Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease

As a Mendelian neurodegenerative disorder, the genetic risk of Huntington’s disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 162; no. 3; pp. 516 - 526
Main Authors Lee, Jong-Min, Wheeler, Vanessa C., Chao, Michael J., Vonsattel, Jean Paul G., Pinto, Ricardo Mouro, Lucente, Diane, Abu-Elneel, Kawther, Ramos, Eliana Marisa, Mysore, Jayalakshmi Srinidhi, Gillis, Tammy, MacDonald, Marcy E., Gusella, James F., Harold, Denise, Stone, Timothy C., Escott-Price, Valentina, Han, Jun, Vedernikov, Alexey, Holmans, Peter, Jones, Lesley, Kwak, Seung, Mahmoudi, Mithra, Orth, Michael, Landwehrmeyer, G. Bernhard, Paulsen, Jane S., Dorsey, E. Ray, Shoulson, Ira, Myers, Richard H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 30.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a Mendelian neurodegenerative disorder, the genetic risk of Huntington’s disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we used genome-wide association (GWA) analysis to identify loci harboring genetic variations that alter the age at neurological onset of HD. A chromosome 15 locus displays two independent effects that accelerate or delay onset by 6.1 years and 1.4 years, respectively, whereas a chromosome 8 locus hastens onset by 1.6 years. Association at MLH1 and pathway analysis of the full GWA results support a role for DNA handling and repair mechanisms in altering the course of HD. Our findings demonstrate that HD disease modification in humans occurs in nature and offer a genetic route to identifying in-human validated therapeutic targets in this and other Mendelian disorders. [Display omitted] [Display omitted] •GWA signals reveal loci that modify the age at onset of Huntington’s disease•Effects at the chr15 locus hasten or delay onset by 6 or 1.4 years, respectively•A single effect at the chr8 locus hastens onset by 1.6 years•MLH1 association & pathway analysis implicate DNA handling in disease modification The identification of gene loci that delay or hasten Huntington’s disease onset demonstrates that the disease is modifiable prior to clinical diagnosis and offers a genetic route to targets for treatment prior to disease onset.
AbstractList As a Mendelian neurodegenerative disorder, the genetic risk of Huntington's disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we used genome-wide association (GWA) analysis to identify loci harboring genetic variations that alter the age at neurological onset of HD. A chromosome 15 locus displays two independent effects that accelerate or delay onset by 6.1 years and 1.4 years, respectively, whereas a chromosome 8 locus hastens onset by 1.6 years. Association at MLH1 and pathway analysis of the full GWA results support a role for DNA handling and repair mechanisms in altering the course of HD. Our findings demonstrate that HD disease modification in humans occurs in nature and offer a genetic route to identifying in-human validated therapeutic targets in this and other Mendelian disorders.
As a Mendelian neurodegenerative disorder, the genetic risk of Huntington’s disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we used genome-wide association (GWA) analysis to identify loci harboring genetic variations that alter the age at neurological onset of HD. A chromosome 15 locus displays two independent effects that accelerate or delay onset by 6.1 years and 1.4 years, respectively, whereas a chromosome 8 locus hastens onset by 1.6 years. Association at MLH1 and pathway analysis of the full GWA results support a role for DNA handling and repair mechanisms in altering the course of HD. Our findings demonstrate that HD disease modification in humans occurs in nature and offer a genetic route to identifying in-human validated therapeutic targets in this and other Mendelian disorders. [Display omitted] [Display omitted] •GWA signals reveal loci that modify the age at onset of Huntington’s disease•Effects at the chr15 locus hasten or delay onset by 6 or 1.4 years, respectively•A single effect at the chr8 locus hastens onset by 1.6 years•MLH1 association & pathway analysis implicate DNA handling in disease modification The identification of gene loci that delay or hasten Huntington’s disease onset demonstrates that the disease is modifiable prior to clinical diagnosis and offers a genetic route to targets for treatment prior to disease onset.
As a Mendelian neurodegenerative disorder, the genetic risk of Huntington’s disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we used genome-wide association (GWA) analysis to identify loci harboring genetic variations that alter the age at neurological onset of HD. A chromosome 15 locus displays two independent effects that accelerate or delay onset by 6.1 years and 1.4 years, respectively, whereas a chromosome 8 locus hastens onset by 1.6 years. Association at MLH1 and pathway analysis of the full GWA results support a role for DNA handling and repair mechanisms in altering the course of HD. Our findings demonstrate that HD disease modification in humans occurs in nature and offer a genetic route to identifying in-human validated therapeutic targets in this and other Mendelian disorders.
Author Lucente, Diane
Mysore, Jayalakshmi Srinidhi
MacDonald, Marcy E.
Orth, Michael
Paulsen, Jane S.
Shoulson, Ira
Kwak, Seung
Chao, Michael J.
Gillis, Tammy
Holmans, Peter
Landwehrmeyer, G. Bernhard
Myers, Richard H.
Stone, Timothy C.
Han, Jun
Wheeler, Vanessa C.
Jones, Lesley
Mahmoudi, Mithra
Abu-Elneel, Kawther
Ramos, Eliana Marisa
Gusella, James F.
Lee, Jong-Min
Dorsey, E. Ray
Pinto, Ricardo Mouro
Escott-Price, Valentina
Harold, Denise
Vedernikov, Alexey
Vonsattel, Jean Paul G.
Author_xml – sequence: 1
  givenname: Jong-Min
  surname: Lee
  fullname: Lee, Jong-Min
– sequence: 2
  givenname: Vanessa C.
  surname: Wheeler
  fullname: Wheeler, Vanessa C.
– sequence: 3
  givenname: Michael J.
  surname: Chao
  fullname: Chao, Michael J.
– sequence: 4
  givenname: Jean Paul G.
  surname: Vonsattel
  fullname: Vonsattel, Jean Paul G.
– sequence: 5
  givenname: Ricardo Mouro
  surname: Pinto
  fullname: Pinto, Ricardo Mouro
– sequence: 6
  givenname: Diane
  surname: Lucente
  fullname: Lucente, Diane
– sequence: 7
  givenname: Kawther
  surname: Abu-Elneel
  fullname: Abu-Elneel, Kawther
– sequence: 8
  givenname: Eliana Marisa
  surname: Ramos
  fullname: Ramos, Eliana Marisa
– sequence: 9
  givenname: Jayalakshmi Srinidhi
  surname: Mysore
  fullname: Mysore, Jayalakshmi Srinidhi
– sequence: 10
  givenname: Tammy
  surname: Gillis
  fullname: Gillis, Tammy
– sequence: 11
  givenname: Marcy E.
  surname: MacDonald
  fullname: MacDonald, Marcy E.
– sequence: 12
  givenname: James F.
  surname: Gusella
  fullname: Gusella, James F.
– sequence: 13
  givenname: Denise
  surname: Harold
  fullname: Harold, Denise
– sequence: 14
  givenname: Timothy C.
  surname: Stone
  fullname: Stone, Timothy C.
– sequence: 15
  givenname: Valentina
  surname: Escott-Price
  fullname: Escott-Price, Valentina
– sequence: 16
  givenname: Jun
  surname: Han
  fullname: Han, Jun
– sequence: 17
  givenname: Alexey
  surname: Vedernikov
  fullname: Vedernikov, Alexey
– sequence: 18
  givenname: Peter
  surname: Holmans
  fullname: Holmans, Peter
– sequence: 19
  givenname: Lesley
  surname: Jones
  fullname: Jones, Lesley
– sequence: 20
  givenname: Seung
  surname: Kwak
  fullname: Kwak, Seung
– sequence: 21
  givenname: Mithra
  surname: Mahmoudi
  fullname: Mahmoudi, Mithra
– sequence: 22
  givenname: Michael
  surname: Orth
  fullname: Orth, Michael
– sequence: 23
  givenname: G. Bernhard
  surname: Landwehrmeyer
  fullname: Landwehrmeyer, G. Bernhard
– sequence: 24
  givenname: Jane S.
  surname: Paulsen
  fullname: Paulsen, Jane S.
– sequence: 25
  givenname: E. Ray
  surname: Dorsey
  fullname: Dorsey, E. Ray
– sequence: 26
  givenname: Ira
  surname: Shoulson
  fullname: Shoulson, Ira
– sequence: 27
  givenname: Richard H.
  surname: Myers
  fullname: Myers, Richard H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26232222$$D View this record in MEDLINE/PubMed
BookMark eNp9UctO3DAUtRAVDNAfYIGy7CbptR2PE6lCqqblIVGxKd1aHvsGPMrYYHuQ2PU3-nv9kjoditou8MaW7nn5ngOy64NHQo4pNBTo_P2qMTiODQMqGpANAN8hMwq9rFsq2S6ZAfSs7uay3ScHKa0AoBNC7JF9NmeclTMj3y4t-uwGZ3R2wVdhqM7RY3amOtMmh5iqfKdz9SVYNzxVi9H5Ah2ra58wT-iLTaH72xz8z-8_UvXJJdQJj8ibQY8J3z7fh-Tm7PPXxUV9dX1-ufh4VZtWiFxbPpQgHUpLuWA9UgBtl72eC011eaIxQguuu663SIfBLNuW9laWIW1NL_khOd3q3m-Wa7Sm_CXqUd1Ht9bxSQXt1L8T7-7UbXhUrWAlAS0C754FYnjYYMpq7dK0Vu0xbJKiEihvGeeT18nfXi8mf5ZZAGwLMDGkFHF4gVBQU2NqpSZpNTWmQKrSWCF1_5GMy7-7KHnd-Dr1w5aKZcOPDqNKxqE3aF1Ek5UN7jX6L4rJs5c
CitedBy_id crossref_primary_10_1016_j_neuroscience_2017_03_051
crossref_primary_10_1093_hmg_ddx033
crossref_primary_10_1038_s41598_019_55177_9
crossref_primary_10_1002_mds_28397
crossref_primary_10_1515_medgen_2021_2101
crossref_primary_10_1002_ana_24656
crossref_primary_10_1371_journal_pgen_1007719
crossref_primary_10_1101_gr_277576_122
crossref_primary_10_1007_s00018_018_2854_4
crossref_primary_10_1093_hmg_ddx261
crossref_primary_10_1016_j_clinph_2021_05_035
crossref_primary_10_18632_aging_102825
crossref_primary_10_3389_fmolb_2023_1107323
crossref_primary_10_1111_bpa_12872
crossref_primary_10_1016_j_dnarep_2022_103385
crossref_primary_10_1242_dmm_041319
crossref_primary_10_3233_JHD_190391
crossref_primary_10_1007_s00401_019_01973_6
crossref_primary_10_1016_j_celrep_2021_110078
crossref_primary_10_1042_ETLS20230015
crossref_primary_10_1016_j_neuron_2022_01_006
crossref_primary_10_1016_j_preteyeres_2020_100883
crossref_primary_10_1073_pnas_2318098121
crossref_primary_10_1111_ene_13413
crossref_primary_10_1038_s41598_022_18848_8
crossref_primary_10_1002_mds_28062
crossref_primary_10_1038_s41467_017_02697_5
crossref_primary_10_1038_s41418_021_00914_9
crossref_primary_10_1016_j_neuint_2021_105074
crossref_primary_10_1093_biostatistics_kxy037
crossref_primary_10_3389_fnagi_2022_797220
crossref_primary_10_1242_dmm_049492
crossref_primary_10_1093_hmg_ddx180
crossref_primary_10_3389_fgene_2018_00601
crossref_primary_10_1002_mdc3_12808
crossref_primary_10_1371_journal_pgen_1008902
crossref_primary_10_1016_j_cell_2023_09_008
crossref_primary_10_3389_fneur_2019_00453
crossref_primary_10_3389_fcell_2020_619911
crossref_primary_10_1093_braincomms_fcae047
crossref_primary_10_1007_s12035_015_9662_8
crossref_primary_10_1038_s41598_018_32876_3
crossref_primary_10_1038_s41467_019_12071_2
crossref_primary_10_1093_hmg_ddae137
crossref_primary_10_1016_j_biopsych_2017_10_019
crossref_primary_10_1093_hmg_ddy375
crossref_primary_10_1073_pnas_2013223117
crossref_primary_10_3233_JHD_200395
crossref_primary_10_1016_j_neulet_2016_03_038
crossref_primary_10_1093_brain_awx122
crossref_primary_10_1093_braincomms_fcaf028
crossref_primary_10_1002_pmic_202300114
crossref_primary_10_1016_j_dnarep_2015_11_008
crossref_primary_10_1111_ene_13954
crossref_primary_10_1002_hbm_23332
crossref_primary_10_1093_hmg_ddab074
crossref_primary_10_1093_hmg_ddac165
crossref_primary_10_3233_JHD_170247
crossref_primary_10_1038_s41598_024_64105_5
crossref_primary_10_1242_dmm_027680
crossref_primary_10_1016_j_omtm_2022_03_001
crossref_primary_10_1038_s41588_020_0577_6
crossref_primary_10_1242_dmm_031930
crossref_primary_10_3389_fneur_2021_667420
crossref_primary_10_1212_NXG_0000000000200111
crossref_primary_10_3390_genes15060807
crossref_primary_10_1016_j_tig_2018_02_005
crossref_primary_10_1038_s41593_018_0237_7
crossref_primary_10_3233_JHD_180287
crossref_primary_10_1016_j_expneurol_2016_01_021
crossref_primary_10_1007_s40142_018_0133_1
crossref_primary_10_1038_s41598_018_25903_w
crossref_primary_10_1186_s40035_024_00406_z
crossref_primary_10_3233_JHD_170234
crossref_primary_10_1016_j_brainres_2015_09_020
crossref_primary_10_1016_S1474_4422_18_30294_1
crossref_primary_10_3390_brainsci10090575
crossref_primary_10_3389_fnagi_2020_524369
crossref_primary_10_1038_s41467_018_05320_3
crossref_primary_10_1186_s40035_023_00350_4
crossref_primary_10_1016_j_parkreldis_2024_106049
crossref_primary_10_1093_hmg_ddw286
crossref_primary_10_1038_srep36798
crossref_primary_10_1016_j_omtm_2022_08_005
crossref_primary_10_1098_rsob_180165
crossref_primary_10_1038_s41598_019_52411_2
crossref_primary_10_1074_jbc_RA120_014161
crossref_primary_10_3389_fnins_2022_946822
crossref_primary_10_1016_j_nbd_2020_105092
crossref_primary_10_12688_f1000research_19444_1
crossref_primary_10_1016_j_dnarep_2021_103155
crossref_primary_10_1097_AUD_0000000000000878
crossref_primary_10_1111_ene_15806
crossref_primary_10_1186_s40478_022_01364_1
crossref_primary_10_1007_s00415_018_8972_y
crossref_primary_10_1093_hmg_ddw395
crossref_primary_10_3233_JHD_170256
crossref_primary_10_3233_JHD_170253
crossref_primary_10_1242_dmm_049453
crossref_primary_10_1016_j_tibs_2022_04_003
crossref_primary_10_1016_j_expneurol_2016_01_019
crossref_primary_10_1093_nar_gkae1204
crossref_primary_10_1534_g3_118_200289
crossref_primary_10_1172_jci_insight_141042
crossref_primary_10_3233_JHD_160222
crossref_primary_10_20517_and_2023_49
crossref_primary_10_3233_JHD_170282
crossref_primary_10_3389_fncel_2022_852002
crossref_primary_10_1186_s13024_024_00780_2
crossref_primary_10_3389_fnins_2022_902146
crossref_primary_10_1007_s11910_017_0739_9
crossref_primary_10_1016_j_ajhg_2022_03_004
crossref_primary_10_1186_s13072_019_0313_6
crossref_primary_10_1016_j_pneurobio_2023_102484
crossref_primary_10_3389_fped_2024_1463903
crossref_primary_10_1093_braincomms_fcad010
crossref_primary_10_1016_j_cell_2024_11_038
crossref_primary_10_3389_fncel_2020_606331
crossref_primary_10_1109_TCBB_2018_2823746
crossref_primary_10_3233_JHD_170277
crossref_primary_10_1212_NXG_0000000000000155
crossref_primary_10_1007_s00115_021_01224_8
crossref_primary_10_3233_JHD_200445
crossref_primary_10_1126_sciadv_ado5264
crossref_primary_10_1111_ane_12762
crossref_primary_10_3233_JHD_200448
crossref_primary_10_1007_s13167_024_00368_2
crossref_primary_10_1002_mgg3_881
crossref_primary_10_1093_brain_awab404
crossref_primary_10_3233_JHD_200438
crossref_primary_10_7554_eLife_89782
crossref_primary_10_1073_pnas_2322924121
crossref_primary_10_1002_mdc3_13195
crossref_primary_10_1016_j_ajhg_2022_06_004
crossref_primary_10_1093_hmg_ddw234
crossref_primary_10_24075_brsmu_2023_001
crossref_primary_10_1038_s41588_024_01653_6
crossref_primary_10_1016_j_ajhg_2022_06_002
crossref_primary_10_1073_pnas_2413298121
crossref_primary_10_2174_1570159X16666180419141613
crossref_primary_10_1002_mds_27911
crossref_primary_10_1016_j_bas_2025_104197
crossref_primary_10_1111_jeb_14106
crossref_primary_10_3233_JHD_200423
crossref_primary_10_1111_tan_13170
crossref_primary_10_1161_CIRCGEN_122_003867
crossref_primary_10_3390_cells10051019
crossref_primary_10_3233_JHD_200421
crossref_primary_10_1089_genbio_2021_0012
crossref_primary_10_3233_JHD_200427
crossref_primary_10_1093_braincomms_fcac279
crossref_primary_10_3233_JHD_200426
crossref_primary_10_1002_hbm_24504
crossref_primary_10_1016_S1474_4422_20_30343_4
crossref_primary_10_3233_JHD_200429
crossref_primary_10_1016_j_ygeno_2022_110469
crossref_primary_10_1111_cns_12828
crossref_primary_10_1016_j_nbd_2019_104569
crossref_primary_10_1016_j_molcel_2024_01_006
crossref_primary_10_1038_s41467_024_50626_0
crossref_primary_10_1007_s00018_022_04204_6
crossref_primary_10_1093_braincomms_fcae030
crossref_primary_10_1007_s12041_018_0953_5
crossref_primary_10_1007_s12035_017_0477_7
crossref_primary_10_1038_s41598_024_54277_5
crossref_primary_10_1016_j_celrep_2017_08_051
crossref_primary_10_4103_1673_5374_226377
crossref_primary_10_1093_brain_awx028
crossref_primary_10_1093_nar_gkab152
crossref_primary_10_1073_pnas_2302103120
crossref_primary_10_3233_JHD_210485
crossref_primary_10_1186_s13024_023_00672_x
crossref_primary_10_1002_mds_27849
crossref_primary_10_1016_j_nbd_2020_104958
crossref_primary_10_1093_nar_gkae1155
crossref_primary_10_3389_fnins_2015_00509
crossref_primary_10_1093_brain_awz115
crossref_primary_10_3233_JHD_210491
crossref_primary_10_1007_s00415_018_9076_4
crossref_primary_10_1007_s12010_021_03523_x
crossref_primary_10_1016_S1474_4422_17_30161_8
crossref_primary_10_1016_j_celrep_2019_02_008
crossref_primary_10_1093_hmg_ddw317
crossref_primary_10_1371_journal_pone_0161106
crossref_primary_10_1038_s41588_024_02055_4
crossref_primary_10_3389_fnins_2020_00863
crossref_primary_10_1093_toxsci_kfx086
crossref_primary_10_1038_s41582_023_00906_y
crossref_primary_10_7554_eLife_89782_2
crossref_primary_10_1093_braincomms_fcae016
crossref_primary_10_1016_j_neurobiolaging_2018_06_024
crossref_primary_10_1016_j_copbio_2020_02_005
crossref_primary_10_3390_jpm14040380
crossref_primary_10_1016_j_gim_2024_101239
crossref_primary_10_1016_j_semcdb_2023_06_005
crossref_primary_10_1038_s41467_020_20605_2
crossref_primary_10_1016_j_cell_2017_09_040
crossref_primary_10_1074_jbc_RA117_001440
crossref_primary_10_1007_s13311_019_00768_7
crossref_primary_10_1080_07391102_2023_2257322
crossref_primary_10_1016_j_ajhg_2020_05_012
crossref_primary_10_3389_fncel_2019_00565
crossref_primary_10_1002_mdc3_12388
crossref_primary_10_1016_j_dnarep_2016_01_001
crossref_primary_10_1073_pnas_2408179122
crossref_primary_10_1371_journal_pone_0319253
crossref_primary_10_3233_JHD_219001
crossref_primary_10_1091_mbc_E18_09_0590
crossref_primary_10_1016_S1474_4422_16_30350_7
crossref_primary_10_1534_genetics_118_301594
crossref_primary_10_3390_ijms25094696
crossref_primary_10_3390_ijms22169025
crossref_primary_10_3233_JHD_150169
crossref_primary_10_1007_s12035_019_01824_1
crossref_primary_10_1016_j_mcp_2016_06_006
crossref_primary_10_1371_journal_pgen_1007274
crossref_primary_10_1097_JBR_0000000000000127
crossref_primary_10_1016_j_neuron_2020_01_004
crossref_primary_10_3390_biom14101278
crossref_primary_10_2174_1570159X21666230216104621
crossref_primary_10_1093_braincomms_fcaa031
crossref_primary_10_3389_fncel_2021_628010
crossref_primary_10_1038_s41598_019_55202_x
crossref_primary_10_1093_procel_pwae042
crossref_primary_10_1093_braincomms_fcac309
crossref_primary_10_1192_bjo_2021_14
crossref_primary_10_1126_scitranslmed_adn4600
crossref_primary_10_1007_s11825_018_0190_6
crossref_primary_10_1002_mdc3_70047
crossref_primary_10_1016_j_neuron_2019_12_003
crossref_primary_10_1007_s12207_024_09496_6
crossref_primary_10_1038_s41582_020_0389_4
crossref_primary_10_1016_j_mcn_2017_07_004
crossref_primary_10_5582_irdr_2021_01148
crossref_primary_10_1002_ajmg_b_32514
crossref_primary_10_1016_j_ajhg_2018_07_017
crossref_primary_10_1016_j_praneu_2017_01_023
crossref_primary_10_1073_pnas_2021836118
crossref_primary_10_1080_19490976_2024_2418988
crossref_primary_10_1212_WNL_0000000000002858
crossref_primary_10_3389_fgene_2022_983668
crossref_primary_10_1111_ene_15291
crossref_primary_10_1016_j_stemcr_2017_01_022
crossref_primary_10_3389_fneur_2022_1034269
crossref_primary_10_4103_1673_5374_235241
crossref_primary_10_3389_fneur_2018_00190
crossref_primary_10_1093_nargab_lqac089
crossref_primary_10_1016_j_celrep_2021_109736
crossref_primary_10_1242_dev_156844
crossref_primary_10_1093_nar_gkae250
crossref_primary_10_1016_S2215_0366_16_30144_4
crossref_primary_10_3233_JHD_200414
crossref_primary_10_1097_01_NT_0000471694_26013_c1
crossref_primary_10_1093_braincomms_fcaa066
crossref_primary_10_3892_etm_2016_3566
crossref_primary_10_1084_jem_20160776
crossref_primary_10_1016_j_arr_2018_10_004
crossref_primary_10_3233_JHD_210510
crossref_primary_10_1038_s41467_022_35602_w
crossref_primary_10_1073_pnas_1801772115
crossref_primary_10_1111_ene_15340
crossref_primary_10_1007_s13311_019_00712_9
crossref_primary_10_1016_j_cell_2019_06_036
crossref_primary_10_1093_hmg_ddz096
crossref_primary_10_1038_srep44849
crossref_primary_10_1016_j_jns_2018_09_022
crossref_primary_10_3233_JHD_229007
crossref_primary_10_1016_j_cell_2018_05_051
crossref_primary_10_1016_j_parkreldis_2018_05_016
crossref_primary_10_1093_brain_awad111
crossref_primary_10_1002_mds_27653
crossref_primary_10_1016_j_cell_2023_08_038
crossref_primary_10_1007_s12017_019_08572_4
crossref_primary_10_1212_WNL_0000000000011893
crossref_primary_10_1016_j_neurol_2022_03_009
crossref_primary_10_1016_j_neurol_2022_03_007
crossref_primary_10_1038_s41593_022_01033_5
crossref_primary_10_1016_j_mito_2017_07_004
crossref_primary_10_3389_fpsyt_2022_826135
crossref_primary_10_1186_s13287_021_02653_7
crossref_primary_10_3390_ijms26030966
crossref_primary_10_1002_mds_28896
crossref_primary_10_1016_j_biocel_2024_106662
crossref_primary_10_1038_s41588_019_0575_8
crossref_primary_10_3389_fnagi_2022_750629
crossref_primary_10_1016_j_nbd_2021_105604
crossref_primary_10_1093_jbmr_zjae044
crossref_primary_10_1038_s42003_021_02671_4
crossref_primary_10_1016_j_biopsych_2019_12_010
crossref_primary_10_2217_nmt_2019_0033
crossref_primary_10_1016_j_ebiom_2019_09_020
crossref_primary_10_1111_febs_14644
crossref_primary_10_1093_braincomms_fcae410
crossref_primary_10_1016_j_jmb_2019_03_004
crossref_primary_10_1007_s00294_018_0806_z
crossref_primary_10_1093_hmg_ddaa184
crossref_primary_10_1016_j_ajhg_2018_10_015
crossref_primary_10_1016_j_freeradbiomed_2022_05_005
crossref_primary_10_1038_s41598_022_16516_5
crossref_primary_10_3233_JHD_231516
crossref_primary_10_1038_s41569_021_00566_9
crossref_primary_10_3390_ijms21020457
crossref_primary_10_1016_j_celrep_2022_111852
crossref_primary_10_1038_s43587_023_00538_3
crossref_primary_10_1186_s13023_023_02785_4
crossref_primary_10_52965_001c_36040
crossref_primary_10_3390_cells10040948
crossref_primary_10_1093_brain_awae012
crossref_primary_10_1093_hmg_ddaa196
crossref_primary_10_15252_embr_202154217
crossref_primary_10_1016_j_nicl_2020_102415
crossref_primary_10_1002_ajmg_a_61165
crossref_primary_10_1016_j_ajhg_2015_12_018
crossref_primary_10_1016_j_cell_2018_08_005
crossref_primary_10_1093_hmg_ddy077
crossref_primary_10_1073_pnas_2014610118
crossref_primary_10_1016_j_cell_2025_01_031
crossref_primary_10_1002_sim_7376
crossref_primary_10_15252_emmm_201606623
crossref_primary_10_1093_hmg_ddab170
crossref_primary_10_1002_mdc3_12312
crossref_primary_10_1093_brain_awae007
crossref_primary_10_1016_j_neuron_2023_09_036
crossref_primary_10_1093_hmg_ddaa283
crossref_primary_10_1038_s44318_024_00192_4
crossref_primary_10_1080_23723556_2019_1682924
crossref_primary_10_1016_j_pbj_2017_07_083
crossref_primary_10_1073_pnas_1914718117
crossref_primary_10_1002_mds_29427
crossref_primary_10_1002_acn3_51370
crossref_primary_10_1080_13696998_2024_2412470
crossref_primary_10_1016_j_semcdb_2021_08_008
crossref_primary_10_1016_j_jns_2019_116586
crossref_primary_10_1038_s41598_024_52667_3
crossref_primary_10_1002_slct_202300225
crossref_primary_10_1136_jmedgenet_2020_106963
crossref_primary_10_1111_jnc_14638
crossref_primary_10_1007_s11356_022_22830_2
crossref_primary_10_1016_j_ajhg_2024_03_015
crossref_primary_10_1212_WNL_0000000000213360
crossref_primary_10_1002_hbm_24191
crossref_primary_10_1002_mds_27239
crossref_primary_10_1371_journal_pgen_1007765
crossref_primary_10_1016_j_ajhg_2019_04_007
crossref_primary_10_1038_s41467_021_24387_z
crossref_primary_10_1016_j_brainresbull_2022_01_021
crossref_primary_10_3390_ijms23105411
crossref_primary_10_1093_hmg_ddaa061
crossref_primary_10_3233_JHD_220536
crossref_primary_10_1002_mdc3_13625
crossref_primary_10_1016_j_ajhg_2017_01_016
crossref_primary_10_1093_brain_awae063
crossref_primary_10_1038_s41467_020_17374_3
crossref_primary_10_3390_ijms22168363
crossref_primary_10_1186_s40478_022_01379_8
crossref_primary_10_1172_JCI164792
crossref_primary_10_1016_j_nbd_2020_105155
crossref_primary_10_1002_ajmg_a_62463
crossref_primary_10_1038_srep16247
crossref_primary_10_1073_pnas_1912602117
crossref_primary_10_1073_pnas_2406308121
crossref_primary_10_3389_fncel_2022_837576
crossref_primary_10_3390_biology14020129
crossref_primary_10_3233_JHD_180320
crossref_primary_10_1016_j_ajhg_2024_04_015
crossref_primary_10_1126_sciadv_abf7906
crossref_primary_10_1080_13554794_2018_1428353
crossref_primary_10_3233_JHD_180324
crossref_primary_10_1002_sim_10143
crossref_primary_10_1016_j_ajhg_2017_01_008
crossref_primary_10_1002_gepi_21996
crossref_primary_10_1038_s41580_021_00382_6
crossref_primary_10_1074_jbc_REV119_007678
crossref_primary_10_1186_s12883_020_01671_x
crossref_primary_10_1038_s41598_019_51390_8
crossref_primary_10_1093_hmg_ddaa279
crossref_primary_10_1111_nan_12514
crossref_primary_10_1212_CON_0000000000001169
crossref_primary_10_1371_journal_pgen_1006137
crossref_primary_10_1002_mus_27559
crossref_primary_10_1016_j_phrs_2016_05_005
crossref_primary_10_1016_j_dnarep_2018_07_001
crossref_primary_10_1007_s11910_017_0711_8
crossref_primary_10_1186_s12915_020_0750_5
crossref_primary_10_1038_s41582_021_00465_0
crossref_primary_10_1016_j_mcpro_2022_100275
crossref_primary_10_1016_j_biopsych_2020_05_034
crossref_primary_10_1080_14737175_2020_1785873
crossref_primary_10_1016_j_neuron_2019_01_039
crossref_primary_10_1080_14737175_2019_1631161
crossref_primary_10_3233_JHD_180339
crossref_primary_10_1016_j_dnarep_2025_103817
crossref_primary_10_1002_ajmg_b_32719
crossref_primary_10_1016_j_nbd_2020_105021
crossref_primary_10_7554_eLife_42988
crossref_primary_10_1093_hmg_ddaa139
crossref_primary_10_3233_JHD_231509
crossref_primary_10_1097_WCO_0000000000000352
crossref_primary_10_1038_s41467_018_06281_3
crossref_primary_10_1007_s11427_017_9186_7
crossref_primary_10_1042_NS20200010
crossref_primary_10_3390_biology10020163
Cites_doi 10.1016/j.ajhg.2012.01.005
10.1073/pnas.1309475110
10.1001/archneur.63.7.991
10.1038/nature08490
10.1038/nature08494
10.1371/journal.pone.0029522
10.2307/2529826
10.1002/mds.26001
10.1136/jnnp.2007.128728
10.1093/hmg/ddp242
10.1016/j.molmed.2012.04.004
10.1016/j.tibs.2006.06.009
10.1073/pnas.1211289109
10.1038/nrneurol.2014.24
10.1016/0092-8674(93)90585-E
10.1086/522374
10.3390/genes5030497
10.1016/j.cell.2010.06.022
10.1074/jbc.M110.202283
10.1038/ng.3120
10.1016/j.cell.2010.06.021
10.1002/gepi.20317
10.1086/378133
10.1371/journal.pgen.1003930
10.1038/ng2040
10.1038/srep00822
10.1073/pnas.0308679101
10.1128/MCB.00457-14
10.1002/ajmg.a.20190
10.1002/mds.26020
10.1002/gepi.20636
10.1126/science.1192656
10.1186/1471-2350-7-71
10.1016/j.nbd.2008.09.014
10.1212/WNL.0b013e318249f683
10.3389/fnmol.2014.00077
10.1016/j.ajhg.2009.05.011
ContentType Journal Article
Contributor Lucente, Diane
Landwehrmeyer, G Bernhard
MacDonald, Marcy E
Orth, Michael
Ramos, Eliana Marisa
Shoulson, Ira
Kwak, Seung
Chao, Michael J
Gusella, James F
Gillis, Tammy
Holmans, Peter
Mysore, Jayalakshmi Srinidhi
Han, Jun
Pinto, Ricardo Mouro
Jones, Lesley
Mahmoudi, Mithra
Abu-Elneel, Kawther
Lee, Jong-Min
Wheeler, Vanessa C
Vonsattel, Jean Paul G
Stone, Timothy C
Paulsen, Jane S
Escott-Price, Valentina
Harold, Denise
Vedernikov, Alexey
Dorsey, E Ray
Myers, Richard H
Contributor_xml – sequence: 1
  givenname: Jong-Min
  surname: Lee
  fullname: Lee, Jong-Min
– sequence: 2
  givenname: Vanessa C
  surname: Wheeler
  fullname: Wheeler, Vanessa C
– sequence: 3
  givenname: Michael J
  surname: Chao
  fullname: Chao, Michael J
– sequence: 4
  givenname: Jean Paul G
  surname: Vonsattel
  fullname: Vonsattel, Jean Paul G
– sequence: 5
  givenname: Ricardo Mouro
  surname: Pinto
  fullname: Pinto, Ricardo Mouro
– sequence: 6
  givenname: Diane
  surname: Lucente
  fullname: Lucente, Diane
– sequence: 7
  givenname: Kawther
  surname: Abu-Elneel
  fullname: Abu-Elneel, Kawther
– sequence: 8
  givenname: Eliana Marisa
  surname: Ramos
  fullname: Ramos, Eliana Marisa
– sequence: 9
  givenname: Jayalakshmi Srinidhi
  surname: Mysore
  fullname: Mysore, Jayalakshmi Srinidhi
– sequence: 10
  givenname: Tammy
  surname: Gillis
  fullname: Gillis, Tammy
– sequence: 11
  givenname: Marcy E
  surname: MacDonald
  fullname: MacDonald, Marcy E
– sequence: 12
  givenname: James F
  surname: Gusella
  fullname: Gusella, James F
– sequence: 13
  givenname: Denise
  surname: Harold
  fullname: Harold, Denise
– sequence: 14
  givenname: Timothy C
  surname: Stone
  fullname: Stone, Timothy C
– sequence: 15
  givenname: Valentina
  surname: Escott-Price
  fullname: Escott-Price, Valentina
– sequence: 16
  givenname: Jun
  surname: Han
  fullname: Han, Jun
– sequence: 17
  givenname: Alexey
  surname: Vedernikov
  fullname: Vedernikov, Alexey
– sequence: 18
  givenname: Peter
  surname: Holmans
  fullname: Holmans, Peter
– sequence: 19
  givenname: Lesley
  surname: Jones
  fullname: Jones, Lesley
– sequence: 20
  givenname: Seung
  surname: Kwak
  fullname: Kwak, Seung
– sequence: 21
  givenname: Mithra
  surname: Mahmoudi
  fullname: Mahmoudi, Mithra
– sequence: 22
  givenname: Michael
  surname: Orth
  fullname: Orth, Michael
– sequence: 23
  givenname: G Bernhard
  surname: Landwehrmeyer
  fullname: Landwehrmeyer, G Bernhard
– sequence: 24
  givenname: Jane S
  surname: Paulsen
  fullname: Paulsen, Jane S
– sequence: 25
  givenname: E Ray
  surname: Dorsey
  fullname: Dorsey, E Ray
– sequence: 26
  givenname: Ira
  surname: Shoulson
  fullname: Shoulson, Ira
– sequence: 27
  givenname: Richard H
  surname: Myers
  fullname: Myers, Richard H
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
CorporateAuthor Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium
CorporateAuthor_xml – name: Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cell.2015.07.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 526
ExternalDocumentID PMC4524551
26232222
10_1016_j_cell_2015_07_003
S0092867415008405
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/L023784/2
– fundername: NINDS NIH HHS
  grantid: R01 NS040068
– fundername: NINDS NIH HHS
  grantid: U01NS082079
– fundername: NHGRI NIH HHS
  grantid: X01HG006074
– fundername: NINDS NIH HHS
  grantid: P50NS016367
– fundername: NINDS NIH HHS
  grantid: P50 NS016367
– fundername: NINDS NIH HHS
  grantid: U01 NS082079
– fundername: Medical Research Council
  grantid: MR/L010305/1
– fundername: NINDS NIH HHS
  grantid: R01 NS091161
– fundername: NHGRI NIH HHS
  grantid: R01HG002449
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AAUCE
AAVLU
AAXJY
AAXUO
AAYJJ
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAHBH
AAIKJ
AALRI
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGQPQ
AI.
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c455t-d3f2328e7d13529e100adb9a65a1a0adecc5a53a889de1ffcb4419d71a014c973
IEDL.DBID IXB
ISSN 0092-8674
IngestDate Thu Aug 21 14:13:37 EDT 2025
Fri Jul 11 13:06:09 EDT 2025
Mon Jul 21 05:58:46 EDT 2025
Tue Jul 01 02:16:52 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Fri Feb 23 02:30:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-d3f2328e7d13529e100adb9a65a1a0adecc5a53a889de1ffcb4419d71a014c973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867415008405
PMID 26232222
PQID 1701342337
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4524551
proquest_miscellaneous_1701342337
pubmed_primary_26232222
crossref_primary_10_1016_j_cell_2015_07_003
crossref_citationtrail_10_1016_j_cell_2015_07_003
elsevier_sciencedirect_doi_10_1016_j_cell_2015_07_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-30
PublicationDateYYYYMMDD 2015-07-30
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References (bib14) 2006; 63
Aronin, DiFiglia (bib2) 2014; 29
Chaudhury, Stroik, Sobeck (bib5) 2014; 34
Hnia, Vaccari, Bolino, Laporte (bib12) 2012; 18
Lee, Gillis, Mysore, Ramos, Myers, Hayden, Morrison, Nance, Ross, Margolis (bib19) 2012; 90
Djoussé, Knowlton, Hayden, Almqvist, Brinkman, Ross, Margolis, Rosenblatt, Durr, Dode (bib6) 2003; 119A
Dorsey (bib7) 2012; 7
Pinto, Dragileva, Kirby, Lloret, Lopez, St Claire, Panigrahi, Hou, Holloway, Gillis (bib30) 2013; 9
Holmans, Green, Pahwa, Ferreira, Purcell, Sklar, Owen, O’Donovan, Craddock (bib13) 2009; 85
(bib36) 1993; 72
(bib15) 2008; 65
Ionita-Laza, Xu, Makarov, Buxbaum, Roos, Gogos, Karayiorgou (bib16) 2014; 111
Pontarin, Ferraro, Rampazzo, Kollberg, Holme, Reichard, Bianchi (bib31) 2011; 286
Gayán, Brocklebank, Andresen, Alkorta-Aranburu, Zameel Cader, Roberts, Cherny, Wexler, Cardon, Housman (bib9) 2008; 32
Wang, Li, Bucan (bib37) 2007; 81
MacKay, Déclais, Lundin, Agostinho, Deans, MacArtney, Hofmann, Gartner, West, Helleday (bib24) 2010; 142
Ortega, Lucas (bib27) 2014; 7
Lee, Ramos, Lee, Gillis, Mysore, Hayden, Warby, Morrison, Nance, Ross (bib20) 2012; 78
Kratz, Schöpf, Kaden, Sendoel, Eberhard, Lademann, Cannavó, Sartori, Hengartner, Jiricny (bib17) 2010; 142
Sehgal, Sheahan, O’Connell, Hanly, Martin, Winter (bib34) 2014; 5
Pontarin, Ferraro, Bee, Reichard, Bianchi (bib32) 2012; 109
Orth, Handley, Schwenke, Dunnett, Craufurd, Ho, Wild, Tabrizi, Landwehrmeyer (bib28) 2010; 2
Swami, Hendricks, Gillis, Massood, Mysore, Myers, Wheeler (bib35) 2009; 18
Wexler, Lorimer, Porter, Gomez, Moskowitz, Shackell, Marder, Penchaszadeh, Roberts, Gayán (bib39) 2004; 101
Gusella, MacDonald (bib10) 2006; 31
Moskvina, O’Dushlaine, Purcell, Craddock, Holmans, O’Donovan (bib26) 2011; 35
Paulsen, Langbehn, Stout, Aylward, Ross, Nance, Guttman, Johnson, MacDonald, Beglinger (bib29) 2008; 79
Brown (bib4) 1975; 31
Kuo, Sy, Xue, Chi, Lee, Yen, Chiang, Chang, Chu, Yen (bib18) 2012; 2
Bourdon, Minai, Serre, Jais, Sarzi, Aubert, Chrétien, de Lonlay, Paquis-Flucklinger, Arakawa (bib3) 2007; 39
Weiss, Arking, Daly, Chakravarti (bib38) 2009; 461
Antonacci, Dennis, Huddleston, Sudmant, Steinberg, Rosenfeld, Miroballo, Graves, Vives, Malig (bib1) 2014; 46
Li, Hayden, Warby, Durr, Morrison, Nance, Ross, Margolis, Rosenblatt, Squitieri (bib22) 2006; 7
Ross, Aylward, Wild, Langbehn, Long, Warner, Scahill, Leavitt, Stout, Paulsen (bib33) 2014; 10
Liu, Ghosal, Yuan, Chen, Huang (bib23) 2010; 329
Manolio, Collins, Cox, Goldstein, Hindorff, Hunter, McCarthy, Ramos, Cardon, Chakravarti (bib25) 2009; 461
Gusella, MacDonald, Lee (bib11) 2014; 29
Dragileva, Hendricks, Teed, Gillis, Lopez, Friedberg, Kucherlapati, Edelmann, Lunetta, MacDonald, Wheeler (bib8) 2009; 33
Li, Hayden, Almqvist, Brinkman, Durr, Dodé, Morrison, Suchowersky, Ross, Margolis (bib21) 2003; 73
Wexler (10.1016/j.cell.2015.07.003_bib39) 2004; 101
(10.1016/j.cell.2015.07.003_bib15) 2008; 65
Antonacci (10.1016/j.cell.2015.07.003_bib1) 2014; 46
Gusella (10.1016/j.cell.2015.07.003_bib11) 2014; 29
Orth (10.1016/j.cell.2015.07.003_bib28) 2010; 2
(10.1016/j.cell.2015.07.003_bib14) 2006; 63
Dorsey (10.1016/j.cell.2015.07.003_bib7) 2012; 7
(10.1016/j.cell.2015.07.003_bib36) 1993; 72
Dragileva (10.1016/j.cell.2015.07.003_bib8) 2009; 33
Paulsen (10.1016/j.cell.2015.07.003_bib29) 2008; 79
Gayán (10.1016/j.cell.2015.07.003_bib9) 2008; 32
Kuo (10.1016/j.cell.2015.07.003_bib18) 2012; 2
Li (10.1016/j.cell.2015.07.003_bib22) 2006; 7
Swami (10.1016/j.cell.2015.07.003_bib35) 2009; 18
Moskvina (10.1016/j.cell.2015.07.003_bib26) 2011; 35
Pinto (10.1016/j.cell.2015.07.003_bib30) 2013; 9
Ionita-Laza (10.1016/j.cell.2015.07.003_bib16) 2014; 111
Pontarin (10.1016/j.cell.2015.07.003_bib32) 2012; 109
Weiss (10.1016/j.cell.2015.07.003_bib38) 2009; 461
Bourdon (10.1016/j.cell.2015.07.003_bib3) 2007; 39
Gusella (10.1016/j.cell.2015.07.003_bib10) 2006; 31
Ortega (10.1016/j.cell.2015.07.003_bib27) 2014; 7
Chaudhury (10.1016/j.cell.2015.07.003_bib5) 2014; 34
Djoussé (10.1016/j.cell.2015.07.003_bib6) 2003; 119A
Liu (10.1016/j.cell.2015.07.003_bib23) 2010; 329
Aronin (10.1016/j.cell.2015.07.003_bib2) 2014; 29
Lee (10.1016/j.cell.2015.07.003_bib19) 2012; 90
Pontarin (10.1016/j.cell.2015.07.003_bib31) 2011; 286
Wang (10.1016/j.cell.2015.07.003_bib37) 2007; 81
Kratz (10.1016/j.cell.2015.07.003_bib17) 2010; 142
Lee (10.1016/j.cell.2015.07.003_bib20) 2012; 78
Ross (10.1016/j.cell.2015.07.003_bib33) 2014; 10
Sehgal (10.1016/j.cell.2015.07.003_bib34) 2014; 5
Brown (10.1016/j.cell.2015.07.003_bib4) 1975; 31
Li (10.1016/j.cell.2015.07.003_bib21) 2003; 73
Hnia (10.1016/j.cell.2015.07.003_bib12) 2012; 18
MacKay (10.1016/j.cell.2015.07.003_bib24) 2010; 142
Manolio (10.1016/j.cell.2015.07.003_bib25) 2009; 461
Holmans (10.1016/j.cell.2015.07.003_bib13) 2009; 85
References_xml – volume: 29
  start-page: 1359
  year: 2014
  end-page: 1365
  ident: bib11
  article-title: Genetic modifiers of Huntington’s disease
  publication-title: Mov. Disord.
– volume: 73
  start-page: 682
  year: 2003
  end-page: 687
  ident: bib21
  article-title: A genome scan for modifiers of age at onset in Huntington disease: The HD MAPS study
  publication-title: Am. J. Hum. Genet.
– volume: 9
  start-page: e1003930
  year: 2013
  ident: bib30
  article-title: Mismatch repair genes
  publication-title: PLoS Genet.
– volume: 78
  start-page: 690
  year: 2012
  end-page: 695
  ident: bib20
  article-title: CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion
  publication-title: Neurology
– volume: 90
  start-page: 434
  year: 2012
  end-page: 444
  ident: bib19
  article-title: Common SNP-based haplotype analysis of the 4p16.3 Huntington disease gene region
  publication-title: Am. J. Hum. Genet.
– volume: 2
  start-page: 822
  year: 2012
  ident: bib18
  article-title: RRM2B suppresses activation of the oxidative stress pathway and is up-regulated by p53 during senescence
  publication-title: Sci Rep
– volume: 119A
  start-page: 279
  year: 2003
  end-page: 282
  ident: bib6
  article-title: Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease
  publication-title: Am. J. Med. Genet. A.
– volume: 72
  start-page: 971
  year: 1993
  end-page: 983
  ident: bib36
  article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes
  publication-title: Cell
– volume: 31
  start-page: 533
  year: 2006
  end-page: 540
  ident: bib10
  article-title: Huntington’s disease: seeing the pathogenic process through a genetic lens
  publication-title: Trends Biochem. Sci.
– volume: 461
  start-page: 802
  year: 2009
  end-page: 808
  ident: bib38
  article-title: A genome-wide linkage and association scan reveals novel loci for autism
  publication-title: Nature
– volume: 63
  start-page: 991
  year: 2006
  end-page: 996
  ident: bib14
  article-title: At risk for Huntington disease: The PHAROS (Prospective Huntington At Risk Observational Study) cohort enrolled
  publication-title: Arch. Neurol.
– volume: 18
  start-page: 317
  year: 2012
  end-page: 327
  ident: bib12
  article-title: Myotubularin phosphoinositide phosphatases: cellular functions and disease pathophysiology
  publication-title: Trends Mol. Med.
– volume: 81
  start-page: 1278
  year: 2007
  end-page: 1283
  ident: bib37
  article-title: Pathway-based approaches for analysis of genomewide association studies
  publication-title: Am. J. Hum. Genet.
– volume: 2
  start-page: RRN1184
  year: 2010
  ident: bib28
  article-title: Observing Huntington’s Disease: the European Huntington’s Disease Network’s REGISTRY
  publication-title: PLoS Curr.
– volume: 35
  start-page: 861
  year: 2011
  end-page: 866
  ident: bib26
  article-title: Evaluation of an approximation method for assessment of overall significance of multiple-dependent tests in a genomewide association study
  publication-title: Genet. Epidemiol.
– volume: 39
  start-page: 776
  year: 2007
  end-page: 780
  ident: bib3
  article-title: Mutation of
  publication-title: Nat. Genet.
– volume: 34
  start-page: 3939
  year: 2014
  end-page: 3954
  ident: bib5
  article-title: FANCD2-controlled chromatin access of the Fanconi-associated nuclease FAN1 is crucial for the recovery of stalled replication forks
  publication-title: Mol. Cell. Biol.
– volume: 33
  start-page: 37
  year: 2009
  end-page: 47
  ident: bib8
  article-title: Intergenerational and striatal CAG repeat instability in Huntington’s disease knock-in mice involve different DNA repair genes
  publication-title: Neurobiol. Dis.
– volume: 111
  start-page: 343
  year: 2014
  end-page: 348
  ident: bib16
  article-title: Scan statistic-based analysis of exome sequencing data identifies
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 978
  year: 1975
  end-page: 992
  ident: bib4
  article-title: A method for combining non-independent, one-sided tests of significance
  publication-title: Biometrics
– volume: 85
  start-page: 13
  year: 2009
  end-page: 24
  ident: bib13
  article-title: Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder
  publication-title: Am. J. Hum. Genet.
– volume: 46
  start-page: 1293
  year: 2014
  end-page: 1302
  ident: bib1
  article-title: Palindromic
  publication-title: Nat. Genet.
– volume: 7
  start-page: 77
  year: 2014
  ident: bib27
  article-title: Ubiquitin-proteasome system involvement in Huntington’s disease
  publication-title: Front. Mol. Neurosci.
– volume: 101
  start-page: 3498
  year: 2004
  end-page: 3503
  ident: bib39
  article-title: Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 32
  start-page: 445
  year: 2008
  end-page: 453
  ident: bib9
  article-title: Genomewide linkage scan reveals novel loci modifying age of onset of Huntington’s disease in the Venezuelan HD kindreds
  publication-title: Genet. Epidemiol.
– volume: 142
  start-page: 65
  year: 2010
  end-page: 76
  ident: bib24
  article-title: Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2
  publication-title: Cell
– volume: 109
  start-page: 13302
  year: 2012
  end-page: 13307
  ident: bib32
  article-title: Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 3039
  year: 2009
  end-page: 3047
  ident: bib35
  article-title: Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset
  publication-title: Hum. Mol. Genet.
– volume: 142
  start-page: 77
  year: 2010
  end-page: 88
  ident: bib17
  article-title: Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents
  publication-title: Cell
– volume: 461
  start-page: 747
  year: 2009
  end-page: 753
  ident: bib25
  article-title: Finding the missing heritability of complex diseases
  publication-title: Nature
– volume: 7
  start-page: 71
  year: 2006
  ident: bib22
  article-title: Genome-wide significance for a modifier of age at neurological onset in Huntington’s disease at 6q23-24: the HD MAPS study
  publication-title: BMC Med. Genet.
– volume: 29
  start-page: 1455
  year: 2014
  end-page: 1461
  ident: bib2
  article-title: Huntingtin-lowering strategies in Huntington’s disease: antisense oligonucleotides, small RNAs, and gene editing
  publication-title: Mov. Disord.
– volume: 65
  start-page: 1582
  year: 2008
  end-page: 1589
  ident: bib15
  article-title: Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: the TREND-HD study
  publication-title: Arch. Neurol.
– volume: 79
  start-page: 874
  year: 2008
  end-page: 880
  ident: bib29
  article-title: Detection of Huntington’s disease decades before diagnosis: the Predict-HD study
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 10
  start-page: 204
  year: 2014
  end-page: 216
  ident: bib33
  article-title: Huntington disease: natural history, biomarkers and prospects for therapeutics
  publication-title: Nat Rev Neurol
– volume: 7
  start-page: e29522
  year: 2012
  ident: bib7
  article-title: Characterization of a large group of individuals with huntington disease and their relatives enrolled in the COHORT study
  publication-title: PLoS ONE
– volume: 329
  start-page: 693
  year: 2010
  end-page: 696
  ident: bib23
  article-title: FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair
  publication-title: Science
– volume: 5
  start-page: 497
  year: 2014
  end-page: 507
  ident: bib34
  article-title: Lynch syndrome: an updated review
  publication-title: Genes (Basel)
– volume: 286
  start-page: 11132
  year: 2011
  end-page: 11140
  ident: bib31
  article-title: Deoxyribonucleotide metabolism in cycling and resting human fibroblasts with a missense mutation in p53R2, a subunit of ribonucleotide reductase
  publication-title: J. Biol. Chem.
– volume: 90
  start-page: 434
  year: 2012
  ident: 10.1016/j.cell.2015.07.003_bib19
  article-title: Common SNP-based haplotype analysis of the 4p16.3 Huntington disease gene region
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2012.01.005
– volume: 111
  start-page: 343
  year: 2014
  ident: 10.1016/j.cell.2015.07.003_bib16
  article-title: Scan statistic-based analysis of exome sequencing data identifies FAN1 at 15q13.3 as a susceptibility gene for schizophrenia and autism
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1309475110
– volume: 63
  start-page: 991
  year: 2006
  ident: 10.1016/j.cell.2015.07.003_bib14
  article-title: At risk for Huntington disease: The PHAROS (Prospective Huntington At Risk Observational Study) cohort enrolled
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.63.7.991
– volume: 461
  start-page: 802
  year: 2009
  ident: 10.1016/j.cell.2015.07.003_bib38
  article-title: A genome-wide linkage and association scan reveals novel loci for autism
  publication-title: Nature
  doi: 10.1038/nature08490
– volume: 461
  start-page: 747
  year: 2009
  ident: 10.1016/j.cell.2015.07.003_bib25
  article-title: Finding the missing heritability of complex diseases
  publication-title: Nature
  doi: 10.1038/nature08494
– volume: 7
  start-page: e29522
  year: 2012
  ident: 10.1016/j.cell.2015.07.003_bib7
  article-title: Characterization of a large group of individuals with huntington disease and their relatives enrolled in the COHORT study
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0029522
– volume: 31
  start-page: 978
  year: 1975
  ident: 10.1016/j.cell.2015.07.003_bib4
  article-title: A method for combining non-independent, one-sided tests of significance
  publication-title: Biometrics
  doi: 10.2307/2529826
– volume: 29
  start-page: 1359
  year: 2014
  ident: 10.1016/j.cell.2015.07.003_bib11
  article-title: Genetic modifiers of Huntington’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26001
– volume: 79
  start-page: 874
  year: 2008
  ident: 10.1016/j.cell.2015.07.003_bib29
  article-title: Detection of Huntington’s disease decades before diagnosis: the Predict-HD study
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2007.128728
– volume: 18
  start-page: 3039
  year: 2009
  ident: 10.1016/j.cell.2015.07.003_bib35
  article-title: Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddp242
– volume: 18
  start-page: 317
  year: 2012
  ident: 10.1016/j.cell.2015.07.003_bib12
  article-title: Myotubularin phosphoinositide phosphatases: cellular functions and disease pathophysiology
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2012.04.004
– volume: 2
  start-page: RRN1184
  year: 2010
  ident: 10.1016/j.cell.2015.07.003_bib28
  article-title: Observing Huntington’s Disease: the European Huntington’s Disease Network’s REGISTRY
  publication-title: PLoS Curr.
– volume: 31
  start-page: 533
  year: 2006
  ident: 10.1016/j.cell.2015.07.003_bib10
  article-title: Huntington’s disease: seeing the pathogenic process through a genetic lens
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2006.06.009
– volume: 109
  start-page: 13302
  year: 2012
  ident: 10.1016/j.cell.2015.07.003_bib32
  article-title: Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1211289109
– volume: 10
  start-page: 204
  year: 2014
  ident: 10.1016/j.cell.2015.07.003_bib33
  article-title: Huntington disease: natural history, biomarkers and prospects for therapeutics
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2014.24
– volume: 72
  start-page: 971
  year: 1993
  ident: 10.1016/j.cell.2015.07.003_bib36
  article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90585-E
– volume: 65
  start-page: 1582
  year: 2008
  ident: 10.1016/j.cell.2015.07.003_bib15
  article-title: Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: the TREND-HD study
  publication-title: Arch. Neurol.
– volume: 81
  start-page: 1278
  year: 2007
  ident: 10.1016/j.cell.2015.07.003_bib37
  article-title: Pathway-based approaches for analysis of genomewide association studies
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/522374
– volume: 5
  start-page: 497
  year: 2014
  ident: 10.1016/j.cell.2015.07.003_bib34
  article-title: Lynch syndrome: an updated review
  publication-title: Genes (Basel)
  doi: 10.3390/genes5030497
– volume: 142
  start-page: 77
  year: 2010
  ident: 10.1016/j.cell.2015.07.003_bib17
  article-title: Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents
  publication-title: Cell
  doi: 10.1016/j.cell.2010.06.022
– volume: 286
  start-page: 11132
  year: 2011
  ident: 10.1016/j.cell.2015.07.003_bib31
  article-title: Deoxyribonucleotide metabolism in cycling and resting human fibroblasts with a missense mutation in p53R2, a subunit of ribonucleotide reductase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.202283
– volume: 46
  start-page: 1293
  year: 2014
  ident: 10.1016/j.cell.2015.07.003_bib1
  article-title: Palindromic GOLGA8 core duplicons promote chromosome 15q13.3 microdeletion and evolutionary instability
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3120
– volume: 142
  start-page: 65
  year: 2010
  ident: 10.1016/j.cell.2015.07.003_bib24
  article-title: Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2
  publication-title: Cell
  doi: 10.1016/j.cell.2010.06.021
– volume: 32
  start-page: 445
  year: 2008
  ident: 10.1016/j.cell.2015.07.003_bib9
  article-title: Genomewide linkage scan reveals novel loci modifying age of onset of Huntington’s disease in the Venezuelan HD kindreds
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.20317
– volume: 73
  start-page: 682
  year: 2003
  ident: 10.1016/j.cell.2015.07.003_bib21
  article-title: A genome scan for modifiers of age at onset in Huntington disease: The HD MAPS study
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/378133
– volume: 9
  start-page: e1003930
  year: 2013
  ident: 10.1016/j.cell.2015.07.003_bib30
  article-title: Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington’s disease mice: genome-wide and candidate approaches
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003930
– volume: 39
  start-page: 776
  year: 2007
  ident: 10.1016/j.cell.2015.07.003_bib3
  article-title: Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion
  publication-title: Nat. Genet.
  doi: 10.1038/ng2040
– volume: 2
  start-page: 822
  year: 2012
  ident: 10.1016/j.cell.2015.07.003_bib18
  article-title: RRM2B suppresses activation of the oxidative stress pathway and is up-regulated by p53 during senescence
  publication-title: Sci Rep
  doi: 10.1038/srep00822
– volume: 101
  start-page: 3498
  year: 2004
  ident: 10.1016/j.cell.2015.07.003_bib39
  article-title: Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0308679101
– volume: 34
  start-page: 3939
  year: 2014
  ident: 10.1016/j.cell.2015.07.003_bib5
  article-title: FANCD2-controlled chromatin access of the Fanconi-associated nuclease FAN1 is crucial for the recovery of stalled replication forks
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00457-14
– volume: 119A
  start-page: 279
  year: 2003
  ident: 10.1016/j.cell.2015.07.003_bib6
  article-title: Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease
  publication-title: Am. J. Med. Genet. A.
  doi: 10.1002/ajmg.a.20190
– volume: 29
  start-page: 1455
  year: 2014
  ident: 10.1016/j.cell.2015.07.003_bib2
  article-title: Huntingtin-lowering strategies in Huntington’s disease: antisense oligonucleotides, small RNAs, and gene editing
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26020
– volume: 35
  start-page: 861
  year: 2011
  ident: 10.1016/j.cell.2015.07.003_bib26
  article-title: Evaluation of an approximation method for assessment of overall significance of multiple-dependent tests in a genomewide association study
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.20636
– volume: 329
  start-page: 693
  year: 2010
  ident: 10.1016/j.cell.2015.07.003_bib23
  article-title: FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair
  publication-title: Science
  doi: 10.1126/science.1192656
– volume: 7
  start-page: 71
  year: 2006
  ident: 10.1016/j.cell.2015.07.003_bib22
  article-title: Genome-wide significance for a modifier of age at neurological onset in Huntington’s disease at 6q23-24: the HD MAPS study
  publication-title: BMC Med. Genet.
  doi: 10.1186/1471-2350-7-71
– volume: 33
  start-page: 37
  year: 2009
  ident: 10.1016/j.cell.2015.07.003_bib8
  article-title: Intergenerational and striatal CAG repeat instability in Huntington’s disease knock-in mice involve different DNA repair genes
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2008.09.014
– volume: 78
  start-page: 690
  year: 2012
  ident: 10.1016/j.cell.2015.07.003_bib20
  article-title: CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318249f683
– volume: 7
  start-page: 77
  year: 2014
  ident: 10.1016/j.cell.2015.07.003_bib27
  article-title: Ubiquitin-proteasome system involvement in Huntington’s disease
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2014.00077
– volume: 85
  start-page: 13
  year: 2009
  ident: 10.1016/j.cell.2015.07.003_bib13
  article-title: Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2009.05.011
SSID ssj0008555
Score 2.6335592
Snippet As a Mendelian neurodegenerative disorder, the genetic risk of Huntington’s disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is...
As a Mendelian neurodegenerative disorder, the genetic risk of Huntington's disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is...
As a Mendelian neurodegenerative disorder, the genetic risk of Huntington’s disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 516
SubjectTerms Adaptor Proteins, Signal Transducing - metabolism
Age of Onset
Chromosomes, Human, Pair 15
Chromosomes, Human, Pair 8
Genes, Modifier
Genome-Wide Association Study
Humans
Huntingtin Protein
Huntington Disease - epidemiology
Huntington Disease - genetics
Huntington Disease - physiopathology
MutL Protein Homolog 1
Nerve Tissue Proteins - genetics
Nuclear Proteins - metabolism
Trinucleotide Repeats
Title Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease
URI https://dx.doi.org/10.1016/j.cell.2015.07.003
https://www.ncbi.nlm.nih.gov/pubmed/26232222
https://www.proquest.com/docview/1701342337
https://pubmed.ncbi.nlm.nih.gov/PMC4524551
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCN6k2LRJ2xx9LYugXlT2FpI2wRXpilsP3vwb_j1_iTNNurgKHry1zQTSmXTyNZn5hpDDxMRJKZIsyrg18INiZWRMlkVWxqXOM8dYhbnDV9fZ4I5fDsVwjpx1uTAYVhl8v_fprbcOT46DNo-fRyPM8ZVJkeGKiKTwLY9pyos2iW94OvXGhRC-ioGELx-kQ-KMj_HCzXEM7xItgWdXOOv34vQbfP6Mofy2KPWXyVJAk_TED3iFzNl6lSz4-pJva-Tep-G6sC9Hx44izTQI076vs0ObB93Qq3E1cm80cIQ-0Zt6YhuUHvhCEoAPP98_JvTcn-ask7v-xe3ZIAqFFKKSC9FEVeoAOBU2rxjgLWlZHOvKSJ0JzTRcghmFFqkuCllZ5lxpACTJKodGxkuZpxtkvh7XdotQA11sYvNCS81dIg3jVcEdQ9yFRSZ6hHUaVGVgGcdiF0-qCyd7VKh1hVpXMR5-pz1yNO3z7Dk2_pQWnWHUzExRsAj82e-gs6KCTwibdW3HrxOFlPRIhJjmPbLprTodRwLwECAUvFc-Y--pANJzz7bUo4eWppuLBLTPtv853h2yiHftPnK8S-abl1e7BwCoMfvtDP8CmeQFJQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELaiRFV7qZI-t3nUlXqrUDBgwMe8VpvHbi9JtTfLBlshiiDqkkNu_Rv9e_klmcEGdbNSDr0hPJbMDNgf9sz3EfI90mFU8CgN0sRo-EExItA6TQMjwkJlqWWsxNrh6SydXCVncz5fI0d9LQymVfq5383p3Wzt7-x7b-7fVRXW-IooT3FFRFJ45DHdADSQoX7D6fxwmI5zzp2MgYBPH8x95YxL8sLdcczv4h2DZ6-ctbo6raLP50mU_6xK403y1sNJeuBGvEXWTP2OvHICkw_vyS9Xh2v9xhxtLEWeaTCmYye0Q9tr1dJpU1b2gXqS0Fv6s16YFq0nTkkCAOLjn78LeuyOcz6Qq_HJ5dEk8EoKQZFw3gZlbAE55SYrGQAuYVgYqlILlXLFFFxCHLniscpzURpmbaEBJYkyg0aWFCKLP5L1uqnNZ0I1dDGRyXIlVGIjoVlS5ollCLxQZWJEWO9BWXiacVS7uJV9PtmNRK9L9LoM8fQ7HpEfQ587R7LxojXvAyOXXhUJq8CL_b71UZTwDWGzqk1zv5DISY9MiHE2Ip9cVIdxRIAPAUPBc2VL8R4MkJ97uaWurjue7oRH4H325T_H-5W8nlxOL-TF6ex8m7zBlm5TOdwh6-3ve7MLaKjVe93b_gS4_AhE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Genetic+Factors+that+Modify+Clinical+Onset+of+Huntington%E2%80%99s+Disease&rft.jtitle=Cell&rft.date=2015-07-30&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=162&rft.issue=3&rft.spage=516&rft.epage=526&rft_id=info:doi/10.1016%2Fj.cell.2015.07.003&rft_id=info%3Apmid%2F26232222&rft.externalDocID=PMC4524551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon