CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides

Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction, paralysis and eventually death. The RyRG4946E substitution associated with diamide resistance has been identified in three lepidopteran pests, P...

Full description

Saved in:
Bibliographic Details
Published inInsect biochemistry and molecular biology Vol. 89; pp. 79 - 85
Main Authors Zuo, Yayun, Wang, Hui, Xu, Yanjun, Huang, Jianlei, Wu, Shuwen, Wu, Yidong, Yang, Yihua
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction, paralysis and eventually death. The RyRG4946E substitution associated with diamide resistance has been identified in three lepidopteran pests, Plutella xylostella, Tuta absoluta and Chilo suppressalis. Recently, the T. absoluta RyRG4946V mutation was knocked into the model insect Drosophila melanogaster by CRISPR/Cas9 mediated genome editing and provided in vivo functional confirmation for its role in diamide resistance. In the present study, we successfully introduced the RyRG4946E mutation with CRISPR/Cas9 technology into a lepidopteran pest of global importance, Spodoptera exigua. The genome-edited strain (named 4946E) homozygous for the SeRyRG4946E mutation exhibited 223-, 336- and >1000-fold resistance to chlorantraniliprole, cyantraniliprole and flubendiamide, respectively when compared to the wild type strain (WHS) of S. exigua. Reciprocal crossing experiments revealed that the target-site resistance in strain 4946E underlies an autosomal and almost recessive mode of inheritance for anthranilic diamides, whereas it was completely recessive for flubendiamide. Our results not only provided in vivo functional validation of the RyRG4946E mutation in conferring high levels of resistance to diamide insecticides for the first time in a controlled genetic background of a lepidopteran pest, but also revealed slight differences on the level of resistance between anthranilic diamides (chlorantraniliprole and cyantraniliprole) and flubendiamide conferred by the SeRyRG4946E mutation. [Display omitted] •Diamide insecticides target insect ryanodine receptors (RyRs).•The RyRG4946E substitution associated with diamide resistance identified in three lepidopteran pests.•The RyRG4946E mutation was introduced with CRISPR/Cas9 into a lepidopteran pest Spodoptera exigua.•The S. exigua strain with the SeRyRG4946E mutation confers high levels of resistance to diamides.
AbstractList Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction, paralysis and eventually death. The RyR substitution associated with diamide resistance has been identified in three lepidopteran pests, Plutella xylostella, Tuta absoluta and Chilo suppressalis. Recently, the T. absoluta RyR mutation was knocked into the model insect Drosophila melanogaster by CRISPR/Cas9 mediated genome editing and provided in vivo functional confirmation for its role in diamide resistance. In the present study, we successfully introduced the RyR mutation with CRISPR/Cas9 technology into a lepidopteran pest of global importance, Spodoptera exigua. The genome-edited strain (named 4946E) homozygous for the SeRyR mutation exhibited 223-, 336- and >1000-fold resistance to chlorantraniliprole, cyantraniliprole and flubendiamide, respectively when compared to the wild type strain (WHS) of S. exigua. Reciprocal crossing experiments revealed that the target-site resistance in strain 4946E underlies an autosomal and almost recessive mode of inheritance for anthranilic diamides, whereas it was completely recessive for flubendiamide. Our results not only provided in vivo functional validation of the RyR mutation in conferring high levels of resistance to diamide insecticides for the first time in a controlled genetic background of a lepidopteran pest, but also revealed slight differences on the level of resistance between anthranilic diamides (chlorantraniliprole and cyantraniliprole) and flubendiamide conferred by the SeRyR mutation.
Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction, paralysis and eventually death. The RyRG4946E substitution associated with diamide resistance has been identified in three lepidopteran pests, Plutella xylostella, Tuta absoluta and Chilo suppressalis. Recently, the T. absoluta RyRG4946V mutation was knocked into the model insect Drosophila melanogaster by CRISPR/Cas9 mediated genome editing and provided in vivo functional confirmation for its role in diamide resistance. In the present study, we successfully introduced the RyRG4946E mutation with CRISPR/Cas9 technology into a lepidopteran pest of global importance, Spodoptera exigua. The genome-edited strain (named 4946E) homozygous for the SeRyRG4946E mutation exhibited 223-, 336- and >1000-fold resistance to chlorantraniliprole, cyantraniliprole and flubendiamide, respectively when compared to the wild type strain (WHS) of S. exigua. Reciprocal crossing experiments revealed that the target-site resistance in strain 4946E underlies an autosomal and almost recessive mode of inheritance for anthranilic diamides, whereas it was completely recessive for flubendiamide. Our results not only provided in vivo functional validation of the RyRG4946E mutation in conferring high levels of resistance to diamide insecticides for the first time in a controlled genetic background of a lepidopteran pest, but also revealed slight differences on the level of resistance between anthranilic diamides (chlorantraniliprole and cyantraniliprole) and flubendiamide conferred by the SeRyRG4946E mutation.Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction, paralysis and eventually death. The RyRG4946E substitution associated with diamide resistance has been identified in three lepidopteran pests, Plutella xylostella, Tuta absoluta and Chilo suppressalis. Recently, the T. absoluta RyRG4946V mutation was knocked into the model insect Drosophila melanogaster by CRISPR/Cas9 mediated genome editing and provided in vivo functional confirmation for its role in diamide resistance. In the present study, we successfully introduced the RyRG4946E mutation with CRISPR/Cas9 technology into a lepidopteran pest of global importance, Spodoptera exigua. The genome-edited strain (named 4946E) homozygous for the SeRyRG4946E mutation exhibited 223-, 336- and >1000-fold resistance to chlorantraniliprole, cyantraniliprole and flubendiamide, respectively when compared to the wild type strain (WHS) of S. exigua. Reciprocal crossing experiments revealed that the target-site resistance in strain 4946E underlies an autosomal and almost recessive mode of inheritance for anthranilic diamides, whereas it was completely recessive for flubendiamide. Our results not only provided in vivo functional validation of the RyRG4946E mutation in conferring high levels of resistance to diamide insecticides for the first time in a controlled genetic background of a lepidopteran pest, but also revealed slight differences on the level of resistance between anthranilic diamides (chlorantraniliprole and cyantraniliprole) and flubendiamide conferred by the SeRyRG4946E mutation.
Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction, paralysis and eventually death. The RyRG4946E substitution associated with diamide resistance has been identified in three lepidopteran pests, Plutella xylostella, Tuta absoluta and Chilo suppressalis. Recently, the T. absoluta RyRG4946V mutation was knocked into the model insect Drosophila melanogaster by CRISPR/Cas9 mediated genome editing and provided in vivo functional confirmation for its role in diamide resistance. In the present study, we successfully introduced the RyRG4946E mutation with CRISPR/Cas9 technology into a lepidopteran pest of global importance, Spodoptera exigua. The genome-edited strain (named 4946E) homozygous for the SeRyRG4946E mutation exhibited 223-, 336- and >1000-fold resistance to chlorantraniliprole, cyantraniliprole and flubendiamide, respectively when compared to the wild type strain (WHS) of S. exigua. Reciprocal crossing experiments revealed that the target-site resistance in strain 4946E underlies an autosomal and almost recessive mode of inheritance for anthranilic diamides, whereas it was completely recessive for flubendiamide. Our results not only provided in vivo functional validation of the RyRG4946E mutation in conferring high levels of resistance to diamide insecticides for the first time in a controlled genetic background of a lepidopteran pest, but also revealed slight differences on the level of resistance between anthranilic diamides (chlorantraniliprole and cyantraniliprole) and flubendiamide conferred by the SeRyRG4946E mutation. [Display omitted] •Diamide insecticides target insect ryanodine receptors (RyRs).•The RyRG4946E substitution associated with diamide resistance identified in three lepidopteran pests.•The RyRG4946E mutation was introduced with CRISPR/Cas9 into a lepidopteran pest Spodoptera exigua.•The S. exigua strain with the SeRyRG4946E mutation confers high levels of resistance to diamides.
Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction, paralysis and eventually death. The RyRG4946E substitution associated with diamide resistance has been identified in three lepidopteran pests, Plutella xylostella, Tuta absoluta and Chilo suppressalis. Recently, the T. absoluta RyRG4946V mutation was knocked into the model insect Drosophila melanogaster by CRISPR/Cas9 mediated genome editing and provided in vivo functional confirmation for its role in diamide resistance. In the present study, we successfully introduced the RyRG4946E mutation with CRISPR/Cas9 technology into a lepidopteran pest of global importance, Spodoptera exigua. The genome-edited strain (named 4946E) homozygous for the SeRyRG4946E mutation exhibited 223-, 336- and >1000-fold resistance to chlorantraniliprole, cyantraniliprole and flubendiamide, respectively when compared to the wild type strain (WHS) of S. exigua. Reciprocal crossing experiments revealed that the target-site resistance in strain 4946E underlies an autosomal and almost recessive mode of inheritance for anthranilic diamides, whereas it was completely recessive for flubendiamide. Our results not only provided in vivo functional validation of the RyRG4946E mutation in conferring high levels of resistance to diamide insecticides for the first time in a controlled genetic background of a lepidopteran pest, but also revealed slight differences on the level of resistance between anthranilic diamides (chlorantraniliprole and cyantraniliprole) and flubendiamide conferred by the SeRyRG4946E mutation.
Author Huang, Jianlei
Xu, Yanjun
Yang, Yihua
Wang, Hui
Wu, Shuwen
Wu, Yidong
Zuo, Yayun
Author_xml – sequence: 1
  givenname: Yayun
  surname: Zuo
  fullname: Zuo, Yayun
  email: zuoyayun0734@163.com
– sequence: 2
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  email: 2016102091@njau.edu.cn
– sequence: 3
  givenname: Yanjun
  surname: Xu
  fullname: Xu, Yanjun
  email: 2016102098@njau.edu.cn
– sequence: 4
  givenname: Jianlei
  surname: Huang
  fullname: Huang, Jianlei
  email: 2014102100@njau.edu.cn
– sequence: 5
  givenname: Shuwen
  surname: Wu
  fullname: Wu, Shuwen
  email: swwu@njau.edu.cn
– sequence: 6
  givenname: Yidong
  orcidid: 0000-0003-3456-3373
  surname: Wu
  fullname: Wu, Yidong
  email: wyd@njau.edu.cn
– sequence: 7
  givenname: Yihua
  surname: Yang
  fullname: Yang, Yihua
  email: yhyang@njau.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28912111$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKeFF2CBvGST9Nrj_Fhig0alVKoEamFtOfZNx6MkDrZT0cfgjXE0hQWLsvJdnO9e-Ttn5GTyExLylkHJgNUXh9J1Y1dyYE0JsgSoXpANaxtZABdwQjYg66pgjWhPyVmMBwAQompekVPeSsYZYxvya3d7fff19mKno6QjWqcTWnolpKgvaVy6mFxakvMTdRNNe6ThUU_euilPaHBOPlDf07vZWz8nDJriT3e_aGr81GOIdO_u93TABxziCgaMLiY9GaTJ03xudBbz7ogmOZPn-Jq87PUQ8c3Te06-f7r8tvtc3Hy5ut59vCmMqKpUGIMChDUGqvxDaZDVvWzR4rbZopC91ayHFrAS1oq-6UTT9dhoXbVdV-uOb8_J--PeOfgfC8akRhcNDoOe0C9RceAgORdt9V-USZGrldA0GX33hC5drlPNwY06PKo_jWeAHwETfIwB-78IA7VqVQe1alWrVgVSZa051P4TMi7pVUsK2g3PRz8co1kAPjgMKhqHuX_rssCkrHfPxX8DvaK_Xg
CitedBy_id crossref_primary_10_1016_j_cois_2018_03_005
crossref_primary_10_1016_j_jenvman_2024_120326
crossref_primary_10_1007_s12298_024_01486_x
crossref_primary_10_1111_1744_7917_12838
crossref_primary_10_1016_j_ibmb_2024_104107
crossref_primary_10_1016_j_bmcl_2019_126902
crossref_primary_10_1007_s10340_020_01220_y
crossref_primary_10_1039_C8RA00161H
crossref_primary_10_1016_j_pestbp_2024_105991
crossref_primary_10_1016_j_cois_2018_04_004
crossref_primary_10_3390_insects13040365
crossref_primary_10_1016_j_ibmb_2020_103367
crossref_primary_10_3390_agriculture12122108
crossref_primary_10_1016_j_pestbp_2024_105953
crossref_primary_10_1016_j_cois_2018_04_009
crossref_primary_10_1111_1744_7917_13042
crossref_primary_10_1111_1744_7917_13282
crossref_primary_10_1016_j_ibmb_2020_103361
crossref_primary_10_1016_j_pestbp_2018_03_012
crossref_primary_10_1016_j_pestbp_2022_105076
crossref_primary_10_1016_j_pestbp_2022_105153
crossref_primary_10_3390_biom11071031
crossref_primary_10_3390_insects15100777
crossref_primary_10_1016_j_semcdb_2019_04_008
crossref_primary_10_1111_imb_12640
crossref_primary_10_3390_ijms252212360
crossref_primary_10_1021_acs_jafc_1c00922
crossref_primary_10_1016_j_ibmb_2025_104277
crossref_primary_10_4103_epj_epj_27_23
crossref_primary_10_1038_s41467_024_53490_0
crossref_primary_10_1111_1744_7917_12922
crossref_primary_10_7554_eLife_97189
crossref_primary_10_3390_ijms22095027
crossref_primary_10_3389_fphys_2021_780255
crossref_primary_10_1007_s11356_021_16974_w
crossref_primary_10_1007_s42452_019_1068_1
crossref_primary_10_1002_ps_6539
crossref_primary_10_1016_j_envpol_2023_122458
crossref_primary_10_3390_insects13070626
crossref_primary_10_1002_ps_5889
crossref_primary_10_1007_s10340_022_01557_6
crossref_primary_10_1016_j_ibmb_2020_103453
crossref_primary_10_1371_journal_pgen_1009888
crossref_primary_10_1002_ps_5689
crossref_primary_10_1016_j_pestbp_2020_104590
crossref_primary_10_3390_stresses2040034
crossref_primary_10_1002_ps_6534
crossref_primary_10_1002_ps_5761
crossref_primary_10_1002_ps_5165
crossref_primary_10_1002_ps_8598
crossref_primary_10_1016_j_pestbp_2020_104595
crossref_primary_10_1126_sciadv_ads0643
crossref_primary_10_1002_ps_7550
crossref_primary_10_1016_j_pestbp_2021_104879
crossref_primary_10_1016_j_ibmb_2023_104042
crossref_primary_10_1016_j_chemosphere_2024_143623
crossref_primary_10_1002_ps_6183
crossref_primary_10_1016_j_pestbp_2021_104831
crossref_primary_10_3390_insects13111075
crossref_primary_10_1021_acs_jafc_4c04134
crossref_primary_10_1371_journal_pgen_1009680
crossref_primary_10_2174_1381612827666210902150224
crossref_primary_10_1016_j_ibmb_2018_12_008
crossref_primary_10_1111_1744_7917_12896
crossref_primary_10_1016_j_pestbp_2019_04_005
crossref_primary_10_1021_acs_jafc_4c06839
crossref_primary_10_1002_slct_201800123
crossref_primary_10_1093_jee_toae109
crossref_primary_10_1111_1744_7917_12695
crossref_primary_10_1002_ps_6746
crossref_primary_10_1371_journal_pone_0259322
crossref_primary_10_1016_j_pestbp_2023_105579
crossref_primary_10_1007_s10646_021_02390_w
crossref_primary_10_1016_j_ecoenv_2021_112452
crossref_primary_10_1002_ps_7512
crossref_primary_10_1016_j_ijbiomac_2023_123389
crossref_primary_10_1007_s10340_020_01314_7
crossref_primary_10_1002_ps_5381
crossref_primary_10_3389_fgene_2023_1235855
crossref_primary_10_1016_j_jinsphys_2021_104325
crossref_primary_10_3389_fphys_2022_1107045
crossref_primary_10_1146_annurev_ento_011118_112420
crossref_primary_10_1016_j_ibmb_2019_103308
crossref_primary_10_7585_kjps_2021_25_2_128
crossref_primary_10_1016_j_heliyon_2024_e40556
crossref_primary_10_1007_s10340_023_01736_z
crossref_primary_10_1016_j_cois_2020_03_006
crossref_primary_10_7554_eLife_97189_4
crossref_primary_10_1002_ps_5505
crossref_primary_10_3390_agronomy12071664
crossref_primary_10_1002_ps_7404
crossref_primary_10_1111_jen_13193
crossref_primary_10_3389_fgene_2022_914029
crossref_primary_10_3390_ijms241713330
crossref_primary_10_1002_ps_5782
Cites_doi 10.1002/ps.4439
10.1152/physrev.00013.2002
10.1007/s10158-008-0076-4
10.1073/pnas.1618258113
10.1152/ajpcell.1994.266.6.C1485
10.1021/bi900866s
10.1016/j.jinsphys.2017.01.007
10.1073/pnas.0810475105
10.1242/bio.20147682
10.1007/s13355-014-0283-x
10.1038/srep18103
10.1016/j.ibmb.2016.11.003
10.1021/jf8014816
10.1002/ps.3651
10.1016/j.ibmb.2013.06.006
10.1016/j.bmcl.2005.08.034
10.1016/j.ibmb.2016.06.008
10.1002/ps.1254
10.1093/jis/3.1.34
10.1016/j.bmcl.2007.09.012
10.1126/science.1232033
10.1038/srep06924
10.1016/j.ibmb.2015.01.018
10.1074/jbc.M112.433789
10.1021/tx300326m
10.1021/jf501236h
10.1584/jpestics.31.484
10.1016/j.cell.2014.05.010
10.1016/j.pestbp.2011.09.006
10.1584/jpestics.30.354
10.1038/nbt.2842
10.1016/j.ibmb.2012.09.001
10.1016/j.pestbp.2013.01.010
10.1002/ps.2306
10.1007/s10340-015-0643-5
10.1016/j.bmcl.2013.09.076
10.1016/j.pestbp.2013.09.004
10.1603/EC12059
10.1016/j.bmc.2009.01.018
10.1038/nrn.2015.2
10.1038/srep14680
10.1016/j.ibmb.2015.05.001
10.1016/j.ibmb.2017.07.002
10.1016/j.ibmb.2016.04.007
10.1016/j.pestbp.2005.07.005
10.1603/EC13128
10.1534/g3.112.005439
10.1016/j.ibmb.2017.06.013
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ibmb.2017.09.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Zoology
EISSN 1879-0240
EndPage 85
ExternalDocumentID 28912111
10_1016_j_ibmb_2017_09_005
S0965174817301376
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HVGLF
HZ~
IHE
J1W
KOM
LW9
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SDF
SDG
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
UHS
WH7
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c455t-cce404dcc051749ce16f98ede373e49fda1f080e54dd4f7b47bfe7aa58bb6ab23
IEDL.DBID .~1
ISSN 0965-1748
1879-0240
IngestDate Thu Jul 10 19:20:08 EDT 2025
Thu Jul 10 23:28:21 EDT 2025
Wed Feb 19 02:43:53 EST 2025
Tue Jul 01 01:50:44 EDT 2025
Thu Apr 24 23:02:16 EDT 2025
Fri Feb 23 02:19:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Resistance
Beet armyworm
CRISPR/Cas9
Ryanodine receptor
Diamide
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-cce404dcc051749ce16f98ede373e49fda1f080e54dd4f7b47bfe7aa58bb6ab23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3456-3373
PMID 28912111
PQID 1940049077
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2020922485
proquest_miscellaneous_1940049077
pubmed_primary_28912111
crossref_primary_10_1016_j_ibmb_2017_09_005
crossref_citationtrail_10_1016_j_ibmb_2017_09_005
elsevier_sciencedirect_doi_10_1016_j_ibmb_2017_09_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Insect biochemistry and molecular biology
PublicationTitleAlternate Insect Biochem Mol Biol
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Douris, Papapostolou, Ilias, Roditakis, Kounadi, Riga, Vontas (bib8) 2017; 87
Troczka, Zimmer, Elias, Schorn, Bass, Davies, Fielda, Williamsona, Slaterc, Nauen (bib42) 2012; 42
Che, Shi, Wu, Yang (bib4) 2013; 106
Foster, Denholm, Rison, Portillo, Margaritopoulis, Slater (bib10) 2012; 68
Beumer, Trautman, Mukherjee, Carroll (bib2) 2013; 3
Steinbach, Gutbrod, Lümmen, Matthiesen, Schorn, Nauen (bib36) 2015; 63
Sattelle, Cordova, Cheek (bib33) 2008; 8
Isaacs, Qi, Sarpong, Casida (bib15) 2012; 25
Taning, Van Eynde, Yu, Ma, Smagghe (bib38) 2017; 98
Guo, Wang, Zhou, Li, Liu, Pei, Gao (bib11) 2014; 70
Ramachandran, Chakraborty, Xu, Mein, Samso, Dokholyan, Meissner (bib29) 2013; 288
Payton, Greenstone, Schenker (bib26) 2003; 3
Mali, Yang, Esvelt, Aach, Guell, DiCarlo, Church (bib22) 2013; 339
Wang, Wu (bib47) 2012; 105
Selby, Lahm, Stevenson, Hughes, Cordova, Annan, Pahutski (bib34) 2013; 23
Somers, Nguyen, Lumb, Batterham, Perry (bib35) 2015; 64
Zimmer, Garrood, Puinean, Eckel-Zimmer, Williamson, Davies, Bass (bib51) 2016; 73
Hsu, Lander, Zhang (bib14) 2014; 157
Tohnishi, Nakao, Furuya, Seo, Kodama, Tsubata, Fujioka, Kodama, Hirooka, Nishimatsu (bib41) 2005; 30
Wang, Zhang, Wang, Zhao, Zuo, Yang, Wu (bib45) 2016; 76
Kato, Kiyonaka, Sawaguchi, Tohnishi, Masaki, Yasokawa, Mizuno, Mori, Inoue, Hamachi, Takeshima, Mori (bib16) 2009; 48
Zhu, Mon, Xu, Lee, Kusakabe (bib50) 2015
Cordova, Benner, Sacher, Rauh, Sopa, Lahm, Selby, Stevenson, Flexner, Gutteridge, Rhoades, Wu, Smith, Tao (bib5) 2005; 84
Uchiyama, Ozawa (bib44) 2014; 49
Roditakis, Steinbach, Moritz, Vasakis, Stavrakaki, Ilias, Silva (bib31) 2017; 80
Fill, Copella (bib9) 2002; 82
Beumer, Trautman, Bozas, Liu, Rutter, Gall, Carroll (bib1) 2008; 105
Tao, Gutteridge, Benner, Wu, Rhoades, Sacher, Rivera, Desaeger, Cordova (bib39) 2013; 43
Coronado, Morrissette, Sukhareva, Vaughan (bib6) 1994; 266
Troczka, Williams, Williamson, Field, Lümmen, Davies (bib43) 2015; 5
Masaki (bib23) 2006; 31
Nauen (bib24) 2006; 62
Heidenreich, Zhang (bib13) 2016; 17
Qi, Lümmen, Nauen, Casida (bib28) 2014; 62
Stone (bib37) 1968; 38
Roditakis, Vasakis, Grispou, Stavrakaki, Nauen, Gravouil, Bassi (bib30) 2015; 88
Teixeira, Andaloro (bib40) 2013; 106
Wang, Wang, Liu, Liu, Tay, Walsh, Wu (bib46) 2017; 87
Qi, Casida (bib27) 2013; 107
Sander, Joung (bib32) 2014; 32
Lahm, Cordova, Barry (bib17) 2009; 17
Yao, Zhao, Zhang, Zhou, Wang, Gao, Wu (bib48) 2017; 73
Douris, Steinbach, Panteleri, Livadaras, Pickett, Van Leeuwen, Nauen, Vontas (bib7) 2016; 113
Guo, Liang, Zhou, Gao (bib12) 2014; 4
Lahm, Selby, Freudenberger, Stevenson, Myers, Seburyamo, Smith, Flexner, Clark, Cordova (bib18) 2005; 15
Yu, Chen, Liu, Zhang, Yan, Zhu, Guo, Yang, Chang, Dai (bib49) 2014; 3
Caboni, Sarais, Angioni, Vargiu, Pagnozzi, Cabras, Casida (bib3) 2008; 56
Lahm, Stevenson, Selby, Freudenberger, Cordova, Flexner, Bellin, Dubas, Smith, Hugher, Hollingshaus, Clark, Benner (bib19) 2007; 17
Lai, Li, Su (bib20) 2011; 101
Nauen, Steinbach (bib25) 2016
LeOra Software (bib21) 2002
Wang (10.1016/j.ibmb.2017.09.005_bib45) 2016; 76
Douris (10.1016/j.ibmb.2017.09.005_bib7) 2016; 113
Coronado (10.1016/j.ibmb.2017.09.005_bib6) 1994; 266
Sander (10.1016/j.ibmb.2017.09.005_bib32) 2014; 32
Masaki (10.1016/j.ibmb.2017.09.005_bib23) 2006; 31
Beumer (10.1016/j.ibmb.2017.09.005_bib2) 2013; 3
Guo (10.1016/j.ibmb.2017.09.005_bib11) 2014; 70
Roditakis (10.1016/j.ibmb.2017.09.005_bib30) 2015; 88
Che (10.1016/j.ibmb.2017.09.005_bib4) 2013; 106
Somers (10.1016/j.ibmb.2017.09.005_bib35) 2015; 64
Wang (10.1016/j.ibmb.2017.09.005_bib46) 2017; 87
Lahm (10.1016/j.ibmb.2017.09.005_bib18) 2005; 15
Nauen (10.1016/j.ibmb.2017.09.005_bib25) 2016
Stone (10.1016/j.ibmb.2017.09.005_bib37) 1968; 38
Taning (10.1016/j.ibmb.2017.09.005_bib38) 2017; 98
Tohnishi (10.1016/j.ibmb.2017.09.005_bib41) 2005; 30
Heidenreich (10.1016/j.ibmb.2017.09.005_bib13) 2016; 17
Lahm (10.1016/j.ibmb.2017.09.005_bib17) 2009; 17
Cordova (10.1016/j.ibmb.2017.09.005_bib5) 2005; 84
Foster (10.1016/j.ibmb.2017.09.005_bib10) 2012; 68
Douris (10.1016/j.ibmb.2017.09.005_bib8) 2017; 87
Steinbach (10.1016/j.ibmb.2017.09.005_bib36) 2015; 63
Qi (10.1016/j.ibmb.2017.09.005_bib28) 2014; 62
Payton (10.1016/j.ibmb.2017.09.005_bib26) 2003; 3
Mali (10.1016/j.ibmb.2017.09.005_bib22) 2013; 339
Tao (10.1016/j.ibmb.2017.09.005_bib39) 2013; 43
Troczka (10.1016/j.ibmb.2017.09.005_bib43) 2015; 5
Zhu (10.1016/j.ibmb.2017.09.005_bib50) 2015
Hsu (10.1016/j.ibmb.2017.09.005_bib14) 2014; 157
Guo (10.1016/j.ibmb.2017.09.005_bib12) 2014; 4
Uchiyama (10.1016/j.ibmb.2017.09.005_bib44) 2014; 49
Selby (10.1016/j.ibmb.2017.09.005_bib34) 2013; 23
Isaacs (10.1016/j.ibmb.2017.09.005_bib15) 2012; 25
LeOra Software (10.1016/j.ibmb.2017.09.005_bib21) 2002
Wang (10.1016/j.ibmb.2017.09.005_bib47) 2012; 105
Caboni (10.1016/j.ibmb.2017.09.005_bib3) 2008; 56
Roditakis (10.1016/j.ibmb.2017.09.005_bib31) 2017; 80
Lahm (10.1016/j.ibmb.2017.09.005_bib19) 2007; 17
Nauen (10.1016/j.ibmb.2017.09.005_bib24) 2006; 62
Zimmer (10.1016/j.ibmb.2017.09.005_bib51) 2016; 73
Kato (10.1016/j.ibmb.2017.09.005_bib16) 2009; 48
Yao (10.1016/j.ibmb.2017.09.005_bib48) 2017; 73
Sattelle (10.1016/j.ibmb.2017.09.005_bib33) 2008; 8
Beumer (10.1016/j.ibmb.2017.09.005_bib1) 2008; 105
Troczka (10.1016/j.ibmb.2017.09.005_bib42) 2012; 42
Yu (10.1016/j.ibmb.2017.09.005_bib49) 2014; 3
Lai (10.1016/j.ibmb.2017.09.005_bib20) 2011; 101
Teixeira (10.1016/j.ibmb.2017.09.005_bib40) 2013; 106
Fill (10.1016/j.ibmb.2017.09.005_bib9) 2002; 82
Ramachandran (10.1016/j.ibmb.2017.09.005_bib29) 2013; 288
Qi (10.1016/j.ibmb.2017.09.005_bib27) 2013; 107
References_xml – volume: 88
  start-page: 9
  year: 2015
  end-page: 16
  ident: bib30
  article-title: First report of
  publication-title: J. Pest Sci.
– volume: 63
  start-page: 14
  year: 2015
  end-page: 22
  ident: bib36
  article-title: Geographic spread, genetics and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth,
  publication-title: Insect Biochem. Mol. Boil
– volume: 84
  start-page: 196
  year: 2005
  end-page: 214
  ident: bib5
  article-title: Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation
  publication-title: Pest. Biochem. Phys.
– volume: 56
  start-page: 7696
  year: 2008
  end-page: 7699
  ident: bib3
  article-title: Liquid chromatography-tandem mass spectrometric ion-switching determination of chlorantraniliprole and flubendiamide in fruits and vegetables
  publication-title: J. Agric. Food Chem.
– volume: 82
  start-page: 893
  year: 2002
  end-page: 922
  ident: bib9
  article-title: Ryanodine receptor calcium release channels
  publication-title: Physiol. Rev.
– start-page: 219
  year: 2016
  end-page: 236
  ident: bib25
  article-title: Resistance to diamide insecticides in lepidopteran pests
  publication-title: Advances in Insect Control and Resistance Management
– volume: 62
  start-page: 690
  year: 2006
  end-page: 692
  ident: bib24
  article-title: Insecticide mode of action: return of the ryanodine receptor
  publication-title: Pest Manage. Sci.
– volume: 32
  start-page: 347
  year: 2014
  end-page: 355
  ident: bib32
  article-title: CRISPR-Cas systems for editing, regulating and targeting genomes
  publication-title: Nat. Biotechnol.
– volume: 266
  start-page: 1485
  year: 1994
  end-page: 1504
  ident: bib6
  article-title: Structure and function of ryanodine receptors
  publication-title: Am. J. Physiol.-Cell Ph
– volume: 73
  start-page: 62
  year: 2016
  ident: bib51
  article-title: A CRISPR/Cas9 mediated point mutation in the alpha 6 subunit of the nicotinic acetylcholine receptor confers resistance to spinosad in
  publication-title: Insect Biochem. Mol. Biol.
– volume: 288
  start-page: 6154
  year: 2013
  end-page: 6165
  ident: bib29
  article-title: Structural determinants of skeletal muscle ryanodine receptor gating
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 6341
  year: 2013
  end-page: 6345
  ident: bib34
  article-title: Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity
  publication-title: Bioorg. Medic. Chem. Let.
– volume: 38
  start-page: 325
  year: 1968
  end-page: 326
  ident: bib37
  article-title: A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals
  publication-title: Bull. World Health Organ
– volume: 49
  start-page: 529
  year: 2014
  end-page: 534
  ident: bib44
  article-title: Rapid development of resistance to diamide insecticides in the smaller tea tortrix,
  publication-title: Jpn. Appl. Entomol. Zool.
– volume: 30
  start-page: 354
  year: 2005
  end-page: 360
  ident: bib41
  article-title: Flubendiamide, a novel insecticide highly active against Lepidopterous insect pests
  publication-title: J. Pestic. Sci.
– volume: 157
  start-page: 1262
  year: 2014
  end-page: 1278
  ident: bib14
  article-title: Development and applications of CRISPR-Cas9 for genome engineering
  publication-title: Cell
– volume: 43
  start-page: 820
  year: 2013
  end-page: 828
  ident: bib39
  article-title: Identification of a critical region in the
  publication-title: Insect Biochem. Mol. Biol.
– volume: 25
  start-page: 1571
  year: 2012
  end-page: 1573
  ident: bib15
  article-title: Insect ryanodine receptor: distinct but coupled insecticide binding sites for [
  publication-title: Chem. Res. Toxicol.
– volume: 68
  start-page: 629
  year: 2012
  end-page: 633
  ident: bib10
  article-title: Susceptibility of standard clones and European field populations of the green peach aphid,
  publication-title: Pest Manag. Sci.
– volume: 31
  start-page: 484
  year: 2006
  end-page: 488
  ident: bib23
  article-title: New insecticide affecting ryanodine receptor, flubencliamide: biochemical aspects of its action
  publication-title: J. Pestic. Sci.
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  ident: bib22
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
– volume: 42
  start-page: 873
  year: 2012
  end-page: 880
  ident: bib42
  article-title: Resistance to diamide insecticides in diamondback moth,
  publication-title: Insect Biochem. Mol. Biol.
– volume: 3
  start-page: 657
  year: 2013
  end-page: 664
  ident: bib2
  article-title: Donor DNA utilization during gene targeting with zinc-finger nucleases
  publication-title: G3: Genes, Genomes, Genet.
– volume: 113
  start-page: 14692
  year: 2016
  end-page: 14697
  ident: bib7
  article-title: A resistance mutation conserved between insects and mites unravels the mode of action of benzoylurea and chitin biosynthesis inhibitors
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 64
  start-page: 116
  year: 2015
  end-page: 127
  ident: bib35
  article-title: In vivo functional analysis of the
  publication-title: Insect Biochem. Mol. Biol.
– volume: 106
  start-page: 76
  year: 2013
  end-page: 78
  ident: bib40
  article-title: Diamide insecticides: global efforts to address insect resistance stewardship challenges
  publication-title: Pestic. Biochem. Physiol.
– volume: 17
  start-page: 6274
  year: 2007
  end-page: 6279
  ident: bib19
  article-title: Rynaxypyr™: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 8
  start-page: 107
  year: 2008
  end-page: 119
  ident: bib33
  article-title: Insect ryanodine receptors: molecular targets for novel pest control chemicals
  publication-title: Invert. Neurosci.
– volume: 87
  start-page: 147
  year: 2017
  end-page: 153
  ident: bib46
  article-title: CRISPR/Cas9 mediated genome editing of
  publication-title: Insect Biochem. Mol. Biol.
– volume: 80
  start-page: 11
  year: 2017
  end-page: 20
  ident: bib31
  article-title: Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer,
  publication-title: Insect Biochem. Mol. Biol.
– volume: 105
  start-page: 1019
  year: 2012
  end-page: 1023
  ident: bib47
  article-title: High levels of resistance to chlorantraniliprole evolved in field populations of
  publication-title: J. Econ. Entomol.
– volume: 87
  start-page: 127
  year: 2017
  end-page: 135
  ident: bib8
  article-title: Investigation of the contribution of RyR target-site mutations in diamide resistance by CRISPR/Cas9 genome modification in
  publication-title: Insect Biochem. Mol. Biol.
– volume: 105
  start-page: 19821
  year: 2008
  end-page: 19826
  ident: bib1
  article-title: Efficient gene targeting in
  publication-title: Proc. Natl. Acad. Sci.
– volume: 106
  start-page: 1855
  year: 2013
  end-page: 1862
  ident: bib4
  article-title: Insecticide resistance status of field populations of
  publication-title: J. Econ. Entomol.
– volume: 62
  start-page: 4077
  year: 2014
  end-page: 4082
  ident: bib28
  article-title: Diamide insecticide target site specificity in the
  publication-title: J. Agric. Food. Chem.
– start-page: 18103
  year: 2015
  ident: bib50
  article-title: CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells
  publication-title: Sci. Rep.
– volume: 70
  start-page: 1083
  year: 2014
  end-page: 1089
  ident: bib11
  article-title: Functional analysis of a point mutation in the ryanodine receptor of
  publication-title: Pest Manag. Sci.
– volume: 17
  start-page: 36
  year: 2016
  end-page: 44
  ident: bib13
  article-title: Applications of CRISPR-Cas systems in neuroscience
  publication-title: Nat. Rev. Neurosci.
– volume: 76
  start-page: 11
  year: 2016
  end-page: 17
  ident: bib45
  article-title: Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in
  publication-title: Insect Biochem. Mol. Biol.
– volume: 3
  start-page: 271
  year: 2014
  end-page: 280
  ident: bib49
  article-title: Various applications of TALEN-and CRISPR/Cas9-mediated homologous recombination to modify the
  publication-title: Biol. Open
– volume: 48
  start-page: 10342
  year: 2009
  end-page: 10352
  ident: bib16
  article-title: Molecular characterization of flubendiamide sensitivity in the lepidopterous ryanodine receptor Ca
  publication-title: Biochemistry
– volume: 101
  start-page: 198
  year: 2011
  end-page: 205
  ident: bib20
  article-title: Monitoring of beet armyworm
  publication-title: Pestic. Biochem. Phys.
– volume: 73
  start-page: 1169
  year: 2017
  end-page: 1178
  ident: bib48
  article-title: Monitoring and mechanisms of insecticide resistance in
  publication-title: Pest Manag. Sci.
– volume: 98
  start-page: 245
  year: 2017
  end-page: 257
  ident: bib38
  article-title: CRISPR/Cas9 in insects: applications, best practices and biosafety concerns
  publication-title: J. Insect Physiol.
– volume: 5
  start-page: 14680
  year: 2015
  ident: bib43
  article-title: Stable expression and functional characterisation of the diamondback moth ryanodine receptor G4946E variant conferring resistance to diamide insecticides
  publication-title: Sci. Rep.
– volume: 17
  start-page: 4127
  year: 2009
  end-page: 4133
  ident: bib17
  article-title: New and selective ryanodine receptor activators for insect control
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 3
  start-page: 34
  year: 2003
  ident: bib26
  article-title: Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance?
  publication-title: J. Insect Sci.
– volume: 107
  start-page: 321
  year: 2013
  end-page: 326
  ident: bib27
  article-title: Species differences in chlorantraniliprole and flubendiamide insecticide binding sites in the ryanodine receptor
  publication-title: Pestic. Biochem. Physiol.
– year: 2002
  ident: bib21
  article-title: Polo Plus, a user's guide to probit and logit analysis
– volume: 4
  start-page: 6924
  year: 2014
  ident: bib12
  article-title: Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of
  publication-title: Sci. Rep.
– volume: 15
  start-page: 4898
  year: 2005
  end-page: 4906
  ident: bib18
  article-title: Insecticidal anthranilic diamides: a new class of potent ryanodine receptor activators
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 73
  start-page: 1169
  year: 2017
  ident: 10.1016/j.ibmb.2017.09.005_bib48
  article-title: Monitoring and mechanisms of insecticide resistance in Chilo suppressalis (Lepidoptera: crambidae), with special reference to diamides
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.4439
– volume: 82
  start-page: 893
  year: 2002
  ident: 10.1016/j.ibmb.2017.09.005_bib9
  article-title: Ryanodine receptor calcium release channels
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00013.2002
– volume: 8
  start-page: 107
  year: 2008
  ident: 10.1016/j.ibmb.2017.09.005_bib33
  article-title: Insect ryanodine receptors: molecular targets for novel pest control chemicals
  publication-title: Invert. Neurosci.
  doi: 10.1007/s10158-008-0076-4
– volume: 113
  start-page: 14692
  year: 2016
  ident: 10.1016/j.ibmb.2017.09.005_bib7
  article-title: A resistance mutation conserved between insects and mites unravels the mode of action of benzoylurea and chitin biosynthesis inhibitors
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1618258113
– volume: 266
  start-page: 1485
  year: 1994
  ident: 10.1016/j.ibmb.2017.09.005_bib6
  article-title: Structure and function of ryanodine receptors
  publication-title: Am. J. Physiol.-Cell Ph
  doi: 10.1152/ajpcell.1994.266.6.C1485
– volume: 48
  start-page: 10342
  year: 2009
  ident: 10.1016/j.ibmb.2017.09.005_bib16
  article-title: Molecular characterization of flubendiamide sensitivity in the lepidopterous ryanodine receptor Ca2+ release channel
  publication-title: Biochemistry
  doi: 10.1021/bi900866s
– volume: 98
  start-page: 245
  year: 2017
  ident: 10.1016/j.ibmb.2017.09.005_bib38
  article-title: CRISPR/Cas9 in insects: applications, best practices and biosafety concerns
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2017.01.007
– volume: 105
  start-page: 19821
  year: 2008
  ident: 10.1016/j.ibmb.2017.09.005_bib1
  article-title: Efficient gene targeting in Drosophila by direct embryo injection with zincfinger nucleases
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0810475105
– volume: 3
  start-page: 271
  year: 2014
  ident: 10.1016/j.ibmb.2017.09.005_bib49
  article-title: Various applications of TALEN-and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome
  publication-title: Biol. Open
  doi: 10.1242/bio.20147682
– volume: 49
  start-page: 529
  year: 2014
  ident: 10.1016/j.ibmb.2017.09.005_bib44
  article-title: Rapid development of resistance to diamide insecticides in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: tortricidae), in the tea fields of Shizuoka Prefecture
  publication-title: Jpn. Appl. Entomol. Zool.
  doi: 10.1007/s13355-014-0283-x
– start-page: 18103
  year: 2015
  ident: 10.1016/j.ibmb.2017.09.005_bib50
  article-title: CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep18103
– volume: 80
  start-page: 11
  year: 2017
  ident: 10.1016/j.ibmb.2017.09.005_bib31
  article-title: Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer, Tuta absoluta (Lepidoptera: gelechiidae)
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2016.11.003
– volume: 56
  start-page: 7696
  year: 2008
  ident: 10.1016/j.ibmb.2017.09.005_bib3
  article-title: Liquid chromatography-tandem mass spectrometric ion-switching determination of chlorantraniliprole and flubendiamide in fruits and vegetables
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf8014816
– volume: 70
  start-page: 1083
  year: 2014
  ident: 10.1016/j.ibmb.2017.09.005_bib11
  article-title: Functional analysis of a point mutation in the ryanodine receptor of Plutella xylostella (L.) associated with resistance to chlorantraniliprole
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.3651
– volume: 43
  start-page: 820
  year: 2013
  ident: 10.1016/j.ibmb.2017.09.005_bib39
  article-title: Identification of a critical region in the Drosophila ryanodine receptor that confers sensitivity to diamide insecticides
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2013.06.006
– volume: 38
  start-page: 325
  year: 1968
  ident: 10.1016/j.ibmb.2017.09.005_bib37
  article-title: A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals
  publication-title: Bull. World Health Organ
– volume: 15
  start-page: 4898
  year: 2005
  ident: 10.1016/j.ibmb.2017.09.005_bib18
  article-title: Insecticidal anthranilic diamides: a new class of potent ryanodine receptor activators
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2005.08.034
– volume: 76
  start-page: 11
  year: 2016
  ident: 10.1016/j.ibmb.2017.09.005_bib45
  article-title: Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2016.06.008
– volume: 62
  start-page: 690
  year: 2006
  ident: 10.1016/j.ibmb.2017.09.005_bib24
  article-title: Insecticide mode of action: return of the ryanodine receptor
  publication-title: Pest Manage. Sci.
  doi: 10.1002/ps.1254
– volume: 3
  start-page: 34
  year: 2003
  ident: 10.1016/j.ibmb.2017.09.005_bib26
  article-title: Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance?
  publication-title: J. Insect Sci.
  doi: 10.1093/jis/3.1.34
– volume: 17
  start-page: 6274
  year: 2007
  ident: 10.1016/j.ibmb.2017.09.005_bib19
  article-title: Rynaxypyr™: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2007.09.012
– volume: 339
  start-page: 823
  year: 2013
  ident: 10.1016/j.ibmb.2017.09.005_bib22
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
  doi: 10.1126/science.1232033
– volume: 4
  start-page: 6924
  year: 2014
  ident: 10.1016/j.ibmb.2017.09.005_bib12
  article-title: Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.)
  publication-title: Sci. Rep.
  doi: 10.1038/srep06924
– volume: 64
  start-page: 116
  year: 2015
  ident: 10.1016/j.ibmb.2017.09.005_bib35
  article-title: In vivo functional analysis of the Drosophila melanogaster nicotinic acetylcholine receptor Dα6 using the insecticide spinosad
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2015.01.018
– volume: 288
  start-page: 6154
  year: 2013
  ident: 10.1016/j.ibmb.2017.09.005_bib29
  article-title: Structural determinants of skeletal muscle ryanodine receptor gating
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.433789
– volume: 25
  start-page: 1571
  year: 2012
  ident: 10.1016/j.ibmb.2017.09.005_bib15
  article-title: Insect ryanodine receptor: distinct but coupled insecticide binding sites for [N-C3H3] chlorantraniliprole, flubendiamide, and [3H] ryanodine
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx300326m
– year: 2002
  ident: 10.1016/j.ibmb.2017.09.005_bib21
– volume: 62
  start-page: 4077
  year: 2014
  ident: 10.1016/j.ibmb.2017.09.005_bib28
  article-title: Diamide insecticide target site specificity in the Heliothis and Musca ryanodine receptors relative to toxicity
  publication-title: J. Agric. Food. Chem.
  doi: 10.1021/jf501236h
– volume: 31
  start-page: 484
  year: 2006
  ident: 10.1016/j.ibmb.2017.09.005_bib23
  article-title: New insecticide affecting ryanodine receptor, flubencliamide: biochemical aspects of its action
  publication-title: J. Pestic. Sci.
  doi: 10.1584/jpestics.31.484
– volume: 157
  start-page: 1262
  year: 2014
  ident: 10.1016/j.ibmb.2017.09.005_bib14
  article-title: Development and applications of CRISPR-Cas9 for genome engineering
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.010
– start-page: 219
  year: 2016
  ident: 10.1016/j.ibmb.2017.09.005_bib25
  article-title: Resistance to diamide insecticides in lepidopteran pests
– volume: 101
  start-page: 198
  year: 2011
  ident: 10.1016/j.ibmb.2017.09.005_bib20
  article-title: Monitoring of beet armyworm Spodoptera exigua, (lepidoptera: noctuidae) resistance to chlorantraniliprole in China
  publication-title: Pestic. Biochem. Phys.
  doi: 10.1016/j.pestbp.2011.09.006
– volume: 30
  start-page: 354
  year: 2005
  ident: 10.1016/j.ibmb.2017.09.005_bib41
  article-title: Flubendiamide, a novel insecticide highly active against Lepidopterous insect pests
  publication-title: J. Pestic. Sci.
  doi: 10.1584/jpestics.30.354
– volume: 32
  start-page: 347
  year: 2014
  ident: 10.1016/j.ibmb.2017.09.005_bib32
  article-title: CRISPR-Cas systems for editing, regulating and targeting genomes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2842
– volume: 42
  start-page: 873
  year: 2012
  ident: 10.1016/j.ibmb.2017.09.005_bib42
  article-title: Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2012.09.001
– volume: 106
  start-page: 76
  year: 2013
  ident: 10.1016/j.ibmb.2017.09.005_bib40
  article-title: Diamide insecticides: global efforts to address insect resistance stewardship challenges
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2013.01.010
– volume: 68
  start-page: 629
  year: 2012
  ident: 10.1016/j.ibmb.2017.09.005_bib10
  article-title: Susceptibility of standard clones and European field populations of the green peach aphid, Myzus persicae, and the cotton aphid, Aphis gossypii (Hemiptera: aphididae), to the novel anthranilic diamide insecticide cyantraniliprole
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.2306
– volume: 88
  start-page: 9
  year: 2015
  ident: 10.1016/j.ibmb.2017.09.005_bib30
  article-title: First report of Tuta absoluta resistance to diamide insecticides
  publication-title: J. Pest Sci.
  doi: 10.1007/s10340-015-0643-5
– volume: 23
  start-page: 6341
  year: 2013
  ident: 10.1016/j.ibmb.2017.09.005_bib34
  article-title: Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity
  publication-title: Bioorg. Medic. Chem. Let.
  doi: 10.1016/j.bmcl.2013.09.076
– volume: 107
  start-page: 321
  year: 2013
  ident: 10.1016/j.ibmb.2017.09.005_bib27
  article-title: Species differences in chlorantraniliprole and flubendiamide insecticide binding sites in the ryanodine receptor
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2013.09.004
– volume: 105
  start-page: 1019
  year: 2012
  ident: 10.1016/j.ibmb.2017.09.005_bib47
  article-title: High levels of resistance to chlorantraniliprole evolved in field populations of Plutella xylostella
  publication-title: J. Econ. Entomol.
  doi: 10.1603/EC12059
– volume: 17
  start-page: 4127
  year: 2009
  ident: 10.1016/j.ibmb.2017.09.005_bib17
  article-title: New and selective ryanodine receptor activators for insect control
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmc.2009.01.018
– volume: 17
  start-page: 36
  year: 2016
  ident: 10.1016/j.ibmb.2017.09.005_bib13
  article-title: Applications of CRISPR-Cas systems in neuroscience
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2015.2
– volume: 5
  start-page: 14680
  year: 2015
  ident: 10.1016/j.ibmb.2017.09.005_bib43
  article-title: Stable expression and functional characterisation of the diamondback moth ryanodine receptor G4946E variant conferring resistance to diamide insecticides
  publication-title: Sci. Rep.
  doi: 10.1038/srep14680
– volume: 63
  start-page: 14
  year: 2015
  ident: 10.1016/j.ibmb.2017.09.005_bib36
  article-title: Geographic spread, genetics and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth, Plutella xylostella
  publication-title: Insect Biochem. Mol. Boil
  doi: 10.1016/j.ibmb.2015.05.001
– volume: 87
  start-page: 147
  year: 2017
  ident: 10.1016/j.ibmb.2017.09.005_bib46
  article-title: CRISPR/Cas9 mediated genome editing of Helicoverpa armigera with mutations of an ABC transporter gene HaABCA2 confers resistance to Bacillus thuringiensis Cry2A toxins
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2017.07.002
– volume: 73
  start-page: 62
  year: 2016
  ident: 10.1016/j.ibmb.2017.09.005_bib51
  article-title: A CRISPR/Cas9 mediated point mutation in the alpha 6 subunit of the nicotinic acetylcholine receptor confers resistance to spinosad in Drosophila melanogaster
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2016.04.007
– volume: 84
  start-page: 196
  year: 2005
  ident: 10.1016/j.ibmb.2017.09.005_bib5
  article-title: Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation
  publication-title: Pest. Biochem. Phys.
  doi: 10.1016/j.pestbp.2005.07.005
– volume: 106
  start-page: 1855
  year: 2013
  ident: 10.1016/j.ibmb.2017.09.005_bib4
  article-title: Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: noctuidae) from China
  publication-title: J. Econ. Entomol.
  doi: 10.1603/EC13128
– volume: 3
  start-page: 657
  year: 2013
  ident: 10.1016/j.ibmb.2017.09.005_bib2
  article-title: Donor DNA utilization during gene targeting with zinc-finger nucleases
  publication-title: G3: Genes, Genomes, Genet.
  doi: 10.1534/g3.112.005439
– volume: 87
  start-page: 127
  year: 2017
  ident: 10.1016/j.ibmb.2017.09.005_bib8
  article-title: Investigation of the contribution of RyR target-site mutations in diamide resistance by CRISPR/Cas9 genome modification in Drosophila
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2017.06.013
SSID ssj0004457
Score 2.5258625
Snippet Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 79
SubjectTerms Amino Acid Substitution
Animals
Beet armyworm
calcium
Chilo suppressalis
CRISPR-Cas Systems
CRISPR/Cas9
cyantraniliprole
death
Diamide
Drosophila melanogaster
Female
flubendiamide
gene editing
Gene Editing - methods
genetic background
homozygosity
Insect Control - methods
Insecticide Resistance - genetics
Insecticides
insects
ions
Male
muscle contraction
mutation
paralysis
pests
Plutella xylostella
Point Mutation
Resistance
Ryanodine receptor
Ryanodine Receptor Calcium Release Channel - genetics
ryanodine receptors
Spodoptera - genetics
Spodoptera exigua
Tuta absoluta
Title CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides
URI https://dx.doi.org/10.1016/j.ibmb.2017.09.005
https://www.ncbi.nlm.nih.gov/pubmed/28912111
https://www.proquest.com/docview/1940049077
https://www.proquest.com/docview/2020922485
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9Ki-iLaP06rWUF3yReNjfJZh9LaL0qFulZKL4s-5USqclxuQN98X_of9yZfFQE2wffcmESlp3dmd9efvMbxt6qxFgPTkaQlRCBNCnuuSSLROZSb6RIy0BfdD-fZPMz-Hienm-xYqyFIVrlEPv7mN5F6-HOdJjN6bKqpgvSLUE8nQtapLhPqIIdJK3y97__0DwAerVPNI7Ieiic6Tlelf1hid4lO61TamH37-R0G_jsktDRI_ZwQI_8oB_gY7YV6l12vxibtu2ye9-a7n_yJ-yqOD1efDmdFqZVvKsPQWzJP4CC7JC3GC46jgB6hVc1RxTIV79M3WAmw6tAXJdmxZuSL5Z4bl1SmTIPP6uLjeGuqxFsOQkd80viHLVkiMd2gqI4f3zdcE_14j7gu1uKqA6v26fs7OjwazGPhv4LkYM0XUfOBYjBO9fJWSsXRFaqPPgwk7MAqvRGlAg4QwreQyktSFsGaUyaW5sZm8yese26qcMLxoVxHuIgZOxzag2sEof5MZg8A6uUTSZMjBOv3SBOTj0yLvXIQvuuyVmanKVjpdFZE_bu5pllL81xp3U6-lP_tcA05o47n3szOl-jL-lziqlDs2m1oJ7yoGIpb7dJEI2rhGTjJux5v3JuxopHXdLXEy__c2Sv2AP61TML99j2erUJrxEhre1-twX22c7B8af5yTXKZhCb
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlQuCMpry8tIcEJhk3QSxwcOaGnZpQ-hbitVXFy_goLaZLXZFfTCf-C38AeZyaMIifaA1FuUOJHlsWc-x998w9hLGWvjwIoA0hwCEDrBNRenQZTaxGkRJbmnE929_XR8BB-Pk-MV9qvPhSFaZef7W5_eeOvuzrAbzeGsKIZT0i1BPJ1FNElxnXTMyh1__g33bfXbyXs08qs43t46HI2DrrRAYCFJFoG1HkJw1jZKzdL6KM1l5p3fFJseZO50lCOW8gk4B7kwIEzuhdZJZkyqDakdoN-_AeguqGzCmx9_eCUArbwo9i6g7nWZOi2prDBnhvhkohFXpZp5_46Gl6HdJupt32G3O7jK37Ujcpet-HKdrY36KnHr7Obnqvkxf4_9HB1Mpp8OhiNdS94kpCCY5R9AQrrFa_RPDSkBpwEvSo6wk8_PdVlh6MQrT-Saas6rnE9nuFGeUV4099-LL0vNbZOUWHNSVuanRHKqqeHc14R90WB8UXFHCerO47drcuEWr-v77OharPKArZZV6R8xHmnrIPSRCF1GtYhlbDEge52lYKQ08YBF_cAr26mhU1GOU9XT3r4qMpYiY6lQKjTWgL2-eGfWaoFc2Trp7an-mtEKg9WV773oja_QlnR-o0tfLWsVURF7kKEQl7eJEf7LmHTqBuxhO3Mu-op7axL0izb-s2fP2dr4cG9X7U72dx6zW_SkpTU-YauL-dI_RXi2MM-a5cDZyXWvv9__bE6v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR%2FCas9+mediated+G4946E+substitution+in+the+ryanodine+receptor+of+Spodoptera+exigua+confers+high+levels+of+resistance+to+diamide+insecticides&rft.jtitle=Insect+biochemistry+and+molecular+biology&rft.au=Zuo%2C+Yayun&rft.au=Wang%2C+Hui&rft.au=Xu%2C+Yanjun&rft.au=Huang%2C+Jianlei&rft.date=2017-10-01&rft.eissn=1879-0240&rft.volume=89&rft.spage=79&rft_id=info:doi/10.1016%2Fj.ibmb.2017.09.005&rft_id=info%3Apmid%2F28912111&rft.externalDocID=28912111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-1748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-1748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-1748&client=summon