Application conditions and impact factors for various vegetation indices in constructing the LAI seasonal trajectory over different vegetation types

•Application conditions for VIs in constructing the LAI seasonal trajectory were assessed.•The optimal VI for different ranges of LAI is suggested for LAI estimation.•The VIRE have the potential to develop a universe model for estimating LAI. Leaf area index (LAI) is a required input for various eco...

Full description

Saved in:
Bibliographic Details
Published inEcological indicators Vol. 112; p. 106153
Main Authors Qiao, Kun, Zhu, Wenquan, Xie, Zhiying
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Application conditions for VIs in constructing the LAI seasonal trajectory were assessed.•The optimal VI for different ranges of LAI is suggested for LAI estimation.•The VIRE have the potential to develop a universe model for estimating LAI. Leaf area index (LAI) is a required input for various ecological and crop models. To investigate the application conditions of various vegetation indices (VIs), especially the VIs constructed by red-edge band (VIRE) for estimating LAI, six VIs derived from Medium Resolution Imaging Spectrometer (MERIS) data were used to construct LAI seasonal trajectory for different vegetation types at 15 sites. The PROSAIL model combined with the Extended Fourier Amplitude Sensitivity Test (EFAST) method was adopted to explore the influences and physical basis of canopy biophysical and non-canopy variables on the construction of LAI seasonal trajectory using VIs. For deciduous forests, the normalized difference vegetation index (NDVI) had the highest sensitivity to LAI when LAI < 2, while the RE normalized difference vegetation index (NDVIRE) had the highest sensitivity when LAI > 2. For evergreen forests, there were no obvious differences among the sensitivities of six VIs to LAI when LAI < 5, while the RE chlorophyll index (CIRE) had the highest sensitivities when LAI > 5. For crops, all the VIs had the similar sensitivities at LAI < 3, while the CIRE and MERIS terrestrial chlorophyll index (MTCI) were most sensitive to LAI variations at LAI > 3. For all three types of vegetation, the VIRE maintained relatively high sensitivity to LAI over the whole range of LAI, especially at high LAI values. The VIs were most affected by chlorophyll content (Cab) and average leaf inclination angle (ALA); their total contribution was about 85%. However, the influence of ALA on VIRE was relatively weak, implying that the VIRE had the potential to establish a universal model for LAI estimation among different vegetation types. Therefore, the optimal VIs over different ranges of LAI were suggested to estimate LAI. In addition, the VIRE should be a preferred choice for estimating LAI to reduce the simulation errors of seasonal LAI, if the RE band is available.
AbstractList •Application conditions for VIs in constructing the LAI seasonal trajectory were assessed.•The optimal VI for different ranges of LAI is suggested for LAI estimation.•The VIRE have the potential to develop a universe model for estimating LAI. Leaf area index (LAI) is a required input for various ecological and crop models. To investigate the application conditions of various vegetation indices (VIs), especially the VIs constructed by red-edge band (VIRE) for estimating LAI, six VIs derived from Medium Resolution Imaging Spectrometer (MERIS) data were used to construct LAI seasonal trajectory for different vegetation types at 15 sites. The PROSAIL model combined with the Extended Fourier Amplitude Sensitivity Test (EFAST) method was adopted to explore the influences and physical basis of canopy biophysical and non-canopy variables on the construction of LAI seasonal trajectory using VIs. For deciduous forests, the normalized difference vegetation index (NDVI) had the highest sensitivity to LAI when LAI < 2, while the RE normalized difference vegetation index (NDVIRE) had the highest sensitivity when LAI > 2. For evergreen forests, there were no obvious differences among the sensitivities of six VIs to LAI when LAI < 5, while the RE chlorophyll index (CIRE) had the highest sensitivities when LAI > 5. For crops, all the VIs had the similar sensitivities at LAI < 3, while the CIRE and MERIS terrestrial chlorophyll index (MTCI) were most sensitive to LAI variations at LAI > 3. For all three types of vegetation, the VIRE maintained relatively high sensitivity to LAI over the whole range of LAI, especially at high LAI values. The VIs were most affected by chlorophyll content (Cab) and average leaf inclination angle (ALA); their total contribution was about 85%. However, the influence of ALA on VIRE was relatively weak, implying that the VIRE had the potential to establish a universal model for LAI estimation among different vegetation types. Therefore, the optimal VIs over different ranges of LAI were suggested to estimate LAI. In addition, the VIRE should be a preferred choice for estimating LAI to reduce the simulation errors of seasonal LAI, if the RE band is available.
Leaf area index (LAI) is a required input for various ecological and crop models. To investigate the application conditions of various vegetation indices (VIs), especially the VIs constructed by red-edge band (VIRE) for estimating LAI, six VIs derived from Medium Resolution Imaging Spectrometer (MERIS) data were used to construct LAI seasonal trajectory for different vegetation types at 15 sites. The PROSAIL model combined with the Extended Fourier Amplitude Sensitivity Test (EFAST) method was adopted to explore the influences and physical basis of canopy biophysical and non-canopy variables on the construction of LAI seasonal trajectory using VIs. For deciduous forests, the normalized difference vegetation index (NDVI) had the highest sensitivity to LAI when LAI < 2, while the RE normalized difference vegetation index (NDVIRE) had the highest sensitivity when LAI > 2. For evergreen forests, there were no obvious differences among the sensitivities of six VIs to LAI when LAI < 5, while the RE chlorophyll index (CIRE) had the highest sensitivities when LAI > 5. For crops, all the VIs had the similar sensitivities at LAI < 3, while the CIRE and MERIS terrestrial chlorophyll index (MTCI) were most sensitive to LAI variations at LAI > 3. For all three types of vegetation, the VIRE maintained relatively high sensitivity to LAI over the whole range of LAI, especially at high LAI values. The VIs were most affected by chlorophyll content (Cab) and average leaf inclination angle (ALA); their total contribution was about 85%. However, the influence of ALA on VIRE was relatively weak, implying that the VIRE had the potential to establish a universal model for LAI estimation among different vegetation types. Therefore, the optimal VIs over different ranges of LAI were suggested to estimate LAI. In addition, the VIRE should be a preferred choice for estimating LAI to reduce the simulation errors of seasonal LAI, if the RE band is available.
ArticleNumber 106153
Author Xie, Zhiying
Zhu, Wenquan
Qiao, Kun
Author_xml – sequence: 1
  givenname: Kun
  surname: Qiao
  fullname: Qiao, Kun
  organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
– sequence: 2
  givenname: Wenquan
  surname: Zhu
  fullname: Zhu, Wenquan
  email: zhuwq75@bnu.edu.cn
  organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
– sequence: 3
  givenname: Zhiying
  surname: Xie
  fullname: Xie, Zhiying
  organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
BookMark eNqFkc9qJCEQxmXJwubfIwQ85tITtVudZg9hCNlNYCCXDexNHC2zDj3aUWdg3iMPvDadQ8glF6uQ7_cVVd8ZOgkxAEJXlCwooeJmuwATBx_sghE2_QnK22_olC4layRpu5Pad5I0VJC_P9BZzltSub4Xp-htNY6DN7r4GLCJwfqpy1gHi_1u1KZgV5-YMnYx4YNOPu4zPsALlBmqc72BXOvE55L2pvjwgss_wOvVI86gcwx6wCXpLUxWRxwPkLD1zkGCUD66leMI-QJ9d3rIcPlez9Hzr_s_dw_N-un3491q3ZiO89JY0rbgJINuQywVrTTaail6uWyF6MWGU0s4lculA7CSOs1how0IXtXcMNKeo-vZd0zxdQ-5qJ3PBoZBB6hbKsZZxyjjvaxSPktNijkncGpMfqfTUVGiphTUVr2noKYU1JxC5X5-4oyfV63n8MOX9O1MQ73CwUNS2XgIBqxP9ZTKRv-Fw39r2q1A
CitedBy_id crossref_primary_10_3390_rs15020414
crossref_primary_10_3389_fpls_2022_957870
crossref_primary_10_3390_f14030614
crossref_primary_10_1080_01431161_2024_2339200
crossref_primary_10_1088_2515_7620_ad2d02
crossref_primary_10_1007_s00704_023_04779_5
crossref_primary_10_3389_fpls_2024_1470719
crossref_primary_10_3390_d16020090
crossref_primary_10_1016_j_agrformet_2021_108666
crossref_primary_10_1016_j_ecolind_2022_108978
crossref_primary_10_1016_j_agrformet_2025_110441
crossref_primary_10_1007_s11273_024_10028_x
crossref_primary_10_1016_j_gecco_2024_e03001
crossref_primary_10_3389_fpls_2024_1357193
crossref_primary_10_1186_s13007_021_00804_8
crossref_primary_10_3390_geomatics5010011
crossref_primary_10_1016_j_compag_2021_106654
crossref_primary_10_1080_01431161_2021_1978584
crossref_primary_10_1080_01431161_2024_2302949
crossref_primary_10_3389_fpls_2023_1201179
crossref_primary_10_1016_j_jag_2024_103894
crossref_primary_10_1016_j_scitotenv_2025_178570
crossref_primary_10_1016_j_fcr_2022_108449
crossref_primary_10_1016_j_compag_2023_108333
crossref_primary_10_1016_j_fcr_2023_109111
crossref_primary_10_1016_j_rse_2021_112344
Cites_doi 10.3389/fpls.2017.00820
10.1016/0168-1923(92)90040-B
10.1016/j.agrformet.2018.11.033
10.1029/2007JG000635
10.2134/agronj2006.0370c
10.1016/j.ecolind.2013.01.041
10.1016/j.rse.2013.10.018
10.1016/j.rse.2011.05.017
10.1016/j.eja.2012.12.001
10.1016/S0176-1617(11)81633-0
10.1029/2002GL016450
10.1016/j.agrformet.2017.08.012
10.1016/j.jaridenv.2012.03.005
10.1080/2150704X.2015.1034888
10.1016/j.agrformet.2011.05.009
10.1016/j.rse.2018.12.032
10.1016/S0034-4257(96)00072-7
10.1016/j.rse.2012.08.001
10.1029/2005GL022688
10.1016/j.rse.2008.01.026
10.1016/j.agrformet.2012.09.003
10.1016/j.rse.2018.02.049
10.1016/j.rse.2012.04.005
10.1016/j.agrformet.2014.03.004
10.1016/j.landurbplan.2011.12.013
10.1016/j.rse.2011.06.016
10.1016/j.rse.2011.08.010
10.1016/j.foreco.2004.01.033
10.1080/014311699213730
10.3390/s110707063
10.2134/agronj2012.0065
10.1080/0143116042000274015
10.1016/j.eja.2011.09.004
10.1078/0176-1617-00887
10.1117/1.JRS.8.085196
10.1109/JSTARS.2018.2813281
10.1016/j.rse.2017.03.021
10.1016/j.rse.2016.10.009
10.1016/j.agrformet.2009.09.010
10.1016/j.isprsjprs.2013.01.001
10.1080/01431161.2012.666812
10.1016/j.rse.2012.04.002
10.1016/j.rse.2011.09.002
10.1016/S0304-3800(01)00354-4
10.1016/j.rse.2012.08.015
10.1111/j.1365-2486.2005.00930.x
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.ecolind.2020.106153
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1872-7034
ExternalDocumentID 10_1016_j_ecolind_2020_106153
S1470160X2030090X
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c455t-d033ef72e4b0d1637cada7697836696b51d051788feed71fa5ebace650d15c203
IEDL.DBID .~1
ISSN 1470-160X
IngestDate Fri Jul 11 04:48:23 EDT 2025
Tue Jul 01 01:32:34 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
Fri Feb 23 02:35:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Global sensitivity analysis
Red-edge
Vegetation types
Whole growing season
Vegetation indices
Leaf area index
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-d033ef72e4b0d1637cada7697836696b51d051788feed71fa5ebace650d15c203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1470160X2030090X
PQID 2524212597
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2524212597
crossref_primary_10_1016_j_ecolind_2020_106153
crossref_citationtrail_10_1016_j_ecolind_2020_106153
elsevier_sciencedirect_doi_10_1016_j_ecolind_2020_106153
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle Ecological indicators
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dong, Liu, Shang, Qian, Ma, Kovacs, Walters, Jiao, Geng, Shi (b0080) 2019; 222
Féret, François, Gitelson, Asner, Barry, Panigada, Richardson, Jacquemoud (b0090) 2011; 115
Nguy-Robertson, Gitelson, Peng, Viña, Arkebauer, Rundquist (b0195) 2012; 104
Delegido, Verrelst, Meza, Rivera, Alonso, Moreno (b0070) 2013; 46
Garrigues, Lacaze, Baret, Morisette, Weiss, Nickeson, Fernandes, Plummer, Shabanov, Myneni, Knyazikhin, Yang (b0095) 2008; 113
Shang, Liu, Huffman, Qian, Pattey, Wang, Zhao, Geng, Kroetsch, Dong, Lantz (b0230) 2014; 8
Moulin (b0185) 1999; 20
le Maire, Marsden, Nouvellon, Grinand, Hakamada, Stape, Laclau (b0170) 2011; 115
Gitelson, Kaufman, Merzlyak (b0105) 1996; 58
Birky (b0015) 2001; 143
Viña, Gitelson, Nguy-Robertson, Peng (b0245) 2011; 115
Gitelson, Merzlyak (b0115) 1994; 143
Xie, Dash, Huang, Peng, Qin, Mortimer, Casa, Pignatti, Laneve, Pascucci, Dong, Ye (b0250) 2018; 11
Heiskanen, Rautiainen, Stenberg, Mõttus, Vesanto (b0140) 2013; 78
Brown, Dash, Ogutu, Richardson (b0025) 2017; 247
Chen, Black (b0045) 1992; 60
Rouse, Haas, Schell, Deering (b0220) 1974
Casa, Varella, Buis, Guérif, De Solan, Baret (b0040) 2012; 37
Campos-Taberner, García-Haro, Camps-Valls, Grau-Muedra, Nutini, Crema, Boschetti (b0035) 2016; 187
Liu, Pattey, Jégo (b0180) 2012; 123
Jolly, Nemani, Running (b0155) 2005; 11
Gu, Wylie, Howard, Phuyal, Ji (b0125) 2013; 30
Jacquemoud, Verhoef, Baret, Bacour, Zarco-Tejada, Asner, François, Ustin (b0150) 2009; 113
Saltelli, Ratto, Andres, Campolongo, Cariboni, Gatelli, Saisana, Tarantola (b0225) 2008
Dash, Curran (b0060) 2004; 25
Din, Zheng, Rashid, Wang, Shi (b0075) 2017; 8
Atzberger, Darvishzadeh, Immitzer, Schlerf, Skidmore, le Maire (b0005) 2015; 43
Tian, Wang, Li, Gong, Shi, Zhong, Liu (b0235) 2017; 61
Zhang, Qu, Wang, Liang, Liu (b0265) 2012; 127
Korhonen, Hadi, Packalen, Rautiainen (b0160) 2017; 195
Kross, McNairn, Lapen, Sunohara, Champagne (b0165) 2015; 34
Gitelson, Viña, Arkebauer, Rundquist, Keydan, Leavitt (b0110) 2003; 30
Hu, Mao, Sun, Hou (b0145) 2011; 13
Gitelson, Gritz, Merzlyak (b0120) 2003; 160
Hatfield, Gitelson, Schepers, Walthall (b0130) 2008; 100
Schuster, Förster, Kleinschmit (b9000) 2012
Nguy-Robertson, Gitelson (b0200) 2015; 6
Battaglia, Sands, White, Mummery (b0010) 2004; 193
Delegido, Verrelst, Alonso, Moreno (b0065) 2011; 11
Cheng, Huang, Wang, Tang (b0050) 2003; 19
Potithep, Nagai, Nasahara, Muraoka, Suzuki (b0210) 2013; 169
Xu, Li, Park, Liu, Zeng, Yin, Zhao, Fan, Yang, Knyazikhin, Myneni (b0255) 2018; 209
Nagai, Nasahara, Muraoka, Akiyama, Tsuchida (b0190) 2010; 150
Tillack, Clasen, Kleinschmit, Förster (b0240) 2014; 141
Yan, Hu, Luo, Weiss, Jiang, Mu, Xie, Zhang (b0260) 2019; 265
Bobée, Ottlé, Maignan, de Noblet-Ducoudré, Maugis, Lézine, Ndiaye (b0020) 2012; 84
Gitelson (b0100) 2005; 32
Claverie, Demarez, Duchemin, Hagolle, Ducrot, Marais-Sicre, Dejoux, Huc, Keravec, Béziat, Fieuzal, Ceschia, Dedieu (b0055) 2012; 124
Li, Zhang, Luo, Jin, Xu, Yang (b0175) 2016; 44
Nguy-Robertson, Peng, Gitelson, Arkebauer, Pimstein, Herrmann, Karnieli, Rundquist, Bonfil (b0205) 2014; 192–193
Buyantuyev, Wu (b0030) 2012; 105
Heiskanen, Rautiainen, Stenberg, Mõttus, Vesanto, Korhonen, Majasalmi (b0135) 2012; 126
Richardson, Dail, Hollinger (b0215) 2011; 151
Eitel, Vierling, Litvak, Long, Schulthess, Ager, Krofcheck, Stoscheck (b0085) 2011; 115
Casa (10.1016/j.ecolind.2020.106153_b0040) 2012; 37
Brown (10.1016/j.ecolind.2020.106153_b0025) 2017; 247
Dong (10.1016/j.ecolind.2020.106153_b0080) 2019; 222
Xie (10.1016/j.ecolind.2020.106153_b0250) 2018; 11
Nagai (10.1016/j.ecolind.2020.106153_b0190) 2010; 150
Dash (10.1016/j.ecolind.2020.106153_b0060) 2004; 25
Birky (10.1016/j.ecolind.2020.106153_b0015) 2001; 143
Zhang (10.1016/j.ecolind.2020.106153_b0265) 2012; 127
Nguy-Robertson (10.1016/j.ecolind.2020.106153_b0200) 2015; 6
Cheng (10.1016/j.ecolind.2020.106153_b0050) 2003; 19
Jacquemoud (10.1016/j.ecolind.2020.106153_b0150) 2009; 113
Li (10.1016/j.ecolind.2020.106153_b0175) 2016; 44
Tian (10.1016/j.ecolind.2020.106153_b0235) 2017; 61
Jolly (10.1016/j.ecolind.2020.106153_b0155) 2005; 11
Moulin (10.1016/j.ecolind.2020.106153_b0185) 1999; 20
Gu (10.1016/j.ecolind.2020.106153_b0125) 2013; 30
Heiskanen (10.1016/j.ecolind.2020.106153_b0135) 2012; 126
Gitelson (10.1016/j.ecolind.2020.106153_b0120) 2003; 160
Kross (10.1016/j.ecolind.2020.106153_b0165) 2015; 34
Xu (10.1016/j.ecolind.2020.106153_b0255) 2018; 209
Nguy-Robertson (10.1016/j.ecolind.2020.106153_b0195) 2012; 104
Shang (10.1016/j.ecolind.2020.106153_b0230) 2014; 8
Din (10.1016/j.ecolind.2020.106153_b0075) 2017; 8
Bobée (10.1016/j.ecolind.2020.106153_b0020) 2012; 84
Gitelson (10.1016/j.ecolind.2020.106153_b0110) 2003; 30
Campos-Taberner (10.1016/j.ecolind.2020.106153_b0035) 2016; 187
Saltelli (10.1016/j.ecolind.2020.106153_b0225) 2008
le Maire (10.1016/j.ecolind.2020.106153_b0170) 2011; 115
Yan (10.1016/j.ecolind.2020.106153_b0260) 2019; 265
Potithep (10.1016/j.ecolind.2020.106153_b0210) 2013; 169
Heiskanen (10.1016/j.ecolind.2020.106153_b0140) 2013; 78
Liu (10.1016/j.ecolind.2020.106153_b0180) 2012; 123
Rouse (10.1016/j.ecolind.2020.106153_b0220) 1974
Garrigues (10.1016/j.ecolind.2020.106153_b0095) 2008; 113
Hatfield (10.1016/j.ecolind.2020.106153_b0130) 2008; 100
Richardson (10.1016/j.ecolind.2020.106153_b0215) 2011; 151
Schuster (10.1016/j.ecolind.2020.106153_b9000) 2012
Buyantuyev (10.1016/j.ecolind.2020.106153_b0030) 2012; 105
Gitelson (10.1016/j.ecolind.2020.106153_b0100) 2005; 32
Eitel (10.1016/j.ecolind.2020.106153_b0085) 2011; 115
Féret (10.1016/j.ecolind.2020.106153_b0090) 2011; 115
Claverie (10.1016/j.ecolind.2020.106153_b0055) 2012; 124
Viña (10.1016/j.ecolind.2020.106153_b0245) 2011; 115
Delegido (10.1016/j.ecolind.2020.106153_b0065) 2011; 11
Delegido (10.1016/j.ecolind.2020.106153_b0070) 2013; 46
Gitelson (10.1016/j.ecolind.2020.106153_b0115) 1994; 143
Gitelson (10.1016/j.ecolind.2020.106153_b0105) 1996; 58
Battaglia (10.1016/j.ecolind.2020.106153_b0010) 2004; 193
Chen (10.1016/j.ecolind.2020.106153_b0045) 1992; 60
Tillack (10.1016/j.ecolind.2020.106153_b0240) 2014; 141
Atzberger (10.1016/j.ecolind.2020.106153_b0005) 2015; 43
Hu (10.1016/j.ecolind.2020.106153_b0145) 2011; 13
Korhonen (10.1016/j.ecolind.2020.106153_b0160) 2017; 195
Nguy-Robertson (10.1016/j.ecolind.2020.106153_b0205) 2014; 192–193
References_xml – volume: 193
  start-page: 251
  year: 2004
  end-page: 282
  ident: b0010
  article-title: CABALA: a linked carbon, water and nitrogen model of forest growth for silvicultural decision support
  publication-title: For. Ecol. Manage.
– volume: 143
  start-page: 43
  year: 2001
  end-page: 58
  ident: b0015
  article-title: NDVI and a simple model of deciduous forest seasonal dynamics
  publication-title: Ecol. Model.
– volume: 104
  start-page: 1336
  year: 2012
  end-page: 1347
  ident: b0195
  article-title: Green leaf area index estimation in maize and soybean: combining vegetation indices to achieve maximal sensitivity
  publication-title: Agron. J.
– volume: 60
  start-page: 249
  year: 1992
  end-page: 266
  ident: b0045
  article-title: Foliage area and architecture of plant canopies from sunfleck size distributions
  publication-title: Agric. For. Meteorol.
– volume: 105
  start-page: 149
  year: 2012
  end-page: 159
  ident: b0030
  article-title: Urbanization diversifies land surface phenology in arid environments: interactions among vegetation, climatic variation, and land use pattern in the Phoenix metropolitan region, USA
  publication-title: Landscape Urban Plann.
– volume: 37
  start-page: 1
  year: 2012
  end-page: 10
  ident: b0040
  article-title: Forcing a wheat crop model with LAI data to access agronomic variables: evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach
  publication-title: Eur. J. Agron.
– start-page: 309
  year: 1974
  end-page: 317
  ident: b0220
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
  publication-title: Third ERTS Symposium
– volume: 61
  start-page: 22
  year: 2017
  end-page: 31
  ident: b0235
  article-title: Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 44
  start-page: 104
  year: 2016
  end-page: 112
  ident: b0175
  article-title: Quantification winter wheat LAI with HJ-1CCD image features over multiple growing seasons
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 143
  start-page: 286
  year: 1994
  end-page: 292
  ident: b0115
  article-title: Spectral reflectance changes associated withautumn senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral features and relation to chlorophyll estimation
  publication-title: J. Plant Physiol.
– volume: 58
  start-page: 289
  year: 1996
  end-page: 298
  ident: b0105
  article-title: Use of a green channel inremote sensing of global vegetation from EOS-MODIS
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 619
  year: 2005
  end-page: 632
  ident: b0155
  article-title: A generalized, bioclimatic index to predict foliar phenology in response to climate
  publication-title: Global Change Biol.
– volume: 84
  start-page: 38
  year: 2012
  end-page: 50
  ident: b0020
  article-title: Analysis of vegetation seasonality in Sahelian environments using MODIS LAI, in association with land cover and rainfall
  publication-title: J. Arid Environ.
– volume: 115
  start-page: 2742
  year: 2011
  end-page: 2750
  ident: b0090
  article-title: Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling
  publication-title: Remote Sens. Environ.
– volume: 30
  start-page: 1248
  year: 2003
  ident: b0110
  article-title: Remote estimation of leaf area index and green leaf biomass in maize canopies
  publication-title: Geophys. Res. Lett.
– volume: 8
  start-page: 820
  year: 2017
  ident: b0075
  article-title: Evaluating hyperspectral vegetation indices for leaf area index estimation of Oryza sativa L. at diverse phenological stages
  publication-title: Front. Plant Sci.
– volume: 113
  start-page: S56
  year: 2009
  end-page: S66
  ident: b0150
  article-title: PROSPECT+SAIL models: a review of use for vegetation characterization
  publication-title: Remote Sens. Environ.
– volume: 113
  start-page: 1
  year: 2008
  end-page: 20
  ident: b0095
  article-title: Validation and intercomparison of global Leaf Area Index products derived from remote sensing data
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 209
  start-page: 134
  year: 2018
  end-page: 151
  ident: b0255
  article-title: An integrated method for validating long-term leaf area index products using global networks of site-based measurements
  publication-title: Remote Sens. Environ.
– volume: 123
  start-page: 347
  year: 2012
  end-page: 358
  ident: b0180
  article-title: Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons
  publication-title: Remote Sens. Environ.
– volume: 78
  start-page: 1
  year: 2013
  end-page: 14
  ident: b0140
  article-title: Sensitivity of narrowband vegetation indices to boreal forest LAI, reflectance seasonality and species composition
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 151
  start-page: 1287
  year: 2011
  end-page: 1292
  ident: b0215
  article-title: Leaf area index uncertainty estimates for model–data fusion applications
  publication-title: Agric. For. Meteorol.
– volume: 127
  start-page: 30
  year: 2012
  end-page: 43
  ident: b0265
  article-title: Estimating leaf area index from MODIS and surface meteorological data using a dynamic Bayesian network
  publication-title: Remote Sens. Environ.
– volume: 247
  start-page: 280
  year: 2017
  end-page: 292
  ident: b0025
  article-title: On the relationship between continuous measures of canopy greenness derived using near-surface remote sensing and satellite-derived vegetation products
  publication-title: Agric. For. Meteorol.
– volume: 25
  start-page: 5403
  year: 2004
  end-page: 5413
  ident: b0060
  article-title: The MERIS terrestrial chlorophyll index
  publication-title: Int. J. Remote Sens.
– volume: 46
  start-page: 42
  year: 2013
  end-page: 52
  ident: b0070
  article-title: A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems
  publication-title: Eur. J. Agron.
– volume: 11
  start-page: 1482
  year: 2018
  end-page: 1493
  ident: b0250
  article-title: Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 160
  start-page: 271
  year: 2003
  end-page: 282
  ident: b0120
  article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves
  publication-title: J. Plant Physiol.
– volume: 8
  year: 2014
  ident: b0230
  article-title: Estimating plant area index for monitoring crop growth dynamics using Landsat-8 and RapidEye images
  publication-title: J. Appl. Remote Sens.
– volume: 222
  start-page: 133
  year: 2019
  end-page: 143
  ident: b0080
  article-title: Assessment of red-edge vegetation indices for crop leaf area index estimation
  publication-title: Remote Sens. Environ.
– volume: 169
  start-page: 148
  year: 2013
  end-page: 155
  ident: b0210
  article-title: Two separate periods of the LAI–VIs relationships using in situ measurements in a deciduous broadleaf forest
  publication-title: Agric. For. Meteorol.
– year: 2008
  ident: b0225
  article-title: Global Sensitivity Analysis: The Primer
– volume: 19
  start-page: 104
  year: 2003
  end-page: 107
  ident: b0050
  article-title: Analyses of the correlation between rice LAI and simulated MODIS vegetation indices, red edge position
  publication-title: Trans. CSAE
– volume: 115
  start-page: 3640
  year: 2011
  end-page: 3646
  ident: b0085
  article-title: Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland
  publication-title: Remote Sens. Environ.
– volume: 30
  start-page: 1
  year: 2013
  end-page: 6
  ident: b0125
  article-title: NDVI saturation adjustment: a new approach for improving cropland performance estimates in the Greater Platte River Basin, USA
  publication-title: Ecol. Indic.
– volume: 34
  start-page: 235
  year: 2015
  end-page: 248
  ident: b0165
  article-title: Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 187
  start-page: 102
  year: 2016
  end-page: 118
  ident: b0035
  article-title: Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 7063
  year: 2011
  end-page: 7081
  ident: b0065
  article-title: Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content
  publication-title: Sensors (Basel)
– volume: 124
  start-page: 844
  year: 2012
  end-page: 857
  ident: b0055
  article-title: Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data
  publication-title: Remote Sens. Environ.
– volume: 32
  start-page: L08403
  year: 2005
  ident: b0100
  article-title: Remote estimation of canopy chlorophyll content in crops
  publication-title: Geophys. Res. Lett.
– volume: 13
  start-page: 24
  year: 2011
  end-page: 33
  ident: b0145
  article-title: Study of normalized difference vegetation index variation and its correlation with climate factors in the three-river-source region
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 6
  start-page: 360
  year: 2015
  end-page: 369
  ident: b0200
  article-title: Algorithms for estimating green leaf area index in C3 and C4 crops for MODIS, Landsat TM/ETM+, MERIS, Sentinel MSI/OLCI, and Venµs sensors
  publication-title: Remote Sens. Lett.
– volume: 115
  start-page: 2613
  year: 2011
  end-page: 2625
  ident: b0170
  article-title: MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass
  publication-title: Remote Sens. Environ.
– volume: 100
  start-page: 117
  year: 2008
  end-page: 131
  ident: b0130
  article-title: Application of spectral remote sensing for agronomic decisions
  publication-title: Agron. J.
– volume: 265
  start-page: 390
  year: 2019
  end-page: 411
  ident: b0260
  article-title: Review of indirect optical measurements of leaf area index: recent advances, challenges, and perspectives
  publication-title: Agric. For. Meteorol.
– volume: 115
  start-page: 3468
  year: 2011
  end-page: 3478
  ident: b0245
  article-title: Comparison of different vegetation indices for the remote assessment of green leaf area index of crops
  publication-title: Remote Sens. Environ.
– volume: 150
  start-page: 152
  year: 2010
  end-page: 160
  ident: b0190
  article-title: Field experiments to test the use of the normalized-difference vegetation index for phenology detection
  publication-title: Agric. For. Meteorol.
– volume: 126
  start-page: 104
  year: 2012
  end-page: 115
  ident: b0135
  article-title: Seasonal variation in MODIS LAI for a boreal forest area in Finland
  publication-title: Remote Sens. Environ.
– volume: 20
  start-page: 213
  year: 1999
  end-page: 218
  ident: b0185
  article-title: Impacts of model parameter uncertainties on crop reflectance estimates: a regional case study on wheat
  publication-title: Int. J. Remote Sens.
– volume: 195
  start-page: 259
  year: 2017
  end-page: 274
  ident: b0160
  article-title: Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index
  publication-title: Remote Sens. Environ.
– volume: 192–193
  start-page: 140
  year: 2014
  end-page: 148
  ident: b0205
  article-title: Estimating green LAI in four crops: potential of determining optimal spectral bands for a universal algorithm
  publication-title: Agric. For. Meteorol.
– volume: 43
  start-page: 19
  year: 2015
  end-page: 31
  ident: b0005
  article-title: Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy
  publication-title: Int. J. Appl. Earth Observ. Geoinf.
– start-page: 5583
  year: 2012
  end-page: 5599
  ident: b9000
  article-title: Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data
  publication-title: Int. J. Remote Sens.
– volume: 141
  start-page: 52
  year: 2014
  end-page: 63
  ident: b0240
  article-title: Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 820
  year: 2017
  ident: 10.1016/j.ecolind.2020.106153_b0075
  article-title: Evaluating hyperspectral vegetation indices for leaf area index estimation of Oryza sativa L. at diverse phenological stages
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00820
– volume: 60
  start-page: 249
  year: 1992
  ident: 10.1016/j.ecolind.2020.106153_b0045
  article-title: Foliage area and architecture of plant canopies from sunfleck size distributions
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(92)90040-B
– volume: 61
  start-page: 22
  year: 2017
  ident: 10.1016/j.ecolind.2020.106153_b0235
  article-title: Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 265
  start-page: 390
  year: 2019
  ident: 10.1016/j.ecolind.2020.106153_b0260
  article-title: Review of indirect optical measurements of leaf area index: recent advances, challenges, and perspectives
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.11.033
– volume: 34
  start-page: 235
  year: 2015
  ident: 10.1016/j.ecolind.2020.106153_b0165
  article-title: Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 43
  start-page: 19
  year: 2015
  ident: 10.1016/j.ecolind.2020.106153_b0005
  article-title: Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy
  publication-title: Int. J. Appl. Earth Observ. Geoinf.
– year: 2008
  ident: 10.1016/j.ecolind.2020.106153_b0225
– volume: 113
  start-page: 1
  year: 2008
  ident: 10.1016/j.ecolind.2020.106153_b0095
  article-title: Validation and intercomparison of global Leaf Area Index products derived from remote sensing data
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2007JG000635
– volume: 100
  start-page: 117
  year: 2008
  ident: 10.1016/j.ecolind.2020.106153_b0130
  article-title: Application of spectral remote sensing for agronomic decisions
  publication-title: Agron. J.
  doi: 10.2134/agronj2006.0370c
– volume: 30
  start-page: 1
  year: 2013
  ident: 10.1016/j.ecolind.2020.106153_b0125
  article-title: NDVI saturation adjustment: a new approach for improving cropland performance estimates in the Greater Platte River Basin, USA
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2013.01.041
– volume: 141
  start-page: 52
  year: 2014
  ident: 10.1016/j.ecolind.2020.106153_b0240
  article-title: Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.10.018
– volume: 115
  start-page: 2613
  year: 2011
  ident: 10.1016/j.ecolind.2020.106153_b0170
  article-title: MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.05.017
– volume: 46
  start-page: 42
  year: 2013
  ident: 10.1016/j.ecolind.2020.106153_b0070
  article-title: A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2012.12.001
– volume: 44
  start-page: 104
  year: 2016
  ident: 10.1016/j.ecolind.2020.106153_b0175
  article-title: Quantification winter wheat LAI with HJ-1CCD image features over multiple growing seasons
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 19
  start-page: 104
  year: 2003
  ident: 10.1016/j.ecolind.2020.106153_b0050
  article-title: Analyses of the correlation between rice LAI and simulated MODIS vegetation indices, red edge position
  publication-title: Trans. CSAE
– volume: 143
  start-page: 286
  year: 1994
  ident: 10.1016/j.ecolind.2020.106153_b0115
  article-title: Spectral reflectance changes associated withautumn senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral features and relation to chlorophyll estimation
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(11)81633-0
– volume: 30
  start-page: 1248
  year: 2003
  ident: 10.1016/j.ecolind.2020.106153_b0110
  article-title: Remote estimation of leaf area index and green leaf biomass in maize canopies
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2002GL016450
– volume: 247
  start-page: 280
  year: 2017
  ident: 10.1016/j.ecolind.2020.106153_b0025
  article-title: On the relationship between continuous measures of canopy greenness derived using near-surface remote sensing and satellite-derived vegetation products
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.08.012
– volume: 84
  start-page: 38
  year: 2012
  ident: 10.1016/j.ecolind.2020.106153_b0020
  article-title: Analysis of vegetation seasonality in Sahelian environments using MODIS LAI, in association with land cover and rainfall
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2012.03.005
– volume: 6
  start-page: 360
  year: 2015
  ident: 10.1016/j.ecolind.2020.106153_b0200
  article-title: Algorithms for estimating green leaf area index in C3 and C4 crops for MODIS, Landsat TM/ETM+, MERIS, Sentinel MSI/OLCI, and Venµs sensors
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2015.1034888
– volume: 151
  start-page: 1287
  year: 2011
  ident: 10.1016/j.ecolind.2020.106153_b0215
  article-title: Leaf area index uncertainty estimates for model–data fusion applications
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2011.05.009
– volume: 222
  start-page: 133
  year: 2019
  ident: 10.1016/j.ecolind.2020.106153_b0080
  article-title: Assessment of red-edge vegetation indices for crop leaf area index estimation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.032
– volume: 58
  start-page: 289
  year: 1996
  ident: 10.1016/j.ecolind.2020.106153_b0105
  article-title: Use of a green channel inremote sensing of global vegetation from EOS-MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00072-7
– volume: 126
  start-page: 104
  year: 2012
  ident: 10.1016/j.ecolind.2020.106153_b0135
  article-title: Seasonal variation in MODIS LAI for a boreal forest area in Finland
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.08.001
– volume: 32
  start-page: L08403
  year: 2005
  ident: 10.1016/j.ecolind.2020.106153_b0100
  article-title: Remote estimation of canopy chlorophyll content in crops
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL022688
– volume: 113
  start-page: S56
  year: 2009
  ident: 10.1016/j.ecolind.2020.106153_b0150
  article-title: PROSPECT+SAIL models: a review of use for vegetation characterization
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.01.026
– volume: 169
  start-page: 148
  year: 2013
  ident: 10.1016/j.ecolind.2020.106153_b0210
  article-title: Two separate periods of the LAI–VIs relationships using in situ measurements in a deciduous broadleaf forest
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.09.003
– start-page: 309
  year: 1974
  ident: 10.1016/j.ecolind.2020.106153_b0220
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
– volume: 209
  start-page: 134
  year: 2018
  ident: 10.1016/j.ecolind.2020.106153_b0255
  article-title: An integrated method for validating long-term leaf area index products using global networks of site-based measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.049
– volume: 124
  start-page: 844
  year: 2012
  ident: 10.1016/j.ecolind.2020.106153_b0055
  article-title: Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.04.005
– volume: 192–193
  start-page: 140
  year: 2014
  ident: 10.1016/j.ecolind.2020.106153_b0205
  article-title: Estimating green LAI in four crops: potential of determining optimal spectral bands for a universal algorithm
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2014.03.004
– volume: 105
  start-page: 149
  year: 2012
  ident: 10.1016/j.ecolind.2020.106153_b0030
  article-title: Urbanization diversifies land surface phenology in arid environments: interactions among vegetation, climatic variation, and land use pattern in the Phoenix metropolitan region, USA
  publication-title: Landscape Urban Plann.
  doi: 10.1016/j.landurbplan.2011.12.013
– volume: 115
  start-page: 2742
  year: 2011
  ident: 10.1016/j.ecolind.2020.106153_b0090
  article-title: Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.06.016
– volume: 115
  start-page: 3468
  year: 2011
  ident: 10.1016/j.ecolind.2020.106153_b0245
  article-title: Comparison of different vegetation indices for the remote assessment of green leaf area index of crops
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.08.010
– volume: 193
  start-page: 251
  year: 2004
  ident: 10.1016/j.ecolind.2020.106153_b0010
  article-title: CABALA: a linked carbon, water and nitrogen model of forest growth for silvicultural decision support
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2004.01.033
– volume: 20
  start-page: 213
  year: 1999
  ident: 10.1016/j.ecolind.2020.106153_b0185
  article-title: Impacts of model parameter uncertainties on crop reflectance estimates: a regional case study on wheat
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311699213730
– volume: 11
  start-page: 7063
  year: 2011
  ident: 10.1016/j.ecolind.2020.106153_b0065
  article-title: Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content
  publication-title: Sensors (Basel)
  doi: 10.3390/s110707063
– volume: 13
  start-page: 24
  year: 2011
  ident: 10.1016/j.ecolind.2020.106153_b0145
  article-title: Study of normalized difference vegetation index variation and its correlation with climate factors in the three-river-source region
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 104
  start-page: 1336
  year: 2012
  ident: 10.1016/j.ecolind.2020.106153_b0195
  article-title: Green leaf area index estimation in maize and soybean: combining vegetation indices to achieve maximal sensitivity
  publication-title: Agron. J.
  doi: 10.2134/agronj2012.0065
– volume: 25
  start-page: 5403
  year: 2004
  ident: 10.1016/j.ecolind.2020.106153_b0060
  article-title: The MERIS terrestrial chlorophyll index
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116042000274015
– volume: 37
  start-page: 1
  year: 2012
  ident: 10.1016/j.ecolind.2020.106153_b0040
  article-title: Forcing a wheat crop model with LAI data to access agronomic variables: evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2011.09.004
– volume: 160
  start-page: 271
  year: 2003
  ident: 10.1016/j.ecolind.2020.106153_b0120
  article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-00887
– volume: 8
  year: 2014
  ident: 10.1016/j.ecolind.2020.106153_b0230
  article-title: Estimating plant area index for monitoring crop growth dynamics using Landsat-8 and RapidEye images
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.8.085196
– volume: 11
  start-page: 1482
  year: 2018
  ident: 10.1016/j.ecolind.2020.106153_b0250
  article-title: Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2813281
– volume: 195
  start-page: 259
  year: 2017
  ident: 10.1016/j.ecolind.2020.106153_b0160
  article-title: Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.021
– volume: 187
  start-page: 102
  year: 2016
  ident: 10.1016/j.ecolind.2020.106153_b0035
  article-title: Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.009
– volume: 150
  start-page: 152
  year: 2010
  ident: 10.1016/j.ecolind.2020.106153_b0190
  article-title: Field experiments to test the use of the normalized-difference vegetation index for phenology detection
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2009.09.010
– volume: 78
  start-page: 1
  year: 2013
  ident: 10.1016/j.ecolind.2020.106153_b0140
  article-title: Sensitivity of narrowband vegetation indices to boreal forest LAI, reflectance seasonality and species composition
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.01.001
– start-page: 5583
  issue: 17
  year: 2012
  ident: 10.1016/j.ecolind.2020.106153_b9000
  article-title: Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.666812
– volume: 123
  start-page: 347
  year: 2012
  ident: 10.1016/j.ecolind.2020.106153_b0180
  article-title: Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.04.002
– volume: 115
  start-page: 3640
  year: 2011
  ident: 10.1016/j.ecolind.2020.106153_b0085
  article-title: Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.002
– volume: 143
  start-page: 43
  year: 2001
  ident: 10.1016/j.ecolind.2020.106153_b0015
  article-title: NDVI and a simple model of deciduous forest seasonal dynamics
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(01)00354-4
– volume: 127
  start-page: 30
  year: 2012
  ident: 10.1016/j.ecolind.2020.106153_b0265
  article-title: Estimating leaf area index from MODIS and surface meteorological data using a dynamic Bayesian network
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.08.015
– volume: 11
  start-page: 619
  year: 2005
  ident: 10.1016/j.ecolind.2020.106153_b0155
  article-title: A generalized, bioclimatic index to predict foliar phenology in response to climate
  publication-title: Global Change Biol.
  doi: 10.1111/j.1365-2486.2005.00930.x
SSID ssj0016996
Score 2.4135046
Snippet •Application conditions for VIs in constructing the LAI seasonal trajectory were assessed.•The optimal VI for different ranges of LAI is suggested for LAI...
Leaf area index (LAI) is a required input for various ecological and crop models. To investigate the application conditions of various vegetation indices...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106153
SubjectTerms canopy
chlorophyll
Global sensitivity analysis
leaf angle
Leaf area index
normalized difference vegetation index
Red-edge
spectrometers
Vegetation indices
Vegetation types
Whole growing season
Title Application conditions and impact factors for various vegetation indices in constructing the LAI seasonal trajectory over different vegetation types
URI https://dx.doi.org/10.1016/j.ecolind.2020.106153
https://www.proquest.com/docview/2524212597
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DX3wRP3F-jAi-dmtr2jSPQxzT6R78wL2FpEmHQzpxU_DFv8I_2LsmdSqI4FNo2gsld7n7XXJ3IeQoSpQBvoogVXERgD3WgU65CnimRQEWV7iS-ZfDtH_LzkfJqEFO6lwYDKv0ut_p9Epb-56On83O4_195zpiHMujjWKQ01CEI8xgZxylvP32GeYRpUK4DCMeBvj1IounM2mDhwdgDguGxtiH4Oc3-_RDU1fmp7dGVj1upF33a-ukYcsNsn26SFODl36dzjbJe3dxLk3B4zUuMIuq0lCXF0n9RTsUQCt9AYd5-jyjL3bsow8pHmXDUNAiva8yW44p4EV60T2juLeIIJ7On9Sk2vl_pRgNSusbV-ZfR8ON3tkWue2d3pz0A3__QpCzJJkHJjw-tgWPLdOhAdzGc2UUT6vEj1SkOokMVvjKsgIMLY8KlVitcguYz0RJDmzZJkvltLQ7hGqTidyG2nItWCR0ZhggJ8M4zy1XPGwSVs-6zH1xcrwj40HWUWgT6ZklkVnSMatJ2p9kj646x18EWc1S-U3MJFiQv0gPaxGQsATxXEWVFpgj46Q6VwfXbPf_w--RFXxysZT7ZAn4ag8A78x1qxLoFlnung36Q2wHV3eDD5KgBnY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAL4lVRymOQ4JjdJHXi-MBhBa126bYXWmlvxo6dqqsqrdilVS_8Cv4Jf5CZ2OkCEqqE1FOkRHYif87MN54XwNusMI5wVUlp8iYhfWwTW0qTyMqqhjSuCiXz9w_K8ZH4NCtma_Czz4XhsMoo-4NM76R1vDOMqzk8PzkZfs6E5PJos5z2aarSWYys3PNXl2S3Ld5PPhLI7_J8d-fwwziJrQWSWhTFMnHp9rZvZO6FTR1RElkbZ2TZ5TSUqrRF5rh4VVU1pENk1pjCW1N7ojMuK2p6I817B-4KEhfcNmHw_TquJCuVCilNMk3481ZpQ8P5gExKYo9coTTne8y2_qUQ_1INnb7bfQgPIlHFUViLR7Dm28ewsbPKi6OHUTAsnsCP0coRjmRiuxAJhqZ1GBIxMXb2QWLJeEEW-tm3BV744xjuiOw7p6noyuNjWdv2GImg4nQ0QT7MZKsBl1_NvHM1XCGHn2Lf4mX5-2x8srx4Cke3gsoGrLdnrX8GaF2lap9aL60SmbKVE0TVnJCy9tLIdBNEv-q6jtXQuSnHqe7D3uY6gqUZLB3A2oTB9bDzUA7kpgFVD6n-Y19rUlk3DX3TbwFN_zw7ckzrCRydF50jn2zB5_8__Wu4Nz7cn-rp5GBvC-7zkxDI-QLWCWP_ksjW0r7qNjfCl9v-m34BOTFAnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+conditions+and+impact+factors+for+various+vegetation+indices+in+constructing+the+LAI+seasonal+trajectory+over+different+vegetation+types&rft.jtitle=Ecological+indicators&rft.au=Qiao%2C+Kun&rft.au=Zhu%2C+Wenquan&rft.au=Xie%2C+Zhiying&rft.date=2020-05-01&rft.pub=Elsevier+Ltd&rft.issn=1470-160X&rft.eissn=1872-7034&rft.volume=112&rft_id=info:doi/10.1016%2Fj.ecolind.2020.106153&rft.externalDocID=S1470160X2030090X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon