Impacts of harvesting intensity on carbon allocation to species, size classes and pools in mangrove forests, and the relationships with stand structural attributes
•Rhizophora racemosa and Avicennia germinans contributed most of the tree carbon stock.•Soil had the greatest share of the total carbon stock, followed by live trees and litter.•Total carbon stock (all pools combined) was higher on low harvesting sites.•Tree density generally enhanced tree carbon st...
Saved in:
Published in | Ecological indicators Vol. 155; p. 111037 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Rhizophora racemosa and Avicennia germinans contributed most of the tree carbon stock.•Soil had the greatest share of the total carbon stock, followed by live trees and litter.•Total carbon stock (all pools combined) was higher on low harvesting sites.•Tree density generally enhanced tree carbon stock, but more so on low harvesting sites.•Carbon stocks in dead trees, litter and soil are high in low harvesting areas where stand densities are also high.
Mangroves are vital ecosystems that help mitigate climate change and natural hazards, despite representing only 0.5% of the world's coastlines. Recent studies have provided empirical evidence of the ongoing over-exploitation of mangrove forests in West Africa. Understanding the impact of such harvesting on mangroves’ carbon potential is essential to inform decision-making for management and carbon economy policies. This study investigated the impacts of harvesting intensity on (i) carbon allocation to species, size class, soil depth and pool (standing live trees, standing dead trees, litter and soil); and (ii) carbon stock in the different carbon pools, and its relationships with stand structural attributes, using the case study of Benin coastal line. Data were collected in 600 plots of 0.015 ha across 20 mangrove sites in high and low-harvesting-intensity areas. Sixty litter quadrats were also established to sample litter, while 160 soil samples were collected for soil carbon content analysis.
Regardless of the harvesting intensity, two mangrove species, Rhizophora racemosa and Avicennia germinans, contributed more than 98% of the tree carbon. Small (1–10 cm) and medium (10–20 cm) size classes dominated tree carbon in high and low harvesting sites, respectively. Soil carbon up to 1 m depth had the greatest share (55%-70%) of the total carbon stock, followed by standing live trees (26%-40%) and litter, and was not influenced by harvesting intensity. Harvesting intensity influenced the carbon stocks in standing live and dead trees, with greater values in low and high harvesting sites. The total carbon stock was ∼ 1.46-fold higher in low harvesting sites (308.54 ± 32.74 MgC.ha−1) than in high harvesting sites (211.40 ± 14.91 MgC.ha−1). Mixed effect models showed that stand density and proportion of R. racemosa related positively with tree carbon stock, especially on low harvesting sites. Multiple factorial analyses revealed that carbon stocks in dead trees, litter and soil are high in low harvesting areas where stand densities are also high. However, in high harvesting sites, carbon stock in litter was positively related to relative density of A. germinans. This study expands our understanding of the carbon stock potential in a West African mangrove subject to different levels of disturbance and its contribution to mitigating greenhouse gas emissions. The implications for management were further discussed. |
---|---|
AbstractList | •Rhizophora racemosa and Avicennia germinans contributed most of the tree carbon stock.•Soil had the greatest share of the total carbon stock, followed by live trees and litter.•Total carbon stock (all pools combined) was higher on low harvesting sites.•Tree density generally enhanced tree carbon stock, but more so on low harvesting sites.•Carbon stocks in dead trees, litter and soil are high in low harvesting areas where stand densities are also high.
Mangroves are vital ecosystems that help mitigate climate change and natural hazards, despite representing only 0.5% of the world's coastlines. Recent studies have provided empirical evidence of the ongoing over-exploitation of mangrove forests in West Africa. Understanding the impact of such harvesting on mangroves’ carbon potential is essential to inform decision-making for management and carbon economy policies. This study investigated the impacts of harvesting intensity on (i) carbon allocation to species, size class, soil depth and pool (standing live trees, standing dead trees, litter and soil); and (ii) carbon stock in the different carbon pools, and its relationships with stand structural attributes, using the case study of Benin coastal line. Data were collected in 600 plots of 0.015 ha across 20 mangrove sites in high and low-harvesting-intensity areas. Sixty litter quadrats were also established to sample litter, while 160 soil samples were collected for soil carbon content analysis.
Regardless of the harvesting intensity, two mangrove species, Rhizophora racemosa and Avicennia germinans, contributed more than 98% of the tree carbon. Small (1–10 cm) and medium (10–20 cm) size classes dominated tree carbon in high and low harvesting sites, respectively. Soil carbon up to 1 m depth had the greatest share (55%-70%) of the total carbon stock, followed by standing live trees (26%-40%) and litter, and was not influenced by harvesting intensity. Harvesting intensity influenced the carbon stocks in standing live and dead trees, with greater values in low and high harvesting sites. The total carbon stock was ∼ 1.46-fold higher in low harvesting sites (308.54 ± 32.74 MgC.ha−1) than in high harvesting sites (211.40 ± 14.91 MgC.ha−1). Mixed effect models showed that stand density and proportion of R. racemosa related positively with tree carbon stock, especially on low harvesting sites. Multiple factorial analyses revealed that carbon stocks in dead trees, litter and soil are high in low harvesting areas where stand densities are also high. However, in high harvesting sites, carbon stock in litter was positively related to relative density of A. germinans. This study expands our understanding of the carbon stock potential in a West African mangrove subject to different levels of disturbance and its contribution to mitigating greenhouse gas emissions. The implications for management were further discussed. Mangroves are vital ecosystems that help mitigate climate change and natural hazards, despite representing only 0.5% of the world's coastlines. Recent studies have provided empirical evidence of the ongoing over-exploitation of mangrove forests in West Africa. Understanding the impact of such harvesting on mangroves’ carbon potential is essential to inform decision-making for management and carbon economy policies. This study investigated the impacts of harvesting intensity on (i) carbon allocation to species, size class, soil depth and pool (standing live trees, standing dead trees, litter and soil); and (ii) carbon stock in the different carbon pools, and its relationships with stand structural attributes, using the case study of Benin coastal line. Data were collected in 600 plots of 0.015 ha across 20 mangrove sites in high and low-harvesting-intensity areas. Sixty litter quadrats were also established to sample litter, while 160 soil samples were collected for soil carbon content analysis.Regardless of the harvesting intensity, two mangrove species, Rhizophora racemosa and Avicennia germinans, contributed more than 98% of the tree carbon. Small (1–10 cm) and medium (10–20 cm) size classes dominated tree carbon in high and low harvesting sites, respectively. Soil carbon up to 1 m depth had the greatest share (55%-70%) of the total carbon stock, followed by standing live trees (26%-40%) and litter, and was not influenced by harvesting intensity. Harvesting intensity influenced the carbon stocks in standing live and dead trees, with greater values in low and high harvesting sites. The total carbon stock was ∼ 1.46-fold higher in low harvesting sites (308.54 ± 32.74 MgC.ha−1) than in high harvesting sites (211.40 ± 14.91 MgC.ha−1). Mixed effect models showed that stand density and proportion of R. racemosa related positively with tree carbon stock, especially on low harvesting sites. Multiple factorial analyses revealed that carbon stocks in dead trees, litter and soil are high in low harvesting areas where stand densities are also high. However, in high harvesting sites, carbon stock in litter was positively related to relative density of A. germinans. This study expands our understanding of the carbon stock potential in a West African mangrove subject to different levels of disturbance and its contribution to mitigating greenhouse gas emissions. The implications for management were further discussed. Mangroves are vital ecosystems that help mitigate climate change and natural hazards, despite representing only 0.5% of the world's coastlines. Recent studies have provided empirical evidence of the ongoing over-exploitation of mangrove forests in West Africa. Understanding the impact of such harvesting on mangroves’ carbon potential is essential to inform decision-making for management and carbon economy policies. This study investigated the impacts of harvesting intensity on (i) carbon allocation to species, size class, soil depth and pool (standing live trees, standing dead trees, litter and soil); and (ii) carbon stock in the different carbon pools, and its relationships with stand structural attributes, using the case study of Benin coastal line. Data were collected in 600 plots of 0.015 ha across 20 mangrove sites in high and low-harvesting-intensity areas. Sixty litter quadrats were also established to sample litter, while 160 soil samples were collected for soil carbon content analysis. Regardless of the harvesting intensity, two mangrove species, Rhizophora racemosa and Avicennia germinans, contributed more than 98% of the tree carbon. Small (1–10 cm) and medium (10–20 cm) size classes dominated tree carbon in high and low harvesting sites, respectively. Soil carbon up to 1 m depth had the greatest share (55%-70%) of the total carbon stock, followed by standing live trees (26%-40%) and litter, and was not influenced by harvesting intensity. Harvesting intensity influenced the carbon stocks in standing live and dead trees, with greater values in low and high harvesting sites. The total carbon stock was ∼ 1.46-fold higher in low harvesting sites (308.54 ± 32.74 MgC.ha⁻¹) than in high harvesting sites (211.40 ± 14.91 MgC.ha⁻¹). Mixed effect models showed that stand density and proportion of R. racemosa related positively with tree carbon stock, especially on low harvesting sites. Multiple factorial analyses revealed that carbon stocks in dead trees, litter and soil are high in low harvesting areas where stand densities are also high. However, in high harvesting sites, carbon stock in litter was positively related to relative density of A. germinans. This study expands our understanding of the carbon stock potential in a West African mangrove subject to different levels of disturbance and its contribution to mitigating greenhouse gas emissions. The implications for management were further discussed. |
ArticleNumber | 111037 |
Author | Mensah, Sylvanus Zanvo, Serge M.G. Glèlè Kakaï, Romain Salako, Kolawolé V. |
Author_xml | – sequence: 1 givenname: Serge M.G. surname: Zanvo fullname: Zanvo, Serge M.G. – sequence: 2 givenname: Kolawolé V. surname: Salako fullname: Salako, Kolawolé V. – sequence: 3 givenname: Sylvanus surname: Mensah fullname: Mensah, Sylvanus – sequence: 4 givenname: Romain surname: Glèlè Kakaï fullname: Glèlè Kakaï, Romain email: glele.romain@gmail.com |
BookMark | eNqFkc9uFDEMxkeoSLSFR0DKkQO7TJL5Kw4IVVBWqsQFJG6RJ_HsZpVNhji7VXkdXrSZnYoDl55s2f5-lv1dFRc-eCyKt7xc85I3H_Zr1MFZb9aiFHLNOS9l-6K45F0rVm0pq4ucV2254k3561VxRbQvs67vm8vi7-YwgU7Ewsh2EE9Iyfotsz6hJ5seWPBMQxxyAOeChmRzmgKjCbVFes_I_kGmHRAhMfCGTSE4ygR2AL-N4YRsDDFz8-zcTjtkEd0ZRDs7Ebu3accozU1K8ajTMYJjkFK0wzEhvS5ejuAI3zzF6-Ln1y8_br6t7r7fbm4-3610VddpZUSrRS21aHndNIDIO2N6Uw9DJ2FEGDrESspBDrqtxNiiqXqpddcMwlQoG3ldbBauCbBXU7QHiA8qgFXnQohbBTFZ7VCNZpg3GCOwq3iNfVcLAbwbxw7GTpjMerewphh-H_P16mBJo3PgMRxJSV5L3jaiEnm0XkZ1DEQRx3-realmg9VePRmsZoPVYnDWffxPp206vzVFsO5Z9adFjfmjJ4tRUfbTazQ2ok75ZPsM4RHOKMz2 |
CitedBy_id | crossref_primary_10_2989_20702620_2024_2377678 crossref_primary_10_1007_s11273_024_10026_z |
Cites_doi | 10.1002/ecs2.3563 10.1126/science.317.5834.41b 10.1029/2007GB003052 10.18637/jss.v082.i13 10.1016/j.scitotenv.2022.160142 10.1111/j.1466-8238.2010.00584.x 10.1016/j.marpolbul.2018.04.043 10.1016/j.seares.2021.102113 10.1016/j.atmosenv.2011.04.074 10.1088/1748-9326/ab666d 10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2 10.1111/j.1365-2486.2005.001043.x 10.47125/jesam/2017_2/09 10.1016/j.scitotenv.2021.146821 10.1007/s11104-009-0053-7 10.1007/s11273-015-9417-3 10.1038/ngeo1123 10.3389/fmars.2022.781876 10.1016/0304-3770(87)90046-5 10.1007/s11273-009-9173-3 10.1016/j.wse.2022.10.004 10.1146/annurev-marine-010213-135020 10.1016/j.aquabot.2007.12.006 10.1007/s43621-022-00082-x 10.1111/gcb.15571 10.1016/j.forpol.2020.102192 10.3390/f5081967 10.1007/s11273-021-09793-w 10.1007/s10668-017-0075-x 10.1007/s10457-018-0213-y 10.1007/s10021-010-9329-2 10.1002/ecm.1405 10.1073/pnas.1510272113 10.1007/s10021-002-0191-8 10.1186/s13717-020-00227-8 10.1890/110004 10.1038/nclimate2734 10.1111/gcb.15275 10.1890/13-0640.1 10.1016/j.biombioe.2023.106917 10.1016/j.aquabot.2007.12.005 10.4155/cmt.12.20 10.1186/s13021-021-00172-9 10.1093/treephys/tpq048 10.1016/j.catena.2019.104414 10.1016/j.foreco.2010.07.040 10.1016/j.landusepol.2021.105583 10.1016/j.aquabot.2007.12.007 10.1002/2016JG003510 10.1007/s00468-002-0206-2 10.1016/j.jenvman.2023.117772 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) |
Copyright_xml | – notice: 2023 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.ecolind.2023.111037 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1872-7034 |
ExternalDocumentID | oai_doaj_org_article_fdb6aeedd2e8415e98522a18ff8af82d 10_1016_j_ecolind_2023_111037 S1470160X23011792 |
GeographicLocations | Benin |
GeographicLocations_xml | – name: Benin |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABVA AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSJ SSZ T5K ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c455t-d27c253c271566aee18dd9d5bb83afeab8ee433b3bc742f7ed493cc86b2d4e363 |
IEDL.DBID | .~1 |
ISSN | 1470-160X |
IngestDate | Wed Aug 27 01:26:11 EDT 2025 Fri Aug 22 20:22:16 EDT 2025 Tue Jul 01 04:27:08 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 Fri Feb 23 02:36:17 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Benin Avicennia germinans Rhizophora racemosa Disturbances Tree carbon Soil carbon |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-d27c253c271566aee18dd9d5bb83afeab8ee433b3bc742f7ed493cc86b2d4e363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1470160X23011792 |
PQID | 3153176242 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fdb6aeedd2e8415e98522a18ff8af82d proquest_miscellaneous_3153176242 crossref_primary_10_1016_j_ecolind_2023_111037 crossref_citationtrail_10_1016_j_ecolind_2023_111037 elsevier_sciencedirect_doi_10_1016_j_ecolind_2023_111037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2023 2023-11-00 20231101 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
PublicationDecade | 2020 |
PublicationTitle | Ecological indicators |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Ahmed, Kamruzzaman, Rahman, Sakib, Azad, Dey (b0020) 2022; 2 Hong, Hemati, Zakaria (b0130) 2017; 20 Fao (b0100) 2020 Nagelkerken, Blaber, Bouillon, Green, Haywood, Kirton, Meynecke, Pawlik, Penrose, Sasekumar, Somerfield (b0215) 2008; 89 Kuznetsova, A., Brockhoff, P.B., Christensen, R., 2016. lmerTest: Tests in Linear Mixed Effects Models. Gnansounou, Toyi, Salako, Ahossou, Akpona, Gbedomon, Assogbadjo, Glèlè Kakaï (b0110) 2021; 4 Xiong, Liao, Wang (b0315) 2018; 131 Lovelock, Sorrell, Hancock, Hua, Swales (b0180) 2010; 13 Valiela, Bowen, York (b0305) 2001; 51 Murdiyarso, Purbopuspito, Kauffman, Warren, Sasmito, Donato, Manuri, Krisnawati, Taberima, Kurnianto (b0210) 2015; 5 De Alban, Jamaludin, Wong De Wen, Than, Webb (b0080) 2020; 15 Giri, Ochieng, Tieszen, Zhu, Singh, Loveland, Masek, Duke (b0105) 2011; 20 Tinh, Hanh, van Thanh, Tuan, van Quang, Sharma, MacKenzie (b0295) 2020; 11 Adanguidi, Padonou, Zannou, Houngbo, Saliou, Agbahoungba (b0010) 2020; 116 Mokany, Raison, Prokushkin (b0205) 2006; 12 Zanvo, Mensah, Salako, Glèlè Kakaï (b0335) 2023; 176 Husson, F., Josse, J., Le, S., Mazet, J., 2023. Package “FactoMineR” Title Multivariate Exploratory Data Analysis and Data Mining. Zakaria, Chen, Chew, Sofawi, Moh, Chen, Teoh, Adibah (b0325) 2021; 176 Ahmed, Sarker, Kamruzzaman, Ema, Saagulo Naabeh, Cudjoe, Chowdhury, Pretzsch (b0025) 2023; 337 Mensah, van der Plas, Noulèkoun (b0200) 2021; 12 Day, Conner, Ley-Lou, Day, Navarro (b0075) 1987; 27 Goldberg, Lagomasino, Thomas, Fatoyinbo (b0115) 2020; 26 Adame, Connolly, Turschwell, Lovelock, Fatoyinbo, Lagomasino, Goldberg, Holdorf, Friess, Sasmito, Sanderman, Sievers, Buelow, Kauffman, Bryan-Brown, Brown (b0005) 2021; 27 Donato, Kauffman, Murdiyarso, Kurnianto, Stidham, Kanninen (b0090) 2011; 4 Sanders, Maher, Tait, Williams, Holloway, Sippo, Santos (b0265) 2016; 121 Padonou, Gbaï, Kolawolé, Idohou, Toyi (b0230) 2021; 108 Dimobe, K., Goetze, D., Ouédraogo, A., Mensah, S., Akpagana, K., Porembski, S., Thiombiano, A., 2019. Aboveground biomass allometric equations and carbon content of the shea butter tree (Vitellaria paradoxa C.F. Gaertn., Sapotaceae) components in Sudanian savannas (West Africa). Agrofor. Syst. https://doi.org/10.1007/s10457-018-0213-y. Duke, Meynecke, Dittmann, Ellison, Anger, Berger, Cannicci, Diele, Ewel, Field, Koedam, Lee, Marchand, Nordhaus, Dahdouh-Guebas (b0095) 2007; 80-.). 317 IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Ahouangan, Koura, Sèwadé, Toyi, Lesse, Houinato (b0030) 2022; 3 Sasmito, Kuzyakov, Lubis, Murdiyarso, Hutley, Bachri, Friess, Martius, Borchard (b0270) 2020; 187 Raw, Van Niekerk, Chauke, Mbatha, Riddin, Adams (b0240) 2023; 859 Ren, Chen, Li, Han (b0255) 2010; 327 van Hespen, Hu, Borsje, De Dominicis, Friess, Jevrejeva, Kleinhans, Maza, van Bijsterveldt, Van der Stocken, van Wesenbeeck, Xie, Bouma (b0310) 2023; 16 McLeod, Chmura, Bouillon, Salm, Björk, Duarte, Lovelock, Schlesinger, Silliman (b0185) 2011; 9 Meng, Bai, Gou, Cui, Feng, Dai, Diao, Zhu, Lin (b0190) 2021; 16 Sitoe, Mandlate, Guedes (b0280) 2014; 5 Zanvo, M.S., Salako, K.V., Gnanglè, C., Mensah, S., Assogbadjo, A.E., Glèlè Kakaï, R., 2021. Impacts of harvesting intensity on tree taxonomic diversity, structural diversity, population structure, and stability in a West African mangrove forest. Wetl. Ecol. Manag. 2021 293 29, 433–450. https://doi.org/10.1007/S11273-021-09793-W. Cooray, Kodikara, Kumara, Jayasinghe, Madarasinghe, Dahdouh-Guebas, Gorman, Huxham, Pulukkuttige Jayatissa (b0070) 2021; 389 Richards, Friess (b0260) 2016; 113 Teka, Houessou, Djossa, Bachmann, Oumorou, Sinsin (b0290) 2019; 21 Chatting, Al-Maslamani, Walton, Skov, Kennedy, Husrevoglu, Le Vay (b0065) 2022; 9 Kauffman, Heider, Norfolk, Payton (b0160) 2014; 24 Adotey, Acheampong, Aheto, Blay (b0015) 2022; 14 Kauffman, Adame, Arifanti, Schile-Beers, Bernardino, Bhomia, Donato, Feller, Ferreira, Jesus Garcia, MacKenzie, Megonigal, Murdiyarso, Simpson (b0150) 2020; 90 Kristensen, Bouillon, Dittmar, Marchand (b0170) 2008; 89 Ajonina, Ago, Amoussou, Mibog, Akambi, Dossa (b0035) 2014 Alohou, Gbemavo, Mensah, Ouinsavi (b0040) 2017; 10 Henry, Besnard, Asante, Eshun, Adu-Bredu, Valentini, Bernoux, Saint-André (b0125) 2010; 260 Alongi (b0045) 2012; 3 Komiyama, Ong, Poungparn (b0165) 2008; 89 Sherman, Fahey, Martinez (b0275) 2003; 6 Harishma, Sandeep, Sreekumar (b0120) 2020; 9 Kauffman, J.B., Donato, D.C., 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Alongi, D.M., Clough, B.F., Dixon, P., Tirendi, F., 2003. Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees 2002 171 17, 51–60. https://doi.org/10.1007/S00468-002-0206-2. Bouillon, Borges, Castañeda-Moya, Diele, Dittmar, Duke, Kristensen, Lee, Marchand, Middelburg, Rivera-Monroy, Smith, Twilley (b0060) 2008; 22 Gnansounou, Salako, Dahdouh-Guebas, Glèlè Kakaï, Kestemont, Henry (b0320) 2023 Noulèkoun, Birhane, Kassa, Berhe, Gebremichael, Adem, Syoum, Mengistu, Lemma, Hagazi, Abrha, Rannestad, Mensah (b0225) 2021; 782 Unep (b0300) 2007 Spalding, M., McIvor, A., Tonneijck, F., Tol, S., van Eijk, P., 2014. Mangroves for coastal defence: Guidelines for coastal managers & policy makers. R Core Team (b0235) 2022 Ray, Ganguly, Chowdhury, Dey, Das, Dutta, Mandal, Majumder, De, Mukhopadhyay, Jana (b0245) 2011; 45 Hussain, Badola (b0135) 2010; 18 Reef, Feller, Lovelock (b0250) 2010; 30 Mensah, Noulèkoun, Ago (b0195) 2020; 24 Alongi (b0050) 2014; 6 Njana, M.A., Eid, T., Zahabu, E., Malimbwi, R., 2015. Procedures for quantification of belowground biomass of three mangrove tree species. Wetl. Ecol. Manag. 2015 234 23, 749–764. https://doi.org/10.1007/S11273-015-9417-3. Adame (10.1016/j.ecolind.2023.111037_b0005) 2021; 27 Hong (10.1016/j.ecolind.2023.111037_b0130) 2017; 20 10.1016/j.ecolind.2023.111037_b0145 Ahmed (10.1016/j.ecolind.2023.111037_b0020) 2022; 2 Komiyama (10.1016/j.ecolind.2023.111037_b0165) 2008; 89 Padonou (10.1016/j.ecolind.2023.111037_b0230) 2021; 108 10.1016/j.ecolind.2023.111037_b0140 Valiela (10.1016/j.ecolind.2023.111037_b0305) 2001; 51 10.1016/j.ecolind.2023.111037_b0220 Donato (10.1016/j.ecolind.2023.111037_b0090) 2011; 4 Teka (10.1016/j.ecolind.2023.111037_b0290) 2019; 21 Chatting (10.1016/j.ecolind.2023.111037_b0065) 2022; 9 Xiong (10.1016/j.ecolind.2023.111037_b0315) 2018; 131 Kauffman (10.1016/j.ecolind.2023.111037_b0160) 2014; 24 Zakaria (10.1016/j.ecolind.2023.111037_b0325) 2021; 176 Adanguidi (10.1016/j.ecolind.2023.111037_b0010) 2020; 116 Gnansounou (10.1016/j.ecolind.2023.111037_b0110) 2021; 4 Ren (10.1016/j.ecolind.2023.111037_b0255) 2010; 327 Bouillon (10.1016/j.ecolind.2023.111037_b0060) 2008; 22 Mensah (10.1016/j.ecolind.2023.111037_b0200) 2021; 12 Cooray (10.1016/j.ecolind.2023.111037_b0070) 2021; 389 Harishma (10.1016/j.ecolind.2023.111037_b0120) 2020; 9 10.1016/j.ecolind.2023.111037_b0155 Lovelock (10.1016/j.ecolind.2023.111037_b0180) 2010; 13 Sitoe (10.1016/j.ecolind.2023.111037_b0280) 2014; 5 Noulèkoun (10.1016/j.ecolind.2023.111037_b0225) 2021; 782 van Hespen (10.1016/j.ecolind.2023.111037_b0310) 2023; 16 Day (10.1016/j.ecolind.2023.111037_b0075) 1987; 27 Giri (10.1016/j.ecolind.2023.111037_b0105) 2011; 20 Hussain (10.1016/j.ecolind.2023.111037_b0135) 2010; 18 R Core Team (10.1016/j.ecolind.2023.111037_b0235) 2022 Raw (10.1016/j.ecolind.2023.111037_b0240) 2023; 859 Goldberg (10.1016/j.ecolind.2023.111037_b0115) 2020; 26 Unep (10.1016/j.ecolind.2023.111037_b0300) 2007 Ajonina (10.1016/j.ecolind.2023.111037_b0035) 2014 10.1016/j.ecolind.2023.111037_b0085 Alongi (10.1016/j.ecolind.2023.111037_b0050) 2014; 6 10.1016/j.ecolind.2023.111037_b0285 Murdiyarso (10.1016/j.ecolind.2023.111037_b0210) 2015; 5 Nagelkerken (10.1016/j.ecolind.2023.111037_b0215) 2008; 89 Kauffman (10.1016/j.ecolind.2023.111037_b0150) 2020; 90 Ahmed (10.1016/j.ecolind.2023.111037_b0025) 2023; 337 Sasmito (10.1016/j.ecolind.2023.111037_b0270) 2020; 187 Kristensen (10.1016/j.ecolind.2023.111037_b0170) 2008; 89 Adotey (10.1016/j.ecolind.2023.111037_b0015) 2022; 14 Duke (10.1016/j.ecolind.2023.111037_b0095) 2007; 80-.). 317 10.1016/j.ecolind.2023.111037_b0055 Tinh (10.1016/j.ecolind.2023.111037_b0295) 2020; 11 10.1016/j.ecolind.2023.111037_b0330 10.1016/j.ecolind.2023.111037_b0175 Meng (10.1016/j.ecolind.2023.111037_b0190) 2021; 16 Alongi (10.1016/j.ecolind.2023.111037_b0045) 2012; 3 De Alban (10.1016/j.ecolind.2023.111037_b0080) 2020; 15 Richards (10.1016/j.ecolind.2023.111037_b0260) 2016; 113 Fao (10.1016/j.ecolind.2023.111037_b0100) 2020 Reef (10.1016/j.ecolind.2023.111037_b0250) 2010; 30 Sherman (10.1016/j.ecolind.2023.111037_b0275) 2003; 6 Ahouangan (10.1016/j.ecolind.2023.111037_b0030) 2022; 3 Henry (10.1016/j.ecolind.2023.111037_b0125) 2010; 260 Sanders (10.1016/j.ecolind.2023.111037_b0265) 2016; 121 Zanvo (10.1016/j.ecolind.2023.111037_b0335) 2023; 176 Ray (10.1016/j.ecolind.2023.111037_b0245) 2011; 45 Alohou (10.1016/j.ecolind.2023.111037_b0040) 2017; 10 McLeod (10.1016/j.ecolind.2023.111037_b0185) 2011; 9 Mokany (10.1016/j.ecolind.2023.111037_b0205) 2006; 12 Mensah (10.1016/j.ecolind.2023.111037_b0195) 2020; 24 Gnansounou (10.1016/j.ecolind.2023.111037_b0320) 2023 |
References_xml | – reference: Kauffman, J.B., Donato, D.C., 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. – reference: Spalding, M., McIvor, A., Tonneijck, F., Tol, S., van Eijk, P., 2014. Mangroves for coastal defence: Guidelines for coastal managers & policy makers. – volume: 3 year: 2022 ident: b0030 article-title: Ruminant keeping around mangrove forests in benin (West africa): herders’ perceptions of threats and opportunities for conservation of mangroves publication-title: Discov. Sustain. – volume: 12 start-page: 84 year: 2006 end-page: 96 ident: b0205 article-title: Critical analysis of root: shoot ratios in terrestrial biomes publication-title: Global Change Biology – year: 2020 ident: b0100 article-title: Stratégie nationale et plan d’actions de gestion durable des écosystèmes de mangroves du bénin publication-title: Stratégie nationale et plan d’actions de gestion durable des écosystèmes de mangroves du bénin. FAO. – volume: 389 year: 2021 ident: b0070 article-title: Climate and intertidal zonation drive variability in the carbon stocks of sri lankan mangrove forests publication-title: Geoderma – volume: 121 start-page: 2600 year: 2016 end-page: 2609 ident: b0265 article-title: Are global mangrove carbon stocks driven by rainfall? publication-title: J. Geophys. Res. Biogeosciences – volume: 21 start-page: 1153 year: 2019 end-page: 1169 ident: b0290 article-title: Mangroves in benin, west africa: threats, uses and conservation opportunities publication-title: Environment, Development and Sustainability – reference: IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories. – reference: Kuznetsova, A., Brockhoff, P.B., Christensen, R., 2016. lmerTest: Tests in Linear Mixed Effects Models. – reference: Zanvo, M.S., Salako, K.V., Gnanglè, C., Mensah, S., Assogbadjo, A.E., Glèlè Kakaï, R., 2021. Impacts of harvesting intensity on tree taxonomic diversity, structural diversity, population structure, and stability in a West African mangrove forest. Wetl. Ecol. Manag. 2021 293 29, 433–450. https://doi.org/10.1007/S11273-021-09793-W. – volume: 22 year: 2008 ident: b0060 article-title: Mangrove production and carbon sinks: A revision of global budget estimates publication-title: Global Biogeochemical Cycles – volume: 108 year: 2021 ident: b0230 article-title: How far are mangrove ecosystems in benin (West africa) conserved by the ramsar convention? publication-title: Land Use Policy – volume: 80-.). 317 start-page: 41 year: 2007 end-page: 42 ident: b0095 article-title: A world without mangroves? publication-title: Science – volume: 9 start-page: 552 year: 2011 end-page: 560 ident: b0185 article-title: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 publication-title: Frontiers in Ecology and the Environment – volume: 3 start-page: 313 year: 2012 end-page: 322 ident: b0045 article-title: Carbon sequestration in mangrove forests publication-title: Carbon Manag. – volume: 20 start-page: 154 year: 2011 end-page: 159 ident: b0105 article-title: Status and distribution of mangrove forests of the world using earth observation satellite data publication-title: Global Ecology and Biogeography – reference: Alongi, D.M., Clough, B.F., Dixon, P., Tirendi, F., 2003. Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees 2002 171 17, 51–60. https://doi.org/10.1007/S00468-002-0206-2. – reference: Njana, M.A., Eid, T., Zahabu, E., Malimbwi, R., 2015. Procedures for quantification of belowground biomass of three mangrove tree species. Wetl. Ecol. Manag. 2015 234 23, 749–764. https://doi.org/10.1007/S11273-015-9417-3. – volume: 6 start-page: 384 year: 2003 end-page: 398 ident: b0275 article-title: Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the dominican republic publication-title: Ecosystems – volume: 6 start-page: 195 year: 2014 end-page: 219 ident: b0050 article-title: Carbon cycling and storage in mangrove forests publication-title: Annual Review of Marine Science – volume: 16 start-page: 1 year: 2021 end-page: 14 ident: b0190 article-title: Relationships between above- and below-ground carbon stocks in mangrove forests facilitate better estimation of total mangrove blue carbon publication-title: Carbon Balance and Management – start-page: 139 year: 2014 end-page: 149 ident: b0035 article-title: Carbon budget as a tool for assessing mangrove forests degradation in the western, coastal wetlands complex (Ramsar site 1017) of southern benin, west africa publication-title: the Land/Ocean interactions in the coastal Zone of West and Central africa – volume: 10 year: 2017 ident: b0040 article-title: Fragmentation of forest ecosystems and connectivity between sacred groves and forest reserves in southeastern benin publication-title: West Africa. Trop. Conserv. Sci. – volume: 5 start-page: 1089 year: 2015 end-page: 1092 ident: b0210 article-title: The potential of indonesian mangrove forests for global climate change mitigation publication-title: Nature Climate Change – volume: 176 year: 2021 ident: b0325 article-title: Carbon stock of disturbed and undisturbed mangrove ecosystems in klang straits, Malaysia publication-title: J. Sea Res. – volume: 26 start-page: 5844 year: 2020 end-page: 5855 ident: b0115 article-title: Global declines in human-driven mangrove loss publication-title: Global Change Biology – volume: 260 start-page: 1375 year: 2010 end-page: 1388 ident: b0125 article-title: Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of africa publication-title: Forest Ecology and Management – volume: 14 start-page: 1 year: 2022 end-page: 14 ident: b0015 article-title: Carbon stocks assessment in a disturbed and undisturbed mangrove forest in ghana publication-title: Sustain. – volume: 337 year: 2023 ident: b0025 article-title: How biotic, abiotic, and functional variables drive belowground soil carbon stocks along stress gradient in the sundarbans mangrove forest? publication-title: Journal of Environmental Management – volume: 116 year: 2020 ident: b0010 article-title: Fuelwood consumption and supply strategies in mangrove forests - insights from RAMSAR sites in benin publication-title: For. Policy Econ. – year: 2022 ident: b0235 article-title: R: A language and environment for statistical computing – volume: 12 year: 2021 ident: b0200 article-title: Do functional identity and divergence promote aboveground carbon differently in tropical semi-arid forests and savannas? publication-title: Ecosphere – volume: 15 year: 2020 ident: b0080 article-title: Improved estimates of mangrove cover and change reveal catastrophic deforestation in myanmar publication-title: Environmental Research Letters – volume: 30 start-page: 1148 year: 2010 end-page: 1160 ident: b0250 article-title: Nutrition of mangroves publication-title: Tree Physiology – volume: 20 start-page: 77 year: 2017 end-page: 87 ident: b0130 article-title: Carbon stock evaluation of selected mangrove malaysia publication-title: Journal of Environmental Science and Management – year: 2023 ident: b0320 article-title: The role of local deities and traditional beliefs in promoting the sustainable use of mangrove ecosystems publication-title: For. Policy Econ. – reference: Husson, F., Josse, J., Le, S., Mazet, J., 2023. Package “FactoMineR” Title Multivariate Exploratory Data Analysis and Data Mining. – volume: 90 start-page: e01405 year: 2020 ident: b0150 article-title: Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients publication-title: Ecological Monographs – volume: 859 year: 2023 ident: b0240 article-title: Blue carbon sinks in south africa and the need for restoration to enhance carbon sequestration publication-title: The Science of the Total Environment – volume: 16 start-page: 1 year: 2023 end-page: 13 ident: b0310 article-title: Mangrove forests as a nature-based solution for coastal flood protection: Biophysical and ecological considerations publication-title: Water Science and Engineering – volume: 27 start-page: 267 year: 1987 end-page: 284 ident: b0075 article-title: The productivity and composition of mangrove forests, laguna de términos publication-title: Mexico. Aquat. Bot. – reference: Dimobe, K., Goetze, D., Ouédraogo, A., Mensah, S., Akpagana, K., Porembski, S., Thiombiano, A., 2019. Aboveground biomass allometric equations and carbon content of the shea butter tree (Vitellaria paradoxa C.F. Gaertn., Sapotaceae) components in Sudanian savannas (West Africa). Agrofor. Syst. https://doi.org/10.1007/s10457-018-0213-y. – volume: 24 start-page: e01331 year: 2020 ident: b0195 article-title: Aboveground tree carbon stocks in west african semi-arid ecosystems: Dominance patterns, size class allocation and structural drivers publication-title: Glob. Ecol. Conserv. – volume: 187 year: 2020 ident: b0270 article-title: Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems publication-title: Catena – volume: 51 start-page: 807 year: 2001 end-page: 815 ident: b0305 article-title: Mangrove forests: One of the world’s threatened major tropical environments publication-title: Bioscience – volume: 89 start-page: 155 year: 2008 end-page: 185 ident: b0215 article-title: The habitat function of mangroves for terrestrial and marine fauna: A review publication-title: Aquatic Botany – volume: 176 start-page: 106917 year: 2023 ident: b0335 article-title: Tree height-diameter, aboveground and belowground biomass allometries for two West African mangrove species publication-title: Biomass Bioenergy – volume: 782 year: 2021 ident: b0225 article-title: Grazing exclosures increase soil organic carbon stock at a rate greater than “4 per 1000” per year across agricultural landscapes in northern ethiopia publication-title: The Science of the Total Environment – volume: 27 start-page: 2856 year: 2021 end-page: 2866 ident: b0005 article-title: Future carbon emissions from global mangrove forest loss publication-title: Global Change Biology – volume: 89 start-page: 201 year: 2008 end-page: 219 ident: b0170 article-title: Organic carbon dynamics in mangrove ecosystems: A review publication-title: Aquatic Botany – volume: 327 start-page: 279 year: 2010 end-page: 291 ident: b0255 article-title: Biomass accumulation and carbon storage of four different aged sonneratia apetala plantations in southern china publication-title: Plant and Soil – volume: 113 start-page: 344 year: 2016 end-page: 349 ident: b0260 article-title: Rates and drivers of mangrove deforestation in southeast asia, 2000–2012 publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 5 start-page: 1967 year: 2014 end-page: 1981 ident: b0280 article-title: Biomass and carbon stocks of sofala bay mangrove forests publication-title: Forests – volume: 4 start-page: 293 year: 2011 end-page: 297 ident: b0090 article-title: Mangroves among the most carbon-rich forests in the tropics publication-title: Nature Geoscience – volume: 13 start-page: 437 year: 2010 end-page: 451 ident: b0180 article-title: Mangrove forest and soil development on a rapidly accreting shore in new zealand publication-title: Ecosystems – volume: 45 start-page: 5016 year: 2011 end-page: 5024 ident: b0245 article-title: carbon sequestration and annual increase of carbon stock in a mangrove forest publication-title: Atmospheric Environment – volume: 9 start-page: 1 year: 2022 end-page: 14 ident: b0065 article-title: Future mangrove carbon storage under climate change and deforestation publication-title: Frontiers in Marine Science – year: 2007 ident: b0300 article-title: Mangroves of western and central africa – volume: 2 year: 2022 ident: b0020 article-title: Stand structure and carbon storage of a young mangrove plantation forest in coastal area of bangladesh: the promise of a natural solution publication-title: Nature-Based Solut. – volume: 18 start-page: 321 year: 2010 end-page: 331 ident: b0135 article-title: Valuing mangrove benefits: Contribution of mangrove forests to local livelihoods in bhitarkanika conservation area, east coast of india publication-title: Wetlands Ecology and Management – volume: 131 start-page: 378 year: 2018 end-page: 385 ident: b0315 article-title: Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments publication-title: Marine Pollution Bulletin – volume: 11 start-page: 1 year: 2020 end-page: 10 ident: b0295 article-title: A comparison of soil carbon stocks of intact and restored mangrove forests in northern vietnam publication-title: Forests – volume: 24 start-page: 518 year: 2014 end-page: 527 ident: b0160 article-title: carbon stocks of intact mangroves and carbon emissions arising from their conversion in the dominican republic publication-title: Ecological Applications – volume: 4 year: 2021 ident: b0110 article-title: Local uses of mangroves and perceived impacts of their degradation in Grand-Popo municipality, a hotspot of mangroves in Benin, West Africa publication-title: Trees, For. People – volume: 9 year: 2020 ident: b0120 article-title: Biomass and carbon stocks in mangrove ecosystems of kerala, southwest coast of india publication-title: Ecological Processes – volume: 89 start-page: 128 year: 2008 end-page: 137 ident: b0165 article-title: Allometry, biomass, and productivity of mangrove forests: A review publication-title: Aquatic Botany – volume: 12 year: 2021 ident: 10.1016/j.ecolind.2023.111037_b0200 article-title: Do functional identity and divergence promote aboveground carbon differently in tropical semi-arid forests and savannas? publication-title: Ecosphere doi: 10.1002/ecs2.3563 – volume: 80-.). 317 start-page: 41 year: 2007 ident: 10.1016/j.ecolind.2023.111037_b0095 article-title: A world without mangroves? publication-title: Science doi: 10.1126/science.317.5834.41b – volume: 22 year: 2008 ident: 10.1016/j.ecolind.2023.111037_b0060 article-title: Mangrove production and carbon sinks: A revision of global budget estimates publication-title: Global Biogeochemical Cycles doi: 10.1029/2007GB003052 – ident: 10.1016/j.ecolind.2023.111037_b0175 doi: 10.18637/jss.v082.i13 – year: 2023 ident: 10.1016/j.ecolind.2023.111037_b0320 article-title: The role of local deities and traditional beliefs in promoting the sustainable use of mangrove ecosystems publication-title: For. Policy Econ. – volume: 859 year: 2023 ident: 10.1016/j.ecolind.2023.111037_b0240 article-title: Blue carbon sinks in south africa and the need for restoration to enhance carbon sequestration publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2022.160142 – volume: 20 start-page: 154 year: 2011 ident: 10.1016/j.ecolind.2023.111037_b0105 article-title: Status and distribution of mangrove forests of the world using earth observation satellite data publication-title: Global Ecology and Biogeography doi: 10.1111/j.1466-8238.2010.00584.x – volume: 131 start-page: 378 year: 2018 ident: 10.1016/j.ecolind.2023.111037_b0315 article-title: Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments publication-title: Marine Pollution Bulletin doi: 10.1016/j.marpolbul.2018.04.043 – volume: 176 year: 2021 ident: 10.1016/j.ecolind.2023.111037_b0325 article-title: Carbon stock of disturbed and undisturbed mangrove ecosystems in klang straits, Malaysia publication-title: J. Sea Res. doi: 10.1016/j.seares.2021.102113 – volume: 45 start-page: 5016 year: 2011 ident: 10.1016/j.ecolind.2023.111037_b0245 article-title: carbon sequestration and annual increase of carbon stock in a mangrove forest publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2011.04.074 – volume: 15 year: 2020 ident: 10.1016/j.ecolind.2023.111037_b0080 article-title: Improved estimates of mangrove cover and change reveal catastrophic deforestation in myanmar publication-title: Environmental Research Letters doi: 10.1088/1748-9326/ab666d – volume: 51 start-page: 807 year: 2001 ident: 10.1016/j.ecolind.2023.111037_b0305 article-title: Mangrove forests: One of the world’s threatened major tropical environments publication-title: Bioscience doi: 10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2 – ident: 10.1016/j.ecolind.2023.111037_b0285 – volume: 12 start-page: 84 year: 2006 ident: 10.1016/j.ecolind.2023.111037_b0205 article-title: Critical analysis of root: shoot ratios in terrestrial biomes publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2005.001043.x – start-page: 139 year: 2014 ident: 10.1016/j.ecolind.2023.111037_b0035 article-title: Carbon budget as a tool for assessing mangrove forests degradation in the western, coastal wetlands complex (Ramsar site 1017) of southern benin, west africa – volume: 20 start-page: 77 year: 2017 ident: 10.1016/j.ecolind.2023.111037_b0130 article-title: Carbon stock evaluation of selected mangrove malaysia publication-title: Journal of Environmental Science and Management doi: 10.47125/jesam/2017_2/09 – volume: 782 year: 2021 ident: 10.1016/j.ecolind.2023.111037_b0225 article-title: Grazing exclosures increase soil organic carbon stock at a rate greater than “4 per 1000” per year across agricultural landscapes in northern ethiopia publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2021.146821 – volume: 327 start-page: 279 year: 2010 ident: 10.1016/j.ecolind.2023.111037_b0255 article-title: Biomass accumulation and carbon storage of four different aged sonneratia apetala plantations in southern china publication-title: Plant and Soil doi: 10.1007/s11104-009-0053-7 – ident: 10.1016/j.ecolind.2023.111037_b0220 doi: 10.1007/s11273-015-9417-3 – volume: 4 start-page: 293 year: 2011 ident: 10.1016/j.ecolind.2023.111037_b0090 article-title: Mangroves among the most carbon-rich forests in the tropics publication-title: Nature Geoscience doi: 10.1038/ngeo1123 – volume: 9 start-page: 1 year: 2022 ident: 10.1016/j.ecolind.2023.111037_b0065 article-title: Future mangrove carbon storage under climate change and deforestation publication-title: Frontiers in Marine Science doi: 10.3389/fmars.2022.781876 – volume: 389 year: 2021 ident: 10.1016/j.ecolind.2023.111037_b0070 article-title: Climate and intertidal zonation drive variability in the carbon stocks of sri lankan mangrove forests publication-title: Geoderma – volume: 27 start-page: 267 year: 1987 ident: 10.1016/j.ecolind.2023.111037_b0075 article-title: The productivity and composition of mangrove forests, laguna de términos publication-title: Mexico. Aquat. Bot. doi: 10.1016/0304-3770(87)90046-5 – volume: 18 start-page: 321 year: 2010 ident: 10.1016/j.ecolind.2023.111037_b0135 article-title: Valuing mangrove benefits: Contribution of mangrove forests to local livelihoods in bhitarkanika conservation area, east coast of india publication-title: Wetlands Ecology and Management doi: 10.1007/s11273-009-9173-3 – volume: 14 start-page: 1 year: 2022 ident: 10.1016/j.ecolind.2023.111037_b0015 article-title: Carbon stocks assessment in a disturbed and undisturbed mangrove forest in ghana publication-title: Sustain. – volume: 16 start-page: 1 year: 2023 ident: 10.1016/j.ecolind.2023.111037_b0310 article-title: Mangrove forests as a nature-based solution for coastal flood protection: Biophysical and ecological considerations publication-title: Water Science and Engineering doi: 10.1016/j.wse.2022.10.004 – volume: 6 start-page: 195 year: 2014 ident: 10.1016/j.ecolind.2023.111037_b0050 article-title: Carbon cycling and storage in mangrove forests publication-title: Annual Review of Marine Science doi: 10.1146/annurev-marine-010213-135020 – volume: 89 start-page: 128 year: 2008 ident: 10.1016/j.ecolind.2023.111037_b0165 article-title: Allometry, biomass, and productivity of mangrove forests: A review publication-title: Aquatic Botany doi: 10.1016/j.aquabot.2007.12.006 – volume: 3 year: 2022 ident: 10.1016/j.ecolind.2023.111037_b0030 article-title: Ruminant keeping around mangrove forests in benin (West africa): herders’ perceptions of threats and opportunities for conservation of mangroves publication-title: Discov. Sustain. doi: 10.1007/s43621-022-00082-x – volume: 27 start-page: 2856 year: 2021 ident: 10.1016/j.ecolind.2023.111037_b0005 article-title: Future carbon emissions from global mangrove forest loss publication-title: Global Change Biology doi: 10.1111/gcb.15571 – volume: 116 year: 2020 ident: 10.1016/j.ecolind.2023.111037_b0010 article-title: Fuelwood consumption and supply strategies in mangrove forests - insights from RAMSAR sites in benin publication-title: For. Policy Econ. doi: 10.1016/j.forpol.2020.102192 – volume: 5 start-page: 1967 year: 2014 ident: 10.1016/j.ecolind.2023.111037_b0280 article-title: Biomass and carbon stocks of sofala bay mangrove forests publication-title: Forests doi: 10.3390/f5081967 – ident: 10.1016/j.ecolind.2023.111037_b0330 doi: 10.1007/s11273-021-09793-w – volume: 21 start-page: 1153 year: 2019 ident: 10.1016/j.ecolind.2023.111037_b0290 article-title: Mangroves in benin, west africa: threats, uses and conservation opportunities publication-title: Environment, Development and Sustainability doi: 10.1007/s10668-017-0075-x – volume: 2 year: 2022 ident: 10.1016/j.ecolind.2023.111037_b0020 article-title: Stand structure and carbon storage of a young mangrove plantation forest in coastal area of bangladesh: the promise of a natural solution publication-title: Nature-Based Solut. – ident: 10.1016/j.ecolind.2023.111037_b0085 doi: 10.1007/s10457-018-0213-y – ident: 10.1016/j.ecolind.2023.111037_b0145 – volume: 13 start-page: 437 year: 2010 ident: 10.1016/j.ecolind.2023.111037_b0180 article-title: Mangrove forest and soil development on a rapidly accreting shore in new zealand publication-title: Ecosystems doi: 10.1007/s10021-010-9329-2 – volume: 90 start-page: e01405 year: 2020 ident: 10.1016/j.ecolind.2023.111037_b0150 article-title: Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients publication-title: Ecological Monographs doi: 10.1002/ecm.1405 – volume: 113 start-page: 344 year: 2016 ident: 10.1016/j.ecolind.2023.111037_b0260 article-title: Rates and drivers of mangrove deforestation in southeast asia, 2000–2012 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1510272113 – volume: 6 start-page: 384 year: 2003 ident: 10.1016/j.ecolind.2023.111037_b0275 article-title: Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the dominican republic publication-title: Ecosystems doi: 10.1007/s10021-002-0191-8 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.ecolind.2023.111037_b0295 article-title: A comparison of soil carbon stocks of intact and restored mangrove forests in northern vietnam publication-title: Forests – volume: 9 year: 2020 ident: 10.1016/j.ecolind.2023.111037_b0120 article-title: Biomass and carbon stocks in mangrove ecosystems of kerala, southwest coast of india publication-title: Ecological Processes doi: 10.1186/s13717-020-00227-8 – volume: 9 start-page: 552 year: 2011 ident: 10.1016/j.ecolind.2023.111037_b0185 article-title: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 publication-title: Frontiers in Ecology and the Environment doi: 10.1890/110004 – volume: 5 start-page: 1089 year: 2015 ident: 10.1016/j.ecolind.2023.111037_b0210 article-title: The potential of indonesian mangrove forests for global climate change mitigation publication-title: Nature Climate Change doi: 10.1038/nclimate2734 – volume: 26 start-page: 5844 year: 2020 ident: 10.1016/j.ecolind.2023.111037_b0115 article-title: Global declines in human-driven mangrove loss publication-title: Global Change Biology doi: 10.1111/gcb.15275 – year: 2007 ident: 10.1016/j.ecolind.2023.111037_b0300 – volume: 24 start-page: 518 year: 2014 ident: 10.1016/j.ecolind.2023.111037_b0160 article-title: carbon stocks of intact mangroves and carbon emissions arising from their conversion in the dominican republic publication-title: Ecological Applications doi: 10.1890/13-0640.1 – ident: 10.1016/j.ecolind.2023.111037_b0155 – volume: 176 start-page: 106917 year: 2023 ident: 10.1016/j.ecolind.2023.111037_b0335 article-title: Tree height-diameter, aboveground and belowground biomass allometries for two West African mangrove species publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2023.106917 – volume: 24 start-page: e01331 year: 2020 ident: 10.1016/j.ecolind.2023.111037_b0195 article-title: Aboveground tree carbon stocks in west african semi-arid ecosystems: Dominance patterns, size class allocation and structural drivers publication-title: Glob. Ecol. Conserv. – volume: 10 year: 2017 ident: 10.1016/j.ecolind.2023.111037_b0040 article-title: Fragmentation of forest ecosystems and connectivity between sacred groves and forest reserves in southeastern benin publication-title: West Africa. Trop. Conserv. Sci. – volume: 89 start-page: 201 year: 2008 ident: 10.1016/j.ecolind.2023.111037_b0170 article-title: Organic carbon dynamics in mangrove ecosystems: A review publication-title: Aquatic Botany doi: 10.1016/j.aquabot.2007.12.005 – volume: 3 start-page: 313 year: 2012 ident: 10.1016/j.ecolind.2023.111037_b0045 article-title: Carbon sequestration in mangrove forests publication-title: Carbon Manag. doi: 10.4155/cmt.12.20 – volume: 16 start-page: 1 year: 2021 ident: 10.1016/j.ecolind.2023.111037_b0190 article-title: Relationships between above- and below-ground carbon stocks in mangrove forests facilitate better estimation of total mangrove blue carbon publication-title: Carbon Balance and Management doi: 10.1186/s13021-021-00172-9 – volume: 30 start-page: 1148 year: 2010 ident: 10.1016/j.ecolind.2023.111037_b0250 article-title: Nutrition of mangroves publication-title: Tree Physiology doi: 10.1093/treephys/tpq048 – volume: 187 year: 2020 ident: 10.1016/j.ecolind.2023.111037_b0270 article-title: Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems publication-title: Catena doi: 10.1016/j.catena.2019.104414 – volume: 260 start-page: 1375 year: 2010 ident: 10.1016/j.ecolind.2023.111037_b0125 article-title: Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of africa publication-title: Forest Ecology and Management doi: 10.1016/j.foreco.2010.07.040 – ident: 10.1016/j.ecolind.2023.111037_b0140 – volume: 108 year: 2021 ident: 10.1016/j.ecolind.2023.111037_b0230 article-title: How far are mangrove ecosystems in benin (West africa) conserved by the ramsar convention? publication-title: Land Use Policy doi: 10.1016/j.landusepol.2021.105583 – year: 2020 ident: 10.1016/j.ecolind.2023.111037_b0100 article-title: Stratégie nationale et plan d’actions de gestion durable des écosystèmes de mangroves du bénin publication-title: Stratégie nationale et plan d’actions de gestion durable des écosystèmes de mangroves du bénin. FAO. – volume: 89 start-page: 155 year: 2008 ident: 10.1016/j.ecolind.2023.111037_b0215 article-title: The habitat function of mangroves for terrestrial and marine fauna: A review publication-title: Aquatic Botany doi: 10.1016/j.aquabot.2007.12.007 – volume: 121 start-page: 2600 year: 2016 ident: 10.1016/j.ecolind.2023.111037_b0265 article-title: Are global mangrove carbon stocks driven by rainfall? publication-title: J. Geophys. Res. Biogeosciences doi: 10.1002/2016JG003510 – volume: 4 year: 2021 ident: 10.1016/j.ecolind.2023.111037_b0110 article-title: Local uses of mangroves and perceived impacts of their degradation in Grand-Popo municipality, a hotspot of mangroves in Benin, West Africa publication-title: Trees, For. People – ident: 10.1016/j.ecolind.2023.111037_b0055 doi: 10.1007/s00468-002-0206-2 – volume: 337 year: 2023 ident: 10.1016/j.ecolind.2023.111037_b0025 article-title: How biotic, abiotic, and functional variables drive belowground soil carbon stocks along stress gradient in the sundarbans mangrove forest? publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2023.117772 – year: 2022 ident: 10.1016/j.ecolind.2023.111037_b0235 |
SSID | ssj0016996 |
Score | 2.4029288 |
Snippet | •Rhizophora racemosa and Avicennia germinans contributed most of the tree carbon stock.•Soil had the greatest share of the total carbon stock, followed by live... Mangroves are vital ecosystems that help mitigate climate change and natural hazards, despite representing only 0.5% of the world's coastlines. Recent studies... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111037 |
SubjectTerms | Avicennia germinans Benin carbon carbon sinks case studies class climate change decision making Disturbances greenhouse gases Rhizophora racemosa Soil carbon soil depth species stand density Tree carbon trees |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQr4oFigaJI2k3seM4R0CtChKcqLQ3y49xuxUk1WZBon-HP8pMnLSFy144RUocx8qMZ76xPd8I8YZANyoSdeGCbArly7Jo0ciirjXyij5Bbs5G_vxFn56pT6t6dafUF58Jy_TA-ccdpei1I0MeKzTkbLA1hBhcaVIyLpkqsvUlnzcHU9P-gW7bnFfULItSL1e3uTtHl4cU1xGEY5rQSrLJWHIR9DteaSTv_8s5_WOmR99z8lA8mEAjvMuDfSTuYfdY7B_f5qjRw2mSDk_E749j5uMAfYILtxl5NLpzWOfD6ttf0HcQ3MbThXfd85odbHvgrEsKnN_CsL5GCIyrcQDXReBCXAP1AN9dd77pfyIQ1qV-qS0_JhAJm_lU3cX6agBe3oVxmQIyQy2ze4Db5vpaODwVZyfHXz-cFlMthiKout4WsWpCVctQNRzwkUBKE2Mba--NdAmdN4hKSi99oGA7NRhVK0Mw2ldRodRyX-x1fYfPBKTG67r0iSxFqwK1kVIlLZuUkl76Si6EmmVhw0RUzvUyvtn5RNqlnURoWYQ2i3AhDm9eu8pMHbteeM-CvmnMRNvjDVI_O6mf3aV-C2FmNbETZslYhLpa7_r-61mtLM1p3qhxHfY_BivJDZUNZ-48_x9jfCHu82dzBuVLsUdixwOCUlv_apw1fwBriyIe priority: 102 providerName: Directory of Open Access Journals |
Title | Impacts of harvesting intensity on carbon allocation to species, size classes and pools in mangrove forests, and the relationships with stand structural attributes |
URI | https://dx.doi.org/10.1016/j.ecolind.2023.111037 https://www.proquest.com/docview/3153176242 https://doaj.org/article/fdb6aeedd2e8415e98522a18ff8af82d |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuGCeFUsj5WROJLdTezEzrFUrbYgeoFKe4v83KaCZJUEJDjwZ_ijzNjJlnKpxClK4jiPGY8_T2a-IeQNgG7HQdSJMkwkXKdpUjrJkjwvHHr0AXJjNvLHi2J9yd9v8s0BOZlyYTCscrT90aYHaz0eWY5fc7mr6-WnlAukR9tkLPCaoR3mXKCWL37twzzSoixjhpFYJdj6Jotneb2AFR6AOSQMzRgajxWWQ_9rfgo0_remqX8MdpiFzh6SByN8pMfxCR-RA9c8JkenN9lqcHIcrv0T8vs85ED2tPX0SnWBUaPZ0jqGrQ8_aNtQozoNG_z_Hr13dGgp5l_CEvot7eufjhpE2K6nqrEUS3L10AP9qppt1353FFAv9Att8TTASdpN8XVX9a6n6OilwWFBI1ct8nxQNcRKW65_Si7PTj-frJOxKkNieJ4Pic2EyXJmMoFLP-VcKq0tba61ZMo7paVznDHNtIFltxfO8pIZIwudWe5YwY7IYdM27hmhXugiT7UHm1FyA20Y475gwntfrHTGZoRPsqjMSFmOlTO-VFNs2nU1irBCEVZRhDOy2F-2i5wdd13wDgW9b4yU2-FA222rUecqbzW-rbWZk4B6XCkBuqpUei-Vl5mdETmpSXVLg6Gr-q77v57UqoLRjb9sVOPab33FYEJKBebwPP__7l-Q-7gXMyhfkkMQtnsFUGrQ8zBW5uTe8fmH9cU8OCT-ANc-JGw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaq6QEuiK1iWI3EkXQmsZM4x1K1mqHtXGiluVlep6kgGSUBCf4Of5T34mRKuVTiFClesjz7-fPyfY-QDwC6HQdTR8qwPOI6jqPCCRalaeZwRR8gN7KRL1bZ4op_XqfrPXI8cmHwWOXg-4NP7731cGc2_M3ZtixnX2KeozzaOmG9rhn44X1Up0onZP9oebZY7TYTsqIIJKN8HmGBWyLP7OYQJnmA51AzNGHoP-YYEf2vIapX8r8zUv3js_uB6PQxeTQgSHoUXvIJ2XPVU3JwcktYg8Shx7bPyO9lT4Nsae3ptWp6UY1qQ8twcr37SeuKGtVouOAWfFjAo11NkYIJs-iPtC1_OWoQZLuWqspSjMrVQg30m6o2Tf3DUQC-UC_kxWRAlLQZj9hdl9uW4lov7dcsaJCrRakPqroQbMu1z8nV6cnl8SIaAjNEhqdpF9kkN0nKTJLj7E85FwtrC5tqLZjyTmnhHGdMM21g5u1zZ3nBjBGZTix3LGMHZFLVlXtBqM91lsbag9souIE8jHGfsdx7n811wqaEj7aQZlAtx-AZX-V4PO1GDiaUaEIZTDglh7ti2yDbcV-BT2joXWZU3e5v1M1GDs1Oeqvxa61NnADg4woB6FXFwnuhvEjslIixmcg7jRiqKu97_vuxWUno4LhroypXf28lgzEpzpHG8_L_q39HHiwuL87l-XJ19oo8xJRAqHxNJmB49waQVaffDj3nD9eLJig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impacts+of+harvesting+intensity+on+carbon+allocation+to+species%2C+size+classes+and+pools+in+mangrove+forests%2C+and+the+relationships+with+stand+structural+attributes&rft.jtitle=Ecological+indicators&rft.au=Zanvo%2C+Serge+M.G.&rft.au=Salako%2C+Kolawol%C3%A9+V.&rft.au=Mensah%2C+Sylvanus&rft.au=Gl%C3%A8l%C3%A8+Kaka%C3%AF%2C+Romain&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=1470-160X&rft.eissn=1872-7034&rft.volume=155&rft_id=info:doi/10.1016%2Fj.ecolind.2023.111037&rft.externalDocID=S1470160X23011792 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon |