CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides
Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction, paralysis and eventually death. The RyRG4946E substitution associated with diamide resistance has been identified in three lepidopteran pests, P...
Saved in:
Published in | Insect biochemistry and molecular biology Vol. 89; pp. 79 - 85 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction, paralysis and eventually death. The RyRG4946E substitution associated with diamide resistance has been identified in three lepidopteran pests, Plutella xylostella, Tuta absoluta and Chilo suppressalis. Recently, the T. absoluta RyRG4946V mutation was knocked into the model insect Drosophila melanogaster by CRISPR/Cas9 mediated genome editing and provided in vivo functional confirmation for its role in diamide resistance. In the present study, we successfully introduced the RyRG4946E mutation with CRISPR/Cas9 technology into a lepidopteran pest of global importance, Spodoptera exigua. The genome-edited strain (named 4946E) homozygous for the SeRyRG4946E mutation exhibited 223-, 336- and >1000-fold resistance to chlorantraniliprole, cyantraniliprole and flubendiamide, respectively when compared to the wild type strain (WHS) of S. exigua. Reciprocal crossing experiments revealed that the target-site resistance in strain 4946E underlies an autosomal and almost recessive mode of inheritance for anthranilic diamides, whereas it was completely recessive for flubendiamide. Our results not only provided in vivo functional validation of the RyRG4946E mutation in conferring high levels of resistance to diamide insecticides for the first time in a controlled genetic background of a lepidopteran pest, but also revealed slight differences on the level of resistance between anthranilic diamides (chlorantraniliprole and cyantraniliprole) and flubendiamide conferred by the SeRyRG4946E mutation.
[Display omitted]
•Diamide insecticides target insect ryanodine receptors (RyRs).•The RyRG4946E substitution associated with diamide resistance identified in three lepidopteran pests.•The RyRG4946E mutation was introduced with CRISPR/Cas9 into a lepidopteran pest Spodoptera exigua.•The S. exigua strain with the SeRyRG4946E mutation confers high levels of resistance to diamides. |
---|---|
AbstractList | Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction, paralysis and eventually death. The RyR
substitution associated with diamide resistance has been identified in three lepidopteran pests, Plutella xylostella, Tuta absoluta and Chilo suppressalis. Recently, the T. absoluta RyR
mutation was knocked into the model insect Drosophila melanogaster by CRISPR/Cas9 mediated genome editing and provided in vivo functional confirmation for its role in diamide resistance. In the present study, we successfully introduced the RyR
mutation with CRISPR/Cas9 technology into a lepidopteran pest of global importance, Spodoptera exigua. The genome-edited strain (named 4946E) homozygous for the SeRyR
mutation exhibited 223-, 336- and >1000-fold resistance to chlorantraniliprole, cyantraniliprole and flubendiamide, respectively when compared to the wild type strain (WHS) of S. exigua. Reciprocal crossing experiments revealed that the target-site resistance in strain 4946E underlies an autosomal and almost recessive mode of inheritance for anthranilic diamides, whereas it was completely recessive for flubendiamide. Our results not only provided in vivo functional validation of the RyR
mutation in conferring high levels of resistance to diamide insecticides for the first time in a controlled genetic background of a lepidopteran pest, but also revealed slight differences on the level of resistance between anthranilic diamides (chlorantraniliprole and cyantraniliprole) and flubendiamide conferred by the SeRyR
mutation. Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction, paralysis and eventually death. The RyRG4946E substitution associated with diamide resistance has been identified in three lepidopteran pests, Plutella xylostella, Tuta absoluta and Chilo suppressalis. Recently, the T. absoluta RyRG4946V mutation was knocked into the model insect Drosophila melanogaster by CRISPR/Cas9 mediated genome editing and provided in vivo functional confirmation for its role in diamide resistance. In the present study, we successfully introduced the RyRG4946E mutation with CRISPR/Cas9 technology into a lepidopteran pest of global importance, Spodoptera exigua. The genome-edited strain (named 4946E) homozygous for the SeRyRG4946E mutation exhibited 223-, 336- and >1000-fold resistance to chlorantraniliprole, cyantraniliprole and flubendiamide, respectively when compared to the wild type strain (WHS) of S. exigua. Reciprocal crossing experiments revealed that the target-site resistance in strain 4946E underlies an autosomal and almost recessive mode of inheritance for anthranilic diamides, whereas it was completely recessive for flubendiamide. Our results not only provided in vivo functional validation of the RyRG4946E mutation in conferring high levels of resistance to diamide insecticides for the first time in a controlled genetic background of a lepidopteran pest, but also revealed slight differences on the level of resistance between anthranilic diamides (chlorantraniliprole and cyantraniliprole) and flubendiamide conferred by the SeRyRG4946E mutation.Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction, paralysis and eventually death. The RyRG4946E substitution associated with diamide resistance has been identified in three lepidopteran pests, Plutella xylostella, Tuta absoluta and Chilo suppressalis. Recently, the T. absoluta RyRG4946V mutation was knocked into the model insect Drosophila melanogaster by CRISPR/Cas9 mediated genome editing and provided in vivo functional confirmation for its role in diamide resistance. In the present study, we successfully introduced the RyRG4946E mutation with CRISPR/Cas9 technology into a lepidopteran pest of global importance, Spodoptera exigua. The genome-edited strain (named 4946E) homozygous for the SeRyRG4946E mutation exhibited 223-, 336- and >1000-fold resistance to chlorantraniliprole, cyantraniliprole and flubendiamide, respectively when compared to the wild type strain (WHS) of S. exigua. Reciprocal crossing experiments revealed that the target-site resistance in strain 4946E underlies an autosomal and almost recessive mode of inheritance for anthranilic diamides, whereas it was completely recessive for flubendiamide. Our results not only provided in vivo functional validation of the RyRG4946E mutation in conferring high levels of resistance to diamide insecticides for the first time in a controlled genetic background of a lepidopteran pest, but also revealed slight differences on the level of resistance between anthranilic diamides (chlorantraniliprole and cyantraniliprole) and flubendiamide conferred by the SeRyRG4946E mutation. Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction, paralysis and eventually death. The RyRG4946E substitution associated with diamide resistance has been identified in three lepidopteran pests, Plutella xylostella, Tuta absoluta and Chilo suppressalis. Recently, the T. absoluta RyRG4946V mutation was knocked into the model insect Drosophila melanogaster by CRISPR/Cas9 mediated genome editing and provided in vivo functional confirmation for its role in diamide resistance. In the present study, we successfully introduced the RyRG4946E mutation with CRISPR/Cas9 technology into a lepidopteran pest of global importance, Spodoptera exigua. The genome-edited strain (named 4946E) homozygous for the SeRyRG4946E mutation exhibited 223-, 336- and >1000-fold resistance to chlorantraniliprole, cyantraniliprole and flubendiamide, respectively when compared to the wild type strain (WHS) of S. exigua. Reciprocal crossing experiments revealed that the target-site resistance in strain 4946E underlies an autosomal and almost recessive mode of inheritance for anthranilic diamides, whereas it was completely recessive for flubendiamide. Our results not only provided in vivo functional validation of the RyRG4946E mutation in conferring high levels of resistance to diamide insecticides for the first time in a controlled genetic background of a lepidopteran pest, but also revealed slight differences on the level of resistance between anthranilic diamides (chlorantraniliprole and cyantraniliprole) and flubendiamide conferred by the SeRyRG4946E mutation. [Display omitted] •Diamide insecticides target insect ryanodine receptors (RyRs).•The RyRG4946E substitution associated with diamide resistance identified in three lepidopteran pests.•The RyRG4946E mutation was introduced with CRISPR/Cas9 into a lepidopteran pest Spodoptera exigua.•The S. exigua strain with the SeRyRG4946E mutation confers high levels of resistance to diamides. Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction, paralysis and eventually death. The RyRG4946E substitution associated with diamide resistance has been identified in three lepidopteran pests, Plutella xylostella, Tuta absoluta and Chilo suppressalis. Recently, the T. absoluta RyRG4946V mutation was knocked into the model insect Drosophila melanogaster by CRISPR/Cas9 mediated genome editing and provided in vivo functional confirmation for its role in diamide resistance. In the present study, we successfully introduced the RyRG4946E mutation with CRISPR/Cas9 technology into a lepidopteran pest of global importance, Spodoptera exigua. The genome-edited strain (named 4946E) homozygous for the SeRyRG4946E mutation exhibited 223-, 336- and >1000-fold resistance to chlorantraniliprole, cyantraniliprole and flubendiamide, respectively when compared to the wild type strain (WHS) of S. exigua. Reciprocal crossing experiments revealed that the target-site resistance in strain 4946E underlies an autosomal and almost recessive mode of inheritance for anthranilic diamides, whereas it was completely recessive for flubendiamide. Our results not only provided in vivo functional validation of the RyRG4946E mutation in conferring high levels of resistance to diamide insecticides for the first time in a controlled genetic background of a lepidopteran pest, but also revealed slight differences on the level of resistance between anthranilic diamides (chlorantraniliprole and cyantraniliprole) and flubendiamide conferred by the SeRyRG4946E mutation. |
Author | Huang, Jianlei Xu, Yanjun Yang, Yihua Wang, Hui Wu, Shuwen Wu, Yidong Zuo, Yayun |
Author_xml | – sequence: 1 givenname: Yayun surname: Zuo fullname: Zuo, Yayun email: zuoyayun0734@163.com – sequence: 2 givenname: Hui surname: Wang fullname: Wang, Hui email: 2016102091@njau.edu.cn – sequence: 3 givenname: Yanjun surname: Xu fullname: Xu, Yanjun email: 2016102098@njau.edu.cn – sequence: 4 givenname: Jianlei surname: Huang fullname: Huang, Jianlei email: 2014102100@njau.edu.cn – sequence: 5 givenname: Shuwen surname: Wu fullname: Wu, Shuwen email: swwu@njau.edu.cn – sequence: 6 givenname: Yidong orcidid: 0000-0003-3456-3373 surname: Wu fullname: Wu, Yidong email: wyd@njau.edu.cn – sequence: 7 givenname: Yihua surname: Yang fullname: Yang, Yihua email: yhyang@njau.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28912111$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URKeFF2CBvGST9Nrj_Fhig0alVKoEamFtOfZNx6MkDrZT0cfgjXE0hQWLsvJdnO9e-Ttn5GTyExLylkHJgNUXh9J1Y1dyYE0JsgSoXpANaxtZABdwQjYg66pgjWhPyVmMBwAQompekVPeSsYZYxvya3d7fff19mKno6QjWqcTWnolpKgvaVy6mFxakvMTdRNNe6ThUU_euilPaHBOPlDf07vZWz8nDJriT3e_aGr81GOIdO_u93TABxziCgaMLiY9GaTJ03xudBbz7ogmOZPn-Jq87PUQ8c3Te06-f7r8tvtc3Hy5ut59vCmMqKpUGIMChDUGqvxDaZDVvWzR4rbZopC91ayHFrAS1oq-6UTT9dhoXbVdV-uOb8_J--PeOfgfC8akRhcNDoOe0C9RceAgORdt9V-USZGrldA0GX33hC5drlPNwY06PKo_jWeAHwETfIwB-78IA7VqVQe1alWrVgVSZa051P4TMi7pVUsK2g3PRz8co1kAPjgMKhqHuX_rssCkrHfPxX8DvaK_Xg |
CitedBy_id | crossref_primary_10_1016_j_cois_2018_03_005 crossref_primary_10_1016_j_jenvman_2024_120326 crossref_primary_10_1007_s12298_024_01486_x crossref_primary_10_1111_1744_7917_12838 crossref_primary_10_1016_j_ibmb_2024_104107 crossref_primary_10_1016_j_bmcl_2019_126902 crossref_primary_10_1007_s10340_020_01220_y crossref_primary_10_1039_C8RA00161H crossref_primary_10_1016_j_pestbp_2024_105991 crossref_primary_10_1016_j_cois_2018_04_004 crossref_primary_10_3390_insects13040365 crossref_primary_10_1016_j_ibmb_2020_103367 crossref_primary_10_3390_agriculture12122108 crossref_primary_10_1016_j_pestbp_2024_105953 crossref_primary_10_1016_j_cois_2018_04_009 crossref_primary_10_1111_1744_7917_13042 crossref_primary_10_1111_1744_7917_13282 crossref_primary_10_1016_j_ibmb_2020_103361 crossref_primary_10_1016_j_pestbp_2018_03_012 crossref_primary_10_1016_j_pestbp_2022_105076 crossref_primary_10_1016_j_pestbp_2022_105153 crossref_primary_10_3390_biom11071031 crossref_primary_10_3390_insects15100777 crossref_primary_10_1016_j_semcdb_2019_04_008 crossref_primary_10_1111_imb_12640 crossref_primary_10_3390_ijms252212360 crossref_primary_10_1021_acs_jafc_1c00922 crossref_primary_10_1016_j_ibmb_2025_104277 crossref_primary_10_4103_epj_epj_27_23 crossref_primary_10_1038_s41467_024_53490_0 crossref_primary_10_1111_1744_7917_12922 crossref_primary_10_7554_eLife_97189 crossref_primary_10_3390_ijms22095027 crossref_primary_10_3389_fphys_2021_780255 crossref_primary_10_1007_s11356_021_16974_w crossref_primary_10_1007_s42452_019_1068_1 crossref_primary_10_1002_ps_6539 crossref_primary_10_1016_j_envpol_2023_122458 crossref_primary_10_3390_insects13070626 crossref_primary_10_1002_ps_5889 crossref_primary_10_1007_s10340_022_01557_6 crossref_primary_10_1016_j_ibmb_2020_103453 crossref_primary_10_1371_journal_pgen_1009888 crossref_primary_10_1002_ps_5689 crossref_primary_10_1016_j_pestbp_2020_104590 crossref_primary_10_3390_stresses2040034 crossref_primary_10_1002_ps_6534 crossref_primary_10_1002_ps_5761 crossref_primary_10_1002_ps_5165 crossref_primary_10_1002_ps_8598 crossref_primary_10_1016_j_pestbp_2020_104595 crossref_primary_10_1126_sciadv_ads0643 crossref_primary_10_1002_ps_7550 crossref_primary_10_1016_j_pestbp_2021_104879 crossref_primary_10_1016_j_ibmb_2023_104042 crossref_primary_10_1016_j_chemosphere_2024_143623 crossref_primary_10_1002_ps_6183 crossref_primary_10_1016_j_pestbp_2021_104831 crossref_primary_10_3390_insects13111075 crossref_primary_10_1021_acs_jafc_4c04134 crossref_primary_10_1371_journal_pgen_1009680 crossref_primary_10_2174_1381612827666210902150224 crossref_primary_10_1016_j_ibmb_2018_12_008 crossref_primary_10_1111_1744_7917_12896 crossref_primary_10_1016_j_pestbp_2019_04_005 crossref_primary_10_1021_acs_jafc_4c06839 crossref_primary_10_1002_slct_201800123 crossref_primary_10_1093_jee_toae109 crossref_primary_10_1111_1744_7917_12695 crossref_primary_10_1002_ps_6746 crossref_primary_10_1371_journal_pone_0259322 crossref_primary_10_1016_j_pestbp_2023_105579 crossref_primary_10_1007_s10646_021_02390_w crossref_primary_10_1016_j_ecoenv_2021_112452 crossref_primary_10_1002_ps_7512 crossref_primary_10_1016_j_ijbiomac_2023_123389 crossref_primary_10_1007_s10340_020_01314_7 crossref_primary_10_1002_ps_5381 crossref_primary_10_3389_fgene_2023_1235855 crossref_primary_10_1016_j_jinsphys_2021_104325 crossref_primary_10_3389_fphys_2022_1107045 crossref_primary_10_1146_annurev_ento_011118_112420 crossref_primary_10_1016_j_ibmb_2019_103308 crossref_primary_10_7585_kjps_2021_25_2_128 crossref_primary_10_1016_j_heliyon_2024_e40556 crossref_primary_10_1007_s10340_023_01736_z crossref_primary_10_1016_j_cois_2020_03_006 crossref_primary_10_7554_eLife_97189_4 crossref_primary_10_1002_ps_5505 crossref_primary_10_3390_agronomy12071664 crossref_primary_10_1002_ps_7404 crossref_primary_10_1111_jen_13193 crossref_primary_10_3389_fgene_2022_914029 crossref_primary_10_3390_ijms241713330 crossref_primary_10_1002_ps_5782 |
Cites_doi | 10.1002/ps.4439 10.1152/physrev.00013.2002 10.1007/s10158-008-0076-4 10.1073/pnas.1618258113 10.1152/ajpcell.1994.266.6.C1485 10.1021/bi900866s 10.1016/j.jinsphys.2017.01.007 10.1073/pnas.0810475105 10.1242/bio.20147682 10.1007/s13355-014-0283-x 10.1038/srep18103 10.1016/j.ibmb.2016.11.003 10.1021/jf8014816 10.1002/ps.3651 10.1016/j.ibmb.2013.06.006 10.1016/j.bmcl.2005.08.034 10.1016/j.ibmb.2016.06.008 10.1002/ps.1254 10.1093/jis/3.1.34 10.1016/j.bmcl.2007.09.012 10.1126/science.1232033 10.1038/srep06924 10.1016/j.ibmb.2015.01.018 10.1074/jbc.M112.433789 10.1021/tx300326m 10.1021/jf501236h 10.1584/jpestics.31.484 10.1016/j.cell.2014.05.010 10.1016/j.pestbp.2011.09.006 10.1584/jpestics.30.354 10.1038/nbt.2842 10.1016/j.ibmb.2012.09.001 10.1016/j.pestbp.2013.01.010 10.1002/ps.2306 10.1007/s10340-015-0643-5 10.1016/j.bmcl.2013.09.076 10.1016/j.pestbp.2013.09.004 10.1603/EC12059 10.1016/j.bmc.2009.01.018 10.1038/nrn.2015.2 10.1038/srep14680 10.1016/j.ibmb.2015.05.001 10.1016/j.ibmb.2017.07.002 10.1016/j.ibmb.2016.04.007 10.1016/j.pestbp.2005.07.005 10.1603/EC13128 10.1534/g3.112.005439 10.1016/j.ibmb.2017.06.013 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ibmb.2017.09.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Zoology |
EISSN | 1879-0240 |
EndPage | 85 |
ExternalDocumentID | 28912111 10_1016_j_ibmb_2017_09_005 S0965174817301376 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HVGLF HZ~ IHE J1W KOM LW9 LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SDF SDG SES SEW SPCBC SSA SSU SSZ T5K UHS WH7 WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c455t-cce404dcc051749ce16f98ede373e49fda1f080e54dd4f7b47bfe7aa58bb6ab23 |
IEDL.DBID | .~1 |
ISSN | 0965-1748 1879-0240 |
IngestDate | Thu Jul 10 19:20:08 EDT 2025 Thu Jul 10 23:28:21 EDT 2025 Wed Feb 19 02:43:53 EST 2025 Tue Jul 01 01:50:44 EDT 2025 Thu Apr 24 23:02:16 EDT 2025 Fri Feb 23 02:19:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Resistance Beet armyworm CRISPR/Cas9 Ryanodine receptor Diamide |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-cce404dcc051749ce16f98ede373e49fda1f080e54dd4f7b47bfe7aa58bb6ab23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3456-3373 |
PMID | 28912111 |
PQID | 1940049077 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2020922485 proquest_miscellaneous_1940049077 pubmed_primary_28912111 crossref_primary_10_1016_j_ibmb_2017_09_005 crossref_citationtrail_10_1016_j_ibmb_2017_09_005 elsevier_sciencedirect_doi_10_1016_j_ibmb_2017_09_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2017 2017-10-00 20171001 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: October 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Insect biochemistry and molecular biology |
PublicationTitleAlternate | Insect Biochem Mol Biol |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Douris, Papapostolou, Ilias, Roditakis, Kounadi, Riga, Vontas (bib8) 2017; 87 Troczka, Zimmer, Elias, Schorn, Bass, Davies, Fielda, Williamsona, Slaterc, Nauen (bib42) 2012; 42 Che, Shi, Wu, Yang (bib4) 2013; 106 Foster, Denholm, Rison, Portillo, Margaritopoulis, Slater (bib10) 2012; 68 Beumer, Trautman, Mukherjee, Carroll (bib2) 2013; 3 Steinbach, Gutbrod, Lümmen, Matthiesen, Schorn, Nauen (bib36) 2015; 63 Sattelle, Cordova, Cheek (bib33) 2008; 8 Isaacs, Qi, Sarpong, Casida (bib15) 2012; 25 Taning, Van Eynde, Yu, Ma, Smagghe (bib38) 2017; 98 Guo, Wang, Zhou, Li, Liu, Pei, Gao (bib11) 2014; 70 Ramachandran, Chakraborty, Xu, Mein, Samso, Dokholyan, Meissner (bib29) 2013; 288 Payton, Greenstone, Schenker (bib26) 2003; 3 Mali, Yang, Esvelt, Aach, Guell, DiCarlo, Church (bib22) 2013; 339 Wang, Wu (bib47) 2012; 105 Selby, Lahm, Stevenson, Hughes, Cordova, Annan, Pahutski (bib34) 2013; 23 Somers, Nguyen, Lumb, Batterham, Perry (bib35) 2015; 64 Zimmer, Garrood, Puinean, Eckel-Zimmer, Williamson, Davies, Bass (bib51) 2016; 73 Hsu, Lander, Zhang (bib14) 2014; 157 Tohnishi, Nakao, Furuya, Seo, Kodama, Tsubata, Fujioka, Kodama, Hirooka, Nishimatsu (bib41) 2005; 30 Wang, Zhang, Wang, Zhao, Zuo, Yang, Wu (bib45) 2016; 76 Kato, Kiyonaka, Sawaguchi, Tohnishi, Masaki, Yasokawa, Mizuno, Mori, Inoue, Hamachi, Takeshima, Mori (bib16) 2009; 48 Zhu, Mon, Xu, Lee, Kusakabe (bib50) 2015 Cordova, Benner, Sacher, Rauh, Sopa, Lahm, Selby, Stevenson, Flexner, Gutteridge, Rhoades, Wu, Smith, Tao (bib5) 2005; 84 Uchiyama, Ozawa (bib44) 2014; 49 Roditakis, Steinbach, Moritz, Vasakis, Stavrakaki, Ilias, Silva (bib31) 2017; 80 Fill, Copella (bib9) 2002; 82 Beumer, Trautman, Bozas, Liu, Rutter, Gall, Carroll (bib1) 2008; 105 Tao, Gutteridge, Benner, Wu, Rhoades, Sacher, Rivera, Desaeger, Cordova (bib39) 2013; 43 Coronado, Morrissette, Sukhareva, Vaughan (bib6) 1994; 266 Troczka, Williams, Williamson, Field, Lümmen, Davies (bib43) 2015; 5 Masaki (bib23) 2006; 31 Nauen (bib24) 2006; 62 Heidenreich, Zhang (bib13) 2016; 17 Qi, Lümmen, Nauen, Casida (bib28) 2014; 62 Stone (bib37) 1968; 38 Roditakis, Vasakis, Grispou, Stavrakaki, Nauen, Gravouil, Bassi (bib30) 2015; 88 Teixeira, Andaloro (bib40) 2013; 106 Wang, Wang, Liu, Liu, Tay, Walsh, Wu (bib46) 2017; 87 Qi, Casida (bib27) 2013; 107 Sander, Joung (bib32) 2014; 32 Lahm, Cordova, Barry (bib17) 2009; 17 Yao, Zhao, Zhang, Zhou, Wang, Gao, Wu (bib48) 2017; 73 Douris, Steinbach, Panteleri, Livadaras, Pickett, Van Leeuwen, Nauen, Vontas (bib7) 2016; 113 Guo, Liang, Zhou, Gao (bib12) 2014; 4 Lahm, Selby, Freudenberger, Stevenson, Myers, Seburyamo, Smith, Flexner, Clark, Cordova (bib18) 2005; 15 Yu, Chen, Liu, Zhang, Yan, Zhu, Guo, Yang, Chang, Dai (bib49) 2014; 3 Caboni, Sarais, Angioni, Vargiu, Pagnozzi, Cabras, Casida (bib3) 2008; 56 Lahm, Stevenson, Selby, Freudenberger, Cordova, Flexner, Bellin, Dubas, Smith, Hugher, Hollingshaus, Clark, Benner (bib19) 2007; 17 Lai, Li, Su (bib20) 2011; 101 Nauen, Steinbach (bib25) 2016 LeOra Software (bib21) 2002 Wang (10.1016/j.ibmb.2017.09.005_bib45) 2016; 76 Douris (10.1016/j.ibmb.2017.09.005_bib7) 2016; 113 Coronado (10.1016/j.ibmb.2017.09.005_bib6) 1994; 266 Sander (10.1016/j.ibmb.2017.09.005_bib32) 2014; 32 Masaki (10.1016/j.ibmb.2017.09.005_bib23) 2006; 31 Beumer (10.1016/j.ibmb.2017.09.005_bib2) 2013; 3 Guo (10.1016/j.ibmb.2017.09.005_bib11) 2014; 70 Roditakis (10.1016/j.ibmb.2017.09.005_bib30) 2015; 88 Che (10.1016/j.ibmb.2017.09.005_bib4) 2013; 106 Somers (10.1016/j.ibmb.2017.09.005_bib35) 2015; 64 Wang (10.1016/j.ibmb.2017.09.005_bib46) 2017; 87 Lahm (10.1016/j.ibmb.2017.09.005_bib18) 2005; 15 Nauen (10.1016/j.ibmb.2017.09.005_bib25) 2016 Stone (10.1016/j.ibmb.2017.09.005_bib37) 1968; 38 Taning (10.1016/j.ibmb.2017.09.005_bib38) 2017; 98 Tohnishi (10.1016/j.ibmb.2017.09.005_bib41) 2005; 30 Heidenreich (10.1016/j.ibmb.2017.09.005_bib13) 2016; 17 Lahm (10.1016/j.ibmb.2017.09.005_bib17) 2009; 17 Cordova (10.1016/j.ibmb.2017.09.005_bib5) 2005; 84 Foster (10.1016/j.ibmb.2017.09.005_bib10) 2012; 68 Douris (10.1016/j.ibmb.2017.09.005_bib8) 2017; 87 Steinbach (10.1016/j.ibmb.2017.09.005_bib36) 2015; 63 Qi (10.1016/j.ibmb.2017.09.005_bib28) 2014; 62 Payton (10.1016/j.ibmb.2017.09.005_bib26) 2003; 3 Mali (10.1016/j.ibmb.2017.09.005_bib22) 2013; 339 Tao (10.1016/j.ibmb.2017.09.005_bib39) 2013; 43 Troczka (10.1016/j.ibmb.2017.09.005_bib43) 2015; 5 Zhu (10.1016/j.ibmb.2017.09.005_bib50) 2015 Hsu (10.1016/j.ibmb.2017.09.005_bib14) 2014; 157 Guo (10.1016/j.ibmb.2017.09.005_bib12) 2014; 4 Uchiyama (10.1016/j.ibmb.2017.09.005_bib44) 2014; 49 Selby (10.1016/j.ibmb.2017.09.005_bib34) 2013; 23 Isaacs (10.1016/j.ibmb.2017.09.005_bib15) 2012; 25 LeOra Software (10.1016/j.ibmb.2017.09.005_bib21) 2002 Wang (10.1016/j.ibmb.2017.09.005_bib47) 2012; 105 Caboni (10.1016/j.ibmb.2017.09.005_bib3) 2008; 56 Roditakis (10.1016/j.ibmb.2017.09.005_bib31) 2017; 80 Lahm (10.1016/j.ibmb.2017.09.005_bib19) 2007; 17 Nauen (10.1016/j.ibmb.2017.09.005_bib24) 2006; 62 Zimmer (10.1016/j.ibmb.2017.09.005_bib51) 2016; 73 Kato (10.1016/j.ibmb.2017.09.005_bib16) 2009; 48 Yao (10.1016/j.ibmb.2017.09.005_bib48) 2017; 73 Sattelle (10.1016/j.ibmb.2017.09.005_bib33) 2008; 8 Beumer (10.1016/j.ibmb.2017.09.005_bib1) 2008; 105 Troczka (10.1016/j.ibmb.2017.09.005_bib42) 2012; 42 Yu (10.1016/j.ibmb.2017.09.005_bib49) 2014; 3 Lai (10.1016/j.ibmb.2017.09.005_bib20) 2011; 101 Teixeira (10.1016/j.ibmb.2017.09.005_bib40) 2013; 106 Fill (10.1016/j.ibmb.2017.09.005_bib9) 2002; 82 Ramachandran (10.1016/j.ibmb.2017.09.005_bib29) 2013; 288 Qi (10.1016/j.ibmb.2017.09.005_bib27) 2013; 107 |
References_xml | – volume: 88 start-page: 9 year: 2015 end-page: 16 ident: bib30 article-title: First report of publication-title: J. Pest Sci. – volume: 63 start-page: 14 year: 2015 end-page: 22 ident: bib36 article-title: Geographic spread, genetics and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth, publication-title: Insect Biochem. Mol. Boil – volume: 84 start-page: 196 year: 2005 end-page: 214 ident: bib5 article-title: Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation publication-title: Pest. Biochem. Phys. – volume: 56 start-page: 7696 year: 2008 end-page: 7699 ident: bib3 article-title: Liquid chromatography-tandem mass spectrometric ion-switching determination of chlorantraniliprole and flubendiamide in fruits and vegetables publication-title: J. Agric. Food Chem. – volume: 82 start-page: 893 year: 2002 end-page: 922 ident: bib9 article-title: Ryanodine receptor calcium release channels publication-title: Physiol. Rev. – start-page: 219 year: 2016 end-page: 236 ident: bib25 article-title: Resistance to diamide insecticides in lepidopteran pests publication-title: Advances in Insect Control and Resistance Management – volume: 62 start-page: 690 year: 2006 end-page: 692 ident: bib24 article-title: Insecticide mode of action: return of the ryanodine receptor publication-title: Pest Manage. Sci. – volume: 32 start-page: 347 year: 2014 end-page: 355 ident: bib32 article-title: CRISPR-Cas systems for editing, regulating and targeting genomes publication-title: Nat. Biotechnol. – volume: 266 start-page: 1485 year: 1994 end-page: 1504 ident: bib6 article-title: Structure and function of ryanodine receptors publication-title: Am. J. Physiol.-Cell Ph – volume: 73 start-page: 62 year: 2016 ident: bib51 article-title: A CRISPR/Cas9 mediated point mutation in the alpha 6 subunit of the nicotinic acetylcholine receptor confers resistance to spinosad in publication-title: Insect Biochem. Mol. Biol. – volume: 288 start-page: 6154 year: 2013 end-page: 6165 ident: bib29 article-title: Structural determinants of skeletal muscle ryanodine receptor gating publication-title: J. Biol. Chem. – volume: 23 start-page: 6341 year: 2013 end-page: 6345 ident: bib34 article-title: Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity publication-title: Bioorg. Medic. Chem. Let. – volume: 38 start-page: 325 year: 1968 end-page: 326 ident: bib37 article-title: A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals publication-title: Bull. World Health Organ – volume: 49 start-page: 529 year: 2014 end-page: 534 ident: bib44 article-title: Rapid development of resistance to diamide insecticides in the smaller tea tortrix, publication-title: Jpn. Appl. Entomol. Zool. – volume: 30 start-page: 354 year: 2005 end-page: 360 ident: bib41 article-title: Flubendiamide, a novel insecticide highly active against Lepidopterous insect pests publication-title: J. Pestic. Sci. – volume: 157 start-page: 1262 year: 2014 end-page: 1278 ident: bib14 article-title: Development and applications of CRISPR-Cas9 for genome engineering publication-title: Cell – volume: 43 start-page: 820 year: 2013 end-page: 828 ident: bib39 article-title: Identification of a critical region in the publication-title: Insect Biochem. Mol. Biol. – volume: 25 start-page: 1571 year: 2012 end-page: 1573 ident: bib15 article-title: Insect ryanodine receptor: distinct but coupled insecticide binding sites for [ publication-title: Chem. Res. Toxicol. – volume: 68 start-page: 629 year: 2012 end-page: 633 ident: bib10 article-title: Susceptibility of standard clones and European field populations of the green peach aphid, publication-title: Pest Manag. Sci. – volume: 31 start-page: 484 year: 2006 end-page: 488 ident: bib23 article-title: New insecticide affecting ryanodine receptor, flubencliamide: biochemical aspects of its action publication-title: J. Pestic. Sci. – volume: 339 start-page: 823 year: 2013 end-page: 826 ident: bib22 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science – volume: 42 start-page: 873 year: 2012 end-page: 880 ident: bib42 article-title: Resistance to diamide insecticides in diamondback moth, publication-title: Insect Biochem. Mol. Biol. – volume: 3 start-page: 657 year: 2013 end-page: 664 ident: bib2 article-title: Donor DNA utilization during gene targeting with zinc-finger nucleases publication-title: G3: Genes, Genomes, Genet. – volume: 113 start-page: 14692 year: 2016 end-page: 14697 ident: bib7 article-title: A resistance mutation conserved between insects and mites unravels the mode of action of benzoylurea and chitin biosynthesis inhibitors publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 64 start-page: 116 year: 2015 end-page: 127 ident: bib35 article-title: In vivo functional analysis of the publication-title: Insect Biochem. Mol. Biol. – volume: 106 start-page: 76 year: 2013 end-page: 78 ident: bib40 article-title: Diamide insecticides: global efforts to address insect resistance stewardship challenges publication-title: Pestic. Biochem. Physiol. – volume: 17 start-page: 6274 year: 2007 end-page: 6279 ident: bib19 article-title: Rynaxypyr™: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator publication-title: Bioorg. Med. Chem. Lett. – volume: 8 start-page: 107 year: 2008 end-page: 119 ident: bib33 article-title: Insect ryanodine receptors: molecular targets for novel pest control chemicals publication-title: Invert. Neurosci. – volume: 87 start-page: 147 year: 2017 end-page: 153 ident: bib46 article-title: CRISPR/Cas9 mediated genome editing of publication-title: Insect Biochem. Mol. Biol. – volume: 80 start-page: 11 year: 2017 end-page: 20 ident: bib31 article-title: Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer, publication-title: Insect Biochem. Mol. Biol. – volume: 105 start-page: 1019 year: 2012 end-page: 1023 ident: bib47 article-title: High levels of resistance to chlorantraniliprole evolved in field populations of publication-title: J. Econ. Entomol. – volume: 87 start-page: 127 year: 2017 end-page: 135 ident: bib8 article-title: Investigation of the contribution of RyR target-site mutations in diamide resistance by CRISPR/Cas9 genome modification in publication-title: Insect Biochem. Mol. Biol. – volume: 105 start-page: 19821 year: 2008 end-page: 19826 ident: bib1 article-title: Efficient gene targeting in publication-title: Proc. Natl. Acad. Sci. – volume: 106 start-page: 1855 year: 2013 end-page: 1862 ident: bib4 article-title: Insecticide resistance status of field populations of publication-title: J. Econ. Entomol. – volume: 62 start-page: 4077 year: 2014 end-page: 4082 ident: bib28 article-title: Diamide insecticide target site specificity in the publication-title: J. Agric. Food. Chem. – start-page: 18103 year: 2015 ident: bib50 article-title: CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells publication-title: Sci. Rep. – volume: 70 start-page: 1083 year: 2014 end-page: 1089 ident: bib11 article-title: Functional analysis of a point mutation in the ryanodine receptor of publication-title: Pest Manag. Sci. – volume: 17 start-page: 36 year: 2016 end-page: 44 ident: bib13 article-title: Applications of CRISPR-Cas systems in neuroscience publication-title: Nat. Rev. Neurosci. – volume: 76 start-page: 11 year: 2016 end-page: 17 ident: bib45 article-title: Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in publication-title: Insect Biochem. Mol. Biol. – volume: 3 start-page: 271 year: 2014 end-page: 280 ident: bib49 article-title: Various applications of TALEN-and CRISPR/Cas9-mediated homologous recombination to modify the publication-title: Biol. Open – volume: 48 start-page: 10342 year: 2009 end-page: 10352 ident: bib16 article-title: Molecular characterization of flubendiamide sensitivity in the lepidopterous ryanodine receptor Ca publication-title: Biochemistry – volume: 101 start-page: 198 year: 2011 end-page: 205 ident: bib20 article-title: Monitoring of beet armyworm publication-title: Pestic. Biochem. Phys. – volume: 73 start-page: 1169 year: 2017 end-page: 1178 ident: bib48 article-title: Monitoring and mechanisms of insecticide resistance in publication-title: Pest Manag. Sci. – volume: 98 start-page: 245 year: 2017 end-page: 257 ident: bib38 article-title: CRISPR/Cas9 in insects: applications, best practices and biosafety concerns publication-title: J. Insect Physiol. – volume: 5 start-page: 14680 year: 2015 ident: bib43 article-title: Stable expression and functional characterisation of the diamondback moth ryanodine receptor G4946E variant conferring resistance to diamide insecticides publication-title: Sci. Rep. – volume: 17 start-page: 4127 year: 2009 end-page: 4133 ident: bib17 article-title: New and selective ryanodine receptor activators for insect control publication-title: Bioorg. Med. Chem. Lett. – volume: 3 start-page: 34 year: 2003 ident: bib26 article-title: Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance? publication-title: J. Insect Sci. – volume: 107 start-page: 321 year: 2013 end-page: 326 ident: bib27 article-title: Species differences in chlorantraniliprole and flubendiamide insecticide binding sites in the ryanodine receptor publication-title: Pestic. Biochem. Physiol. – year: 2002 ident: bib21 article-title: Polo Plus, a user's guide to probit and logit analysis – volume: 4 start-page: 6924 year: 2014 ident: bib12 article-title: Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of publication-title: Sci. Rep. – volume: 15 start-page: 4898 year: 2005 end-page: 4906 ident: bib18 article-title: Insecticidal anthranilic diamides: a new class of potent ryanodine receptor activators publication-title: Bioorg. Med. Chem. Lett. – volume: 73 start-page: 1169 year: 2017 ident: 10.1016/j.ibmb.2017.09.005_bib48 article-title: Monitoring and mechanisms of insecticide resistance in Chilo suppressalis (Lepidoptera: crambidae), with special reference to diamides publication-title: Pest Manag. Sci. doi: 10.1002/ps.4439 – volume: 82 start-page: 893 year: 2002 ident: 10.1016/j.ibmb.2017.09.005_bib9 article-title: Ryanodine receptor calcium release channels publication-title: Physiol. Rev. doi: 10.1152/physrev.00013.2002 – volume: 8 start-page: 107 year: 2008 ident: 10.1016/j.ibmb.2017.09.005_bib33 article-title: Insect ryanodine receptors: molecular targets for novel pest control chemicals publication-title: Invert. Neurosci. doi: 10.1007/s10158-008-0076-4 – volume: 113 start-page: 14692 year: 2016 ident: 10.1016/j.ibmb.2017.09.005_bib7 article-title: A resistance mutation conserved between insects and mites unravels the mode of action of benzoylurea and chitin biosynthesis inhibitors publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1618258113 – volume: 266 start-page: 1485 year: 1994 ident: 10.1016/j.ibmb.2017.09.005_bib6 article-title: Structure and function of ryanodine receptors publication-title: Am. J. Physiol.-Cell Ph doi: 10.1152/ajpcell.1994.266.6.C1485 – volume: 48 start-page: 10342 year: 2009 ident: 10.1016/j.ibmb.2017.09.005_bib16 article-title: Molecular characterization of flubendiamide sensitivity in the lepidopterous ryanodine receptor Ca2+ release channel publication-title: Biochemistry doi: 10.1021/bi900866s – volume: 98 start-page: 245 year: 2017 ident: 10.1016/j.ibmb.2017.09.005_bib38 article-title: CRISPR/Cas9 in insects: applications, best practices and biosafety concerns publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2017.01.007 – volume: 105 start-page: 19821 year: 2008 ident: 10.1016/j.ibmb.2017.09.005_bib1 article-title: Efficient gene targeting in Drosophila by direct embryo injection with zincfinger nucleases publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0810475105 – volume: 3 start-page: 271 year: 2014 ident: 10.1016/j.ibmb.2017.09.005_bib49 article-title: Various applications of TALEN-and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome publication-title: Biol. Open doi: 10.1242/bio.20147682 – volume: 49 start-page: 529 year: 2014 ident: 10.1016/j.ibmb.2017.09.005_bib44 article-title: Rapid development of resistance to diamide insecticides in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: tortricidae), in the tea fields of Shizuoka Prefecture publication-title: Jpn. Appl. Entomol. Zool. doi: 10.1007/s13355-014-0283-x – start-page: 18103 year: 2015 ident: 10.1016/j.ibmb.2017.09.005_bib50 article-title: CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells publication-title: Sci. Rep. doi: 10.1038/srep18103 – volume: 80 start-page: 11 year: 2017 ident: 10.1016/j.ibmb.2017.09.005_bib31 article-title: Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer, Tuta absoluta (Lepidoptera: gelechiidae) publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2016.11.003 – volume: 56 start-page: 7696 year: 2008 ident: 10.1016/j.ibmb.2017.09.005_bib3 article-title: Liquid chromatography-tandem mass spectrometric ion-switching determination of chlorantraniliprole and flubendiamide in fruits and vegetables publication-title: J. Agric. Food Chem. doi: 10.1021/jf8014816 – volume: 70 start-page: 1083 year: 2014 ident: 10.1016/j.ibmb.2017.09.005_bib11 article-title: Functional analysis of a point mutation in the ryanodine receptor of Plutella xylostella (L.) associated with resistance to chlorantraniliprole publication-title: Pest Manag. Sci. doi: 10.1002/ps.3651 – volume: 43 start-page: 820 year: 2013 ident: 10.1016/j.ibmb.2017.09.005_bib39 article-title: Identification of a critical region in the Drosophila ryanodine receptor that confers sensitivity to diamide insecticides publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2013.06.006 – volume: 38 start-page: 325 year: 1968 ident: 10.1016/j.ibmb.2017.09.005_bib37 article-title: A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals publication-title: Bull. World Health Organ – volume: 15 start-page: 4898 year: 2005 ident: 10.1016/j.ibmb.2017.09.005_bib18 article-title: Insecticidal anthranilic diamides: a new class of potent ryanodine receptor activators publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2005.08.034 – volume: 76 start-page: 11 year: 2016 ident: 10.1016/j.ibmb.2017.09.005_bib45 article-title: Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2016.06.008 – volume: 62 start-page: 690 year: 2006 ident: 10.1016/j.ibmb.2017.09.005_bib24 article-title: Insecticide mode of action: return of the ryanodine receptor publication-title: Pest Manage. Sci. doi: 10.1002/ps.1254 – volume: 3 start-page: 34 year: 2003 ident: 10.1016/j.ibmb.2017.09.005_bib26 article-title: Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance? publication-title: J. Insect Sci. doi: 10.1093/jis/3.1.34 – volume: 17 start-page: 6274 year: 2007 ident: 10.1016/j.ibmb.2017.09.005_bib19 article-title: Rynaxypyr™: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2007.09.012 – volume: 339 start-page: 823 year: 2013 ident: 10.1016/j.ibmb.2017.09.005_bib22 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science doi: 10.1126/science.1232033 – volume: 4 start-page: 6924 year: 2014 ident: 10.1016/j.ibmb.2017.09.005_bib12 article-title: Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.) publication-title: Sci. Rep. doi: 10.1038/srep06924 – volume: 64 start-page: 116 year: 2015 ident: 10.1016/j.ibmb.2017.09.005_bib35 article-title: In vivo functional analysis of the Drosophila melanogaster nicotinic acetylcholine receptor Dα6 using the insecticide spinosad publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2015.01.018 – volume: 288 start-page: 6154 year: 2013 ident: 10.1016/j.ibmb.2017.09.005_bib29 article-title: Structural determinants of skeletal muscle ryanodine receptor gating publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.433789 – volume: 25 start-page: 1571 year: 2012 ident: 10.1016/j.ibmb.2017.09.005_bib15 article-title: Insect ryanodine receptor: distinct but coupled insecticide binding sites for [N-C3H3] chlorantraniliprole, flubendiamide, and [3H] ryanodine publication-title: Chem. Res. Toxicol. doi: 10.1021/tx300326m – year: 2002 ident: 10.1016/j.ibmb.2017.09.005_bib21 – volume: 62 start-page: 4077 year: 2014 ident: 10.1016/j.ibmb.2017.09.005_bib28 article-title: Diamide insecticide target site specificity in the Heliothis and Musca ryanodine receptors relative to toxicity publication-title: J. Agric. Food. Chem. doi: 10.1021/jf501236h – volume: 31 start-page: 484 year: 2006 ident: 10.1016/j.ibmb.2017.09.005_bib23 article-title: New insecticide affecting ryanodine receptor, flubencliamide: biochemical aspects of its action publication-title: J. Pestic. Sci. doi: 10.1584/jpestics.31.484 – volume: 157 start-page: 1262 year: 2014 ident: 10.1016/j.ibmb.2017.09.005_bib14 article-title: Development and applications of CRISPR-Cas9 for genome engineering publication-title: Cell doi: 10.1016/j.cell.2014.05.010 – start-page: 219 year: 2016 ident: 10.1016/j.ibmb.2017.09.005_bib25 article-title: Resistance to diamide insecticides in lepidopteran pests – volume: 101 start-page: 198 year: 2011 ident: 10.1016/j.ibmb.2017.09.005_bib20 article-title: Monitoring of beet armyworm Spodoptera exigua, (lepidoptera: noctuidae) resistance to chlorantraniliprole in China publication-title: Pestic. Biochem. Phys. doi: 10.1016/j.pestbp.2011.09.006 – volume: 30 start-page: 354 year: 2005 ident: 10.1016/j.ibmb.2017.09.005_bib41 article-title: Flubendiamide, a novel insecticide highly active against Lepidopterous insect pests publication-title: J. Pestic. Sci. doi: 10.1584/jpestics.30.354 – volume: 32 start-page: 347 year: 2014 ident: 10.1016/j.ibmb.2017.09.005_bib32 article-title: CRISPR-Cas systems for editing, regulating and targeting genomes publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2842 – volume: 42 start-page: 873 year: 2012 ident: 10.1016/j.ibmb.2017.09.005_bib42 article-title: Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2012.09.001 – volume: 106 start-page: 76 year: 2013 ident: 10.1016/j.ibmb.2017.09.005_bib40 article-title: Diamide insecticides: global efforts to address insect resistance stewardship challenges publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2013.01.010 – volume: 68 start-page: 629 year: 2012 ident: 10.1016/j.ibmb.2017.09.005_bib10 article-title: Susceptibility of standard clones and European field populations of the green peach aphid, Myzus persicae, and the cotton aphid, Aphis gossypii (Hemiptera: aphididae), to the novel anthranilic diamide insecticide cyantraniliprole publication-title: Pest Manag. Sci. doi: 10.1002/ps.2306 – volume: 88 start-page: 9 year: 2015 ident: 10.1016/j.ibmb.2017.09.005_bib30 article-title: First report of Tuta absoluta resistance to diamide insecticides publication-title: J. Pest Sci. doi: 10.1007/s10340-015-0643-5 – volume: 23 start-page: 6341 year: 2013 ident: 10.1016/j.ibmb.2017.09.005_bib34 article-title: Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity publication-title: Bioorg. Medic. Chem. Let. doi: 10.1016/j.bmcl.2013.09.076 – volume: 107 start-page: 321 year: 2013 ident: 10.1016/j.ibmb.2017.09.005_bib27 article-title: Species differences in chlorantraniliprole and flubendiamide insecticide binding sites in the ryanodine receptor publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2013.09.004 – volume: 105 start-page: 1019 year: 2012 ident: 10.1016/j.ibmb.2017.09.005_bib47 article-title: High levels of resistance to chlorantraniliprole evolved in field populations of Plutella xylostella publication-title: J. Econ. Entomol. doi: 10.1603/EC12059 – volume: 17 start-page: 4127 year: 2009 ident: 10.1016/j.ibmb.2017.09.005_bib17 article-title: New and selective ryanodine receptor activators for insect control publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmc.2009.01.018 – volume: 17 start-page: 36 year: 2016 ident: 10.1016/j.ibmb.2017.09.005_bib13 article-title: Applications of CRISPR-Cas systems in neuroscience publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2015.2 – volume: 5 start-page: 14680 year: 2015 ident: 10.1016/j.ibmb.2017.09.005_bib43 article-title: Stable expression and functional characterisation of the diamondback moth ryanodine receptor G4946E variant conferring resistance to diamide insecticides publication-title: Sci. Rep. doi: 10.1038/srep14680 – volume: 63 start-page: 14 year: 2015 ident: 10.1016/j.ibmb.2017.09.005_bib36 article-title: Geographic spread, genetics and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth, Plutella xylostella publication-title: Insect Biochem. Mol. Boil doi: 10.1016/j.ibmb.2015.05.001 – volume: 87 start-page: 147 year: 2017 ident: 10.1016/j.ibmb.2017.09.005_bib46 article-title: CRISPR/Cas9 mediated genome editing of Helicoverpa armigera with mutations of an ABC transporter gene HaABCA2 confers resistance to Bacillus thuringiensis Cry2A toxins publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2017.07.002 – volume: 73 start-page: 62 year: 2016 ident: 10.1016/j.ibmb.2017.09.005_bib51 article-title: A CRISPR/Cas9 mediated point mutation in the alpha 6 subunit of the nicotinic acetylcholine receptor confers resistance to spinosad in Drosophila melanogaster publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2016.04.007 – volume: 84 start-page: 196 year: 2005 ident: 10.1016/j.ibmb.2017.09.005_bib5 article-title: Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation publication-title: Pest. Biochem. Phys. doi: 10.1016/j.pestbp.2005.07.005 – volume: 106 start-page: 1855 year: 2013 ident: 10.1016/j.ibmb.2017.09.005_bib4 article-title: Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: noctuidae) from China publication-title: J. Econ. Entomol. doi: 10.1603/EC13128 – volume: 3 start-page: 657 year: 2013 ident: 10.1016/j.ibmb.2017.09.005_bib2 article-title: Donor DNA utilization during gene targeting with zinc-finger nucleases publication-title: G3: Genes, Genomes, Genet. doi: 10.1534/g3.112.005439 – volume: 87 start-page: 127 year: 2017 ident: 10.1016/j.ibmb.2017.09.005_bib8 article-title: Investigation of the contribution of RyR target-site mutations in diamide resistance by CRISPR/Cas9 genome modification in Drosophila publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2017.06.013 |
SSID | ssj0004457 |
Score | 2.5258625 |
Snippet | Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 79 |
SubjectTerms | Amino Acid Substitution Animals Beet armyworm calcium Chilo suppressalis CRISPR-Cas Systems CRISPR/Cas9 cyantraniliprole death Diamide Drosophila melanogaster Female flubendiamide gene editing Gene Editing - methods genetic background homozygosity Insect Control - methods Insecticide Resistance - genetics Insecticides insects ions Male muscle contraction mutation paralysis pests Plutella xylostella Point Mutation Resistance Ryanodine receptor Ryanodine Receptor Calcium Release Channel - genetics ryanodine receptors Spodoptera - genetics Spodoptera exigua Tuta absoluta |
Title | CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides |
URI | https://dx.doi.org/10.1016/j.ibmb.2017.09.005 https://www.ncbi.nlm.nih.gov/pubmed/28912111 https://www.proquest.com/docview/1940049077 https://www.proquest.com/docview/2020922485 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9Ki-iLaP06rWUF3yReNjfJZh9LaL0qFulZKL4s-5USqclxuQN98X_of9yZfFQE2wffcmESlp3dmd9efvMbxt6qxFgPTkaQlRCBNCnuuSSLROZSb6RIy0BfdD-fZPMz-Hienm-xYqyFIVrlEPv7mN5F6-HOdJjN6bKqpgvSLUE8nQtapLhPqIIdJK3y97__0DwAerVPNI7Ieiic6Tlelf1hid4lO61TamH37-R0G_jsktDRI_ZwQI_8oB_gY7YV6l12vxibtu2ye9-a7n_yJ-yqOD1efDmdFqZVvKsPQWzJP4CC7JC3GC46jgB6hVc1RxTIV79M3WAmw6tAXJdmxZuSL5Z4bl1SmTIPP6uLjeGuqxFsOQkd80viHLVkiMd2gqI4f3zdcE_14j7gu1uKqA6v26fs7OjwazGPhv4LkYM0XUfOBYjBO9fJWSsXRFaqPPgwk7MAqvRGlAg4QwreQyktSFsGaUyaW5sZm8yese26qcMLxoVxHuIgZOxzag2sEof5MZg8A6uUTSZMjBOv3SBOTj0yLvXIQvuuyVmanKVjpdFZE_bu5pllL81xp3U6-lP_tcA05o47n3szOl-jL-lziqlDs2m1oJ7yoGIpb7dJEI2rhGTjJux5v3JuxopHXdLXEy__c2Sv2AP61TML99j2erUJrxEhre1-twX22c7B8af5yTXKZhCb |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlQuCMpry8tIcEJhk3QSxwcOaGnZpQ-hbitVXFy_goLaZLXZFfTCf-C38AeZyaMIifaA1FuUOJHlsWc-x998w9hLGWvjwIoA0hwCEDrBNRenQZTaxGkRJbmnE929_XR8BB-Pk-MV9qvPhSFaZef7W5_eeOvuzrAbzeGsKIZT0i1BPJ1FNElxnXTMyh1__g33bfXbyXs08qs43t46HI2DrrRAYCFJFoG1HkJw1jZKzdL6KM1l5p3fFJseZO50lCOW8gk4B7kwIEzuhdZJZkyqDakdoN-_AeguqGzCmx9_eCUArbwo9i6g7nWZOi2prDBnhvhkohFXpZp5_46Gl6HdJupt32G3O7jK37Ujcpet-HKdrY36KnHr7Obnqvkxf4_9HB1Mpp8OhiNdS94kpCCY5R9AQrrFa_RPDSkBpwEvSo6wk8_PdVlh6MQrT-Saas6rnE9nuFGeUV4099-LL0vNbZOUWHNSVuanRHKqqeHc14R90WB8UXFHCerO47drcuEWr-v77OharPKArZZV6R8xHmnrIPSRCF1GtYhlbDEge52lYKQ08YBF_cAr26mhU1GOU9XT3r4qMpYiY6lQKjTWgL2-eGfWaoFc2Trp7an-mtEKg9WV773oja_QlnR-o0tfLWsVURF7kKEQl7eJEf7LmHTqBuxhO3Mu-op7axL0izb-s2fP2dr4cG9X7U72dx6zW_SkpTU-YauL-dI_RXi2MM-a5cDZyXWvv9__bE6v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR%2FCas9+mediated+G4946E+substitution+in+the+ryanodine+receptor+of+Spodoptera+exigua+confers+high+levels+of+resistance+to+diamide+insecticides&rft.jtitle=Insect+biochemistry+and+molecular+biology&rft.au=Zuo%2C+Yayun&rft.au=Wang%2C+Hui&rft.au=Xu%2C+Yanjun&rft.au=Huang%2C+Jianlei&rft.date=2017-10-01&rft.eissn=1879-0240&rft.volume=89&rft.spage=79&rft_id=info:doi/10.1016%2Fj.ibmb.2017.09.005&rft_id=info%3Apmid%2F28912111&rft.externalDocID=28912111 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-1748&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-1748&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-1748&client=summon |