Impacts of harvesting intensity on carbon allocation to species, size classes and pools in mangrove forests, and the relationships with stand structural attributes

•Rhizophora racemosa and Avicennia germinans contributed most of the tree carbon stock.•Soil had the greatest share of the total carbon stock, followed by live trees and litter.•Total carbon stock (all pools combined) was higher on low harvesting sites.•Tree density generally enhanced tree carbon st...

Full description

Saved in:
Bibliographic Details
Published inEcological indicators Vol. 155; p. 111037
Main Authors Zanvo, Serge M.G., Salako, Kolawolé V., Mensah, Sylvanus, Glèlè Kakaï, Romain
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Rhizophora racemosa and Avicennia germinans contributed most of the tree carbon stock.•Soil had the greatest share of the total carbon stock, followed by live trees and litter.•Total carbon stock (all pools combined) was higher on low harvesting sites.•Tree density generally enhanced tree carbon stock, but more so on low harvesting sites.•Carbon stocks in dead trees, litter and soil are high in low harvesting areas where stand densities are also high. Mangroves are vital ecosystems that help mitigate climate change and natural hazards, despite representing only 0.5% of the world's coastlines. Recent studies have provided empirical evidence of the ongoing over-exploitation of mangrove forests in West Africa. Understanding the impact of such harvesting on mangroves’ carbon potential is essential to inform decision-making for management and carbon economy policies. This study investigated the impacts of harvesting intensity on (i) carbon allocation to species, size class, soil depth and pool (standing live trees, standing dead trees, litter and soil); and (ii) carbon stock in the different carbon pools, and its relationships with stand structural attributes, using the case study of Benin coastal line. Data were collected in 600 plots of 0.015 ha across 20 mangrove sites in high and low-harvesting-intensity areas. Sixty litter quadrats were also established to sample litter, while 160 soil samples were collected for soil carbon content analysis. Regardless of the harvesting intensity, two mangrove species, Rhizophora racemosa and Avicennia germinans, contributed more than 98% of the tree carbon. Small (1–10 cm) and medium (10–20 cm) size classes dominated tree carbon in high and low harvesting sites, respectively. Soil carbon up to 1 m depth had the greatest share (55%-70%) of the total carbon stock, followed by standing live trees (26%-40%) and litter, and was not influenced by harvesting intensity. Harvesting intensity influenced the carbon stocks in standing live and dead trees, with greater values in low and high harvesting sites. The total carbon stock was ∼ 1.46-fold higher in low harvesting sites (308.54 ± 32.74 MgC.ha−1) than in high harvesting sites (211.40 ± 14.91 MgC.ha−1). Mixed effect models showed that stand density and proportion of R. racemosa related positively with tree carbon stock, especially on low harvesting sites. Multiple factorial analyses revealed that carbon stocks in dead trees, litter and soil are high in low harvesting areas where stand densities are also high. However, in high harvesting sites, carbon stock in litter was positively related to relative density of A. germinans. This study expands our understanding of the carbon stock potential in a West African mangrove subject to different levels of disturbance and its contribution to mitigating greenhouse gas emissions. The implications for management were further discussed.
AbstractList •Rhizophora racemosa and Avicennia germinans contributed most of the tree carbon stock.•Soil had the greatest share of the total carbon stock, followed by live trees and litter.•Total carbon stock (all pools combined) was higher on low harvesting sites.•Tree density generally enhanced tree carbon stock, but more so on low harvesting sites.•Carbon stocks in dead trees, litter and soil are high in low harvesting areas where stand densities are also high. Mangroves are vital ecosystems that help mitigate climate change and natural hazards, despite representing only 0.5% of the world's coastlines. Recent studies have provided empirical evidence of the ongoing over-exploitation of mangrove forests in West Africa. Understanding the impact of such harvesting on mangroves’ carbon potential is essential to inform decision-making for management and carbon economy policies. This study investigated the impacts of harvesting intensity on (i) carbon allocation to species, size class, soil depth and pool (standing live trees, standing dead trees, litter and soil); and (ii) carbon stock in the different carbon pools, and its relationships with stand structural attributes, using the case study of Benin coastal line. Data were collected in 600 plots of 0.015 ha across 20 mangrove sites in high and low-harvesting-intensity areas. Sixty litter quadrats were also established to sample litter, while 160 soil samples were collected for soil carbon content analysis. Regardless of the harvesting intensity, two mangrove species, Rhizophora racemosa and Avicennia germinans, contributed more than 98% of the tree carbon. Small (1–10 cm) and medium (10–20 cm) size classes dominated tree carbon in high and low harvesting sites, respectively. Soil carbon up to 1 m depth had the greatest share (55%-70%) of the total carbon stock, followed by standing live trees (26%-40%) and litter, and was not influenced by harvesting intensity. Harvesting intensity influenced the carbon stocks in standing live and dead trees, with greater values in low and high harvesting sites. The total carbon stock was ∼ 1.46-fold higher in low harvesting sites (308.54 ± 32.74 MgC.ha−1) than in high harvesting sites (211.40 ± 14.91 MgC.ha−1). Mixed effect models showed that stand density and proportion of R. racemosa related positively with tree carbon stock, especially on low harvesting sites. Multiple factorial analyses revealed that carbon stocks in dead trees, litter and soil are high in low harvesting areas where stand densities are also high. However, in high harvesting sites, carbon stock in litter was positively related to relative density of A. germinans. This study expands our understanding of the carbon stock potential in a West African mangrove subject to different levels of disturbance and its contribution to mitigating greenhouse gas emissions. The implications for management were further discussed.
Mangroves are vital ecosystems that help mitigate climate change and natural hazards, despite representing only 0.5% of the world's coastlines. Recent studies have provided empirical evidence of the ongoing over-exploitation of mangrove forests in West Africa. Understanding the impact of such harvesting on mangroves’ carbon potential is essential to inform decision-making for management and carbon economy policies. This study investigated the impacts of harvesting intensity on (i) carbon allocation to species, size class, soil depth and pool (standing live trees, standing dead trees, litter and soil); and (ii) carbon stock in the different carbon pools, and its relationships with stand structural attributes, using the case study of Benin coastal line. Data were collected in 600 plots of 0.015 ha across 20 mangrove sites in high and low-harvesting-intensity areas. Sixty litter quadrats were also established to sample litter, while 160 soil samples were collected for soil carbon content analysis.Regardless of the harvesting intensity, two mangrove species, Rhizophora racemosa and Avicennia germinans, contributed more than 98% of the tree carbon. Small (1–10 cm) and medium (10–20 cm) size classes dominated tree carbon in high and low harvesting sites, respectively. Soil carbon up to 1 m depth had the greatest share (55%-70%) of the total carbon stock, followed by standing live trees (26%-40%) and litter, and was not influenced by harvesting intensity. Harvesting intensity influenced the carbon stocks in standing live and dead trees, with greater values in low and high harvesting sites. The total carbon stock was ∼ 1.46-fold higher in low harvesting sites (308.54 ± 32.74 MgC.ha−1) than in high harvesting sites (211.40 ± 14.91 MgC.ha−1). Mixed effect models showed that stand density and proportion of R. racemosa related positively with tree carbon stock, especially on low harvesting sites. Multiple factorial analyses revealed that carbon stocks in dead trees, litter and soil are high in low harvesting areas where stand densities are also high. However, in high harvesting sites, carbon stock in litter was positively related to relative density of A. germinans. This study expands our understanding of the carbon stock potential in a West African mangrove subject to different levels of disturbance and its contribution to mitigating greenhouse gas emissions. The implications for management were further discussed.
Mangroves are vital ecosystems that help mitigate climate change and natural hazards, despite representing only 0.5% of the world's coastlines. Recent studies have provided empirical evidence of the ongoing over-exploitation of mangrove forests in West Africa. Understanding the impact of such harvesting on mangroves’ carbon potential is essential to inform decision-making for management and carbon economy policies. This study investigated the impacts of harvesting intensity on (i) carbon allocation to species, size class, soil depth and pool (standing live trees, standing dead trees, litter and soil); and (ii) carbon stock in the different carbon pools, and its relationships with stand structural attributes, using the case study of Benin coastal line. Data were collected in 600 plots of 0.015 ha across 20 mangrove sites in high and low-harvesting-intensity areas. Sixty litter quadrats were also established to sample litter, while 160 soil samples were collected for soil carbon content analysis. Regardless of the harvesting intensity, two mangrove species, Rhizophora racemosa and Avicennia germinans, contributed more than 98% of the tree carbon. Small (1–10 cm) and medium (10–20 cm) size classes dominated tree carbon in high and low harvesting sites, respectively. Soil carbon up to 1 m depth had the greatest share (55%-70%) of the total carbon stock, followed by standing live trees (26%-40%) and litter, and was not influenced by harvesting intensity. Harvesting intensity influenced the carbon stocks in standing live and dead trees, with greater values in low and high harvesting sites. The total carbon stock was ∼ 1.46-fold higher in low harvesting sites (308.54 ± 32.74 MgC.ha⁻¹) than in high harvesting sites (211.40 ± 14.91 MgC.ha⁻¹). Mixed effect models showed that stand density and proportion of R. racemosa related positively with tree carbon stock, especially on low harvesting sites. Multiple factorial analyses revealed that carbon stocks in dead trees, litter and soil are high in low harvesting areas where stand densities are also high. However, in high harvesting sites, carbon stock in litter was positively related to relative density of A. germinans. This study expands our understanding of the carbon stock potential in a West African mangrove subject to different levels of disturbance and its contribution to mitigating greenhouse gas emissions. The implications for management were further discussed.
ArticleNumber 111037
Author Mensah, Sylvanus
Zanvo, Serge M.G.
Glèlè Kakaï, Romain
Salako, Kolawolé V.
Author_xml – sequence: 1
  givenname: Serge M.G.
  surname: Zanvo
  fullname: Zanvo, Serge M.G.
– sequence: 2
  givenname: Kolawolé V.
  surname: Salako
  fullname: Salako, Kolawolé V.
– sequence: 3
  givenname: Sylvanus
  surname: Mensah
  fullname: Mensah, Sylvanus
– sequence: 4
  givenname: Romain
  surname: Glèlè Kakaï
  fullname: Glèlè Kakaï, Romain
  email: glele.romain@gmail.com
BookMark eNqFkc9uFDEMxkeoSLSFR0DKkQO7TJL5Kw4IVVBWqsQFJG6RJ_HsZpVNhji7VXkdXrSZnYoDl55s2f5-lv1dFRc-eCyKt7xc85I3H_Zr1MFZb9aiFHLNOS9l-6K45F0rVm0pq4ucV2254k3561VxRbQvs67vm8vi7-YwgU7Ewsh2EE9Iyfotsz6hJ5seWPBMQxxyAOeChmRzmgKjCbVFes_I_kGmHRAhMfCGTSE4ygR2AL-N4YRsDDFz8-zcTjtkEd0ZRDs7Ebu3accozU1K8ajTMYJjkFK0wzEhvS5ejuAI3zzF6-Ln1y8_br6t7r7fbm4-3610VddpZUSrRS21aHndNIDIO2N6Uw9DJ2FEGDrESspBDrqtxNiiqXqpddcMwlQoG3ldbBauCbBXU7QHiA8qgFXnQohbBTFZ7VCNZpg3GCOwq3iNfVcLAbwbxw7GTpjMerewphh-H_P16mBJo3PgMRxJSV5L3jaiEnm0XkZ1DEQRx3-realmg9VePRmsZoPVYnDWffxPp206vzVFsO5Z9adFjfmjJ4tRUfbTazQ2ok75ZPsM4RHOKMz2
CitedBy_id crossref_primary_10_2989_20702620_2024_2377678
crossref_primary_10_1007_s11273_024_10026_z
Cites_doi 10.1002/ecs2.3563
10.1126/science.317.5834.41b
10.1029/2007GB003052
10.18637/jss.v082.i13
10.1016/j.scitotenv.2022.160142
10.1111/j.1466-8238.2010.00584.x
10.1016/j.marpolbul.2018.04.043
10.1016/j.seares.2021.102113
10.1016/j.atmosenv.2011.04.074
10.1088/1748-9326/ab666d
10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2
10.1111/j.1365-2486.2005.001043.x
10.47125/jesam/2017_2/09
10.1016/j.scitotenv.2021.146821
10.1007/s11104-009-0053-7
10.1007/s11273-015-9417-3
10.1038/ngeo1123
10.3389/fmars.2022.781876
10.1016/0304-3770(87)90046-5
10.1007/s11273-009-9173-3
10.1016/j.wse.2022.10.004
10.1146/annurev-marine-010213-135020
10.1016/j.aquabot.2007.12.006
10.1007/s43621-022-00082-x
10.1111/gcb.15571
10.1016/j.forpol.2020.102192
10.3390/f5081967
10.1007/s11273-021-09793-w
10.1007/s10668-017-0075-x
10.1007/s10457-018-0213-y
10.1007/s10021-010-9329-2
10.1002/ecm.1405
10.1073/pnas.1510272113
10.1007/s10021-002-0191-8
10.1186/s13717-020-00227-8
10.1890/110004
10.1038/nclimate2734
10.1111/gcb.15275
10.1890/13-0640.1
10.1016/j.biombioe.2023.106917
10.1016/j.aquabot.2007.12.005
10.4155/cmt.12.20
10.1186/s13021-021-00172-9
10.1093/treephys/tpq048
10.1016/j.catena.2019.104414
10.1016/j.foreco.2010.07.040
10.1016/j.landusepol.2021.105583
10.1016/j.aquabot.2007.12.007
10.1002/2016JG003510
10.1007/s00468-002-0206-2
10.1016/j.jenvman.2023.117772
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.ecolind.2023.111037
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1872-7034
ExternalDocumentID oai_doaj_org_article_fdb6aeedd2e8415e98522a18ff8af82d
10_1016_j_ecolind_2023_111037
S1470160X23011792
GeographicLocations Benin
GeographicLocations_xml – name: Benin
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c455t-d27c253c271566aee18dd9d5bb83afeab8ee433b3bc742f7ed493cc86b2d4e363
IEDL.DBID .~1
ISSN 1470-160X
IngestDate Wed Aug 27 01:26:11 EDT 2025
Fri Aug 22 20:22:16 EDT 2025
Tue Jul 01 04:27:08 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
Fri Feb 23 02:36:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Benin
Avicennia germinans
Rhizophora racemosa
Disturbances
Tree carbon
Soil carbon
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-d27c253c271566aee18dd9d5bb83afeab8ee433b3bc742f7ed493cc86b2d4e363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1470160X23011792
PQID 3153176242
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_fdb6aeedd2e8415e98522a18ff8af82d
proquest_miscellaneous_3153176242
crossref_primary_10_1016_j_ecolind_2023_111037
crossref_citationtrail_10_1016_j_ecolind_2023_111037
elsevier_sciencedirect_doi_10_1016_j_ecolind_2023_111037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
20231101
2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Ecological indicators
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ahmed, Kamruzzaman, Rahman, Sakib, Azad, Dey (b0020) 2022; 2
Hong, Hemati, Zakaria (b0130) 2017; 20
Fao (b0100) 2020
Nagelkerken, Blaber, Bouillon, Green, Haywood, Kirton, Meynecke, Pawlik, Penrose, Sasekumar, Somerfield (b0215) 2008; 89
Kuznetsova, A., Brockhoff, P.B., Christensen, R., 2016. lmerTest: Tests in Linear Mixed Effects Models.
Gnansounou, Toyi, Salako, Ahossou, Akpona, Gbedomon, Assogbadjo, Glèlè Kakaï (b0110) 2021; 4
Xiong, Liao, Wang (b0315) 2018; 131
Lovelock, Sorrell, Hancock, Hua, Swales (b0180) 2010; 13
Valiela, Bowen, York (b0305) 2001; 51
Murdiyarso, Purbopuspito, Kauffman, Warren, Sasmito, Donato, Manuri, Krisnawati, Taberima, Kurnianto (b0210) 2015; 5
De Alban, Jamaludin, Wong De Wen, Than, Webb (b0080) 2020; 15
Giri, Ochieng, Tieszen, Zhu, Singh, Loveland, Masek, Duke (b0105) 2011; 20
Tinh, Hanh, van Thanh, Tuan, van Quang, Sharma, MacKenzie (b0295) 2020; 11
Adanguidi, Padonou, Zannou, Houngbo, Saliou, Agbahoungba (b0010) 2020; 116
Mokany, Raison, Prokushkin (b0205) 2006; 12
Zanvo, Mensah, Salako, Glèlè Kakaï (b0335) 2023; 176
Husson, F., Josse, J., Le, S., Mazet, J., 2023. Package “FactoMineR” Title Multivariate Exploratory Data Analysis and Data Mining.
Zakaria, Chen, Chew, Sofawi, Moh, Chen, Teoh, Adibah (b0325) 2021; 176
Ahmed, Sarker, Kamruzzaman, Ema, Saagulo Naabeh, Cudjoe, Chowdhury, Pretzsch (b0025) 2023; 337
Mensah, van der Plas, Noulèkoun (b0200) 2021; 12
Day, Conner, Ley-Lou, Day, Navarro (b0075) 1987; 27
Goldberg, Lagomasino, Thomas, Fatoyinbo (b0115) 2020; 26
Adame, Connolly, Turschwell, Lovelock, Fatoyinbo, Lagomasino, Goldberg, Holdorf, Friess, Sasmito, Sanderman, Sievers, Buelow, Kauffman, Bryan-Brown, Brown (b0005) 2021; 27
Donato, Kauffman, Murdiyarso, Kurnianto, Stidham, Kanninen (b0090) 2011; 4
Sanders, Maher, Tait, Williams, Holloway, Sippo, Santos (b0265) 2016; 121
Padonou, Gbaï, Kolawolé, Idohou, Toyi (b0230) 2021; 108
Dimobe, K., Goetze, D., Ouédraogo, A., Mensah, S., Akpagana, K., Porembski, S., Thiombiano, A., 2019. Aboveground biomass allometric equations and carbon content of the shea butter tree (Vitellaria paradoxa C.F. Gaertn., Sapotaceae) components in Sudanian savannas (West Africa). Agrofor. Syst. https://doi.org/10.1007/s10457-018-0213-y.
Duke, Meynecke, Dittmann, Ellison, Anger, Berger, Cannicci, Diele, Ewel, Field, Koedam, Lee, Marchand, Nordhaus, Dahdouh-Guebas (b0095) 2007; 80-.). 317
IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories.
Ahouangan, Koura, Sèwadé, Toyi, Lesse, Houinato (b0030) 2022; 3
Sasmito, Kuzyakov, Lubis, Murdiyarso, Hutley, Bachri, Friess, Martius, Borchard (b0270) 2020; 187
Raw, Van Niekerk, Chauke, Mbatha, Riddin, Adams (b0240) 2023; 859
Ren, Chen, Li, Han (b0255) 2010; 327
van Hespen, Hu, Borsje, De Dominicis, Friess, Jevrejeva, Kleinhans, Maza, van Bijsterveldt, Van der Stocken, van Wesenbeeck, Xie, Bouma (b0310) 2023; 16
McLeod, Chmura, Bouillon, Salm, Björk, Duarte, Lovelock, Schlesinger, Silliman (b0185) 2011; 9
Meng, Bai, Gou, Cui, Feng, Dai, Diao, Zhu, Lin (b0190) 2021; 16
Sitoe, Mandlate, Guedes (b0280) 2014; 5
Zanvo, M.S., Salako, K.V., Gnanglè, C., Mensah, S., Assogbadjo, A.E., Glèlè Kakaï, R., 2021. Impacts of harvesting intensity on tree taxonomic diversity, structural diversity, population structure, and stability in a West African mangrove forest. Wetl. Ecol. Manag. 2021 293 29, 433–450. https://doi.org/10.1007/S11273-021-09793-W.
Cooray, Kodikara, Kumara, Jayasinghe, Madarasinghe, Dahdouh-Guebas, Gorman, Huxham, Pulukkuttige Jayatissa (b0070) 2021; 389
Richards, Friess (b0260) 2016; 113
Teka, Houessou, Djossa, Bachmann, Oumorou, Sinsin (b0290) 2019; 21
Chatting, Al-Maslamani, Walton, Skov, Kennedy, Husrevoglu, Le Vay (b0065) 2022; 9
Kauffman, Heider, Norfolk, Payton (b0160) 2014; 24
Adotey, Acheampong, Aheto, Blay (b0015) 2022; 14
Kauffman, Adame, Arifanti, Schile-Beers, Bernardino, Bhomia, Donato, Feller, Ferreira, Jesus Garcia, MacKenzie, Megonigal, Murdiyarso, Simpson (b0150) 2020; 90
Kristensen, Bouillon, Dittmar, Marchand (b0170) 2008; 89
Ajonina, Ago, Amoussou, Mibog, Akambi, Dossa (b0035) 2014
Alohou, Gbemavo, Mensah, Ouinsavi (b0040) 2017; 10
Henry, Besnard, Asante, Eshun, Adu-Bredu, Valentini, Bernoux, Saint-André (b0125) 2010; 260
Alongi (b0045) 2012; 3
Komiyama, Ong, Poungparn (b0165) 2008; 89
Sherman, Fahey, Martinez (b0275) 2003; 6
Harishma, Sandeep, Sreekumar (b0120) 2020; 9
Kauffman, J.B., Donato, D.C., 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests.
Alongi, D.M., Clough, B.F., Dixon, P., Tirendi, F., 2003. Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees 2002 171 17, 51–60. https://doi.org/10.1007/S00468-002-0206-2.
Bouillon, Borges, Castañeda-Moya, Diele, Dittmar, Duke, Kristensen, Lee, Marchand, Middelburg, Rivera-Monroy, Smith, Twilley (b0060) 2008; 22
Gnansounou, Salako, Dahdouh-Guebas, Glèlè Kakaï, Kestemont, Henry (b0320) 2023
Noulèkoun, Birhane, Kassa, Berhe, Gebremichael, Adem, Syoum, Mengistu, Lemma, Hagazi, Abrha, Rannestad, Mensah (b0225) 2021; 782
Unep (b0300) 2007
Spalding, M., McIvor, A., Tonneijck, F., Tol, S., van Eijk, P., 2014. Mangroves for coastal defence: Guidelines for coastal managers & policy makers.
R Core Team (b0235) 2022
Ray, Ganguly, Chowdhury, Dey, Das, Dutta, Mandal, Majumder, De, Mukhopadhyay, Jana (b0245) 2011; 45
Hussain, Badola (b0135) 2010; 18
Reef, Feller, Lovelock (b0250) 2010; 30
Mensah, Noulèkoun, Ago (b0195) 2020; 24
Alongi (b0050) 2014; 6
Njana, M.A., Eid, T., Zahabu, E., Malimbwi, R., 2015. Procedures for quantification of belowground biomass of three mangrove tree species. Wetl. Ecol. Manag. 2015 234 23, 749–764. https://doi.org/10.1007/S11273-015-9417-3.
Adame (10.1016/j.ecolind.2023.111037_b0005) 2021; 27
Hong (10.1016/j.ecolind.2023.111037_b0130) 2017; 20
10.1016/j.ecolind.2023.111037_b0145
Ahmed (10.1016/j.ecolind.2023.111037_b0020) 2022; 2
Komiyama (10.1016/j.ecolind.2023.111037_b0165) 2008; 89
Padonou (10.1016/j.ecolind.2023.111037_b0230) 2021; 108
10.1016/j.ecolind.2023.111037_b0140
Valiela (10.1016/j.ecolind.2023.111037_b0305) 2001; 51
10.1016/j.ecolind.2023.111037_b0220
Donato (10.1016/j.ecolind.2023.111037_b0090) 2011; 4
Teka (10.1016/j.ecolind.2023.111037_b0290) 2019; 21
Chatting (10.1016/j.ecolind.2023.111037_b0065) 2022; 9
Xiong (10.1016/j.ecolind.2023.111037_b0315) 2018; 131
Kauffman (10.1016/j.ecolind.2023.111037_b0160) 2014; 24
Zakaria (10.1016/j.ecolind.2023.111037_b0325) 2021; 176
Adanguidi (10.1016/j.ecolind.2023.111037_b0010) 2020; 116
Gnansounou (10.1016/j.ecolind.2023.111037_b0110) 2021; 4
Ren (10.1016/j.ecolind.2023.111037_b0255) 2010; 327
Bouillon (10.1016/j.ecolind.2023.111037_b0060) 2008; 22
Mensah (10.1016/j.ecolind.2023.111037_b0200) 2021; 12
Cooray (10.1016/j.ecolind.2023.111037_b0070) 2021; 389
Harishma (10.1016/j.ecolind.2023.111037_b0120) 2020; 9
10.1016/j.ecolind.2023.111037_b0155
Lovelock (10.1016/j.ecolind.2023.111037_b0180) 2010; 13
Sitoe (10.1016/j.ecolind.2023.111037_b0280) 2014; 5
Noulèkoun (10.1016/j.ecolind.2023.111037_b0225) 2021; 782
van Hespen (10.1016/j.ecolind.2023.111037_b0310) 2023; 16
Day (10.1016/j.ecolind.2023.111037_b0075) 1987; 27
Giri (10.1016/j.ecolind.2023.111037_b0105) 2011; 20
Hussain (10.1016/j.ecolind.2023.111037_b0135) 2010; 18
R Core Team (10.1016/j.ecolind.2023.111037_b0235) 2022
Raw (10.1016/j.ecolind.2023.111037_b0240) 2023; 859
Goldberg (10.1016/j.ecolind.2023.111037_b0115) 2020; 26
Unep (10.1016/j.ecolind.2023.111037_b0300) 2007
Ajonina (10.1016/j.ecolind.2023.111037_b0035) 2014
10.1016/j.ecolind.2023.111037_b0085
Alongi (10.1016/j.ecolind.2023.111037_b0050) 2014; 6
10.1016/j.ecolind.2023.111037_b0285
Murdiyarso (10.1016/j.ecolind.2023.111037_b0210) 2015; 5
Nagelkerken (10.1016/j.ecolind.2023.111037_b0215) 2008; 89
Kauffman (10.1016/j.ecolind.2023.111037_b0150) 2020; 90
Ahmed (10.1016/j.ecolind.2023.111037_b0025) 2023; 337
Sasmito (10.1016/j.ecolind.2023.111037_b0270) 2020; 187
Kristensen (10.1016/j.ecolind.2023.111037_b0170) 2008; 89
Adotey (10.1016/j.ecolind.2023.111037_b0015) 2022; 14
Duke (10.1016/j.ecolind.2023.111037_b0095) 2007; 80-.). 317
10.1016/j.ecolind.2023.111037_b0055
Tinh (10.1016/j.ecolind.2023.111037_b0295) 2020; 11
10.1016/j.ecolind.2023.111037_b0330
10.1016/j.ecolind.2023.111037_b0175
Meng (10.1016/j.ecolind.2023.111037_b0190) 2021; 16
Alongi (10.1016/j.ecolind.2023.111037_b0045) 2012; 3
De Alban (10.1016/j.ecolind.2023.111037_b0080) 2020; 15
Richards (10.1016/j.ecolind.2023.111037_b0260) 2016; 113
Fao (10.1016/j.ecolind.2023.111037_b0100) 2020
Reef (10.1016/j.ecolind.2023.111037_b0250) 2010; 30
Sherman (10.1016/j.ecolind.2023.111037_b0275) 2003; 6
Ahouangan (10.1016/j.ecolind.2023.111037_b0030) 2022; 3
Henry (10.1016/j.ecolind.2023.111037_b0125) 2010; 260
Sanders (10.1016/j.ecolind.2023.111037_b0265) 2016; 121
Zanvo (10.1016/j.ecolind.2023.111037_b0335) 2023; 176
Ray (10.1016/j.ecolind.2023.111037_b0245) 2011; 45
Alohou (10.1016/j.ecolind.2023.111037_b0040) 2017; 10
McLeod (10.1016/j.ecolind.2023.111037_b0185) 2011; 9
Mokany (10.1016/j.ecolind.2023.111037_b0205) 2006; 12
Mensah (10.1016/j.ecolind.2023.111037_b0195) 2020; 24
Gnansounou (10.1016/j.ecolind.2023.111037_b0320) 2023
References_xml – reference: Kauffman, J.B., Donato, D.C., 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests.
– reference: Spalding, M., McIvor, A., Tonneijck, F., Tol, S., van Eijk, P., 2014. Mangroves for coastal defence: Guidelines for coastal managers & policy makers.
– volume: 3
  year: 2022
  ident: b0030
  article-title: Ruminant keeping around mangrove forests in benin (West africa): herders’ perceptions of threats and opportunities for conservation of mangroves
  publication-title: Discov. Sustain.
– volume: 12
  start-page: 84
  year: 2006
  end-page: 96
  ident: b0205
  article-title: Critical analysis of root: shoot ratios in terrestrial biomes
  publication-title: Global Change Biology
– year: 2020
  ident: b0100
  article-title: Stratégie nationale et plan d’actions de gestion durable des écosystèmes de mangroves du bénin
  publication-title: Stratégie nationale et plan d’actions de gestion durable des écosystèmes de mangroves du bénin. FAO.
– volume: 389
  year: 2021
  ident: b0070
  article-title: Climate and intertidal zonation drive variability in the carbon stocks of sri lankan mangrove forests
  publication-title: Geoderma
– volume: 121
  start-page: 2600
  year: 2016
  end-page: 2609
  ident: b0265
  article-title: Are global mangrove carbon stocks driven by rainfall?
  publication-title: J. Geophys. Res. Biogeosciences
– volume: 21
  start-page: 1153
  year: 2019
  end-page: 1169
  ident: b0290
  article-title: Mangroves in benin, west africa: threats, uses and conservation opportunities
  publication-title: Environment, Development and Sustainability
– reference: IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories.
– reference: Kuznetsova, A., Brockhoff, P.B., Christensen, R., 2016. lmerTest: Tests in Linear Mixed Effects Models.
– reference: Zanvo, M.S., Salako, K.V., Gnanglè, C., Mensah, S., Assogbadjo, A.E., Glèlè Kakaï, R., 2021. Impacts of harvesting intensity on tree taxonomic diversity, structural diversity, population structure, and stability in a West African mangrove forest. Wetl. Ecol. Manag. 2021 293 29, 433–450. https://doi.org/10.1007/S11273-021-09793-W.
– volume: 22
  year: 2008
  ident: b0060
  article-title: Mangrove production and carbon sinks: A revision of global budget estimates
  publication-title: Global Biogeochemical Cycles
– volume: 108
  year: 2021
  ident: b0230
  article-title: How far are mangrove ecosystems in benin (West africa) conserved by the ramsar convention?
  publication-title: Land Use Policy
– volume: 80-.). 317
  start-page: 41
  year: 2007
  end-page: 42
  ident: b0095
  article-title: A world without mangroves?
  publication-title: Science
– volume: 9
  start-page: 552
  year: 2011
  end-page: 560
  ident: b0185
  article-title: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2
  publication-title: Frontiers in Ecology and the Environment
– volume: 3
  start-page: 313
  year: 2012
  end-page: 322
  ident: b0045
  article-title: Carbon sequestration in mangrove forests
  publication-title: Carbon Manag.
– volume: 20
  start-page: 154
  year: 2011
  end-page: 159
  ident: b0105
  article-title: Status and distribution of mangrove forests of the world using earth observation satellite data
  publication-title: Global Ecology and Biogeography
– reference: Alongi, D.M., Clough, B.F., Dixon, P., Tirendi, F., 2003. Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees 2002 171 17, 51–60. https://doi.org/10.1007/S00468-002-0206-2.
– reference: Njana, M.A., Eid, T., Zahabu, E., Malimbwi, R., 2015. Procedures for quantification of belowground biomass of three mangrove tree species. Wetl. Ecol. Manag. 2015 234 23, 749–764. https://doi.org/10.1007/S11273-015-9417-3.
– volume: 6
  start-page: 384
  year: 2003
  end-page: 398
  ident: b0275
  article-title: Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the dominican republic
  publication-title: Ecosystems
– volume: 6
  start-page: 195
  year: 2014
  end-page: 219
  ident: b0050
  article-title: Carbon cycling and storage in mangrove forests
  publication-title: Annual Review of Marine Science
– volume: 16
  start-page: 1
  year: 2021
  end-page: 14
  ident: b0190
  article-title: Relationships between above- and below-ground carbon stocks in mangrove forests facilitate better estimation of total mangrove blue carbon
  publication-title: Carbon Balance and Management
– start-page: 139
  year: 2014
  end-page: 149
  ident: b0035
  article-title: Carbon budget as a tool for assessing mangrove forests degradation in the western, coastal wetlands complex (Ramsar site 1017) of southern benin, west africa
  publication-title: the Land/Ocean interactions in the coastal Zone of West and Central africa
– volume: 10
  year: 2017
  ident: b0040
  article-title: Fragmentation of forest ecosystems and connectivity between sacred groves and forest reserves in southeastern benin
  publication-title: West Africa. Trop. Conserv. Sci.
– volume: 5
  start-page: 1089
  year: 2015
  end-page: 1092
  ident: b0210
  article-title: The potential of indonesian mangrove forests for global climate change mitigation
  publication-title: Nature Climate Change
– volume: 176
  year: 2021
  ident: b0325
  article-title: Carbon stock of disturbed and undisturbed mangrove ecosystems in klang straits, Malaysia
  publication-title: J. Sea Res.
– volume: 26
  start-page: 5844
  year: 2020
  end-page: 5855
  ident: b0115
  article-title: Global declines in human-driven mangrove loss
  publication-title: Global Change Biology
– volume: 260
  start-page: 1375
  year: 2010
  end-page: 1388
  ident: b0125
  article-title: Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of africa
  publication-title: Forest Ecology and Management
– volume: 14
  start-page: 1
  year: 2022
  end-page: 14
  ident: b0015
  article-title: Carbon stocks assessment in a disturbed and undisturbed mangrove forest in ghana
  publication-title: Sustain.
– volume: 337
  year: 2023
  ident: b0025
  article-title: How biotic, abiotic, and functional variables drive belowground soil carbon stocks along stress gradient in the sundarbans mangrove forest?
  publication-title: Journal of Environmental Management
– volume: 116
  year: 2020
  ident: b0010
  article-title: Fuelwood consumption and supply strategies in mangrove forests - insights from RAMSAR sites in benin
  publication-title: For. Policy Econ.
– year: 2022
  ident: b0235
  article-title: R: A language and environment for statistical computing
– volume: 12
  year: 2021
  ident: b0200
  article-title: Do functional identity and divergence promote aboveground carbon differently in tropical semi-arid forests and savannas?
  publication-title: Ecosphere
– volume: 15
  year: 2020
  ident: b0080
  article-title: Improved estimates of mangrove cover and change reveal catastrophic deforestation in myanmar
  publication-title: Environmental Research Letters
– volume: 30
  start-page: 1148
  year: 2010
  end-page: 1160
  ident: b0250
  article-title: Nutrition of mangroves
  publication-title: Tree Physiology
– volume: 20
  start-page: 77
  year: 2017
  end-page: 87
  ident: b0130
  article-title: Carbon stock evaluation of selected mangrove malaysia
  publication-title: Journal of Environmental Science and Management
– year: 2023
  ident: b0320
  article-title: The role of local deities and traditional beliefs in promoting the sustainable use of mangrove ecosystems
  publication-title: For. Policy Econ.
– reference: Husson, F., Josse, J., Le, S., Mazet, J., 2023. Package “FactoMineR” Title Multivariate Exploratory Data Analysis and Data Mining.
– volume: 90
  start-page: e01405
  year: 2020
  ident: b0150
  article-title: Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients
  publication-title: Ecological Monographs
– volume: 859
  year: 2023
  ident: b0240
  article-title: Blue carbon sinks in south africa and the need for restoration to enhance carbon sequestration
  publication-title: The Science of the Total Environment
– volume: 16
  start-page: 1
  year: 2023
  end-page: 13
  ident: b0310
  article-title: Mangrove forests as a nature-based solution for coastal flood protection: Biophysical and ecological considerations
  publication-title: Water Science and Engineering
– volume: 27
  start-page: 267
  year: 1987
  end-page: 284
  ident: b0075
  article-title: The productivity and composition of mangrove forests, laguna de términos
  publication-title: Mexico. Aquat. Bot.
– reference: Dimobe, K., Goetze, D., Ouédraogo, A., Mensah, S., Akpagana, K., Porembski, S., Thiombiano, A., 2019. Aboveground biomass allometric equations and carbon content of the shea butter tree (Vitellaria paradoxa C.F. Gaertn., Sapotaceae) components in Sudanian savannas (West Africa). Agrofor. Syst. https://doi.org/10.1007/s10457-018-0213-y.
– volume: 24
  start-page: e01331
  year: 2020
  ident: b0195
  article-title: Aboveground tree carbon stocks in west african semi-arid ecosystems: Dominance patterns, size class allocation and structural drivers
  publication-title: Glob. Ecol. Conserv.
– volume: 187
  year: 2020
  ident: b0270
  article-title: Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems
  publication-title: Catena
– volume: 51
  start-page: 807
  year: 2001
  end-page: 815
  ident: b0305
  article-title: Mangrove forests: One of the world’s threatened major tropical environments
  publication-title: Bioscience
– volume: 89
  start-page: 155
  year: 2008
  end-page: 185
  ident: b0215
  article-title: The habitat function of mangroves for terrestrial and marine fauna: A review
  publication-title: Aquatic Botany
– volume: 176
  start-page: 106917
  year: 2023
  ident: b0335
  article-title: Tree height-diameter, aboveground and belowground biomass allometries for two West African mangrove species
  publication-title: Biomass Bioenergy
– volume: 782
  year: 2021
  ident: b0225
  article-title: Grazing exclosures increase soil organic carbon stock at a rate greater than “4 per 1000” per year across agricultural landscapes in northern ethiopia
  publication-title: The Science of the Total Environment
– volume: 27
  start-page: 2856
  year: 2021
  end-page: 2866
  ident: b0005
  article-title: Future carbon emissions from global mangrove forest loss
  publication-title: Global Change Biology
– volume: 89
  start-page: 201
  year: 2008
  end-page: 219
  ident: b0170
  article-title: Organic carbon dynamics in mangrove ecosystems: A review
  publication-title: Aquatic Botany
– volume: 327
  start-page: 279
  year: 2010
  end-page: 291
  ident: b0255
  article-title: Biomass accumulation and carbon storage of four different aged sonneratia apetala plantations in southern china
  publication-title: Plant and Soil
– volume: 113
  start-page: 344
  year: 2016
  end-page: 349
  ident: b0260
  article-title: Rates and drivers of mangrove deforestation in southeast asia, 2000–2012
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 5
  start-page: 1967
  year: 2014
  end-page: 1981
  ident: b0280
  article-title: Biomass and carbon stocks of sofala bay mangrove forests
  publication-title: Forests
– volume: 4
  start-page: 293
  year: 2011
  end-page: 297
  ident: b0090
  article-title: Mangroves among the most carbon-rich forests in the tropics
  publication-title: Nature Geoscience
– volume: 13
  start-page: 437
  year: 2010
  end-page: 451
  ident: b0180
  article-title: Mangrove forest and soil development on a rapidly accreting shore in new zealand
  publication-title: Ecosystems
– volume: 45
  start-page: 5016
  year: 2011
  end-page: 5024
  ident: b0245
  article-title: carbon sequestration and annual increase of carbon stock in a mangrove forest
  publication-title: Atmospheric Environment
– volume: 9
  start-page: 1
  year: 2022
  end-page: 14
  ident: b0065
  article-title: Future mangrove carbon storage under climate change and deforestation
  publication-title: Frontiers in Marine Science
– year: 2007
  ident: b0300
  article-title: Mangroves of western and central africa
– volume: 2
  year: 2022
  ident: b0020
  article-title: Stand structure and carbon storage of a young mangrove plantation forest in coastal area of bangladesh: the promise of a natural solution
  publication-title: Nature-Based Solut.
– volume: 18
  start-page: 321
  year: 2010
  end-page: 331
  ident: b0135
  article-title: Valuing mangrove benefits: Contribution of mangrove forests to local livelihoods in bhitarkanika conservation area, east coast of india
  publication-title: Wetlands Ecology and Management
– volume: 131
  start-page: 378
  year: 2018
  end-page: 385
  ident: b0315
  article-title: Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments
  publication-title: Marine Pollution Bulletin
– volume: 11
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0295
  article-title: A comparison of soil carbon stocks of intact and restored mangrove forests in northern vietnam
  publication-title: Forests
– volume: 24
  start-page: 518
  year: 2014
  end-page: 527
  ident: b0160
  article-title: carbon stocks of intact mangroves and carbon emissions arising from their conversion in the dominican republic
  publication-title: Ecological Applications
– volume: 4
  year: 2021
  ident: b0110
  article-title: Local uses of mangroves and perceived impacts of their degradation in Grand-Popo municipality, a hotspot of mangroves in Benin, West Africa
  publication-title: Trees, For. People
– volume: 9
  year: 2020
  ident: b0120
  article-title: Biomass and carbon stocks in mangrove ecosystems of kerala, southwest coast of india
  publication-title: Ecological Processes
– volume: 89
  start-page: 128
  year: 2008
  end-page: 137
  ident: b0165
  article-title: Allometry, biomass, and productivity of mangrove forests: A review
  publication-title: Aquatic Botany
– volume: 12
  year: 2021
  ident: 10.1016/j.ecolind.2023.111037_b0200
  article-title: Do functional identity and divergence promote aboveground carbon differently in tropical semi-arid forests and savannas?
  publication-title: Ecosphere
  doi: 10.1002/ecs2.3563
– volume: 80-.). 317
  start-page: 41
  year: 2007
  ident: 10.1016/j.ecolind.2023.111037_b0095
  article-title: A world without mangroves?
  publication-title: Science
  doi: 10.1126/science.317.5834.41b
– volume: 22
  year: 2008
  ident: 10.1016/j.ecolind.2023.111037_b0060
  article-title: Mangrove production and carbon sinks: A revision of global budget estimates
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/2007GB003052
– ident: 10.1016/j.ecolind.2023.111037_b0175
  doi: 10.18637/jss.v082.i13
– year: 2023
  ident: 10.1016/j.ecolind.2023.111037_b0320
  article-title: The role of local deities and traditional beliefs in promoting the sustainable use of mangrove ecosystems
  publication-title: For. Policy Econ.
– volume: 859
  year: 2023
  ident: 10.1016/j.ecolind.2023.111037_b0240
  article-title: Blue carbon sinks in south africa and the need for restoration to enhance carbon sequestration
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2022.160142
– volume: 20
  start-page: 154
  year: 2011
  ident: 10.1016/j.ecolind.2023.111037_b0105
  article-title: Status and distribution of mangrove forests of the world using earth observation satellite data
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/j.1466-8238.2010.00584.x
– volume: 131
  start-page: 378
  year: 2018
  ident: 10.1016/j.ecolind.2023.111037_b0315
  article-title: Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments
  publication-title: Marine Pollution Bulletin
  doi: 10.1016/j.marpolbul.2018.04.043
– volume: 176
  year: 2021
  ident: 10.1016/j.ecolind.2023.111037_b0325
  article-title: Carbon stock of disturbed and undisturbed mangrove ecosystems in klang straits, Malaysia
  publication-title: J. Sea Res.
  doi: 10.1016/j.seares.2021.102113
– volume: 45
  start-page: 5016
  year: 2011
  ident: 10.1016/j.ecolind.2023.111037_b0245
  article-title: carbon sequestration and annual increase of carbon stock in a mangrove forest
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2011.04.074
– volume: 15
  year: 2020
  ident: 10.1016/j.ecolind.2023.111037_b0080
  article-title: Improved estimates of mangrove cover and change reveal catastrophic deforestation in myanmar
  publication-title: Environmental Research Letters
  doi: 10.1088/1748-9326/ab666d
– volume: 51
  start-page: 807
  year: 2001
  ident: 10.1016/j.ecolind.2023.111037_b0305
  article-title: Mangrove forests: One of the world’s threatened major tropical environments
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2
– ident: 10.1016/j.ecolind.2023.111037_b0285
– volume: 12
  start-page: 84
  year: 2006
  ident: 10.1016/j.ecolind.2023.111037_b0205
  article-title: Critical analysis of root: shoot ratios in terrestrial biomes
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2005.001043.x
– start-page: 139
  year: 2014
  ident: 10.1016/j.ecolind.2023.111037_b0035
  article-title: Carbon budget as a tool for assessing mangrove forests degradation in the western, coastal wetlands complex (Ramsar site 1017) of southern benin, west africa
– volume: 20
  start-page: 77
  year: 2017
  ident: 10.1016/j.ecolind.2023.111037_b0130
  article-title: Carbon stock evaluation of selected mangrove malaysia
  publication-title: Journal of Environmental Science and Management
  doi: 10.47125/jesam/2017_2/09
– volume: 782
  year: 2021
  ident: 10.1016/j.ecolind.2023.111037_b0225
  article-title: Grazing exclosures increase soil organic carbon stock at a rate greater than “4 per 1000” per year across agricultural landscapes in northern ethiopia
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2021.146821
– volume: 327
  start-page: 279
  year: 2010
  ident: 10.1016/j.ecolind.2023.111037_b0255
  article-title: Biomass accumulation and carbon storage of four different aged sonneratia apetala plantations in southern china
  publication-title: Plant and Soil
  doi: 10.1007/s11104-009-0053-7
– ident: 10.1016/j.ecolind.2023.111037_b0220
  doi: 10.1007/s11273-015-9417-3
– volume: 4
  start-page: 293
  year: 2011
  ident: 10.1016/j.ecolind.2023.111037_b0090
  article-title: Mangroves among the most carbon-rich forests in the tropics
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo1123
– volume: 9
  start-page: 1
  year: 2022
  ident: 10.1016/j.ecolind.2023.111037_b0065
  article-title: Future mangrove carbon storage under climate change and deforestation
  publication-title: Frontiers in Marine Science
  doi: 10.3389/fmars.2022.781876
– volume: 389
  year: 2021
  ident: 10.1016/j.ecolind.2023.111037_b0070
  article-title: Climate and intertidal zonation drive variability in the carbon stocks of sri lankan mangrove forests
  publication-title: Geoderma
– volume: 27
  start-page: 267
  year: 1987
  ident: 10.1016/j.ecolind.2023.111037_b0075
  article-title: The productivity and composition of mangrove forests, laguna de términos
  publication-title: Mexico. Aquat. Bot.
  doi: 10.1016/0304-3770(87)90046-5
– volume: 18
  start-page: 321
  year: 2010
  ident: 10.1016/j.ecolind.2023.111037_b0135
  article-title: Valuing mangrove benefits: Contribution of mangrove forests to local livelihoods in bhitarkanika conservation area, east coast of india
  publication-title: Wetlands Ecology and Management
  doi: 10.1007/s11273-009-9173-3
– volume: 14
  start-page: 1
  year: 2022
  ident: 10.1016/j.ecolind.2023.111037_b0015
  article-title: Carbon stocks assessment in a disturbed and undisturbed mangrove forest in ghana
  publication-title: Sustain.
– volume: 16
  start-page: 1
  year: 2023
  ident: 10.1016/j.ecolind.2023.111037_b0310
  article-title: Mangrove forests as a nature-based solution for coastal flood protection: Biophysical and ecological considerations
  publication-title: Water Science and Engineering
  doi: 10.1016/j.wse.2022.10.004
– volume: 6
  start-page: 195
  year: 2014
  ident: 10.1016/j.ecolind.2023.111037_b0050
  article-title: Carbon cycling and storage in mangrove forests
  publication-title: Annual Review of Marine Science
  doi: 10.1146/annurev-marine-010213-135020
– volume: 89
  start-page: 128
  year: 2008
  ident: 10.1016/j.ecolind.2023.111037_b0165
  article-title: Allometry, biomass, and productivity of mangrove forests: A review
  publication-title: Aquatic Botany
  doi: 10.1016/j.aquabot.2007.12.006
– volume: 3
  year: 2022
  ident: 10.1016/j.ecolind.2023.111037_b0030
  article-title: Ruminant keeping around mangrove forests in benin (West africa): herders’ perceptions of threats and opportunities for conservation of mangroves
  publication-title: Discov. Sustain.
  doi: 10.1007/s43621-022-00082-x
– volume: 27
  start-page: 2856
  year: 2021
  ident: 10.1016/j.ecolind.2023.111037_b0005
  article-title: Future carbon emissions from global mangrove forest loss
  publication-title: Global Change Biology
  doi: 10.1111/gcb.15571
– volume: 116
  year: 2020
  ident: 10.1016/j.ecolind.2023.111037_b0010
  article-title: Fuelwood consumption and supply strategies in mangrove forests - insights from RAMSAR sites in benin
  publication-title: For. Policy Econ.
  doi: 10.1016/j.forpol.2020.102192
– volume: 5
  start-page: 1967
  year: 2014
  ident: 10.1016/j.ecolind.2023.111037_b0280
  article-title: Biomass and carbon stocks of sofala bay mangrove forests
  publication-title: Forests
  doi: 10.3390/f5081967
– ident: 10.1016/j.ecolind.2023.111037_b0330
  doi: 10.1007/s11273-021-09793-w
– volume: 21
  start-page: 1153
  year: 2019
  ident: 10.1016/j.ecolind.2023.111037_b0290
  article-title: Mangroves in benin, west africa: threats, uses and conservation opportunities
  publication-title: Environment, Development and Sustainability
  doi: 10.1007/s10668-017-0075-x
– volume: 2
  year: 2022
  ident: 10.1016/j.ecolind.2023.111037_b0020
  article-title: Stand structure and carbon storage of a young mangrove plantation forest in coastal area of bangladesh: the promise of a natural solution
  publication-title: Nature-Based Solut.
– ident: 10.1016/j.ecolind.2023.111037_b0085
  doi: 10.1007/s10457-018-0213-y
– ident: 10.1016/j.ecolind.2023.111037_b0145
– volume: 13
  start-page: 437
  year: 2010
  ident: 10.1016/j.ecolind.2023.111037_b0180
  article-title: Mangrove forest and soil development on a rapidly accreting shore in new zealand
  publication-title: Ecosystems
  doi: 10.1007/s10021-010-9329-2
– volume: 90
  start-page: e01405
  year: 2020
  ident: 10.1016/j.ecolind.2023.111037_b0150
  article-title: Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients
  publication-title: Ecological Monographs
  doi: 10.1002/ecm.1405
– volume: 113
  start-page: 344
  year: 2016
  ident: 10.1016/j.ecolind.2023.111037_b0260
  article-title: Rates and drivers of mangrove deforestation in southeast asia, 2000–2012
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1510272113
– volume: 6
  start-page: 384
  year: 2003
  ident: 10.1016/j.ecolind.2023.111037_b0275
  article-title: Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the dominican republic
  publication-title: Ecosystems
  doi: 10.1007/s10021-002-0191-8
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.ecolind.2023.111037_b0295
  article-title: A comparison of soil carbon stocks of intact and restored mangrove forests in northern vietnam
  publication-title: Forests
– volume: 9
  year: 2020
  ident: 10.1016/j.ecolind.2023.111037_b0120
  article-title: Biomass and carbon stocks in mangrove ecosystems of kerala, southwest coast of india
  publication-title: Ecological Processes
  doi: 10.1186/s13717-020-00227-8
– volume: 9
  start-page: 552
  year: 2011
  ident: 10.1016/j.ecolind.2023.111037_b0185
  article-title: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2
  publication-title: Frontiers in Ecology and the Environment
  doi: 10.1890/110004
– volume: 5
  start-page: 1089
  year: 2015
  ident: 10.1016/j.ecolind.2023.111037_b0210
  article-title: The potential of indonesian mangrove forests for global climate change mitigation
  publication-title: Nature Climate Change
  doi: 10.1038/nclimate2734
– volume: 26
  start-page: 5844
  year: 2020
  ident: 10.1016/j.ecolind.2023.111037_b0115
  article-title: Global declines in human-driven mangrove loss
  publication-title: Global Change Biology
  doi: 10.1111/gcb.15275
– year: 2007
  ident: 10.1016/j.ecolind.2023.111037_b0300
– volume: 24
  start-page: 518
  year: 2014
  ident: 10.1016/j.ecolind.2023.111037_b0160
  article-title: carbon stocks of intact mangroves and carbon emissions arising from their conversion in the dominican republic
  publication-title: Ecological Applications
  doi: 10.1890/13-0640.1
– ident: 10.1016/j.ecolind.2023.111037_b0155
– volume: 176
  start-page: 106917
  year: 2023
  ident: 10.1016/j.ecolind.2023.111037_b0335
  article-title: Tree height-diameter, aboveground and belowground biomass allometries for two West African mangrove species
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2023.106917
– volume: 24
  start-page: e01331
  year: 2020
  ident: 10.1016/j.ecolind.2023.111037_b0195
  article-title: Aboveground tree carbon stocks in west african semi-arid ecosystems: Dominance patterns, size class allocation and structural drivers
  publication-title: Glob. Ecol. Conserv.
– volume: 10
  year: 2017
  ident: 10.1016/j.ecolind.2023.111037_b0040
  article-title: Fragmentation of forest ecosystems and connectivity between sacred groves and forest reserves in southeastern benin
  publication-title: West Africa. Trop. Conserv. Sci.
– volume: 89
  start-page: 201
  year: 2008
  ident: 10.1016/j.ecolind.2023.111037_b0170
  article-title: Organic carbon dynamics in mangrove ecosystems: A review
  publication-title: Aquatic Botany
  doi: 10.1016/j.aquabot.2007.12.005
– volume: 3
  start-page: 313
  year: 2012
  ident: 10.1016/j.ecolind.2023.111037_b0045
  article-title: Carbon sequestration in mangrove forests
  publication-title: Carbon Manag.
  doi: 10.4155/cmt.12.20
– volume: 16
  start-page: 1
  year: 2021
  ident: 10.1016/j.ecolind.2023.111037_b0190
  article-title: Relationships between above- and below-ground carbon stocks in mangrove forests facilitate better estimation of total mangrove blue carbon
  publication-title: Carbon Balance and Management
  doi: 10.1186/s13021-021-00172-9
– volume: 30
  start-page: 1148
  year: 2010
  ident: 10.1016/j.ecolind.2023.111037_b0250
  article-title: Nutrition of mangroves
  publication-title: Tree Physiology
  doi: 10.1093/treephys/tpq048
– volume: 187
  year: 2020
  ident: 10.1016/j.ecolind.2023.111037_b0270
  article-title: Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104414
– volume: 260
  start-page: 1375
  year: 2010
  ident: 10.1016/j.ecolind.2023.111037_b0125
  article-title: Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of africa
  publication-title: Forest Ecology and Management
  doi: 10.1016/j.foreco.2010.07.040
– ident: 10.1016/j.ecolind.2023.111037_b0140
– volume: 108
  year: 2021
  ident: 10.1016/j.ecolind.2023.111037_b0230
  article-title: How far are mangrove ecosystems in benin (West africa) conserved by the ramsar convention?
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2021.105583
– year: 2020
  ident: 10.1016/j.ecolind.2023.111037_b0100
  article-title: Stratégie nationale et plan d’actions de gestion durable des écosystèmes de mangroves du bénin
  publication-title: Stratégie nationale et plan d’actions de gestion durable des écosystèmes de mangroves du bénin. FAO.
– volume: 89
  start-page: 155
  year: 2008
  ident: 10.1016/j.ecolind.2023.111037_b0215
  article-title: The habitat function of mangroves for terrestrial and marine fauna: A review
  publication-title: Aquatic Botany
  doi: 10.1016/j.aquabot.2007.12.007
– volume: 121
  start-page: 2600
  year: 2016
  ident: 10.1016/j.ecolind.2023.111037_b0265
  article-title: Are global mangrove carbon stocks driven by rainfall?
  publication-title: J. Geophys. Res. Biogeosciences
  doi: 10.1002/2016JG003510
– volume: 4
  year: 2021
  ident: 10.1016/j.ecolind.2023.111037_b0110
  article-title: Local uses of mangroves and perceived impacts of their degradation in Grand-Popo municipality, a hotspot of mangroves in Benin, West Africa
  publication-title: Trees, For. People
– ident: 10.1016/j.ecolind.2023.111037_b0055
  doi: 10.1007/s00468-002-0206-2
– volume: 337
  year: 2023
  ident: 10.1016/j.ecolind.2023.111037_b0025
  article-title: How biotic, abiotic, and functional variables drive belowground soil carbon stocks along stress gradient in the sundarbans mangrove forest?
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2023.117772
– year: 2022
  ident: 10.1016/j.ecolind.2023.111037_b0235
SSID ssj0016996
Score 2.4029288
Snippet •Rhizophora racemosa and Avicennia germinans contributed most of the tree carbon stock.•Soil had the greatest share of the total carbon stock, followed by live...
Mangroves are vital ecosystems that help mitigate climate change and natural hazards, despite representing only 0.5% of the world's coastlines. Recent studies...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111037
SubjectTerms Avicennia germinans
Benin
carbon
carbon sinks
case studies
class
climate change
decision making
Disturbances
greenhouse gases
Rhizophora racemosa
Soil carbon
soil depth
species
stand density
Tree carbon
trees
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQr4oFigaJI2k3seM4R0CtChKcqLQ3y49xuxUk1WZBon-HP8pMnLSFy144RUocx8qMZ76xPd8I8YZANyoSdeGCbArly7Jo0ciirjXyij5Bbs5G_vxFn56pT6t6dafUF58Jy_TA-ccdpei1I0MeKzTkbLA1hBhcaVIyLpkqsvUlnzcHU9P-gW7bnFfULItSL1e3uTtHl4cU1xGEY5rQSrLJWHIR9DteaSTv_8s5_WOmR99z8lA8mEAjvMuDfSTuYfdY7B_f5qjRw2mSDk_E749j5uMAfYILtxl5NLpzWOfD6ttf0HcQ3MbThXfd85odbHvgrEsKnN_CsL5GCIyrcQDXReBCXAP1AN9dd77pfyIQ1qV-qS0_JhAJm_lU3cX6agBe3oVxmQIyQy2ze4Db5vpaODwVZyfHXz-cFlMthiKout4WsWpCVctQNRzwkUBKE2Mba--NdAmdN4hKSi99oGA7NRhVK0Mw2ldRodRyX-x1fYfPBKTG67r0iSxFqwK1kVIlLZuUkl76Si6EmmVhw0RUzvUyvtn5RNqlnURoWYQ2i3AhDm9eu8pMHbteeM-CvmnMRNvjDVI_O6mf3aV-C2FmNbETZslYhLpa7_r-61mtLM1p3qhxHfY_BivJDZUNZ-48_x9jfCHu82dzBuVLsUdixwOCUlv_apw1fwBriyIe
  priority: 102
  providerName: Directory of Open Access Journals
Title Impacts of harvesting intensity on carbon allocation to species, size classes and pools in mangrove forests, and the relationships with stand structural attributes
URI https://dx.doi.org/10.1016/j.ecolind.2023.111037
https://www.proquest.com/docview/3153176242
https://doaj.org/article/fdb6aeedd2e8415e98522a18ff8af82d
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuGCeFUsj5WROJLdTezEzrFUrbYgeoFKe4v83KaCZJUEJDjwZ_ijzNjJlnKpxClK4jiPGY8_T2a-IeQNgG7HQdSJMkwkXKdpUjrJkjwvHHr0AXJjNvLHi2J9yd9v8s0BOZlyYTCscrT90aYHaz0eWY5fc7mr6-WnlAukR9tkLPCaoR3mXKCWL37twzzSoixjhpFYJdj6Jotneb2AFR6AOSQMzRgajxWWQ_9rfgo0_remqX8MdpiFzh6SByN8pMfxCR-RA9c8JkenN9lqcHIcrv0T8vs85ED2tPX0SnWBUaPZ0jqGrQ8_aNtQozoNG_z_Hr13dGgp5l_CEvot7eufjhpE2K6nqrEUS3L10AP9qppt1353FFAv9Att8TTASdpN8XVX9a6n6OilwWFBI1ct8nxQNcRKW65_Si7PTj-frJOxKkNieJ4Pic2EyXJmMoFLP-VcKq0tba61ZMo7paVznDHNtIFltxfO8pIZIwudWe5YwY7IYdM27hmhXugiT7UHm1FyA20Y475gwntfrHTGZoRPsqjMSFmOlTO-VFNs2nU1irBCEVZRhDOy2F-2i5wdd13wDgW9b4yU2-FA222rUecqbzW-rbWZk4B6XCkBuqpUei-Vl5mdETmpSXVLg6Gr-q77v57UqoLRjb9sVOPab33FYEJKBebwPP__7l-Q-7gXMyhfkkMQtnsFUGrQ8zBW5uTe8fmH9cU8OCT-ANc-JGw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaq6QEuiK1iWI3EkXQmsZM4x1K1mqHtXGiluVlep6kgGSUBCf4Of5T34mRKuVTiFClesjz7-fPyfY-QDwC6HQdTR8qwPOI6jqPCCRalaeZwRR8gN7KRL1bZ4op_XqfrPXI8cmHwWOXg-4NP7731cGc2_M3ZtixnX2KeozzaOmG9rhn44X1Up0onZP9oebZY7TYTsqIIJKN8HmGBWyLP7OYQJnmA51AzNGHoP-YYEf2vIapX8r8zUv3js_uB6PQxeTQgSHoUXvIJ2XPVU3JwcktYg8Shx7bPyO9lT4Nsae3ptWp6UY1qQ8twcr37SeuKGtVouOAWfFjAo11NkYIJs-iPtC1_OWoQZLuWqspSjMrVQg30m6o2Tf3DUQC-UC_kxWRAlLQZj9hdl9uW4lov7dcsaJCrRakPqroQbMu1z8nV6cnl8SIaAjNEhqdpF9kkN0nKTJLj7E85FwtrC5tqLZjyTmnhHGdMM21g5u1zZ3nBjBGZTix3LGMHZFLVlXtBqM91lsbag9souIE8jHGfsdx7n811wqaEj7aQZlAtx-AZX-V4PO1GDiaUaEIZTDglh7ti2yDbcV-BT2joXWZU3e5v1M1GDs1Oeqvxa61NnADg4woB6FXFwnuhvEjslIixmcg7jRiqKu97_vuxWUno4LhroypXf28lgzEpzpHG8_L_q39HHiwuL87l-XJ19oo8xJRAqHxNJmB49waQVaffDj3nD9eLJig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impacts+of+harvesting+intensity+on+carbon+allocation+to+species%2C+size+classes+and+pools+in+mangrove+forests%2C+and+the+relationships+with+stand+structural+attributes&rft.jtitle=Ecological+indicators&rft.au=Zanvo%2C+Serge+M.G.&rft.au=Salako%2C+Kolawol%C3%A9+V.&rft.au=Mensah%2C+Sylvanus&rft.au=Gl%C3%A8l%C3%A8+Kaka%C3%AF%2C+Romain&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=1470-160X&rft.eissn=1872-7034&rft.volume=155&rft_id=info:doi/10.1016%2Fj.ecolind.2023.111037&rft.externalDocID=S1470160X23011792
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon