Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease
As a Mendelian neurodegenerative disorder, the genetic risk of Huntington’s disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we...
Saved in:
Published in | Cell Vol. 162; no. 3; pp. 516 - 526 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
30.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a Mendelian neurodegenerative disorder, the genetic risk of Huntington’s disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we used genome-wide association (GWA) analysis to identify loci harboring genetic variations that alter the age at neurological onset of HD. A chromosome 15 locus displays two independent effects that accelerate or delay onset by 6.1 years and 1.4 years, respectively, whereas a chromosome 8 locus hastens onset by 1.6 years. Association at MLH1 and pathway analysis of the full GWA results support a role for DNA handling and repair mechanisms in altering the course of HD. Our findings demonstrate that HD disease modification in humans occurs in nature and offer a genetic route to identifying in-human validated therapeutic targets in this and other Mendelian disorders.
[Display omitted]
[Display omitted]
•GWA signals reveal loci that modify the age at onset of Huntington’s disease•Effects at the chr15 locus hasten or delay onset by 6 or 1.4 years, respectively•A single effect at the chr8 locus hastens onset by 1.6 years•MLH1 association & pathway analysis implicate DNA handling in disease modification
The identification of gene loci that delay or hasten Huntington’s disease onset demonstrates that the disease is modifiable prior to clinical diagnosis and offers a genetic route to targets for treatment prior to disease onset. |
---|---|
AbstractList | As a Mendelian neurodegenerative disorder, the genetic risk of Huntington's disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we used genome-wide association (GWA) analysis to identify loci harboring genetic variations that alter the age at neurological onset of HD. A chromosome 15 locus displays two independent effects that accelerate or delay onset by 6.1 years and 1.4 years, respectively, whereas a chromosome 8 locus hastens onset by 1.6 years. Association at MLH1 and pathway analysis of the full GWA results support a role for DNA handling and repair mechanisms in altering the course of HD. Our findings demonstrate that HD disease modification in humans occurs in nature and offer a genetic route to identifying in-human validated therapeutic targets in this and other Mendelian disorders. As a Mendelian neurodegenerative disorder, the genetic risk of Huntington’s disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we used genome-wide association (GWA) analysis to identify loci harboring genetic variations that alter the age at neurological onset of HD. A chromosome 15 locus displays two independent effects that accelerate or delay onset by 6.1 years and 1.4 years, respectively, whereas a chromosome 8 locus hastens onset by 1.6 years. Association at MLH1 and pathway analysis of the full GWA results support a role for DNA handling and repair mechanisms in altering the course of HD. Our findings demonstrate that HD disease modification in humans occurs in nature and offer a genetic route to identifying in-human validated therapeutic targets in this and other Mendelian disorders. [Display omitted] [Display omitted] •GWA signals reveal loci that modify the age at onset of Huntington’s disease•Effects at the chr15 locus hasten or delay onset by 6 or 1.4 years, respectively•A single effect at the chr8 locus hastens onset by 1.6 years•MLH1 association & pathway analysis implicate DNA handling in disease modification The identification of gene loci that delay or hasten Huntington’s disease onset demonstrates that the disease is modifiable prior to clinical diagnosis and offers a genetic route to targets for treatment prior to disease onset. As a Mendelian neurodegenerative disorder, the genetic risk of Huntington’s disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we used genome-wide association (GWA) analysis to identify loci harboring genetic variations that alter the age at neurological onset of HD. A chromosome 15 locus displays two independent effects that accelerate or delay onset by 6.1 years and 1.4 years, respectively, whereas a chromosome 8 locus hastens onset by 1.6 years. Association at MLH1 and pathway analysis of the full GWA results support a role for DNA handling and repair mechanisms in altering the course of HD. Our findings demonstrate that HD disease modification in humans occurs in nature and offer a genetic route to identifying in-human validated therapeutic targets in this and other Mendelian disorders. |
Author | Lucente, Diane Mysore, Jayalakshmi Srinidhi MacDonald, Marcy E. Orth, Michael Paulsen, Jane S. Shoulson, Ira Kwak, Seung Chao, Michael J. Gillis, Tammy Holmans, Peter Landwehrmeyer, G. Bernhard Myers, Richard H. Stone, Timothy C. Han, Jun Wheeler, Vanessa C. Jones, Lesley Mahmoudi, Mithra Abu-Elneel, Kawther Ramos, Eliana Marisa Gusella, James F. Lee, Jong-Min Dorsey, E. Ray Pinto, Ricardo Mouro Escott-Price, Valentina Harold, Denise Vedernikov, Alexey Vonsattel, Jean Paul G. |
Author_xml | – sequence: 1 givenname: Jong-Min surname: Lee fullname: Lee, Jong-Min – sequence: 2 givenname: Vanessa C. surname: Wheeler fullname: Wheeler, Vanessa C. – sequence: 3 givenname: Michael J. surname: Chao fullname: Chao, Michael J. – sequence: 4 givenname: Jean Paul G. surname: Vonsattel fullname: Vonsattel, Jean Paul G. – sequence: 5 givenname: Ricardo Mouro surname: Pinto fullname: Pinto, Ricardo Mouro – sequence: 6 givenname: Diane surname: Lucente fullname: Lucente, Diane – sequence: 7 givenname: Kawther surname: Abu-Elneel fullname: Abu-Elneel, Kawther – sequence: 8 givenname: Eliana Marisa surname: Ramos fullname: Ramos, Eliana Marisa – sequence: 9 givenname: Jayalakshmi Srinidhi surname: Mysore fullname: Mysore, Jayalakshmi Srinidhi – sequence: 10 givenname: Tammy surname: Gillis fullname: Gillis, Tammy – sequence: 11 givenname: Marcy E. surname: MacDonald fullname: MacDonald, Marcy E. – sequence: 12 givenname: James F. surname: Gusella fullname: Gusella, James F. – sequence: 13 givenname: Denise surname: Harold fullname: Harold, Denise – sequence: 14 givenname: Timothy C. surname: Stone fullname: Stone, Timothy C. – sequence: 15 givenname: Valentina surname: Escott-Price fullname: Escott-Price, Valentina – sequence: 16 givenname: Jun surname: Han fullname: Han, Jun – sequence: 17 givenname: Alexey surname: Vedernikov fullname: Vedernikov, Alexey – sequence: 18 givenname: Peter surname: Holmans fullname: Holmans, Peter – sequence: 19 givenname: Lesley surname: Jones fullname: Jones, Lesley – sequence: 20 givenname: Seung surname: Kwak fullname: Kwak, Seung – sequence: 21 givenname: Mithra surname: Mahmoudi fullname: Mahmoudi, Mithra – sequence: 22 givenname: Michael surname: Orth fullname: Orth, Michael – sequence: 23 givenname: G. Bernhard surname: Landwehrmeyer fullname: Landwehrmeyer, G. Bernhard – sequence: 24 givenname: Jane S. surname: Paulsen fullname: Paulsen, Jane S. – sequence: 25 givenname: E. Ray surname: Dorsey fullname: Dorsey, E. Ray – sequence: 26 givenname: Ira surname: Shoulson fullname: Shoulson, Ira – sequence: 27 givenname: Richard H. surname: Myers fullname: Myers, Richard H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26232222$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctO3DAUtRAVDNAfYIGy7CbptR2PE6lCqqblIVGxKd1aHvsGPMrYYHuQ2PU3-nv9kjoditou8MaW7nn5ngOy64NHQo4pNBTo_P2qMTiODQMqGpANAN8hMwq9rFsq2S6ZAfSs7uay3ScHKa0AoBNC7JF9NmeclTMj3y4t-uwGZ3R2wVdhqM7RY3amOtMmh5iqfKdz9SVYNzxVi9H5Ah2ra58wT-iLTaH72xz8z-8_UvXJJdQJj8ibQY8J3z7fh-Tm7PPXxUV9dX1-ufh4VZtWiFxbPpQgHUpLuWA9UgBtl72eC011eaIxQguuu663SIfBLNuW9laWIW1NL_khOd3q3m-Wa7Sm_CXqUd1Ht9bxSQXt1L8T7-7UbXhUrWAlAS0C754FYnjYYMpq7dK0Vu0xbJKiEihvGeeT18nfXi8mf5ZZAGwLMDGkFHF4gVBQU2NqpSZpNTWmQKrSWCF1_5GMy7-7KHnd-Dr1w5aKZcOPDqNKxqE3aF1Ek5UN7jX6L4rJs5c |
CitedBy_id | crossref_primary_10_1016_j_neuroscience_2017_03_051 crossref_primary_10_1093_hmg_ddx033 crossref_primary_10_1038_s41598_019_55177_9 crossref_primary_10_1002_mds_28397 crossref_primary_10_1515_medgen_2021_2101 crossref_primary_10_1002_ana_24656 crossref_primary_10_1371_journal_pgen_1007719 crossref_primary_10_1101_gr_277576_122 crossref_primary_10_1007_s00018_018_2854_4 crossref_primary_10_1093_hmg_ddx261 crossref_primary_10_1016_j_clinph_2021_05_035 crossref_primary_10_18632_aging_102825 crossref_primary_10_3389_fmolb_2023_1107323 crossref_primary_10_1111_bpa_12872 crossref_primary_10_1016_j_dnarep_2022_103385 crossref_primary_10_1242_dmm_041319 crossref_primary_10_3233_JHD_190391 crossref_primary_10_1007_s00401_019_01973_6 crossref_primary_10_1016_j_celrep_2021_110078 crossref_primary_10_1042_ETLS20230015 crossref_primary_10_1016_j_neuron_2022_01_006 crossref_primary_10_1016_j_preteyeres_2020_100883 crossref_primary_10_1073_pnas_2318098121 crossref_primary_10_1111_ene_13413 crossref_primary_10_1038_s41598_022_18848_8 crossref_primary_10_1002_mds_28062 crossref_primary_10_1038_s41467_017_02697_5 crossref_primary_10_1038_s41418_021_00914_9 crossref_primary_10_1016_j_neuint_2021_105074 crossref_primary_10_1093_biostatistics_kxy037 crossref_primary_10_3389_fnagi_2022_797220 crossref_primary_10_1242_dmm_049492 crossref_primary_10_1093_hmg_ddx180 crossref_primary_10_3389_fgene_2018_00601 crossref_primary_10_1002_mdc3_12808 crossref_primary_10_1371_journal_pgen_1008902 crossref_primary_10_1016_j_cell_2023_09_008 crossref_primary_10_3389_fneur_2019_00453 crossref_primary_10_3389_fcell_2020_619911 crossref_primary_10_1093_braincomms_fcae047 crossref_primary_10_1007_s12035_015_9662_8 crossref_primary_10_1038_s41598_018_32876_3 crossref_primary_10_1038_s41467_019_12071_2 crossref_primary_10_1093_hmg_ddae137 crossref_primary_10_1016_j_biopsych_2017_10_019 crossref_primary_10_1093_hmg_ddy375 crossref_primary_10_1073_pnas_2013223117 crossref_primary_10_3233_JHD_200395 crossref_primary_10_1016_j_neulet_2016_03_038 crossref_primary_10_1093_brain_awx122 crossref_primary_10_1093_braincomms_fcaf028 crossref_primary_10_1002_pmic_202300114 crossref_primary_10_1016_j_dnarep_2015_11_008 crossref_primary_10_1111_ene_13954 crossref_primary_10_1002_hbm_23332 crossref_primary_10_1093_hmg_ddab074 crossref_primary_10_1093_hmg_ddac165 crossref_primary_10_3233_JHD_170247 crossref_primary_10_1038_s41598_024_64105_5 crossref_primary_10_1242_dmm_027680 crossref_primary_10_1016_j_omtm_2022_03_001 crossref_primary_10_1038_s41588_020_0577_6 crossref_primary_10_1242_dmm_031930 crossref_primary_10_3389_fneur_2021_667420 crossref_primary_10_1212_NXG_0000000000200111 crossref_primary_10_3390_genes15060807 crossref_primary_10_1016_j_tig_2018_02_005 crossref_primary_10_1038_s41593_018_0237_7 crossref_primary_10_3233_JHD_180287 crossref_primary_10_1016_j_expneurol_2016_01_021 crossref_primary_10_1007_s40142_018_0133_1 crossref_primary_10_1038_s41598_018_25903_w crossref_primary_10_1186_s40035_024_00406_z crossref_primary_10_3233_JHD_170234 crossref_primary_10_1016_j_brainres_2015_09_020 crossref_primary_10_1016_S1474_4422_18_30294_1 crossref_primary_10_3390_brainsci10090575 crossref_primary_10_3389_fnagi_2020_524369 crossref_primary_10_1038_s41467_018_05320_3 crossref_primary_10_1186_s40035_023_00350_4 crossref_primary_10_1016_j_parkreldis_2024_106049 crossref_primary_10_1093_hmg_ddw286 crossref_primary_10_1038_srep36798 crossref_primary_10_1016_j_omtm_2022_08_005 crossref_primary_10_1098_rsob_180165 crossref_primary_10_1038_s41598_019_52411_2 crossref_primary_10_1074_jbc_RA120_014161 crossref_primary_10_3389_fnins_2022_946822 crossref_primary_10_1016_j_nbd_2020_105092 crossref_primary_10_12688_f1000research_19444_1 crossref_primary_10_1016_j_dnarep_2021_103155 crossref_primary_10_1097_AUD_0000000000000878 crossref_primary_10_1111_ene_15806 crossref_primary_10_1186_s40478_022_01364_1 crossref_primary_10_1007_s00415_018_8972_y crossref_primary_10_1093_hmg_ddw395 crossref_primary_10_3233_JHD_170256 crossref_primary_10_3233_JHD_170253 crossref_primary_10_1242_dmm_049453 crossref_primary_10_1016_j_tibs_2022_04_003 crossref_primary_10_1016_j_expneurol_2016_01_019 crossref_primary_10_1093_nar_gkae1204 crossref_primary_10_1534_g3_118_200289 crossref_primary_10_1172_jci_insight_141042 crossref_primary_10_3233_JHD_160222 crossref_primary_10_20517_and_2023_49 crossref_primary_10_3233_JHD_170282 crossref_primary_10_3389_fncel_2022_852002 crossref_primary_10_1186_s13024_024_00780_2 crossref_primary_10_3389_fnins_2022_902146 crossref_primary_10_1007_s11910_017_0739_9 crossref_primary_10_1016_j_ajhg_2022_03_004 crossref_primary_10_1186_s13072_019_0313_6 crossref_primary_10_1016_j_pneurobio_2023_102484 crossref_primary_10_3389_fped_2024_1463903 crossref_primary_10_1093_braincomms_fcad010 crossref_primary_10_1016_j_cell_2024_11_038 crossref_primary_10_3389_fncel_2020_606331 crossref_primary_10_1109_TCBB_2018_2823746 crossref_primary_10_3233_JHD_170277 crossref_primary_10_1212_NXG_0000000000000155 crossref_primary_10_1007_s00115_021_01224_8 crossref_primary_10_3233_JHD_200445 crossref_primary_10_1126_sciadv_ado5264 crossref_primary_10_1111_ane_12762 crossref_primary_10_3233_JHD_200448 crossref_primary_10_1007_s13167_024_00368_2 crossref_primary_10_1002_mgg3_881 crossref_primary_10_1093_brain_awab404 crossref_primary_10_3233_JHD_200438 crossref_primary_10_7554_eLife_89782 crossref_primary_10_1073_pnas_2322924121 crossref_primary_10_1002_mdc3_13195 crossref_primary_10_1016_j_ajhg_2022_06_004 crossref_primary_10_1093_hmg_ddw234 crossref_primary_10_24075_brsmu_2023_001 crossref_primary_10_1038_s41588_024_01653_6 crossref_primary_10_1016_j_ajhg_2022_06_002 crossref_primary_10_1073_pnas_2413298121 crossref_primary_10_2174_1570159X16666180419141613 crossref_primary_10_1002_mds_27911 crossref_primary_10_1016_j_bas_2025_104197 crossref_primary_10_1111_jeb_14106 crossref_primary_10_3233_JHD_200423 crossref_primary_10_1111_tan_13170 crossref_primary_10_1161_CIRCGEN_122_003867 crossref_primary_10_3390_cells10051019 crossref_primary_10_3233_JHD_200421 crossref_primary_10_1089_genbio_2021_0012 crossref_primary_10_3233_JHD_200427 crossref_primary_10_1093_braincomms_fcac279 crossref_primary_10_3233_JHD_200426 crossref_primary_10_1002_hbm_24504 crossref_primary_10_1016_S1474_4422_20_30343_4 crossref_primary_10_3233_JHD_200429 crossref_primary_10_1016_j_ygeno_2022_110469 crossref_primary_10_1111_cns_12828 crossref_primary_10_1016_j_nbd_2019_104569 crossref_primary_10_1016_j_molcel_2024_01_006 crossref_primary_10_1038_s41467_024_50626_0 crossref_primary_10_1007_s00018_022_04204_6 crossref_primary_10_1093_braincomms_fcae030 crossref_primary_10_1007_s12041_018_0953_5 crossref_primary_10_1007_s12035_017_0477_7 crossref_primary_10_1038_s41598_024_54277_5 crossref_primary_10_1016_j_celrep_2017_08_051 crossref_primary_10_4103_1673_5374_226377 crossref_primary_10_1093_brain_awx028 crossref_primary_10_1093_nar_gkab152 crossref_primary_10_1073_pnas_2302103120 crossref_primary_10_3233_JHD_210485 crossref_primary_10_1186_s13024_023_00672_x crossref_primary_10_1002_mds_27849 crossref_primary_10_1016_j_nbd_2020_104958 crossref_primary_10_1093_nar_gkae1155 crossref_primary_10_3389_fnins_2015_00509 crossref_primary_10_1093_brain_awz115 crossref_primary_10_3233_JHD_210491 crossref_primary_10_1007_s00415_018_9076_4 crossref_primary_10_1007_s12010_021_03523_x crossref_primary_10_1016_S1474_4422_17_30161_8 crossref_primary_10_1016_j_celrep_2019_02_008 crossref_primary_10_1093_hmg_ddw317 crossref_primary_10_1371_journal_pone_0161106 crossref_primary_10_1038_s41588_024_02055_4 crossref_primary_10_3389_fnins_2020_00863 crossref_primary_10_1093_toxsci_kfx086 crossref_primary_10_1038_s41582_023_00906_y crossref_primary_10_7554_eLife_89782_2 crossref_primary_10_1093_braincomms_fcae016 crossref_primary_10_1016_j_neurobiolaging_2018_06_024 crossref_primary_10_1016_j_copbio_2020_02_005 crossref_primary_10_3390_jpm14040380 crossref_primary_10_1016_j_gim_2024_101239 crossref_primary_10_1016_j_semcdb_2023_06_005 crossref_primary_10_1038_s41467_020_20605_2 crossref_primary_10_1016_j_cell_2017_09_040 crossref_primary_10_1074_jbc_RA117_001440 crossref_primary_10_1007_s13311_019_00768_7 crossref_primary_10_1080_07391102_2023_2257322 crossref_primary_10_1016_j_ajhg_2020_05_012 crossref_primary_10_3389_fncel_2019_00565 crossref_primary_10_1002_mdc3_12388 crossref_primary_10_1016_j_dnarep_2016_01_001 crossref_primary_10_1073_pnas_2408179122 crossref_primary_10_1371_journal_pone_0319253 crossref_primary_10_3233_JHD_219001 crossref_primary_10_1091_mbc_E18_09_0590 crossref_primary_10_1016_S1474_4422_16_30350_7 crossref_primary_10_1534_genetics_118_301594 crossref_primary_10_3390_ijms25094696 crossref_primary_10_3390_ijms22169025 crossref_primary_10_3233_JHD_150169 crossref_primary_10_1007_s12035_019_01824_1 crossref_primary_10_1016_j_mcp_2016_06_006 crossref_primary_10_1371_journal_pgen_1007274 crossref_primary_10_1097_JBR_0000000000000127 crossref_primary_10_1016_j_neuron_2020_01_004 crossref_primary_10_3390_biom14101278 crossref_primary_10_2174_1570159X21666230216104621 crossref_primary_10_1093_braincomms_fcaa031 crossref_primary_10_3389_fncel_2021_628010 crossref_primary_10_1038_s41598_019_55202_x crossref_primary_10_1093_procel_pwae042 crossref_primary_10_1093_braincomms_fcac309 crossref_primary_10_1192_bjo_2021_14 crossref_primary_10_1126_scitranslmed_adn4600 crossref_primary_10_1007_s11825_018_0190_6 crossref_primary_10_1002_mdc3_70047 crossref_primary_10_1016_j_neuron_2019_12_003 crossref_primary_10_1007_s12207_024_09496_6 crossref_primary_10_1038_s41582_020_0389_4 crossref_primary_10_1016_j_mcn_2017_07_004 crossref_primary_10_5582_irdr_2021_01148 crossref_primary_10_1002_ajmg_b_32514 crossref_primary_10_1016_j_ajhg_2018_07_017 crossref_primary_10_1016_j_praneu_2017_01_023 crossref_primary_10_1073_pnas_2021836118 crossref_primary_10_1080_19490976_2024_2418988 crossref_primary_10_1212_WNL_0000000000002858 crossref_primary_10_3389_fgene_2022_983668 crossref_primary_10_1111_ene_15291 crossref_primary_10_1016_j_stemcr_2017_01_022 crossref_primary_10_3389_fneur_2022_1034269 crossref_primary_10_4103_1673_5374_235241 crossref_primary_10_3389_fneur_2018_00190 crossref_primary_10_1093_nargab_lqac089 crossref_primary_10_1016_j_celrep_2021_109736 crossref_primary_10_1242_dev_156844 crossref_primary_10_1093_nar_gkae250 crossref_primary_10_1016_S2215_0366_16_30144_4 crossref_primary_10_3233_JHD_200414 crossref_primary_10_1097_01_NT_0000471694_26013_c1 crossref_primary_10_1093_braincomms_fcaa066 crossref_primary_10_3892_etm_2016_3566 crossref_primary_10_1084_jem_20160776 crossref_primary_10_1016_j_arr_2018_10_004 crossref_primary_10_3233_JHD_210510 crossref_primary_10_1038_s41467_022_35602_w crossref_primary_10_1073_pnas_1801772115 crossref_primary_10_1111_ene_15340 crossref_primary_10_1007_s13311_019_00712_9 crossref_primary_10_1016_j_cell_2019_06_036 crossref_primary_10_1093_hmg_ddz096 crossref_primary_10_1038_srep44849 crossref_primary_10_1016_j_jns_2018_09_022 crossref_primary_10_3233_JHD_229007 crossref_primary_10_1016_j_cell_2018_05_051 crossref_primary_10_1016_j_parkreldis_2018_05_016 crossref_primary_10_1093_brain_awad111 crossref_primary_10_1002_mds_27653 crossref_primary_10_1016_j_cell_2023_08_038 crossref_primary_10_1007_s12017_019_08572_4 crossref_primary_10_1212_WNL_0000000000011893 crossref_primary_10_1016_j_neurol_2022_03_009 crossref_primary_10_1016_j_neurol_2022_03_007 crossref_primary_10_1038_s41593_022_01033_5 crossref_primary_10_1016_j_mito_2017_07_004 crossref_primary_10_3389_fpsyt_2022_826135 crossref_primary_10_1186_s13287_021_02653_7 crossref_primary_10_3390_ijms26030966 crossref_primary_10_1002_mds_28896 crossref_primary_10_1016_j_biocel_2024_106662 crossref_primary_10_1038_s41588_019_0575_8 crossref_primary_10_3389_fnagi_2022_750629 crossref_primary_10_1016_j_nbd_2021_105604 crossref_primary_10_1093_jbmr_zjae044 crossref_primary_10_1038_s42003_021_02671_4 crossref_primary_10_1016_j_biopsych_2019_12_010 crossref_primary_10_2217_nmt_2019_0033 crossref_primary_10_1016_j_ebiom_2019_09_020 crossref_primary_10_1111_febs_14644 crossref_primary_10_1093_braincomms_fcae410 crossref_primary_10_1016_j_jmb_2019_03_004 crossref_primary_10_1007_s00294_018_0806_z crossref_primary_10_1093_hmg_ddaa184 crossref_primary_10_1016_j_ajhg_2018_10_015 crossref_primary_10_1016_j_freeradbiomed_2022_05_005 crossref_primary_10_1038_s41598_022_16516_5 crossref_primary_10_3233_JHD_231516 crossref_primary_10_1038_s41569_021_00566_9 crossref_primary_10_3390_ijms21020457 crossref_primary_10_1016_j_celrep_2022_111852 crossref_primary_10_1038_s43587_023_00538_3 crossref_primary_10_1186_s13023_023_02785_4 crossref_primary_10_52965_001c_36040 crossref_primary_10_3390_cells10040948 crossref_primary_10_1093_brain_awae012 crossref_primary_10_1093_hmg_ddaa196 crossref_primary_10_15252_embr_202154217 crossref_primary_10_1016_j_nicl_2020_102415 crossref_primary_10_1002_ajmg_a_61165 crossref_primary_10_1016_j_ajhg_2015_12_018 crossref_primary_10_1016_j_cell_2018_08_005 crossref_primary_10_1093_hmg_ddy077 crossref_primary_10_1073_pnas_2014610118 crossref_primary_10_1016_j_cell_2025_01_031 crossref_primary_10_1002_sim_7376 crossref_primary_10_15252_emmm_201606623 crossref_primary_10_1093_hmg_ddab170 crossref_primary_10_1002_mdc3_12312 crossref_primary_10_1093_brain_awae007 crossref_primary_10_1016_j_neuron_2023_09_036 crossref_primary_10_1093_hmg_ddaa283 crossref_primary_10_1038_s44318_024_00192_4 crossref_primary_10_1080_23723556_2019_1682924 crossref_primary_10_1016_j_pbj_2017_07_083 crossref_primary_10_1073_pnas_1914718117 crossref_primary_10_1002_mds_29427 crossref_primary_10_1002_acn3_51370 crossref_primary_10_1080_13696998_2024_2412470 crossref_primary_10_1016_j_semcdb_2021_08_008 crossref_primary_10_1016_j_jns_2019_116586 crossref_primary_10_1038_s41598_024_52667_3 crossref_primary_10_1002_slct_202300225 crossref_primary_10_1136_jmedgenet_2020_106963 crossref_primary_10_1111_jnc_14638 crossref_primary_10_1007_s11356_022_22830_2 crossref_primary_10_1016_j_ajhg_2024_03_015 crossref_primary_10_1212_WNL_0000000000213360 crossref_primary_10_1002_hbm_24191 crossref_primary_10_1002_mds_27239 crossref_primary_10_1371_journal_pgen_1007765 crossref_primary_10_1016_j_ajhg_2019_04_007 crossref_primary_10_1038_s41467_021_24387_z crossref_primary_10_1016_j_brainresbull_2022_01_021 crossref_primary_10_3390_ijms23105411 crossref_primary_10_1093_hmg_ddaa061 crossref_primary_10_3233_JHD_220536 crossref_primary_10_1002_mdc3_13625 crossref_primary_10_1016_j_ajhg_2017_01_016 crossref_primary_10_1093_brain_awae063 crossref_primary_10_1038_s41467_020_17374_3 crossref_primary_10_3390_ijms22168363 crossref_primary_10_1186_s40478_022_01379_8 crossref_primary_10_1172_JCI164792 crossref_primary_10_1016_j_nbd_2020_105155 crossref_primary_10_1002_ajmg_a_62463 crossref_primary_10_1038_srep16247 crossref_primary_10_1073_pnas_1912602117 crossref_primary_10_1073_pnas_2406308121 crossref_primary_10_3389_fncel_2022_837576 crossref_primary_10_3390_biology14020129 crossref_primary_10_3233_JHD_180320 crossref_primary_10_1016_j_ajhg_2024_04_015 crossref_primary_10_1126_sciadv_abf7906 crossref_primary_10_1080_13554794_2018_1428353 crossref_primary_10_3233_JHD_180324 crossref_primary_10_1002_sim_10143 crossref_primary_10_1016_j_ajhg_2017_01_008 crossref_primary_10_1002_gepi_21996 crossref_primary_10_1038_s41580_021_00382_6 crossref_primary_10_1074_jbc_REV119_007678 crossref_primary_10_1186_s12883_020_01671_x crossref_primary_10_1038_s41598_019_51390_8 crossref_primary_10_1093_hmg_ddaa279 crossref_primary_10_1111_nan_12514 crossref_primary_10_1212_CON_0000000000001169 crossref_primary_10_1371_journal_pgen_1006137 crossref_primary_10_1002_mus_27559 crossref_primary_10_1016_j_phrs_2016_05_005 crossref_primary_10_1016_j_dnarep_2018_07_001 crossref_primary_10_1007_s11910_017_0711_8 crossref_primary_10_1186_s12915_020_0750_5 crossref_primary_10_1038_s41582_021_00465_0 crossref_primary_10_1016_j_mcpro_2022_100275 crossref_primary_10_1016_j_biopsych_2020_05_034 crossref_primary_10_1080_14737175_2020_1785873 crossref_primary_10_1016_j_neuron_2019_01_039 crossref_primary_10_1080_14737175_2019_1631161 crossref_primary_10_3233_JHD_180339 crossref_primary_10_1016_j_dnarep_2025_103817 crossref_primary_10_1002_ajmg_b_32719 crossref_primary_10_1016_j_nbd_2020_105021 crossref_primary_10_7554_eLife_42988 crossref_primary_10_1093_hmg_ddaa139 crossref_primary_10_3233_JHD_231509 crossref_primary_10_1097_WCO_0000000000000352 crossref_primary_10_1038_s41467_018_06281_3 crossref_primary_10_1007_s11427_017_9186_7 crossref_primary_10_1042_NS20200010 crossref_primary_10_3390_biology10020163 |
Cites_doi | 10.1016/j.ajhg.2012.01.005 10.1073/pnas.1309475110 10.1001/archneur.63.7.991 10.1038/nature08490 10.1038/nature08494 10.1371/journal.pone.0029522 10.2307/2529826 10.1002/mds.26001 10.1136/jnnp.2007.128728 10.1093/hmg/ddp242 10.1016/j.molmed.2012.04.004 10.1016/j.tibs.2006.06.009 10.1073/pnas.1211289109 10.1038/nrneurol.2014.24 10.1016/0092-8674(93)90585-E 10.1086/522374 10.3390/genes5030497 10.1016/j.cell.2010.06.022 10.1074/jbc.M110.202283 10.1038/ng.3120 10.1016/j.cell.2010.06.021 10.1002/gepi.20317 10.1086/378133 10.1371/journal.pgen.1003930 10.1038/ng2040 10.1038/srep00822 10.1073/pnas.0308679101 10.1128/MCB.00457-14 10.1002/ajmg.a.20190 10.1002/mds.26020 10.1002/gepi.20636 10.1126/science.1192656 10.1186/1471-2350-7-71 10.1016/j.nbd.2008.09.014 10.1212/WNL.0b013e318249f683 10.3389/fnmol.2014.00077 10.1016/j.ajhg.2009.05.011 |
ContentType | Journal Article |
Contributor | Lucente, Diane Landwehrmeyer, G Bernhard MacDonald, Marcy E Orth, Michael Ramos, Eliana Marisa Shoulson, Ira Kwak, Seung Chao, Michael J Gusella, James F Gillis, Tammy Holmans, Peter Mysore, Jayalakshmi Srinidhi Han, Jun Pinto, Ricardo Mouro Jones, Lesley Mahmoudi, Mithra Abu-Elneel, Kawther Lee, Jong-Min Wheeler, Vanessa C Vonsattel, Jean Paul G Stone, Timothy C Paulsen, Jane S Escott-Price, Valentina Harold, Denise Vedernikov, Alexey Dorsey, E Ray Myers, Richard H |
Contributor_xml | – sequence: 1 givenname: Jong-Min surname: Lee fullname: Lee, Jong-Min – sequence: 2 givenname: Vanessa C surname: Wheeler fullname: Wheeler, Vanessa C – sequence: 3 givenname: Michael J surname: Chao fullname: Chao, Michael J – sequence: 4 givenname: Jean Paul G surname: Vonsattel fullname: Vonsattel, Jean Paul G – sequence: 5 givenname: Ricardo Mouro surname: Pinto fullname: Pinto, Ricardo Mouro – sequence: 6 givenname: Diane surname: Lucente fullname: Lucente, Diane – sequence: 7 givenname: Kawther surname: Abu-Elneel fullname: Abu-Elneel, Kawther – sequence: 8 givenname: Eliana Marisa surname: Ramos fullname: Ramos, Eliana Marisa – sequence: 9 givenname: Jayalakshmi Srinidhi surname: Mysore fullname: Mysore, Jayalakshmi Srinidhi – sequence: 10 givenname: Tammy surname: Gillis fullname: Gillis, Tammy – sequence: 11 givenname: Marcy E surname: MacDonald fullname: MacDonald, Marcy E – sequence: 12 givenname: James F surname: Gusella fullname: Gusella, James F – sequence: 13 givenname: Denise surname: Harold fullname: Harold, Denise – sequence: 14 givenname: Timothy C surname: Stone fullname: Stone, Timothy C – sequence: 15 givenname: Valentina surname: Escott-Price fullname: Escott-Price, Valentina – sequence: 16 givenname: Jun surname: Han fullname: Han, Jun – sequence: 17 givenname: Alexey surname: Vedernikov fullname: Vedernikov, Alexey – sequence: 18 givenname: Peter surname: Holmans fullname: Holmans, Peter – sequence: 19 givenname: Lesley surname: Jones fullname: Jones, Lesley – sequence: 20 givenname: Seung surname: Kwak fullname: Kwak, Seung – sequence: 21 givenname: Mithra surname: Mahmoudi fullname: Mahmoudi, Mithra – sequence: 22 givenname: Michael surname: Orth fullname: Orth, Michael – sequence: 23 givenname: G Bernhard surname: Landwehrmeyer fullname: Landwehrmeyer, G Bernhard – sequence: 24 givenname: Jane S surname: Paulsen fullname: Paulsen, Jane S – sequence: 25 givenname: E Ray surname: Dorsey fullname: Dorsey, E Ray – sequence: 26 givenname: Ira surname: Shoulson fullname: Shoulson, Ira – sequence: 27 givenname: Richard H surname: Myers fullname: Myers, Richard H |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. |
CorporateAuthor | Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium |
CorporateAuthor_xml | – name: Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cell.2015.07.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 526 |
ExternalDocumentID | PMC4524551 26232222 10_1016_j_cell_2015_07_003 S0092867415008405 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/L023784/2 – fundername: NINDS NIH HHS grantid: R01 NS040068 – fundername: NINDS NIH HHS grantid: U01NS082079 – fundername: NHGRI NIH HHS grantid: X01HG006074 – fundername: NINDS NIH HHS grantid: P50NS016367 – fundername: NINDS NIH HHS grantid: P50 NS016367 – fundername: NINDS NIH HHS grantid: U01 NS082079 – fundername: Medical Research Council grantid: MR/L010305/1 – fundername: NINDS NIH HHS grantid: R01 NS091161 – fundername: NHGRI NIH HHS grantid: R01HG002449 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AAUCE AAVLU AAXJY AAXUO AAYJJ ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGHSJ AGKMS AHHHB AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAHBH AAIKJ AALRI AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c455t-d3f2328e7d13529e100adb9a65a1a0adecc5a53a889de1ffcb4419d71a014c973 |
IEDL.DBID | IXB |
ISSN | 0092-8674 |
IngestDate | Thu Aug 21 14:13:37 EDT 2025 Fri Jul 11 13:06:09 EDT 2025 Mon Jul 21 05:58:46 EDT 2025 Tue Jul 01 02:16:52 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Fri Feb 23 02:30:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-d3f2328e7d13529e100adb9a65a1a0adecc5a53a889de1ffcb4419d71a014c973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867415008405 |
PMID | 26232222 |
PQID | 1701342337 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4524551 proquest_miscellaneous_1701342337 pubmed_primary_26232222 crossref_primary_10_1016_j_cell_2015_07_003 crossref_citationtrail_10_1016_j_cell_2015_07_003 elsevier_sciencedirect_doi_10_1016_j_cell_2015_07_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-30 |
PublicationDateYYYYMMDD | 2015-07-30 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | (bib14) 2006; 63 Aronin, DiFiglia (bib2) 2014; 29 Chaudhury, Stroik, Sobeck (bib5) 2014; 34 Hnia, Vaccari, Bolino, Laporte (bib12) 2012; 18 Lee, Gillis, Mysore, Ramos, Myers, Hayden, Morrison, Nance, Ross, Margolis (bib19) 2012; 90 Djoussé, Knowlton, Hayden, Almqvist, Brinkman, Ross, Margolis, Rosenblatt, Durr, Dode (bib6) 2003; 119A Dorsey (bib7) 2012; 7 Pinto, Dragileva, Kirby, Lloret, Lopez, St Claire, Panigrahi, Hou, Holloway, Gillis (bib30) 2013; 9 Holmans, Green, Pahwa, Ferreira, Purcell, Sklar, Owen, O’Donovan, Craddock (bib13) 2009; 85 (bib36) 1993; 72 (bib15) 2008; 65 Ionita-Laza, Xu, Makarov, Buxbaum, Roos, Gogos, Karayiorgou (bib16) 2014; 111 Pontarin, Ferraro, Rampazzo, Kollberg, Holme, Reichard, Bianchi (bib31) 2011; 286 Gayán, Brocklebank, Andresen, Alkorta-Aranburu, Zameel Cader, Roberts, Cherny, Wexler, Cardon, Housman (bib9) 2008; 32 Wang, Li, Bucan (bib37) 2007; 81 MacKay, Déclais, Lundin, Agostinho, Deans, MacArtney, Hofmann, Gartner, West, Helleday (bib24) 2010; 142 Ortega, Lucas (bib27) 2014; 7 Lee, Ramos, Lee, Gillis, Mysore, Hayden, Warby, Morrison, Nance, Ross (bib20) 2012; 78 Kratz, Schöpf, Kaden, Sendoel, Eberhard, Lademann, Cannavó, Sartori, Hengartner, Jiricny (bib17) 2010; 142 Sehgal, Sheahan, O’Connell, Hanly, Martin, Winter (bib34) 2014; 5 Pontarin, Ferraro, Bee, Reichard, Bianchi (bib32) 2012; 109 Orth, Handley, Schwenke, Dunnett, Craufurd, Ho, Wild, Tabrizi, Landwehrmeyer (bib28) 2010; 2 Swami, Hendricks, Gillis, Massood, Mysore, Myers, Wheeler (bib35) 2009; 18 Wexler, Lorimer, Porter, Gomez, Moskowitz, Shackell, Marder, Penchaszadeh, Roberts, Gayán (bib39) 2004; 101 Gusella, MacDonald (bib10) 2006; 31 Moskvina, O’Dushlaine, Purcell, Craddock, Holmans, O’Donovan (bib26) 2011; 35 Paulsen, Langbehn, Stout, Aylward, Ross, Nance, Guttman, Johnson, MacDonald, Beglinger (bib29) 2008; 79 Brown (bib4) 1975; 31 Kuo, Sy, Xue, Chi, Lee, Yen, Chiang, Chang, Chu, Yen (bib18) 2012; 2 Bourdon, Minai, Serre, Jais, Sarzi, Aubert, Chrétien, de Lonlay, Paquis-Flucklinger, Arakawa (bib3) 2007; 39 Weiss, Arking, Daly, Chakravarti (bib38) 2009; 461 Antonacci, Dennis, Huddleston, Sudmant, Steinberg, Rosenfeld, Miroballo, Graves, Vives, Malig (bib1) 2014; 46 Li, Hayden, Warby, Durr, Morrison, Nance, Ross, Margolis, Rosenblatt, Squitieri (bib22) 2006; 7 Ross, Aylward, Wild, Langbehn, Long, Warner, Scahill, Leavitt, Stout, Paulsen (bib33) 2014; 10 Liu, Ghosal, Yuan, Chen, Huang (bib23) 2010; 329 Manolio, Collins, Cox, Goldstein, Hindorff, Hunter, McCarthy, Ramos, Cardon, Chakravarti (bib25) 2009; 461 Gusella, MacDonald, Lee (bib11) 2014; 29 Dragileva, Hendricks, Teed, Gillis, Lopez, Friedberg, Kucherlapati, Edelmann, Lunetta, MacDonald, Wheeler (bib8) 2009; 33 Li, Hayden, Almqvist, Brinkman, Durr, Dodé, Morrison, Suchowersky, Ross, Margolis (bib21) 2003; 73 Wexler (10.1016/j.cell.2015.07.003_bib39) 2004; 101 (10.1016/j.cell.2015.07.003_bib15) 2008; 65 Antonacci (10.1016/j.cell.2015.07.003_bib1) 2014; 46 Gusella (10.1016/j.cell.2015.07.003_bib11) 2014; 29 Orth (10.1016/j.cell.2015.07.003_bib28) 2010; 2 (10.1016/j.cell.2015.07.003_bib14) 2006; 63 Dorsey (10.1016/j.cell.2015.07.003_bib7) 2012; 7 (10.1016/j.cell.2015.07.003_bib36) 1993; 72 Dragileva (10.1016/j.cell.2015.07.003_bib8) 2009; 33 Paulsen (10.1016/j.cell.2015.07.003_bib29) 2008; 79 Gayán (10.1016/j.cell.2015.07.003_bib9) 2008; 32 Kuo (10.1016/j.cell.2015.07.003_bib18) 2012; 2 Li (10.1016/j.cell.2015.07.003_bib22) 2006; 7 Swami (10.1016/j.cell.2015.07.003_bib35) 2009; 18 Moskvina (10.1016/j.cell.2015.07.003_bib26) 2011; 35 Pinto (10.1016/j.cell.2015.07.003_bib30) 2013; 9 Ionita-Laza (10.1016/j.cell.2015.07.003_bib16) 2014; 111 Pontarin (10.1016/j.cell.2015.07.003_bib32) 2012; 109 Weiss (10.1016/j.cell.2015.07.003_bib38) 2009; 461 Bourdon (10.1016/j.cell.2015.07.003_bib3) 2007; 39 Gusella (10.1016/j.cell.2015.07.003_bib10) 2006; 31 Ortega (10.1016/j.cell.2015.07.003_bib27) 2014; 7 Chaudhury (10.1016/j.cell.2015.07.003_bib5) 2014; 34 Djoussé (10.1016/j.cell.2015.07.003_bib6) 2003; 119A Liu (10.1016/j.cell.2015.07.003_bib23) 2010; 329 Aronin (10.1016/j.cell.2015.07.003_bib2) 2014; 29 Lee (10.1016/j.cell.2015.07.003_bib19) 2012; 90 Pontarin (10.1016/j.cell.2015.07.003_bib31) 2011; 286 Wang (10.1016/j.cell.2015.07.003_bib37) 2007; 81 Kratz (10.1016/j.cell.2015.07.003_bib17) 2010; 142 Lee (10.1016/j.cell.2015.07.003_bib20) 2012; 78 Ross (10.1016/j.cell.2015.07.003_bib33) 2014; 10 Sehgal (10.1016/j.cell.2015.07.003_bib34) 2014; 5 Brown (10.1016/j.cell.2015.07.003_bib4) 1975; 31 Li (10.1016/j.cell.2015.07.003_bib21) 2003; 73 Hnia (10.1016/j.cell.2015.07.003_bib12) 2012; 18 MacKay (10.1016/j.cell.2015.07.003_bib24) 2010; 142 Manolio (10.1016/j.cell.2015.07.003_bib25) 2009; 461 Holmans (10.1016/j.cell.2015.07.003_bib13) 2009; 85 |
References_xml | – volume: 29 start-page: 1359 year: 2014 end-page: 1365 ident: bib11 article-title: Genetic modifiers of Huntington’s disease publication-title: Mov. Disord. – volume: 73 start-page: 682 year: 2003 end-page: 687 ident: bib21 article-title: A genome scan for modifiers of age at onset in Huntington disease: The HD MAPS study publication-title: Am. J. Hum. Genet. – volume: 9 start-page: e1003930 year: 2013 ident: bib30 article-title: Mismatch repair genes publication-title: PLoS Genet. – volume: 78 start-page: 690 year: 2012 end-page: 695 ident: bib20 article-title: CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion publication-title: Neurology – volume: 90 start-page: 434 year: 2012 end-page: 444 ident: bib19 article-title: Common SNP-based haplotype analysis of the 4p16.3 Huntington disease gene region publication-title: Am. J. Hum. Genet. – volume: 2 start-page: 822 year: 2012 ident: bib18 article-title: RRM2B suppresses activation of the oxidative stress pathway and is up-regulated by p53 during senescence publication-title: Sci Rep – volume: 119A start-page: 279 year: 2003 end-page: 282 ident: bib6 article-title: Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease publication-title: Am. J. Med. Genet. A. – volume: 72 start-page: 971 year: 1993 end-page: 983 ident: bib36 article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes publication-title: Cell – volume: 31 start-page: 533 year: 2006 end-page: 540 ident: bib10 article-title: Huntington’s disease: seeing the pathogenic process through a genetic lens publication-title: Trends Biochem. Sci. – volume: 461 start-page: 802 year: 2009 end-page: 808 ident: bib38 article-title: A genome-wide linkage and association scan reveals novel loci for autism publication-title: Nature – volume: 63 start-page: 991 year: 2006 end-page: 996 ident: bib14 article-title: At risk for Huntington disease: The PHAROS (Prospective Huntington At Risk Observational Study) cohort enrolled publication-title: Arch. Neurol. – volume: 18 start-page: 317 year: 2012 end-page: 327 ident: bib12 article-title: Myotubularin phosphoinositide phosphatases: cellular functions and disease pathophysiology publication-title: Trends Mol. Med. – volume: 81 start-page: 1278 year: 2007 end-page: 1283 ident: bib37 article-title: Pathway-based approaches for analysis of genomewide association studies publication-title: Am. J. Hum. Genet. – volume: 2 start-page: RRN1184 year: 2010 ident: bib28 article-title: Observing Huntington’s Disease: the European Huntington’s Disease Network’s REGISTRY publication-title: PLoS Curr. – volume: 35 start-page: 861 year: 2011 end-page: 866 ident: bib26 article-title: Evaluation of an approximation method for assessment of overall significance of multiple-dependent tests in a genomewide association study publication-title: Genet. Epidemiol. – volume: 39 start-page: 776 year: 2007 end-page: 780 ident: bib3 article-title: Mutation of publication-title: Nat. Genet. – volume: 34 start-page: 3939 year: 2014 end-page: 3954 ident: bib5 article-title: FANCD2-controlled chromatin access of the Fanconi-associated nuclease FAN1 is crucial for the recovery of stalled replication forks publication-title: Mol. Cell. Biol. – volume: 33 start-page: 37 year: 2009 end-page: 47 ident: bib8 article-title: Intergenerational and striatal CAG repeat instability in Huntington’s disease knock-in mice involve different DNA repair genes publication-title: Neurobiol. Dis. – volume: 111 start-page: 343 year: 2014 end-page: 348 ident: bib16 article-title: Scan statistic-based analysis of exome sequencing data identifies publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 978 year: 1975 end-page: 992 ident: bib4 article-title: A method for combining non-independent, one-sided tests of significance publication-title: Biometrics – volume: 85 start-page: 13 year: 2009 end-page: 24 ident: bib13 article-title: Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder publication-title: Am. J. Hum. Genet. – volume: 46 start-page: 1293 year: 2014 end-page: 1302 ident: bib1 article-title: Palindromic publication-title: Nat. Genet. – volume: 7 start-page: 77 year: 2014 ident: bib27 article-title: Ubiquitin-proteasome system involvement in Huntington’s disease publication-title: Front. Mol. Neurosci. – volume: 101 start-page: 3498 year: 2004 end-page: 3503 ident: bib39 article-title: Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset publication-title: Proc. Natl. Acad. Sci. USA – volume: 32 start-page: 445 year: 2008 end-page: 453 ident: bib9 article-title: Genomewide linkage scan reveals novel loci modifying age of onset of Huntington’s disease in the Venezuelan HD kindreds publication-title: Genet. Epidemiol. – volume: 142 start-page: 65 year: 2010 end-page: 76 ident: bib24 article-title: Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2 publication-title: Cell – volume: 109 start-page: 13302 year: 2012 end-page: 13307 ident: bib32 article-title: Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 3039 year: 2009 end-page: 3047 ident: bib35 article-title: Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset publication-title: Hum. Mol. Genet. – volume: 142 start-page: 77 year: 2010 end-page: 88 ident: bib17 article-title: Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents publication-title: Cell – volume: 461 start-page: 747 year: 2009 end-page: 753 ident: bib25 article-title: Finding the missing heritability of complex diseases publication-title: Nature – volume: 7 start-page: 71 year: 2006 ident: bib22 article-title: Genome-wide significance for a modifier of age at neurological onset in Huntington’s disease at 6q23-24: the HD MAPS study publication-title: BMC Med. Genet. – volume: 29 start-page: 1455 year: 2014 end-page: 1461 ident: bib2 article-title: Huntingtin-lowering strategies in Huntington’s disease: antisense oligonucleotides, small RNAs, and gene editing publication-title: Mov. Disord. – volume: 65 start-page: 1582 year: 2008 end-page: 1589 ident: bib15 article-title: Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: the TREND-HD study publication-title: Arch. Neurol. – volume: 79 start-page: 874 year: 2008 end-page: 880 ident: bib29 article-title: Detection of Huntington’s disease decades before diagnosis: the Predict-HD study publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 10 start-page: 204 year: 2014 end-page: 216 ident: bib33 article-title: Huntington disease: natural history, biomarkers and prospects for therapeutics publication-title: Nat Rev Neurol – volume: 7 start-page: e29522 year: 2012 ident: bib7 article-title: Characterization of a large group of individuals with huntington disease and their relatives enrolled in the COHORT study publication-title: PLoS ONE – volume: 329 start-page: 693 year: 2010 end-page: 696 ident: bib23 article-title: FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair publication-title: Science – volume: 5 start-page: 497 year: 2014 end-page: 507 ident: bib34 article-title: Lynch syndrome: an updated review publication-title: Genes (Basel) – volume: 286 start-page: 11132 year: 2011 end-page: 11140 ident: bib31 article-title: Deoxyribonucleotide metabolism in cycling and resting human fibroblasts with a missense mutation in p53R2, a subunit of ribonucleotide reductase publication-title: J. Biol. Chem. – volume: 90 start-page: 434 year: 2012 ident: 10.1016/j.cell.2015.07.003_bib19 article-title: Common SNP-based haplotype analysis of the 4p16.3 Huntington disease gene region publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2012.01.005 – volume: 111 start-page: 343 year: 2014 ident: 10.1016/j.cell.2015.07.003_bib16 article-title: Scan statistic-based analysis of exome sequencing data identifies FAN1 at 15q13.3 as a susceptibility gene for schizophrenia and autism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1309475110 – volume: 63 start-page: 991 year: 2006 ident: 10.1016/j.cell.2015.07.003_bib14 article-title: At risk for Huntington disease: The PHAROS (Prospective Huntington At Risk Observational Study) cohort enrolled publication-title: Arch. Neurol. doi: 10.1001/archneur.63.7.991 – volume: 461 start-page: 802 year: 2009 ident: 10.1016/j.cell.2015.07.003_bib38 article-title: A genome-wide linkage and association scan reveals novel loci for autism publication-title: Nature doi: 10.1038/nature08490 – volume: 461 start-page: 747 year: 2009 ident: 10.1016/j.cell.2015.07.003_bib25 article-title: Finding the missing heritability of complex diseases publication-title: Nature doi: 10.1038/nature08494 – volume: 7 start-page: e29522 year: 2012 ident: 10.1016/j.cell.2015.07.003_bib7 article-title: Characterization of a large group of individuals with huntington disease and their relatives enrolled in the COHORT study publication-title: PLoS ONE doi: 10.1371/journal.pone.0029522 – volume: 31 start-page: 978 year: 1975 ident: 10.1016/j.cell.2015.07.003_bib4 article-title: A method for combining non-independent, one-sided tests of significance publication-title: Biometrics doi: 10.2307/2529826 – volume: 29 start-page: 1359 year: 2014 ident: 10.1016/j.cell.2015.07.003_bib11 article-title: Genetic modifiers of Huntington’s disease publication-title: Mov. Disord. doi: 10.1002/mds.26001 – volume: 79 start-page: 874 year: 2008 ident: 10.1016/j.cell.2015.07.003_bib29 article-title: Detection of Huntington’s disease decades before diagnosis: the Predict-HD study publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2007.128728 – volume: 18 start-page: 3039 year: 2009 ident: 10.1016/j.cell.2015.07.003_bib35 article-title: Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp242 – volume: 18 start-page: 317 year: 2012 ident: 10.1016/j.cell.2015.07.003_bib12 article-title: Myotubularin phosphoinositide phosphatases: cellular functions and disease pathophysiology publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2012.04.004 – volume: 2 start-page: RRN1184 year: 2010 ident: 10.1016/j.cell.2015.07.003_bib28 article-title: Observing Huntington’s Disease: the European Huntington’s Disease Network’s REGISTRY publication-title: PLoS Curr. – volume: 31 start-page: 533 year: 2006 ident: 10.1016/j.cell.2015.07.003_bib10 article-title: Huntington’s disease: seeing the pathogenic process through a genetic lens publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2006.06.009 – volume: 109 start-page: 13302 year: 2012 ident: 10.1016/j.cell.2015.07.003_bib32 article-title: Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1211289109 – volume: 10 start-page: 204 year: 2014 ident: 10.1016/j.cell.2015.07.003_bib33 article-title: Huntington disease: natural history, biomarkers and prospects for therapeutics publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2014.24 – volume: 72 start-page: 971 year: 1993 ident: 10.1016/j.cell.2015.07.003_bib36 article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes publication-title: Cell doi: 10.1016/0092-8674(93)90585-E – volume: 65 start-page: 1582 year: 2008 ident: 10.1016/j.cell.2015.07.003_bib15 article-title: Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: the TREND-HD study publication-title: Arch. Neurol. – volume: 81 start-page: 1278 year: 2007 ident: 10.1016/j.cell.2015.07.003_bib37 article-title: Pathway-based approaches for analysis of genomewide association studies publication-title: Am. J. Hum. Genet. doi: 10.1086/522374 – volume: 5 start-page: 497 year: 2014 ident: 10.1016/j.cell.2015.07.003_bib34 article-title: Lynch syndrome: an updated review publication-title: Genes (Basel) doi: 10.3390/genes5030497 – volume: 142 start-page: 77 year: 2010 ident: 10.1016/j.cell.2015.07.003_bib17 article-title: Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents publication-title: Cell doi: 10.1016/j.cell.2010.06.022 – volume: 286 start-page: 11132 year: 2011 ident: 10.1016/j.cell.2015.07.003_bib31 article-title: Deoxyribonucleotide metabolism in cycling and resting human fibroblasts with a missense mutation in p53R2, a subunit of ribonucleotide reductase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.202283 – volume: 46 start-page: 1293 year: 2014 ident: 10.1016/j.cell.2015.07.003_bib1 article-title: Palindromic GOLGA8 core duplicons promote chromosome 15q13.3 microdeletion and evolutionary instability publication-title: Nat. Genet. doi: 10.1038/ng.3120 – volume: 142 start-page: 65 year: 2010 ident: 10.1016/j.cell.2015.07.003_bib24 article-title: Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2 publication-title: Cell doi: 10.1016/j.cell.2010.06.021 – volume: 32 start-page: 445 year: 2008 ident: 10.1016/j.cell.2015.07.003_bib9 article-title: Genomewide linkage scan reveals novel loci modifying age of onset of Huntington’s disease in the Venezuelan HD kindreds publication-title: Genet. Epidemiol. doi: 10.1002/gepi.20317 – volume: 73 start-page: 682 year: 2003 ident: 10.1016/j.cell.2015.07.003_bib21 article-title: A genome scan for modifiers of age at onset in Huntington disease: The HD MAPS study publication-title: Am. J. Hum. Genet. doi: 10.1086/378133 – volume: 9 start-page: e1003930 year: 2013 ident: 10.1016/j.cell.2015.07.003_bib30 article-title: Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington’s disease mice: genome-wide and candidate approaches publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003930 – volume: 39 start-page: 776 year: 2007 ident: 10.1016/j.cell.2015.07.003_bib3 article-title: Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion publication-title: Nat. Genet. doi: 10.1038/ng2040 – volume: 2 start-page: 822 year: 2012 ident: 10.1016/j.cell.2015.07.003_bib18 article-title: RRM2B suppresses activation of the oxidative stress pathway and is up-regulated by p53 during senescence publication-title: Sci Rep doi: 10.1038/srep00822 – volume: 101 start-page: 3498 year: 2004 ident: 10.1016/j.cell.2015.07.003_bib39 article-title: Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0308679101 – volume: 34 start-page: 3939 year: 2014 ident: 10.1016/j.cell.2015.07.003_bib5 article-title: FANCD2-controlled chromatin access of the Fanconi-associated nuclease FAN1 is crucial for the recovery of stalled replication forks publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00457-14 – volume: 119A start-page: 279 year: 2003 ident: 10.1016/j.cell.2015.07.003_bib6 article-title: Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease publication-title: Am. J. Med. Genet. A. doi: 10.1002/ajmg.a.20190 – volume: 29 start-page: 1455 year: 2014 ident: 10.1016/j.cell.2015.07.003_bib2 article-title: Huntingtin-lowering strategies in Huntington’s disease: antisense oligonucleotides, small RNAs, and gene editing publication-title: Mov. Disord. doi: 10.1002/mds.26020 – volume: 35 start-page: 861 year: 2011 ident: 10.1016/j.cell.2015.07.003_bib26 article-title: Evaluation of an approximation method for assessment of overall significance of multiple-dependent tests in a genomewide association study publication-title: Genet. Epidemiol. doi: 10.1002/gepi.20636 – volume: 329 start-page: 693 year: 2010 ident: 10.1016/j.cell.2015.07.003_bib23 article-title: FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair publication-title: Science doi: 10.1126/science.1192656 – volume: 7 start-page: 71 year: 2006 ident: 10.1016/j.cell.2015.07.003_bib22 article-title: Genome-wide significance for a modifier of age at neurological onset in Huntington’s disease at 6q23-24: the HD MAPS study publication-title: BMC Med. Genet. doi: 10.1186/1471-2350-7-71 – volume: 33 start-page: 37 year: 2009 ident: 10.1016/j.cell.2015.07.003_bib8 article-title: Intergenerational and striatal CAG repeat instability in Huntington’s disease knock-in mice involve different DNA repair genes publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2008.09.014 – volume: 78 start-page: 690 year: 2012 ident: 10.1016/j.cell.2015.07.003_bib20 article-title: CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion publication-title: Neurology doi: 10.1212/WNL.0b013e318249f683 – volume: 7 start-page: 77 year: 2014 ident: 10.1016/j.cell.2015.07.003_bib27 article-title: Ubiquitin-proteasome system involvement in Huntington’s disease publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2014.00077 – volume: 85 start-page: 13 year: 2009 ident: 10.1016/j.cell.2015.07.003_bib13 article-title: Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2009.05.011 |
SSID | ssj0008555 |
Score | 2.6335592 |
Snippet | As a Mendelian neurodegenerative disorder, the genetic risk of Huntington’s disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is... As a Mendelian neurodegenerative disorder, the genetic risk of Huntington's disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is... As a Mendelian neurodegenerative disorder, the genetic risk of Huntington’s disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 516 |
SubjectTerms | Adaptor Proteins, Signal Transducing - metabolism Age of Onset Chromosomes, Human, Pair 15 Chromosomes, Human, Pair 8 Genes, Modifier Genome-Wide Association Study Humans Huntingtin Protein Huntington Disease - epidemiology Huntington Disease - genetics Huntington Disease - physiopathology MutL Protein Homolog 1 Nerve Tissue Proteins - genetics Nuclear Proteins - metabolism Trinucleotide Repeats |
Title | Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease |
URI | https://dx.doi.org/10.1016/j.cell.2015.07.003 https://www.ncbi.nlm.nih.gov/pubmed/26232222 https://www.proquest.com/docview/1701342337 https://pubmed.ncbi.nlm.nih.gov/PMC4524551 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCN6k2LRJ2xx9LYugXlT2FpI2wRXpilsP3vwb_j1_iTNNurgKHry1zQTSmXTyNZn5hpDDxMRJKZIsyrg18INiZWRMlkVWxqXOM8dYhbnDV9fZ4I5fDsVwjpx1uTAYVhl8v_fprbcOT46DNo-fRyPM8ZVJkeGKiKTwLY9pyos2iW94OvXGhRC-ioGELx-kQ-KMj_HCzXEM7xItgWdXOOv34vQbfP6Mofy2KPWXyVJAk_TED3iFzNl6lSz4-pJva-Tep-G6sC9Hx44izTQI076vs0ObB93Qq3E1cm80cIQ-0Zt6YhuUHvhCEoAPP98_JvTcn-ask7v-xe3ZIAqFFKKSC9FEVeoAOBU2rxjgLWlZHOvKSJ0JzTRcghmFFqkuCllZ5lxpACTJKodGxkuZpxtkvh7XdotQA11sYvNCS81dIg3jVcEdQ9yFRSZ6hHUaVGVgGcdiF0-qCyd7VKh1hVpXMR5-pz1yNO3z7Dk2_pQWnWHUzExRsAj82e-gs6KCTwibdW3HrxOFlPRIhJjmPbLprTodRwLwECAUvFc-Y--pANJzz7bUo4eWppuLBLTPtv853h2yiHftPnK8S-abl1e7BwCoMfvtDP8CmeQFJQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELaiRFV7qZI-t3nUlXqrUDBgwMe8VpvHbi9JtTfLBlshiiDqkkNu_Rv9e_klmcEGdbNSDr0hPJbMDNgf9sz3EfI90mFU8CgN0sRo-EExItA6TQMjwkJlqWWsxNrh6SydXCVncz5fI0d9LQymVfq5383p3Wzt7-x7b-7fVRXW-IooT3FFRFJ45DHdADSQoX7D6fxwmI5zzp2MgYBPH8x95YxL8sLdcczv4h2DZ6-ctbo6raLP50mU_6xK403y1sNJeuBGvEXWTP2OvHICkw_vyS9Xh2v9xhxtLEWeaTCmYye0Q9tr1dJpU1b2gXqS0Fv6s16YFq0nTkkCAOLjn78LeuyOcz6Qq_HJ5dEk8EoKQZFw3gZlbAE55SYrGQAuYVgYqlILlXLFFFxCHLniscpzURpmbaEBJYkyg0aWFCKLP5L1uqnNZ0I1dDGRyXIlVGIjoVlS5ollCLxQZWJEWO9BWXiacVS7uJV9PtmNRK9L9LoM8fQ7HpEfQ587R7LxojXvAyOXXhUJq8CL_b71UZTwDWGzqk1zv5DISY9MiHE2Ip9cVIdxRIAPAUPBc2VL8R4MkJ97uaWurjue7oRH4H325T_H-5W8nlxOL-TF6ex8m7zBlm5TOdwh6-3ve7MLaKjVe93b_gS4_AhE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Genetic+Factors+that+Modify+Clinical+Onset+of+Huntington%E2%80%99s+Disease&rft.jtitle=Cell&rft.date=2015-07-30&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=162&rft.issue=3&rft.spage=516&rft.epage=526&rft_id=info:doi/10.1016%2Fj.cell.2015.07.003&rft_id=info%3Apmid%2F26232222&rft.externalDocID=PMC4524551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |