High n-type conductivity and carrier concentration in Si-implanted homoepitaxial AlN

We demonstrate Si-implanted AlN with high conductivity (>1 Ω−1 cm−1) and high carrier concentration (5 × 1018 cm−3). This was enabled by Si implantation into AlN with a low threading dislocation density (TDD) (<103 cm−2), a non-equilibrium damage recovery and dopant activation annealing proces...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 118; no. 11
Main Authors Breckenridge, M. Hayden, Bagheri, Pegah, Guo, Qiang, Sarkar, Biplab, Khachariya, Dolar, Pavlidis, Spyridon, Tweedie, James, Kirste, Ronny, Mita, Seiji, Reddy, Pramod, Collazo, Ramón, Sitar, Zlatko
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 15.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrate Si-implanted AlN with high conductivity (>1 Ω−1 cm−1) and high carrier concentration (5 × 1018 cm−3). This was enabled by Si implantation into AlN with a low threading dislocation density (TDD) (<103 cm−2), a non-equilibrium damage recovery and dopant activation annealing process, and in situ suppression of self-compensation during the annealing. Low TDD and active suppression of VAl-nSiAl complexes via defect quasi Fermi level control enabled low compensation, while low-temperature, non-equilibrium annealing maintained the desired shallow donor state with an ionization energy of ∼70 meV. The realized n-type conductivity and carrier concentration are over one order of magnitude higher than that reported thus far and present a major technological breakthrough in doping of AlN.
AbstractList We demonstrate Si-implanted AlN with high conductivity (>1 Ω−1 cm−1) and high carrier concentration (5 × 1018 cm−3). This was enabled by Si implantation into AlN with a low threading dislocation density (TDD) (<103 cm−2), a non-equilibrium damage recovery and dopant activation annealing process, and in situ suppression of self-compensation during the annealing. Low TDD and active suppression of VAl-nSiAl complexes via defect quasi Fermi level control enabled low compensation, while low-temperature, non-equilibrium annealing maintained the desired shallow donor state with an ionization energy of ∼70 meV. The realized n-type conductivity and carrier concentration are over one order of magnitude higher than that reported thus far and present a major technological breakthrough in doping of AlN.
Author Bagheri, Pegah
Collazo, Ramón
Mita, Seiji
Reddy, Pramod
Breckenridge, M. Hayden
Sarkar, Biplab
Guo, Qiang
Tweedie, James
Sitar, Zlatko
Pavlidis, Spyridon
Kirste, Ronny
Khachariya, Dolar
Author_xml – sequence: 1
  givenname: M. Hayden
  surname: Breckenridge
  fullname: Breckenridge, M. Hayden
  organization: Department of Material Science and Engineering, North Carolina State University
– sequence: 2
  givenname: Pegah
  surname: Bagheri
  fullname: Bagheri, Pegah
  organization: Department of Material Science and Engineering, North Carolina State University
– sequence: 3
  givenname: Qiang
  surname: Guo
  fullname: Guo, Qiang
  organization: Department of Material Science and Engineering, North Carolina State University
– sequence: 4
  givenname: Biplab
  surname: Sarkar
  fullname: Sarkar, Biplab
  organization: Department of Material Science and Engineering, North Carolina State University
– sequence: 5
  givenname: Dolar
  surname: Khachariya
  fullname: Khachariya, Dolar
  organization: Department of Electrical and Computer Engineering, North Carolina State University
– sequence: 6
  givenname: Spyridon
  surname: Pavlidis
  fullname: Pavlidis, Spyridon
  organization: Department of Electrical and Computer Engineering, North Carolina State University
– sequence: 7
  givenname: James
  surname: Tweedie
  fullname: Tweedie, James
  organization: Adroit Materials
– sequence: 8
  givenname: Ronny
  surname: Kirste
  fullname: Kirste, Ronny
  organization: Adroit Materials
– sequence: 9
  givenname: Seiji
  surname: Mita
  fullname: Mita, Seiji
  organization: Adroit Materials
– sequence: 10
  givenname: Pramod
  surname: Reddy
  fullname: Reddy, Pramod
  organization: Adroit Materials
– sequence: 11
  givenname: Ramón
  surname: Collazo
  fullname: Collazo, Ramón
  organization: Department of Material Science and Engineering, North Carolina State University
– sequence: 12
  givenname: Zlatko
  surname: Sitar
  fullname: Sitar, Zlatko
  organization: 3Adroit Materials, Cary, North Carolina 27518, USA
BackLink https://www.osti.gov/biblio/1771214$$D View this record in Osti.gov
BookMark eNp90M1KAzEUBeAgFWyrC99g0JXC1PxMJtNlKWqFogvrOqRJxqZMkzFJi317U1sRRF2FkO_eHE4PdKyzGoBzBAcIluSGDiAscEXZEegiyFhOEKo6oAshJHk5pOgE9EJYpivFhHTBbGJeF5nN47bVmXRWrWU0GxO3mbAqk8J7o_3uQWobvYjG2czY7NnkZtU2wkatsoVbOd2aKN6NaLJR83gKjmvRBH12OPvg5e52Np7k06f7h_FomsuC0pjPtapZwVKUSlJZMKogVgILyErMqESCMFZoNMSYSFLOWZVYpZSAgtF5XSnSBxf7vS5Ew4M0UctFymq1jBwxhjAqErrco9a7t7UOkS_d2tuUi2MKEWWwrFBSV3slvQvB65q33qyE33IE-a5ZTvmh2WRvftj082c1qSHT_DpxvZ8IX_Lf9X_ijfPfkLeqJh9hUJdB
CODEN APPLAB
CitedBy_id crossref_primary_10_1063_5_0082348
crossref_primary_10_1063_5_0214291
crossref_primary_10_1063_5_0253813
crossref_primary_10_1063_5_0146439
crossref_primary_10_1063_5_0071791
crossref_primary_10_1093_oxfmat_itac004
crossref_primary_10_1063_5_0174524
crossref_primary_10_1103_PhysRevB_107_245202
crossref_primary_10_1002_pssr_202400017
crossref_primary_10_1088_1674_4926_45_2_021501
crossref_primary_10_1063_5_0059037
crossref_primary_10_1063_5_0074454
crossref_primary_10_3390_cryst12010038
crossref_primary_10_3390_cryst12121812
crossref_primary_10_1088_1361_6641_ac27e7
crossref_primary_10_35848_1882_0786_acdcde
crossref_primary_10_1002_aelm_202300840
crossref_primary_10_1002_pssr_202200397
crossref_primary_10_1063_5_0156691
crossref_primary_10_35848_1347_4065_acb898
crossref_primary_10_1063_5_0086314
crossref_primary_10_35848_1347_4065_ac47aa
crossref_primary_10_1063_5_0159641
crossref_primary_10_35848_1347_4065_ac15ae
crossref_primary_10_35848_1882_0786_ad81c9
crossref_primary_10_1103_PhysRevB_108_035205
crossref_primary_10_1016_j_vacuum_2023_112829
Cites_doi 10.7567/APEX.8.061003
10.1063/1.4967397
10.1143/JJAP.33.2453
10.7567/APEX.9.025501
10.1063/1.2458399
10.1063/1.4896377
10.1016/j.jcrysgro.2005.10.074
10.1063/1.4901954
10.1063/1.1824181
10.1002/pssa.200880961
10.1038/srep27954
10.1063/1.5011984
10.1063/1.5144080
10.1063/1.4941814
10.1063/1.4964442
10.1063/1.5132953
10.1103/PhysRevB.61.R16283
10.1063/1.4962017
10.1063/1.4874735
10.1063/1.120310
10.1063/1.5002682
10.1143/JJAP.30.3475
10.1063/1.4972468
10.1002/pssa.201000947
10.1063/1.4903058
10.1149/1.3560527
10.1063/1.1682673
10.1063/1.2204656
10.1117/12.2041018
10.1063/1.4930026
10.1016/j.jcrysgro.2005.11.047
10.1063/1.5000720
10.1016/j.jcrysgro.2009.10.008
10.1016/j.jcrysgro.2007.12.051
10.1063/1.2170407
10.1007/s11664-012-2342-9
10.1063/1.5022794
10.7567/JJAP.56.100302
10.1002/pssc.201000964
10.1063/1.4807906
10.1103/PhysRevApplied.9.054036
10.1103/PhysRevB.89.035204
10.1016/j.jcrysgro.2008.06.015
10.1002/pssa.200565389
10.1063/1.2952027
10.1063/1.4792694
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
OTOTI
DOI 10.1063/5.0042857
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 1771214
10_1063_5_0042857
apl
GrantInformation_xml – fundername: Army Research Office
  grantid: W911NF-16-C-0101
  funderid: https://doi.org/10.13039/100000183
– fundername: National Science Foundation
  grantid: ECCS-1610992
  funderid: https://doi.org/10.13039/100000001
– fundername: National Science Foundation
  grantid: DMR-1508191
  funderid: https://doi.org/10.13039/100000001
– fundername: Army Research Office
  grantid: W911NF-15-2-0068
  funderid: https://doi.org/10.13039/100000183
– fundername: Air Force Office of Scientific Research
  grantid: FA9550-17-1-0225
  funderid: https://doi.org/10.13039/100000181
– fundername: National Science Foundation
  grantid: ECCS-1653383
  funderid: https://doi.org/10.13039/100000001
– fundername: U.S. Department of Energy
  grantid: DE-SC0011883
  funderid: https://doi.org/10.13039/100000015
– fundername: National Science Foundation
  grantid: ECCS-1508854
  funderid: https://doi.org/10.13039/100000001
– fundername: Air Force Office of Scientific Research
  grantid: FA9550-19-1-0114
  funderid: https://doi.org/10.13039/100000181
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
0ZJ
ABPTK
AGIHO
OTOTI
UE8
ID FETCH-LOGICAL-c455t-bedf7470058c5c475d02da2a076275c1a3774e19223c36b788c58dda0a75bf8d3
ISSN 0003-6951
IngestDate Fri May 19 00:45:58 EDT 2023
Sun Jun 29 15:36:04 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Tue Jul 01 01:08:04 EDT 2025
Fri Jun 21 00:13:52 EDT 2024
Thu Jun 23 13:44:59 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 0003-6951/2021/118(11)/112104/4/$30.00
Published under license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c455t-bedf7470058c5c475d02da2a076275c1a3774e19223c36b788c58dda0a75bf8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
SC0011883
ORCID 0000-0002-8556-1178
0000-0002-3530-1888
0000-0002-8780-4583
0000-0002-8738-5921
0000-0002-1880-4811
0000-0002-7385-0837
0000-0003-0074-0626
0000-0002-1690-2581
0000000285561178
0000000287385921
0000000287804583
0000000273850837
0000000300740626
0000000218804811
0000000235301888
0000000216902581
OpenAccessLink https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/5.0042857/13040399/112104_1_online.pdf
PQID 2501570681
PQPubID 2050678
PageCount 4
ParticipantIDs scitation_primary_10_1063_5_0042857
crossref_primary_10_1063_5_0042857
proquest_journals_2501570681
crossref_citationtrail_10_1063_5_0042857
osti_scitechconnect_1771214
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210315
2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 20210315
  day: 15
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Applied physics letters
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Bryan, Bryan, Washiyama, Reddy, Gaddy, Sarkar, Breckenridge, Guo, Bobea, Tweedie, Mita, Irving, Collazo, Sitar (c9) 2018
Breckenridge, Guo, Klump, Sarkar, Guan, Tweedie, Kirste, Mita, Reddy, Collazo, Sitar (c18) 2020
Mehnke, Trinh, Pingel, Wernicke, Janzén, Son, Kneissl (c22) 2016
Alberi, Scarpulla (c30) 2016
Kinoshita, Nagashima, Obata, Takashima, Yamamoto, Togashi, Kumagai, Schlesser, Collazo, Koukitu, Sitar (c4) 2015
Miyake, Nishio, Suzuki, Hiramatsu, Fukuyama, Kaur, Kuwano (c13) 2016
Reddy, Washiyama, Kaess, Kirste, Mita, Collazo, Sitar (c27) 2017
Ichimura, Wada, Fujita, Fujita (c36) 1991
Hirayama, Fujikawa, Noguchi, Norimatsu, Takano, Tsubaki, Kamata (c11) 2009
Zeisel, Bayerl, Goennenwein, Dimitrov, Ambacher, Brandt, Stutzmann (c6) 2000
Kaess, Reddy, Alden, Klump, Hernandez-Balderrama, Franke, Kirste, Hoffmann, Collazo, Sitar (c41) 2016
Chichibu, Miyake, Ishikawa, Tashiro, Ohtomo, Furusawa, Hazu, Hiramatsu, Uedono (c14) 2013
Bryan, Hoffmann, Tweedie, Kirste, Callsen, Bryan, Rice, Bobea, Mita, Xie, Sitar, Collazo (c31) 2013
Collazo, Mita, Xie, Rice, Tweedie, Dalmau, Sitar (c16) 2011
Bryan, Bryan, Gaddy, Reddy, Hussey, Bobea, Guo, Hoffmann, Kirste, Tweedie, Gerhold, Irving, Sitar, Collazo (c32) 2014
Mita, Collazo, Rice, Dalmau, Sitar (c21) 2008
Alden, Harris, Bryan, Baker, Reddy, Mita, Callsen, Hoffmann, Irving, Collazo, Sitar (c45) 2018
Silveira, Freitas, Schujman, Schowalter (c1) 2008
Reddy, Kaess, Tweedie, Kirste, Mita, Collazo, Sitar (c47) 2017
Feneberg, Neuschl, Thonke, Collazo, Rice, Sitar, Dalmau, Xie, Mita, Goldhahn (c15) 2011
Washiyama, Reddy, Sarkar, Breckenridge, Guo, Bagheri, Klump, Kirste, Tweedie, Mita, Sitar, Collazo (c28) 2020
Kyle, Kaun, Burke, Wu, Wu, Speck (c8) 2014
Dalmau, Moody, Schlesser, Mita, Xie, Feneberg, Neuschl, Thonke, Collazo, Rice, Tweedie, Sitar (c17) 2011
Haidet, Sarkar, Reddy, Bryan, Bryan, Kirste, Collazo, Sitar (c43) 2017
Lu, Collazo, Dalmau, Durkaya, Dietz, Raghothamachar, Dudley, Sitar (c39) 2009
Bai, Dudley, Sun, Wang, Khan (c12) 2006
Cao, Chu, Li, Chen, Chang, Hughes (c24) 2016
Hoffmann, Tweedie, Kirste, Bryan, Bryan, Gerhold, Sitar, Collazo (c33) 2014
Nakano, Imura, Narita, Kitano, Hirose, Fujimoto, Okada, Kawashima, Iida, Balakrishnan, Tsuda, Iwaya, Kamiyama, Amano, Akasaki (c10) 2006
Zhuang, Herro, Schlesser, Sitar (c38) 2006
Lyons, Janotti, Van de Walle (c44) 2014
Fichtenbaum, Mates, Keller, DenBaars, Mishra (c25) 2008
Kaess, Mita, Xie, Reddy, Klump, Hernandez-Balderrama, Washiyama, Franke, Kirste, Hoffmann, Collazo, Sitar (c23) 2016
Saxler, Walker, Kung, Zhang, Razeghi, Solomon, Mitchel, Vydyanath (c26) 1997
Reddy, Bryan, Bryan, Tweedie, Washiyama, Kirste, Mita, Collazo, Sitar (c48) 2015
Reddy, Hoffmann, Kaess, Bryan, Bryan, Bobea, Klump, Tweedie, Kirste, Mita, Gerhold, Collazo, Sitar (c29) 2016
Reddy, Bryan, Bryan, Tweedie, Kirste, Collazo, Sitar (c5) 2014
Herro, Zhuang, Schlesser, Collazo, Sitar (c37) 2006
Guo, Yoshida (c2) 1994
Kanechika, Kachi (c19) 2006
de Walle, Neugebauer (c20) 2004
Harris, Baker, Gaddy, Bryan, Bryan, Mirrielees, Reddy, Collazo, Sitar, Irving (c46) 2018
France, Xu, Chen, Chandrasekaran, Moustakas (c42) 2007
Reddy, Bryan, Bryan, Guo, Hussey, Collazo, Sitar (c49) 2014
Taniyasu, Kasu, Makimoto (c7) 2004
Bryan, Rice, Hussey, Bryan, Bobea, Mita, Xie, Kirste, Collazo, Sitar (c40) 2013
(2023061717061048300_c27) 2017; 122
(2023061717061048300_c41) 2016; 120
(2023061717061048300_c11) 2009; 206
(2023061717061048300_c20) 2004; 95
(2023061717061048300_c25) 2008; 310
(2023061717061048300_c44) 2014; 89
(2023061717061048300_c45) 2018; 9
(2023061717061048300_c6) 2000; 61
(2023061717061048300_c13) 2016; 9
(2023061717061048300_c23) 2016; 120
(2023061717061048300_c26) 1997; 71
(2023061717061048300_c47) 2017; 111
(2023061717061048300_c48) 2015; 107
(2023061717061048300_c34) 2013
(2023061717061048300_c24) 2016; 108
(2023061717061048300_c17) 2011; 158
(2023061717061048300_c16) 2011; 8
(2023061717061048300_c22) 2016; 120
(2023061717061048300_c14) 2013; 113
(2023061717061048300_c31) 2013; 42
(2023061717061048300_c29) 2016; 120
(2023061717061048300_c18) 2020; 116
(2023061717061048300_c3) 2009
(2023061717061048300_c2) 1994; 33
(2023061717061048300_c5) 2014; 116
(2023061717061048300_c12) 2006; 88
(2023061717061048300_c8) 2014; 115
(2023061717061048300_c21) 2008; 104
(2023061717061048300_c39) 2009; 312
(2023061717061048300_c33) 2014; 8986
(2023061717061048300_c37) 2006; 286
(2023061717061048300_c19) 2006; 88
(2023061717061048300_c1) 2008; 310
(2023061717061048300_c15) 2011; 208
(2023061717061048300_c28) 2020; 127
(2023061717061048300_c35) 2012
(2023061717061048300_c32) 2014; 105
(2023061717061048300_c46) 2018; 112
(2023061717061048300_c36) 1991; 30
(2023061717061048300_c40) 2013; 102
(2023061717061048300_c4) 2015; 8
(2023061717061048300_c30) 2016; 6
(2023061717061048300_c9) 2018; 112
(2023061717061048300_c38) 2006; 287
(2023061717061048300_c10) 2006; 203
(2023061717061048300_c43) 2017; 56
(2023061717061048300_c7) 2004; 85
(2023061717061048300_c42) 2007; 90
(2023061717061048300_c49) 2014; 116
References_xml – start-page: 105702
  year: 2020
  ident: c28
  publication-title: J. Appl. Phys.
– start-page: 205
  year: 2006
  ident: c37
  publication-title: J. Cryst. Growth
– start-page: 3272
  year: 1997
  ident: c26
  publication-title: Appl. Phys. Lett.
– start-page: 2453
  year: 1994
  ident: c2
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 062103
  year: 2016
  ident: c24
  publication-title: Appl. Phys. Lett.
– start-page: 054036
  year: 2018
  ident: c45
  publication-title: Phys. Rev. Appl.
– start-page: R16283
  year: 2000
  ident: c6
  publication-title: Phys. Rev. B
– start-page: 062102
  year: 2018
  ident: c9
  publication-title: Appl. Phys. Lett.
– start-page: 051903
  year: 2006
  ident: c12
  publication-title: Appl. Phys. Lett.
– start-page: 235705
  year: 2016
  ident: c41
  publication-title: J. Appl. Phys.
– start-page: 3851
  year: 2004
  ident: c20
  publication-title: J. Appl. Phys.
– start-page: 58
  year: 2009
  ident: c39
  publication-title: J. Cryst. Growth
– start-page: 152101
  year: 2018
  ident: c46
  publication-title: Appl. Phys. Lett.
– start-page: 4007
  year: 2008
  ident: c1
  publication-title: J. Cryst. Growth
– start-page: 27954
  year: 2016
  ident: c30
  publication-title: Sci. Rep.
– start-page: 3475
  year: 1991
  ident: c36
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 123701
  year: 2014
  ident: c49
  publication-title: J. Appl. Phys.
– start-page: 105701
  year: 2016
  ident: c23
  publication-title: J. Appl. Phys.
– start-page: H530
  year: 2011
  ident: c17
  publication-title: J. Electrochem. Soc.
– start-page: 185704
  year: 2016
  ident: c29
  publication-title: J. Appl. Phys.
– start-page: 1124
  year: 2008
  ident: c25
  publication-title: J. Cryst. Growth
– start-page: 062115
  year: 2007
  ident: c42
  publication-title: Appl. Phys. Lett.
– start-page: 100302
  year: 2017
  ident: c43
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 061602
  year: 2013
  ident: c40
  publication-title: Appl. Phys. Lett.
– start-page: 1632
  year: 2006
  ident: c10
  publication-title: Phys. Status Solidi A
– start-page: 372
  year: 2006
  ident: c38
  publication-title: J. Cryst. Growth
– start-page: 1520
  year: 2011
  ident: c15
  publication-title: Phys. Status Solidi A
– start-page: 202106
  year: 2006
  ident: c19
  publication-title: Appl. Phys. Lett.
– start-page: 061003
  year: 2015
  ident: c4
  publication-title: Appl. Phys. Express
– start-page: 193702
  year: 2014
  ident: c8
  publication-title: J. Appl. Phys.
– start-page: 013521
  year: 2008
  ident: c21
  publication-title: J. Appl. Phys.
– start-page: 222101
  year: 2014
  ident: c32
  publication-title: Appl. Phys. Lett.
– start-page: 172103
  year: 2020
  ident: c18
  publication-title: Appl. Phys. Lett.
– start-page: 245702
  year: 2017
  ident: c27
  publication-title: J. Appl. Phys.
– start-page: 194503
  year: 2014
  ident: c5
  publication-title: J. Appl. Phys.
– start-page: 145702
  year: 2016
  ident: c22
  publication-title: J. Appl. Phys.
– start-page: 89860T
  year: 2014
  ident: c33
  publication-title: SPIE Proc.
– start-page: 091603
  year: 2015
  ident: c48
  publication-title: Appl. Phys. Lett.
– start-page: 4672
  year: 2004
  ident: c7
  publication-title: Appl. Phys. Lett.
– start-page: 1176
  year: 2009
  ident: c11
  publication-title: Phys. Status Solidi A
– start-page: 213506
  year: 2013
  ident: c14
  publication-title: J. Appl. Phys.
– start-page: 025501
  year: 2016
  ident: c13
  publication-title: Appl. Phys. Express
– start-page: 2031
  year: 2011
  ident: c16
  publication-title: Phys. Status Solidi C
– start-page: 152101
  year: 2017
  ident: c47
  publication-title: Appl. Phys. Lett.
– start-page: 815
  year: 2013
  ident: c31
  publication-title: J. Electron. Mater.
– start-page: 035204
  year: 2014
  ident: c44
  publication-title: Phys. Rev. B
– volume-title: Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth
  year: 2009
  ident: 2023061717061048300_c3
– volume: 8
  start-page: 061003
  year: 2015
  ident: 2023061717061048300_c4
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.8.061003
– volume: 120
  start-page: 185704
  year: 2016
  ident: 2023061717061048300_c29
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4967397
– volume: 33
  start-page: 2453
  year: 1994
  ident: 2023061717061048300_c2
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.1143/JJAP.33.2453
– volume: 9
  start-page: 025501
  year: 2016
  ident: 2023061717061048300_c13
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.9.025501
– volume: 90
  start-page: 062115
  year: 2007
  ident: 2023061717061048300_c42
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2458399
– volume: 116
  start-page: 123701
  year: 2014
  ident: 2023061717061048300_c49
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4896377
– volume: 286
  start-page: 205
  year: 2006
  ident: 2023061717061048300_c37
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2005.10.074
– volume: 116
  start-page: 194503
  year: 2014
  ident: 2023061717061048300_c5
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4901954
– volume: 85
  start-page: 4672
  year: 2004
  ident: 2023061717061048300_c7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1824181
– volume: 206
  start-page: 1176
  year: 2009
  ident: 2023061717061048300_c11
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.200880961
– volume: 6
  start-page: 27954
  year: 2016
  ident: 2023061717061048300_c30
  publication-title: Sci. Rep.
  doi: 10.1038/srep27954
– volume: 112
  start-page: 062102
  year: 2018
  ident: 2023061717061048300_c9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5011984
– volume: 116
  start-page: 172103
  year: 2020
  ident: 2023061717061048300_c18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5144080
– volume: 108
  start-page: 062103
  year: 2016
  ident: 2023061717061048300_c24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4941814
– volume: 120
  start-page: 145702
  year: 2016
  ident: 2023061717061048300_c22
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4964442
– volume: 127
  start-page: 105702
  year: 2020
  ident: 2023061717061048300_c28
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5132953
– volume: 61
  start-page: R16283
  year: 2000
  ident: 2023061717061048300_c6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.R16283
– volume: 120
  start-page: 105701
  year: 2016
  ident: 2023061717061048300_c23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4962017
– volume: 115
  start-page: 193702
  year: 2014
  ident: 2023061717061048300_c8
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4874735
– volume: 71
  start-page: 3272
  year: 1997
  ident: 2023061717061048300_c26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.120310
– volume: 122
  start-page: 245702
  year: 2017
  ident: 2023061717061048300_c27
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5002682
– volume: 30
  start-page: 3475
  year: 1991
  ident: 2023061717061048300_c36
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.1143/JJAP.30.3475
– volume: 120
  start-page: 235705
  year: 2016
  ident: 2023061717061048300_c41
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4972468
– volume: 208
  start-page: 1520
  year: 2011
  ident: 2023061717061048300_c15
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201000947
– volume: 105
  start-page: 222101
  year: 2014
  ident: 2023061717061048300_c32
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4903058
– volume: 158
  start-page: H530
  year: 2011
  ident: 2023061717061048300_c17
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3560527
– volume: 95
  start-page: 3851
  year: 2004
  ident: 2023061717061048300_c20
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1682673
– volume: 88
  start-page: 202106
  year: 2006
  ident: 2023061717061048300_c19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2204656
– volume: 8986
  start-page: 89860T
  year: 2014
  ident: 2023061717061048300_c33
  publication-title: SPIE Proc.
  doi: 10.1117/12.2041018
– volume: 107
  start-page: 091603
  year: 2015
  ident: 2023061717061048300_c48
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4930026
– volume-title: X-Ray Characterization and Defect Control of III-Nitrides
  year: 2012
  ident: 2023061717061048300_c35
– volume: 287
  start-page: 372
  year: 2006
  ident: 2023061717061048300_c38
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2005.11.047
– volume: 111
  start-page: 152101
  year: 2017
  ident: 2023061717061048300_c47
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5000720
– volume: 312
  start-page: 58
  year: 2009
  ident: 2023061717061048300_c39
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2009.10.008
– volume: 310
  start-page: 1124
  year: 2008
  ident: 2023061717061048300_c25
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2007.12.051
– volume-title: Polarity Control and Doping in Aluminum Gallium Nitride
  year: 2013
  ident: 2023061717061048300_c34
– volume: 88
  start-page: 051903
  year: 2006
  ident: 2023061717061048300_c12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2170407
– volume: 42
  start-page: 815
  year: 2013
  ident: 2023061717061048300_c31
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-012-2342-9
– volume: 112
  start-page: 152101
  year: 2018
  ident: 2023061717061048300_c46
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5022794
– volume: 56
  start-page: 100302
  year: 2017
  ident: 2023061717061048300_c43
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.7567/JJAP.56.100302
– volume: 8
  start-page: 2031
  year: 2011
  ident: 2023061717061048300_c16
  publication-title: Phys. Status Solidi C
  doi: 10.1002/pssc.201000964
– volume: 113
  start-page: 213506
  year: 2013
  ident: 2023061717061048300_c14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4807906
– volume: 9
  start-page: 054036
  year: 2018
  ident: 2023061717061048300_c45
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.9.054036
– volume: 89
  start-page: 035204
  year: 2014
  ident: 2023061717061048300_c44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.035204
– volume: 310
  start-page: 4007
  year: 2008
  ident: 2023061717061048300_c1
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2008.06.015
– volume: 203
  start-page: 1632
  year: 2006
  ident: 2023061717061048300_c10
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.200565389
– volume: 104
  start-page: 013521
  year: 2008
  ident: 2023061717061048300_c21
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2952027
– volume: 102
  start-page: 061602
  year: 2013
  ident: 2023061717061048300_c40
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4792694
SSID ssj0005233
Score 2.4901848
Snippet We demonstrate Si-implanted AlN with high conductivity (>1 Ω−1 cm−1) and high carrier concentration (5 × 1018 cm−3). This was enabled by Si implantation into...
SourceID osti
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Annealing
Applied physics
Carrier density
Dislocation density
Low temperature
Self compensation
Threading dislocations
Title High n-type conductivity and carrier concentration in Si-implanted homoepitaxial AlN
URI http://dx.doi.org/10.1063/5.0042857
https://www.proquest.com/docview/2501570681
https://www.osti.gov/biblio/1771214
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BKgQcEBQQoQWtgAOS5db2er3OMeUVIVqB2ki9WftyazW1o9RBwK9n1usnjVDhYkXWJF7t9-1kZjwPhN4IsJK9SaBcIaR2QyKZKwIqXM_OYiQ0rLLdD4-i2Tz8fEpPu4TMqrqkFHvy18a6kv9BFe4BrqZK9h-QbX8UbsBnwBeugDBcb4SxSdJwcset4qjg2JrerXYYRFWtxlfVODppKhPzuj2uiW8cZ252uVyYPVXOeXFZaDM65IeJnU8XR31ztbFRbfzjyllUxT9dZB3U5QUsrh3QvufM-E_VVZcdcJNFktlE4LMu9PxpXUVovwE3z9oYD19d2GzvgwwWJ_rxiKBKyLIVma2OJW40qdvIaqtWPWaiobWmbfRup3jXTfHJNYUOFhSgYOJe4CfZVtbDptl__Jm1KYbVy_WIJDSpv3obbQXgSgQjtDV9f_jluJcIREgzV9Gsu-k_FZH99rkDq2VUgPYdeCR3wVyxmRM94-TkIXpQexV4ainyCN3S-Ta63-s1uY3ufLUYPkZzQxuc44o2uE8bDLTBNW3wgDY4y3GfNnhAGwy0eYLmHz-cvJu59XQNV4aUlq7QKgVf0syVlFSGjCovUDzgHjONq6XPCXgGGhyAgEgSCRaDWKwU9zijIo0VeYpGeZHrZwjLKKaepiCu0jBl0YTDyWfcI5L7Unr-GL1tdi9pNspMQFkk11Aao1et6NL2W9kktGMgSMyua3kuTUqYLBOfMT_wwzHabZBJ6sN6lYCl71PmRTEs5nWL1t8esUHqe7HqJJKlSp_fZLU76F53TnbRqFyt9QuwZEvxsqbib-VBnBU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+n+-type+conductivity+and+carrier+concentration+in+Si-implanted+homoepitaxial+AlN&rft.jtitle=Applied+physics+letters&rft.au=Breckenridge%2C+M.+Hayden&rft.au=Bagheri%2C+Pegah&rft.au=Guo%2C+Qiang&rft.au=Sarkar%2C+Biplab&rft.date=2021-03-15&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=118&rft.issue=11&rft_id=info:doi/10.1063%2F5.0042857&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0042857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon