In situ investigation of particle clustering dynamics in colloidal assemblies using fluorescence microscopy

Herein, particle clustering dynamics and thermofluidic transprot in colloidal assemblies are experimentally examined using a novel fluorescence technique with the aim to investigate colloidal physics that decide cracking mechanics during self-assembly. The results show that grain boundaries are dete...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 576; pp. 195 - 202
Main Authors Suh, Youngjoon, Gowda, Hamsa, Won, Yoonjin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.09.2020
Subjects
Online AccessGet full text
ISSN0021-9797
1095-7103
1095-7103
DOI10.1016/j.jcis.2020.04.054

Cover

Loading…
Abstract Herein, particle clustering dynamics and thermofluidic transprot in colloidal assemblies are experimentally examined using a novel fluorescence technique with the aim to investigate colloidal physics that decide cracking mechanics during self-assembly. The results show that grain boundaries are determined by dynamic structuring regimes governed by the film’s saturation level. [Display omitted] Colloidal self-assembly is a process in which dispersed matter spontaneously form higher-order structures without external intervention. During self-assembly, packed particles are subject to solvent-evaporation induced dynamic structuring phases, which leads to microscale defects called the grain boundaries. While it is imperative to precisely control detailed grain boundaries to fabricate well-defined self-assembled crystals, the understanding of the colloidal physics that govern grain boundaries remains a challenge due to limited resolutions of current visualization approaches. In this work, we experimentally report in situ particle clustering dynamics during evaporative colloidal assembly by studying a novel microscale laser induced fluorescence technique. The fluorescence microscopy measures the saturation levels with high fidelity to identify distinct colloidal structuring regimes during self-assembly as well as cracking mechanics. The techniques discussed in this work not only enables unprecedented levels of colloidal self-assembly analysis but also have potential to be used for various sensing applications with microscopic resolutions.
AbstractList Colloidal self-assembly is a process in which dispersed matter spontaneously form higher-order structures without external intervention. During self-assembly, packed particles are subject to solvent-evaporation induced dynamic structuring phases, which leads to microscale defects called the grain boundaries. While it is imperative to precisely control detailed grain boundaries to fabricate well-defined self-assembled crystals, the understanding of the colloidal physics that govern grain boundaries remains a challenge due to limited resolutions of current visualization approaches. In this work, we experimentally report in situ particle clustering dynamics during evaporative colloidal assembly by studying a novel microscale laser induced fluorescence technique. The fluorescence microscopy measures the saturation levels with high fidelity to identify distinct colloidal structuring regimes during self-assembly as well as cracking mechanics. The techniques discussed in this work not only enables unprecedented levels of colloidal self-assembly analysis but also have potential to be used for various sensing applications with microscopic resolutions.Colloidal self-assembly is a process in which dispersed matter spontaneously form higher-order structures without external intervention. During self-assembly, packed particles are subject to solvent-evaporation induced dynamic structuring phases, which leads to microscale defects called the grain boundaries. While it is imperative to precisely control detailed grain boundaries to fabricate well-defined self-assembled crystals, the understanding of the colloidal physics that govern grain boundaries remains a challenge due to limited resolutions of current visualization approaches. In this work, we experimentally report in situ particle clustering dynamics during evaporative colloidal assembly by studying a novel microscale laser induced fluorescence technique. The fluorescence microscopy measures the saturation levels with high fidelity to identify distinct colloidal structuring regimes during self-assembly as well as cracking mechanics. The techniques discussed in this work not only enables unprecedented levels of colloidal self-assembly analysis but also have potential to be used for various sensing applications with microscopic resolutions.
Herein, particle clustering dynamics and thermofluidic transprot in colloidal assemblies are experimentally examined using a novel fluorescence technique with the aim to investigate colloidal physics that decide cracking mechanics during self-assembly. The results show that grain boundaries are determined by dynamic structuring regimes governed by the film’s saturation level. [Display omitted] Colloidal self-assembly is a process in which dispersed matter spontaneously form higher-order structures without external intervention. During self-assembly, packed particles are subject to solvent-evaporation induced dynamic structuring phases, which leads to microscale defects called the grain boundaries. While it is imperative to precisely control detailed grain boundaries to fabricate well-defined self-assembled crystals, the understanding of the colloidal physics that govern grain boundaries remains a challenge due to limited resolutions of current visualization approaches. In this work, we experimentally report in situ particle clustering dynamics during evaporative colloidal assembly by studying a novel microscale laser induced fluorescence technique. The fluorescence microscopy measures the saturation levels with high fidelity to identify distinct colloidal structuring regimes during self-assembly as well as cracking mechanics. The techniques discussed in this work not only enables unprecedented levels of colloidal self-assembly analysis but also have potential to be used for various sensing applications with microscopic resolutions.
Colloidal self-assembly is a process in which dispersed matter spontaneously form higher-order structures without external intervention. During self-assembly, packed particles are subject to solvent-evaporation induced dynamic structuring phases, which leads to microscale defects called the grain boundaries. While it is imperative to precisely control detailed grain boundaries to fabricate well-defined self-assembled crystals, the understanding of the colloidal physics that govern grain boundaries remains a challenge due to limited resolutions of current visualization approaches. In this work, we experimentally report in situ particle clustering dynamics during evaporative colloidal assembly by studying a novel microscale laser induced fluorescence technique. The fluorescence microscopy measures the saturation levels with high fidelity to identify distinct colloidal structuring regimes during self-assembly as well as cracking mechanics. The techniques discussed in this work not only enables unprecedented levels of colloidal self-assembly analysis but also have potential to be used for various sensing applications with microscopic resolutions.
Author Won, Yoonjin
Suh, Youngjoon
Gowda, Hamsa
Author_xml – sequence: 1
  givenname: Youngjoon
  orcidid: 0000-0001-9343-1202
  surname: Suh
  fullname: Suh, Youngjoon
  organization: Department of Mechanical and Aerospace Engineering, University of California, Irvine 5200 Engineering Hall, CA 92617-2700, USA
– sequence: 2
  givenname: Hamsa
  surname: Gowda
  fullname: Gowda, Hamsa
  organization: Department of Biomedical Engineering, University of California, Irvine 3120 Natural Sciences II, CA 92697-2715, USA
– sequence: 3
  givenname: Yoonjin
  orcidid: 0000-0002-8838-6213
  surname: Won
  fullname: Won, Yoonjin
  email: won@uci.edu
  organization: Department of Mechanical and Aerospace Engineering, University of California, Irvine 5200 Engineering Hall, CA 92617-2700, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32422448$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFP8AB-cglYfyZWOKCKqCVKnGBs-U4duXFsRc7qbT_vkm3vXBoT3N53tHM816gs5STQ-gjgZYAkV_27d6G2lKg0AJvQfA3aEdAiaYjwM7QDoCSRnWqO0cXte4BCBFCvUPnjHJKOe936O9NwjXMCw7p3tU53Jk55ISzxwdT5mCjwzYudXYlpDs8HpOZgq0rjW2OMYfRRGxqddMQg6t4qRvm45KLq9Yl6_DKl1xtPhzfo7fexOo-PM1L9OfH999X183tr583V99uG8uFmJtRgpEWOsZZTzs3StVx40EK03NDpRScD1J23oD3TAxcweipVxKcHwgVnF2iz6e9h5L_LetXegrrMTGa5PJSNeVMsb7fJL2OApdMkU6t6KcndBkmN-pDCZMpR_3scgX6E7D9W4vz2ob5UedcTIiagN5q03u91aa32jRwDY8X0_-iz9tfDH09hdzq8j64oqsNm_IxFGdnPebwUvwBz-Cx8w
CitedBy_id crossref_primary_10_1002_advs_202101794
crossref_primary_10_1021_acs_langmuir_3c00720
crossref_primary_10_1021_acs_langmuir_3c01276
crossref_primary_10_1016_j_surfin_2021_101662
crossref_primary_10_1039_D2NR02447K
crossref_primary_10_1038_s41467_023_38819_5
crossref_primary_10_3390_f15040676
Cites_doi 10.1007/s00339-004-3095-y
10.1016/j.jcis.2010.08.074
10.1021/la046775t
10.1038/s41598-017-10791-3
10.1016/j.polymer.2009.03.062
10.1021/nn100244a
10.1039/b605797g
10.1021/la702668p
10.1002/1521-4095(200103)13:6<389::AID-ADMA389>3.0.CO;2-L
10.1002/adma.201401184
10.1083/jcb.200903097
10.1039/c1nr11248a
10.1016/j.jcis.2019.11.021
10.1021/ac071268c
10.1021/am3014482
10.1021/acs.jpclett.5b01353
10.1007/s00340-010-4200-x
10.1002/smll.200700581
10.1038/nmat4600
10.1016/j.dyepig.2012.01.021
10.1016/j.snb.2005.11.017
10.1038/385141a0
10.1002/smll.201503396
10.1021/ja0379969
10.1111/j.1365-2818.2007.01861.x
10.1063/1.1337619
10.1016/j.applthermaleng.2017.08.040
10.1039/B805172K
10.1021/la3007052
10.1002/anie.201102390
10.1115/1.3160538
10.1109/ITHERM.2014.6892356
10.1016/j.jcis.2010.07.074
10.1016/j.ijheatmasstransfer.2010.09.057
10.1039/b306158b
10.1002/adfm.201201712
10.1126/science.1253751
10.1021/acsapm.8b00031
10.1007/s00348-018-2508-1
10.1007/s00348-017-2375-1
10.1016/j.jcis.2006.10.083
10.1021/ac010370l
10.1021/la049958o
10.1021/la804331c
10.1016/j.jcis.2011.07.047
10.1016/j.jcis.2012.02.071
10.1002/anie.201700457
10.1016/j.jcis.2012.04.076
10.1002/smll.201900438
10.1021/la990161k
10.1002/adma.201103791
10.1115/IPACK2019-6372
10.1021/ja0470923
10.1002/adfm.200400325
10.1111/j.1151-2916.1993.tb07762.x
10.1111/j.1151-2916.1993.tb04014.x
10.1073/pnas.1000954107
10.1016/j.jcis.2019.01.046
10.1080/00405000.2013.865864
10.1115/1.4046767
10.1021/jp071233g
10.1073/pnas.022554999
10.1016/j.jcis.2004.01.054
10.1016/j.tsf.2010.02.062
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2020.04.054
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 202
ExternalDocumentID 32422448
10_1016_j_jcis_2020_04_054
S0021979720305002
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c455t-d60a6c07343827ed6974af065a84a266544b667fa0ff35b490df2f960efb12543
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 12:20:18 EDT 2025
Tue Aug 05 09:54:26 EDT 2025
Mon Jul 21 05:47:48 EDT 2025
Tue Jul 01 01:18:52 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Fri Feb 23 02:48:18 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords In situ measurements
Self-assembly
Saturation level
Laser induced fluorescence
Grain boundary
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-d60a6c07343827ed6974af065a84a266544b667fa0ff35b490df2f960efb12543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8838-6213
0000-0001-9343-1202
PMID 32422448
PQID 2404639179
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2439388710
proquest_miscellaneous_2404639179
pubmed_primary_32422448
crossref_citationtrail_10_1016_j_jcis_2020_04_054
crossref_primary_10_1016_j_jcis_2020_04_054
elsevier_sciencedirect_doi_10_1016_j_jcis_2020_04_054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-15
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Rochlitz, Scholz (b0235) 2018; 59
Ranjan, Murthy, Garimella (b0075) 2009; 131
Lee, Shanbhag, Kotov (b0090) 2006; 16
Volkov, Strizhak (b0245) 2017; 127
Low, Kim, Takama, Bergaud (b0255) 2008; 4
Dusseault, T. J.; Gires, J.; Barako, M. T.; Won, Y.; Agonafer, D. D.; Asheghi, M.; Santiago, J. G.; Goodson, K. E. In Inverse opals for fluid delivery in electronics cooling systems, 2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), IEEE: 2014; pp 750-755.
Samy, Glawdel, Ren (b0265) 2008; 80
Greszik, Yang, Dreier, Schulz (b0315) 2011; 102
Meijer, Hagemans, Rossi, Byelov, Castillo, Snigirev, Snigireva, Philipse, Petukhov (b0025) 2012; 28
Ranjan, Murthy, Garimella, Vadakkan, Transfer (b0070) 2011; 54
Zhang, Xiong (b0135) 2007; 306
Cai, Liu, Teng, Lu (b0040) 2012; 4
Curti, Schneider, Bahnemann, Mendive (b0045) 2015; 6
Jiang, Ostojic, Narat, Mittleman, Colvin (b0050) 2001; 13
Hatton, Mishchenko, Davis, Sandhage, Aizenberg (b0160) 2010; 107
Pham, Barako, Tice, Won (b0065) 2017; 7
Suh, Pham, Shao, Won (b0170) 2019; 15
Shao, Zhang, Fu, Zhou, Fan (b0030) 2014; 105
Ross, Gaitan, Locascio (b0275) 2001; 73
Feng, Xiong, Wang, Li, Li, Yang (b0250) 2013; 23
Lee, Gomez, Sitterle, Meredith (b0305) 2011; 363
Manoharan (b0220) 2015; 349
Chiu, R. C.; Cima, M. J. J. J. o. t. A. C. S., Drying of granular ceramic films: II, drying stress and saturation uniformity. J Am Ceran Soc 1993, 76 (11), 2769-2777.
KrishnaáKaruturi, TatáSu, KueiáChan, Tok (b0015) 2011; 3
Kotov, Liu, Wang, Cumming, Eghtedari, Vargas, Motamedi, Nichols, Cortiella (b0085) 2004; 20
Chiu, Garino, Cima (b0145) 1993; 76
Swedlow, Hu, Andrews, Roos, Murray (b0325) 2002; 99
Ye, LeBlanc, Haché, Truong (b0125) 2001; 78
Suh, Lin, Gowda, Won (bib331) 2020; 142
Wong, Kitaev, Ozin (b0110) 2003; 125
Zhang, Wang, Eghtedari, Motamedi, Kotov (b0100) 2005; 15
Teh, Tan, Wong, Li (b0115) 2005; 81
Arata, Low, Ishizuka, Bergaud, Kim, Noji, Fujita (b0295) 2006; 117
Coursault, Grand, Zappone, Ayeb, Levi, Felidj, Lacaze (b0180) 2012; 24
Singh, Bhosale, Tirumkudulu (b0150) 2009; 25
Wu, Zhang, Zheng, Wu, Xu, Wan (b0185) 2018; 1
Woodcock (b0205) 1997; 385
Behnke, Wurth, Laux, Hoffmann, Resch-Genger (b0300) 2012; 94
Liu, Zhou, Wu, Wang, Fan, Shao (b0020) 2015; 132
Suh, Y.; Lin, C.-H.; Gowda, H.; Won, Y. In Evaporation Rate Measurement at Multiple Scales Using Temperature-Sensitive Fluorescence Dyes, ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, American Society of Mechanical Engineers Digital Collection.
Erickson, Sinton, Li (b0260) 2003; 3
Glawdel, Almutairi, Wang, Ren (b0270) 2009; 9
Murray, Appleton, Swedlow, Waters (b0320) 2007; 228
Zhang, C.; Rong, G.; Palko, J. W.; Dusseault, T. J.; Asheghi, M.; Santiago, J. G.; Goodson, K. E., IPACK2015-48262.
Jiang, McFarland (b0010) 2004; 126
Weidman, Smilgies, Tisdale (b0215) 2016; 15
Waters (b0330) 2009; 185
Yan, Teh, Shao, Wong, Chiang (b0055) 2008; 24
Dziomkina, Hempenius, Vancso (b0200) 2009; 50
Shao, Ng, Efthimiadis, Somers, Schwalb (b0230) 2012; 377
Bahadur, Sen, Mazumder, Paul, Khan, Ghosh (b0225) 2010; 351
Feng, Tian, Hu, Wang, Li, Zeng, Li, Yang (b0285) 2011; 50
Holgado, Garcia-Santamaria, Blanco, Ibisate, Cintas, Miguez, Serna, Molpeceres, Requena, Mifsud (b0005) 1999; 15
Lee, Chun, Lee, Kim, Kang, Kim, Kim, Shin, Gupta, Baik (b0095) 2014; 26
Zhou, Zhao (b0035) 2005; 21
Fudouzi (b0105) 2004; 275
Li, Jiang, Han, He, Li, Wang, Hong, Byun, Lin, Lin (b0175) 2017; 56
Vetrone, Naccache, Zamarron, de la Fuente, Sanz-Rodriguez, Maestro, Rodriguez, Jaque, Sole, Capobianco (b0280) 2010; 4
Lokteva, Koof, Walther, Grubel, Lehmkuhler (b0210) 2019; 15
Reisch, Klymchenko (b0310) 2016; 12
Yow, Goikoetxea, Goehring, Routh (b0155) 2010; 352
Wang, Zhao (b0165) 2007; 111
Cai, Teng, Wan, Zhao (b0130) 2012; 380
Zhao, Luo, Yong (b0195) 2019; 540
Gultekinoglu, Jiang, Bayram, Wu, Ulubayram, Edirisinghe (b0190) 2020; 561
Liu, Wang, Ji (b0120) 2010; 518
Chaze, Caballina, Castanet, Lemoine (b0240) 2017; 58
Manoharan (10.1016/j.jcis.2020.04.054_b0220) 2015; 349
Li (10.1016/j.jcis.2020.04.054_b0175) 2017; 56
Chiu (10.1016/j.jcis.2020.04.054_b0145) 1993; 76
Suh (10.1016/j.jcis.2020.04.054_b0170) 2019; 15
Lokteva (10.1016/j.jcis.2020.04.054_b0210) 2019; 15
Jiang (10.1016/j.jcis.2020.04.054_b0050) 2001; 13
10.1016/j.jcis.2020.04.054_b0140
Zhou (10.1016/j.jcis.2020.04.054_b0035) 2005; 21
Wu (10.1016/j.jcis.2020.04.054_b0185) 2018; 1
Wong (10.1016/j.jcis.2020.04.054_b0110) 2003; 125
Feng (10.1016/j.jcis.2020.04.054_b0285) 2011; 50
Shao (10.1016/j.jcis.2020.04.054_b0030) 2014; 105
10.1016/j.jcis.2020.04.054_b0060
Lee (10.1016/j.jcis.2020.04.054_b0090) 2006; 16
Chaze (10.1016/j.jcis.2020.04.054_b0240) 2017; 58
Vetrone (10.1016/j.jcis.2020.04.054_b0280) 2010; 4
Behnke (10.1016/j.jcis.2020.04.054_b0300) 2012; 94
Waters (10.1016/j.jcis.2020.04.054_b0330) 2009; 185
Glawdel (10.1016/j.jcis.2020.04.054_b0270) 2009; 9
Ross (10.1016/j.jcis.2020.04.054_b0275) 2001; 73
Greszik (10.1016/j.jcis.2020.04.054_b0315) 2011; 102
Volkov (10.1016/j.jcis.2020.04.054_b0245) 2017; 127
Curti (10.1016/j.jcis.2020.04.054_b0045) 2015; 6
Ranjan (10.1016/j.jcis.2020.04.054_b0075) 2009; 131
Coursault (10.1016/j.jcis.2020.04.054_b0180) 2012; 24
Low (10.1016/j.jcis.2020.04.054_b0255) 2008; 4
Yan (10.1016/j.jcis.2020.04.054_b0055) 2008; 24
Holgado (10.1016/j.jcis.2020.04.054_b0005) 1999; 15
Swedlow (10.1016/j.jcis.2020.04.054_b0325) 2002; 99
Erickson (10.1016/j.jcis.2020.04.054_b0260) 2003; 3
Lee (10.1016/j.jcis.2020.04.054_b0095) 2014; 26
Reisch (10.1016/j.jcis.2020.04.054_b0310) 2016; 12
Suh (10.1016/j.jcis.2020.04.054_bib331) 2020; 142
Dziomkina (10.1016/j.jcis.2020.04.054_b0200) 2009; 50
Singh (10.1016/j.jcis.2020.04.054_b0150) 2009; 25
Ye (10.1016/j.jcis.2020.04.054_b0125) 2001; 78
Cai (10.1016/j.jcis.2020.04.054_b0130) 2012; 380
Kotov (10.1016/j.jcis.2020.04.054_b0085) 2004; 20
Zhang (10.1016/j.jcis.2020.04.054_b0100) 2005; 15
Bahadur (10.1016/j.jcis.2020.04.054_b0225) 2010; 351
Rochlitz (10.1016/j.jcis.2020.04.054_b0235) 2018; 59
Cai (10.1016/j.jcis.2020.04.054_b0040) 2012; 4
Zhang (10.1016/j.jcis.2020.04.054_b0135) 2007; 306
Zhao (10.1016/j.jcis.2020.04.054_b0195) 2019; 540
Weidman (10.1016/j.jcis.2020.04.054_b0215) 2016; 15
Teh (10.1016/j.jcis.2020.04.054_b0115) 2005; 81
Feng (10.1016/j.jcis.2020.04.054_b0250) 2013; 23
10.1016/j.jcis.2020.04.054_b0080
Lee (10.1016/j.jcis.2020.04.054_b0305) 2011; 363
Gultekinoglu (10.1016/j.jcis.2020.04.054_b0190) 2020; 561
KrishnaáKaruturi (10.1016/j.jcis.2020.04.054_b0015) 2011; 3
Samy (10.1016/j.jcis.2020.04.054_b0265) 2008; 80
Arata (10.1016/j.jcis.2020.04.054_b0295) 2006; 117
Fudouzi (10.1016/j.jcis.2020.04.054_b0105) 2004; 275
Liu (10.1016/j.jcis.2020.04.054_b0120) 2010; 518
Liu (10.1016/j.jcis.2020.04.054_b0020) 2015; 132
Pham (10.1016/j.jcis.2020.04.054_b0065) 2017; 7
Woodcock (10.1016/j.jcis.2020.04.054_b0205) 1997; 385
Meijer (10.1016/j.jcis.2020.04.054_b0025) 2012; 28
Yow (10.1016/j.jcis.2020.04.054_b0155) 2010; 352
Jiang (10.1016/j.jcis.2020.04.054_b0010) 2004; 126
Hatton (10.1016/j.jcis.2020.04.054_b0160) 2010; 107
Wang (10.1016/j.jcis.2020.04.054_b0165) 2007; 111
10.1016/j.jcis.2020.04.054_b0290
Shao (10.1016/j.jcis.2020.04.054_b0230) 2012; 377
Murray (10.1016/j.jcis.2020.04.054_b0320) 2007; 228
Ranjan (10.1016/j.jcis.2020.04.054_b0070) 2011; 54
References_xml – volume: 131
  year: 2009
  ident: b0075
  article-title: Analysis of the wicking and thin-film evaporation characteristics of microstructures
  publication-title: J. Heat Transfer
– volume: 16
  start-page: 3558
  year: 2006
  end-page: 3564
  ident: b0090
  article-title: Inverted colloidal crystals as three-dimensional microenvironments for cellular co-cultures
  publication-title: J. Mater. Chem.
– volume: 15
  start-page: 4701
  year: 1999
  end-page: 4704
  ident: b0005
  article-title: Electrophoretic deposition to control artificial opal growth
  publication-title: Langmuir
– volume: 351
  start-page: 357
  year: 2010
  end-page: 364
  ident: b0225
  article-title: Evaporation-induced self assembly of nanoparticles in non-buckling regime: Volume fraction dependent packing
  publication-title: J. Colloid Interf. Sci.
– volume: 518
  start-page: 5083
  year: 2010
  end-page: 5090
  ident: b0120
  article-title: Influence of growth parameters on the fabrication of high-quality colloidal crystals via a controlled evaporation self-assembly method
  publication-title: Thin Solid Films
– volume: 4
  start-page: 3254
  year: 2010
  end-page: 3258
  ident: b0280
  article-title: Temperature sensing using fluorescent nanothermometers
  publication-title: ACS Nano
– volume: 26
  start-page: 5037
  year: 2014
  end-page: 5042
  ident: b0095
  article-title: Hydrophobic sponge structure-based triboelectric nanogenerator
  publication-title: Adv. Mater.
– volume: 94
  start-page: 247
  year: 2012
  end-page: 257
  ident: b0300
  article-title: Simple strategies towards bright polymer particles via one-step staining procedures
  publication-title: Dyes Pigm.
– volume: 275
  start-page: 277
  year: 2004
  end-page: 283
  ident: b0105
  article-title: Fabricating high-quality opal films with uniform structure over a large area
  publication-title: J. Colloid Interf. Sci.
– volume: 81
  start-page: 1399
  year: 2005
  end-page: 1404
  ident: b0115
  article-title: Growth imperfections in three-dimensional colloidal self-assembly
  publication-title: J. Appl. Phys. A
– volume: 377
  start-page: 421
  year: 2012
  end-page: 429
  ident: b0230
  article-title: Evaporative micro-particle self assembly influenced by capillary evacuation
  publication-title: J. Colloid Interf. Sci.
– volume: 50
  start-page: 8072
  year: 2011
  end-page: 8076
  ident: b0285
  article-title: A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  start-page: 12
  year: 2019
  ident: b0170
  article-title: The control of colloidal grain boundaries through evaporative vertical self-assembly
  publication-title: Small
– volume: 185
  start-page: 1135
  year: 2009
  end-page: 1148
  ident: b0330
  article-title: Accuracy and precision in quantitative fluorescence microscopy
  publication-title: J. Cell Biol.
– volume: 540
  start-page: 602
  year: 2019
  end-page: 611
  ident: b0195
  article-title: Harnessing complex fluid interfaces to control colloidal assembly and deposition
  publication-title: J. Colloid Interf. Sci.
– volume: 126
  start-page: 13778
  year: 2004
  end-page: 13786
  ident: b0010
  article-title: Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 171
  year: 2009
  end-page: 174
  ident: b0270
  article-title: Photobleaching absorbed Rhodamine B to improve temperature measurements in PDMS microchannels
  publication-title: Lab Chip
– volume: 349
  start-page: 6251
  year: 2015
  ident: b0220
  article-title: Colloidal matter: packing, geometry, and entropy
  publication-title: Science
– volume: 105
  start-page: 938
  year: 2014
  end-page: 943
  ident: b0030
  article-title: Preparation of monodispersed polystyrene microspheres and self-assembly of photonic crystals for structural colors on polyester fabrics
  publication-title: J. Text. Inst.
– volume: 21
  start-page: 4717
  year: 2005
  end-page: 4723
  ident: b0035
  article-title: Opal and inverse opal fabricated with a flow-controlled vertical deposition method
  publication-title: Langmuir
– volume: 7
  start-page: 10465
  year: 2017
  ident: b0065
  article-title: Microscale Liquid Transport in Polycrystalline Inverse Opals across Grain Boundaries
  publication-title: Sci. Rep.
– volume: 15
  year: 2016
  ident: b0215
  article-title: Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering
  publication-title: Nat. Mater.
– volume: 73
  start-page: 4117
  year: 2001
  end-page: 4123
  ident: b0275
  article-title: Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye
  publication-title: Anal. Chem.
– volume: 12
  start-page: 1968
  year: 2016
  end-page: 1992
  ident: b0310
  article-title: Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging
  publication-title: Small
– reference: Dusseault, T. J.; Gires, J.; Barako, M. T.; Won, Y.; Agonafer, D. D.; Asheghi, M.; Santiago, J. G.; Goodson, K. E. In Inverse opals for fluid delivery in electronics cooling systems, 2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), IEEE: 2014; pp 750-755.
– reference: Suh, Y.; Lin, C.-H.; Gowda, H.; Won, Y. In Evaporation Rate Measurement at Multiple Scales Using Temperature-Sensitive Fluorescence Dyes, ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, American Society of Mechanical Engineers Digital Collection.
– volume: 24
  start-page: 1796
  year: 2008
  end-page: 1800
  ident: b0055
  article-title: Layer transfer approach to opaline hetero photonic crystals
  publication-title: Langmuir
– volume: 13
  start-page: 389
  year: 2001
  end-page: 393
  ident: b0050
  article-title: The fabrication and bandgap engineering of photonic multilayers
  publication-title: Adv. Mater.
– volume: 25
  start-page: 4284
  year: 2009
  end-page: 4287
  ident: b0150
  article-title: Cracking in drying colloidal films of flocculated dispersions
  publication-title: Langmuir
– volume: 80
  start-page: 369
  year: 2008
  end-page: 375
  ident: b0265
  article-title: Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/Rhodamine B
  publication-title: Anal. Chem.
– volume: 228
  start-page: 390
  year: 2007
  end-page: 405
  ident: b0320
  article-title: Evaluating performance in three-dimensional fluorescence microscopy
  publication-title: J. Microsc.
– volume: 385
  start-page: 141
  year: 1997
  ident: b0205
  article-title: Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures
  publication-title: Nature
– volume: 117
  start-page: 339
  year: 2006
  end-page: 345
  ident: b0295
  article-title: Temperature distribution measurement on microfabricated thermodevice for single biomolecular observation using fluorescent dye
  publication-title: Sens. Actuat. B-Chem.
– volume: 352
  start-page: 542
  year: 2010
  end-page: 548
  ident: b0155
  article-title: Effect of film thickness and particle size on cracking stresses in drying latex films
  publication-title: J. Colloid Interf. Sci.
– volume: 1
  start-page: 47
  year: 2018
  end-page: 53
  ident: b0185
  article-title: Grain Boundaries of self-assembled porous polymer films for unclonable anti-counterfeiting
  publication-title: ACS Appl. Polym. Mater.
– volume: 24
  start-page: 1461
  year: 2012
  end-page: 1465
  ident: b0180
  article-title: Linear self-assembly of nanoparticles within liquid crystal defect arrays
  publication-title: Adv. Mater.
– volume: 132
  start-page: 13
  year: 2015
  ident: b0020
  article-title: The fabrication of full color P (S t-MAA) photonic crystal structure on polyester fabrics by vertical deposition self-assembly
  publication-title: J. Appl. Polym. Sci.
– volume: 6
  start-page: 3903
  year: 2015
  end-page: 3910
  ident: b0045
  article-title: Inverse opal photonic crystals as a strategy to improve photocatalysis: underexplored questions
  publication-title: J. Phys. Chem. Lett.
– volume: 125
  start-page: 15589
  year: 2003
  end-page: 15598
  ident: b0110
  article-title: Colloidal crystal films: Advances in universality and perfection
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 141
  year: 2003
  end-page: 149
  ident: b0260
  article-title: Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems
  publication-title: Lab Chip
– volume: 127
  start-page: 141
  year: 2017
  end-page: 156
  ident: b0245
  article-title: Planar laser-induced fluorescence diagnostics of water droplets heating and evaporation at high-temperature
  publication-title: Appl. Therm. Eng.
– volume: 3
  start-page: 4951
  year: 2011
  end-page: 4954
  ident: b0015
  article-title: Gradient inverse opal photonic crystals via spatially controlled template replication of self-assembled opals
  publication-title: J. Nanoscale
– volume: 23
  start-page: 340
  year: 2013
  end-page: 345
  ident: b0250
  article-title: Fluorescent temperature sensing using triarylboron compounds and microcapsules for detection of a wide temperature range on the micro- and macroscale
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 7887
  year: 2004
  end-page: 7892
  ident: b0085
  article-title: Inverted colloidal crystals as three-dimensional cell scaffolds
  publication-title: Langmuir
– volume: 58
  start-page: 8
  year: 2017
  ident: b0240
  article-title: Spatially and temporally resolved measurements of the temperature inside droplets impinging on a hot solid surface
  publication-title: Exp. Fluids
– volume: 56
  start-page: 4554
  year: 2017
  end-page: 4559
  ident: b0175
  article-title: Harnessing colloidal crack formation by flow-enabled self-assembly
  publication-title: Angew. Chem. Int. Ed.
– volume: 59
  start-page: 3
  year: 2018
  ident: b0235
  article-title: Application of laser-induced fluorescence technique in a duct flow with one heated wall
  publication-title: Exp. Fluids
– volume: 363
  start-page: 137
  year: 2011
  end-page: 144
  ident: b0305
  article-title: Dye-labeled polystyrene latex microspheres prepared via a combined swelling-diffusion technique
  publication-title: J. Colloid Interface Sci.
– volume: 78
  start-page: 52
  year: 2001
  end-page: 54
  ident: b0125
  article-title: Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality
  publication-title: J. Appl. Phys. Lett.
– volume: 50
  start-page: 5713
  year: 2009
  end-page: 5719
  ident: b0200
  article-title: Towards true 3-dimensional BCC colloidal crystals with controlled lattice orientation
  publication-title: Polymer
– volume: 4
  start-page: 5562
  year: 2012
  end-page: 5569
  ident: b0040
  article-title: Fabrication of large domain crack-free colloidal crystal heterostructures with superposition bandgaps using hydrophobic polystyrene spheres
  publication-title: ACS Appl. Mater. Interf.
– volume: 15
  year: 2019
  ident: b0210
  article-title: Monitoring nanocrystal self-assembly in real time using in situ small-angle X-Ray scattering
  publication-title: Small
– volume: 99
  start-page: 2014
  year: 2002
  end-page: 2019
  ident: b0325
  article-title: Measuring tubulin content in Toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy
  publication-title: Proc. Natl. Acad. Sci.
– volume: 107
  start-page: 10354
  year: 2010
  end-page: 10359
  ident: b0160
  article-title: Assembly of large-area, highly ordered, crack-free inverse opal films
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 142
  year: 2020
  ident: bib331
  article-title: Multiscale Evaporation Rate Measurement Using Microlaser-Induced Fluorescence
  publication-title: J. Electron. Packag.
– volume: 54
  start-page: 153
  year: 2011
  end-page: 168
  ident: b0070
  article-title: A numerical model for transport in flat heat pipes considering wick microstructure effects
  publication-title: Int. J. Heat Mass Transf.
– reference: Chiu, R. C.; Cima, M. J. J. J. o. t. A. C. S., Drying of granular ceramic films: II, drying stress and saturation uniformity. J Am Ceran Soc 1993, 76 (11), 2769-2777.
– volume: 102
  start-page: 123
  year: 2011
  end-page: 132
  ident: b0315
  article-title: Measurement of water film thickness by laser-induced fluorescence and Raman imaging
  publication-title: Appl. Phys. B-Lasers Opt.
– volume: 380
  start-page: 42
  year: 2012
  end-page: 50
  ident: b0130
  article-title: An improved convective self-assembly method for the fabrication of binary colloidal crystals and inverse structures
  publication-title: J. Colloid Interf. Sci.
– reference: Zhang, C.; Rong, G.; Palko, J. W.; Dusseault, T. J.; Asheghi, M.; Santiago, J. G.; Goodson, K. E., IPACK2015-48262.
– volume: 76
  start-page: 2257
  year: 1993
  end-page: 2264
  ident: b0145
  article-title: Drying of granular ceramic films: I, effect of processing variables on cracking behavior
  publication-title: J. Am. Ceram. Soc.
– volume: 111
  start-page: 8538
  year: 2007
  end-page: 8542
  ident: b0165
  article-title: Fabrication of crack-free colloidal crystals using a modified vertical deposition method
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 725
  year: 2005
  end-page: 731
  ident: b0100
  article-title: Inverted-colloidal-crystal hydrogel matrices as three-dimensional cell scaffolds
  publication-title: Adv. Funct. Mater.
– volume: 561
  start-page: 470
  year: 2020
  end-page: 480
  ident: b0190
  article-title: Self-assembled micro-stripe patterning of sessile polymeric nanofluid droplets
  publication-title: J Colloid Interf Sci
– volume: 4
  start-page: 908
  year: 2008
  end-page: 914
  ident: b0255
  article-title: High-spatial-resolution surface-temperature mapping using fluorescent thermometry
  publication-title: Small
– volume: 28
  start-page: 7631
  year: 2012
  end-page: 7638
  ident: b0025
  article-title: Self-assembly of colloidal cubes via vertical deposition
  publication-title: Langmuir
– volume: 306
  start-page: 428
  year: 2007
  end-page: 432
  ident: b0135
  article-title: Rapid self-assembly of submicrospheres at liquid surface by controlling evaporation and its mechanism
  publication-title: J. Colloid Interf. Sci.
– volume: 132
  start-page: 13
  year: 2015
  ident: 10.1016/j.jcis.2020.04.054_b0020
  article-title: The fabrication of full color P (S t-MAA) photonic crystal structure on polyester fabrics by vertical deposition self-assembly
  publication-title: J. Appl. Polym. Sci.
– volume: 81
  start-page: 1399
  issue: 7
  year: 2005
  ident: 10.1016/j.jcis.2020.04.054_b0115
  article-title: Growth imperfections in three-dimensional colloidal self-assembly
  publication-title: J. Appl. Phys. A
  doi: 10.1007/s00339-004-3095-y
– volume: 352
  start-page: 542
  issue: 2
  year: 2010
  ident: 10.1016/j.jcis.2020.04.054_b0155
  article-title: Effect of film thickness and particle size on cracking stresses in drying latex films
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2010.08.074
– volume: 15
  start-page: 12
  year: 2019
  ident: 10.1016/j.jcis.2020.04.054_b0170
  article-title: The control of colloidal grain boundaries through evaporative vertical self-assembly
  publication-title: Small
– volume: 21
  start-page: 4717
  issue: 10
  year: 2005
  ident: 10.1016/j.jcis.2020.04.054_b0035
  article-title: Opal and inverse opal fabricated with a flow-controlled vertical deposition method
  publication-title: Langmuir
  doi: 10.1021/la046775t
– volume: 7
  start-page: 10465
  issue: 1
  year: 2017
  ident: 10.1016/j.jcis.2020.04.054_b0065
  article-title: Microscale Liquid Transport in Polycrystalline Inverse Opals across Grain Boundaries
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-10791-3
– volume: 50
  start-page: 5713
  issue: 24
  year: 2009
  ident: 10.1016/j.jcis.2020.04.054_b0200
  article-title: Towards true 3-dimensional BCC colloidal crystals with controlled lattice orientation
  publication-title: Polymer
  doi: 10.1016/j.polymer.2009.03.062
– volume: 4
  start-page: 3254
  issue: 6
  year: 2010
  ident: 10.1016/j.jcis.2020.04.054_b0280
  article-title: Temperature sensing using fluorescent nanothermometers
  publication-title: ACS Nano
  doi: 10.1021/nn100244a
– volume: 16
  start-page: 3558
  issue: 35
  year: 2006
  ident: 10.1016/j.jcis.2020.04.054_b0090
  article-title: Inverted colloidal crystals as three-dimensional microenvironments for cellular co-cultures
  publication-title: J. Mater. Chem.
  doi: 10.1039/b605797g
– volume: 24
  start-page: 1796
  issue: 5
  year: 2008
  ident: 10.1016/j.jcis.2020.04.054_b0055
  article-title: Layer transfer approach to opaline hetero photonic crystals
  publication-title: Langmuir
  doi: 10.1021/la702668p
– volume: 13
  start-page: 389
  issue: 6
  year: 2001
  ident: 10.1016/j.jcis.2020.04.054_b0050
  article-title: The fabrication and bandgap engineering of photonic multilayers
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200103)13:6<389::AID-ADMA389>3.0.CO;2-L
– volume: 26
  start-page: 5037
  issue: 29
  year: 2014
  ident: 10.1016/j.jcis.2020.04.054_b0095
  article-title: Hydrophobic sponge structure-based triboelectric nanogenerator
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401184
– volume: 185
  start-page: 1135
  issue: 7
  year: 2009
  ident: 10.1016/j.jcis.2020.04.054_b0330
  article-title: Accuracy and precision in quantitative fluorescence microscopy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200903097
– volume: 3
  start-page: 4951
  issue: 12
  year: 2011
  ident: 10.1016/j.jcis.2020.04.054_b0015
  article-title: Gradient inverse opal photonic crystals via spatially controlled template replication of self-assembled opals
  publication-title: J. Nanoscale
  doi: 10.1039/c1nr11248a
– volume: 561
  start-page: 470
  year: 2020
  ident: 10.1016/j.jcis.2020.04.054_b0190
  article-title: Self-assembled micro-stripe patterning of sessile polymeric nanofluid droplets
  publication-title: J Colloid Interf Sci
  doi: 10.1016/j.jcis.2019.11.021
– volume: 80
  start-page: 369
  issue: 2
  year: 2008
  ident: 10.1016/j.jcis.2020.04.054_b0265
  article-title: Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/Rhodamine B
  publication-title: Anal. Chem.
  doi: 10.1021/ac071268c
– volume: 4
  start-page: 5562
  issue: 10
  year: 2012
  ident: 10.1016/j.jcis.2020.04.054_b0040
  article-title: Fabrication of large domain crack-free colloidal crystal heterostructures with superposition bandgaps using hydrophobic polystyrene spheres
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/am3014482
– volume: 6
  start-page: 3903
  issue: 19
  year: 2015
  ident: 10.1016/j.jcis.2020.04.054_b0045
  article-title: Inverse opal photonic crystals as a strategy to improve photocatalysis: underexplored questions
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01353
– volume: 102
  start-page: 123
  issue: 1
  year: 2011
  ident: 10.1016/j.jcis.2020.04.054_b0315
  article-title: Measurement of water film thickness by laser-induced fluorescence and Raman imaging
  publication-title: Appl. Phys. B-Lasers Opt.
  doi: 10.1007/s00340-010-4200-x
– volume: 4
  start-page: 908
  issue: 7
  year: 2008
  ident: 10.1016/j.jcis.2020.04.054_b0255
  article-title: High-spatial-resolution surface-temperature mapping using fluorescent thermometry
  publication-title: Small
  doi: 10.1002/smll.200700581
– volume: 15
  issue: 7
  year: 2016
  ident: 10.1016/j.jcis.2020.04.054_b0215
  article-title: Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4600
– volume: 94
  start-page: 247
  issue: 2
  year: 2012
  ident: 10.1016/j.jcis.2020.04.054_b0300
  article-title: Simple strategies towards bright polymer particles via one-step staining procedures
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2012.01.021
– volume: 117
  start-page: 339
  issue: 2
  year: 2006
  ident: 10.1016/j.jcis.2020.04.054_b0295
  article-title: Temperature distribution measurement on microfabricated thermodevice for single biomolecular observation using fluorescent dye
  publication-title: Sens. Actuat. B-Chem.
  doi: 10.1016/j.snb.2005.11.017
– volume: 385
  start-page: 141
  issue: 6612
  year: 1997
  ident: 10.1016/j.jcis.2020.04.054_b0205
  article-title: Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures
  publication-title: Nature
  doi: 10.1038/385141a0
– volume: 12
  start-page: 1968
  issue: 15
  year: 2016
  ident: 10.1016/j.jcis.2020.04.054_b0310
  article-title: Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging
  publication-title: Small
  doi: 10.1002/smll.201503396
– volume: 125
  start-page: 15589
  issue: 50
  year: 2003
  ident: 10.1016/j.jcis.2020.04.054_b0110
  article-title: Colloidal crystal films: Advances in universality and perfection
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0379969
– volume: 228
  start-page: 390
  issue: 3
  year: 2007
  ident: 10.1016/j.jcis.2020.04.054_b0320
  article-title: Evaluating performance in three-dimensional fluorescence microscopy
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2007.01861.x
– volume: 78
  start-page: 52
  issue: 1
  year: 2001
  ident: 10.1016/j.jcis.2020.04.054_b0125
  article-title: Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality
  publication-title: J. Appl. Phys. Lett.
  doi: 10.1063/1.1337619
– ident: 10.1016/j.jcis.2020.04.054_b0080
– volume: 127
  start-page: 141
  year: 2017
  ident: 10.1016/j.jcis.2020.04.054_b0245
  article-title: Planar laser-induced fluorescence diagnostics of water droplets heating and evaporation at high-temperature
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.08.040
– volume: 9
  start-page: 171
  issue: 1
  year: 2009
  ident: 10.1016/j.jcis.2020.04.054_b0270
  article-title: Photobleaching absorbed Rhodamine B to improve temperature measurements in PDMS microchannels
  publication-title: Lab Chip
  doi: 10.1039/B805172K
– volume: 28
  start-page: 7631
  issue: 20
  year: 2012
  ident: 10.1016/j.jcis.2020.04.054_b0025
  article-title: Self-assembly of colloidal cubes via vertical deposition
  publication-title: Langmuir
  doi: 10.1021/la3007052
– volume: 50
  start-page: 8072
  issue: 35
  year: 2011
  ident: 10.1016/j.jcis.2020.04.054_b0285
  article-title: A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201102390
– volume: 131
  issue: 10
  year: 2009
  ident: 10.1016/j.jcis.2020.04.054_b0075
  article-title: Analysis of the wicking and thin-film evaporation characteristics of microstructures
  publication-title: J. Heat Transfer
  doi: 10.1115/1.3160538
– ident: 10.1016/j.jcis.2020.04.054_b0060
  doi: 10.1109/ITHERM.2014.6892356
– volume: 351
  start-page: 357
  issue: 2
  year: 2010
  ident: 10.1016/j.jcis.2020.04.054_b0225
  article-title: Evaporation-induced self assembly of nanoparticles in non-buckling regime: Volume fraction dependent packing
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2010.07.074
– volume: 54
  start-page: 153
  issue: 1–3
  year: 2011
  ident: 10.1016/j.jcis.2020.04.054_b0070
  article-title: A numerical model for transport in flat heat pipes considering wick microstructure effects
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.09.057
– volume: 3
  start-page: 141
  issue: 3
  year: 2003
  ident: 10.1016/j.jcis.2020.04.054_b0260
  article-title: Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems
  publication-title: Lab Chip
  doi: 10.1039/b306158b
– volume: 23
  start-page: 340
  issue: 3
  year: 2013
  ident: 10.1016/j.jcis.2020.04.054_b0250
  article-title: Fluorescent temperature sensing using triarylboron compounds and microcapsules for detection of a wide temperature range on the micro- and macroscale
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201712
– volume: 349
  start-page: 6251
  year: 2015
  ident: 10.1016/j.jcis.2020.04.054_b0220
  article-title: Colloidal matter: packing, geometry, and entropy
  publication-title: Science
  doi: 10.1126/science.1253751
– volume: 1
  start-page: 47
  issue: 1
  year: 2018
  ident: 10.1016/j.jcis.2020.04.054_b0185
  article-title: Grain Boundaries of self-assembled porous polymer films for unclonable anti-counterfeiting
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.8b00031
– volume: 59
  start-page: 3
  year: 2018
  ident: 10.1016/j.jcis.2020.04.054_b0235
  article-title: Application of laser-induced fluorescence technique in a duct flow with one heated wall
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-018-2508-1
– volume: 58
  start-page: 8
  year: 2017
  ident: 10.1016/j.jcis.2020.04.054_b0240
  article-title: Spatially and temporally resolved measurements of the temperature inside droplets impinging on a hot solid surface
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-017-2375-1
– volume: 306
  start-page: 428
  issue: 2
  year: 2007
  ident: 10.1016/j.jcis.2020.04.054_b0135
  article-title: Rapid self-assembly of submicrospheres at liquid surface by controlling evaporation and its mechanism
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2006.10.083
– volume: 73
  start-page: 4117
  issue: 17
  year: 2001
  ident: 10.1016/j.jcis.2020.04.054_b0275
  article-title: Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye
  publication-title: Anal. Chem.
  doi: 10.1021/ac010370l
– volume: 20
  start-page: 7887
  issue: 19
  year: 2004
  ident: 10.1016/j.jcis.2020.04.054_b0085
  article-title: Inverted colloidal crystals as three-dimensional cell scaffolds
  publication-title: Langmuir
  doi: 10.1021/la049958o
– volume: 25
  start-page: 4284
  issue: 8
  year: 2009
  ident: 10.1016/j.jcis.2020.04.054_b0150
  article-title: Cracking in drying colloidal films of flocculated dispersions
  publication-title: Langmuir
  doi: 10.1021/la804331c
– volume: 363
  start-page: 137
  issue: 1
  year: 2011
  ident: 10.1016/j.jcis.2020.04.054_b0305
  article-title: Dye-labeled polystyrene latex microspheres prepared via a combined swelling-diffusion technique
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.07.047
– volume: 377
  start-page: 421
  year: 2012
  ident: 10.1016/j.jcis.2020.04.054_b0230
  article-title: Evaporative micro-particle self assembly influenced by capillary evacuation
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2012.02.071
– volume: 56
  start-page: 4554
  issue: 16
  year: 2017
  ident: 10.1016/j.jcis.2020.04.054_b0175
  article-title: Harnessing colloidal crack formation by flow-enabled self-assembly
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201700457
– volume: 380
  start-page: 42
  year: 2012
  ident: 10.1016/j.jcis.2020.04.054_b0130
  article-title: An improved convective self-assembly method for the fabrication of binary colloidal crystals and inverse structures
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2012.04.076
– volume: 15
  issue: 20
  year: 2019
  ident: 10.1016/j.jcis.2020.04.054_b0210
  article-title: Monitoring nanocrystal self-assembly in real time using in situ small-angle X-Ray scattering
  publication-title: Small
  doi: 10.1002/smll.201900438
– volume: 15
  start-page: 4701
  issue: 14
  year: 1999
  ident: 10.1016/j.jcis.2020.04.054_b0005
  article-title: Electrophoretic deposition to control artificial opal growth
  publication-title: Langmuir
  doi: 10.1021/la990161k
– volume: 24
  start-page: 1461
  issue: 11
  year: 2012
  ident: 10.1016/j.jcis.2020.04.054_b0180
  article-title: Linear self-assembly of nanoparticles within liquid crystal defect arrays
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103791
– ident: 10.1016/j.jcis.2020.04.054_b0290
  doi: 10.1115/IPACK2019-6372
– volume: 126
  start-page: 13778
  issue: 42
  year: 2004
  ident: 10.1016/j.jcis.2020.04.054_b0010
  article-title: Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0470923
– volume: 15
  start-page: 725
  issue: 5
  year: 2005
  ident: 10.1016/j.jcis.2020.04.054_b0100
  article-title: Inverted-colloidal-crystal hydrogel matrices as three-dimensional cell scaffolds
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200400325
– volume: 76
  start-page: 2257
  issue: 9
  year: 1993
  ident: 10.1016/j.jcis.2020.04.054_b0145
  article-title: Drying of granular ceramic films: I, effect of processing variables on cracking behavior
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1993.tb07762.x
– ident: 10.1016/j.jcis.2020.04.054_b0140
  doi: 10.1111/j.1151-2916.1993.tb04014.x
– volume: 107
  start-page: 10354
  issue: 23
  year: 2010
  ident: 10.1016/j.jcis.2020.04.054_b0160
  article-title: Assembly of large-area, highly ordered, crack-free inverse opal films
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1000954107
– volume: 540
  start-page: 602
  year: 2019
  ident: 10.1016/j.jcis.2020.04.054_b0195
  article-title: Harnessing complex fluid interfaces to control colloidal assembly and deposition
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2019.01.046
– volume: 105
  start-page: 938
  issue: 9
  year: 2014
  ident: 10.1016/j.jcis.2020.04.054_b0030
  article-title: Preparation of monodispersed polystyrene microspheres and self-assembly of photonic crystals for structural colors on polyester fabrics
  publication-title: J. Text. Inst.
  doi: 10.1080/00405000.2013.865864
– volume: 142
  issue: 3
  year: 2020
  ident: 10.1016/j.jcis.2020.04.054_bib331
  article-title: Multiscale Evaporation Rate Measurement Using Microlaser-Induced Fluorescence
  publication-title: J. Electron. Packag.
  doi: 10.1115/1.4046767
– volume: 111
  start-page: 8538
  issue: 24
  year: 2007
  ident: 10.1016/j.jcis.2020.04.054_b0165
  article-title: Fabrication of crack-free colloidal crystals using a modified vertical deposition method
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp071233g
– volume: 99
  start-page: 2014
  issue: 4
  year: 2002
  ident: 10.1016/j.jcis.2020.04.054_b0325
  article-title: Measuring tubulin content in Toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.022554999
– volume: 275
  start-page: 277
  issue: 1
  year: 2004
  ident: 10.1016/j.jcis.2020.04.054_b0105
  article-title: Fabricating high-quality opal films with uniform structure over a large area
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2004.01.054
– volume: 518
  start-page: 5083
  issue: 18
  year: 2010
  ident: 10.1016/j.jcis.2020.04.054_b0120
  article-title: Influence of growth parameters on the fabrication of high-quality colloidal crystals via a controlled evaporation self-assembly method
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2010.02.062
SSID ssj0011559
Score 2.37314
Snippet Herein, particle clustering dynamics and thermofluidic transprot in colloidal assemblies are experimentally examined using a novel fluorescence technique with...
Colloidal self-assembly is a process in which dispersed matter spontaneously form higher-order structures without external intervention. During self-assembly,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 195
SubjectTerms cracking
crystals
fluorescence
fluorescence microscopy
Grain boundary
In situ measurements
Laser induced fluorescence
mechanics
Saturation level
Self-assembly
Title In situ investigation of particle clustering dynamics in colloidal assemblies using fluorescence microscopy
URI https://dx.doi.org/10.1016/j.jcis.2020.04.054
https://www.ncbi.nlm.nih.gov/pubmed/32422448
https://www.proquest.com/docview/2404639179
https://www.proquest.com/docview/2439388710
Volume 576
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5C5TB2mFjHtgJDnrTblDVO7KQ5ogrUMo3TkLhZdmKjlDapaHPgwt_Oe_lR4NAeuCXRs-L4Pdvfi9_7HsAvK0JrkjT0dCgd_a3CqxE6K8IF1lDyDI8oOfnfdTS5EVe38nYPxl0uDIVVtmt_s6bXq3X7ZNiO5nCZ55Tji7MtTugc0ZcNoSSx16FN_3nahHlwOnZrwjy4R9Jt4kwT4zVLc6LsDvya7lSKbZvTNvBZb0KXh_CpRY_svOngZ9izRR8-jLuibX34-Ipf8AvcTwu2ytcVy1_YNMqClY4t229k6bwiqgQUZ1lTnH6F0ozMo8wzfBeCa7swiFRXjGLk75ibV-VDTQKVWrageD7KbHk8gpvLi__jiddWV_BSIeXayyJfRynOcDoKjG0WoWehHSISPRI6oKLEwkRR7LTvXCiNSPzMBQ4dHusMpxT6r9ArysJ-B6YJdqY80CZ2wvijRMRGoiei0T4Szc0AeDesKm2px6kCxlx1MWYzRapQpArlC4WqGMDvTZtlQ7yxU1p22lJvzEfhzrCz3c9OtQo1RYclurBlhUKCuNTQmU12yYRJiKs09wfwrbGLTV8JqCJ0Gh2_s2cncEB3FJrC5Sn01g-V_YH4Z23OagM_g_3z6d_J9TO6DgUx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6hcujuYbXLvgq74JW4oah52ElzRNWiFkpPIHGz7MReBUpS0ebAv2cmcbpwaA_comSsOJmJ_U1m5huAU8Mjo9Ms8lQkLP2twqMROivchkZT8UwQU3Hy9Tye3PLLO3G3B-OuFobSKt3a367pzWrtzgzd2xwui4JqfPFrS1KKI_qiIZTcJ3Yq3oP98-nVZL4JJlDkrc30CDwa4Gpn2jSv-6wg1u7QbxhPBd-2P23Dn80-dPEZPjkAyc7bOX6BPVMeQH_c9W07gI-vKAa_wsO0ZKtiXbPiP6FGVbLKsqV7TJYtamJLQHGWt_3pVyjNyEKqIsd7Ib42jxrB6opRmvw_Zhd19dTwQGWGPVJKHxW3PH-D24u_N-OJ5xoseBkXYu3lsa_iDD9yigYmJo_RuVAWQYkacRVSX2Ku4zixyrc2Epqnfm5Diz6PsTqgKvrv0Cur0vwEpgh5ZkGodGK59kcpT7RAZ0ShiaQq0AMIutcqM8c-Tk0wFrJLM7uXpApJqpA-l6iKAZxtxixb7o2d0qLTlnxjQRI3h53j_nSqlagpipeo0lQ1CnGiU0N_Nt0lE6URLtSBP4AfrV1s5kpYFdHT6PCdMzuB_uTmeiZn0_nVEXygK5SpEohf0Fs_1eY3wqG1Pnbm_gKj1wfi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+investigation+of+particle+clustering+dynamics+in+colloidal+assemblies+using+fluorescence+microscopy&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Suh%2C+Youngjoon&rft.au=Gowda%2C+Hamsa&rft.au=Won%2C+Yoonjin&rft.date=2020-09-15&rft.issn=0021-9797&rft.volume=576+p.195-202&rft.spage=195&rft.epage=202&rft_id=info:doi/10.1016%2Fj.jcis.2020.04.054&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon