Facile synthesis of Fe, Co bimetal embedded nanoporous carbon polyhedron composites for an efficient oxygen evolution reaction
[Display omitted] •MOFs precursors were prepared via microwave irradiation and used as self-sacrificing template.•Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) was prepared by a rapid and scalable strategy.•Fe-Co/NPC composites showed excellent electrochemical performance as ideal electrocat...
Saved in:
Published in | Journal of colloid and interface science Vol. 563; pp. 189 - 196 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•MOFs precursors were prepared via microwave irradiation and used as self-sacrificing template.•Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) was prepared by a rapid and scalable strategy.•Fe-Co/NPC composites showed excellent electrochemical performance as ideal electrocatalyst for OER.
The development of highly efficient, stable, and low-cost non-noble-metal electrocatalysts for oxygen evolution reactions (OER) is a major challenge for facilitate the efficiency of green energy storage. Bimetallic oxides are considered promising candidates as the electrocatalysts for OER because of their remarkable electrocatalytic activity, good stability, and low cost. In this work, ZIF-67 precursors were prepared via microwave irradiation and used as a self-sacrificing template. We proposed a rapid and scalable strategy to prepare Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) polyhedron composites by thermal decomposition of Fe species incorporated ZIF-67 precursor. Benefiting from the distinctive 3D polyhedron structural and compositional advantages, Fe-Co/NPC with hierarchical porous structure showed excellent electrochemical performance as ideal electrode material for OER. The resulting Fe-Co/NPC displayed outstanding electrocatalytic activity for OER with appreciable onset potential (1.59 V (vs. RHE)), small Tafel slope (53.55 mV dec−1), low over-potential (396 mV) to reach 10 mA cm−2, and excellent durability with negligible loss in current density after 1000 cycles. The current work demonstrated new insight into the design and construction of 3D structured Fe-Co/NPC polyhedron catalysts with highly electrocatalytic activity and good stability for electrocatalysis applications. |
---|---|
AbstractList | The development of highly efficient, stable, and low-cost non-noble-metal electrocatalysts for oxygen evolution reactions (OER) is a major challenge for facilitate the efficiency of green energy storage. Bimetallic oxides are considered promising candidates as the electrocatalysts for OER because of their remarkable electrocatalytic activity, good stability, and low cost. In this work, ZIF-67 precursors were prepared via microwave irradiation and used as a self-sacrificing template. We proposed a rapid and scalable strategy to prepare Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) polyhedron composites by thermal decomposition of Fe species incorporated ZIF-67 precursor. Benefiting from the distinctive 3D polyhedron structural and compositional advantages, Fe-Co/NPC with hierarchical porous structure showed excellent electrochemical performance as ideal electrode material for OER. The resulting Fe-Co/NPC displayed outstanding electrocatalytic activity for OER with appreciable onset potential (1.59 V (vs. RHE)), small Tafel slope (53.55 mV dec
), low over-potential (396 mV) to reach 10 mA cm
, and excellent durability with negligible loss in current density after 1000 cycles. The current work demonstrated new insight into the design and construction of 3D structured Fe-Co/NPC polyhedron catalysts with highly electrocatalytic activity and good stability for electrocatalysis applications. The development of highly efficient, stable, and low-cost non-noble-metal electrocatalysts for oxygen evolution reactions (OER) is a major challenge for facilitate the efficiency of green energy storage. Bimetallic oxides are considered promising candidates as the electrocatalysts for OER because of their remarkable electrocatalytic activity, good stability, and low cost. In this work, ZIF-67 precursors were prepared via microwave irradiation and used as a self-sacrificing template. We proposed a rapid and scalable strategy to prepare Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) polyhedron composites by thermal decomposition of Fe species incorporated ZIF-67 precursor. Benefiting from the distinctive 3D polyhedron structural and compositional advantages, Fe-Co/NPC with hierarchical porous structure showed excellent electrochemical performance as ideal electrode material for OER. The resulting Fe-Co/NPC displayed outstanding electrocatalytic activity for OER with appreciable onset potential (1.59 V (vs. RHE)), small Tafel slope (53.55 mV dec⁻¹), low over-potential (396 mV) to reach 10 mA cm⁻², and excellent durability with negligible loss in current density after 1000 cycles. The current work demonstrated new insight into the design and construction of 3D structured Fe-Co/NPC polyhedron catalysts with highly electrocatalytic activity and good stability for electrocatalysis applications. [Display omitted] •MOFs precursors were prepared via microwave irradiation and used as self-sacrificing template.•Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) was prepared by a rapid and scalable strategy.•Fe-Co/NPC composites showed excellent electrochemical performance as ideal electrocatalyst for OER. The development of highly efficient, stable, and low-cost non-noble-metal electrocatalysts for oxygen evolution reactions (OER) is a major challenge for facilitate the efficiency of green energy storage. Bimetallic oxides are considered promising candidates as the electrocatalysts for OER because of their remarkable electrocatalytic activity, good stability, and low cost. In this work, ZIF-67 precursors were prepared via microwave irradiation and used as a self-sacrificing template. We proposed a rapid and scalable strategy to prepare Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) polyhedron composites by thermal decomposition of Fe species incorporated ZIF-67 precursor. Benefiting from the distinctive 3D polyhedron structural and compositional advantages, Fe-Co/NPC with hierarchical porous structure showed excellent electrochemical performance as ideal electrode material for OER. The resulting Fe-Co/NPC displayed outstanding electrocatalytic activity for OER with appreciable onset potential (1.59 V (vs. RHE)), small Tafel slope (53.55 mV dec−1), low over-potential (396 mV) to reach 10 mA cm−2, and excellent durability with negligible loss in current density after 1000 cycles. The current work demonstrated new insight into the design and construction of 3D structured Fe-Co/NPC polyhedron catalysts with highly electrocatalytic activity and good stability for electrocatalysis applications. The development of highly efficient, stable, and low-cost non-noble-metal electrocatalysts for oxygen evolution reactions (OER) is a major challenge for facilitate the efficiency of green energy storage. Bimetallic oxides are considered promising candidates as the electrocatalysts for OER because of their remarkable electrocatalytic activity, good stability, and low cost. In this work, ZIF-67 precursors were prepared via microwave irradiation and used as a self-sacrificing template. We proposed a rapid and scalable strategy to prepare Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) polyhedron composites by thermal decomposition of Fe species incorporated ZIF-67 precursor. Benefiting from the distinctive 3D polyhedron structural and compositional advantages, Fe-Co/NPC with hierarchical porous structure showed excellent electrochemical performance as ideal electrode material for OER. The resulting Fe-Co/NPC displayed outstanding electrocatalytic activity for OER with appreciable onset potential (1.59 V (vs. RHE)), small Tafel slope (53.55 mV dec-1), low over-potential (396 mV) to reach 10 mA cm-2, and excellent durability with negligible loss in current density after 1000 cycles. The current work demonstrated new insight into the design and construction of 3D structured Fe-Co/NPC polyhedron catalysts with highly electrocatalytic activity and good stability for electrocatalysis applications.The development of highly efficient, stable, and low-cost non-noble-metal electrocatalysts for oxygen evolution reactions (OER) is a major challenge for facilitate the efficiency of green energy storage. Bimetallic oxides are considered promising candidates as the electrocatalysts for OER because of their remarkable electrocatalytic activity, good stability, and low cost. In this work, ZIF-67 precursors were prepared via microwave irradiation and used as a self-sacrificing template. We proposed a rapid and scalable strategy to prepare Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) polyhedron composites by thermal decomposition of Fe species incorporated ZIF-67 precursor. Benefiting from the distinctive 3D polyhedron structural and compositional advantages, Fe-Co/NPC with hierarchical porous structure showed excellent electrochemical performance as ideal electrode material for OER. The resulting Fe-Co/NPC displayed outstanding electrocatalytic activity for OER with appreciable onset potential (1.59 V (vs. RHE)), small Tafel slope (53.55 mV dec-1), low over-potential (396 mV) to reach 10 mA cm-2, and excellent durability with negligible loss in current density after 1000 cycles. The current work demonstrated new insight into the design and construction of 3D structured Fe-Co/NPC polyhedron catalysts with highly electrocatalytic activity and good stability for electrocatalysis applications. |
Author | Meng, Tianjiao Wang, Huan Zhang, Minzhe An, Siying Yang, Xinjian Zhang, Yufan Jia, Huixian |
Author_xml | – sequence: 1 givenname: Huixian surname: Jia fullname: Jia, Huixian – sequence: 2 givenname: Minzhe surname: Zhang fullname: Zhang, Minzhe – sequence: 3 givenname: Tianjiao surname: Meng fullname: Meng, Tianjiao – sequence: 4 givenname: Siying surname: An fullname: An, Siying – sequence: 5 givenname: Huan surname: Wang fullname: Wang, Huan – sequence: 6 givenname: Xinjian surname: Yang fullname: Yang, Xinjian – sequence: 7 givenname: Yufan orcidid: 0000-0002-3104-1070 surname: Zhang fullname: Zhang, Yufan email: zyf@hbu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31874306$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS1URLeFP8AB-ciBLJ7YThyJC1qxUKkSFzhbjj2hXiVxsL0Ve-lvx9G2Fw5Fc5jR6HtPmnlX5GIOMxLyFtgWGDQfD9uD9WlbM-i2UG9ZK1-QDbBOVi0wfkE2jNVQdW3XXpKrlA6MAUjZvSKXHFQrOGs25GFvrB-RptOc7zD5RMNA9_iB7gLt_YTZjBSnHp1DR2czhyXEcEzUmtiHmS5hPN2hi2W0YVpC8hkTHUKkZqY4DN56nDMNf06_sCzuw3jMvsARjV2H1-TlYMaEbx77Nfm5__Jj9626_f71Zvf5trJCylzZvlPQNkIZORhA03VgFOPKYPERaFq0CnrhbOOcqAeEljdK8F6oGko1_Jq8P_suMfw-Ysp68sniOJoZyzm6FowJ2XLG_49yzmSnBJMFffeIHvsJnV6in0w86af3FkCdARtDShEHbX026-E5Gj9qYHpNUh_0mqRek9RQ65Jkkdb_SJ_cnxV9Oouw_PLeY9RpDcCi8xFt1i745-R_AbSJuPM |
CitedBy_id | crossref_primary_10_1016_j_jcis_2021_08_154 crossref_primary_10_1016_j_jcis_2023_05_187 crossref_primary_10_1016_j_fuel_2024_133941 crossref_primary_10_1246_cl_210814 crossref_primary_10_1039_D3RA01096A crossref_primary_10_1016_j_jcis_2022_01_044 crossref_primary_10_1016_j_jssc_2020_121498 crossref_primary_10_1016_j_jcis_2020_06_044 crossref_primary_10_1016_j_jcis_2023_10_028 crossref_primary_10_1016_j_talanta_2020_121957 crossref_primary_10_1134_S0036024422120111 crossref_primary_10_1016_j_jcis_2022_07_157 crossref_primary_10_1021_acs_langmuir_2c03242 crossref_primary_10_1016_j_jcis_2022_04_123 crossref_primary_10_1016_j_ccr_2022_214925 crossref_primary_10_1021_acsanm_1c02941 crossref_primary_10_26599_NR_2025_94907022 crossref_primary_10_1016_j_ijhydene_2023_07_312 crossref_primary_10_1016_j_jcis_2022_10_061 crossref_primary_10_1016_j_jelechem_2022_116441 crossref_primary_10_1016_j_cej_2022_136815 crossref_primary_10_1016_j_jcis_2020_05_089 crossref_primary_10_1016_j_jelechem_2023_117433 crossref_primary_10_1002_adfm_202313224 crossref_primary_10_1002_smll_202309932 crossref_primary_10_1016_j_aca_2020_09_022 crossref_primary_10_1016_j_seppur_2022_121049 crossref_primary_10_1016_j_jallcom_2022_164852 crossref_primary_10_1016_j_jcis_2022_06_059 crossref_primary_10_1021_acsanm_3c05580 crossref_primary_10_1016_j_colsurfa_2022_130078 crossref_primary_10_1016_j_jallcom_2022_166910 crossref_primary_10_1016_j_jcis_2022_08_149 crossref_primary_10_1021_acs_jpcc_2c00007 crossref_primary_10_1016_j_carbon_2024_118847 crossref_primary_10_1016_j_jcis_2020_06_053 crossref_primary_10_1016_j_jcis_2022_12_026 crossref_primary_10_1016_j_ijhydene_2020_02_206 crossref_primary_10_1016_j_jcis_2021_05_139 crossref_primary_10_1016_j_jcis_2020_09_051 crossref_primary_10_1016_j_microc_2024_110634 crossref_primary_10_1016_j_est_2023_108364 crossref_primary_10_1016_j_ijhydene_2020_12_062 crossref_primary_10_1039_D2NJ04415C crossref_primary_10_1021_acs_inorgchem_1c02268 crossref_primary_10_1007_s10854_020_04857_8 crossref_primary_10_1016_j_jallcom_2020_157265 |
Cites_doi | 10.1016/j.apcatb.2018.10.071 10.1126/science.aaf1525 10.1039/c3gc40520f 10.1016/j.jcis.2019.04.063 10.1002/anie.201701252 10.1016/j.electacta.2018.08.118 10.1002/smll.201302910 10.1016/j.scitotenv.2018.07.162 10.1021/acs.accounts.6b00460 10.1039/C6CY02130A 10.1016/j.jcis.2018.10.036 10.1016/j.nanoen.2017.05.022 10.1002/adfm.201505411 10.1016/j.jcis.2019.07.099 10.1021/acsami.8b07835 10.1002/adma.201500894 10.1002/smll.201102635 10.1039/b807080f 10.1039/c3dt51479j 10.1039/C9TA04388H 10.1021/acs.chemmater.5b02877 10.1016/j.bios.2019.111834 10.1016/j.snb.2017.08.218 10.1016/j.jallcom.2019.151766 10.1016/j.snb.2018.09.034 10.1016/j.jcis.2017.10.050 10.1126/science.aaf5050 10.1039/C6TA90001A 10.1039/C4TA05718J 10.1016/j.jallcom.2017.12.291 10.1039/C8NR02337A 10.1016/j.electacta.2018.08.015 10.1002/aenm.201602420 10.1016/j.jcis.2019.10.054 10.1016/j.jcis.2018.10.076 10.1016/j.jallcom.2019.151927 10.1016/j.memsci.2016.08.043 10.1021/acsami.9b03365 10.1016/j.nanoen.2016.10.020 10.1021/jacs.5b01613 10.1016/j.jcis.2018.08.038 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2019.12.075 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 196 |
ExternalDocumentID | 31874306 10_1016_j_jcis_2019_12_075 S0021979719315425 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c455t-cb9817648a5fa1ea991a8038aeeac4ea7ec81b4dc6dd42fe1736843b482121263 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 05:24:48 EDT 2025 Fri Jul 11 11:37:40 EDT 2025 Wed Feb 19 02:31:43 EST 2025 Thu Apr 24 23:09:27 EDT 2025 Tue Jul 01 01:18:49 EDT 2025 Fri Feb 23 02:47:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrocatalysis Fe, Co bimetal embedded nanoporous carbon Oxygen evolution reaction |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-cb9817648a5fa1ea991a8038aeeac4ea7ec81b4dc6dd42fe1736843b482121263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3104-1070 |
PMID | 31874306 |
PQID | 2330598405 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2400457303 proquest_miscellaneous_2330598405 pubmed_primary_31874306 crossref_citationtrail_10_1016_j_jcis_2019_12_075 crossref_primary_10_1016_j_jcis_2019_12_075 elsevier_sciencedirect_doi_10_1016_j_jcis_2019_12_075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-15 |
PublicationDateYYYYMMDD | 2020-03-15 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Bo, Zheng, Voznyy, Comin, Bajdich, García-Melchor, Han, Xu, Min, Zheng (b0080) 2016; 352 Wang, Meng, Liang, Sun, Wu, Wang, Yang (b0140) 2019; 278 Wang, Meng, Fan, Chen, Guo, Wang, Zhang (b0155) 2018 Wu, Sun, Ming, Huo, Grenier (b0210) 2016; 4 Zhang, Jiang, Wang, Kaneti, Chen, Liu, Jiang, Yamauchi, Hu (b0195) 2017; 56 Chen, Zhou, Guan, Sunarso, Zhu, Hu, Zhang, Shao (b0055) 2017; 3 Li, Zhang, Li, Fan, Xu (b0205) 2018; 10 Su, Cheng, Li, Liu, Ma (b0215) 2017; 7 Li, Yang, Lu, Zhang, Bo (b0160) 2019; 555 Zeng, Yu, Zhang, He, Chen, Song (b0180) 2017; 7 Wang, He, Jia, He, Zhang, Dong, Liu, Liu, Zhang, Li, Gao, Bian (b0060) 2019; 243 Meng, Wang, Jia, Gong, Feng, Li, Wang, Zhang (b0135) 2019; 536 Mo, Wang, Li, Li, Yang, Zhong (b0035) 2018; 290 Wang, Meng, Chen, Fan, Zhang, Wang, Zhang (b0190) 2018; 532 Wang, Meng, Jia, Feng, Gong, Wang, Zhang (b0130) 2019; 549 Wang, Wang, Xie, Zhu, Cao (b0225) 2019; 11 Yang, Fei, Ruan, Tour (b0010) 2015; 27 Chen, Dai, Ren, Xu, Du (b0020) 2019; 536 Zeng, Li, Hua, He, Zhang, Feng, Song (b0175) 2018; 645 Dou, Liao, Ma, Tian, Liu, Feng, Sun, Kim, Shi (b0100) 2016; 30 Tae Woo, Kyoung-Shin (b0025) 2014; 45 Meng, Jia, Ye, Zeng, Yang, Wang, Zhang (b0085) 2020; 560 Mottillo, Lu, Pham (b0145) 2013; 15 Li, Liu, Han, Xiao, Zeng, Zhang, Xu, Dong, Zhang (b0095) 2019; 7 Huang, Liang, Chen (b0075) 2012; 8 Liu, Li, Peng, Zhang, Guo (b0120) 2018; 255 Teng, Chen, Sun, Wang, Fang, Lei, Zhao, Wang, Zhang (b0185) 2018; 739 Li, Lu, Yang, Xiao, Han, Zhang, Bo (b0070) 2019; 809 Wang, Teng, Sun, Chen, Wang, Wang, Zhang (b0125) 2018; 512 Dong, Chen, Li, Shi, Dong, Li, Bai (b0170) 2016; 520 You, Jiang, Sheng, Gul, Yano, Sun (b0065) 2015; 27 Torad, Ming, Shinsuke, Hiroaki, Belik, Masataka, Katsuhiko, Yoshio, Yusuke (b0200) 2014; 10 Salunkhe, Kaneti, Kim, Kim, Yamauchi (b0105) 2016; 49 Liu, Ma, Yuan, Yu, Li, Shi, Liang, Yang, Zhu, Sun, Li, Ma (b0030) 2018; 286 Jin, May, Gasteiger, Goodenough, Yang (b0045) 2012; 334 Shen, Liang, Wu, Liang, Wu (b0115) 2013; 42 Wang, Feng, Ren, Piao, Zhong, Wang, Li, Chen, Wang (b0150) 2015; 137 Li, Dong, Zhang (b0165) 2019; 810 Jeongyong, Farha, John, Scheidt, Nguyen, Hupp (b0110) 2009; 38 Li, Feng, Du, Bai, Fan, Zhang, Peng, Li (b0220) 2015; 3 Wu, Zou, Huang, Feng (b0040) 2018; 10 Seitz, Dickens, Nishio, Hikita, Montoya, Doyle, Kirk, Vojvodic, Hwang, Norskov (b0005) 2016; 353 Tahir, Lun, Idrees, Zhang, Li, Zou, Zhong (b0050) 2017; 37 Wang, Meng, Zhao, Jia, An, Yang, Wang, Zhang (b0090) 2020; 148 Min, Peng, Wang, Li, Zheng (b0015) 2016; 26 Meng (10.1016/j.jcis.2019.12.075_b0135) 2019; 536 Wu (10.1016/j.jcis.2019.12.075_b0040) 2018; 10 Zeng (10.1016/j.jcis.2019.12.075_b0175) 2018; 645 Min (10.1016/j.jcis.2019.12.075_b0015) 2016; 26 Wang (10.1016/j.jcis.2019.12.075_b0150) 2015; 137 Zeng (10.1016/j.jcis.2019.12.075_b0180) 2017; 7 Wang (10.1016/j.jcis.2019.12.075_b0060) 2019; 243 Jin (10.1016/j.jcis.2019.12.075_b0045) 2012; 334 Li (10.1016/j.jcis.2019.12.075_b0095) 2019; 7 Dong (10.1016/j.jcis.2019.12.075_b0170) 2016; 520 Torad (10.1016/j.jcis.2019.12.075_b0200) 2014; 10 Li (10.1016/j.jcis.2019.12.075_b0070) 2019; 809 Liu (10.1016/j.jcis.2019.12.075_b0120) 2018; 255 Wang (10.1016/j.jcis.2019.12.075_b0125) 2018; 512 Wang (10.1016/j.jcis.2019.12.075_b0140) 2019; 278 Su (10.1016/j.jcis.2019.12.075_b0215) 2017; 7 Meng (10.1016/j.jcis.2019.12.075_b0085) 2020; 560 Li (10.1016/j.jcis.2019.12.075_b0160) 2019; 555 Wang (10.1016/j.jcis.2019.12.075_b0190) 2018; 532 Yang (10.1016/j.jcis.2019.12.075_b0010) 2015; 27 Bo (10.1016/j.jcis.2019.12.075_b0080) 2016; 352 Zhang (10.1016/j.jcis.2019.12.075_b0195) 2017; 56 Li (10.1016/j.jcis.2019.12.075_b0205) 2018; 10 Li (10.1016/j.jcis.2019.12.075_b0220) 2015; 3 Seitz (10.1016/j.jcis.2019.12.075_b0005) 2016; 353 Tae Woo (10.1016/j.jcis.2019.12.075_b0025) 2014; 45 Huang (10.1016/j.jcis.2019.12.075_b0075) 2012; 8 Salunkhe (10.1016/j.jcis.2019.12.075_b0105) 2016; 49 Mottillo (10.1016/j.jcis.2019.12.075_b0145) 2013; 15 Wu (10.1016/j.jcis.2019.12.075_b0210) 2016; 4 Wang (10.1016/j.jcis.2019.12.075_b0090) 2020; 148 Li (10.1016/j.jcis.2019.12.075_b0165) 2019; 810 Wang (10.1016/j.jcis.2019.12.075_b0155) 2018 Shen (10.1016/j.jcis.2019.12.075_b0115) 2013; 42 Wang (10.1016/j.jcis.2019.12.075_b0225) 2019; 11 Mo (10.1016/j.jcis.2019.12.075_b0035) 2018; 290 Tahir (10.1016/j.jcis.2019.12.075_b0050) 2017; 37 You (10.1016/j.jcis.2019.12.075_b0065) 2015; 27 Jeongyong (10.1016/j.jcis.2019.12.075_b0110) 2009; 38 Chen (10.1016/j.jcis.2019.12.075_b0055) 2017; 3 Liu (10.1016/j.jcis.2019.12.075_b0030) 2018; 286 Dou (10.1016/j.jcis.2019.12.075_b0100) 2016; 30 Wang (10.1016/j.jcis.2019.12.075_b0130) 2019; 549 Chen (10.1016/j.jcis.2019.12.075_b0020) 2019; 536 Teng (10.1016/j.jcis.2019.12.075_b0185) 2018; 739 |
References_xml | – volume: 26 start-page: 8555 year: 2016 end-page: 8561 ident: b0015 publication-title: Adv. Funct. Mater. – volume: 334 start-page: 1383 year: 2012 end-page: 1385 ident: b0045 publication-title: Science – volume: 42 start-page: 13649 year: 2013 end-page: 13657 ident: b0115 publication-title: Dalton Trans. – volume: 7 start-page: 1602420 year: 2017 ident: b0215 publication-title: Adv. Energy Mater. – volume: 27 start-page: 7636 year: 2015 end-page: 7642 ident: b0065 publication-title: Chem. Mater. – volume: 4 start-page: 1 year: 2016 end-page: 9 ident: b0210 publication-title: J. Mater. Chem. A – volume: 255 start-page: 1983 year: 2018 end-page: 1994 ident: b0120 publication-title: Sens. Actuators B – volume: 645 start-page: 550 year: 2018 end-page: 559 ident: b0175 publication-title: Sci. Total Environ. – volume: 8 start-page: 1805 year: 2012 end-page: 1834 ident: b0075 publication-title: Small – volume: 536 start-page: 424 year: 2019 end-page: 430 ident: b0135 publication-title: J. Colloid Interf. Sci. – volume: 810 start-page: 151927 year: 2019 ident: b0165 publication-title: J. Alloy. Compd. – volume: 3 start-page: 1 year: 2017 end-page: 8 ident: b0055 publication-title: Sci. Adv. – volume: 148 start-page: 111834 year: 2020 ident: b0090 publication-title: Biosens. Bioelectron. – volume: 10 start-page: 9252 year: 2018 end-page: 9260 ident: b0205 publication-title: Nanoscale – start-page: 1 year: 2018 end-page: 7 ident: b0155 publication-title: J. Colloid Interface Sci. – volume: 27 start-page: 3175 year: 2015 end-page: 3180 ident: b0010 publication-title: Adv. Mater. – volume: 286 start-page: 195 year: 2018 end-page: 204 ident: b0030 publication-title: Electrochim. Acta – volume: 30 start-page: 267 year: 2016 end-page: 275 ident: b0100 publication-title: Nano Energy – volume: 353 start-page: 1011 year: 2016 end-page: 1014 ident: b0005 publication-title: Science – volume: 352 start-page: 333 year: 2016 end-page: 337 ident: b0080 publication-title: Science – volume: 49 start-page: 2796 year: 2016 end-page: 2806 ident: b0105 publication-title: Accounts Chem. Res. – volume: 7 start-page: 396 year: 2017 end-page: 404 ident: b0180 publication-title: Catal. Sci. Technol. – volume: 278 start-page: 133 year: 2019 end-page: 139 ident: b0140 publication-title: Sens. Actuators B – volume: 549 start-page: 98 year: 2019 end-page: 104 ident: b0130 publication-title: J. Colloid Interf. Sci. – volume: 536 start-page: 71 year: 2019 end-page: 79 ident: b0020 publication-title: J. Colloid Interf. Sci. – volume: 10 start-page: 26283 year: 2018 end-page: 26292 ident: b0040 publication-title: ACS Appl. Mater. Inter. – volume: 290 start-page: 649 year: 2018 end-page: 656 ident: b0035 publication-title: Electrochim. Acta – volume: 555 start-page: 449 year: 2019 end-page: 459 ident: b0160 publication-title: J. Colloid Interface Sci. – volume: 3 start-page: 5535 year: 2015 end-page: 5546 ident: b0220 publication-title: J. Mater. Chem. A – volume: 7 start-page: 17923 year: 2019 end-page: 17936 ident: b0095 publication-title: J. Mater. Chem. A – volume: 45 start-page: 990 year: 2014 end-page: 994 ident: b0025 publication-title: Science – volume: 532 start-page: 650 year: 2018 end-page: 656 ident: b0190 publication-title: J. Colloid Interf. Sci. – volume: 809 start-page: 151766 year: 2019 ident: b0070 publication-title: J. Alloy. Compd. – volume: 243 start-page: 463 year: 2019 end-page: 469 ident: b0060 publication-title: Appl. Catal. B: Environ. – volume: 38 start-page: 1450 year: 2009 end-page: 1459 ident: b0110 publication-title: Chem. Soc. Rev. – volume: 37 start-page: 136 year: 2017 end-page: 157 ident: b0050 publication-title: Nano Energy – volume: 560 start-page: 1 year: 2020 end-page: 10 ident: b0085 publication-title: J. Colloid Interface Sci. – volume: 137 start-page: 4920 year: 2015 end-page: 4923 ident: b0150 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2096 year: 2014 end-page: 2107 ident: b0200 publication-title: Small – volume: 739 start-page: 425 year: 2018 end-page: 430 ident: b0185 publication-title: J. Alloy. Compd. – volume: 520 start-page: 801 year: 2016 end-page: 811 ident: b0170 publication-title: J. Membr. Sci. – volume: 11 start-page: 16619 year: 2019 end-page: 16628 ident: b0225 publication-title: ACS Appl. Mater. Interfaces – volume: 512 start-page: 127 year: 2018 end-page: 133 ident: b0125 publication-title: J. Colloid Interf. Sci. – volume: 15 start-page: 2121 year: 2013 end-page: 2131 ident: b0145 publication-title: Green Chem. – volume: 56 start-page: 8435 year: 2017 ident: b0195 publication-title: Angew. Chem. Int. Ed. – volume: 45 start-page: 990 year: 2014 ident: 10.1016/j.jcis.2019.12.075_b0025 publication-title: Science – volume: 243 start-page: 463 year: 2019 ident: 10.1016/j.jcis.2019.12.075_b0060 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.10.071 – volume: 352 start-page: 333 year: 2016 ident: 10.1016/j.jcis.2019.12.075_b0080 publication-title: Science doi: 10.1126/science.aaf1525 – volume: 15 start-page: 2121 year: 2013 ident: 10.1016/j.jcis.2019.12.075_b0145 publication-title: Green Chem. doi: 10.1039/c3gc40520f – volume: 549 start-page: 98 year: 2019 ident: 10.1016/j.jcis.2019.12.075_b0130 publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2019.04.063 – volume: 56 start-page: 8435 year: 2017 ident: 10.1016/j.jcis.2019.12.075_b0195 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701252 – volume: 290 start-page: 649 year: 2018 ident: 10.1016/j.jcis.2019.12.075_b0035 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.118 – volume: 10 start-page: 2096 year: 2014 ident: 10.1016/j.jcis.2019.12.075_b0200 publication-title: Small doi: 10.1002/smll.201302910 – volume: 645 start-page: 550 year: 2018 ident: 10.1016/j.jcis.2019.12.075_b0175 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.162 – volume: 3 start-page: 1 year: 2017 ident: 10.1016/j.jcis.2019.12.075_b0055 publication-title: Sci. Adv. – volume: 49 start-page: 2796 year: 2016 ident: 10.1016/j.jcis.2019.12.075_b0105 publication-title: Accounts Chem. Res. doi: 10.1021/acs.accounts.6b00460 – volume: 7 start-page: 396 year: 2017 ident: 10.1016/j.jcis.2019.12.075_b0180 publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY02130A – volume: 536 start-page: 71 year: 2019 ident: 10.1016/j.jcis.2019.12.075_b0020 publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2018.10.036 – volume: 37 start-page: 136 year: 2017 ident: 10.1016/j.jcis.2019.12.075_b0050 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.022 – volume: 26 start-page: 8555 year: 2016 ident: 10.1016/j.jcis.2019.12.075_b0015 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201505411 – volume: 555 start-page: 449 year: 2019 ident: 10.1016/j.jcis.2019.12.075_b0160 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.07.099 – volume: 10 start-page: 26283 year: 2018 ident: 10.1016/j.jcis.2019.12.075_b0040 publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.8b07835 – volume: 27 start-page: 3175 year: 2015 ident: 10.1016/j.jcis.2019.12.075_b0010 publication-title: Adv. Mater. doi: 10.1002/adma.201500894 – volume: 8 start-page: 1805 year: 2012 ident: 10.1016/j.jcis.2019.12.075_b0075 publication-title: Small doi: 10.1002/smll.201102635 – volume: 38 start-page: 1450 year: 2009 ident: 10.1016/j.jcis.2019.12.075_b0110 publication-title: Chem. Soc. Rev. doi: 10.1039/b807080f – volume: 42 start-page: 13649 year: 2013 ident: 10.1016/j.jcis.2019.12.075_b0115 publication-title: Dalton Trans. doi: 10.1039/c3dt51479j – volume: 7 start-page: 17923 year: 2019 ident: 10.1016/j.jcis.2019.12.075_b0095 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04388H – volume: 27 start-page: 7636 year: 2015 ident: 10.1016/j.jcis.2019.12.075_b0065 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02877 – volume: 148 start-page: 111834 year: 2020 ident: 10.1016/j.jcis.2019.12.075_b0090 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111834 – volume: 255 start-page: 1983 year: 2018 ident: 10.1016/j.jcis.2019.12.075_b0120 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2017.08.218 – volume: 809 start-page: 151766 year: 2019 ident: 10.1016/j.jcis.2019.12.075_b0070 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.151766 – volume: 278 start-page: 133 year: 2019 ident: 10.1016/j.jcis.2019.12.075_b0140 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.09.034 – volume: 512 start-page: 127 year: 2018 ident: 10.1016/j.jcis.2019.12.075_b0125 publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2017.10.050 – volume: 353 start-page: 1011 year: 2016 ident: 10.1016/j.jcis.2019.12.075_b0005 publication-title: Science doi: 10.1126/science.aaf5050 – volume: 4 start-page: 1 year: 2016 ident: 10.1016/j.jcis.2019.12.075_b0210 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA90001A – volume: 3 start-page: 5535 year: 2015 ident: 10.1016/j.jcis.2019.12.075_b0220 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05718J – volume: 739 start-page: 425 year: 2018 ident: 10.1016/j.jcis.2019.12.075_b0185 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2017.12.291 – volume: 10 start-page: 9252 year: 2018 ident: 10.1016/j.jcis.2019.12.075_b0205 publication-title: Nanoscale doi: 10.1039/C8NR02337A – volume: 286 start-page: 195 year: 2018 ident: 10.1016/j.jcis.2019.12.075_b0030 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.015 – start-page: 1 year: 2018 ident: 10.1016/j.jcis.2019.12.075_b0155 publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 1602420 year: 2017 ident: 10.1016/j.jcis.2019.12.075_b0215 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602420 – volume: 560 start-page: 1 year: 2020 ident: 10.1016/j.jcis.2019.12.075_b0085 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.10.054 – volume: 536 start-page: 424 year: 2019 ident: 10.1016/j.jcis.2019.12.075_b0135 publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2018.10.076 – volume: 810 start-page: 151927 year: 2019 ident: 10.1016/j.jcis.2019.12.075_b0165 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.151927 – volume: 520 start-page: 801 year: 2016 ident: 10.1016/j.jcis.2019.12.075_b0170 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.08.043 – volume: 11 start-page: 16619 year: 2019 ident: 10.1016/j.jcis.2019.12.075_b0225 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b03365 – volume: 334 start-page: 1383 year: 2012 ident: 10.1016/j.jcis.2019.12.075_b0045 publication-title: Science – volume: 30 start-page: 267 year: 2016 ident: 10.1016/j.jcis.2019.12.075_b0100 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.020 – volume: 137 start-page: 4920 year: 2015 ident: 10.1016/j.jcis.2019.12.075_b0150 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01613 – volume: 532 start-page: 650 year: 2018 ident: 10.1016/j.jcis.2019.12.075_b0190 publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2018.08.038 |
SSID | ssj0011559 |
Score | 2.5082998 |
Snippet | [Display omitted]
•MOFs precursors were prepared via microwave irradiation and used as self-sacrificing template.•Fe, Co bimetal embedded nanoporous carbon... The development of highly efficient, stable, and low-cost non-noble-metal electrocatalysts for oxygen evolution reactions (OER) is a major challenge for... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 189 |
SubjectTerms | carbon catalysts catalytic activity cobalt durability Electrocatalysis electrochemistry electrodes Fe, Co bimetal embedded nanoporous carbon iron microwave radiation nanopores oxides Oxygen evolution reaction oxygen production renewable energy sources thermal degradation |
Title | Facile synthesis of Fe, Co bimetal embedded nanoporous carbon polyhedron composites for an efficient oxygen evolution reaction |
URI | https://dx.doi.org/10.1016/j.jcis.2019.12.075 https://www.ncbi.nlm.nih.gov/pubmed/31874306 https://www.proquest.com/docview/2330598405 https://www.proquest.com/docview/2400457303 |
Volume | 563 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCMpreVRG4gaha8fO41itWG2L6IlKvVl-TESq1llttoi99Lczk8cKJLqH3qLIjizPeOab-JsZxj6G4HQepjYR3mGAkkudOGmzRFRqisbQZ97Rr4HvZ9niXJ1e6Is9NhtzYYhWOdj-3qZ31np4czTs5tGyrinHF09bXuYIQRAHSEo0VyonLf9yu6V5CLp262keIqHRQ-JMz_G69DWV7BZl90uQuIb_d053gc_OCc2fsicDeuTH_QKfsT2IB-zhbGzadsAe_1Vf8Dm7nVuPp563m4g4r61b3lR8Dp_5rOGuvgYE3hyuHaDxCTza2CAYb25a7u3KNZEvm6vNTwgrfCTmOdG7oOWIcrmNHLraE-iyePN7g1rI4degxRxxaJct8YKdz7_-mC2SoeFC4pXW68S7shB5pgqrKyvAIna0xTQtLOA8BTYHjyhXBZ-FoGQFIk-zQqVOFegAhczSl2w_NhFeM649fawIlQhTFXTqXIkwXkjvMYLTXk-YGHfa-KEaOTXFuDIj7ezSkHQMSccIaVA6E_ZpO2fZ1-LYOVqPAjT_aJRBZ7Fz3odR2gaFR_cnNgJuvpEpGscSI-JdY8gmajSb6YS96lVlu9aU-h9iiPbmnit7yx5JivaJTajfsf316gbeIyRau8NO5w_Zg-OTb4uzP2hHDGY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcigcEJRXeBoJTrBt7LX3ceCAAlFKH6dW6s34tSJVuxtlUyCX_in-IDP7iECCHJB6W61sy_LYn7-xP88AvPbeqtQPTcSdRQclFSqywiQRL-QQwdAlztLRwOFRMjmRn0_V6Qb87N_CkKyyw_4W0xu07v7sdqO5O5tO6Y0vrrY0T5GCIA8QvbJyPyy_o99Wv9_7iEZ-I8T40_FoEnWpBSInlVpEzuYZTxOZGVUYHgyyJJMN48wEBCIZTBoc8jnpXeK9FEXgaZxkMrYyQ6jnIomx3RtwUyJcUNqEnauVroTTPV-rK-ERda97qdOKys7clGKE87w5gyRx4993w3-x3WbXG9-FOx1dZR_aEbkHG6Hchq1RnyVuG27_FtDwPlyNjUOYYfWyRGJZT2tWFWwc3rFRxez0IiDTZ-HCBkQ7z0pTVsj-q8uaOTO3Vclm1fnya_Bz_CSpO-nJQs2QVjNTstAEu8A9klU_ljjtWfjWLRuGxLd5nvEATq7FDA9hs6zK8BiYctRY5gvuh9Kr2Noc_QYunEOXUTk1AN6PtHZd-HPKwnGue53bmSbraLKO5kKjdQbwdlVn1gb_WFta9QbUf0xhjbvT2nqvemtrNB5d2Jgy4OBrESMa5-iCrytDIKwQp-MBPGqnyqqvMSVcRJ_wyX_27CVsTY4PD_TB3tH-U7gl6KiBpIzqGWwu5pfhOfKxhX3RzH8GX657wf0C_itILg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+synthesis+of+Fe%2C+Co+bimetal+embedded+nanoporous+carbon+polyhedron+composites+for+an+efficient+oxygen+evolution+reaction&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Jia%2C+Huixian&rft.au=Zhang%2C+Minzhe&rft.au=Meng%2C+Tianjiao&rft.au=An%2C+Siying&rft.date=2020-03-15&rft.issn=0021-9797&rft.volume=563+p.189-196&rft.spage=189&rft.epage=196&rft_id=info:doi/10.1016%2Fj.jcis.2019.12.075&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |