Early-season crop type mapping using 30-m reference time series
Early-season crop type mapping could provide important information for crop growth monitoring and yield prediction, but the lack of ground-surveyed training samples is the main challenge for crop type identification. Although reference time series based method (RBM) has been proposed to identify cro...
Saved in:
Published in | Journal of Integrative Agriculture Vol. 19; no. 7; pp. 1897 - 1911 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2020
KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Early-season crop type mapping could provide important information for crop growth monitoring and yield prediction, but the lack of ground-surveyed training samples is the main challenge for crop type identification. Although reference time series based method (RBM) has been proposed to identify crop types without the use of ground-surveyed training samples, the methods are not suitable for study regions with small field size because the reference time series are mainly generated using data set with low spatial resolution. As the combination of Landsat data and Sentinel-2 data could increase the temporal resolution of 30-m image time series, we improved the RBM by generating reference normalized difference vegetation index (NDVI)/enhanced vegetation index (EVI) time series at 30-m resolution (30-m RBM) using both Landsat and Sentinel-2 data, then tried to estimate the potential of the reference NDVI/EVI time series for crop identification at early season. As a test case, we tried to use the 30-m RBM to identify major crop types in Hengshui, China at early season of 2018, the results showed that when the time series of the entire growing season were used for classification, overall classification accuracies of the 30-m RBM were higher than 95%, which were similar to the accuracies acquired using the ground-surveyed training samples. In addition, cotton, spring maize and summer maize distribution could be accurately generated 8, 6 and 8 weeks before their harvest using the 30-m RBM; but winter wheat can only be accurately identified around the harvest time phase. Finally, NDVI outperformed EVI for crop type classification as NDVI had better separability for distinguishing crops at the green-up time phases. Comparing with the previous RBM, advantage of 30-m RBM is that the method could use the samples of the small fields to generate reference time series and process image time series with missing value for early-season crop classification; while, samples collected from multiple years should be further used so that the reference time series could contain more crop growth conditions. |
---|---|
AbstractList | Early-season crop type mapping could provide important information for crop growth monitoring and yield prediction, but the lack of ground-surveyed training samples is the main challenge for crop type identification. Although reference time series based method (RBM) has been proposed to identify crop types without the use of ground-surveyed training samples, the methods are not suitable for study regions with small field size because the reference time series are mainly generated using data set with low spatial resolution. As the combination of Landsat data and Sentinel-2 data could increase the temporal resolution of 30-m image time series, we improved the RBM by generating reference normalized difference vegetation index (NDVI)/enhanced vegetation index (EVI) time series at 30-m resolution (30-m RBM) using both Landsat and Sentinel-2 data, then tried to estimate the potential of the reference NDVI/EVI time series for crop identification at early season. As a test case, we tried to use the 30-m RBM to identify major crop types in Hengshui, China at early season of 2018, the results showed that when the time series of the entire growing season were used for classification, overall classification accuracies of the 30-m RBM were higher than 95%, which were similar to the accuracies acquired using the ground-surveyed training samples. In addition, cotton, spring maize and summer maize distribution could be accurately generated 8, 6 and 8 weeks before their harvest using the 30-m RBM; but winter wheat can only be accurately identified around the harvest time phase. Finally, NDVI outperformed EVI for crop type classification as NDVI had better separability for distinguishing crops at the green-up time phases. Comparing with the previous RBM, advantage of 30-m RBM is that the method could use the samples of the small fields to generate reference time series and process image time series with missing value for early-season crop classification; while, samples collected from multiple years should be further used so that the reference time series could contain more crop growth conditions. |
Author | MENG, Qing-yan TANG, Hua-jun HAO, Peng-yu CHEN, Zhong-xin KANG, Yu-peng |
Author_xml | – sequence: 1 givenname: Peng-yu surname: HAO fullname: HAO, Peng-yu email: haopy8296@163.com organization: Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China – sequence: 2 givenname: Hua-jun surname: TANG fullname: TANG, Hua-jun email: tanghuajun@caas.cn organization: Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China – sequence: 3 givenname: Zhong-xin surname: CHEN fullname: CHEN, Zhong-xin organization: Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China – sequence: 4 givenname: Qing-yan surname: MENG fullname: MENG, Qing-yan organization: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, P.R. China – sequence: 5 givenname: Yu-peng surname: KANG fullname: KANG, Yu-peng organization: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, P.R. China |
BookMark | eNqFUU1rGzEQFSGFuG5-QmCP6WFbjb4skYMpIW0DgR6anIWsnQ0Ku6uNJBf87yPbyaUXw6AZhvceo_c-k_MpTkjIFdBvQEF9_8uokS0HMNdgviqmgbVwRhaMS9ZyweR5nT8gF-Qy5xdKKUhJqdILsr5zadi1GV2OU-NTnJuym7EZ3TyH6bnZ5v3LaTs2CXtMOHlsShixyZgC5i_kU--GjJfvfUmeft493v5uH_78ur_98dB6IWVpfb-hakU7xJ5vNILn2FHovOiEZqrjzANqJkwvDXdSqbr0XqICDVpuBPIluT_qdtG92DmF0aWdjS7YwyKmZ-tSCX5Ay7UBwTujVsYJ4VDXgW0EdwLBONpXreuj1pzi6xZzsWPIHofBTRi32TIpwRgDK1WhN0dodSbn6oD1obgS4lSSC4MFavcp2EMKdm-xrXVIwUJly__YH4ef4q2PPKyO_guYbPZh73wXEvpSvxxOKLwB15-e0w |
CitedBy_id | crossref_primary_10_3390_rs15041112 crossref_primary_10_1109_JSTARS_2025_3525552 crossref_primary_10_7256_2453_8809_2023_2_44147 crossref_primary_10_3390_rs15041130 crossref_primary_10_3390_rs14215625 crossref_primary_10_3390_rs14040893 crossref_primary_10_34133_remotesensing_0438 crossref_primary_10_15622_ia_21_2_7 crossref_primary_10_3390_rs13040561 crossref_primary_10_3390_rs15133285 crossref_primary_10_3390_agronomy14010146 crossref_primary_10_1016_j_compag_2023_108268 crossref_primary_10_3390_rs14040829 crossref_primary_10_1016_j_compag_2024_109239 crossref_primary_10_1016_j_jag_2022_103178 crossref_primary_10_1016_j_compag_2023_107927 crossref_primary_10_1016_j_jag_2022_102702 crossref_primary_10_3390_rs14081800 crossref_primary_10_1016_S2095_3119_19_62871_6 crossref_primary_10_3390_rs16142532 crossref_primary_10_3390_s22155683 crossref_primary_10_3390_rs13234819 crossref_primary_10_1080_15481603_2024_2367807 crossref_primary_10_3390_rs16132431 crossref_primary_10_15622_ia_22_6_8 crossref_primary_10_3390_rs13173488 crossref_primary_10_1016_j_isprsjprs_2021_04_015 crossref_primary_10_1016_S2095_3119_20_63329_9 crossref_primary_10_1109_JSTARS_2022_3215589 crossref_primary_10_1016_j_agwat_2021_107249 crossref_primary_10_1038_s41597_023_02047_9 |
Cites_doi | 10.1016/j.rse.2017.04.026 10.3390/su9050839 10.3390/rs8110883 10.1080/01431161.2018.1444289 10.1109/TGRS.2011.2162589 10.3390/rs9101065 10.7717/peerj.5431 10.3390/rs9080838 10.1016/j.isprsjprs.2010.04.004 10.3390/rs6087610 10.3390/ijgi5050067 10.3390/rs70505347 10.1016/j.rse.2018.12.026 10.3390/rs6076472 10.1016/S2095-3119(19)62871-6 10.1016/j.rse.2018.02.045 10.1016/j.rse.2011.06.024 10.1016/j.rse.2016.02.016 10.1016/j.rse.2018.11.032 10.3390/rs10122057 10.1080/15481603.2017.1414010 10.1080/10106049.2011.642898 10.1080/01431160310001619580 10.1080/01431160902897858 10.1109/JSTARS.2017.2748989 10.1016/j.rse.2013.08.023 10.3390/rs9020132 10.14358/PERS.78.8.799 10.1016/j.jag.2015.06.003 10.3390/a9030047 10.1016/j.rse.2006.11.021 10.1016/j.rse.2007.07.019 10.1016/j.isprsjprs.2013.07.008 10.1080/17538947.2013.822574 10.1016/j.compag.2014.02.009 10.1109/JSTARS.2014.2347203 10.1016/0034-4257(91)90048-B 10.1007/s12665-015-4225-x 10.1016/S0034-4257(02)00096-2 10.3390/rs11111353 10.5721/EuJRS20164954 10.7717/peerj.4834 10.1016/j.rse.2017.03.021 10.1016/j.rse.2011.06.020 10.3390/rs9090902 10.1109/36.477187 |
ContentType | Journal Article |
Copyright | 2020 CAAS. Publishing services by Elsevier B.V |
Copyright_xml | – notice: 2020 CAAS. Publishing services by Elsevier B.V |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/S2095-3119(19)62812-1 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2352-3425 |
EndPage | 1911 |
ExternalDocumentID | oai_doaj_org_article_389143d9679a44ae86792b43a4e19a0f 10_1016_S2095_3119_19_62812_1 S2095311919628121 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --M -04 -0D -SD -S~ .~1 0R~ 1B1 1~. 1~5 2B. 2B~ 4.4 457 4G. 5VR 6I. 7-5 8P~ 92G 92I 92M 93N 93Q 9D9 9DD AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFUIB AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CAJED CAJUS CBWCG CCEZO CHDYS EBS EFJIC EFLBG EJD FA0 FDB FIRID FNPLU FYGXN GBLVA GROUPED_DOAJ HZ~ JUIAU KOM M41 MO0 NCXOZ O-L O9- OAUVE OK1 P-8 P-9 PC. Q-- Q-3 Q38 R-D RIG ROL RT4 SDF SDG SES SSA SSZ T5K T8T TCJ TGD U1F U1G U5D U5N ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c455t-cfb0670deef3b8e1c3ed01dc4d4826d32c1e8249f593a566826cc5e618185b4e3 |
IEDL.DBID | DOA |
ISSN | 2095-3119 |
IngestDate | Wed Aug 27 01:28:18 EDT 2025 Thu Jul 10 23:27:52 EDT 2025 Thu Apr 24 23:00:19 EDT 2025 Tue Jul 01 03:31:18 EDT 2025 Fri Feb 23 02:47:25 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | early season crop classification reference time series Landsat Sentinel-2 Hengshui |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-cfb0670deef3b8e1c3ed01dc4d4826d32c1e8249f593a566826cc5e618185b4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/389143d9679a44ae86792b43a4e19a0f |
PQID | 2551999176 |
PQPubID | 24069 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_389143d9679a44ae86792b43a4e19a0f proquest_miscellaneous_2551999176 crossref_citationtrail_10_1016_S2095_3119_19_62812_1 crossref_primary_10_1016_S2095_3119_19_62812_1 elsevier_sciencedirect_doi_10_1016_S2095_3119_19_62812_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 20200701 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Integrative Agriculture |
PublicationYear | 2020 |
Publisher | Elsevier B.V KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
References | Skakun, Franch, Vermote, Roger, Becker-Reshef, Justice, Kussul (bib34) 2017; 195 Zhong, Gong, Biging (bib48) 2014; 140 Yu, Wang, Clinton, Xin, Zhong, Chen, Gong (bib45) 2013; 6 Schmidt, Schuster, Kleinschmit, Foerster (bib33) 2014; 7 De Wit, Clevers (bib42) 2004; 25 Rouse, Haas, Schell, Deering, Harlan (bib32) 1974 Chang, Lin, Chen (bib3) 2016; 9 Hao, Tang, Chen, Liu (bib12) 2018; 6 Lhermitte, Verbesselt, Verstraeten, Coppin (bib24) 2011; 115 Knauer, Gessner, Fensholt, Forkuor, Kuenzer (bib22) 2017; 9 Dong, Xiao, Menarguez, Zhang, Qin, Thau, Biradar, Moore (bib6) 2016; 185 Chockalingam, Mondal (bib4) 2017; 10 Xiong, Thenkabail, Tilton, Gumma, Teluguntla, Oliphant, Congalton, Yadav, Gorelick (bib44) 2017; 9 Hao, Löw, Biradar (bib11) 2018; 10 Potgieter, Apan, Hammer, Dunn (bib31) 2010; 65 Mondal, Jeganathan (bib29) 2018; 39 Google (bib9) 2015 Zhong, Gong, Biging (bib47) 2012; 78 Zhong, Zhang (bib49) 2012; 50 Sothe, de Almeida, Liesenberg, Schimalski (bib35) 2017; 9 Hao, Wang, Zhan, Wang, Niu, Wu (bib15) 2016; 49 Zhong, Hu, Zhou (bib46) 2019; 221 Wardlow, Egbert (bib39) 2008; 112 Li, Roy (bib25) 2017; 9 NASA (National Aeronautics and Space Administration) (bib30) 2017 Hao, Wang, Zhan, Niu (bib14) 2016; 5 Im, Lu, Rhee, Quackenbush (bib21) 2012; 117 Cai, Guan, Peng, Wang, Seifert, Wardlow, Li (bib2) 2018; 210 Forkuor, Conrad, Thiel, Ullmann, Zoungrana (bib8) 2014; 6 Bruzzone, Roli, Serpico (bib1) 1995; 33 Hao, Wu, Niu, Wang, Zhan (bib16) 2018; 6 Liu, Guo, Yang, Wu, Li, Li, Ni, Liang (bib26) 2015; 74 Löw, Biradar, Dubovyk, Fliemann, Akramkhanov, Vallejo, Waldner (bib27) 2018; 55 Luo, Liu, Fu, Guan, Ye, Zhang, Kong (bib28) 2020; 19 Wang, Azzari, Lobell (bib38) 2019; 222 Zhou, Zhang, Townley-Smith (bib50) 2013; 84 Congalton (bib5) 1991; 37 Torres-Sanchez, Pena, de Castro, Lopez-Granados (bib36) 2014; 103 Harald, Freek (bib18) 2016; 8 Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bib19) 2002; 83 Wardlow, Egbert, Kastens (bib41) 2007; 108 Im, Lu, Rhee, Jensen (bib20) 2012; 27 Hao, Wang, Niu, Aablikim, Huang, Xu, Chen (bib13) 2014; 6 ESA (European Space Agency) (bib7) 2016 Hao, Zhan, Wang, Niu, Shakir (bib17) 2015; 7 Vaudour, Noirot-Cosson, Membrive (bib37) 2015; 42 Wardlow, Egbert (bib40) 2010; 31 Hao, Chen, Tang, Li, Li (bib10) 2019; 11 Korhonen, Hadi, Packalen, Rautiainen (bib23) 2017; 195 Xie, Cheng, Lv (bib43) 2017; 9 Zhong (10.1016/S2095-3119(19)62812-1_bib49) 2012; 50 Lhermitte (10.1016/S2095-3119(19)62812-1_bib24) 2011; 115 Rouse (10.1016/S2095-3119(19)62812-1_bib32) 1974 Knauer (10.1016/S2095-3119(19)62812-1_bib22) 2017; 9 Zhong (10.1016/S2095-3119(19)62812-1_bib47) 2012; 78 Forkuor (10.1016/S2095-3119(19)62812-1_bib8) 2014; 6 Yu (10.1016/S2095-3119(19)62812-1_bib45) 2013; 6 Chang (10.1016/S2095-3119(19)62812-1_bib3) 2016; 9 Hao (10.1016/S2095-3119(19)62812-1_bib10) 2019; 11 Wardlow (10.1016/S2095-3119(19)62812-1_bib40) 2010; 31 Harald (10.1016/S2095-3119(19)62812-1_bib18) 2016; 8 Luo (10.1016/S2095-3119(19)62812-1_bib28) 2020; 19 Potgieter (10.1016/S2095-3119(19)62812-1_bib31) 2010; 65 Sothe (10.1016/S2095-3119(19)62812-1_bib35) 2017; 9 ESA (European Space Agency) (10.1016/S2095-3119(19)62812-1_bib7) Wang (10.1016/S2095-3119(19)62812-1_bib38) 2019; 222 Im (10.1016/S2095-3119(19)62812-1_bib21) 2012; 117 Hao (10.1016/S2095-3119(19)62812-1_bib12) 2018; 6 Hao (10.1016/S2095-3119(19)62812-1_bib17) 2015; 7 Hao (10.1016/S2095-3119(19)62812-1_bib11) 2018; 10 De Wit (10.1016/S2095-3119(19)62812-1_bib42) 2004; 25 Vaudour (10.1016/S2095-3119(19)62812-1_bib37) 2015; 42 Zhou (10.1016/S2095-3119(19)62812-1_bib50) 2013; 84 Skakun (10.1016/S2095-3119(19)62812-1_bib34) 2017; 195 Chockalingam (10.1016/S2095-3119(19)62812-1_bib4) 2017; 10 Schmidt (10.1016/S2095-3119(19)62812-1_bib33) 2014; 7 Löw (10.1016/S2095-3119(19)62812-1_bib27) 2018; 55 Google (10.1016/S2095-3119(19)62812-1_bib9) Im (10.1016/S2095-3119(19)62812-1_bib20) 2012; 27 Hao (10.1016/S2095-3119(19)62812-1_bib14) 2016; 5 NASA (National Aeronautics and Space Administration) (10.1016/S2095-3119(19)62812-1_bib30) Hao (10.1016/S2095-3119(19)62812-1_bib13) 2014; 6 Hao (10.1016/S2095-3119(19)62812-1_bib15) 2016; 49 Xie (10.1016/S2095-3119(19)62812-1_bib43) 2017; 9 Congalton (10.1016/S2095-3119(19)62812-1_bib5) 1991; 37 Bruzzone (10.1016/S2095-3119(19)62812-1_bib1) 1995; 33 Hao (10.1016/S2095-3119(19)62812-1_bib16) 2018; 6 Dong (10.1016/S2095-3119(19)62812-1_bib6) 2016; 185 Huete (10.1016/S2095-3119(19)62812-1_bib19) 2002; 83 Torres-Sanchez (10.1016/S2095-3119(19)62812-1_bib36) 2014; 103 Wardlow (10.1016/S2095-3119(19)62812-1_bib41) 2007; 108 Zhong (10.1016/S2095-3119(19)62812-1_bib48) 2014; 140 Mondal (10.1016/S2095-3119(19)62812-1_bib29) 2018; 39 Li (10.1016/S2095-3119(19)62812-1_bib25) 2017; 9 Wardlow (10.1016/S2095-3119(19)62812-1_bib39) 2008; 112 Cai (10.1016/S2095-3119(19)62812-1_bib2) 2018; 210 Xiong (10.1016/S2095-3119(19)62812-1_bib44) 2017; 9 Korhonen (10.1016/S2095-3119(19)62812-1_bib23) 2017; 195 Liu (10.1016/S2095-3119(19)62812-1_bib26) 2015; 74 Zhong (10.1016/S2095-3119(19)62812-1_bib46) 2019; 221 |
References_xml | – volume: 25 start-page: 4091 year: 2004 end-page: 4112 ident: bib42 article-title: Efficiency and accuracy of per-field classification for operational crop mapping publication-title: International Journal of Remote Sensing – volume: 195 start-page: 259 year: 2017 end-page: 274 ident: bib23 article-title: Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index publication-title: Remote Sensing of Environment – year: 2017 ident: bib30 article-title: Harmonized Landsat-8 and Sentinel-2. [2018-11-12] – volume: 42 start-page: 128 year: 2015 end-page: 141 ident: bib37 article-title: Early-season mapping of crops and cultural operations using very high spatial resolution Pléiades images publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 185 start-page: 142 year: 2016 end-page: 154 ident: bib6 article-title: Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine publication-title: Remote Sensing of Environment – volume: 115 start-page: 3129 year: 2011 end-page: 3152 ident: bib24 article-title: A comparison of time series similarity measures for classification and change detection of ecosystem dynamics publication-title: Remote Sensing of Environment – volume: 33 start-page: 1318 year: 1995 end-page: 1321 ident: bib1 article-title: An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 10 start-page: 5258 year: 2017 end-page: 5264 ident: bib4 article-title: Fractal-based pattern extraction from time-series NDVI data for feature identification publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – year: 2016 ident: bib7 article-title: Sentinel-2 for agriculture. [2019-03-15] – volume: 84 start-page: 114 year: 2013 end-page: 129 ident: bib50 article-title: A data mining approach for evaluation of optimal time-series of MODIS data for land cover mapping at a regional level publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 6 start-page: 6472 year: 2014 end-page: 6499 ident: bib8 article-title: Integration of optical and synthetic aperture radar imagery for improving crop mapping in northwestern Benin, West Africa publication-title: Remote Sensing – volume: 222 start-page: 303 year: 2019 end-page: 317 ident: bib38 article-title: Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques publication-title: Remote Sensing of Environment – volume: 65 start-page: 380 year: 2010 end-page: 387 ident: bib31 article-title: Early-season crop area estimates for winter crops in NE Australia using MODIS satellite imagery publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 10 year: 2018 ident: bib11 article-title: Annual cropland mapping using reference landsat time series — a case study in Central Asia publication-title: Remote Sensing – volume: 9 start-page: 132 year: 2017 ident: bib22 article-title: Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: The role of population growth and implications for the environment publication-title: Remote Sensing – volume: 9 start-page: 47 year: 2016 ident: bib3 article-title: A hybrid course recommendation system by integrating collaborative filtering and artificial immune systems publication-title: Algorithms – volume: 39 start-page: 3679 year: 2018 end-page: 3704 ident: bib29 article-title: Mountain agriculture extraction from time-series MODIS NDVI using dynamic time warping technique publication-title: International Journal of Remote Sensing – volume: 7 start-page: 3428 year: 2014 end-page: 3439 ident: bib33 article-title: Evaluating an intra-annual time series for grassland classification — how many acquisitions and what seasonal origin are optimal? publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 210 start-page: 35 year: 2018 end-page: 47 ident: bib2 article-title: A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach publication-title: Remote Sensing of Environment – volume: 55 start-page: 539 year: 2018 end-page: 567 ident: bib27 article-title: Regional-scale monitoring of cropland intensity and productivity with multi-source satellite image time series publication-title: Giscience & Remote Sensing – volume: 78 start-page: 799 year: 2012 end-page: 813 ident: bib47 article-title: Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California's Central Valley publication-title: Photogrammetric Engineering and Remote Sensing – volume: 6 year: 2018 ident: bib12 article-title: Early-season crop mapping using improved artificial immune network (IAIN) and Sentinel data publication-title: PeerJ – volume: 6 start-page: 7610 year: 2014 end-page: 7631 ident: bib13 article-title: The potential of time series merged from landsat-5 TM and HJ-1 CCD for crop classification: A case study for Bole and Manas counties in Xinjiang, China publication-title: Remote Sensing – volume: 117 start-page: 102 year: 2012 end-page: 113 ident: bib21 article-title: Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data publication-title: Remote Sensing of Environment – volume: 27 start-page: 373 year: 2012 end-page: 393 ident: bib20 article-title: Fusion of feature selection and optimized immune networks for hyperspectral image classification of urban landscapes publication-title: Geocarto International – volume: 195 start-page: 244 year: 2017 end-page: 258 ident: bib34 article-title: Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model publication-title: Remote Sensing of Environment – volume: 9 start-page: 838 year: 2017 ident: bib35 article-title: Evaluating Sentinel-2 and Landsat-8 data to map sucessional forest stages in a subtropical forest in southern Brazil publication-title: Remote Sensing – volume: 37 start-page: 35 year: 1991 end-page: 46 ident: bib5 article-title: A review of assessing the accuracy of classifications of remotely sensed data publication-title: Remote Sensing of Environment – volume: 9 year: 2017 ident: bib44 article-title: Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine publication-title: Remote Sensing – volume: 9 start-page: 1 year: 2017 end-page: 18 ident: bib43 article-title: Factors influencing farmer willingness to fallow winter wheat and ecological compensation standards in a groundwater funnel area in Hengshui, Hebei Province, China publication-title: Sustainability – volume: 8 start-page: 883 year: 2016 ident: bib18 article-title: Sentinel-2A MSI and landsat 8 OLI provide data continuity for geological remote sensing publication-title: Remote Sensing – volume: 108 start-page: 290 year: 2007 end-page: 310 ident: bib41 article-title: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains publication-title: Remote Sensing of Environment – start-page: 1 year: 1974 end-page: 137 ident: bib32 article-title: Monitoring the Vernal Advancements and Retrogradation of Natural Vegetation – volume: 6 year: 2018 ident: bib16 article-title: Estimation of different data compositions for early-season crop type classification publication-title: PeerJ – volume: 31 start-page: 805 year: 2010 end-page: 830 ident: bib40 article-title: A comparison of MODIS 250-m EVI and NDVI data for crop mapping: A case study for southwest Kansas publication-title: International Journal of Remote Sensing – volume: 11 year: 2019 ident: bib10 article-title: New workflow of plastic-mulched farmland mapping using multi-temporal Sentinel-2 data publication-title: Remote Sensing – volume: 83 start-page: 195 year: 2002 end-page: 213 ident: bib19 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sensing of Environment – year: 2015 ident: bib9 article-title: Google earth engine. [2019-03-15] – volume: 6 start-page: 521 year: 2013 end-page: 533 ident: bib45 article-title: FROM-GC: 30-m global cropland extent derived through multisource data integration publication-title: International Journal of Digital Earth – volume: 74 start-page: 2329 year: 2015 end-page: 2340 ident: bib26 article-title: Occurrence and formation of high fluoride groundwater in the Hengshui area of the North China Plain publication-title: Environmental Earth Sciences – volume: 49 start-page: 1061 year: 2016 end-page: 1077 ident: bib15 article-title: Crop classification using crop knowledge of the previous year: Case study in Southwest Kansas, USA publication-title: European Journal of Remote Sensing – volume: 7 start-page: 5347 year: 2015 end-page: 5369 ident: bib17 article-title: Feature selection of time series MODIS data for early crop classification using random forest: A case study in Kansas, USA publication-title: Remote Sensing – volume: 50 start-page: 894 year: 2012 end-page: 909 ident: bib49 article-title: An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 5 start-page: 67 year: 2016 ident: bib14 article-title: Using moderate-resolution temporal NDVI profiles for high-resolution crop mapping in years of absent ground reference data: A case study of Bole and Manas counties in Xinjiang, China publication-title: ISPRS International Journal of Geo-Information – volume: 221 start-page: 430 year: 2019 end-page: 443 ident: bib46 article-title: Deep learning based multi-temporal crop classification publication-title: Remote Sensing of Environment – volume: 19 start-page: 1885 year: 2020 end-page: 1896 ident: bib28 article-title: Mapping the fallowed area of paddy fields on Sanjiang Plain of Northeast China to assist water security assessments publication-title: Journal of Integrative Agriculture – volume: 103 start-page: 104 year: 2014 end-page: 113 ident: bib36 article-title: Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV publication-title: Computers and Electronics in Agriculture – volume: 140 start-page: 1 year: 2014 end-page: 13 ident: bib48 article-title: Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery publication-title: Remote Sensing of Environment – volume: 9 start-page: 902 year: 2017 ident: bib25 article-title: A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring publication-title: Remote Sensing – volume: 112 start-page: 1096 year: 2008 end-page: 1116 ident: bib39 article-title: Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains publication-title: Remote Sensing of Environment – volume: 195 start-page: 244 year: 2017 ident: 10.1016/S2095-3119(19)62812-1_bib34 article-title: Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2017.04.026 – volume: 9 start-page: 1 year: 2017 ident: 10.1016/S2095-3119(19)62812-1_bib43 article-title: Factors influencing farmer willingness to fallow winter wheat and ecological compensation standards in a groundwater funnel area in Hengshui, Hebei Province, China publication-title: Sustainability doi: 10.3390/su9050839 – volume: 8 start-page: 883 year: 2016 ident: 10.1016/S2095-3119(19)62812-1_bib18 article-title: Sentinel-2A MSI and landsat 8 OLI provide data continuity for geological remote sensing publication-title: Remote Sensing doi: 10.3390/rs8110883 – start-page: 1 year: 1974 ident: 10.1016/S2095-3119(19)62812-1_bib32 – volume: 39 start-page: 3679 year: 2018 ident: 10.1016/S2095-3119(19)62812-1_bib29 article-title: Mountain agriculture extraction from time-series MODIS NDVI using dynamic time warping technique publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2018.1444289 – volume: 50 start-page: 894 year: 2012 ident: 10.1016/S2095-3119(19)62812-1_bib49 article-title: An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2011.2162589 – volume: 9 year: 2017 ident: 10.1016/S2095-3119(19)62812-1_bib44 article-title: Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine publication-title: Remote Sensing doi: 10.3390/rs9101065 – volume: 6 year: 2018 ident: 10.1016/S2095-3119(19)62812-1_bib12 article-title: Early-season crop mapping using improved artificial immune network (IAIN) and Sentinel data publication-title: PeerJ doi: 10.7717/peerj.5431 – volume: 9 start-page: 838 year: 2017 ident: 10.1016/S2095-3119(19)62812-1_bib35 article-title: Evaluating Sentinel-2 and Landsat-8 data to map sucessional forest stages in a subtropical forest in southern Brazil publication-title: Remote Sensing doi: 10.3390/rs9080838 – volume: 65 start-page: 380 year: 2010 ident: 10.1016/S2095-3119(19)62812-1_bib31 article-title: Early-season crop area estimates for winter crops in NE Australia using MODIS satellite imagery publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2010.04.004 – volume: 6 start-page: 7610 year: 2014 ident: 10.1016/S2095-3119(19)62812-1_bib13 article-title: The potential of time series merged from landsat-5 TM and HJ-1 CCD for crop classification: A case study for Bole and Manas counties in Xinjiang, China publication-title: Remote Sensing doi: 10.3390/rs6087610 – ident: 10.1016/S2095-3119(19)62812-1_bib30 – volume: 5 start-page: 67 year: 2016 ident: 10.1016/S2095-3119(19)62812-1_bib14 article-title: Using moderate-resolution temporal NDVI profiles for high-resolution crop mapping in years of absent ground reference data: A case study of Bole and Manas counties in Xinjiang, China publication-title: ISPRS International Journal of Geo-Information doi: 10.3390/ijgi5050067 – volume: 7 start-page: 5347 year: 2015 ident: 10.1016/S2095-3119(19)62812-1_bib17 article-title: Feature selection of time series MODIS data for early crop classification using random forest: A case study in Kansas, USA publication-title: Remote Sensing doi: 10.3390/rs70505347 – volume: 222 start-page: 303 year: 2019 ident: 10.1016/S2095-3119(19)62812-1_bib38 article-title: Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2018.12.026 – volume: 6 start-page: 6472 year: 2014 ident: 10.1016/S2095-3119(19)62812-1_bib8 article-title: Integration of optical and synthetic aperture radar imagery for improving crop mapping in northwestern Benin, West Africa publication-title: Remote Sensing doi: 10.3390/rs6076472 – volume: 19 start-page: 1885 year: 2020 ident: 10.1016/S2095-3119(19)62812-1_bib28 article-title: Mapping the fallowed area of paddy fields on Sanjiang Plain of Northeast China to assist water security assessments publication-title: Journal of Integrative Agriculture doi: 10.1016/S2095-3119(19)62871-6 – volume: 210 start-page: 35 year: 2018 ident: 10.1016/S2095-3119(19)62812-1_bib2 article-title: A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2018.02.045 – volume: 117 start-page: 102 year: 2012 ident: 10.1016/S2095-3119(19)62812-1_bib21 article-title: Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.06.024 – volume: 185 start-page: 142 year: 2016 ident: 10.1016/S2095-3119(19)62812-1_bib6 article-title: Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2016.02.016 – volume: 221 start-page: 430 year: 2019 ident: 10.1016/S2095-3119(19)62812-1_bib46 article-title: Deep learning based multi-temporal crop classification publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2018.11.032 – volume: 10 year: 2018 ident: 10.1016/S2095-3119(19)62812-1_bib11 article-title: Annual cropland mapping using reference landsat time series — a case study in Central Asia publication-title: Remote Sensing doi: 10.3390/rs10122057 – volume: 55 start-page: 539 year: 2018 ident: 10.1016/S2095-3119(19)62812-1_bib27 article-title: Regional-scale monitoring of cropland intensity and productivity with multi-source satellite image time series publication-title: Giscience & Remote Sensing doi: 10.1080/15481603.2017.1414010 – ident: 10.1016/S2095-3119(19)62812-1_bib7 – volume: 27 start-page: 373 year: 2012 ident: 10.1016/S2095-3119(19)62812-1_bib20 article-title: Fusion of feature selection and optimized immune networks for hyperspectral image classification of urban landscapes publication-title: Geocarto International doi: 10.1080/10106049.2011.642898 – volume: 25 start-page: 4091 year: 2004 ident: 10.1016/S2095-3119(19)62812-1_bib42 article-title: Efficiency and accuracy of per-field classification for operational crop mapping publication-title: International Journal of Remote Sensing doi: 10.1080/01431160310001619580 – volume: 31 start-page: 805 year: 2010 ident: 10.1016/S2095-3119(19)62812-1_bib40 article-title: A comparison of MODIS 250-m EVI and NDVI data for crop mapping: A case study for southwest Kansas publication-title: International Journal of Remote Sensing doi: 10.1080/01431160902897858 – volume: 10 start-page: 5258 year: 2017 ident: 10.1016/S2095-3119(19)62812-1_bib4 article-title: Fractal-based pattern extraction from time-series NDVI data for feature identification publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2017.2748989 – volume: 140 start-page: 1 year: 2014 ident: 10.1016/S2095-3119(19)62812-1_bib48 article-title: Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2013.08.023 – volume: 9 start-page: 132 year: 2017 ident: 10.1016/S2095-3119(19)62812-1_bib22 article-title: Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: The role of population growth and implications for the environment publication-title: Remote Sensing doi: 10.3390/rs9020132 – ident: 10.1016/S2095-3119(19)62812-1_bib9 – volume: 78 start-page: 799 year: 2012 ident: 10.1016/S2095-3119(19)62812-1_bib47 article-title: Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California's Central Valley publication-title: Photogrammetric Engineering and Remote Sensing doi: 10.14358/PERS.78.8.799 – volume: 42 start-page: 128 year: 2015 ident: 10.1016/S2095-3119(19)62812-1_bib37 article-title: Early-season mapping of crops and cultural operations using very high spatial resolution Pléiades images publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2015.06.003 – volume: 9 start-page: 47 year: 2016 ident: 10.1016/S2095-3119(19)62812-1_bib3 article-title: A hybrid course recommendation system by integrating collaborative filtering and artificial immune systems publication-title: Algorithms doi: 10.3390/a9030047 – volume: 108 start-page: 290 year: 2007 ident: 10.1016/S2095-3119(19)62812-1_bib41 article-title: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.11.021 – volume: 112 start-page: 1096 year: 2008 ident: 10.1016/S2095-3119(19)62812-1_bib39 article-title: Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.07.019 – volume: 84 start-page: 114 year: 2013 ident: 10.1016/S2095-3119(19)62812-1_bib50 article-title: A data mining approach for evaluation of optimal time-series of MODIS data for land cover mapping at a regional level publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2013.07.008 – volume: 6 start-page: 521 year: 2013 ident: 10.1016/S2095-3119(19)62812-1_bib45 article-title: FROM-GC: 30-m global cropland extent derived through multisource data integration publication-title: International Journal of Digital Earth doi: 10.1080/17538947.2013.822574 – volume: 103 start-page: 104 year: 2014 ident: 10.1016/S2095-3119(19)62812-1_bib36 article-title: Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2014.02.009 – volume: 7 start-page: 3428 year: 2014 ident: 10.1016/S2095-3119(19)62812-1_bib33 article-title: Evaluating an intra-annual time series for grassland classification — how many acquisitions and what seasonal origin are optimal? publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2014.2347203 – volume: 37 start-page: 35 year: 1991 ident: 10.1016/S2095-3119(19)62812-1_bib5 article-title: A review of assessing the accuracy of classifications of remotely sensed data publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(91)90048-B – volume: 74 start-page: 2329 year: 2015 ident: 10.1016/S2095-3119(19)62812-1_bib26 article-title: Occurrence and formation of high fluoride groundwater in the Hengshui area of the North China Plain publication-title: Environmental Earth Sciences doi: 10.1007/s12665-015-4225-x – volume: 83 start-page: 195 year: 2002 ident: 10.1016/S2095-3119(19)62812-1_bib19 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(02)00096-2 – volume: 11 year: 2019 ident: 10.1016/S2095-3119(19)62812-1_bib10 article-title: New workflow of plastic-mulched farmland mapping using multi-temporal Sentinel-2 data publication-title: Remote Sensing doi: 10.3390/rs11111353 – volume: 49 start-page: 1061 year: 2016 ident: 10.1016/S2095-3119(19)62812-1_bib15 article-title: Crop classification using crop knowledge of the previous year: Case study in Southwest Kansas, USA publication-title: European Journal of Remote Sensing doi: 10.5721/EuJRS20164954 – volume: 6 year: 2018 ident: 10.1016/S2095-3119(19)62812-1_bib16 article-title: Estimation of different data compositions for early-season crop type classification publication-title: PeerJ doi: 10.7717/peerj.4834 – volume: 195 start-page: 259 year: 2017 ident: 10.1016/S2095-3119(19)62812-1_bib23 article-title: Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2017.03.021 – volume: 115 start-page: 3129 year: 2011 ident: 10.1016/S2095-3119(19)62812-1_bib24 article-title: A comparison of time series similarity measures for classification and change detection of ecosystem dynamics publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.06.020 – volume: 9 start-page: 902 year: 2017 ident: 10.1016/S2095-3119(19)62812-1_bib25 article-title: A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring publication-title: Remote Sensing doi: 10.3390/rs9090902 – volume: 33 start-page: 1318 year: 1995 ident: 10.1016/S2095-3119(19)62812-1_bib1 article-title: An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.477187 |
SSID | ssj0001550068 |
Score | 2.3672395 |
Snippet | Early-season crop type mapping could provide important information for crop growth monitoring and yield prediction, but the lack of ground-surveyed training... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1897 |
SubjectTerms | agriculture China cotton crop classification data collection early season harvest date Hengshui Landsat reference time series Sentinel-2 time series analysis winter wheat yield forecasting Zea mays |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYiTvSACrQqLSBX6oEeTNbrWa_3hAAVRUjl0kbiZvkxG0WCDQrh2t-Ox9kEpZdISHsa7cyuxuOZ8WO-YewHhjaoCFp4lChAA6Y5ZyrRQN3WRjntHO13_L7TozHc3lf3A3a9qoWha5W971_69Oyte8qw1-bwaTod_ikJKo3wyRpdpjCVK9ihJis__yff9llSCl7kijh6XxDDWyHPUkgmnsnmZ5Yj5EaIykj-G5HqP5-dA9HNR7bXZ5D8cvmT-2yA3QH7cDmZ9ygaeMguMmyxoP2_WcepSRenrVb-6AiNYcLpsvuEq0I88nWbEU5d5jkZJD5_YuObX3-vR6LvlCACVNVChNZTvU1EbJU3KIPCWMgYIEJaPkRVBokmLbTaqlEuJXCJGEKFWlK49oDqM9vpZh1-YbxssNVYOx9DSq7QG2c0Fr41AZSJtTxisFKODT2MOHWzeLDr-2KkU0s6tenJOrWJ7XzN9rTE0djGcEWaX79MMNiZMJtPbG8Hlg5ZQcVG140DcEjogaUH5QBl44r2iJnVuNkNq0qiptu-_301zjbNODpGcR3OXp5tWoQRdoOs9df3i__GdktaueeLv8dsZzF_wZOU3iz8abbfV70f7_o priority: 102 providerName: Elsevier |
Title | Early-season crop type mapping using 30-m reference time series |
URI | https://dx.doi.org/10.1016/S2095-3119(19)62812-1 https://www.proquest.com/docview/2551999176 https://doaj.org/article/389143d9679a44ae86792b43a4e19a0f |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUKvcChKoWqW2BlJA70YFjHjuOcqi0CLUVwoUjcLH9MVkglW8Fy5bczk2QD9LIXpJysOLHGY88be-YNY_sQq6iSNiKABKGNBlxzNhelLqrCKm-8p_OOi0szuda_b_KbV6W-KCaspQduBXdE92hapdIUpdfaAxHEZUErr0GWflTR7os275Uz1eYH55T8QJXlEEPgRiPLl_Sdo6u-8UCWP0yGRk7IN4ap4e9_Y5_-26kb83P6mX3qcCMft-PdYB-g_sLWx9P7jjsDNtnPhqxY0KnfrOZUmovTASu_88TBMOUU4j7laiTueF9chFNteU5qCA9b7Pr05M_xRHT1EUTUeT4XsQqUZZMAKhUsyKggjWSKOml0GpLKogSL7lWVl8ojbMPGGHMwkox00KC-stV6VsM3xrMSKgOFDykipIJgvTUwCpWNWtlUyAHTC-G42JGHUw2Lv66PEiOZOpKpw6eRqcNuh323fy17xrIOv0jy_ctEft00oEq4TiXcMpUYMLuYN9fhiBYf4Kdul_1_bzHPDtcZXZ74GmaPDw5dL2JskIX5_h5j3GZrGXnuTeDvDlud3z_CLsKbeRiylcMnOWQfx2fnk8tho9fPfFPxhQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHVF7qg4KRQIKDm_Xa6_UeKlQeVUofF1qpN-PHbBSJbqokFeLCn-IP1uM4qcKlElKlPY3W3tHY8_Ds-BtC3oJvvQhSMQccmFQSos7pijWybmstrLIW8x3HJ6p_Jr-dV-cr5O_8LgyWVWbbP7PpyVpnSi9Ls3c5HPa-lwiVhvhkjSqjm-K5svIQfv-K57bJ7sGXuMjvynL_6-nnPsutBZiXVTVlvnV4QSUAtMJp4F5AKHjwMsgYbwdReg46nkzaqhE2RjyR6H0FiqN_cxJEnPceuS-jucC2CTt_-E1iJ8b8RbqChwwy5PDm5tCM60R8z5sPiXHGl3xiah2w5Br_cRLJ8-2vkcc5ZKV7M6k8ISvQPSWP9gbjDNsBz8jHhJPMMOE46ih2BaOY26UXFuEfBhSr6wdUFOyCLvqaUGxrT1EDYPKcnN2J_F6Q1W7UwTqhZQOtgtq64GM0B05braBwrfZS6FDzDSLnwjE-45Zj-4yfZlGghjI1KFMTnyRTE4ftLIZdzoA7bhvwCSW_eBlxtxNhNB6YvPEM_tWVIjSqbqyUFhCusHRSWAm8sUW7QfR83czSNo5TDW_7_pv5Opuo4vjfxnYwupqYeOpDsAheq83_n_41edA_PT4yRwcnh1vkYYlpg1R1_JKsTsdXsB1jq6l7lfYyJT_uWnmuAa4WLW8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early-season+crop+type+mapping+using+30-m+reference+time+series&rft.jtitle=Journal+of+Integrative+Agriculture&rft.au=Peng-yu+HAO&rft.au=Hua-jun+TANG&rft.au=Zhong-xin+CHEN&rft.au=Qing-yan+MENG&rft.date=2020-07-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.issn=2095-3119&rft.volume=19&rft.issue=7&rft.spage=1897&rft.epage=1911&rft_id=info:doi/10.1016%2FS2095-3119%2819%2962812-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_389143d9679a44ae86792b43a4e19a0f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-3119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-3119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-3119&client=summon |