Early-season crop type mapping using 30-m reference time series

Early-season crop type mapping could provide important information for crop growth monitoring and yield prediction, but the lack of ground-surveyed training samples is the main challenge for crop type identification. Although reference time series based method (RBM) has been proposed to identify cro...

Full description

Saved in:
Bibliographic Details
Published inJournal of Integrative Agriculture Vol. 19; no. 7; pp. 1897 - 1911
Main Authors HAO, Peng-yu, TANG, Hua-jun, CHEN, Zhong-xin, MENG, Qing-yan, KANG, Yu-peng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2020
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Early-season crop type mapping could provide important information for crop growth monitoring and yield prediction, but the lack of ground-surveyed training samples is the main challenge for crop type identification. Although reference time series based method (RBM) has been proposed to identify crop types without the use of ground-surveyed training samples, the methods are not suitable for study regions with small field size because the reference time series are mainly generated using data set with low spatial resolution. As the combination of Landsat data and Sentinel-2 data could increase the temporal resolution of 30-m image time series, we improved the RBM by generating reference normalized difference vegetation index (NDVI)/enhanced vegetation index (EVI) time series at 30-m resolution (30-m RBM) using both Landsat and Sentinel-2 data, then tried to estimate the potential of the reference NDVI/EVI time series for crop identification at early season. As a test case, we tried to use the 30-m RBM to identify major crop types in Hengshui, China at early season of 2018, the results showed that when the time series of the entire growing season were used for classification, overall classification accuracies of the 30-m RBM were higher than 95%, which were similar to the accuracies acquired using the ground-surveyed training samples. In addition, cotton, spring maize and summer maize distribution could be accurately generated 8, 6 and 8 weeks before their harvest using the 30-m RBM; but winter wheat can only be accurately identified around the harvest time phase. Finally, NDVI outperformed EVI for crop type classification as NDVI had better separability for distinguishing crops at the green-up time phases. Comparing with the previous RBM, advantage of 30-m RBM is that the method could use the samples of the small fields to generate reference time series and process image time series with missing value for early-season crop classification; while, samples collected from multiple years should be further used so that the reference time series could contain more crop growth conditions.
AbstractList Early-season crop type mapping could provide important information for crop growth monitoring and yield prediction, but the lack of ground-surveyed training samples is the main challenge for crop type identification. Although reference time series based method (RBM) has been proposed to identify crop types without the use of ground-surveyed training samples, the methods are not suitable for study regions with small field size because the reference time series are mainly generated using data set with low spatial resolution. As the combination of Landsat data and Sentinel-2 data could increase the temporal resolution of 30-m image time series, we improved the RBM by generating reference normalized difference vegetation index (NDVI)/enhanced vegetation index (EVI) time series at 30-m resolution (30-m RBM) using both Landsat and Sentinel-2 data, then tried to estimate the potential of the reference NDVI/EVI time series for crop identification at early season. As a test case, we tried to use the 30-m RBM to identify major crop types in Hengshui, China at early season of 2018, the results showed that when the time series of the entire growing season were used for classification, overall classification accuracies of the 30-m RBM were higher than 95%, which were similar to the accuracies acquired using the ground-surveyed training samples. In addition, cotton, spring maize and summer maize distribution could be accurately generated 8, 6 and 8 weeks before their harvest using the 30-m RBM; but winter wheat can only be accurately identified around the harvest time phase. Finally, NDVI outperformed EVI for crop type classification as NDVI had better separability for distinguishing crops at the green-up time phases. Comparing with the previous RBM, advantage of 30-m RBM is that the method could use the samples of the small fields to generate reference time series and process image time series with missing value for early-season crop classification; while, samples collected from multiple years should be further used so that the reference time series could contain more crop growth conditions.
Author MENG, Qing-yan
TANG, Hua-jun
HAO, Peng-yu
CHEN, Zhong-xin
KANG, Yu-peng
Author_xml – sequence: 1
  givenname: Peng-yu
  surname: HAO
  fullname: HAO, Peng-yu
  email: haopy8296@163.com
  organization: Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
– sequence: 2
  givenname: Hua-jun
  surname: TANG
  fullname: TANG, Hua-jun
  email: tanghuajun@caas.cn
  organization: Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
– sequence: 3
  givenname: Zhong-xin
  surname: CHEN
  fullname: CHEN, Zhong-xin
  organization: Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
– sequence: 4
  givenname: Qing-yan
  surname: MENG
  fullname: MENG, Qing-yan
  organization: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, P.R. China
– sequence: 5
  givenname: Yu-peng
  surname: KANG
  fullname: KANG, Yu-peng
  organization: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, P.R. China
BookMark eNqFUU1rGzEQFSGFuG5-QmCP6WFbjb4skYMpIW0DgR6anIWsnQ0Ku6uNJBf87yPbyaUXw6AZhvceo_c-k_MpTkjIFdBvQEF9_8uokS0HMNdgviqmgbVwRhaMS9ZyweR5nT8gF-Qy5xdKKUhJqdILsr5zadi1GV2OU-NTnJuym7EZ3TyH6bnZ5v3LaTs2CXtMOHlsShixyZgC5i_kU--GjJfvfUmeft493v5uH_78ur_98dB6IWVpfb-hakU7xJ5vNILn2FHovOiEZqrjzANqJkwvDXdSqbr0XqICDVpuBPIluT_qdtG92DmF0aWdjS7YwyKmZ-tSCX5Ay7UBwTujVsYJ4VDXgW0EdwLBONpXreuj1pzi6xZzsWPIHofBTRi32TIpwRgDK1WhN0dodSbn6oD1obgS4lSSC4MFavcp2EMKdm-xrXVIwUJly__YH4ef4q2PPKyO_guYbPZh73wXEvpSvxxOKLwB15-e0w
CitedBy_id crossref_primary_10_3390_rs15041112
crossref_primary_10_1109_JSTARS_2025_3525552
crossref_primary_10_7256_2453_8809_2023_2_44147
crossref_primary_10_3390_rs15041130
crossref_primary_10_3390_rs14215625
crossref_primary_10_3390_rs14040893
crossref_primary_10_34133_remotesensing_0438
crossref_primary_10_15622_ia_21_2_7
crossref_primary_10_3390_rs13040561
crossref_primary_10_3390_rs15133285
crossref_primary_10_3390_agronomy14010146
crossref_primary_10_1016_j_compag_2023_108268
crossref_primary_10_3390_rs14040829
crossref_primary_10_1016_j_compag_2024_109239
crossref_primary_10_1016_j_jag_2022_103178
crossref_primary_10_1016_j_compag_2023_107927
crossref_primary_10_1016_j_jag_2022_102702
crossref_primary_10_3390_rs14081800
crossref_primary_10_1016_S2095_3119_19_62871_6
crossref_primary_10_3390_rs16142532
crossref_primary_10_3390_s22155683
crossref_primary_10_3390_rs13234819
crossref_primary_10_1080_15481603_2024_2367807
crossref_primary_10_3390_rs16132431
crossref_primary_10_15622_ia_22_6_8
crossref_primary_10_3390_rs13173488
crossref_primary_10_1016_j_isprsjprs_2021_04_015
crossref_primary_10_1016_S2095_3119_20_63329_9
crossref_primary_10_1109_JSTARS_2022_3215589
crossref_primary_10_1016_j_agwat_2021_107249
crossref_primary_10_1038_s41597_023_02047_9
Cites_doi 10.1016/j.rse.2017.04.026
10.3390/su9050839
10.3390/rs8110883
10.1080/01431161.2018.1444289
10.1109/TGRS.2011.2162589
10.3390/rs9101065
10.7717/peerj.5431
10.3390/rs9080838
10.1016/j.isprsjprs.2010.04.004
10.3390/rs6087610
10.3390/ijgi5050067
10.3390/rs70505347
10.1016/j.rse.2018.12.026
10.3390/rs6076472
10.1016/S2095-3119(19)62871-6
10.1016/j.rse.2018.02.045
10.1016/j.rse.2011.06.024
10.1016/j.rse.2016.02.016
10.1016/j.rse.2018.11.032
10.3390/rs10122057
10.1080/15481603.2017.1414010
10.1080/10106049.2011.642898
10.1080/01431160310001619580
10.1080/01431160902897858
10.1109/JSTARS.2017.2748989
10.1016/j.rse.2013.08.023
10.3390/rs9020132
10.14358/PERS.78.8.799
10.1016/j.jag.2015.06.003
10.3390/a9030047
10.1016/j.rse.2006.11.021
10.1016/j.rse.2007.07.019
10.1016/j.isprsjprs.2013.07.008
10.1080/17538947.2013.822574
10.1016/j.compag.2014.02.009
10.1109/JSTARS.2014.2347203
10.1016/0034-4257(91)90048-B
10.1007/s12665-015-4225-x
10.1016/S0034-4257(02)00096-2
10.3390/rs11111353
10.5721/EuJRS20164954
10.7717/peerj.4834
10.1016/j.rse.2017.03.021
10.1016/j.rse.2011.06.020
10.3390/rs9090902
10.1109/36.477187
ContentType Journal Article
Copyright 2020 CAAS. Publishing services by Elsevier B.V
Copyright_xml – notice: 2020 CAAS. Publishing services by Elsevier B.V
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/S2095-3119(19)62812-1
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2352-3425
EndPage 1911
ExternalDocumentID oai_doaj_org_article_389143d9679a44ae86792b43a4e19a0f
10_1016_S2095_3119_19_62812_1
S2095311919628121
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --M
-04
-0D
-SD
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2B~
4.4
457
4G.
5VR
6I.
7-5
8P~
92G
92I
92M
93N
93Q
9D9
9DD
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFUIB
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CAJED
CAJUS
CBWCG
CCEZO
CHDYS
EBS
EFJIC
EFLBG
EJD
FA0
FDB
FIRID
FNPLU
FYGXN
GBLVA
GROUPED_DOAJ
HZ~
JUIAU
KOM
M41
MO0
NCXOZ
O-L
O9-
OAUVE
OK1
P-8
P-9
PC.
Q--
Q-3
Q38
R-D
RIG
ROL
RT4
SDF
SDG
SES
SSA
SSZ
T5K
T8T
TCJ
TGD
U1F
U1G
U5D
U5N
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c455t-cfb0670deef3b8e1c3ed01dc4d4826d32c1e8249f593a566826cc5e618185b4e3
IEDL.DBID DOA
ISSN 2095-3119
IngestDate Wed Aug 27 01:28:18 EDT 2025
Thu Jul 10 23:27:52 EDT 2025
Thu Apr 24 23:00:19 EDT 2025
Tue Jul 01 03:31:18 EDT 2025
Fri Feb 23 02:47:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords early season
crop classification
reference time series
Landsat
Sentinel-2
Hengshui
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-cfb0670deef3b8e1c3ed01dc4d4826d32c1e8249f593a566826cc5e618185b4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/389143d9679a44ae86792b43a4e19a0f
PQID 2551999176
PQPubID 24069
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_389143d9679a44ae86792b43a4e19a0f
proquest_miscellaneous_2551999176
crossref_citationtrail_10_1016_S2095_3119_19_62812_1
crossref_primary_10_1016_S2095_3119_19_62812_1
elsevier_sciencedirect_doi_10_1016_S2095_3119_19_62812_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationTitle Journal of Integrative Agriculture
PublicationYear 2020
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Skakun, Franch, Vermote, Roger, Becker-Reshef, Justice, Kussul (bib34) 2017; 195
Zhong, Gong, Biging (bib48) 2014; 140
Yu, Wang, Clinton, Xin, Zhong, Chen, Gong (bib45) 2013; 6
Schmidt, Schuster, Kleinschmit, Foerster (bib33) 2014; 7
De Wit, Clevers (bib42) 2004; 25
Rouse, Haas, Schell, Deering, Harlan (bib32) 1974
Chang, Lin, Chen (bib3) 2016; 9
Hao, Tang, Chen, Liu (bib12) 2018; 6
Lhermitte, Verbesselt, Verstraeten, Coppin (bib24) 2011; 115
Knauer, Gessner, Fensholt, Forkuor, Kuenzer (bib22) 2017; 9
Dong, Xiao, Menarguez, Zhang, Qin, Thau, Biradar, Moore (bib6) 2016; 185
Chockalingam, Mondal (bib4) 2017; 10
Xiong, Thenkabail, Tilton, Gumma, Teluguntla, Oliphant, Congalton, Yadav, Gorelick (bib44) 2017; 9
Hao, Löw, Biradar (bib11) 2018; 10
Potgieter, Apan, Hammer, Dunn (bib31) 2010; 65
Mondal, Jeganathan (bib29) 2018; 39
Google (bib9) 2015
Zhong, Gong, Biging (bib47) 2012; 78
Zhong, Zhang (bib49) 2012; 50
Sothe, de Almeida, Liesenberg, Schimalski (bib35) 2017; 9
Hao, Wang, Zhan, Wang, Niu, Wu (bib15) 2016; 49
Zhong, Hu, Zhou (bib46) 2019; 221
Wardlow, Egbert (bib39) 2008; 112
Li, Roy (bib25) 2017; 9
NASA (National Aeronautics and Space Administration) (bib30) 2017
Hao, Wang, Zhan, Niu (bib14) 2016; 5
Im, Lu, Rhee, Quackenbush (bib21) 2012; 117
Cai, Guan, Peng, Wang, Seifert, Wardlow, Li (bib2) 2018; 210
Forkuor, Conrad, Thiel, Ullmann, Zoungrana (bib8) 2014; 6
Bruzzone, Roli, Serpico (bib1) 1995; 33
Hao, Wu, Niu, Wang, Zhan (bib16) 2018; 6
Liu, Guo, Yang, Wu, Li, Li, Ni, Liang (bib26) 2015; 74
Löw, Biradar, Dubovyk, Fliemann, Akramkhanov, Vallejo, Waldner (bib27) 2018; 55
Luo, Liu, Fu, Guan, Ye, Zhang, Kong (bib28) 2020; 19
Wang, Azzari, Lobell (bib38) 2019; 222
Zhou, Zhang, Townley-Smith (bib50) 2013; 84
Congalton (bib5) 1991; 37
Torres-Sanchez, Pena, de Castro, Lopez-Granados (bib36) 2014; 103
Harald, Freek (bib18) 2016; 8
Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bib19) 2002; 83
Wardlow, Egbert, Kastens (bib41) 2007; 108
Im, Lu, Rhee, Jensen (bib20) 2012; 27
Hao, Wang, Niu, Aablikim, Huang, Xu, Chen (bib13) 2014; 6
ESA (European Space Agency) (bib7) 2016
Hao, Zhan, Wang, Niu, Shakir (bib17) 2015; 7
Vaudour, Noirot-Cosson, Membrive (bib37) 2015; 42
Wardlow, Egbert (bib40) 2010; 31
Hao, Chen, Tang, Li, Li (bib10) 2019; 11
Korhonen, Hadi, Packalen, Rautiainen (bib23) 2017; 195
Xie, Cheng, Lv (bib43) 2017; 9
Zhong (10.1016/S2095-3119(19)62812-1_bib49) 2012; 50
Lhermitte (10.1016/S2095-3119(19)62812-1_bib24) 2011; 115
Rouse (10.1016/S2095-3119(19)62812-1_bib32) 1974
Knauer (10.1016/S2095-3119(19)62812-1_bib22) 2017; 9
Zhong (10.1016/S2095-3119(19)62812-1_bib47) 2012; 78
Forkuor (10.1016/S2095-3119(19)62812-1_bib8) 2014; 6
Yu (10.1016/S2095-3119(19)62812-1_bib45) 2013; 6
Chang (10.1016/S2095-3119(19)62812-1_bib3) 2016; 9
Hao (10.1016/S2095-3119(19)62812-1_bib10) 2019; 11
Wardlow (10.1016/S2095-3119(19)62812-1_bib40) 2010; 31
Harald (10.1016/S2095-3119(19)62812-1_bib18) 2016; 8
Luo (10.1016/S2095-3119(19)62812-1_bib28) 2020; 19
Potgieter (10.1016/S2095-3119(19)62812-1_bib31) 2010; 65
Sothe (10.1016/S2095-3119(19)62812-1_bib35) 2017; 9
ESA (European Space Agency) (10.1016/S2095-3119(19)62812-1_bib7)
Wang (10.1016/S2095-3119(19)62812-1_bib38) 2019; 222
Im (10.1016/S2095-3119(19)62812-1_bib21) 2012; 117
Hao (10.1016/S2095-3119(19)62812-1_bib12) 2018; 6
Hao (10.1016/S2095-3119(19)62812-1_bib17) 2015; 7
Hao (10.1016/S2095-3119(19)62812-1_bib11) 2018; 10
De Wit (10.1016/S2095-3119(19)62812-1_bib42) 2004; 25
Vaudour (10.1016/S2095-3119(19)62812-1_bib37) 2015; 42
Zhou (10.1016/S2095-3119(19)62812-1_bib50) 2013; 84
Skakun (10.1016/S2095-3119(19)62812-1_bib34) 2017; 195
Chockalingam (10.1016/S2095-3119(19)62812-1_bib4) 2017; 10
Schmidt (10.1016/S2095-3119(19)62812-1_bib33) 2014; 7
Löw (10.1016/S2095-3119(19)62812-1_bib27) 2018; 55
Google (10.1016/S2095-3119(19)62812-1_bib9)
Im (10.1016/S2095-3119(19)62812-1_bib20) 2012; 27
Hao (10.1016/S2095-3119(19)62812-1_bib14) 2016; 5
NASA (National Aeronautics and Space Administration) (10.1016/S2095-3119(19)62812-1_bib30)
Hao (10.1016/S2095-3119(19)62812-1_bib13) 2014; 6
Hao (10.1016/S2095-3119(19)62812-1_bib15) 2016; 49
Xie (10.1016/S2095-3119(19)62812-1_bib43) 2017; 9
Congalton (10.1016/S2095-3119(19)62812-1_bib5) 1991; 37
Bruzzone (10.1016/S2095-3119(19)62812-1_bib1) 1995; 33
Hao (10.1016/S2095-3119(19)62812-1_bib16) 2018; 6
Dong (10.1016/S2095-3119(19)62812-1_bib6) 2016; 185
Huete (10.1016/S2095-3119(19)62812-1_bib19) 2002; 83
Torres-Sanchez (10.1016/S2095-3119(19)62812-1_bib36) 2014; 103
Wardlow (10.1016/S2095-3119(19)62812-1_bib41) 2007; 108
Zhong (10.1016/S2095-3119(19)62812-1_bib48) 2014; 140
Mondal (10.1016/S2095-3119(19)62812-1_bib29) 2018; 39
Li (10.1016/S2095-3119(19)62812-1_bib25) 2017; 9
Wardlow (10.1016/S2095-3119(19)62812-1_bib39) 2008; 112
Cai (10.1016/S2095-3119(19)62812-1_bib2) 2018; 210
Xiong (10.1016/S2095-3119(19)62812-1_bib44) 2017; 9
Korhonen (10.1016/S2095-3119(19)62812-1_bib23) 2017; 195
Liu (10.1016/S2095-3119(19)62812-1_bib26) 2015; 74
Zhong (10.1016/S2095-3119(19)62812-1_bib46) 2019; 221
References_xml – volume: 25
  start-page: 4091
  year: 2004
  end-page: 4112
  ident: bib42
  article-title: Efficiency and accuracy of per-field classification for operational crop mapping
  publication-title: International Journal of Remote Sensing
– volume: 195
  start-page: 259
  year: 2017
  end-page: 274
  ident: bib23
  article-title: Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index
  publication-title: Remote Sensing of Environment
– year: 2017
  ident: bib30
  article-title: Harmonized Landsat-8 and Sentinel-2. [2018-11-12]
– volume: 42
  start-page: 128
  year: 2015
  end-page: 141
  ident: bib37
  article-title: Early-season mapping of crops and cultural operations using very high spatial resolution Pléiades images
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 185
  start-page: 142
  year: 2016
  end-page: 154
  ident: bib6
  article-title: Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine
  publication-title: Remote Sensing of Environment
– volume: 115
  start-page: 3129
  year: 2011
  end-page: 3152
  ident: bib24
  article-title: A comparison of time series similarity measures for classification and change detection of ecosystem dynamics
  publication-title: Remote Sensing of Environment
– volume: 33
  start-page: 1318
  year: 1995
  end-page: 1321
  ident: bib1
  article-title: An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 10
  start-page: 5258
  year: 2017
  end-page: 5264
  ident: bib4
  article-title: Fractal-based pattern extraction from time-series NDVI data for feature identification
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– year: 2016
  ident: bib7
  article-title: Sentinel-2 for agriculture. [2019-03-15]
– volume: 84
  start-page: 114
  year: 2013
  end-page: 129
  ident: bib50
  article-title: A data mining approach for evaluation of optimal time-series of MODIS data for land cover mapping at a regional level
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 6
  start-page: 6472
  year: 2014
  end-page: 6499
  ident: bib8
  article-title: Integration of optical and synthetic aperture radar imagery for improving crop mapping in northwestern Benin, West Africa
  publication-title: Remote Sensing
– volume: 222
  start-page: 303
  year: 2019
  end-page: 317
  ident: bib38
  article-title: Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques
  publication-title: Remote Sensing of Environment
– volume: 65
  start-page: 380
  year: 2010
  end-page: 387
  ident: bib31
  article-title: Early-season crop area estimates for winter crops in NE Australia using MODIS satellite imagery
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 10
  year: 2018
  ident: bib11
  article-title: Annual cropland mapping using reference landsat time series — a case study in Central Asia
  publication-title: Remote Sensing
– volume: 9
  start-page: 132
  year: 2017
  ident: bib22
  article-title: Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: The role of population growth and implications for the environment
  publication-title: Remote Sensing
– volume: 9
  start-page: 47
  year: 2016
  ident: bib3
  article-title: A hybrid course recommendation system by integrating collaborative filtering and artificial immune systems
  publication-title: Algorithms
– volume: 39
  start-page: 3679
  year: 2018
  end-page: 3704
  ident: bib29
  article-title: Mountain agriculture extraction from time-series MODIS NDVI using dynamic time warping technique
  publication-title: International Journal of Remote Sensing
– volume: 7
  start-page: 3428
  year: 2014
  end-page: 3439
  ident: bib33
  article-title: Evaluating an intra-annual time series for grassland classification — how many acquisitions and what seasonal origin are optimal?
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 210
  start-page: 35
  year: 2018
  end-page: 47
  ident: bib2
  article-title: A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach
  publication-title: Remote Sensing of Environment
– volume: 55
  start-page: 539
  year: 2018
  end-page: 567
  ident: bib27
  article-title: Regional-scale monitoring of cropland intensity and productivity with multi-source satellite image time series
  publication-title: Giscience & Remote Sensing
– volume: 78
  start-page: 799
  year: 2012
  end-page: 813
  ident: bib47
  article-title: Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California's Central Valley
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume: 6
  year: 2018
  ident: bib12
  article-title: Early-season crop mapping using improved artificial immune network (IAIN) and Sentinel data
  publication-title: PeerJ
– volume: 6
  start-page: 7610
  year: 2014
  end-page: 7631
  ident: bib13
  article-title: The potential of time series merged from landsat-5 TM and HJ-1 CCD for crop classification: A case study for Bole and Manas counties in Xinjiang, China
  publication-title: Remote Sensing
– volume: 117
  start-page: 102
  year: 2012
  end-page: 113
  ident: bib21
  article-title: Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data
  publication-title: Remote Sensing of Environment
– volume: 27
  start-page: 373
  year: 2012
  end-page: 393
  ident: bib20
  article-title: Fusion of feature selection and optimized immune networks for hyperspectral image classification of urban landscapes
  publication-title: Geocarto International
– volume: 195
  start-page: 244
  year: 2017
  end-page: 258
  ident: bib34
  article-title: Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model
  publication-title: Remote Sensing of Environment
– volume: 9
  start-page: 838
  year: 2017
  ident: bib35
  article-title: Evaluating Sentinel-2 and Landsat-8 data to map sucessional forest stages in a subtropical forest in southern Brazil
  publication-title: Remote Sensing
– volume: 37
  start-page: 35
  year: 1991
  end-page: 46
  ident: bib5
  article-title: A review of assessing the accuracy of classifications of remotely sensed data
  publication-title: Remote Sensing of Environment
– volume: 9
  year: 2017
  ident: bib44
  article-title: Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine
  publication-title: Remote Sensing
– volume: 9
  start-page: 1
  year: 2017
  end-page: 18
  ident: bib43
  article-title: Factors influencing farmer willingness to fallow winter wheat and ecological compensation standards in a groundwater funnel area in Hengshui, Hebei Province, China
  publication-title: Sustainability
– volume: 8
  start-page: 883
  year: 2016
  ident: bib18
  article-title: Sentinel-2A MSI and landsat 8 OLI provide data continuity for geological remote sensing
  publication-title: Remote Sensing
– volume: 108
  start-page: 290
  year: 2007
  end-page: 310
  ident: bib41
  article-title: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains
  publication-title: Remote Sensing of Environment
– start-page: 1
  year: 1974
  end-page: 137
  ident: bib32
  article-title: Monitoring the Vernal Advancements and Retrogradation of Natural Vegetation
– volume: 6
  year: 2018
  ident: bib16
  article-title: Estimation of different data compositions for early-season crop type classification
  publication-title: PeerJ
– volume: 31
  start-page: 805
  year: 2010
  end-page: 830
  ident: bib40
  article-title: A comparison of MODIS 250-m EVI and NDVI data for crop mapping: A case study for southwest Kansas
  publication-title: International Journal of Remote Sensing
– volume: 11
  year: 2019
  ident: bib10
  article-title: New workflow of plastic-mulched farmland mapping using multi-temporal Sentinel-2 data
  publication-title: Remote Sensing
– volume: 83
  start-page: 195
  year: 2002
  end-page: 213
  ident: bib19
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sensing of Environment
– year: 2015
  ident: bib9
  article-title: Google earth engine. [2019-03-15]
– volume: 6
  start-page: 521
  year: 2013
  end-page: 533
  ident: bib45
  article-title: FROM-GC: 30-m global cropland extent derived through multisource data integration
  publication-title: International Journal of Digital Earth
– volume: 74
  start-page: 2329
  year: 2015
  end-page: 2340
  ident: bib26
  article-title: Occurrence and formation of high fluoride groundwater in the Hengshui area of the North China Plain
  publication-title: Environmental Earth Sciences
– volume: 49
  start-page: 1061
  year: 2016
  end-page: 1077
  ident: bib15
  article-title: Crop classification using crop knowledge of the previous year: Case study in Southwest Kansas, USA
  publication-title: European Journal of Remote Sensing
– volume: 7
  start-page: 5347
  year: 2015
  end-page: 5369
  ident: bib17
  article-title: Feature selection of time series MODIS data for early crop classification using random forest: A case study in Kansas, USA
  publication-title: Remote Sensing
– volume: 50
  start-page: 894
  year: 2012
  end-page: 909
  ident: bib49
  article-title: An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 5
  start-page: 67
  year: 2016
  ident: bib14
  article-title: Using moderate-resolution temporal NDVI profiles for high-resolution crop mapping in years of absent ground reference data: A case study of Bole and Manas counties in Xinjiang, China
  publication-title: ISPRS International Journal of Geo-Information
– volume: 221
  start-page: 430
  year: 2019
  end-page: 443
  ident: bib46
  article-title: Deep learning based multi-temporal crop classification
  publication-title: Remote Sensing of Environment
– volume: 19
  start-page: 1885
  year: 2020
  end-page: 1896
  ident: bib28
  article-title: Mapping the fallowed area of paddy fields on Sanjiang Plain of Northeast China to assist water security assessments
  publication-title: Journal of Integrative Agriculture
– volume: 103
  start-page: 104
  year: 2014
  end-page: 113
  ident: bib36
  article-title: Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV
  publication-title: Computers and Electronics in Agriculture
– volume: 140
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib48
  article-title: Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery
  publication-title: Remote Sensing of Environment
– volume: 9
  start-page: 902
  year: 2017
  ident: bib25
  article-title: A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring
  publication-title: Remote Sensing
– volume: 112
  start-page: 1096
  year: 2008
  end-page: 1116
  ident: bib39
  article-title: Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains
  publication-title: Remote Sensing of Environment
– volume: 195
  start-page: 244
  year: 2017
  ident: 10.1016/S2095-3119(19)62812-1_bib34
  article-title: Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2017.04.026
– volume: 9
  start-page: 1
  year: 2017
  ident: 10.1016/S2095-3119(19)62812-1_bib43
  article-title: Factors influencing farmer willingness to fallow winter wheat and ecological compensation standards in a groundwater funnel area in Hengshui, Hebei Province, China
  publication-title: Sustainability
  doi: 10.3390/su9050839
– volume: 8
  start-page: 883
  year: 2016
  ident: 10.1016/S2095-3119(19)62812-1_bib18
  article-title: Sentinel-2A MSI and landsat 8 OLI provide data continuity for geological remote sensing
  publication-title: Remote Sensing
  doi: 10.3390/rs8110883
– start-page: 1
  year: 1974
  ident: 10.1016/S2095-3119(19)62812-1_bib32
– volume: 39
  start-page: 3679
  year: 2018
  ident: 10.1016/S2095-3119(19)62812-1_bib29
  article-title: Mountain agriculture extraction from time-series MODIS NDVI using dynamic time warping technique
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2018.1444289
– volume: 50
  start-page: 894
  year: 2012
  ident: 10.1016/S2095-3119(19)62812-1_bib49
  article-title: An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2011.2162589
– volume: 9
  year: 2017
  ident: 10.1016/S2095-3119(19)62812-1_bib44
  article-title: Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine
  publication-title: Remote Sensing
  doi: 10.3390/rs9101065
– volume: 6
  year: 2018
  ident: 10.1016/S2095-3119(19)62812-1_bib12
  article-title: Early-season crop mapping using improved artificial immune network (IAIN) and Sentinel data
  publication-title: PeerJ
  doi: 10.7717/peerj.5431
– volume: 9
  start-page: 838
  year: 2017
  ident: 10.1016/S2095-3119(19)62812-1_bib35
  article-title: Evaluating Sentinel-2 and Landsat-8 data to map sucessional forest stages in a subtropical forest in southern Brazil
  publication-title: Remote Sensing
  doi: 10.3390/rs9080838
– volume: 65
  start-page: 380
  year: 2010
  ident: 10.1016/S2095-3119(19)62812-1_bib31
  article-title: Early-season crop area estimates for winter crops in NE Australia using MODIS satellite imagery
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2010.04.004
– volume: 6
  start-page: 7610
  year: 2014
  ident: 10.1016/S2095-3119(19)62812-1_bib13
  article-title: The potential of time series merged from landsat-5 TM and HJ-1 CCD for crop classification: A case study for Bole and Manas counties in Xinjiang, China
  publication-title: Remote Sensing
  doi: 10.3390/rs6087610
– ident: 10.1016/S2095-3119(19)62812-1_bib30
– volume: 5
  start-page: 67
  year: 2016
  ident: 10.1016/S2095-3119(19)62812-1_bib14
  article-title: Using moderate-resolution temporal NDVI profiles for high-resolution crop mapping in years of absent ground reference data: A case study of Bole and Manas counties in Xinjiang, China
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi5050067
– volume: 7
  start-page: 5347
  year: 2015
  ident: 10.1016/S2095-3119(19)62812-1_bib17
  article-title: Feature selection of time series MODIS data for early crop classification using random forest: A case study in Kansas, USA
  publication-title: Remote Sensing
  doi: 10.3390/rs70505347
– volume: 222
  start-page: 303
  year: 2019
  ident: 10.1016/S2095-3119(19)62812-1_bib38
  article-title: Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2018.12.026
– volume: 6
  start-page: 6472
  year: 2014
  ident: 10.1016/S2095-3119(19)62812-1_bib8
  article-title: Integration of optical and synthetic aperture radar imagery for improving crop mapping in northwestern Benin, West Africa
  publication-title: Remote Sensing
  doi: 10.3390/rs6076472
– volume: 19
  start-page: 1885
  year: 2020
  ident: 10.1016/S2095-3119(19)62812-1_bib28
  article-title: Mapping the fallowed area of paddy fields on Sanjiang Plain of Northeast China to assist water security assessments
  publication-title: Journal of Integrative Agriculture
  doi: 10.1016/S2095-3119(19)62871-6
– volume: 210
  start-page: 35
  year: 2018
  ident: 10.1016/S2095-3119(19)62812-1_bib2
  article-title: A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2018.02.045
– volume: 117
  start-page: 102
  year: 2012
  ident: 10.1016/S2095-3119(19)62812-1_bib21
  article-title: Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.06.024
– volume: 185
  start-page: 142
  year: 2016
  ident: 10.1016/S2095-3119(19)62812-1_bib6
  article-title: Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2016.02.016
– volume: 221
  start-page: 430
  year: 2019
  ident: 10.1016/S2095-3119(19)62812-1_bib46
  article-title: Deep learning based multi-temporal crop classification
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2018.11.032
– volume: 10
  year: 2018
  ident: 10.1016/S2095-3119(19)62812-1_bib11
  article-title: Annual cropland mapping using reference landsat time series — a case study in Central Asia
  publication-title: Remote Sensing
  doi: 10.3390/rs10122057
– volume: 55
  start-page: 539
  year: 2018
  ident: 10.1016/S2095-3119(19)62812-1_bib27
  article-title: Regional-scale monitoring of cropland intensity and productivity with multi-source satellite image time series
  publication-title: Giscience & Remote Sensing
  doi: 10.1080/15481603.2017.1414010
– ident: 10.1016/S2095-3119(19)62812-1_bib7
– volume: 27
  start-page: 373
  year: 2012
  ident: 10.1016/S2095-3119(19)62812-1_bib20
  article-title: Fusion of feature selection and optimized immune networks for hyperspectral image classification of urban landscapes
  publication-title: Geocarto International
  doi: 10.1080/10106049.2011.642898
– volume: 25
  start-page: 4091
  year: 2004
  ident: 10.1016/S2095-3119(19)62812-1_bib42
  article-title: Efficiency and accuracy of per-field classification for operational crop mapping
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160310001619580
– volume: 31
  start-page: 805
  year: 2010
  ident: 10.1016/S2095-3119(19)62812-1_bib40
  article-title: A comparison of MODIS 250-m EVI and NDVI data for crop mapping: A case study for southwest Kansas
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160902897858
– volume: 10
  start-page: 5258
  year: 2017
  ident: 10.1016/S2095-3119(19)62812-1_bib4
  article-title: Fractal-based pattern extraction from time-series NDVI data for feature identification
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2017.2748989
– volume: 140
  start-page: 1
  year: 2014
  ident: 10.1016/S2095-3119(19)62812-1_bib48
  article-title: Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2013.08.023
– volume: 9
  start-page: 132
  year: 2017
  ident: 10.1016/S2095-3119(19)62812-1_bib22
  article-title: Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: The role of population growth and implications for the environment
  publication-title: Remote Sensing
  doi: 10.3390/rs9020132
– ident: 10.1016/S2095-3119(19)62812-1_bib9
– volume: 78
  start-page: 799
  year: 2012
  ident: 10.1016/S2095-3119(19)62812-1_bib47
  article-title: Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California's Central Valley
  publication-title: Photogrammetric Engineering and Remote Sensing
  doi: 10.14358/PERS.78.8.799
– volume: 42
  start-page: 128
  year: 2015
  ident: 10.1016/S2095-3119(19)62812-1_bib37
  article-title: Early-season mapping of crops and cultural operations using very high spatial resolution Pléiades images
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2015.06.003
– volume: 9
  start-page: 47
  year: 2016
  ident: 10.1016/S2095-3119(19)62812-1_bib3
  article-title: A hybrid course recommendation system by integrating collaborative filtering and artificial immune systems
  publication-title: Algorithms
  doi: 10.3390/a9030047
– volume: 108
  start-page: 290
  year: 2007
  ident: 10.1016/S2095-3119(19)62812-1_bib41
  article-title: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.11.021
– volume: 112
  start-page: 1096
  year: 2008
  ident: 10.1016/S2095-3119(19)62812-1_bib39
  article-title: Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.07.019
– volume: 84
  start-page: 114
  year: 2013
  ident: 10.1016/S2095-3119(19)62812-1_bib50
  article-title: A data mining approach for evaluation of optimal time-series of MODIS data for land cover mapping at a regional level
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2013.07.008
– volume: 6
  start-page: 521
  year: 2013
  ident: 10.1016/S2095-3119(19)62812-1_bib45
  article-title: FROM-GC: 30-m global cropland extent derived through multisource data integration
  publication-title: International Journal of Digital Earth
  doi: 10.1080/17538947.2013.822574
– volume: 103
  start-page: 104
  year: 2014
  ident: 10.1016/S2095-3119(19)62812-1_bib36
  article-title: Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2014.02.009
– volume: 7
  start-page: 3428
  year: 2014
  ident: 10.1016/S2095-3119(19)62812-1_bib33
  article-title: Evaluating an intra-annual time series for grassland classification — how many acquisitions and what seasonal origin are optimal?
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2014.2347203
– volume: 37
  start-page: 35
  year: 1991
  ident: 10.1016/S2095-3119(19)62812-1_bib5
  article-title: A review of assessing the accuracy of classifications of remotely sensed data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(91)90048-B
– volume: 74
  start-page: 2329
  year: 2015
  ident: 10.1016/S2095-3119(19)62812-1_bib26
  article-title: Occurrence and formation of high fluoride groundwater in the Hengshui area of the North China Plain
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-015-4225-x
– volume: 83
  start-page: 195
  year: 2002
  ident: 10.1016/S2095-3119(19)62812-1_bib19
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 11
  year: 2019
  ident: 10.1016/S2095-3119(19)62812-1_bib10
  article-title: New workflow of plastic-mulched farmland mapping using multi-temporal Sentinel-2 data
  publication-title: Remote Sensing
  doi: 10.3390/rs11111353
– volume: 49
  start-page: 1061
  year: 2016
  ident: 10.1016/S2095-3119(19)62812-1_bib15
  article-title: Crop classification using crop knowledge of the previous year: Case study in Southwest Kansas, USA
  publication-title: European Journal of Remote Sensing
  doi: 10.5721/EuJRS20164954
– volume: 6
  year: 2018
  ident: 10.1016/S2095-3119(19)62812-1_bib16
  article-title: Estimation of different data compositions for early-season crop type classification
  publication-title: PeerJ
  doi: 10.7717/peerj.4834
– volume: 195
  start-page: 259
  year: 2017
  ident: 10.1016/S2095-3119(19)62812-1_bib23
  article-title: Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2017.03.021
– volume: 115
  start-page: 3129
  year: 2011
  ident: 10.1016/S2095-3119(19)62812-1_bib24
  article-title: A comparison of time series similarity measures for classification and change detection of ecosystem dynamics
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.06.020
– volume: 9
  start-page: 902
  year: 2017
  ident: 10.1016/S2095-3119(19)62812-1_bib25
  article-title: A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring
  publication-title: Remote Sensing
  doi: 10.3390/rs9090902
– volume: 33
  start-page: 1318
  year: 1995
  ident: 10.1016/S2095-3119(19)62812-1_bib1
  article-title: An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/36.477187
SSID ssj0001550068
Score 2.3672395
Snippet Early-season crop type mapping could provide important information for crop growth monitoring and yield prediction, but the lack of ground-surveyed training...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1897
SubjectTerms agriculture
China
cotton
crop classification
data collection
early season
harvest date
Hengshui
Landsat
reference time series
Sentinel-2
time series analysis
winter wheat
yield forecasting
Zea mays
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYiTvSACrQqLSBX6oEeTNbrWa_3hAAVRUjl0kbiZvkxG0WCDQrh2t-Ox9kEpZdISHsa7cyuxuOZ8WO-YewHhjaoCFp4lChAA6Y5ZyrRQN3WRjntHO13_L7TozHc3lf3A3a9qoWha5W971_69Oyte8qw1-bwaTod_ikJKo3wyRpdpjCVK9ihJis__yff9llSCl7kijh6XxDDWyHPUkgmnsnmZ5Yj5EaIykj-G5HqP5-dA9HNR7bXZ5D8cvmT-2yA3QH7cDmZ9ygaeMguMmyxoP2_WcepSRenrVb-6AiNYcLpsvuEq0I88nWbEU5d5jkZJD5_YuObX3-vR6LvlCACVNVChNZTvU1EbJU3KIPCWMgYIEJaPkRVBokmLbTaqlEuJXCJGEKFWlK49oDqM9vpZh1-YbxssNVYOx9DSq7QG2c0Fr41AZSJtTxisFKODT2MOHWzeLDr-2KkU0s6tenJOrWJ7XzN9rTE0djGcEWaX79MMNiZMJtPbG8Hlg5ZQcVG140DcEjogaUH5QBl44r2iJnVuNkNq0qiptu-_301zjbNODpGcR3OXp5tWoQRdoOs9df3i__GdktaueeLv8dsZzF_wZOU3iz8abbfV70f7_o
  priority: 102
  providerName: Elsevier
Title Early-season crop type mapping using 30-m reference time series
URI https://dx.doi.org/10.1016/S2095-3119(19)62812-1
https://www.proquest.com/docview/2551999176
https://doaj.org/article/389143d9679a44ae86792b43a4e19a0f
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUKvcChKoWqW2BlJA70YFjHjuOcqi0CLUVwoUjcLH9MVkglW8Fy5bczk2QD9LIXpJysOLHGY88be-YNY_sQq6iSNiKABKGNBlxzNhelLqrCKm-8p_OOi0szuda_b_KbV6W-KCaspQduBXdE92hapdIUpdfaAxHEZUErr0GWflTR7os275Uz1eYH55T8QJXlEEPgRiPLl_Sdo6u-8UCWP0yGRk7IN4ap4e9_Y5_-26kb83P6mX3qcCMft-PdYB-g_sLWx9P7jjsDNtnPhqxY0KnfrOZUmovTASu_88TBMOUU4j7laiTueF9chFNteU5qCA9b7Pr05M_xRHT1EUTUeT4XsQqUZZMAKhUsyKggjWSKOml0GpLKogSL7lWVl8ojbMPGGHMwkox00KC-stV6VsM3xrMSKgOFDykipIJgvTUwCpWNWtlUyAHTC-G42JGHUw2Lv66PEiOZOpKpw6eRqcNuh323fy17xrIOv0jy_ctEft00oEq4TiXcMpUYMLuYN9fhiBYf4Kdul_1_bzHPDtcZXZ74GmaPDw5dL2JskIX5_h5j3GZrGXnuTeDvDlud3z_CLsKbeRiylcMnOWQfx2fnk8tho9fPfFPxhQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHVF7qg4KRQIKDm_Xa6_UeKlQeVUofF1qpN-PHbBSJbqokFeLCn-IP1uM4qcKlElKlPY3W3tHY8_Ds-BtC3oJvvQhSMQccmFQSos7pijWybmstrLIW8x3HJ6p_Jr-dV-cr5O_8LgyWVWbbP7PpyVpnSi9Ls3c5HPa-lwiVhvhkjSqjm-K5svIQfv-K57bJ7sGXuMjvynL_6-nnPsutBZiXVTVlvnV4QSUAtMJp4F5AKHjwMsgYbwdReg46nkzaqhE2RjyR6H0FiqN_cxJEnPceuS-jucC2CTt_-E1iJ8b8RbqChwwy5PDm5tCM60R8z5sPiXHGl3xiah2w5Br_cRLJ8-2vkcc5ZKV7M6k8ISvQPSWP9gbjDNsBz8jHhJPMMOE46ih2BaOY26UXFuEfBhSr6wdUFOyCLvqaUGxrT1EDYPKcnN2J_F6Q1W7UwTqhZQOtgtq64GM0B05braBwrfZS6FDzDSLnwjE-45Zj-4yfZlGghjI1KFMTnyRTE4ftLIZdzoA7bhvwCSW_eBlxtxNhNB6YvPEM_tWVIjSqbqyUFhCusHRSWAm8sUW7QfR83czSNo5TDW_7_pv5Opuo4vjfxnYwupqYeOpDsAheq83_n_41edA_PT4yRwcnh1vkYYlpg1R1_JKsTsdXsB1jq6l7lfYyJT_uWnmuAa4WLW8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early-season+crop+type+mapping+using+30-m+reference+time+series&rft.jtitle=Journal+of+Integrative+Agriculture&rft.au=Peng-yu+HAO&rft.au=Hua-jun+TANG&rft.au=Zhong-xin+CHEN&rft.au=Qing-yan+MENG&rft.date=2020-07-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.issn=2095-3119&rft.volume=19&rft.issue=7&rft.spage=1897&rft.epage=1911&rft_id=info:doi/10.1016%2FS2095-3119%2819%2962812-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_389143d9679a44ae86792b43a4e19a0f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-3119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-3119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-3119&client=summon