Facile synthesis of Fe, Co bimetal embedded nanoporous carbon polyhedron composites for an efficient oxygen evolution reaction

[Display omitted] •MOFs precursors were prepared via microwave irradiation and used as self-sacrificing template.•Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) was prepared by a rapid and scalable strategy.•Fe-Co/NPC composites showed excellent electrochemical performance as ideal electrocat...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 563; pp. 189 - 196
Main Authors Jia, Huixian, Zhang, Minzhe, Meng, Tianjiao, An, Siying, Wang, Huan, Yang, Xinjian, Zhang, Yufan
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •MOFs precursors were prepared via microwave irradiation and used as self-sacrificing template.•Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) was prepared by a rapid and scalable strategy.•Fe-Co/NPC composites showed excellent electrochemical performance as ideal electrocatalyst for OER. The development of highly efficient, stable, and low-cost non-noble-metal electrocatalysts for oxygen evolution reactions (OER) is a major challenge for facilitate the efficiency of green energy storage. Bimetallic oxides are considered promising candidates as the electrocatalysts for OER because of their remarkable electrocatalytic activity, good stability, and low cost. In this work, ZIF-67 precursors were prepared via microwave irradiation and used as a self-sacrificing template. We proposed a rapid and scalable strategy to prepare Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) polyhedron composites by thermal decomposition of Fe species incorporated ZIF-67 precursor. Benefiting from the distinctive 3D polyhedron structural and compositional advantages, Fe-Co/NPC with hierarchical porous structure showed excellent electrochemical performance as ideal electrode material for OER. The resulting Fe-Co/NPC displayed outstanding electrocatalytic activity for OER with appreciable onset potential (1.59 V (vs. RHE)), small Tafel slope (53.55 mV dec−1), low over-potential (396 mV) to reach 10 mA cm−2, and excellent durability with negligible loss in current density after 1000 cycles. The current work demonstrated new insight into the design and construction of 3D structured Fe-Co/NPC polyhedron catalysts with highly electrocatalytic activity and good stability for electrocatalysis applications.
AbstractList The development of highly efficient, stable, and low-cost non-noble-metal electrocatalysts for oxygen evolution reactions (OER) is a major challenge for facilitate the efficiency of green energy storage. Bimetallic oxides are considered promising candidates as the electrocatalysts for OER because of their remarkable electrocatalytic activity, good stability, and low cost. In this work, ZIF-67 precursors were prepared via microwave irradiation and used as a self-sacrificing template. We proposed a rapid and scalable strategy to prepare Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) polyhedron composites by thermal decomposition of Fe species incorporated ZIF-67 precursor. Benefiting from the distinctive 3D polyhedron structural and compositional advantages, Fe-Co/NPC with hierarchical porous structure showed excellent electrochemical performance as ideal electrode material for OER. The resulting Fe-Co/NPC displayed outstanding electrocatalytic activity for OER with appreciable onset potential (1.59 V (vs. RHE)), small Tafel slope (53.55 mV dec ), low over-potential (396 mV) to reach 10 mA cm , and excellent durability with negligible loss in current density after 1000 cycles. The current work demonstrated new insight into the design and construction of 3D structured Fe-Co/NPC polyhedron catalysts with highly electrocatalytic activity and good stability for electrocatalysis applications.
The development of highly efficient, stable, and low-cost non-noble-metal electrocatalysts for oxygen evolution reactions (OER) is a major challenge for facilitate the efficiency of green energy storage. Bimetallic oxides are considered promising candidates as the electrocatalysts for OER because of their remarkable electrocatalytic activity, good stability, and low cost. In this work, ZIF-67 precursors were prepared via microwave irradiation and used as a self-sacrificing template. We proposed a rapid and scalable strategy to prepare Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) polyhedron composites by thermal decomposition of Fe species incorporated ZIF-67 precursor. Benefiting from the distinctive 3D polyhedron structural and compositional advantages, Fe-Co/NPC with hierarchical porous structure showed excellent electrochemical performance as ideal electrode material for OER. The resulting Fe-Co/NPC displayed outstanding electrocatalytic activity for OER with appreciable onset potential (1.59 V (vs. RHE)), small Tafel slope (53.55 mV dec⁻¹), low over-potential (396 mV) to reach 10 mA cm⁻², and excellent durability with negligible loss in current density after 1000 cycles. The current work demonstrated new insight into the design and construction of 3D structured Fe-Co/NPC polyhedron catalysts with highly electrocatalytic activity and good stability for electrocatalysis applications.
[Display omitted] •MOFs precursors were prepared via microwave irradiation and used as self-sacrificing template.•Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) was prepared by a rapid and scalable strategy.•Fe-Co/NPC composites showed excellent electrochemical performance as ideal electrocatalyst for OER. The development of highly efficient, stable, and low-cost non-noble-metal electrocatalysts for oxygen evolution reactions (OER) is a major challenge for facilitate the efficiency of green energy storage. Bimetallic oxides are considered promising candidates as the electrocatalysts for OER because of their remarkable electrocatalytic activity, good stability, and low cost. In this work, ZIF-67 precursors were prepared via microwave irradiation and used as a self-sacrificing template. We proposed a rapid and scalable strategy to prepare Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) polyhedron composites by thermal decomposition of Fe species incorporated ZIF-67 precursor. Benefiting from the distinctive 3D polyhedron structural and compositional advantages, Fe-Co/NPC with hierarchical porous structure showed excellent electrochemical performance as ideal electrode material for OER. The resulting Fe-Co/NPC displayed outstanding electrocatalytic activity for OER with appreciable onset potential (1.59 V (vs. RHE)), small Tafel slope (53.55 mV dec−1), low over-potential (396 mV) to reach 10 mA cm−2, and excellent durability with negligible loss in current density after 1000 cycles. The current work demonstrated new insight into the design and construction of 3D structured Fe-Co/NPC polyhedron catalysts with highly electrocatalytic activity and good stability for electrocatalysis applications.
The development of highly efficient, stable, and low-cost non-noble-metal electrocatalysts for oxygen evolution reactions (OER) is a major challenge for facilitate the efficiency of green energy storage. Bimetallic oxides are considered promising candidates as the electrocatalysts for OER because of their remarkable electrocatalytic activity, good stability, and low cost. In this work, ZIF-67 precursors were prepared via microwave irradiation and used as a self-sacrificing template. We proposed a rapid and scalable strategy to prepare Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) polyhedron composites by thermal decomposition of Fe species incorporated ZIF-67 precursor. Benefiting from the distinctive 3D polyhedron structural and compositional advantages, Fe-Co/NPC with hierarchical porous structure showed excellent electrochemical performance as ideal electrode material for OER. The resulting Fe-Co/NPC displayed outstanding electrocatalytic activity for OER with appreciable onset potential (1.59 V (vs. RHE)), small Tafel slope (53.55 mV dec-1), low over-potential (396 mV) to reach 10 mA cm-2, and excellent durability with negligible loss in current density after 1000 cycles. The current work demonstrated new insight into the design and construction of 3D structured Fe-Co/NPC polyhedron catalysts with highly electrocatalytic activity and good stability for electrocatalysis applications.The development of highly efficient, stable, and low-cost non-noble-metal electrocatalysts for oxygen evolution reactions (OER) is a major challenge for facilitate the efficiency of green energy storage. Bimetallic oxides are considered promising candidates as the electrocatalysts for OER because of their remarkable electrocatalytic activity, good stability, and low cost. In this work, ZIF-67 precursors were prepared via microwave irradiation and used as a self-sacrificing template. We proposed a rapid and scalable strategy to prepare Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) polyhedron composites by thermal decomposition of Fe species incorporated ZIF-67 precursor. Benefiting from the distinctive 3D polyhedron structural and compositional advantages, Fe-Co/NPC with hierarchical porous structure showed excellent electrochemical performance as ideal electrode material for OER. The resulting Fe-Co/NPC displayed outstanding electrocatalytic activity for OER with appreciable onset potential (1.59 V (vs. RHE)), small Tafel slope (53.55 mV dec-1), low over-potential (396 mV) to reach 10 mA cm-2, and excellent durability with negligible loss in current density after 1000 cycles. The current work demonstrated new insight into the design and construction of 3D structured Fe-Co/NPC polyhedron catalysts with highly electrocatalytic activity and good stability for electrocatalysis applications.
Author Meng, Tianjiao
Wang, Huan
Zhang, Minzhe
An, Siying
Yang, Xinjian
Zhang, Yufan
Jia, Huixian
Author_xml – sequence: 1
  givenname: Huixian
  surname: Jia
  fullname: Jia, Huixian
– sequence: 2
  givenname: Minzhe
  surname: Zhang
  fullname: Zhang, Minzhe
– sequence: 3
  givenname: Tianjiao
  surname: Meng
  fullname: Meng, Tianjiao
– sequence: 4
  givenname: Siying
  surname: An
  fullname: An, Siying
– sequence: 5
  givenname: Huan
  surname: Wang
  fullname: Wang, Huan
– sequence: 6
  givenname: Xinjian
  surname: Yang
  fullname: Yang, Xinjian
– sequence: 7
  givenname: Yufan
  orcidid: 0000-0002-3104-1070
  surname: Zhang
  fullname: Zhang, Yufan
  email: zyf@hbu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31874306$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFP8AB-ciBLJ7YThyJC1qxUKkSFzhbjj2hXiVxsL0Ve-lvx9G2Fw5Fc5jR6HtPmnlX5GIOMxLyFtgWGDQfD9uD9WlbM-i2UG9ZK1-QDbBOVi0wfkE2jNVQdW3XXpKrlA6MAUjZvSKXHFQrOGs25GFvrB-RptOc7zD5RMNA9_iB7gLt_YTZjBSnHp1DR2czhyXEcEzUmtiHmS5hPN2hi2W0YVpC8hkTHUKkZqY4DN56nDMNf06_sCzuw3jMvsARjV2H1-TlYMaEbx77Nfm5__Jj9626_f71Zvf5trJCylzZvlPQNkIZORhA03VgFOPKYPERaFq0CnrhbOOcqAeEljdK8F6oGko1_Jq8P_suMfw-Ysp68sniOJoZyzm6FowJ2XLG_49yzmSnBJMFffeIHvsJnV6in0w86af3FkCdARtDShEHbX026-E5Gj9qYHpNUh_0mqRek9RQ65Jkkdb_SJ_cnxV9Oouw_PLeY9RpDcCi8xFt1i745-R_AbSJuPM
CitedBy_id crossref_primary_10_1016_j_jcis_2021_08_154
crossref_primary_10_1016_j_jcis_2023_05_187
crossref_primary_10_1016_j_fuel_2024_133941
crossref_primary_10_1246_cl_210814
crossref_primary_10_1039_D3RA01096A
crossref_primary_10_1016_j_jcis_2022_01_044
crossref_primary_10_1016_j_jssc_2020_121498
crossref_primary_10_1016_j_jcis_2020_06_044
crossref_primary_10_1016_j_jcis_2023_10_028
crossref_primary_10_1016_j_talanta_2020_121957
crossref_primary_10_1134_S0036024422120111
crossref_primary_10_1016_j_jcis_2022_07_157
crossref_primary_10_1021_acs_langmuir_2c03242
crossref_primary_10_1016_j_jcis_2022_04_123
crossref_primary_10_1016_j_ccr_2022_214925
crossref_primary_10_1021_acsanm_1c02941
crossref_primary_10_26599_NR_2025_94907022
crossref_primary_10_1016_j_ijhydene_2023_07_312
crossref_primary_10_1016_j_jcis_2022_10_061
crossref_primary_10_1016_j_jelechem_2022_116441
crossref_primary_10_1016_j_cej_2022_136815
crossref_primary_10_1016_j_jcis_2020_05_089
crossref_primary_10_1016_j_jelechem_2023_117433
crossref_primary_10_1002_adfm_202313224
crossref_primary_10_1002_smll_202309932
crossref_primary_10_1016_j_aca_2020_09_022
crossref_primary_10_1016_j_seppur_2022_121049
crossref_primary_10_1016_j_jallcom_2022_164852
crossref_primary_10_1016_j_jcis_2022_06_059
crossref_primary_10_1021_acsanm_3c05580
crossref_primary_10_1016_j_colsurfa_2022_130078
crossref_primary_10_1016_j_jallcom_2022_166910
crossref_primary_10_1016_j_jcis_2022_08_149
crossref_primary_10_1021_acs_jpcc_2c00007
crossref_primary_10_1016_j_carbon_2024_118847
crossref_primary_10_1016_j_jcis_2020_06_053
crossref_primary_10_1016_j_jcis_2022_12_026
crossref_primary_10_1016_j_ijhydene_2020_02_206
crossref_primary_10_1016_j_jcis_2021_05_139
crossref_primary_10_1016_j_jcis_2020_09_051
crossref_primary_10_1016_j_microc_2024_110634
crossref_primary_10_1016_j_est_2023_108364
crossref_primary_10_1016_j_ijhydene_2020_12_062
crossref_primary_10_1039_D2NJ04415C
crossref_primary_10_1021_acs_inorgchem_1c02268
crossref_primary_10_1007_s10854_020_04857_8
crossref_primary_10_1016_j_jallcom_2020_157265
Cites_doi 10.1016/j.apcatb.2018.10.071
10.1126/science.aaf1525
10.1039/c3gc40520f
10.1016/j.jcis.2019.04.063
10.1002/anie.201701252
10.1016/j.electacta.2018.08.118
10.1002/smll.201302910
10.1016/j.scitotenv.2018.07.162
10.1021/acs.accounts.6b00460
10.1039/C6CY02130A
10.1016/j.jcis.2018.10.036
10.1016/j.nanoen.2017.05.022
10.1002/adfm.201505411
10.1016/j.jcis.2019.07.099
10.1021/acsami.8b07835
10.1002/adma.201500894
10.1002/smll.201102635
10.1039/b807080f
10.1039/c3dt51479j
10.1039/C9TA04388H
10.1021/acs.chemmater.5b02877
10.1016/j.bios.2019.111834
10.1016/j.snb.2017.08.218
10.1016/j.jallcom.2019.151766
10.1016/j.snb.2018.09.034
10.1016/j.jcis.2017.10.050
10.1126/science.aaf5050
10.1039/C6TA90001A
10.1039/C4TA05718J
10.1016/j.jallcom.2017.12.291
10.1039/C8NR02337A
10.1016/j.electacta.2018.08.015
10.1002/aenm.201602420
10.1016/j.jcis.2019.10.054
10.1016/j.jcis.2018.10.076
10.1016/j.jallcom.2019.151927
10.1016/j.memsci.2016.08.043
10.1021/acsami.9b03365
10.1016/j.nanoen.2016.10.020
10.1021/jacs.5b01613
10.1016/j.jcis.2018.08.038
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2019.12.075
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 196
ExternalDocumentID 31874306
10_1016_j_jcis_2019_12_075
S0021979719315425
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c455t-cb9817648a5fa1ea991a8038aeeac4ea7ec81b4dc6dd42fe1736843b482121263
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 05:24:48 EDT 2025
Fri Jul 11 11:37:40 EDT 2025
Wed Feb 19 02:31:43 EST 2025
Thu Apr 24 23:09:27 EDT 2025
Tue Jul 01 01:18:49 EDT 2025
Fri Feb 23 02:47:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrocatalysis
Fe, Co bimetal embedded nanoporous carbon
Oxygen evolution reaction
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-cb9817648a5fa1ea991a8038aeeac4ea7ec81b4dc6dd42fe1736843b482121263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3104-1070
PMID 31874306
PQID 2330598405
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2400457303
proquest_miscellaneous_2330598405
pubmed_primary_31874306
crossref_citationtrail_10_1016_j_jcis_2019_12_075
crossref_primary_10_1016_j_jcis_2019_12_075
elsevier_sciencedirect_doi_10_1016_j_jcis_2019_12_075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-15
PublicationDateYYYYMMDD 2020-03-15
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bo, Zheng, Voznyy, Comin, Bajdich, García-Melchor, Han, Xu, Min, Zheng (b0080) 2016; 352
Wang, Meng, Liang, Sun, Wu, Wang, Yang (b0140) 2019; 278
Wang, Meng, Fan, Chen, Guo, Wang, Zhang (b0155) 2018
Wu, Sun, Ming, Huo, Grenier (b0210) 2016; 4
Zhang, Jiang, Wang, Kaneti, Chen, Liu, Jiang, Yamauchi, Hu (b0195) 2017; 56
Chen, Zhou, Guan, Sunarso, Zhu, Hu, Zhang, Shao (b0055) 2017; 3
Li, Zhang, Li, Fan, Xu (b0205) 2018; 10
Su, Cheng, Li, Liu, Ma (b0215) 2017; 7
Li, Yang, Lu, Zhang, Bo (b0160) 2019; 555
Zeng, Yu, Zhang, He, Chen, Song (b0180) 2017; 7
Wang, He, Jia, He, Zhang, Dong, Liu, Liu, Zhang, Li, Gao, Bian (b0060) 2019; 243
Meng, Wang, Jia, Gong, Feng, Li, Wang, Zhang (b0135) 2019; 536
Mo, Wang, Li, Li, Yang, Zhong (b0035) 2018; 290
Wang, Meng, Chen, Fan, Zhang, Wang, Zhang (b0190) 2018; 532
Wang, Meng, Jia, Feng, Gong, Wang, Zhang (b0130) 2019; 549
Wang, Wang, Xie, Zhu, Cao (b0225) 2019; 11
Yang, Fei, Ruan, Tour (b0010) 2015; 27
Chen, Dai, Ren, Xu, Du (b0020) 2019; 536
Zeng, Li, Hua, He, Zhang, Feng, Song (b0175) 2018; 645
Dou, Liao, Ma, Tian, Liu, Feng, Sun, Kim, Shi (b0100) 2016; 30
Tae Woo, Kyoung-Shin (b0025) 2014; 45
Meng, Jia, Ye, Zeng, Yang, Wang, Zhang (b0085) 2020; 560
Mottillo, Lu, Pham (b0145) 2013; 15
Li, Liu, Han, Xiao, Zeng, Zhang, Xu, Dong, Zhang (b0095) 2019; 7
Huang, Liang, Chen (b0075) 2012; 8
Liu, Li, Peng, Zhang, Guo (b0120) 2018; 255
Teng, Chen, Sun, Wang, Fang, Lei, Zhao, Wang, Zhang (b0185) 2018; 739
Li, Lu, Yang, Xiao, Han, Zhang, Bo (b0070) 2019; 809
Wang, Teng, Sun, Chen, Wang, Wang, Zhang (b0125) 2018; 512
Dong, Chen, Li, Shi, Dong, Li, Bai (b0170) 2016; 520
You, Jiang, Sheng, Gul, Yano, Sun (b0065) 2015; 27
Torad, Ming, Shinsuke, Hiroaki, Belik, Masataka, Katsuhiko, Yoshio, Yusuke (b0200) 2014; 10
Salunkhe, Kaneti, Kim, Kim, Yamauchi (b0105) 2016; 49
Liu, Ma, Yuan, Yu, Li, Shi, Liang, Yang, Zhu, Sun, Li, Ma (b0030) 2018; 286
Jin, May, Gasteiger, Goodenough, Yang (b0045) 2012; 334
Shen, Liang, Wu, Liang, Wu (b0115) 2013; 42
Wang, Feng, Ren, Piao, Zhong, Wang, Li, Chen, Wang (b0150) 2015; 137
Li, Dong, Zhang (b0165) 2019; 810
Jeongyong, Farha, John, Scheidt, Nguyen, Hupp (b0110) 2009; 38
Li, Feng, Du, Bai, Fan, Zhang, Peng, Li (b0220) 2015; 3
Wu, Zou, Huang, Feng (b0040) 2018; 10
Seitz, Dickens, Nishio, Hikita, Montoya, Doyle, Kirk, Vojvodic, Hwang, Norskov (b0005) 2016; 353
Tahir, Lun, Idrees, Zhang, Li, Zou, Zhong (b0050) 2017; 37
Wang, Meng, Zhao, Jia, An, Yang, Wang, Zhang (b0090) 2020; 148
Min, Peng, Wang, Li, Zheng (b0015) 2016; 26
Meng (10.1016/j.jcis.2019.12.075_b0135) 2019; 536
Wu (10.1016/j.jcis.2019.12.075_b0040) 2018; 10
Zeng (10.1016/j.jcis.2019.12.075_b0175) 2018; 645
Min (10.1016/j.jcis.2019.12.075_b0015) 2016; 26
Wang (10.1016/j.jcis.2019.12.075_b0150) 2015; 137
Zeng (10.1016/j.jcis.2019.12.075_b0180) 2017; 7
Wang (10.1016/j.jcis.2019.12.075_b0060) 2019; 243
Jin (10.1016/j.jcis.2019.12.075_b0045) 2012; 334
Li (10.1016/j.jcis.2019.12.075_b0095) 2019; 7
Dong (10.1016/j.jcis.2019.12.075_b0170) 2016; 520
Torad (10.1016/j.jcis.2019.12.075_b0200) 2014; 10
Li (10.1016/j.jcis.2019.12.075_b0070) 2019; 809
Liu (10.1016/j.jcis.2019.12.075_b0120) 2018; 255
Wang (10.1016/j.jcis.2019.12.075_b0125) 2018; 512
Wang (10.1016/j.jcis.2019.12.075_b0140) 2019; 278
Su (10.1016/j.jcis.2019.12.075_b0215) 2017; 7
Meng (10.1016/j.jcis.2019.12.075_b0085) 2020; 560
Li (10.1016/j.jcis.2019.12.075_b0160) 2019; 555
Wang (10.1016/j.jcis.2019.12.075_b0190) 2018; 532
Yang (10.1016/j.jcis.2019.12.075_b0010) 2015; 27
Bo (10.1016/j.jcis.2019.12.075_b0080) 2016; 352
Zhang (10.1016/j.jcis.2019.12.075_b0195) 2017; 56
Li (10.1016/j.jcis.2019.12.075_b0205) 2018; 10
Li (10.1016/j.jcis.2019.12.075_b0220) 2015; 3
Seitz (10.1016/j.jcis.2019.12.075_b0005) 2016; 353
Tae Woo (10.1016/j.jcis.2019.12.075_b0025) 2014; 45
Huang (10.1016/j.jcis.2019.12.075_b0075) 2012; 8
Salunkhe (10.1016/j.jcis.2019.12.075_b0105) 2016; 49
Mottillo (10.1016/j.jcis.2019.12.075_b0145) 2013; 15
Wu (10.1016/j.jcis.2019.12.075_b0210) 2016; 4
Wang (10.1016/j.jcis.2019.12.075_b0090) 2020; 148
Li (10.1016/j.jcis.2019.12.075_b0165) 2019; 810
Wang (10.1016/j.jcis.2019.12.075_b0155) 2018
Shen (10.1016/j.jcis.2019.12.075_b0115) 2013; 42
Wang (10.1016/j.jcis.2019.12.075_b0225) 2019; 11
Mo (10.1016/j.jcis.2019.12.075_b0035) 2018; 290
Tahir (10.1016/j.jcis.2019.12.075_b0050) 2017; 37
You (10.1016/j.jcis.2019.12.075_b0065) 2015; 27
Jeongyong (10.1016/j.jcis.2019.12.075_b0110) 2009; 38
Chen (10.1016/j.jcis.2019.12.075_b0055) 2017; 3
Liu (10.1016/j.jcis.2019.12.075_b0030) 2018; 286
Dou (10.1016/j.jcis.2019.12.075_b0100) 2016; 30
Wang (10.1016/j.jcis.2019.12.075_b0130) 2019; 549
Chen (10.1016/j.jcis.2019.12.075_b0020) 2019; 536
Teng (10.1016/j.jcis.2019.12.075_b0185) 2018; 739
References_xml – volume: 26
  start-page: 8555
  year: 2016
  end-page: 8561
  ident: b0015
  publication-title: Adv. Funct. Mater.
– volume: 334
  start-page: 1383
  year: 2012
  end-page: 1385
  ident: b0045
  publication-title: Science
– volume: 42
  start-page: 13649
  year: 2013
  end-page: 13657
  ident: b0115
  publication-title: Dalton Trans.
– volume: 7
  start-page: 1602420
  year: 2017
  ident: b0215
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 7636
  year: 2015
  end-page: 7642
  ident: b0065
  publication-title: Chem. Mater.
– volume: 4
  start-page: 1
  year: 2016
  end-page: 9
  ident: b0210
  publication-title: J. Mater. Chem. A
– volume: 255
  start-page: 1983
  year: 2018
  end-page: 1994
  ident: b0120
  publication-title: Sens. Actuators B
– volume: 645
  start-page: 550
  year: 2018
  end-page: 559
  ident: b0175
  publication-title: Sci. Total Environ.
– volume: 8
  start-page: 1805
  year: 2012
  end-page: 1834
  ident: b0075
  publication-title: Small
– volume: 536
  start-page: 424
  year: 2019
  end-page: 430
  ident: b0135
  publication-title: J. Colloid Interf. Sci.
– volume: 810
  start-page: 151927
  year: 2019
  ident: b0165
  publication-title: J. Alloy. Compd.
– volume: 3
  start-page: 1
  year: 2017
  end-page: 8
  ident: b0055
  publication-title: Sci. Adv.
– volume: 148
  start-page: 111834
  year: 2020
  ident: b0090
  publication-title: Biosens. Bioelectron.
– volume: 10
  start-page: 9252
  year: 2018
  end-page: 9260
  ident: b0205
  publication-title: Nanoscale
– start-page: 1
  year: 2018
  end-page: 7
  ident: b0155
  publication-title: J. Colloid Interface Sci.
– volume: 27
  start-page: 3175
  year: 2015
  end-page: 3180
  ident: b0010
  publication-title: Adv. Mater.
– volume: 286
  start-page: 195
  year: 2018
  end-page: 204
  ident: b0030
  publication-title: Electrochim. Acta
– volume: 30
  start-page: 267
  year: 2016
  end-page: 275
  ident: b0100
  publication-title: Nano Energy
– volume: 353
  start-page: 1011
  year: 2016
  end-page: 1014
  ident: b0005
  publication-title: Science
– volume: 352
  start-page: 333
  year: 2016
  end-page: 337
  ident: b0080
  publication-title: Science
– volume: 49
  start-page: 2796
  year: 2016
  end-page: 2806
  ident: b0105
  publication-title: Accounts Chem. Res.
– volume: 7
  start-page: 396
  year: 2017
  end-page: 404
  ident: b0180
  publication-title: Catal. Sci. Technol.
– volume: 278
  start-page: 133
  year: 2019
  end-page: 139
  ident: b0140
  publication-title: Sens. Actuators B
– volume: 549
  start-page: 98
  year: 2019
  end-page: 104
  ident: b0130
  publication-title: J. Colloid Interf. Sci.
– volume: 536
  start-page: 71
  year: 2019
  end-page: 79
  ident: b0020
  publication-title: J. Colloid Interf. Sci.
– volume: 10
  start-page: 26283
  year: 2018
  end-page: 26292
  ident: b0040
  publication-title: ACS Appl. Mater. Inter.
– volume: 290
  start-page: 649
  year: 2018
  end-page: 656
  ident: b0035
  publication-title: Electrochim. Acta
– volume: 555
  start-page: 449
  year: 2019
  end-page: 459
  ident: b0160
  publication-title: J. Colloid Interface Sci.
– volume: 3
  start-page: 5535
  year: 2015
  end-page: 5546
  ident: b0220
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 17923
  year: 2019
  end-page: 17936
  ident: b0095
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 990
  year: 2014
  end-page: 994
  ident: b0025
  publication-title: Science
– volume: 532
  start-page: 650
  year: 2018
  end-page: 656
  ident: b0190
  publication-title: J. Colloid Interf. Sci.
– volume: 809
  start-page: 151766
  year: 2019
  ident: b0070
  publication-title: J. Alloy. Compd.
– volume: 243
  start-page: 463
  year: 2019
  end-page: 469
  ident: b0060
  publication-title: Appl. Catal. B: Environ.
– volume: 38
  start-page: 1450
  year: 2009
  end-page: 1459
  ident: b0110
  publication-title: Chem. Soc. Rev.
– volume: 37
  start-page: 136
  year: 2017
  end-page: 157
  ident: b0050
  publication-title: Nano Energy
– volume: 560
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0085
  publication-title: J. Colloid Interface Sci.
– volume: 137
  start-page: 4920
  year: 2015
  end-page: 4923
  ident: b0150
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2096
  year: 2014
  end-page: 2107
  ident: b0200
  publication-title: Small
– volume: 739
  start-page: 425
  year: 2018
  end-page: 430
  ident: b0185
  publication-title: J. Alloy. Compd.
– volume: 520
  start-page: 801
  year: 2016
  end-page: 811
  ident: b0170
  publication-title: J. Membr. Sci.
– volume: 11
  start-page: 16619
  year: 2019
  end-page: 16628
  ident: b0225
  publication-title: ACS Appl. Mater. Interfaces
– volume: 512
  start-page: 127
  year: 2018
  end-page: 133
  ident: b0125
  publication-title: J. Colloid Interf. Sci.
– volume: 15
  start-page: 2121
  year: 2013
  end-page: 2131
  ident: b0145
  publication-title: Green Chem.
– volume: 56
  start-page: 8435
  year: 2017
  ident: b0195
  publication-title: Angew. Chem. Int. Ed.
– volume: 45
  start-page: 990
  year: 2014
  ident: 10.1016/j.jcis.2019.12.075_b0025
  publication-title: Science
– volume: 243
  start-page: 463
  year: 2019
  ident: 10.1016/j.jcis.2019.12.075_b0060
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.10.071
– volume: 352
  start-page: 333
  year: 2016
  ident: 10.1016/j.jcis.2019.12.075_b0080
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 15
  start-page: 2121
  year: 2013
  ident: 10.1016/j.jcis.2019.12.075_b0145
  publication-title: Green Chem.
  doi: 10.1039/c3gc40520f
– volume: 549
  start-page: 98
  year: 2019
  ident: 10.1016/j.jcis.2019.12.075_b0130
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2019.04.063
– volume: 56
  start-page: 8435
  year: 2017
  ident: 10.1016/j.jcis.2019.12.075_b0195
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701252
– volume: 290
  start-page: 649
  year: 2018
  ident: 10.1016/j.jcis.2019.12.075_b0035
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.08.118
– volume: 10
  start-page: 2096
  year: 2014
  ident: 10.1016/j.jcis.2019.12.075_b0200
  publication-title: Small
  doi: 10.1002/smll.201302910
– volume: 645
  start-page: 550
  year: 2018
  ident: 10.1016/j.jcis.2019.12.075_b0175
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.162
– volume: 3
  start-page: 1
  year: 2017
  ident: 10.1016/j.jcis.2019.12.075_b0055
  publication-title: Sci. Adv.
– volume: 49
  start-page: 2796
  year: 2016
  ident: 10.1016/j.jcis.2019.12.075_b0105
  publication-title: Accounts Chem. Res.
  doi: 10.1021/acs.accounts.6b00460
– volume: 7
  start-page: 396
  year: 2017
  ident: 10.1016/j.jcis.2019.12.075_b0180
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY02130A
– volume: 536
  start-page: 71
  year: 2019
  ident: 10.1016/j.jcis.2019.12.075_b0020
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2018.10.036
– volume: 37
  start-page: 136
  year: 2017
  ident: 10.1016/j.jcis.2019.12.075_b0050
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.022
– volume: 26
  start-page: 8555
  year: 2016
  ident: 10.1016/j.jcis.2019.12.075_b0015
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201505411
– volume: 555
  start-page: 449
  year: 2019
  ident: 10.1016/j.jcis.2019.12.075_b0160
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.07.099
– volume: 10
  start-page: 26283
  year: 2018
  ident: 10.1016/j.jcis.2019.12.075_b0040
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.8b07835
– volume: 27
  start-page: 3175
  year: 2015
  ident: 10.1016/j.jcis.2019.12.075_b0010
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500894
– volume: 8
  start-page: 1805
  year: 2012
  ident: 10.1016/j.jcis.2019.12.075_b0075
  publication-title: Small
  doi: 10.1002/smll.201102635
– volume: 38
  start-page: 1450
  year: 2009
  ident: 10.1016/j.jcis.2019.12.075_b0110
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b807080f
– volume: 42
  start-page: 13649
  year: 2013
  ident: 10.1016/j.jcis.2019.12.075_b0115
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt51479j
– volume: 7
  start-page: 17923
  year: 2019
  ident: 10.1016/j.jcis.2019.12.075_b0095
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04388H
– volume: 27
  start-page: 7636
  year: 2015
  ident: 10.1016/j.jcis.2019.12.075_b0065
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02877
– volume: 148
  start-page: 111834
  year: 2020
  ident: 10.1016/j.jcis.2019.12.075_b0090
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111834
– volume: 255
  start-page: 1983
  year: 2018
  ident: 10.1016/j.jcis.2019.12.075_b0120
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2017.08.218
– volume: 809
  start-page: 151766
  year: 2019
  ident: 10.1016/j.jcis.2019.12.075_b0070
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.151766
– volume: 278
  start-page: 133
  year: 2019
  ident: 10.1016/j.jcis.2019.12.075_b0140
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.09.034
– volume: 512
  start-page: 127
  year: 2018
  ident: 10.1016/j.jcis.2019.12.075_b0125
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2017.10.050
– volume: 353
  start-page: 1011
  year: 2016
  ident: 10.1016/j.jcis.2019.12.075_b0005
  publication-title: Science
  doi: 10.1126/science.aaf5050
– volume: 4
  start-page: 1
  year: 2016
  ident: 10.1016/j.jcis.2019.12.075_b0210
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA90001A
– volume: 3
  start-page: 5535
  year: 2015
  ident: 10.1016/j.jcis.2019.12.075_b0220
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05718J
– volume: 739
  start-page: 425
  year: 2018
  ident: 10.1016/j.jcis.2019.12.075_b0185
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2017.12.291
– volume: 10
  start-page: 9252
  year: 2018
  ident: 10.1016/j.jcis.2019.12.075_b0205
  publication-title: Nanoscale
  doi: 10.1039/C8NR02337A
– volume: 286
  start-page: 195
  year: 2018
  ident: 10.1016/j.jcis.2019.12.075_b0030
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.08.015
– start-page: 1
  year: 2018
  ident: 10.1016/j.jcis.2019.12.075_b0155
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 1602420
  year: 2017
  ident: 10.1016/j.jcis.2019.12.075_b0215
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602420
– volume: 560
  start-page: 1
  year: 2020
  ident: 10.1016/j.jcis.2019.12.075_b0085
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.10.054
– volume: 536
  start-page: 424
  year: 2019
  ident: 10.1016/j.jcis.2019.12.075_b0135
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2018.10.076
– volume: 810
  start-page: 151927
  year: 2019
  ident: 10.1016/j.jcis.2019.12.075_b0165
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.151927
– volume: 520
  start-page: 801
  year: 2016
  ident: 10.1016/j.jcis.2019.12.075_b0170
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.08.043
– volume: 11
  start-page: 16619
  year: 2019
  ident: 10.1016/j.jcis.2019.12.075_b0225
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b03365
– volume: 334
  start-page: 1383
  year: 2012
  ident: 10.1016/j.jcis.2019.12.075_b0045
  publication-title: Science
– volume: 30
  start-page: 267
  year: 2016
  ident: 10.1016/j.jcis.2019.12.075_b0100
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.020
– volume: 137
  start-page: 4920
  year: 2015
  ident: 10.1016/j.jcis.2019.12.075_b0150
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b01613
– volume: 532
  start-page: 650
  year: 2018
  ident: 10.1016/j.jcis.2019.12.075_b0190
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2018.08.038
SSID ssj0011559
Score 2.5082998
Snippet [Display omitted] •MOFs precursors were prepared via microwave irradiation and used as self-sacrificing template.•Fe, Co bimetal embedded nanoporous carbon...
The development of highly efficient, stable, and low-cost non-noble-metal electrocatalysts for oxygen evolution reactions (OER) is a major challenge for...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 189
SubjectTerms carbon
catalysts
catalytic activity
cobalt
durability
Electrocatalysis
electrochemistry
electrodes
Fe, Co bimetal embedded nanoporous carbon
iron
microwave radiation
nanopores
oxides
Oxygen evolution reaction
oxygen production
renewable energy sources
thermal degradation
Title Facile synthesis of Fe, Co bimetal embedded nanoporous carbon polyhedron composites for an efficient oxygen evolution reaction
URI https://dx.doi.org/10.1016/j.jcis.2019.12.075
https://www.ncbi.nlm.nih.gov/pubmed/31874306
https://www.proquest.com/docview/2330598405
https://www.proquest.com/docview/2400457303
Volume 563
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCMpreVRG4gaha8fO41itWG2L6IlKvVl-TESq1llttoi99Lczk8cKJLqH3qLIjizPeOab-JsZxj6G4HQepjYR3mGAkkudOGmzRFRqisbQZ97Rr4HvZ9niXJ1e6Is9NhtzYYhWOdj-3qZ31np4czTs5tGyrinHF09bXuYIQRAHSEo0VyonLf9yu6V5CLp262keIqHRQ-JMz_G69DWV7BZl90uQuIb_d053gc_OCc2fsicDeuTH_QKfsT2IB-zhbGzadsAe_1Vf8Dm7nVuPp563m4g4r61b3lR8Dp_5rOGuvgYE3hyuHaDxCTza2CAYb25a7u3KNZEvm6vNTwgrfCTmOdG7oOWIcrmNHLraE-iyePN7g1rI4degxRxxaJct8YKdz7_-mC2SoeFC4pXW68S7shB5pgqrKyvAIna0xTQtLOA8BTYHjyhXBZ-FoGQFIk-zQqVOFegAhczSl2w_NhFeM649fawIlQhTFXTqXIkwXkjvMYLTXk-YGHfa-KEaOTXFuDIj7ezSkHQMSccIaVA6E_ZpO2fZ1-LYOVqPAjT_aJRBZ7Fz3odR2gaFR_cnNgJuvpEpGscSI-JdY8gmajSb6YS96lVlu9aU-h9iiPbmnit7yx5JivaJTajfsf316gbeIyRau8NO5w_Zg-OTb4uzP2hHDGY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcigcEJRXeBoJTrBt7LX3ceCAAlFKH6dW6s34tSJVuxtlUyCX_in-IDP7iECCHJB6W61sy_LYn7-xP88AvPbeqtQPTcSdRQclFSqywiQRL-QQwdAlztLRwOFRMjmRn0_V6Qb87N_CkKyyw_4W0xu07v7sdqO5O5tO6Y0vrrY0T5GCIA8QvbJyPyy_o99Wv9_7iEZ-I8T40_FoEnWpBSInlVpEzuYZTxOZGVUYHgyyJJMN48wEBCIZTBoc8jnpXeK9FEXgaZxkMrYyQ6jnIomx3RtwUyJcUNqEnauVroTTPV-rK-ERda97qdOKys7clGKE87w5gyRx4993w3-x3WbXG9-FOx1dZR_aEbkHG6Hchq1RnyVuG27_FtDwPlyNjUOYYfWyRGJZT2tWFWwc3rFRxez0IiDTZ-HCBkQ7z0pTVsj-q8uaOTO3Vclm1fnya_Bz_CSpO-nJQs2QVjNTstAEu8A9klU_ljjtWfjWLRuGxLd5nvEATq7FDA9hs6zK8BiYctRY5gvuh9Kr2Noc_QYunEOXUTk1AN6PtHZd-HPKwnGue53bmSbraLKO5kKjdQbwdlVn1gb_WFta9QbUf0xhjbvT2nqvemtrNB5d2Jgy4OBrESMa5-iCrytDIKwQp-MBPGqnyqqvMSVcRJ_wyX_27CVsTY4PD_TB3tH-U7gl6KiBpIzqGWwu5pfhOfKxhX3RzH8GX657wf0C_itILg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+synthesis+of+Fe%2C+Co+bimetal+embedded+nanoporous+carbon+polyhedron+composites+for+an+efficient+oxygen+evolution+reaction&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Jia%2C+Huixian&rft.au=Zhang%2C+Minzhe&rft.au=Meng%2C+Tianjiao&rft.au=An%2C+Siying&rft.date=2020-03-15&rft.issn=0021-9797&rft.volume=563+p.189-196&rft.spage=189&rft.epage=196&rft_id=info:doi/10.1016%2Fj.jcis.2019.12.075&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon