Metastatic Consequences of Immune Escape from NK Cell Cytotoxicity by Human Breast Cancer Stem Cells
Breast cancer stem-like cells (BCSC) are crucial for metastasis but the underlying mechanisms remain elusive. Here, we report that tumor-infiltrating natural killer (NK) cells failed to limit metastasis and were not associated with improved therapeutic outcome of BCSC-rich breast cancer. Primary BCS...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 74; no. 20; pp. 5746 - 5757 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.10.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Breast cancer stem-like cells (BCSC) are crucial for metastasis but the underlying mechanisms remain elusive. Here, we report that tumor-infiltrating natural killer (NK) cells failed to limit metastasis and were not associated with improved therapeutic outcome of BCSC-rich breast cancer. Primary BCSCs were resistant to cytotoxicity mediated by autologous/allogeneic NK cells due to reduced expression of MICA and MICB, two ligands for the stimulatory NK cell receptor NKG2D. Furthermore, the downregulation of MICA/MICB in BCSCs was mediated by aberrantly expressed oncogenic miR20a, which promoted the resistance of BCSC to NK cell cytotoxicity and resultant lung metastasis. The breast cancer cell differentiation–inducing agent, all-trans retinoic acid, restored the miR20a–MICA/MICB axis and sensitized BCSC to NK cell–mediated killing, thereby reducing immune escape–associated BCSC metastasis. Together, our findings reveal a novel mechanism for immune escape of human BCSC and identify the miR20a–MICA/MICB signaling axis as a therapeutic target to limit metastatic breast cancer. Cancer Res; 74(20); 5746–57. ©2014 AACR. |
---|---|
AbstractList | These findings reveal how metastasis-initiating breast cancer stem-like cells evade immune surveillance by natural killer cells. Breast cancer stem-like cells (BCSC) are crucial for metastasis but the underlying mechanisms remain elusive. Here, we report that tumor-infiltrating natural killer (NK) cells failed to limit metastasis and were not associated with improved therapeutic outcome of BCSC-rich breast cancer. Primary BCSCs were resistant to cytotoxicity mediated by autologous/allogeneic NK cells due to reduced expression of MICA and MICB, two ligands for the stimulatory NK cell receptor NKG2D. Furthermore, the downregulation of MICA/MICB in BCSCs was mediated by aberrantly expressed oncogenic miR20a, which promoted the resistance of BCSC to NK cell cytotoxicity and resultant lung metastasis. The breast cancer cell differentiation-inducing agent, all-trans retinoic acid, restored the miR20a-MICA/MICB axis and sensitized BCSC to NK cell-mediated killing, thereby reducing immune escape-associated BCSC metastasis. Together, our findings reveal a novel mechanism for immune escape of human BCSC and identify the miR20a-MICA/MICB signaling axis as a therapeutic target to limit metastatic breast cancer. Cancer Res; 74(20); 5746-57. copyright 2014 AACR. Breast cancer stem-like cells (BCSC) are crucial for metastasis but the underlying mechanisms remain elusive. Here, we report that tumor-infiltrating natural killer (NK) cells failed to limit metastasis and were not associated with improved therapeutic outcome of BCSC-rich breast cancer. Primary BCSCs were resistant to cytotoxicity mediated by autologous/allogeneic NK cells due to reduced expression of MICA and MICB, two ligands for the stimulatory NK cell receptor NKG2D. Furthermore, the downregulation of MICA/MICB in BCSCs was mediated by aberrantly expressed oncogenic miR20a, which promoted the resistance of BCSC to NK cell cytotoxicity and resultant lung metastasis. The breast cancer cell differentiation-inducing agent, all-trans retinoic acid, restored the miR20a-MICA/MICB axis and sensitized BCSC to NK cell-mediated killing, thereby reducing immune escape-associated BCSC metastasis. Together, our findings reveal a novel mechanism for immune escape of human BCSC and identify the miR20a-MICA/MICB signaling axis as a therapeutic target to limit metastatic breast cancer. Breast cancer stem-like cells (BCSC) are crucial for metastasis but the underlying mechanisms remain elusive. Here, we report that tumor-infiltrating natural killer (NK) cells failed to limit metastasis and were not associated with improved therapeutic outcome of BCSC-rich breast cancer. Primary BCSCs were resistant to cytotoxicity mediated by autologous/allogeneic NK cells due to reduced expression of MICA and MICB, two ligands for the stimulatory NK cell receptor NKG2D. Furthermore, the downregulation of MICA/MICB in BCSCs was mediated by aberrantly expressed oncogenic miR20a, which promoted the resistance of BCSC to NK cell cytotoxicity and resultant lung metastasis. The breast cancer cell differentiation-inducing agent, all-trans retinoic acid, restored the miR20a-MICA/MICB axis and sensitized BCSC to NK cell-mediated killing, thereby reducing immune escape-associated BCSC metastasis. Together, our findings reveal a novel mechanism for immune escape of human BCSC and identify the miR20a-MICA/MICB signaling axis as a therapeutic target to limit metastatic breast cancer.Breast cancer stem-like cells (BCSC) are crucial for metastasis but the underlying mechanisms remain elusive. Here, we report that tumor-infiltrating natural killer (NK) cells failed to limit metastasis and were not associated with improved therapeutic outcome of BCSC-rich breast cancer. Primary BCSCs were resistant to cytotoxicity mediated by autologous/allogeneic NK cells due to reduced expression of MICA and MICB, two ligands for the stimulatory NK cell receptor NKG2D. Furthermore, the downregulation of MICA/MICB in BCSCs was mediated by aberrantly expressed oncogenic miR20a, which promoted the resistance of BCSC to NK cell cytotoxicity and resultant lung metastasis. The breast cancer cell differentiation-inducing agent, all-trans retinoic acid, restored the miR20a-MICA/MICB axis and sensitized BCSC to NK cell-mediated killing, thereby reducing immune escape-associated BCSC metastasis. Together, our findings reveal a novel mechanism for immune escape of human BCSC and identify the miR20a-MICA/MICB signaling axis as a therapeutic target to limit metastatic breast cancer. Breast cancer stem-like cells (BCSC) are crucial for metastasis but the underlying mechanisms remain elusive. Here, we report that tumor-infiltrating natural killer (NK) cells failed to limit metastasis and were not associated with improved therapeutic outcome of BCSC-rich breast cancer. Primary BCSCs were resistant to cytotoxicity mediated by autologous/allogeneic NK cells due to reduced expression of MICA and MICB, two ligands for the stimulatory NK cell receptor NKG2D. Furthermore, the downregulation of MICA/MICB in BCSCs was mediated by aberrantly expressed oncogenic miR20a, which promoted the resistance of BCSC to NK cell cytotoxicity and resultant lung metastasis. The breast cancer cell differentiation–inducing agent, all-trans retinoic acid, restored the miR20a–MICA/MICB axis and sensitized BCSC to NK cell–mediated killing, thereby reducing immune escape–associated BCSC metastasis. Together, our findings reveal a novel mechanism for immune escape of human BCSC and identify the miR20a–MICA/MICB signaling axis as a therapeutic target to limit metastatic breast cancer. Cancer Res; 74(20); 5746–57. ©2014 AACR. |
Author | Wang, Zhe Ye, Xian-Zong Yu, Shi-Cang Wang, Qiang Cui, You-Hong Wang, Ji Ming Zhang, Xia Wang, Bin Ping, Yi-Fang Xu, Chuan Xu, Sen-Lin Yang, Lang Bian, Xiu-Wu Yang, Jing Qian, Cheng Jiang, Jun |
Author_xml | – sequence: 1 givenname: Bin surname: Wang fullname: Wang, Bin – sequence: 2 givenname: Qiang surname: Wang fullname: Wang, Qiang – sequence: 3 givenname: Zhe surname: Wang fullname: Wang, Zhe – sequence: 4 givenname: Jun surname: Jiang fullname: Jiang, Jun – sequence: 5 givenname: Shi-Cang surname: Yu fullname: Yu, Shi-Cang – sequence: 6 givenname: Yi-Fang surname: Ping fullname: Ping, Yi-Fang – sequence: 7 givenname: Jing surname: Yang fullname: Yang, Jing – sequence: 8 givenname: Sen-Lin surname: Xu fullname: Xu, Sen-Lin – sequence: 9 givenname: Xian-Zong surname: Ye fullname: Ye, Xian-Zong – sequence: 10 givenname: Chuan surname: Xu fullname: Xu, Chuan – sequence: 11 givenname: Lang surname: Yang fullname: Yang, Lang – sequence: 12 givenname: Cheng surname: Qian fullname: Qian, Cheng – sequence: 13 givenname: Ji Ming surname: Wang fullname: Wang, Ji Ming – sequence: 14 givenname: You-Hong surname: Cui fullname: Cui, You-Hong – sequence: 15 givenname: Xia surname: Zhang fullname: Zhang, Xia – sequence: 16 givenname: Xiu-Wu surname: Bian fullname: Bian, Xiu-Wu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25164008$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P3DAQhq0K1F1of0IrH3vJ4kk8-VBPNNqyCEoPhbPlOGMp1Sbe2o7E_nu8ZeHAhZNlzfO-suc5YyeTm4ixLyBWAFhfCCHqDGWVr9rLuwyKLMey-MCWgEWdVVLiCVu-Mgt2FsLfdEUQ-JEtcoRSpuGS9b8o6hB1HAxv3RTo30yTocCd5dfjOE_E18HoHXHr3cjvbnhL2y1v99FF9ziYIe55t-ebedQT_-EpdfFWpwbP_0Qa_9PhEzu1ehvo8_E8Zw8_1_ftJrv9fXXdXt5mRiLGzJQo0TZCF6TzTuSlFkZ3ddnIWjTYp2GpbQ1dY1B0um-srAzZHixWeV9VVJyzb8-9O-_SP0JU4xBMeoGeyM1BQQ3QiFKCeB8toWgQpKgS-vWIzt1Ivdr5YdR-r16WmAB8Box3IXiyrwgIdZClDiLUQYRKshQU6iAr5b6_yaV1JhNuil4P23fST2ZcmMY |
CitedBy_id | crossref_primary_10_1007_s10620_024_08536_0 crossref_primary_10_1016_j_celrep_2022_111298 crossref_primary_10_1016_j_bone_2020_115693 crossref_primary_10_3389_fcell_2021_692940 crossref_primary_10_3390_cancers12123863 crossref_primary_10_1007_s13277_016_4935_z crossref_primary_10_3390_cancers12030706 crossref_primary_10_1007_s11033_022_07865_5 crossref_primary_10_1002_advs_202205449 crossref_primary_10_1007_s13402_023_00777_x crossref_primary_10_3389_fmolb_2020_00072 crossref_primary_10_1186_s40880_017_0202_y crossref_primary_10_1016_j_semcancer_2016_09_001 crossref_primary_10_3390_ijms21082805 crossref_primary_10_1080_15384047_2016_1177678 crossref_primary_10_1002_jcp_27246 crossref_primary_10_1002_stem_2039 crossref_primary_10_3390_cancers14133287 crossref_primary_10_1016_j_heliyon_2024_e34046 crossref_primary_10_1093_jnci_djx034 crossref_primary_10_1186_s13039_019_0429_1 crossref_primary_10_3390_biomedicines11010189 crossref_primary_10_1002_stem_2780 crossref_primary_10_1016_j_canlet_2020_09_021 crossref_primary_10_1002_jcp_29044 crossref_primary_10_1038_cr_2018_15 crossref_primary_10_1111_jcmm_13867 crossref_primary_10_1007_s13346_021_00923_8 crossref_primary_10_1038_nrclinonc_2016_144 crossref_primary_10_18632_oncotarget_9256 crossref_primary_10_1016_j_tranon_2020_100930 crossref_primary_10_18632_oncotarget_6261 crossref_primary_10_3390_jcm5010002 crossref_primary_10_1016_j_bbrc_2020_12_060 crossref_primary_10_3390_cancers12040867 crossref_primary_10_1136_jitc_2019_000233 crossref_primary_10_3389_fimmu_2017_01544 crossref_primary_10_3390_biom11111702 crossref_primary_10_1016_j_xcrm_2025_101981 crossref_primary_10_12659_MSM_895833 crossref_primary_10_3390_genes11111372 crossref_primary_10_1002_mco2_176 crossref_primary_10_3390_biology12081079 crossref_primary_10_1038_onc_2015_129 crossref_primary_10_1038_s41419_018_0776_6 crossref_primary_10_3390_cancers13061363 crossref_primary_10_1186_s12964_019_0507_3 crossref_primary_10_1245_s10434_022_12220_w crossref_primary_10_3390_ijms22179639 crossref_primary_10_1038_s41586_019_1410_1 crossref_primary_10_3389_fimmu_2017_00380 crossref_primary_10_1080_2162402X_2018_1553477 crossref_primary_10_1111_imr_13417 crossref_primary_10_3390_cancers11030310 crossref_primary_10_3390_diagnostics10090721 crossref_primary_10_1007_s10616_017_0108_1 crossref_primary_10_1101_cshperspect_a037424 crossref_primary_10_1186_s12967_023_04575_9 crossref_primary_10_1016_j_semcdb_2021_04_003 crossref_primary_10_1002_dvdy_24548 crossref_primary_10_1136_jitc_2022_006238 crossref_primary_10_18632_oncotarget_5635 crossref_primary_10_1038_s41598_018_30525_3 crossref_primary_10_1016_j_omto_2019_11_002 crossref_primary_10_3390_vaccines11111701 crossref_primary_10_1186_s12943_016_0525_3 crossref_primary_10_3389_fimmu_2024_1362120 crossref_primary_10_1002_adtp_202300388 crossref_primary_10_1016_j_biomaterials_2015_09_037 crossref_primary_10_1016_j_trecan_2020_12_014 crossref_primary_10_1038_s41392_024_01851_y crossref_primary_10_1186_s12943_023_01737_7 crossref_primary_10_3390_cancers13071674 crossref_primary_10_1016_j_imlet_2019_03_004 crossref_primary_10_1016_j_semcancer_2017_02_004 crossref_primary_10_1007_s10549_014_3250_x crossref_primary_10_3109_03008207_2015_1066780 crossref_primary_10_1016_j_semcdb_2021_04_013 crossref_primary_10_3389_fonc_2022_955892 crossref_primary_10_1038_s41568_024_00760_0 crossref_primary_10_1002_path_4958 crossref_primary_10_1016_j_intimp_2024_113535 crossref_primary_10_1136_jitc_2019_000301 crossref_primary_10_1016_j_tranon_2021_101134 crossref_primary_10_1158_0008_5472_CAN_24_0030 crossref_primary_10_1016_j_canlet_2023_216328 crossref_primary_10_1155_2017_3714190 crossref_primary_10_1136_jitc_2022_004527 crossref_primary_10_1186_s12943_020_1141_9 crossref_primary_10_1186_s12929_024_00998_8 crossref_primary_10_1007_s13402_018_0373_9 crossref_primary_10_3389_fimmu_2023_1245421 crossref_primary_10_3934_Allergy_2018_2_98 crossref_primary_10_1186_s12943_023_01748_4 crossref_primary_10_3390_ijms21093352 crossref_primary_10_3389_fimmu_2021_713158 crossref_primary_10_1007_s12015_023_10639_6 crossref_primary_10_3390_ijms23052496 crossref_primary_10_1002_advs_202201271 crossref_primary_10_3389_fimmu_2021_707542 crossref_primary_10_1080_2162402X_2022_2104991 crossref_primary_10_1186_s12935_021_02400_1 crossref_primary_10_1007_s12026_021_09247_8 crossref_primary_10_3390_ijms24010395 crossref_primary_10_3390_vaccines10122018 crossref_primary_10_1016_j_stem_2024_06_003 crossref_primary_10_2174_1568009620666200504111914 crossref_primary_10_1080_2162402X_2017_1317411 crossref_primary_10_1002_jcp_28304 crossref_primary_10_1016_j_bcp_2022_114955 crossref_primary_10_3389_fimmu_2022_913951 crossref_primary_10_1016_j_canlet_2015_05_010 crossref_primary_10_1080_08830185_2020_1845670 crossref_primary_10_1186_s13046_021_02164_6 crossref_primary_10_3390_cells8121492 crossref_primary_10_1038_s41571_019_0293_2 crossref_primary_10_1186_s12967_024_05549_1 crossref_primary_10_1080_19424396_2016_12220977 crossref_primary_10_3390_cancers15082323 crossref_primary_10_1007_s13277_015_3949_2 crossref_primary_10_1016_j_canlet_2017_03_038 crossref_primary_10_1016_j_semcancer_2023_01_001 crossref_primary_10_3390_ijms241310683 crossref_primary_10_3390_pharmaceutics16010031 crossref_primary_10_3748_wjg_v26_i14_1580 crossref_primary_10_1155_2017_6012810 crossref_primary_10_1016_j_semcancer_2018_05_001 crossref_primary_10_3389_fmolb_2017_00052 crossref_primary_10_3390_nu13041212 crossref_primary_10_1111_imm_12866 crossref_primary_10_1002_mc_22628 crossref_primary_10_1038_s41416_019_0572_9 crossref_primary_10_1186_s13287_022_02829_9 crossref_primary_10_3389_fonc_2022_877384 crossref_primary_10_1002_0471142735_im1437s110 crossref_primary_10_1093_carcin_bgw115 crossref_primary_10_18632_oncotarget_10693 crossref_primary_10_3390_biomedicines12092158 crossref_primary_10_3390_ijms242015332 crossref_primary_10_1016_j_semcancer_2017_03_003 crossref_primary_10_3390_life13061361 crossref_primary_10_1016_j_trecan_2018_06_004 crossref_primary_10_1016_j_semcdb_2016_12_004 crossref_primary_10_1007_s00018_021_03929_0 crossref_primary_10_1080_2162402X_2015_1036212 crossref_primary_10_3389_fgene_2020_00312 crossref_primary_10_3390_cells10092361 crossref_primary_10_1080_2162402X_2017_1284718 crossref_primary_10_1136_jitc_2024_009621 crossref_primary_10_3389_fimmu_2020_00140 crossref_primary_10_1098_rsob_170006 crossref_primary_10_1016_j_coi_2018_03_022 crossref_primary_10_1002_stem_2406 crossref_primary_10_1016_j_smim_2020_101386 crossref_primary_10_1007_s12094_023_03304_4 |
Cites_doi | 10.1158/0008-5472.CAN-08-3343 10.1158/0008-5472.CAN-11-3758 10.1186/bcr3099 10.1158/0008-5472.CAN-09-0834 10.1158/0008-5472.CAN-12-2432 10.1073/pnas.1222863110 10.1371/journal.pone.0011590 10.1158/0008-5472.CAN-11-3873 10.1073/pnas.1006732107 10.1101/gad.17027411 10.1084/jem.20112738 10.1158/0008-5472.CAN-11-0792 10.1016/j.canlet.2011.12.017 10.4049/jimmunol.1201542 10.1007/s00535-012-0711-z 10.1073/pnas.1002080107 10.1038/ni.1916 10.1172/JCI39397 10.1038/sj.onc.1210425 10.1126/science.1203486 10.4049/jimmunol.0802845 10.1038/ni.1642 10.1016/j.chom.2009.03.003 10.1158/0008-5472.CAN-08-2741 10.4049/jimmunol.1301342 10.1016/j.cell.2010.08.031 10.1002/stem.650 10.1038/onc.2011.58 10.1634/stemcells.2004-0359 10.1158/0008-5472.CAN-11-1460 10.1016/j.stem.2012.05.007 10.1007/s12015-010-9175-9 10.1016/j.cell.2012.03.049 10.4049/jimmunol.0901644 10.1038/nm.2830 10.1158/0008-5472.CAN-11-2671 10.1083/jcb.201202014 10.1172/JCI64057 10.1158/0008-5472.CAN-12-1993 10.1007/s10549-006-9416-4 10.1111/j.0105-2896.2010.00893.x 10.4049/jimmunol.182.1.39 10.1084/jem.20121229 10.1146/annurev-immunol-020711-075005 10.1146/annurev-immunol-032712-095951 10.1016/j.stem.2007.08.014 10.1182/blood-2005-07-2775 10.1371/journal.pgen.1002751 |
ContentType | Journal Article |
Copyright | 2014 American Association for Cancer Research. |
Copyright_xml | – notice: 2014 American Association for Cancer Research. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7T5 8FD FR3 H94 P64 |
DOI | 10.1158/0008-5472.CAN-13-2563 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Immunology Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 5757 |
ExternalDocumentID | 25164008 10_1158_0008_5472_CAN_13_2563 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Intramural NIH HHS |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ CGR CUY CVF ECM EIF NPM 7X8 7QO 7T5 8FD FR3 H94 P64 |
ID | FETCH-LOGICAL-c455t-c6545f90a3ea2b026a0cab86948095d5456af81b9c50bad9f47cefd1f572d77e3 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Thu Jul 10 22:16:09 EDT 2025 Fri Jul 11 10:41:34 EDT 2025 Thu Apr 03 06:53:40 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Tue Jul 01 02:03:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | 2014 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c455t-c6545f90a3ea2b026a0cab86948095d5456af81b9c50bad9f47cefd1f572d77e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://cancerres.aacrjournals.org/content/canres/74/20/5746.full.pdf |
PMID | 25164008 |
PQID | 1613951407 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1811906410 proquest_miscellaneous_1613951407 pubmed_primary_25164008 crossref_primary_10_1158_0008_5472_CAN_13_2563 crossref_citationtrail_10_1158_0008_5472_CAN_13_2563 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-15 |
PublicationDateYYYYMMDD | 2014-10-15 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2014 |
References | Wang (2022061705125743400_bib27) 2013; 48 Kasimir-Bauer (2022061705125743400_bib16) 2012; 14 Sceneay (2022061705125743400_bib14) 2012; 72 Stern-Ginossar (2022061705125743400_bib44) 2008; 9 Spaggiari (2022061705125743400_bib29) 2006; 107 Santisteban (2022061705125743400_bib7) 2009; 69 Castriconi (2022061705125743400_bib33) 2009; 182 Dewan (2022061705125743400_bib12) 2007; 104 Ginestier (2022061705125743400_bib20) 2010; 120 Yadav (2022061705125743400_bib45) 2009; 182 Baccelli (2022061705125743400_bib4) 2012; 198 Noh (2022061705125743400_bib6) 2012; 72 Champsaur (2022061705125743400_bib39) 2010; 235 Sachlos (2022061705125743400_bib24) 2012; 149 Wang (2022061705125743400_bib23) 2011; 7 Bidwell (2022061705125743400_bib1) 2012; 18 Charafe-Jauffret (2022061705125743400_bib18) 2009; 69 Tai (2022061705125743400_bib15) 2013; 73 Raulet (2022061705125743400_bib38) 2013; 31 O'Sullivan (2022061705125743400_bib11) 2012; 209 She (2022061705125743400_bib34) 2012; 318 Tallerico (2022061705125743400_bib32) 2013; 190 Matsubara (2022061705125743400_bib46) 2007; 26 Mamessier (2022061705125743400_bib13) 2011; 71 Noh (2022061705125743400_bib5) 2012; 122 Akalay (2022061705125743400_bib9) 2013; 73 Nachmani (2022061705125743400_bib43) 2009; 5 Ginestier (2022061705125743400_bib19) 2007; 1 Sotiropoulou (2022061705125743400_bib30) 2006; 24 Tseng (2022061705125743400_bib31) 2010; 5 Reim (2022061705125743400_bib35) 2009; 69 Huang (2022061705125743400_bib47) 2012; 72 Orr (2022061705125743400_bib36) 2010; 142 Tsukerman (2022061705125743400_bib22) 2012; 72 Ying (2022061705125743400_bib26) 2011; 30 Schreiber (2022061705125743400_bib10) 2011; 331 Long (2022061705125743400_bib37) 2013; 31 Schurch (2022061705125743400_bib8) 2013; 210 Yu (2022061705125743400_bib41) 2010; 107 Liu (2022061705125743400_bib40) 2012; 8 Visvader (2022061705125743400_bib2) 2012; 10 Jiao (2022061705125743400_bib25) 2013; 110 Nachmani (2022061705125743400_bib42) 2010; 11 Liu (2022061705125743400_bib17) 2010; 107 Volonte (2022061705125743400_bib28) 2014; 192 Ping (2022061705125743400_bib3) 2011; 29 Elboim (2022061705125743400_bib21) 2010; 184 Conkrite (2022061705125743400_bib48) 2011; 25 |
References_xml | – volume: 69 start-page: 2887 year: 2009 ident: 2022061705125743400_bib7 article-title: Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-3343 – volume: 72 start-page: 1717 year: 2012 ident: 2022061705125743400_bib6 article-title: Cancer vaccination drives Nanog-dependent evolution of tumor cells toward an immune-resistant and stem-like phenotype publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-3758 – volume: 14 start-page: R15 year: 2012 ident: 2022061705125743400_bib16 article-title: Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells publication-title: Breast Cancer Res doi: 10.1186/bcr3099 – volume: 69 start-page: 8058 year: 2009 ident: 2022061705125743400_bib35 article-title: Immunoselection of breast and ovarian cancer cells with trastuzumab and natural killer cells: selective escape of CD44high/CD24low/HER2low breast cancer stem cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-0834 – volume: 73 start-page: 2418 year: 2013 ident: 2022061705125743400_bib9 article-title: Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell–mediated lysis publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-2432 – volume: 110 start-page: 3495 year: 2013 ident: 2022061705125743400_bib25 article-title: 8-CPT-cAMP/all-trans retinoic acid targets t(11;17) acute promyelocytic leukemia through enhanced cell differentiation and PLZF/RARalpha degradation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1222863110 – volume: 5 start-page: e11590 year: 2010 ident: 2022061705125743400_bib31 article-title: Increased lysis of stem cells but not their differentiated cells by natural killer cells; de-differentiation or reprogramming activates NK cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0011590 – volume: 72 start-page: 3906 year: 2012 ident: 2022061705125743400_bib14 article-title: Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-3873 – volume: 107 start-page: 18115 year: 2010 ident: 2022061705125743400_bib17 article-title: Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1006732107 – volume: 25 start-page: 1734 year: 2011 ident: 2022061705125743400_bib48 article-title: miR-17∼92 cooperates with RB pathway mutations to promote retinoblastoma publication-title: Genes Dev doi: 10.1101/gad.17027411 – volume: 209 start-page: 1869 year: 2012 ident: 2022061705125743400_bib11 article-title: Cancer immunoediting by the innate immune system in the absence of adaptive immunity publication-title: J Exp Med doi: 10.1084/jem.20112738 – volume: 71 start-page: 6621 year: 2011 ident: 2022061705125743400_bib13 article-title: Human breast tumor cells induce self-tolerance mechanisms to avoid NKG2D-mediated and DNAM-mediated NK cell recognition publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-0792 – volume: 318 start-page: 173 year: 2012 ident: 2022061705125743400_bib34 article-title: Resistance of leukemic stem-like cells in AML cell line KG1a to natural killer cell–mediated cytotoxicity publication-title: Cancer Lett doi: 10.1016/j.canlet.2011.12.017 – volume: 190 start-page: 2381 year: 2013 ident: 2022061705125743400_bib32 article-title: Human NK cells selective targeting of colon cancer-initiating cells: a role for natural cytotoxicity receptors and MHC class I molecules publication-title: J Immunol doi: 10.4049/jimmunol.1201542 – volume: 48 start-page: 798 year: 2013 ident: 2022061705125743400_bib27 article-title: Chimeric 5/35 adenovirus-mediated Dickkopf-1 overexpression suppressed tumorigenicity of CD44+gastric cancer cells via attenuating Wnt signaling publication-title: J Gastroenterol doi: 10.1007/s00535-012-0711-z – volume: 107 start-page: 8231 year: 2010 ident: 2022061705125743400_bib41 article-title: microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1002080107 – volume: 11 start-page: 806 year: 2010 ident: 2022061705125743400_bib42 article-title: The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination publication-title: Nat Immunol doi: 10.1038/ni.1916 – volume: 120 start-page: 485 year: 2010 ident: 2022061705125743400_bib20 article-title: CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts publication-title: J Clin Invest doi: 10.1172/JCI39397 – volume: 26 start-page: 6099 year: 2007 ident: 2022061705125743400_bib46 article-title: Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92 publication-title: Oncogene doi: 10.1038/sj.onc.1210425 – volume: 331 start-page: 1565 year: 2011 ident: 2022061705125743400_bib10 article-title: Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion publication-title: Science doi: 10.1126/science.1203486 – volume: 182 start-page: 3530 year: 2009 ident: 2022061705125743400_bib33 article-title: NK cells recognize and kill human glioblastoma cells with stem cell-like properties publication-title: J Immunol doi: 10.4049/jimmunol.0802845 – volume: 9 start-page: 1065 year: 2008 ident: 2022061705125743400_bib44 article-title: Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D publication-title: Nat Immunol doi: 10.1038/ni.1642 – volume: 5 start-page: 376 year: 2009 ident: 2022061705125743400_bib43 article-title: Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.03.003 – volume: 69 start-page: 1302 year: 2009 ident: 2022061705125743400_bib18 article-title: Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-2741 – volume: 192 start-page: 523 year: 2014 ident: 2022061705125743400_bib28 article-title: Cancer-Initiating cells from colorectal cancer patients escape from T cell-mediated immunosurveillance in vitro through membrane-bound IL-4 publication-title: J Immunol doi: 10.4049/jimmunol.1301342 – volume: 142 start-page: 847 year: 2010 ident: 2022061705125743400_bib36 article-title: Natural killer cell education and tolerance publication-title: Cell doi: 10.1016/j.cell.2010.08.031 – volume: 29 start-page: 888 year: 2011 ident: 2022061705125743400_bib3 article-title: Consice review: contribution of cancer stem cells to neovascularization publication-title: Stem Cells doi: 10.1002/stem.650 – volume: 30 start-page: 3454 year: 2011 ident: 2022061705125743400_bib26 article-title: Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition publication-title: Oncogene doi: 10.1038/onc.2011.58 – volume: 24 start-page: 74 year: 2006 ident: 2022061705125743400_bib30 article-title: Interactions between human mesenchymal stem cells and natural killer cells publication-title: Stem Cells doi: 10.1634/stemcells.2004-0359 – volume: 72 start-page: 908 year: 2012 ident: 2022061705125743400_bib47 article-title: miR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas expression publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-1460 – volume: 10 start-page: 717 year: 2012 ident: 2022061705125743400_bib2 article-title: Cancer stem cells: current status and evolving complexities publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.05.007 – volume: 7 start-page: 458 year: 2011 ident: 2022061705125743400_bib23 article-title: An inhibitor of arachidonate 5-lipoxygenase, Nordy, induces differentiation and inhibits self-renewal of glioma stem-like cells publication-title: Stem Cell Rev doi: 10.1007/s12015-010-9175-9 – volume: 149 start-page: 1284 year: 2012 ident: 2022061705125743400_bib24 article-title: Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells publication-title: Cell doi: 10.1016/j.cell.2012.03.049 – volume: 184 start-page: 5637 year: 2010 ident: 2022061705125743400_bib21 article-title: Tumor immunoediting by NKp46 publication-title: J Immunol doi: 10.4049/jimmunol.0901644 – volume: 18 start-page: 1224 year: 2012 ident: 2022061705125743400_bib1 article-title: Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape publication-title: Nat Med doi: 10.1038/nm.2830 – volume: 72 start-page: 5463 year: 2012 ident: 2022061705125743400_bib22 article-title: miR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for cancer cell recognition by natural killer cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-2671 – volume: 198 start-page: 281 year: 2012 ident: 2022061705125743400_bib4 article-title: The evolving concept of cancer and metastasis stem cells publication-title: J Cell Biol doi: 10.1083/jcb.201202014 – volume: 122 start-page: 4077 year: 2012 ident: 2022061705125743400_bib5 article-title: Nanog signaling in cancer promotes stem-like phenotype and immune evasion publication-title: J Clin Invest doi: 10.1172/JCI64057 – volume: 73 start-page: 97 year: 2013 ident: 2022061705125743400_bib15 article-title: Preventing postoperative metastatic disease by inhibiting surgery-induced dysfunction in natural killer cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-1993 – volume: 104 start-page: 267 year: 2007 ident: 2022061705125743400_bib12 article-title: Role of natural killer cells in hormone-independent rapid tumor formation and spontaneous metastasis of breast cancer cells in vivo publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-006-9416-4 – volume: 235 start-page: 267 year: 2010 ident: 2022061705125743400_bib39 article-title: Effect of NKG2D ligand expression on host immune responses publication-title: Immunol Rev doi: 10.1111/j.0105-2896.2010.00893.x – volume: 182 start-page: 39 year: 2009 ident: 2022061705125743400_bib45 article-title: Cutting edge: down-regulation of MHC class I-related chain A on tumor cells by IFN-gamma-induced microRNA publication-title: J Immunol doi: 10.4049/jimmunol.182.1.39 – volume: 210 start-page: 605 year: 2013 ident: 2022061705125743400_bib8 article-title: Cytotoxic T cells induce proliferation of chronic myeloid leukemia stem cells by secreting interferon-gamma publication-title: J Exp Med doi: 10.1084/jem.20121229 – volume: 31 start-page: 227 year: 2013 ident: 2022061705125743400_bib37 article-title: Controlling natural killer cell responses: integration of signals for activation and inhibition publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-020711-075005 – volume: 31 start-page: 413 year: 2013 ident: 2022061705125743400_bib38 article-title: Regulation of ligands for the NKG2D activating receptor publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-032712-095951 – volume: 1 start-page: 555 year: 2007 ident: 2022061705125743400_bib19 article-title: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.08.014 – volume: 107 start-page: 1484 year: 2006 ident: 2022061705125743400_bib29 article-title: Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation publication-title: Blood doi: 10.1182/blood-2005-07-2775 – volume: 8 start-page: e1002751 year: 2012 ident: 2022061705125743400_bib40 article-title: MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002751 |
SSID | ssj0005105 |
Score | 2.5384812 |
Snippet | Breast cancer stem-like cells (BCSC) are crucial for metastasis but the underlying mechanisms remain elusive. Here, we report that tumor-infiltrating natural... These findings reveal how metastasis-initiating breast cancer stem-like cells evade immune surveillance by natural killer cells. Breast cancer stem-like cells... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 5746 |
SubjectTerms | Adult Aged Aged, 80 and over Animals Breast Neoplasms - immunology Breast Neoplasms - pathology Female Gene Expression Regulation, Neoplastic Histocompatibility Antigens Class I - metabolism Humans K562 Cells Killer Cells, Natural - immunology Lung Neoplasms - immunology Lung Neoplasms - secondary Mice, Inbred NOD Mice, SCID MicroRNAs - metabolism Middle Aged Neoplasm Transplantation Neoplastic Stem Cells - immunology Neoplastic Stem Cells - pathology RNA Interference Tumor Escape Young Adult |
Title | Metastatic Consequences of Immune Escape from NK Cell Cytotoxicity by Human Breast Cancer Stem Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25164008 https://www.proquest.com/docview/1613951407 https://www.proquest.com/docview/1811906410 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbB2MvY99L94EGewvO_CHZ8mMbUkrSZBQSFvZiZFluA5k9Ggfa_fW7k5TE7bqt24tJZH2A7ufT7053EiEfYQkRsUhzT5RaeSwV0hNcczBVFJcqEkVYomtgPImPZ2w45_NduK3JLmnynvpxa17J_0gVykCumCX7D5LddgoF8BvkC0-QMDzvJOOxbiRmBC2UuXhzExVt0kMw70N3BysMcLJJJJNRt4-euv5VUzf15UIhAQf2af34hxid3nT7iIILDP76Zmqv2uzVvXQHBJ2bHWAbymFUzXLZazkWvjhP9OGiull0Cpg8u1n49XyLseHClQ3XVdstETDU5zYxc6tqhcdZck3V2gt5HKRCv6U4eeI8kdr9tcdW_6rgubARkbbzXv9g4gWRB8Qt2q1om138yefsaHZykk0H8-l98iAESwIvuRid7g6U5y7KddOhS_KCYT7dOsh1-vIbm8Rwk-kT8tgZFfTAIuQpuaerZ-Th2IVNPCfFDii0DRRal9QChVqgUAQKnYwoip62gULzK2qAQi1QqMUCRaCY2qsXZHY0mPaPPXe9hqcY542nYmDPZerLSMswB1tc-krmIk6ZAN5dILWWJVg1qeJ-Lou0ZInSZRGUPAmLJNHRS7JX1ZV-TajSKs9VxBKZ41a5lCV84jJMUqViweOiQ9hm1jLlzp7HK1CWmbFBucAYCJHhZGcw2VkQZTjZHdLbNvtuD1_5W4MPG5FkoCZx70tWul6vMjBsIjAmmJ_8oY4IgB7HLPA75JWV53ZYMANiWO7E_h1avyGPdl_EW7LXXKz1O6CuTf7egO8n7nuTDw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metastatic+Consequences+of+Immune+Escape+from+NK+Cell+Cytotoxicity+by+Human+Breast+Cancer+Stem+Cells&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Wang%2C+Bin&rft.au=Wang%2C+Qiang&rft.au=Wang%2C+Zhe&rft.au=Jiang%2C+Jun&rft.date=2014-10-15&rft.issn=0008-5472&rft.volume=74&rft.issue=20&rft.spage=5746&rft.epage=5757&rft_id=info:doi/10.1158%2F0008-5472.CAN-13-2563&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |