Comparison of [18 F]fluorocholine and [18 F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer
Positron emission tomography (PET) imaging is used for the metabolic evaluation of cancer. [18F]fluorodeoxyglucose (FDG) is commonly used as a radiotracer but its low cellular uptake rate in prostate cancer limits its usefulness. We evaluated the novel choline analog [18F]fluorocholine (FCH) for det...
Saved in:
Published in | The Journal of urology Vol. 168; no. 1; p. 273 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
2002
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Positron emission tomography (PET) imaging is used for the metabolic evaluation of cancer. [18F]fluorodeoxyglucose (FDG) is commonly used as a radiotracer but its low cellular uptake rate in prostate cancer limits its usefulness. We evaluated the novel choline analog [18F]fluorocholine (FCH) for detecting androgen dependent and androgen independent prostate cancer, and its metastases.
The cellular uptake of FCH and FDG was compared in cultured prostate cancer cells (LNCaP and PC-3). FCH and FDG were injected into nude mice xenografts (CWR-22 and PC-3) and radiotracer uptake in various organs were evaluated. Patients with androgen dependent (9) and independent (9) prostate cancer were studied by FCH and FDG PET.
FCH uptake was 849% and 60% greater than FDG uptake in androgen dependent (LNCaP) and independent (PC-3) cells, respectively. The addition of hemicholinium-3 (5 mM.) 30 minutes before radiotracer administration inhibited FCH uptake by 79% and 70% in LNCaP and PC-3 cells, respectively, whereas FDG uptake was not significantly affected. Although nude mice xenografts showed that FDG uptake was equal to or greater than FCH uptake, clinical imaging in patients demonstrated 2 to 4-fold higher uptake of FCH in those with androgen and androgen independent prostate carcinoma (p <0.001). More lesions were detected by FCH than by FDG in primary tumors, osseous metastases and soft tissue metastases.
In vitro data demonstrated greater FCH than FDG uptake in androgen dependent (LNCaP) and androgen independent (PC-3) prostate cancer cells. Although the murine xenograft data showed greater accumulation of FDG than FCH in PC-3 tumors, PET in humans showed that FCH was better than FDG for detecting primary and metastatic prostate cancer. Overall the data from this study suggest that FCH is preferable to FDG for PET of prostate carcinoma and support the need for future validation studies in a larger number of subjects. |
---|---|
AbstractList | Positron emission tomography (PET) imaging is used for the metabolic evaluation of cancer. [18F]fluorodeoxyglucose (FDG) is commonly used as a radiotracer but its low cellular uptake rate in prostate cancer limits its usefulness. We evaluated the novel choline analog [18F]fluorocholine (FCH) for detecting androgen dependent and androgen independent prostate cancer, and its metastases.
The cellular uptake of FCH and FDG was compared in cultured prostate cancer cells (LNCaP and PC-3). FCH and FDG were injected into nude mice xenografts (CWR-22 and PC-3) and radiotracer uptake in various organs were evaluated. Patients with androgen dependent (9) and independent (9) prostate cancer were studied by FCH and FDG PET.
FCH uptake was 849% and 60% greater than FDG uptake in androgen dependent (LNCaP) and independent (PC-3) cells, respectively. The addition of hemicholinium-3 (5 mM.) 30 minutes before radiotracer administration inhibited FCH uptake by 79% and 70% in LNCaP and PC-3 cells, respectively, whereas FDG uptake was not significantly affected. Although nude mice xenografts showed that FDG uptake was equal to or greater than FCH uptake, clinical imaging in patients demonstrated 2 to 4-fold higher uptake of FCH in those with androgen and androgen independent prostate carcinoma (p <0.001). More lesions were detected by FCH than by FDG in primary tumors, osseous metastases and soft tissue metastases.
In vitro data demonstrated greater FCH than FDG uptake in androgen dependent (LNCaP) and androgen independent (PC-3) prostate cancer cells. Although the murine xenograft data showed greater accumulation of FDG than FCH in PC-3 tumors, PET in humans showed that FCH was better than FDG for detecting primary and metastatic prostate cancer. Overall the data from this study suggest that FCH is preferable to FDG for PET of prostate carcinoma and support the need for future validation studies in a larger number of subjects. |
Author | Robertson, Cary N Liao, Ray P Coleman, R Edward DeGrado, Timothy R Polascik, Thomas J Price, David T |
Author_xml | – sequence: 1 givenname: David T surname: Price fullname: Price, David T organization: Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA – sequence: 2 givenname: R Edward surname: Coleman fullname: Coleman, R Edward – sequence: 3 givenname: Ray P surname: Liao fullname: Liao, Ray P – sequence: 4 givenname: Cary N surname: Robertson fullname: Robertson, Cary N – sequence: 5 givenname: Thomas J surname: Polascik fullname: Polascik, Thomas J – sequence: 6 givenname: Timothy R surname: DeGrado fullname: DeGrado, Timothy R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12050555$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkMtKAzEYhbOo2Is-gpKlLkaTTDKXpRSrQsGNrkRKJvnTjszkH5Ip2JfxWTveKq7O4TvwLc6UjDx6IOSMsyvOeHYdGRMiUanML5i6zGTJsiQdkckBj8k0xjfGuFS5OCZjLphiSqkJ-Zhj2-lQR_QUHX3hBV28umaLAc0Gm9oD1d7-4xbwfbdutgYjUIeBdhjrPgwCaOsY66H02OI66G6z-5QOgoBr8NRCB96C77-cB1z7v6ELGHvdAzXaGwgn5MjpJsLpT87I8-L2aX6fLB_vHuY3y8RIpfqksqkrq0KBAsnKUhZ5Cia1JSjLC1HqXFa5k8Y4rYfDKl45kC6T2kDpoJCpmJHzb2-3rVqwqy7UrQ671e9RYg9HnXCz |
CitedBy_id | crossref_primary_10_1177_107327480200900408 crossref_primary_10_1016_j_ijrobp_2009_07_1689 crossref_primary_10_2967_jnumed_107_048231 crossref_primary_10_1016_j_clinimag_2015_12_010 crossref_primary_10_1007_s00120_004_0714_3 crossref_primary_10_1097_MNM_0000000000000665 crossref_primary_10_1162_15353500200505118 crossref_primary_10_1016_j_nucmedbio_2020_03_005 crossref_primary_10_1016_j_ejmp_2020_09_025 crossref_primary_10_1016_j_crad_2018_03_018 crossref_primary_10_1016_j_eururo_2007_01_061 crossref_primary_10_1016_j_juro_2006_07_092 crossref_primary_10_1158_1078_0432_CCR_05_0249 crossref_primary_10_1016_S1078_1439_03_00061_9 crossref_primary_10_1093_rpd_ncw033 crossref_primary_10_1007_s00259_013_2358_2 crossref_primary_10_4111_kju_2011_52_2_79 crossref_primary_10_1111_j_1742_4658_2012_08644_x crossref_primary_10_1007_s11307_016_1020_3 crossref_primary_10_1158_1078_0432_CCR_07_1517 crossref_primary_10_1007_s00259_010_1579_x crossref_primary_10_1158_1078_0432_CCR_07_0264 crossref_primary_10_2967_jnumed_110_077941 crossref_primary_10_3834_uij_1944_5784_2013_12_01 crossref_primary_10_1097_MNM_0000000000000040 crossref_primary_10_1007_s00259_008_0781_6 crossref_primary_10_1007_s00259_015_3015_8 crossref_primary_10_1016_j_nucmedbio_2021_03_011 crossref_primary_10_1016_j_rcl_2004_08_012 crossref_primary_10_1007_s11307_015_0901_1 crossref_primary_10_1038_nrc882 crossref_primary_10_1016_S0094_0143_03_00051_X crossref_primary_10_1016_j_plipres_2013_08_005 crossref_primary_10_1097_RLU_0b013e318229208c crossref_primary_10_1016_j_mednuc_2012_04_004 crossref_primary_10_1016_j_nucmedbio_2007_09_008 crossref_primary_10_1016_j_ymeth_2009_03_021 crossref_primary_10_2310_7290_2012_00004 crossref_primary_10_1016_j_nucmedbio_2010_07_011 crossref_primary_10_1111_j_1754_9485_2010_02178_x crossref_primary_10_1053_j_semnuclmed_2004_06_004 crossref_primary_10_1007_s00259_009_1091_3 crossref_primary_10_1007_s11307_009_0216_1 crossref_primary_10_2214_AJR_09_2579 crossref_primary_10_1007_s00259_009_1253_3 crossref_primary_10_1007_s10269_013_2322_6 crossref_primary_10_1590_S1516_89132008000700012 crossref_primary_10_1038_s41598_017_15928_y crossref_primary_10_1016_j_tcb_2014_06_001 crossref_primary_10_1186_s40169_016_0082_9 crossref_primary_10_1007_s11307_006_0039_2 crossref_primary_10_1053_j_semnuclmed_2003_09_007 crossref_primary_10_1007_s11307_014_0782_8 crossref_primary_10_1097_MNM_0b013e328355990f crossref_primary_10_1016_j_mednuc_2008_06_003 crossref_primary_10_1097_RLU_0000000000000562 crossref_primary_10_1016_j_mednuc_2009_01_006 crossref_primary_10_1016_j_mednuc_2014_07_006 crossref_primary_10_1016_j_acuroe_2017_04_002 crossref_primary_10_1007_s00259_007_0552_9 crossref_primary_10_1007_s00259_010_1493_2 crossref_primary_10_2967_jnumed_113_135194 crossref_primary_10_1053_j_semnuclmed_2012_03_002 crossref_primary_10_2967_jnumed_113_123380 crossref_primary_10_1007_s00259_011_1920_z crossref_primary_10_1016_j_canrad_2010_12_005 crossref_primary_10_1007_s11934_003_0048_5 crossref_primary_10_1016_j_mednuc_2011_04_007 crossref_primary_10_1111_j_1464_410X_2007_06772_x crossref_primary_10_1016_j_biocel_2010_07_003 crossref_primary_10_1016_j_nucmedbio_2009_01_004 crossref_primary_10_2310_7290_2008_00018 crossref_primary_10_1097_RLU_0000000000003869 crossref_primary_10_1200_JCO_2006_10_3218 crossref_primary_10_1007_s11307_005_0023_2 crossref_primary_10_1093_rpd_ncq024 crossref_primary_10_1007_s00259_006_0163_x crossref_primary_10_1007_s13139_014_0314_0 crossref_primary_10_1111_j_1752_8062_2011_00375_x crossref_primary_10_1371_journal_pone_0048430 crossref_primary_10_1007_s11307_009_0283_3 crossref_primary_10_1016_j_ijrobp_2008_11_023 crossref_primary_10_5402_2011_219064 crossref_primary_10_1158_0008_5472_CAN_09_1419 crossref_primary_10_1016_j_purol_2014_12_002 crossref_primary_10_1172_JCI76029 crossref_primary_10_1016_j_revmed_2011_10_403 crossref_primary_10_1007_s00259_013_2398_7 crossref_primary_10_1053_j_semnuclmed_2005_09_001 crossref_primary_10_1097_RLU_0000000000002526 crossref_primary_10_1007_s00120_006_1088_5 crossref_primary_10_1007_s40336_020_00378_w crossref_primary_10_1016_j_mednuc_2009_05_002 crossref_primary_10_1089_cbr_2008_0554 crossref_primary_10_1016_j_mednuc_2011_05_010 crossref_primary_10_1097_00130404_200407000_00001 crossref_primary_10_1016_j_acuro_2016_09_015 crossref_primary_10_1053_j_semnuclmed_2007_07_003 crossref_primary_10_1016_j_bbalip_2013_03_010 crossref_primary_10_1007_s00345_011_0687_y crossref_primary_10_1002_pros_22885 crossref_primary_10_1007_s00259_011_1775_3 crossref_primary_10_1007_s00259_007_0686_9 crossref_primary_10_1038_pcan_2011_35 crossref_primary_10_2174_0929867330666230607104441 crossref_primary_10_1016_j_apradiso_2016_07_021 crossref_primary_10_1053_j_semnuclmed_2011_02_002 crossref_primary_10_3413_Nukmed_0521_12_07 crossref_primary_10_3109_0284186X_2014_934398 crossref_primary_10_1016_j_bbcan_2006_10_002 crossref_primary_10_2165_00063030_200317050_00004 crossref_primary_10_1002_jmri_10182 crossref_primary_10_1186_1477_7819_2_30 crossref_primary_10_1016_S1166_7087_13_70048_4 crossref_primary_10_1097_RLU_0b013e31827a2294 crossref_primary_10_1007_s00259_017_3700_x crossref_primary_10_1038_onc_2017_216 crossref_primary_10_1186_2191_219X_1_17 crossref_primary_10_3390_cancers13215360 crossref_primary_10_1016_j_bmc_2004_03_051 crossref_primary_10_1111_j_1617_0830_2010_01141_x crossref_primary_10_1016_j_nucmedbio_2006_08_002 crossref_primary_10_1016_j_juro_2010_04_084 crossref_primary_10_2967_jnumed_115_169177 crossref_primary_10_1007_s00259_015_3042_5 crossref_primary_10_1186_s13550_017_0269_0 crossref_primary_10_1200_JCO_2005_03_1575 crossref_primary_10_1007_s12149_009_0273_1 crossref_primary_10_1007_s00259_006_0150_2 crossref_primary_10_2967_jnumed_114_148007 crossref_primary_10_1016_S1052_5149_03_00093_5 crossref_primary_10_1148_radiol_2452061117 crossref_primary_10_1007_s00259_008_0736_y crossref_primary_10_1007_s00259_014_2984_3 crossref_primary_10_1016_j_lpm_2007_02_030 crossref_primary_10_2214_AJR_12_8816 crossref_primary_10_1259_bjr_76389842 crossref_primary_10_1177_1933719117728799 crossref_primary_10_1016_j_eururo_2013_04_019 crossref_primary_10_1007_s11307_014_0803_7 crossref_primary_10_1016_j_nucmedbio_2004_05_002 crossref_primary_10_1002_jmri_25384 crossref_primary_10_18632_oncotarget_2558 crossref_primary_10_1007_s00259_004_1713_8 crossref_primary_10_1111_j_1442_2042_2006_01416_x crossref_primary_10_2214_AJR_05_0437 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1016/s0022-5347(05)64906-3 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
ExternalDocumentID | 12050555 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Comparative Study |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL-63371 |
GroupedDBID | --- --K .55 .GJ .XZ 08P 0R~ 123 1B1 1CY 354 3O- 4.4 457 4G. 4Q1 4Q2 4Q3 53G 5RE 5VS 7-5 AAAAV AAEDT AAEDW AAGIX AAHPQ AAIQE AAJCS AAKAS AALRI AAMOA AAQFI AAQKA AAQQT AAQXK AASCR AASXQ AAXUO ABASU ABCQX ABDIG ABJNI ABLJU ABMAC ABOCM ABPPZ ABVCZ ABWVN ACGFS ACIJW ACILI ACLDA ACOAL ACRPL ACXJB ADGGA ADHPY ADMUD ADNKB ADNMO ADPAM ADZCM AEBDS AEETU AENEX AFDTB AFEXH AFFNX AFTRI AFUWQ AGHFR AHOMT AHQNM AHRYX AHVBC AI. AINUH AITUG AIZYK AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AMRAJ ASGHL ASPBG AVWKF AZFZN BCGUY BELOY BYPQX C45 C5W CGR CS3 CUY CVF DIWNM DU5 EBS ECM EEVPB EIF EJD ERAAH EX3 F5P FCALG FDB FEDTE FGOYB GBLVA GNXGY GQDEL HLJTE HVGLF HZ~ H~9 IH2 IHE IKREB IKYAY IPNFZ J5H KMI L7B M41 MJL MO0 N4W NPM NQ- NTWIH O9- OAG OAH OB3 OBH ODMTH OGROG OHH OL1 OVD OWU OWV OWW OWY OWZ P2P PKN QTD R2- RIG RLZ ROL RPZ SEL SES SJN SSZ TEORI TSPGW UDS UNMZH UV1 VH1 VVN WOW X7M XH2 XYM YFH YOC ZCG ZFV ZGI ZXP ZY1 ZZMQN |
ID | FETCH-LOGICAL-c455t-bd3f9b85e5e40994873ec3d9e5d1829a74b7f4ccfaa101b1bfe4f64ace9fe8432 |
ISSN | 0022-5347 |
IngestDate | Wed Feb 19 01:32:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c455t-bd3f9b85e5e40994873ec3d9e5d1829a74b7f4ccfaa101b1bfe4f64ace9fe8432 |
PMID | 12050555 |
ParticipantIDs | pubmed_primary_12050555 |
PublicationCentury | 2000 |
PublicationDate | 2002-00-00 |
PublicationDateYYYYMMDD | 2002-01-01 |
PublicationDate_xml | – year: 2002 text: 2002-00-00 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of urology |
PublicationTitleAlternate | J Urol |
PublicationYear | 2002 |
SSID | ssj0014572 |
Score | 2.162261 |
Snippet | Positron emission tomography (PET) imaging is used for the metabolic evaluation of cancer. [18F]fluorodeoxyglucose (FDG) is commonly used as a radiotracer but... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 273 |
SubjectTerms | Animals Choline - analogs & derivatives Choline - pharmacokinetics Fluorine Compounds - pharmacokinetics Fluorine Radioisotopes - pharmacokinetics Fluorodeoxyglucose F18 Humans Male Metabolic Clearance Rate - physiology Mice Mice, Inbred BALB C Mice, Nude Neoplasm Transplantation Prostate - diagnostic imaging Prostatic Neoplasms - diagnostic imaging Radiopharmaceuticals - pharmacokinetics Sensitivity and Specificity Tissue Distribution Tomography, Emission-Computed Tumor Cells, Cultured |
Title | Comparison of [18 F]fluorocholine and [18 F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/12050555 |
Volume | 168 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEA5XBfGL-K71hXzwQDlWs5fkdvNRT48itB9KCwWRstlNoNLeHu0dWH-M_8r_40xeNntXFfXDLkuyN4TMQ25m9pkZQl4UCvyIQsuMSaszoZjKykrrDC5e57bkjGHu8O7eZOdQfDySR4PBjx5rabXUr-tvv8wr-R-twhjoFbNk_0GznVAYgGfQL9xBw3D_Kx1P-00ER0P5Li9Hs6F8b09XLbbCap0NiaHxzbnGtF8vI10dmYaOvHUOgrD_G0bQwCg9C-WsHVcACxvAQkaxa-4ylnn1wyfzNLHATBKwYZFRVgf275eEyp4NvDpfi-p3Pegd077H325PTYjU7o98m-mOSHRSuWDvfnWZUtU8XTzkkk2RF7i3Ft0Y96IbKdtAcl-VszuxJ-UVaIbz1_dFufK_4EMUF500sN6ZHOInZ4Xcv_5vQMWLMweYfIxt_nwV4T_PbpTsjlNbZAucF-zGiiGk8GlLyKIrYY9LSWllb9L6XjL5KqwNy9oGeRuujzOBDm6TW0Fv9K0H4h0yMPO75MZuYGfcI98THmlr6ae8pLPPa1ikgJe18T4OKeCQRhzSiEOacIhCI-BoBzcnsxvu4ZBGHFKPw_vkcPbhYLqThf4fWS2kXGa64VbpUhppBDgy4FpzU_NGGdmAV6yqQujCirq2VQXbp3NtjbATUdVGWVMKPn5Ars3buXlEaCHHxjJ4UTRMiNIqy5kVpuFawnkk6sfkod_Z44Uv8nIc93z7tzNPyM2E2KfkuoVTxTwDE3WpnzuV_wQTg5L2 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+%5B18+F%5Dfluorocholine+and+%5B18+F%5Dfluorodeoxyglucose+for+positron+emission+tomography+of+androgen+dependent+and+androgen+independent+prostate+cancer&rft.jtitle=The+Journal+of+urology&rft.au=Price%2C+David+T&rft.au=Coleman%2C+R+Edward&rft.au=Liao%2C+Ray+P&rft.au=Robertson%2C+Cary+N&rft.date=2002-01-01&rft.issn=0022-5347&rft.volume=168&rft.issue=1&rft.spage=273&rft_id=info:doi/10.1016%2Fs0022-5347%2805%2964906-3&rft_id=info%3Apmid%2F12050555&rft_id=info%3Apmid%2F12050555&rft.externalDocID=12050555 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5347&client=summon |