZslKlmRWRjHDcB_AQ2UeP0GA82W_hn_TBuH-VzQOaXlOp45PKqAEKbkpF6LVC-b9Ww7_Z7u2kzT9WwYOnsNXQVzbwFnoGG7bchke-oeVyB74Pl1VWTKuiCqgnCFqXndGO26Q3S7aPAMQGeWHY0JJuBRV9sm91OqCtGD2aRLih0celwzj1NZXP4eJeLPsCNstpaV8C6zsbcpP0nLEINU70lUFCxXObS6QtedwB3hpP542iOTXWuNZt6tqVJoNrMrgOuUaDd-DT6pqZ1_O48-yk9Ylei0qNC86d171vHajxdqV3MGlpp4tK4z-UpNgfhx3Y9Q5dzYPKqTgicAd6a65enUBS4OtHyuKylgRXyEORSu_953zfwePR-cmxPh6fHr2CJ3Skzk5Sr2FzfrOwb5B4zbO3daAz-HHfd9Zv9aE--w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dysbiosis-Induced+Secondary+Bile+Acid+Deficiency+Promotes+Intestinal+Inflammation&rft.jtitle=Cell+host+%26+microbe&rft.au=Sinha%2C+Sidhartha+R&rft.au=Haileselassie%2C+Yeneneh&rft.au=Nguyen%2C+Linh+P&rft.au=Tropini%2C+Carolina&rft.date=2020-04-08&rft.eissn=1934-6069&rft.volume=27&rft.issue=4&rft.spage=659&rft_id=info:doi/10.1016%2Fj.chom.2020.01.021&rft_id=info%3Apmid%2F32101703&rft.externalDocID=32101703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon |