Accurate delineation of individual tree crowns in tropical forests from aerial RGB imagery using Mask R‐CNN

Tropical forests are a major component of the global carbon cycle and home to two‐thirds of terrestrial species. Upper‐canopy trees store the majority of forest carbon and can be vulnerable to drought events and storms. Monitoring their growth and mortality is essential to understanding forest resil...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing in ecology and conservation Vol. 9; no. 5; pp. 641 - 655
Main Authors Ball, James G. C., Hickman, Sebastian H. M., Jackson, Tobias D., Koay, Xian Jing, Hirst, James, Jay, William, Archer, Matthew, Aubry‐Kientz, Mélaine, Vincent, Grégoire, Coomes, David A.
Format Journal Article
LanguageEnglish
Published Oxford John Wiley & Sons, Inc 01.10.2023
Wiley
Subjects
Online AccessGet full text
ISSN2056-3485
2056-3485
DOI10.1002/rse2.332

Cover

Loading…
Abstract Tropical forests are a major component of the global carbon cycle and home to two‐thirds of terrestrial species. Upper‐canopy trees store the majority of forest carbon and can be vulnerable to drought events and storms. Monitoring their growth and mortality is essential to understanding forest resilience to climate change, but in the context of forest carbon storage, large trees are underrepresented in traditional field surveys, so estimates are poorly constrained. Aerial photographs provide spectral and textural information to discriminate between tree crowns in diverse, complex tropical canopies, potentially opening the door to landscape monitoring of large trees. Here we describe a new deep convolutional neural network method, Detectree2 , which builds on the Mask R‐CNN computer vision framework to recognize the irregular edges of individual tree crowns from airborne RGB imagery. We trained and evaluated this model with 3797 manually delineated tree crowns at three sites in Malaysian Borneo and one site in French Guiana. As an example application, we combined the delineations with repeat lidar surveys (taken between 3 and 6 years apart) of the four sites to estimate the growth and mortality of upper‐canopy trees. Detectree2 delineated 65 000 upper‐canopy trees across 14 km 2 of aerial images. The skill of the automatic method in delineating unseen test trees was good ( F 1 score = 0.64) and for the tallest category of trees was excellent ( F 1 score = 0.74). As predicted from previous field studies, we found that growth rate declined with tree height and tall trees had higher mortality rates than intermediate‐size trees. Our approach demonstrates that deep learning methods can automatically segment trees in widely accessible RGB imagery. This tool (provided as an open‐source Python package) has many potential applications in forest ecology and conservation, from estimating carbon stocks to monitoring forest phenology and restoration. Python package available to install at https://github.com/PatBall1/Detectree2 .
AbstractList Tropical forests are a major component of the global carbon cycle and home to two-thirds of terrestrial species. Upper-canopy trees store the majority of forest carbon and can be vulnerable to drought events and storms. Monitoring their growth and mortality is essential to understanding forest resilience to climate change, but in the context of forest carbon storage, large trees are underrepresented in traditional field surveys, so estimates are poorly constrained. Aerial photographs provide spectral and textural information to discriminate between tree crowns in diverse, complex tropical canopies, potentially opening the door to landscape monitoring of large trees. Here we describe a new deep convolutional neural network method, Detectree2, which builds on the Mask R-CNN computer vision framework to recognize the irregular edges of individual tree crowns from airborne RGB imagery. We trained and evaluated this model with 3797 manually delineated tree crowns at three sites in Malaysian Borneo and one site in French Guiana. As an example application, we combined the delineations with repeat lidar surveys (taken between 3 and 6 years apart) of the four sites to estimate the growth and mortality of upper-canopy trees. Detectree2 delineated 65 000 upper-canopy trees across 14 km2 of aerial images. The skill of the automatic method in delineating unseen test trees was good (F1 score = 0.64) and for the tallest category of trees was excellent (F1 score = 0.74). As predicted from previous field studies, we found that growth rate declined with tree height and tall trees had higher mortality rates than intermediate-size trees. Our approach demonstrates that deep learning methods can automatically segment trees in widely accessible RGB imagery. This tool (provided as an open-source Python package) has many potential applications in forest ecology and conservation, from estimating carbon stocks to monitoring forest phenology and restoration.Python package available to install at https://github.com/PatBall1/ Detectree2.
Tropical forests are a major component of the global carbon cycle and home to two‐thirds of terrestrial species. Upper‐canopy trees store the majority of forest carbon and can be vulnerable to drought events and storms. Monitoring their growth and mortality is essential to understanding forest resilience to climate change, but in the context of forest carbon storage, large trees are underrepresented in traditional field surveys, so estimates are poorly constrained. Aerial photographs provide spectral and textural information to discriminate between tree crowns in diverse, complex tropical canopies, potentially opening the door to landscape monitoring of large trees. Here we describe a new deep convolutional neural network method, Detectree2 , which builds on the Mask R‐CNN computer vision framework to recognize the irregular edges of individual tree crowns from airborne RGB imagery. We trained and evaluated this model with 3797 manually delineated tree crowns at three sites in Malaysian Borneo and one site in French Guiana. As an example application, we combined the delineations with repeat lidar surveys (taken between 3 and 6 years apart) of the four sites to estimate the growth and mortality of upper‐canopy trees. Detectree2 delineated 65 000 upper‐canopy trees across 14 km 2 of aerial images. The skill of the automatic method in delineating unseen test trees was good ( F 1 score = 0.64) and for the tallest category of trees was excellent ( F 1 score = 0.74). As predicted from previous field studies, we found that growth rate declined with tree height and tall trees had higher mortality rates than intermediate‐size trees. Our approach demonstrates that deep learning methods can automatically segment trees in widely accessible RGB imagery. This tool (provided as an open‐source Python package) has many potential applications in forest ecology and conservation, from estimating carbon stocks to monitoring forest phenology and restoration. Python package available to install at https://github.com/PatBall1/Detectree2 .
Abstract Tropical forests are a major component of the global carbon cycle and home to two‐thirds of terrestrial species. Upper‐canopy trees store the majority of forest carbon and can be vulnerable to drought events and storms. Monitoring their growth and mortality is essential to understanding forest resilience to climate change, but in the context of forest carbon storage, large trees are underrepresented in traditional field surveys, so estimates are poorly constrained. Aerial photographs provide spectral and textural information to discriminate between tree crowns in diverse, complex tropical canopies, potentially opening the door to landscape monitoring of large trees. Here we describe a new deep convolutional neural network method, Detectree2, which builds on the Mask R‐CNN computer vision framework to recognize the irregular edges of individual tree crowns from airborne RGB imagery. We trained and evaluated this model with 3797 manually delineated tree crowns at three sites in Malaysian Borneo and one site in French Guiana. As an example application, we combined the delineations with repeat lidar surveys (taken between 3 and 6 years apart) of the four sites to estimate the growth and mortality of upper‐canopy trees. Detectree2 delineated 65 000 upper‐canopy trees across 14 km2 of aerial images. The skill of the automatic method in delineating unseen test trees was good (F1 score = 0.64) and for the tallest category of trees was excellent (F1 score = 0.74). As predicted from previous field studies, we found that growth rate declined with tree height and tall trees had higher mortality rates than intermediate‐size trees. Our approach demonstrates that deep learning methods can automatically segment trees in widely accessible RGB imagery. This tool (provided as an open‐source Python package) has many potential applications in forest ecology and conservation, from estimating carbon stocks to monitoring forest phenology and restoration. Python package available to install at https://github.com/PatBall1/Detectree2.
Author Hirst, James
Hickman, Sebastian H. M.
Jackson, Tobias D.
Vincent, Grégoire
Coomes, David A.
Archer, Matthew
Aubry‐Kientz, Mélaine
Jay, William
Ball, James G. C.
Koay, Xian Jing
Author_xml – sequence: 1
  givenname: James G. C.
  orcidid: 0000-0002-0165-5290
  surname: Ball
  fullname: Ball, James G. C.
  organization: Department of Plant Sciences University of Cambridge Downing Street Cambridge CB2 3EA UK, Conservation Research Institute University of Cambridge Downing Street Cambridge CB2 3EA UK, UMR AMAP University of Montpellier, IRD, CNRS, CIRAD, INRAE Montpellier France
– sequence: 2
  givenname: Sebastian H. M.
  surname: Hickman
  fullname: Hickman, Sebastian H. M.
  organization: Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK, The Alan Turing Institute 96 Euston Road London NW1 2DB UK
– sequence: 3
  givenname: Tobias D.
  surname: Jackson
  fullname: Jackson, Tobias D.
  organization: Department of Plant Sciences University of Cambridge Downing Street Cambridge CB2 3EA UK, Conservation Research Institute University of Cambridge Downing Street Cambridge CB2 3EA UK
– sequence: 4
  givenname: Xian Jing
  surname: Koay
  fullname: Koay, Xian Jing
  organization: Conservation Research Institute University of Cambridge Downing Street Cambridge CB2 3EA UK
– sequence: 5
  givenname: James
  surname: Hirst
  fullname: Hirst, James
  organization: Department of Applied Mathematics and Theoretical Physics University of Cambridge Wilberforce Road Cambridge CB3 0WA UK
– sequence: 6
  givenname: William
  surname: Jay
  fullname: Jay, William
  organization: Plymouth Marine Laboratory Prospect Place Plymouth PL1 3DH UK
– sequence: 7
  givenname: Matthew
  surname: Archer
  fullname: Archer, Matthew
  organization: Research Software Engineering University of Cambridge Trinity Lane Cambridge CB2 1TN UK
– sequence: 8
  givenname: Mélaine
  surname: Aubry‐Kientz
  fullname: Aubry‐Kientz, Mélaine
  organization: AgroParisTech, UMR EcoFoG Kourou French Guiana
– sequence: 9
  givenname: Grégoire
  orcidid: 0000-0001-9443-021X
  surname: Vincent
  fullname: Vincent, Grégoire
  organization: UMR AMAP University of Montpellier, IRD, CNRS, CIRAD, INRAE Montpellier France
– sequence: 10
  givenname: David A.
  surname: Coomes
  fullname: Coomes, David A.
  organization: Department of Plant Sciences University of Cambridge Downing Street Cambridge CB2 3EA UK, Conservation Research Institute University of Cambridge Downing Street Cambridge CB2 3EA UK
BackLink https://hal.science/hal-04104425$$DView record in HAL
BookMark eNplkc1uUzEQhS1UpJZSqY9giQ0sEvx7f5YhKm2l0EpVu7Ym9jg43FwH-96i7voIfUaeBKdBCKi8mPHR5yPPnDfkoI89EnLK2ZQzJj6mjGIqpXhFjgTT1USqRh_81R-Sk5zXjDFeiZrXzRHZzKwdEwxIHXahRxhC7Gn0NPQu3Ac3QkeHhEhtij_6XORyjdtgi-5jwjxk6lPcUMAUinZz_omGDawwPdAxh35Fv0D-Rm9-Pj7Nr67ektceuownv-sxuft8dju_mCyuzy_ns8XEKq2HidXWg9DStkvWClW1daXd0lrJJGeSNY2zohWsNFhr2zIBXCiNFupa8qrR8phc7n1dhLXZpvKj9GAiBPMsxLQykIZgOzSao0XuQSNfqtpXrdMKauvQayUq6YrXh73XV-j-sbqYLcxOY4ozpYS-54V9t2e3KX4fy3LMOo6pL6Ma0TRcVuW0hXq_p8pOc07o_9hyZnY5ml2OpuRY0Ol_qA3Dc0ZDgtC9fPAL5regkA
CitedBy_id crossref_primary_10_1016_j_ecoinf_2025_103085
crossref_primary_10_1017_eds_2024_16
crossref_primary_10_1038_s44287_024_00116_8
crossref_primary_10_3390_rs16193660
crossref_primary_10_3390_rs16173207
crossref_primary_10_1016_j_rse_2025_114618
crossref_primary_10_1016_j_jag_2024_103848
crossref_primary_10_1016_j_ecoinf_2024_102684
crossref_primary_10_3390_s24237559
crossref_primary_10_20659_jjfp_A20241201
crossref_primary_10_3390_rs16030488
crossref_primary_10_3390_rs16111935
crossref_primary_10_1109_TGRS_2024_3439094
crossref_primary_10_1080_15481603_2024_2427305
crossref_primary_10_1109_TGRS_2024_3391352
crossref_primary_10_3390_f15101814
crossref_primary_10_3390_rs16152786
crossref_primary_10_3390_rs15184394
crossref_primary_10_1002_2688_8319_12343
crossref_primary_10_1016_j_foreco_2024_122185
Cites_doi 10.1038/s41586‐020‐2035‐0
10.1111/gcb.13910
10.1016/j.rse.2017.05.032
10.1038/s41477‐021‐00879‐0
10.3390/rs8040333
10.1109/ICCV.2017.322
10.1016/j.jag.2022.102780
10.1007/s40725‐019‐00094‐3
10.1002/ajb2.1347
10.14358/PERS.76.3.289
10.1016/j.biocon.2020.108907
10.1016/j.rse.2017.03.017
10.1890/11-2173.1
10.1007/s10712‐019‐09528‐w
10.7554/eLife.62922
10.1186/s40537-016-0043-6
10.1016/j.biocon.2020.108849
10.1111/j.1461-0248.2006.00904.x
10.1126/science.1201609
10.1016/j.ophoto.2022.100018
10.1111/nph.17995
10.1111/2041‐210X.12575
10.1038/s41558‐022‐01544‐w
10.3389/ffgc.2019.00032
10.1007/978-3-319-10602-1_48
10.1080/01431161.2022.2032455
10.1016/j.isprsjprs.2021.06.003
10.3390/s19163595
10.1109/CVPR.2017.106
10.3390/rs12081288
10.1038/s41467‐019‐12380‐6
10.1080/2150704X.2020.1784491
10.3390/rs14020295
10.1016/S0034‐4257(70)80021‐9
10.3390/rs11111309
10.1016/j.geomorph.2012.08.021
10.1111/nph.18144
10.1111/ele.13978
10.1109/MGRS.2017.2762307
10.5194/bg-17-3017-2020
10.1016/j.rse.2020.112103
10.1111/geb.12747
10.1016/j.agrformet.2011.04.012
10.1111/gcb.15555
10.3390/rs10091419
10.1073/pnas.1412999111
10.1109/CVPR.2016.90
10.1016/j.imavis.2022.104471
10.1016/j.isprsjprs.2020.12.010
10.3390/rs13183655
10.3390/rs12020309
10.5194/bg-18-6517-2021
10.1038/s41612‐021‐00162‐1
10.1111/j.1744‐7429.2010.00644.x
10.3390/rs11091086
10.1109/JSTARS.2021.3069159
10.1111/nph.14633
10.1046/j.1461-0248.2003.00520.x
10.1214/11-AOS918
10.1038/nature14283
10.1371/journal.pone.0026670
10.1038/s43247-022-00564-w
10.1029/2021MS002555
ContentType Journal Article
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
7ST
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
SOI
1XC
VOOES
DOA
DOI 10.1002/rse2.332
DatabaseName CrossRef
Environment Abstracts
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environment Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Computer Science
Environmental Sciences
EISSN 2056-3485
EndPage 655
ExternalDocumentID oai_doaj_org_article_51ece1fa5e1b47f69d54a7cdef54263d
oai_HAL_hal_04104425v1
10_1002_rse2_332
GeographicLocations Malaysia
GeographicLocations_xml – name: Malaysia
GroupedDBID 0R~
1OC
24P
5VS
8FE
8FH
AAHBH
AAHHS
AAYXX
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IEP
ITC
KQ8
LK5
M7R
M~E
O9-
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
ROL
7ST
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
SOI
WIN
1XC
PMFND
VOOES
PUEGO
ID FETCH-LOGICAL-c455t-c5cfa253c9b092469765dbcc303103088dc2920088e75c902a1245eca77316853
IEDL.DBID DOA
ISSN 2056-3485
IngestDate Wed Aug 27 01:32:02 EDT 2025
Thu May 29 05:43:05 EDT 2025
Wed Aug 13 11:20:54 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Tue Jul 01 02:10:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Deep learning
Detectron2
Tree growth
Forest monitoring
Tree crown delineation
Tree mortality
Tree crown segmentation
Tropical forests
Convolutional neural networks
Mask R-CNN
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-c5cfa253c9b092469765dbcc303103088dc2920088e75c902a1245eca77316853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9443-021X
0000-0002-0165-5290
OpenAccessLink https://doaj.org/article/51ece1fa5e1b47f69d54a7cdef54263d
PQID 2881363639
PQPubID 4370293
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_51ece1fa5e1b47f69d54a7cdef54263d
hal_primary_oai_HAL_hal_04104425v1
proquest_journals_2881363639
crossref_primary_10_1002_rse2_332
crossref_citationtrail_10_1002_rse2_332
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Remote sensing in ecology and conservation
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Richardson S.J. (e_1_2_9_56_1) 2009; 33
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
IPCC (e_1_2_9_36_1) 2021
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Gourlet‐Fleury S. (e_1_2_9_25_1) 2004
Nilus R. (e_1_2_9_50_1) 2011; 23
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_31_1
  doi: 10.1038/s41586‐020‐2035‐0
– ident: e_1_2_9_19_1
  doi: 10.1111/gcb.13910
– ident: e_1_2_9_57_1
  doi: 10.1016/j.rse.2017.05.032
– ident: e_1_2_9_24_1
  doi: 10.1038/s41477‐021‐00879‐0
– ident: e_1_2_9_69_1
  doi: 10.3390/rs8040333
– ident: e_1_2_9_29_1
  doi: 10.1109/ICCV.2017.322
– ident: e_1_2_9_32_1
  doi: 10.1016/j.jag.2022.102780
– ident: e_1_2_9_34_1
  doi: 10.1007/s40725‐019‐00094‐3
– ident: e_1_2_9_39_1
  doi: 10.1002/ajb2.1347
– ident: e_1_2_9_13_1
  doi: 10.14358/PERS.76.3.289
– ident: e_1_2_9_18_1
  doi: 10.1016/j.biocon.2020.108907
– ident: e_1_2_9_14_1
  doi: 10.1016/j.rse.2017.03.017
– ident: e_1_2_9_35_1
  doi: 10.1890/11-2173.1
– ident: e_1_2_9_12_1
  doi: 10.1007/s10712‐019‐09528‐w
– ident: e_1_2_9_63_1
  doi: 10.7554/eLife.62922
– ident: e_1_2_9_2_1
– ident: e_1_2_9_65_1
  doi: 10.1186/s40537-016-0043-6
– ident: e_1_2_9_20_1
  doi: 10.1016/j.biocon.2020.108849
– ident: e_1_2_9_49_1
  doi: 10.1111/j.1461-0248.2006.00904.x
– ident: e_1_2_9_53_1
  doi: 10.1126/science.1201609
– ident: e_1_2_9_38_1
  doi: 10.1016/j.ophoto.2022.100018
– ident: e_1_2_9_54_1
  doi: 10.1111/nph.17995
– ident: e_1_2_9_17_1
  doi: 10.1111/2041‐210X.12575
– ident: e_1_2_9_48_1
  doi: 10.1038/s41558‐022‐01544‐w
– ident: e_1_2_9_68_1
– ident: e_1_2_9_58_1
  doi: 10.3389/ffgc.2019.00032
– ident: e_1_2_9_44_1
  doi: 10.1007/978-3-319-10602-1_48
– ident: e_1_2_9_22_1
  doi: 10.1080/01431161.2022.2032455
– volume-title: Climate change 2021: the physical science basis
  year: 2021
  ident: e_1_2_9_36_1
– ident: e_1_2_9_27_1
  doi: 10.1016/j.isprsjprs.2021.06.003
– ident: e_1_2_9_4_1
  doi: 10.3390/s19163595
– ident: e_1_2_9_43_1
  doi: 10.1109/CVPR.2017.106
– ident: e_1_2_9_9_1
  doi: 10.3390/rs12081288
– ident: e_1_2_9_59_1
  doi: 10.1038/s41467‐019‐12380‐6
– ident: e_1_2_9_51_1
  doi: 10.1080/2150704X.2020.1784491
– ident: e_1_2_9_42_1
  doi: 10.3390/rs14020295
– volume-title: Ecology and management of a neotropical rainforest: lessons drawn from Paracou, a long‐term experimental research site in French Guiana
  year: 2004
  ident: e_1_2_9_25_1
– ident: e_1_2_9_40_1
  doi: 10.1016/S0034‐4257(70)80021‐9
– ident: e_1_2_9_64_1
  doi: 10.3390/rs11111309
– ident: e_1_2_9_67_1
  doi: 10.1016/j.geomorph.2012.08.021
– ident: e_1_2_9_71_1
  doi: 10.1111/nph.18144
– ident: e_1_2_9_16_1
  doi: 10.1111/ele.13978
– ident: e_1_2_9_70_1
  doi: 10.1109/MGRS.2017.2762307
– ident: e_1_2_9_41_1
  doi: 10.5194/bg-17-3017-2020
– ident: e_1_2_9_26_1
  doi: 10.1016/j.rse.2020.112103
– ident: e_1_2_9_45_1
  doi: 10.1111/geb.12747
– volume: 33
  start-page: 208
  issue: 2
  year: 2009
  ident: e_1_2_9_56_1
  article-title: Large‐tree growth and mortality rates in forests of the central North Island, New Zealand
  publication-title: New Zealand Journal of Ecology
– ident: e_1_2_9_61_1
  doi: 10.1016/j.agrformet.2011.04.012
– ident: e_1_2_9_55_1
  doi: 10.1111/gcb.15555
– ident: e_1_2_9_66_1
  doi: 10.3390/rs10091419
– ident: e_1_2_9_46_1
  doi: 10.1073/pnas.1412999111
– ident: e_1_2_9_30_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_9_60_1
  doi: 10.1016/j.imavis.2022.104471
– ident: e_1_2_9_37_1
  doi: 10.1016/j.isprsjprs.2020.12.010
– ident: e_1_2_9_3_1
  doi: 10.3390/rs13183655
– ident: e_1_2_9_28_1
  doi: 10.3390/rs12020309
– ident: e_1_2_9_5_1
  doi: 10.5194/bg-18-6517-2021
– ident: e_1_2_9_11_1
  doi: 10.1038/s41612‐021‐00162‐1
– ident: e_1_2_9_62_1
  doi: 10.1111/j.1744‐7429.2010.00644.x
– ident: e_1_2_9_6_1
  doi: 10.3390/rs11091086
– volume: 23
  start-page: 133
  year: 2011
  ident: e_1_2_9_50_1
  article-title: Nutrient limitation of tree seedling growth in three soil types found in Sabah
  publication-title: Journal of Tropical Forest Science
– ident: e_1_2_9_7_1
  doi: 10.1109/JSTARS.2021.3069159
– ident: e_1_2_9_23_1
– ident: e_1_2_9_47_1
  doi: 10.1111/nph.14633
– ident: e_1_2_9_15_1
  doi: 10.1046/j.1461-0248.2003.00520.x
– ident: e_1_2_9_8_1
  doi: 10.1214/11-AOS918
– ident: e_1_2_9_10_1
  doi: 10.1038/nature14283
– ident: e_1_2_9_33_1
  doi: 10.1371/journal.pone.0026670
– ident: e_1_2_9_52_1
  doi: 10.1038/s43247-022-00564-w
– ident: e_1_2_9_21_1
  doi: 10.1029/2021MS002555
SSID ssj0001627178
Score 2.4146357
Snippet Tropical forests are a major component of the global carbon cycle and home to two‐thirds of terrestrial species. Upper‐canopy trees store the majority of...
Tropical forests are a major component of the global carbon cycle and home to two-thirds of terrestrial species. Upper-canopy trees store the majority of...
Abstract Tropical forests are a major component of the global carbon cycle and home to two‐thirds of terrestrial species. Upper‐canopy trees store the majority...
SourceID doaj
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 641
SubjectTerms Aerial photography
Aerial surveys
Agricultural sciences
Aircraft
Algorithms
Artificial neural networks
Canopies
Carbon cycle
Carbon sequestration
Climate change
Computer Science
Computer vision
Convolutional neural networks
Deep learning
Detectron2
Drought
Environmental Engineering
Environmental Sciences
Forest management
forest monitoring
Forests
Image Processing
Imagery
Lidar
Life Sciences
Machine learning
Mask R‐CNN
Monitoring
Mortality
Neural and Evolutionary Computing
Neural networks
Rainforests
Remote sensing
Sensors
Silviculture, forestry
Surveys
tree crown delineation
Trees
Tropical forests
Vegetation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA56h-CL-BNXT4ki-FQvTZqmfZLdY89FdJHFg3sL6SS9O06363ZPuP_emTS7x4lIobRJaCEzmcwkk-9j7F1eOeOkKjKjcgxQpKmzCnyd5SqAUB7wHrN85-XspPh8qk_Tgluf0iq3NjEaat8BrZEfyqrKVYlX_XH1KyPWKNpdTRQad9k-muAKNXx_Mp1_W9ysspQS45Vqizor5OG6D_KDUvLWPBTh-nF2OadkyL9scpxojh-yB8lD5ONBpI_YnbB8zO5NI7r09RN2OQa4InwH7uko-eDy8a7lF7ujVZx2mjlQgN1jMb52K5IFRwcVf9hzOlPCXdQ9vvg04Rc_CcnimlMS_Bn_6vpLvsiO5vOn7OR4-v1oliXGhAwKrTcZaGid1ArqRmBgVaKvoX0DoESkE6sqD8ROhQ_BaKiFdDi96wDORAIrrZ6xvWW3DM8ZF3XInVCglFaFa6Qz6NupQqDstHfBjNj7bf9ZSHDixGrxww5AyNJST1vs6RF7s2u5GiA0_tFmQiLY1RPodSzo1mc2jSGr8wAhb50OeVOYtqy9LpwBH1pNsPN-xN6iAG99Yzb-YqlMFBh2onn6nY_YwVa-Ng3X3t4o14v_V79k94lvfsjmO2B7m_VVeIVeyaZ5nVTvD9sq4So
  priority: 102
  providerName: ProQuest
Title Accurate delineation of individual tree crowns in tropical forests from aerial RGB imagery using Mask R‐CNN
URI https://www.proquest.com/docview/2881363639
https://hal.science/hal-04104425
https://doaj.org/article/51ece1fa5e1b47f69d54a7cdef54263d
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9RAEF-kIvgi9R-erWUrgk-x-yebTR7vytWj6qGHhb4tm9lNW2rvSnMV-uZH8DP6SZzZ5I5WBF8ksCSbkCwzk52ZZPb3Y-yNLL31SueZ1RITFGWrrIRQZVJHEDoAtqnKd1pMjvLDY3N8i-qLasI6eOBOcHtGRoiy8SbKOrdNUQWTewshNoawxgPNvujzbiVT6etKoTBPKVdos0LtXbVRvdNa3fE_CaYfvcopFUH-MRcnB3OwyR71kSEfdiN6zO7F-RP2YJxQpW-esoshwDXhOvBAS8i7UI8vGn62XlLF6Q8zB0qsW-zGw8Ul6YBjYIoPbDmtJeE-2RyfvR_xswtCsLjhVPx-wj_59pzPfv34uT-dPmNHB-Ov-5Os50rIIDdmmYGBxiujoaoFplQFRhkm1ABaJCKxsgxAvFS4E62BSiiPjt1E8DZRVxn9nG3MF_P4gnFRRemFBq2Nzn2tvMWoTucCtWaCj3bA3q4k6KAHEic-i2-ug0BWjmTtUNYDtru-8rIDz_jLNSNSwvo8wV2nDjQC1xuB-5cRDNhrVOGde0yGHx31iRwTTpyYvssB215p2PUvautUWUpd4Fa9_B8D2WIPiY--q_bbZhvLq-v4CqOWZb3D7o_G08-znWSo2H74Uv4Gtb3t0A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTgheEFdRNsAgEE9hiR3n8oBQOzo61kWo2qS9GefYGdNGU5oO1D_Fb-ScXDoNId6mSFFiR4nkc3Iu9vH3MfY6SExshAy9WAaYoIg49RKwqRdIB760gOe6yjeLxsfh5xN1ssF-d3thqKyys4m1obYl0Bz5jkiSQEZ4pB_mPzxijaLV1Y5Co1GLA7f6hSlb9X7_I8r3jRB7o6PdsdeyCngQKrX0QEFhhJKQ5j4mHxH6Y2VzAOnXlFtJYoEYnPDCxQpSXxh0gcqBiWuSJ2KJQJO_GUoMFXpsczjKvkyvZnUigflR0qHc-mJnUTnxTkpxze_V9ADozb5R8eVfPqB2bHv32N02IuWDRoXusw03e8BujWo069VDdj4AuCQ8CW5p63oTYvKy4GfrrVycVrY5UEJfYTPelnOSPceAGD9YcdrDwk2t63z6acjPvhNyxopT0f0pPzTVOZ96u1n2iB3fyFg-Zr1ZOXNPGPdTFxhfgpRKhiYXJsZYUoY-6oqyxsV99rYbPw0tfDmxaFzoBnhZaBppjSPdZy_XT84byI5_PDMkEaz7CWS7bigXp7r9Z7UKHLigMMoFeRgXUWpVaGKwrlAEc2_77BUK8No7xoOJpjY_xDQXzeHPoM-2O_nq1jxU-kqZn_6_-wW7PT46nOjJfnawxe4Q131TSbjNesvFpXuGEdEyf96qIWdfb1rz_wDTTxuS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTiBeEFdRGGAQiKfQxI7j5AGhdmvp2Iimikl7C86xM6ZBU5oO1L_Gr-OcXDoNId6mSFXqRKlkfz0X55zvY-xVEBtthAw9LQNMUIROvBhs4gXSgS8t4Gdd5ZtG0-Pw44k62WK_u14YKqvsbGJtqG0JtEc-EHEcyAiPZFC0ZRFHe5P3ix8eKUjRm9ZOTqOByIFb_8L0rXq3v4dr_VqIyfjz7tRrFQY8CJVaeaCgMEJJSHIfE5EIfbOyOYD0a_mtOLZAak544rSCxBcG3aFyYHQt-ESKEWj-tzW1j_bY9micHs0ud3gigblS3DHe-mKwrJx4K6W44gNrqQD0bF-pEPMvf1A7uckddruNTvmwgdNdtuXm99iNcc1svb7PzocAF8QtwS21sTfhJi8LfrZp6-L0lpsDJfcVDuPXckE44Bgc4w9WnPpZuKlxz2cfRvzsO7ForDkV4J_yT6Y65zNvN00fsONrmcuHrDcv5-4R437iAuNLkFLJ0OTCaIwrZegjbpQ1TvfZm27-MmipzElR41vWkDCLjGY6w5nusxebOxcNfcc_7hnREmyuE-F2PVAuT7P2_5upwIELCqNckIe6iBKrQqPBukIR5b3ts5e4gFeeMR0eZjTmh5jyomn8GfTZTre-WWsqquwS2I__f_k5u4mIzw7304Mn7BbJ3jdFhTust1peuKcYHK3yZy0KOfty3cD_AxNLH9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+delineation+of+individual+tree+crowns+in+tropical+forests+from+aerial+RGB+imagery+using+Mask+R%E2%80%90CNN&rft.jtitle=Remote+sensing+in+ecology+and+conservation&rft.au=Ball%2C+James&rft.au=Hickman%2C+Sebastian&rft.au=Jackson%2C+Tobias&rft.au=Koay%2C+Xian+Jing&rft.date=2023-10-01&rft.pub=Wiley&rft.eissn=2056-3485&rft.volume=9&rft.issue=5&rft.spage=641&rft.epage=655&rft_id=info:doi/10.1002%2Frse2.332&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04104425v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-3485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-3485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-3485&client=summon