A simple statistical-mechanical interpretation of Onsager reciprocal relations and Derjaguin theory of thermo-osmosis
. The application of a temperature gradient along a fluid-solid interface generates stresses in the fluid causing “thermo-osmotic” flow. Much of the understanding of this phenomenon is based on Derjaguin's work relating thermo-osmotic flows to the mechano-caloric effect, namely, the interfacial...
Saved in:
Published in | The European physical journal. E, Soft matter and biological physics Vol. 42; no. 10; p. 136 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | .
The application of a temperature gradient along a fluid-solid interface generates stresses in the fluid causing “thermo-osmotic” flow. Much of the understanding of this phenomenon is based on Derjaguin's work relating thermo-osmotic flows to the mechano-caloric effect, namely, the interfacial heat flow induced by a pressure gradient. This is done by using Onsager's reciprocity relationship for the equivalence of the thermo-osmotic and mechano-caloric cross-term transport coefficients. Both Derjaguin theory and Onsager framework for out-of-equilibrium systems are formulated in macroscopic thermodynamics terms and lack a clear interpretation at the molecular level. Here, we use statistical-mechanical tools to derive expressions for the transport cross-coefficients and, thereby, to directly demonstrate their equality. This is done for two basic models: i) an incopressible continuum solvent containing non-interacting solute particles, and ii) a single-component fluid without thermal expansivity. The derivation of the mechano-caloric coefficient appears to be remarkably simple, and provides a simple interpretation for the connection between interfacial heat and particle fluxes. We use this interpretation to consider yet another example, which is an electrolyte interacting with a uniformly charged surface in the strong screening (Debye-Hückel) regime.
Graphical abstract |
---|---|
AbstractList | .
The application of a temperature gradient along a fluid-solid interface generates stresses in the fluid causing “thermo-osmotic” flow. Much of the understanding of this phenomenon is based on Derjaguin's work relating thermo-osmotic flows to the mechano-caloric effect, namely, the interfacial heat flow induced by a pressure gradient. This is done by using Onsager's reciprocity relationship for the equivalence of the thermo-osmotic and mechano-caloric cross-term transport coefficients. Both Derjaguin theory and Onsager framework for out-of-equilibrium systems are formulated in macroscopic thermodynamics terms and lack a clear interpretation at the molecular level. Here, we use statistical-mechanical tools to derive expressions for the transport cross-coefficients and, thereby, to directly demonstrate their equality. This is done for two basic models: i) an incopressible continuum solvent containing non-interacting solute particles, and ii) a single-component fluid without thermal expansivity. The derivation of the mechano-caloric coefficient appears to be remarkably simple, and provides a simple interpretation for the connection between interfacial heat and particle fluxes. We use this interpretation to consider yet another example, which is an electrolyte interacting with a uniformly charged surface in the strong screening (Debye-Hückel) regime.
Graphical abstract The application of a temperature gradient along a fluid-solid interface generates stresses in the fluid causing “thermo-osmotic” flow. Much of the understanding of this phenomenon is based on Derjaguin's work relating thermo-osmotic flows to the mechano-caloric effect, namely, the interfacial heat flow induced by a pressure gradient. This is done by using Onsager's reciprocity relationship for the equivalence of the thermo-osmotic and mechano-caloric cross-term transport coefficients. Both Derjaguin theory and Onsager framework for out-of-equilibrium systems are formulated in macroscopic thermodynamics terms and lack a clear interpretation at the molecular level. Here, we use statistical-mechanical tools to derive expressions for the transport cross-coefficients and, thereby, to directly demonstrate their equality. This is done for two basic models: i) an incopressible continuum solvent containing non-interacting solute particles, and ii) a single-component fluid without thermal expansivity. The derivation of the mechano-caloric coefficient appears to be remarkably simple, and provides a simple interpretation for the connection between interfacial heat and particle fluxes. We use this interpretation to consider yet another example, which is an electrolyte interacting with a uniformly charged surface in the strong screening (Debye-Hückel) regime. |
ArticleNumber | 136 |
Author | Farago, Oded |
Author_xml | – sequence: 1 givenname: Oded surname: Farago fullname: Farago, Oded email: ofarago@bgu.ac.il organization: Department of Chemistry, University of Cambridge, Department of Biomedical Engineering, Ben-Gurion University of the Negev |
BookMark | eNp9kU9LAzEQxYMo2Fa_gKeAFy9rk2zS3RyL_6HQi4K3ELcTTdlN1szuod_e3VYUPHiaB_N7j2HelByHGICQC86uOZdsDu0W5l4wrjPOS11m-RGZcKFFVmr1evyjJT8lU8QtY2yw5RPSLyn6pq2BYmc7j52vbJ01UH3YMErqQwepTTBuY6DR0XVA-w6JJqh8m-IIJaj3a6Q2bOgtpK19732g3QfEtBtNg0pNzCI2ET2ekRNna4Tz7zkjL_d3zzeP2Wr98HSzXGWVVKrLKsWh5FKJTaFU4fTbAoTYcCfVBpQDzYXVjBcLKaWGXPNCyIVwrrJSgeO6zGfk6pA73PnZA3am8VhBXdsAsUcjcqZlwYpCDujlH3Qb-xSG60aqXEjB1BgoDlSVImICZ9rkG5t2hjMzNmHGJsy-CbNvwuSDKT-YcIDD8Lrf6H9cX-QckUc |
CitedBy_id | crossref_primary_10_3208_jgssp_v09_cpeg150 crossref_primary_10_1016_j_ijthermalsci_2021_107441 crossref_primary_10_1063_5_0028674 crossref_primary_10_1021_acs_energyfuels_1c01448 crossref_primary_10_1039_D0NR06687G |
Cites_doi | 10.1515/jnet-2016-0088 10.1017/S0022112082001542 10.1039/C8CS00420J 10.1103/PhysRevLett.123.028002 10.1063/1.1756576 10.1103/PhysRev.37.405 10.1103/PhysRevLett.119.214501 10.1103/PhysRevE.77.041404 10.1007/978-1-4757-6639-4 10.1103/PhysRevLett.101.108301 10.1103/PhysRevE.99.062108 10.1039/C9CP00999J 10.1146/annurev-chembioeng-061114-123202 10.1146/annurev.fluid.36.050802.122124 10.1103/PhysRevLett.116.188303 10.1088/0034-4885/73/12/126601 10.1016/0009-2509(61)80035-3 10.1016/j.cocis.2009.12.005 10.1103/PhysRevLett.119.038002 10.1007/978-3-540-71488-0 10.1103/PhysRev.38.2265 |
ContentType | Journal Article |
Copyright | EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019 2019© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
Copyright_xml | – notice: EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: 2019© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1140/epje/i2019-11898-3 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1292-895X |
EndPage | 136 |
ExternalDocumentID | 10_1140_epje_i2019_11898_3 |
GroupedDBID | --- -5F -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 123 199 1SB 203 29G 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 30V 4.4 406 408 409 40D 40E 5C9 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAFWJ AAHNG AAJKR AANZL AARTL AATNV AATVU AAUYE AAYFA AAYIU AAYQN ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADTPH ADURQ ADYFF ADZKW AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFQWF AFWTZ AFZKB AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHSBF AHYZX AI. AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J P9T PF0 QOS R89 R9I RED RID RIG RNS ROL RPX RRX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UNUBA UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WJK WK8 YLTOR Z45 Z5O Z7V Z7W Z7X Z7Y Z83 Z85 Z88 ~8M AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 ZMTXR 7X8 |
ID | FETCH-LOGICAL-c455t-c51e81452d7557f9b6e22d1f45de5fe912a901764449e39172462ffca45ef1983 |
IEDL.DBID | AGYKE |
ISSN | 1292-8941 |
IngestDate | Fri Oct 25 02:08:23 EDT 2024 Thu Oct 10 20:14:09 EDT 2024 Thu Sep 12 17:16:56 EDT 2024 Sat Dec 16 12:05:31 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Soft Matter: Interfacial Phenomena and Nanostructured Surfaces |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-c51e81452d7557f9b6e22d1f45de5fe912a901764449e39172462ffca45ef1983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2308642058 |
PQPubID | 2044460 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2309470774 proquest_journals_2308642058 crossref_primary_10_1140_epje_i2019_11898_3 springer_journals_10_1140_epje_i2019_11898_3 |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Soft Matter and Biological Physics |
PublicationTitle | The European physical journal. E, Soft matter and biological physics |
PublicationTitleAbbrev | Eur. Phys. J. E |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1969) BacchinP.GlavatskiyK.GerbaudV.Phys. Chem. Chem. Phys.2019211011410.1039/C9CP00999J OnsagerL.Phys. Rev.1931374051931PhRv...37..405O10.1103/PhysRev.37.405 MarbachS.BocquetL.Chem. Soc. Rev.201948310210.1039/C8CS00420J BerettaG.P.GyftopoulosE.P.J. Chem. Phys.200412127182004JChPh.121.2718B10.1063/1.1756576 FuL.MerabiaS.JolyL.Phys. Rev. Lett.20171192145012017PhRvL.119u4501F10.1103/PhysRevLett.119.214501 RasuliS.N.GolestanianR.Phys. Rev. Lett.20081011083012008PhRvL.101j8301R10.1103/PhysRevLett.101.108301 StoneH.A.StroockA.D.AjdariA.Annu. Rev. Fluid Mech.2004363812004AnRFM..36..381S10.1146/annurev.fluid.36.050802.122124 WallS.Curr. Opin. Colloid Interface Sci.20101511910.1016/j.cocis.2009.12.005 BregullaA.P.Phys. Rev. Lett.20161161883032016PhRvL.116r8303B10.1103/PhysRevLett.116.188303 D. Andelman, in Handbook of Biological Physics, edited by R. Lipowsky, E. Sackmann, Vol. 1 (Elsevier Amsterdam, 1995) Chapt. 12 AnziniP.ColomboG.M.FilibertiZ.ParolaA.Phys. Rev. Lett.20191230280022019PhRvL.123b8002A10.1103/PhysRevLett.123.028002 GantiR.LiuY.FrenkelD.Phys. Rev. Lett.20171190380022017PhRvL.119c8002G10.1103/PhysRevLett.119.038002 MehrerHelmutDiffusion in Solids2007Berlin, HeidelbergSpringer Berlin Heidelberg10.1007/978-3-540-71488-0 PiazzaR.ParolaA.J. Phys.: Condens. Matter2008201531022008JPCM...20o3102P BrennerH.Chem. Eng. Sci.19611624210.1016/0009-2509(61)80035-3 ImbrognoJ.BelfortG.Annu. Rev. Chem. Biomol. Eng.201672910.1146/annurev-chembioeng-061114-123202 FaragoO.Phys. Rev. E2019990621082019PhRvE..99f2108F10.1103/PhysRevE.99.062108 FayolleS.BickelT.WürgerA.Phys. Rev. E2008770414042008PhRvE..77d1404F10.1103/PhysRevE.77.041404 H. Lodish, Molecular Cell Biology, 4th ed. (W.H. Freeman, New York, 2000) LippmannG.C. R. Acad. Sci.1907145104 B. Derjaguin, N. Churaev, V. Muller, Surface Forces (Plenum, New York, 1987) AndersonJ.L.LowellM.E.PrieveD.C.J. Fluid Mech.19821171071982JFM...117..107A10.1017/S0022112082001542 BarragánV.M.KjelstrupS.J. Non-Equilib. Thermodyn.2017422172017JNET...42..217B10.1515/jnet-2016-0088 OnsagerL.Phys. Rev.19313822651931PhRv...38.2265O10.1103/PhysRev.38.2265 WürgerA.Rep. Prog. Phys.2010731266012010RPPh...73l6601W10.1088/0034-4885/73/12/126601 Helmut Mehrer (760_CR23) 2007 L. Onsager (760_CR11) 1931; 38 G.P. Beretta (760_CR17) 2004; 121 L. Fu (760_CR22) 2017; 119 A.P. Bregulla (760_CR12) 2016; 116 760_CR14 R. Ganti (760_CR13) 2017; 119 P. Bacchin (760_CR3) 2019; 21 G. Lippmann (760_CR9) 1907; 145 R. Piazza (760_CR21) 2008; 20 P. Anzini (760_CR16) 2019; 123 S. Fayolle (760_CR19) 2008; 77 H. Brenner (760_CR24) 1961; 16 H.A. Stone (760_CR6) 2004; 36 L. Onsager (760_CR10) 1931; 37 S. Marbach (760_CR1) 2019; 48 V.M. Barragán (760_CR4) 2017; 42 J. Imbrogno (760_CR7) 2016; 7 760_CR25 760_CR5 760_CR8 J.L. Anderson (760_CR18) 1982; 117 S. Wall (760_CR2) 2010; 15 A. Würger (760_CR15) 2010; 73 S.N. Rasuli (760_CR26) 2008; 101 O. Farago (760_CR20) 2019; 99 |
References_xml | – volume: 20 start-page: 153102 year: 2008 ident: 760_CR21 publication-title: J. Phys.: Condens. Matter contributor: fullname: R. Piazza – volume: 42 start-page: 217 year: 2017 ident: 760_CR4 publication-title: J. Non-Equilib. Thermodyn. doi: 10.1515/jnet-2016-0088 contributor: fullname: V.M. Barragán – volume: 117 start-page: 107 year: 1982 ident: 760_CR18 publication-title: J. Fluid Mech. doi: 10.1017/S0022112082001542 contributor: fullname: J.L. Anderson – ident: 760_CR14 – volume: 48 start-page: 3102 year: 2019 ident: 760_CR1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00420J contributor: fullname: S. Marbach – ident: 760_CR8 – volume: 123 start-page: 028002 year: 2019 ident: 760_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.028002 contributor: fullname: P. Anzini – volume: 121 start-page: 2718 year: 2004 ident: 760_CR17 publication-title: J. Chem. Phys. doi: 10.1063/1.1756576 contributor: fullname: G.P. Beretta – volume: 37 start-page: 405 year: 1931 ident: 760_CR10 publication-title: Phys. Rev. doi: 10.1103/PhysRev.37.405 contributor: fullname: L. Onsager – volume: 119 start-page: 214501 year: 2017 ident: 760_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.214501 contributor: fullname: L. Fu – volume: 77 start-page: 041404 year: 2008 ident: 760_CR19 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.77.041404 contributor: fullname: S. Fayolle – ident: 760_CR5 doi: 10.1007/978-1-4757-6639-4 – volume: 101 start-page: 108301 year: 2008 ident: 760_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.108301 contributor: fullname: S.N. Rasuli – volume: 99 start-page: 062108 year: 2019 ident: 760_CR20 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.99.062108 contributor: fullname: O. Farago – volume: 21 start-page: 10114 year: 2019 ident: 760_CR3 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP00999J contributor: fullname: P. Bacchin – volume: 145 start-page: 104 year: 1907 ident: 760_CR9 publication-title: C. R. Acad. Sci. contributor: fullname: G. Lippmann – volume: 7 start-page: 29 year: 2016 ident: 760_CR7 publication-title: Annu. Rev. Chem. Biomol. Eng. doi: 10.1146/annurev-chembioeng-061114-123202 contributor: fullname: J. Imbrogno – volume: 36 start-page: 381 year: 2004 ident: 760_CR6 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.36.050802.122124 contributor: fullname: H.A. Stone – volume: 116 start-page: 188303 year: 2016 ident: 760_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.188303 contributor: fullname: A.P. Bregulla – volume: 73 start-page: 126601 year: 2010 ident: 760_CR15 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/73/12/126601 contributor: fullname: A. Würger – ident: 760_CR25 – volume: 16 start-page: 242 year: 1961 ident: 760_CR24 publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(61)80035-3 contributor: fullname: H. Brenner – volume: 15 start-page: 119 year: 2010 ident: 760_CR2 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2009.12.005 contributor: fullname: S. Wall – volume: 119 start-page: 038002 year: 2017 ident: 760_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.038002 contributor: fullname: R. Ganti – volume-title: Diffusion in Solids year: 2007 ident: 760_CR23 doi: 10.1007/978-3-540-71488-0 contributor: fullname: Helmut Mehrer – volume: 38 start-page: 2265 year: 1931 ident: 760_CR11 publication-title: Phys. Rev. doi: 10.1103/PhysRev.38.2265 contributor: fullname: L. Onsager |
SSID | ssj0001403 |
Score | 2.3242362 |
Snippet | .
The application of a temperature gradient along a fluid-solid interface generates stresses in the fluid causing “thermo-osmotic” flow. Much of the... The application of a temperature gradient along a fluid-solid interface generates stresses in the fluid causing “thermo-osmotic” flow. Much of the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 136 |
SubjectTerms | Biological and Medical Physics Biophysics Complex Fluids and Microfluidics Complex Systems Condensed matter physics Fluxes Heat transmission Nanotechnology Osmosis Physics Physics and Astronomy Polymer Sciences Reciprocity Regular Article Soft and Granular Matter Surfaces and Interfaces Temperature gradients Thin Films Transport properties |
Title | A simple statistical-mechanical interpretation of Onsager reciprocal relations and Derjaguin theory of thermo-osmosis |
URI | https://link.springer.com/article/10.1140/epje/i2019-11898-3 https://www.proquest.com/docview/2308642058 https://search.proquest.com/docview/2309470774 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3RVkhcoHyJpe3KSNzAbeLYiXPcQpcKpHLpSuUUOYmNUtik2mwO8Os74yRdFdpDb5HiOIrH9ryR33sBeB87rV1USlxIUnGZC8cN5l1eGMSyRaTJ043YFmfx6UJ-vVAXGx23J7uPJ5J-o-7tbIMje3VpjypMVylHTJxqHm3BziA83Zl9-fHt5GYDJgs6qrNEios9leGolbmzl9v5aAMy_zkX9elm_gzOR9FOzzL5ddit88Pi7_8ejg_5kl14OsBPNuvny3N4ZOsX8NjTQIv2JXQz1lbkF8xIaOQ9nM1vvrQkD6ZLVt3iKLLGse81UdNWjFwyKBtio9VIsGOmLtlnu7o0P7uqZl40-YceItS5bHjTLpu2al_BYn5y_umUDz9m4IVUas0LFVqNsRVlolTi0jy2QpShk6q0RF4LhUGYkSDUkqmNsCAUMhbOFUYq68JUR69hu25q-wZY6IwURmmbxIQdrRZGBEmcY5UYBmXgJvBhDE921ftvZL2WOshoIDM_kJkfyCyawP4YwWxYi22GRZbGKitQegLvbm7jKqKjEVPbpvNtUpkEiIUn8HGM2qaL-9_49mHN9-BJH3hiA-7D9nrV2QNENet8irN4fnx8Nh1m8xS2FmJ2DSL78-4 |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RUFUuCPoQy9OVemstEsdOnOOKh5ZH6YWVuFnexEZBbII2uwf-PTPOBkTVHrhFysSRxo_5RvPNZ4AfqdfaJ6XEjSQVlxPhucW4ywuLWLZINGm6EdviOh2N5cWtul02hbU9270vSYaTutOzjY7c4707qjBe5RxBca558gHWSF-dFPPHYvhy_pICHaVZIse9nsu4b5X55xhvw9ErxvyrLBqizdkmbCxhIht287oFK67-DB8DXbNov8BiyNqKdH0ZNQQFrWX7wKeO2njpkVVvuISs8exPTRSyGSM1C4paaDTriXDM1iU7cbN7e7eoahaaG5_oI0KH04Y37bRpq_YrjM9Ob45HfHmBAi-kUnNeqNhpnANRZkplPp-kTogy9lKVjkhmsbAIBzKERDJ3CSZuQqbC-8JK5Xyc6-QbrNZN7baBxd5KYZV2WUoYz2lhRZSlE8zm4qiM_AB-9n40j51Ohul6niNDXjfB6yZ43SQD2OtdbZZ7pjWYDGnMhiKlB_D95TWudiph2No1i2CTyyxCzDqAX_0UvQ7x_z_uvM_8ED6Nbn5fmavz68tdWO9WDDH49mB1Plu4fUQi88lBWHjPfe3XkQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RRa24UPqBWArUlXprzSaOnTjHFbDQUtEeikRPlpPYVSibrDbJAX49nnxAQe2h6i1SHCfxeDJvNG9eAN6HVkobZNw5EheUJ8xS7eIuTbXDsmkgUdMN2RZn4ck5_3whLn7r4m_Z7kNJsutpQJWmop4sMttr23oTs7g0k9zFrpg6gBxLGjyBVY7KSCNYnR7_OD26-xqjHh0mXSx2nh9zf2ic-eMsD4PTPeJ8VCRtY8_sOejhqTvKya_9pk7205tHgo7_81obsN4DUzLtdtILWDHFS3jaEkTT6hU0U1LlqCRMsAWpVXfWV3RusHEYD0n-gL1ISku-FkhaWxLUz8A46QYtB-od0UVGDs3yUv9s8oK07ZTXeBHi0XlJy2peVnn1Gs5nR98PTmj_ywaaciFqmgrfSGd1lkVCRDZOQsNY5lsuMoO0Np9pB0AiB8J4bAKXKjIeMmtTzYWxfiyDTRgVZWG2gPhWc6aFNFGIqNJIppkXhYnLH30v8-wYPgy2UotOmUN1XdaewoVU7UKqdiFVMIadwZyq99JKufRLuvzLE3IM7-5OO__CookuTNm0Y2IeeQ4lj-HjYMH7Kf5-x-1_G_4Wnn07nKkvn85O38BatweQMrgDo3rZmF0Hfepkr9_dtxGl_kE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+statistical-mechanical+interpretation+of+Onsager+reciprocal+relations+and+Derjaguin+theory+of+thermo-osmosis&rft.jtitle=The+European+physical+journal.+E%2C+Soft+matter+and+biological+physics&rft.au=Farago%2C+Oded&rft.date=2019-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1292-8941&rft.eissn=1292-895X&rft.volume=42&rft.issue=10&rft_id=info:doi/10.1140%2Fepje%2Fi2019-11898-3&rft.externalDocID=10_1140_epje_i2019_11898_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1292-8941&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1292-8941&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1292-8941&client=summon |