Accurate delineation of individual tree crowns in tropical forests from aerial RGB imagery using Mask R‐CNN
Tropical forests are a major component of the global carbon cycle and home to two‐thirds of terrestrial species. Upper‐canopy trees store the majority of forest carbon and can be vulnerable to drought events and storms. Monitoring their growth and mortality is essential to understanding forest resil...
Saved in:
Published in | Remote sensing in ecology and conservation Vol. 9; no. 5; pp. 641 - 655 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
John Wiley & Sons, Inc
01.10.2023
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2056-3485 2056-3485 |
DOI | 10.1002/rse2.332 |
Cover
Loading…
Abstract | Tropical forests are a major component of the global carbon cycle and home to two‐thirds of terrestrial species. Upper‐canopy trees store the majority of forest carbon and can be vulnerable to drought events and storms. Monitoring their growth and mortality is essential to understanding forest resilience to climate change, but in the context of forest carbon storage, large trees are underrepresented in traditional field surveys, so estimates are poorly constrained. Aerial photographs provide spectral and textural information to discriminate between tree crowns in diverse, complex tropical canopies, potentially opening the door to landscape monitoring of large trees. Here we describe a new deep convolutional neural network method,
Detectree2
, which builds on the Mask R‐CNN computer vision framework to recognize the irregular edges of individual tree crowns from airborne RGB imagery. We trained and evaluated this model with 3797 manually delineated tree crowns at three sites in Malaysian Borneo and one site in French Guiana. As an example application, we combined the delineations with repeat lidar surveys (taken between 3 and 6 years apart) of the four sites to estimate the growth and mortality of upper‐canopy trees.
Detectree2
delineated 65 000 upper‐canopy trees across 14 km
2
of aerial images. The skill of the automatic method in delineating unseen test trees was good (
F
1
score = 0.64) and for the tallest category of trees was excellent (
F
1
score = 0.74). As predicted from previous field studies, we found that growth rate declined with tree height and tall trees had higher mortality rates than intermediate‐size trees. Our approach demonstrates that deep learning methods can automatically segment trees in widely accessible RGB imagery. This tool (provided as an open‐source Python package) has many potential applications in forest ecology and conservation, from estimating carbon stocks to monitoring forest phenology and restoration.
Python package available to install at
https://github.com/PatBall1/Detectree2
. |
---|---|
AbstractList | Tropical forests are a major component of the global carbon cycle and home to two-thirds of terrestrial species. Upper-canopy trees store the majority of forest carbon and can be vulnerable to drought events and storms. Monitoring their growth and mortality is essential to understanding forest resilience to climate change, but in the context of forest carbon storage, large trees are underrepresented in traditional field surveys, so estimates are poorly constrained. Aerial photographs provide spectral and textural information to discriminate between tree crowns in diverse, complex tropical canopies, potentially opening the door to landscape monitoring of large trees. Here we describe a new deep convolutional neural network method, Detectree2, which builds on the Mask R-CNN computer vision framework to recognize the irregular edges of individual tree crowns from airborne RGB imagery. We trained and evaluated this model with 3797 manually delineated tree crowns at three sites in Malaysian Borneo and one site in French Guiana. As an example application, we combined the delineations with repeat lidar surveys (taken between 3 and 6 years apart) of the four sites to estimate the growth and mortality of upper-canopy trees. Detectree2 delineated 65 000 upper-canopy trees across 14 km2 of aerial images. The skill of the automatic method in delineating unseen test trees was good (F1 score = 0.64) and for the tallest category of trees was excellent (F1 score = 0.74). As predicted from previous field studies, we found that growth rate declined with tree height and tall trees had higher mortality rates than intermediate-size trees. Our approach demonstrates that deep learning methods can automatically segment trees in widely accessible RGB imagery. This tool (provided as an open-source Python package) has many potential applications in forest ecology and conservation, from estimating carbon stocks to monitoring forest phenology and restoration.Python package available to install at https://github.com/PatBall1/ Detectree2. Tropical forests are a major component of the global carbon cycle and home to two‐thirds of terrestrial species. Upper‐canopy trees store the majority of forest carbon and can be vulnerable to drought events and storms. Monitoring their growth and mortality is essential to understanding forest resilience to climate change, but in the context of forest carbon storage, large trees are underrepresented in traditional field surveys, so estimates are poorly constrained. Aerial photographs provide spectral and textural information to discriminate between tree crowns in diverse, complex tropical canopies, potentially opening the door to landscape monitoring of large trees. Here we describe a new deep convolutional neural network method, Detectree2 , which builds on the Mask R‐CNN computer vision framework to recognize the irregular edges of individual tree crowns from airborne RGB imagery. We trained and evaluated this model with 3797 manually delineated tree crowns at three sites in Malaysian Borneo and one site in French Guiana. As an example application, we combined the delineations with repeat lidar surveys (taken between 3 and 6 years apart) of the four sites to estimate the growth and mortality of upper‐canopy trees. Detectree2 delineated 65 000 upper‐canopy trees across 14 km 2 of aerial images. The skill of the automatic method in delineating unseen test trees was good ( F 1 score = 0.64) and for the tallest category of trees was excellent ( F 1 score = 0.74). As predicted from previous field studies, we found that growth rate declined with tree height and tall trees had higher mortality rates than intermediate‐size trees. Our approach demonstrates that deep learning methods can automatically segment trees in widely accessible RGB imagery. This tool (provided as an open‐source Python package) has many potential applications in forest ecology and conservation, from estimating carbon stocks to monitoring forest phenology and restoration. Python package available to install at https://github.com/PatBall1/Detectree2 . Abstract Tropical forests are a major component of the global carbon cycle and home to two‐thirds of terrestrial species. Upper‐canopy trees store the majority of forest carbon and can be vulnerable to drought events and storms. Monitoring their growth and mortality is essential to understanding forest resilience to climate change, but in the context of forest carbon storage, large trees are underrepresented in traditional field surveys, so estimates are poorly constrained. Aerial photographs provide spectral and textural information to discriminate between tree crowns in diverse, complex tropical canopies, potentially opening the door to landscape monitoring of large trees. Here we describe a new deep convolutional neural network method, Detectree2, which builds on the Mask R‐CNN computer vision framework to recognize the irregular edges of individual tree crowns from airborne RGB imagery. We trained and evaluated this model with 3797 manually delineated tree crowns at three sites in Malaysian Borneo and one site in French Guiana. As an example application, we combined the delineations with repeat lidar surveys (taken between 3 and 6 years apart) of the four sites to estimate the growth and mortality of upper‐canopy trees. Detectree2 delineated 65 000 upper‐canopy trees across 14 km2 of aerial images. The skill of the automatic method in delineating unseen test trees was good (F1 score = 0.64) and for the tallest category of trees was excellent (F1 score = 0.74). As predicted from previous field studies, we found that growth rate declined with tree height and tall trees had higher mortality rates than intermediate‐size trees. Our approach demonstrates that deep learning methods can automatically segment trees in widely accessible RGB imagery. This tool (provided as an open‐source Python package) has many potential applications in forest ecology and conservation, from estimating carbon stocks to monitoring forest phenology and restoration. Python package available to install at https://github.com/PatBall1/Detectree2. |
Author | Hirst, James Hickman, Sebastian H. M. Jackson, Tobias D. Vincent, Grégoire Coomes, David A. Archer, Matthew Aubry‐Kientz, Mélaine Jay, William Ball, James G. C. Koay, Xian Jing |
Author_xml | – sequence: 1 givenname: James G. C. orcidid: 0000-0002-0165-5290 surname: Ball fullname: Ball, James G. C. organization: Department of Plant Sciences University of Cambridge Downing Street Cambridge CB2 3EA UK, Conservation Research Institute University of Cambridge Downing Street Cambridge CB2 3EA UK, UMR AMAP University of Montpellier, IRD, CNRS, CIRAD, INRAE Montpellier France – sequence: 2 givenname: Sebastian H. M. surname: Hickman fullname: Hickman, Sebastian H. M. organization: Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK, The Alan Turing Institute 96 Euston Road London NW1 2DB UK – sequence: 3 givenname: Tobias D. surname: Jackson fullname: Jackson, Tobias D. organization: Department of Plant Sciences University of Cambridge Downing Street Cambridge CB2 3EA UK, Conservation Research Institute University of Cambridge Downing Street Cambridge CB2 3EA UK – sequence: 4 givenname: Xian Jing surname: Koay fullname: Koay, Xian Jing organization: Conservation Research Institute University of Cambridge Downing Street Cambridge CB2 3EA UK – sequence: 5 givenname: James surname: Hirst fullname: Hirst, James organization: Department of Applied Mathematics and Theoretical Physics University of Cambridge Wilberforce Road Cambridge CB3 0WA UK – sequence: 6 givenname: William surname: Jay fullname: Jay, William organization: Plymouth Marine Laboratory Prospect Place Plymouth PL1 3DH UK – sequence: 7 givenname: Matthew surname: Archer fullname: Archer, Matthew organization: Research Software Engineering University of Cambridge Trinity Lane Cambridge CB2 1TN UK – sequence: 8 givenname: Mélaine surname: Aubry‐Kientz fullname: Aubry‐Kientz, Mélaine organization: AgroParisTech, UMR EcoFoG Kourou French Guiana – sequence: 9 givenname: Grégoire orcidid: 0000-0001-9443-021X surname: Vincent fullname: Vincent, Grégoire organization: UMR AMAP University of Montpellier, IRD, CNRS, CIRAD, INRAE Montpellier France – sequence: 10 givenname: David A. surname: Coomes fullname: Coomes, David A. organization: Department of Plant Sciences University of Cambridge Downing Street Cambridge CB2 3EA UK, Conservation Research Institute University of Cambridge Downing Street Cambridge CB2 3EA UK |
BackLink | https://hal.science/hal-04104425$$DView record in HAL |
BookMark | eNplkc1uUzEQhS1UpJZSqY9giQ0sEvx7f5YhKm2l0EpVu7Ym9jg43FwH-96i7voIfUaeBKdBCKi8mPHR5yPPnDfkoI89EnLK2ZQzJj6mjGIqpXhFjgTT1USqRh_81R-Sk5zXjDFeiZrXzRHZzKwdEwxIHXahRxhC7Gn0NPQu3Ac3QkeHhEhtij_6XORyjdtgi-5jwjxk6lPcUMAUinZz_omGDawwPdAxh35Fv0D-Rm9-Pj7Nr67ektceuownv-sxuft8dju_mCyuzy_ns8XEKq2HidXWg9DStkvWClW1daXd0lrJJGeSNY2zohWsNFhr2zIBXCiNFupa8qrR8phc7n1dhLXZpvKj9GAiBPMsxLQykIZgOzSao0XuQSNfqtpXrdMKauvQayUq6YrXh73XV-j-sbqYLcxOY4ozpYS-54V9t2e3KX4fy3LMOo6pL6Ma0TRcVuW0hXq_p8pOc07o_9hyZnY5ml2OpuRY0Ol_qA3Dc0ZDgtC9fPAL5regkA |
CitedBy_id | crossref_primary_10_1016_j_ecoinf_2025_103085 crossref_primary_10_1017_eds_2024_16 crossref_primary_10_1038_s44287_024_00116_8 crossref_primary_10_3390_rs16193660 crossref_primary_10_3390_rs16173207 crossref_primary_10_1016_j_rse_2025_114618 crossref_primary_10_1016_j_jag_2024_103848 crossref_primary_10_1016_j_ecoinf_2024_102684 crossref_primary_10_3390_s24237559 crossref_primary_10_20659_jjfp_A20241201 crossref_primary_10_3390_rs16030488 crossref_primary_10_3390_rs16111935 crossref_primary_10_1109_TGRS_2024_3439094 crossref_primary_10_1080_15481603_2024_2427305 crossref_primary_10_1109_TGRS_2024_3391352 crossref_primary_10_3390_f15101814 crossref_primary_10_3390_rs16152786 crossref_primary_10_3390_rs15184394 crossref_primary_10_1002_2688_8319_12343 crossref_primary_10_1016_j_foreco_2024_122185 |
Cites_doi | 10.1038/s41586‐020‐2035‐0 10.1111/gcb.13910 10.1016/j.rse.2017.05.032 10.1038/s41477‐021‐00879‐0 10.3390/rs8040333 10.1109/ICCV.2017.322 10.1016/j.jag.2022.102780 10.1007/s40725‐019‐00094‐3 10.1002/ajb2.1347 10.14358/PERS.76.3.289 10.1016/j.biocon.2020.108907 10.1016/j.rse.2017.03.017 10.1890/11-2173.1 10.1007/s10712‐019‐09528‐w 10.7554/eLife.62922 10.1186/s40537-016-0043-6 10.1016/j.biocon.2020.108849 10.1111/j.1461-0248.2006.00904.x 10.1126/science.1201609 10.1016/j.ophoto.2022.100018 10.1111/nph.17995 10.1111/2041‐210X.12575 10.1038/s41558‐022‐01544‐w 10.3389/ffgc.2019.00032 10.1007/978-3-319-10602-1_48 10.1080/01431161.2022.2032455 10.1016/j.isprsjprs.2021.06.003 10.3390/s19163595 10.1109/CVPR.2017.106 10.3390/rs12081288 10.1038/s41467‐019‐12380‐6 10.1080/2150704X.2020.1784491 10.3390/rs14020295 10.1016/S0034‐4257(70)80021‐9 10.3390/rs11111309 10.1016/j.geomorph.2012.08.021 10.1111/nph.18144 10.1111/ele.13978 10.1109/MGRS.2017.2762307 10.5194/bg-17-3017-2020 10.1016/j.rse.2020.112103 10.1111/geb.12747 10.1016/j.agrformet.2011.04.012 10.1111/gcb.15555 10.3390/rs10091419 10.1073/pnas.1412999111 10.1109/CVPR.2016.90 10.1016/j.imavis.2022.104471 10.1016/j.isprsjprs.2020.12.010 10.3390/rs13183655 10.3390/rs12020309 10.5194/bg-18-6517-2021 10.1038/s41612‐021‐00162‐1 10.1111/j.1744‐7429.2010.00644.x 10.3390/rs11091086 10.1109/JSTARS.2021.3069159 10.1111/nph.14633 10.1046/j.1461-0248.2003.00520.x 10.1214/11-AOS918 10.1038/nature14283 10.1371/journal.pone.0026670 10.1038/s43247-022-00564-w 10.1029/2021MS002555 |
ContentType | Journal Article |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | AAYXX CITATION 7ST ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI SOI 1XC VOOES DOA |
DOI | 10.1002/rse2.332 |
DatabaseName | CrossRef Environment Abstracts ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Database Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environment Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Computer Science Environmental Sciences |
EISSN | 2056-3485 |
EndPage | 655 |
ExternalDocumentID | oai_doaj_org_article_51ece1fa5e1b47f69d54a7cdef54263d oai_HAL_hal_04104425v1 10_1002_rse2_332 |
GeographicLocations | Malaysia |
GeographicLocations_xml | – name: Malaysia |
GroupedDBID | 0R~ 1OC 24P 5VS 8FE 8FH AAHBH AAHHS AAYXX ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV BENPR BHPHI BKSAR CCPQU CITATION EBS EJD GODZA GROUPED_DOAJ HCIFZ IAO IEP ITC KQ8 LK5 M7R M~E O9- OK1 PCBAR PHGZM PHGZT PIMPY PROAC ROL 7ST AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC C1K DWQXO PKEHL PQEST PQQKQ PQUKI SOI WIN 1XC PMFND VOOES PUEGO |
ID | FETCH-LOGICAL-c455t-c5cfa253c9b092469765dbcc303103088dc2920088e75c902a1245eca77316853 |
IEDL.DBID | DOA |
ISSN | 2056-3485 |
IngestDate | Wed Aug 27 01:32:02 EDT 2025 Thu May 29 05:43:05 EDT 2025 Wed Aug 13 11:20:54 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Tue Jul 01 02:10:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Deep learning Detectron2 Tree growth Forest monitoring Tree crown delineation Tree mortality Tree crown segmentation Tropical forests Convolutional neural networks Mask R-CNN |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-c5cfa253c9b092469765dbcc303103088dc2920088e75c902a1245eca77316853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9443-021X 0000-0002-0165-5290 |
OpenAccessLink | https://doaj.org/article/51ece1fa5e1b47f69d54a7cdef54263d |
PQID | 2881363639 |
PQPubID | 4370293 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_51ece1fa5e1b47f69d54a7cdef54263d hal_primary_oai_HAL_hal_04104425v1 proquest_journals_2881363639 crossref_primary_10_1002_rse2_332 crossref_citationtrail_10_1002_rse2_332 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Remote sensing in ecology and conservation |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Richardson S.J. (e_1_2_9_56_1) 2009; 33 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 IPCC (e_1_2_9_36_1) 2021 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Gourlet‐Fleury S. (e_1_2_9_25_1) 2004 Nilus R. (e_1_2_9_50_1) 2011; 23 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – ident: e_1_2_9_31_1 doi: 10.1038/s41586‐020‐2035‐0 – ident: e_1_2_9_19_1 doi: 10.1111/gcb.13910 – ident: e_1_2_9_57_1 doi: 10.1016/j.rse.2017.05.032 – ident: e_1_2_9_24_1 doi: 10.1038/s41477‐021‐00879‐0 – ident: e_1_2_9_69_1 doi: 10.3390/rs8040333 – ident: e_1_2_9_29_1 doi: 10.1109/ICCV.2017.322 – ident: e_1_2_9_32_1 doi: 10.1016/j.jag.2022.102780 – ident: e_1_2_9_34_1 doi: 10.1007/s40725‐019‐00094‐3 – ident: e_1_2_9_39_1 doi: 10.1002/ajb2.1347 – ident: e_1_2_9_13_1 doi: 10.14358/PERS.76.3.289 – ident: e_1_2_9_18_1 doi: 10.1016/j.biocon.2020.108907 – ident: e_1_2_9_14_1 doi: 10.1016/j.rse.2017.03.017 – ident: e_1_2_9_35_1 doi: 10.1890/11-2173.1 – ident: e_1_2_9_12_1 doi: 10.1007/s10712‐019‐09528‐w – ident: e_1_2_9_63_1 doi: 10.7554/eLife.62922 – ident: e_1_2_9_2_1 – ident: e_1_2_9_65_1 doi: 10.1186/s40537-016-0043-6 – ident: e_1_2_9_20_1 doi: 10.1016/j.biocon.2020.108849 – ident: e_1_2_9_49_1 doi: 10.1111/j.1461-0248.2006.00904.x – ident: e_1_2_9_53_1 doi: 10.1126/science.1201609 – ident: e_1_2_9_38_1 doi: 10.1016/j.ophoto.2022.100018 – ident: e_1_2_9_54_1 doi: 10.1111/nph.17995 – ident: e_1_2_9_17_1 doi: 10.1111/2041‐210X.12575 – ident: e_1_2_9_48_1 doi: 10.1038/s41558‐022‐01544‐w – ident: e_1_2_9_68_1 – ident: e_1_2_9_58_1 doi: 10.3389/ffgc.2019.00032 – ident: e_1_2_9_44_1 doi: 10.1007/978-3-319-10602-1_48 – ident: e_1_2_9_22_1 doi: 10.1080/01431161.2022.2032455 – volume-title: Climate change 2021: the physical science basis year: 2021 ident: e_1_2_9_36_1 – ident: e_1_2_9_27_1 doi: 10.1016/j.isprsjprs.2021.06.003 – ident: e_1_2_9_4_1 doi: 10.3390/s19163595 – ident: e_1_2_9_43_1 doi: 10.1109/CVPR.2017.106 – ident: e_1_2_9_9_1 doi: 10.3390/rs12081288 – ident: e_1_2_9_59_1 doi: 10.1038/s41467‐019‐12380‐6 – ident: e_1_2_9_51_1 doi: 10.1080/2150704X.2020.1784491 – ident: e_1_2_9_42_1 doi: 10.3390/rs14020295 – volume-title: Ecology and management of a neotropical rainforest: lessons drawn from Paracou, a long‐term experimental research site in French Guiana year: 2004 ident: e_1_2_9_25_1 – ident: e_1_2_9_40_1 doi: 10.1016/S0034‐4257(70)80021‐9 – ident: e_1_2_9_64_1 doi: 10.3390/rs11111309 – ident: e_1_2_9_67_1 doi: 10.1016/j.geomorph.2012.08.021 – ident: e_1_2_9_71_1 doi: 10.1111/nph.18144 – ident: e_1_2_9_16_1 doi: 10.1111/ele.13978 – ident: e_1_2_9_70_1 doi: 10.1109/MGRS.2017.2762307 – ident: e_1_2_9_41_1 doi: 10.5194/bg-17-3017-2020 – ident: e_1_2_9_26_1 doi: 10.1016/j.rse.2020.112103 – ident: e_1_2_9_45_1 doi: 10.1111/geb.12747 – volume: 33 start-page: 208 issue: 2 year: 2009 ident: e_1_2_9_56_1 article-title: Large‐tree growth and mortality rates in forests of the central North Island, New Zealand publication-title: New Zealand Journal of Ecology – ident: e_1_2_9_61_1 doi: 10.1016/j.agrformet.2011.04.012 – ident: e_1_2_9_55_1 doi: 10.1111/gcb.15555 – ident: e_1_2_9_66_1 doi: 10.3390/rs10091419 – ident: e_1_2_9_46_1 doi: 10.1073/pnas.1412999111 – ident: e_1_2_9_30_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_9_60_1 doi: 10.1016/j.imavis.2022.104471 – ident: e_1_2_9_37_1 doi: 10.1016/j.isprsjprs.2020.12.010 – ident: e_1_2_9_3_1 doi: 10.3390/rs13183655 – ident: e_1_2_9_28_1 doi: 10.3390/rs12020309 – ident: e_1_2_9_5_1 doi: 10.5194/bg-18-6517-2021 – ident: e_1_2_9_11_1 doi: 10.1038/s41612‐021‐00162‐1 – ident: e_1_2_9_62_1 doi: 10.1111/j.1744‐7429.2010.00644.x – ident: e_1_2_9_6_1 doi: 10.3390/rs11091086 – volume: 23 start-page: 133 year: 2011 ident: e_1_2_9_50_1 article-title: Nutrient limitation of tree seedling growth in three soil types found in Sabah publication-title: Journal of Tropical Forest Science – ident: e_1_2_9_7_1 doi: 10.1109/JSTARS.2021.3069159 – ident: e_1_2_9_23_1 – ident: e_1_2_9_47_1 doi: 10.1111/nph.14633 – ident: e_1_2_9_15_1 doi: 10.1046/j.1461-0248.2003.00520.x – ident: e_1_2_9_8_1 doi: 10.1214/11-AOS918 – ident: e_1_2_9_10_1 doi: 10.1038/nature14283 – ident: e_1_2_9_33_1 doi: 10.1371/journal.pone.0026670 – ident: e_1_2_9_52_1 doi: 10.1038/s43247-022-00564-w – ident: e_1_2_9_21_1 doi: 10.1029/2021MS002555 |
SSID | ssj0001627178 |
Score | 2.4146357 |
Snippet | Tropical forests are a major component of the global carbon cycle and home to two‐thirds of terrestrial species. Upper‐canopy trees store the majority of... Tropical forests are a major component of the global carbon cycle and home to two-thirds of terrestrial species. Upper-canopy trees store the majority of... Abstract Tropical forests are a major component of the global carbon cycle and home to two‐thirds of terrestrial species. Upper‐canopy trees store the majority... |
SourceID | doaj hal proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 641 |
SubjectTerms | Aerial photography Aerial surveys Agricultural sciences Aircraft Algorithms Artificial neural networks Canopies Carbon cycle Carbon sequestration Climate change Computer Science Computer vision Convolutional neural networks Deep learning Detectron2 Drought Environmental Engineering Environmental Sciences Forest management forest monitoring Forests Image Processing Imagery Lidar Life Sciences Machine learning Mask R‐CNN Monitoring Mortality Neural and Evolutionary Computing Neural networks Rainforests Remote sensing Sensors Silviculture, forestry Surveys tree crown delineation Trees Tropical forests Vegetation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA56h-CL-BNXT4ki-FQvTZqmfZLdY89FdJHFg3sL6SS9O06363ZPuP_emTS7x4lIobRJaCEzmcwkk-9j7F1eOeOkKjKjcgxQpKmzCnyd5SqAUB7wHrN85-XspPh8qk_Tgluf0iq3NjEaat8BrZEfyqrKVYlX_XH1KyPWKNpdTRQad9k-muAKNXx_Mp1_W9ysspQS45Vqizor5OG6D_KDUvLWPBTh-nF2OadkyL9scpxojh-yB8lD5ONBpI_YnbB8zO5NI7r09RN2OQa4InwH7uko-eDy8a7lF7ujVZx2mjlQgN1jMb52K5IFRwcVf9hzOlPCXdQ9vvg04Rc_CcnimlMS_Bn_6vpLvsiO5vOn7OR4-v1oliXGhAwKrTcZaGid1ArqRmBgVaKvoX0DoESkE6sqD8ROhQ_BaKiFdDi96wDORAIrrZ6xvWW3DM8ZF3XInVCglFaFa6Qz6NupQqDstHfBjNj7bf9ZSHDixGrxww5AyNJST1vs6RF7s2u5GiA0_tFmQiLY1RPodSzo1mc2jSGr8wAhb50OeVOYtqy9LpwBH1pNsPN-xN6iAG99Yzb-YqlMFBh2onn6nY_YwVa-Ng3X3t4o14v_V79k94lvfsjmO2B7m_VVeIVeyaZ5nVTvD9sq4So priority: 102 providerName: ProQuest |
Title | Accurate delineation of individual tree crowns in tropical forests from aerial RGB imagery using Mask R‐CNN |
URI | https://www.proquest.com/docview/2881363639 https://hal.science/hal-04104425 https://doaj.org/article/51ece1fa5e1b47f69d54a7cdef54263d |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9RAEF-kIvgi9R-erWUrgk-x-yebTR7vytWj6qGHhb4tm9lNW2rvSnMV-uZH8DP6SZzZ5I5WBF8ksCSbkCwzk52ZZPb3Y-yNLL31SueZ1RITFGWrrIRQZVJHEDoAtqnKd1pMjvLDY3N8i-qLasI6eOBOcHtGRoiy8SbKOrdNUQWTewshNoawxgPNvujzbiVT6etKoTBPKVdos0LtXbVRvdNa3fE_CaYfvcopFUH-MRcnB3OwyR71kSEfdiN6zO7F-RP2YJxQpW-esoshwDXhOvBAS8i7UI8vGn62XlLF6Q8zB0qsW-zGw8Ul6YBjYIoPbDmtJeE-2RyfvR_xswtCsLjhVPx-wj_59pzPfv34uT-dPmNHB-Ov-5Os50rIIDdmmYGBxiujoaoFplQFRhkm1ABaJCKxsgxAvFS4E62BSiiPjt1E8DZRVxn9nG3MF_P4gnFRRemFBq2Nzn2tvMWoTucCtWaCj3bA3q4k6KAHEic-i2-ug0BWjmTtUNYDtru-8rIDz_jLNSNSwvo8wV2nDjQC1xuB-5cRDNhrVOGde0yGHx31iRwTTpyYvssB215p2PUvautUWUpd4Fa9_B8D2WIPiY--q_bbZhvLq-v4CqOWZb3D7o_G08-znWSo2H74Uv4Gtb3t0A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTgheEFdRNsAgEE9hiR3n8oBQOzo61kWo2qS9GefYGdNGU5oO1D_Fb-ScXDoNId6mSFFiR4nkc3Iu9vH3MfY6SExshAy9WAaYoIg49RKwqRdIB760gOe6yjeLxsfh5xN1ssF-d3thqKyys4m1obYl0Bz5jkiSQEZ4pB_mPzxijaLV1Y5Co1GLA7f6hSlb9X7_I8r3jRB7o6PdsdeyCngQKrX0QEFhhJKQ5j4mHxH6Y2VzAOnXlFtJYoEYnPDCxQpSXxh0gcqBiWuSJ2KJQJO_GUoMFXpsczjKvkyvZnUigflR0qHc-mJnUTnxTkpxze_V9ADozb5R8eVfPqB2bHv32N02IuWDRoXusw03e8BujWo069VDdj4AuCQ8CW5p63oTYvKy4GfrrVycVrY5UEJfYTPelnOSPceAGD9YcdrDwk2t63z6acjPvhNyxopT0f0pPzTVOZ96u1n2iB3fyFg-Zr1ZOXNPGPdTFxhfgpRKhiYXJsZYUoY-6oqyxsV99rYbPw0tfDmxaFzoBnhZaBppjSPdZy_XT84byI5_PDMkEaz7CWS7bigXp7r9Z7UKHLigMMoFeRgXUWpVaGKwrlAEc2_77BUK8No7xoOJpjY_xDQXzeHPoM-2O_nq1jxU-kqZn_6_-wW7PT46nOjJfnawxe4Q131TSbjNesvFpXuGEdEyf96qIWdfb1rz_wDTTxuS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTiBeEFdRGGAQiKfQxI7j5AGhdmvp2Iimikl7C86xM6ZBU5oO1L_Gr-OcXDoNId6mSFXqRKlkfz0X55zvY-xVEBtthAw9LQNMUIROvBhs4gXSgS8t4Gdd5ZtG0-Pw44k62WK_u14YKqvsbGJtqG0JtEc-EHEcyAiPZFC0ZRFHe5P3ix8eKUjRm9ZOTqOByIFb_8L0rXq3v4dr_VqIyfjz7tRrFQY8CJVaeaCgMEJJSHIfE5EIfbOyOYD0a_mtOLZAak544rSCxBcG3aFyYHQt-ESKEWj-tzW1j_bY9micHs0ud3gigblS3DHe-mKwrJx4K6W44gNrqQD0bF-pEPMvf1A7uckddruNTvmwgdNdtuXm99iNcc1svb7PzocAF8QtwS21sTfhJi8LfrZp6-L0lpsDJfcVDuPXckE44Bgc4w9WnPpZuKlxz2cfRvzsO7ForDkV4J_yT6Y65zNvN00fsONrmcuHrDcv5-4R437iAuNLkFLJ0OTCaIwrZegjbpQ1TvfZm27-MmipzElR41vWkDCLjGY6w5nusxebOxcNfcc_7hnREmyuE-F2PVAuT7P2_5upwIELCqNckIe6iBKrQqPBukIR5b3ts5e4gFeeMR0eZjTmh5jyomn8GfTZTre-WWsqquwS2I__f_k5u4mIzw7304Mn7BbJ3jdFhTust1peuKcYHK3yZy0KOfty3cD_AxNLH9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+delineation+of+individual+tree+crowns+in+tropical+forests+from+aerial+RGB+imagery+using+Mask+R%E2%80%90CNN&rft.jtitle=Remote+sensing+in+ecology+and+conservation&rft.au=Ball%2C+James&rft.au=Hickman%2C+Sebastian&rft.au=Jackson%2C+Tobias&rft.au=Koay%2C+Xian+Jing&rft.date=2023-10-01&rft.pub=Wiley&rft.eissn=2056-3485&rft.volume=9&rft.issue=5&rft.spage=641&rft.epage=655&rft_id=info:doi/10.1002%2Frse2.332&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04104425v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-3485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-3485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-3485&client=summon |