Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses
Estimates of hemodynamic response functions (HRF) are often integral parts of event-related fMRI analyses. Although HRFs vary across individuals and brain regions, few studies have investigated how variations affect the results of statistical analyses using the general linear model (GLM). In this st...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 21; no. 4; pp. 1639 - 1651 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2004
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Estimates of hemodynamic response functions (HRF) are often integral parts of event-related fMRI analyses. Although HRFs vary across individuals and brain regions, few studies have investigated how variations affect the results of statistical analyses using the general linear model (GLM). In this study, we empirically estimated HRFs from primary motor and visual cortices and frontal and supplementary eye fields (SEF) in 20 subjects. We observed more variability across subjects than regions and correlated variation of time-to-peak values across several pairs of regions. Simulations examined the effects of observed variability on statistical results and ways different experimental designs and statistical models can limit these effects. Widely spaced and rapid event-related experimental designs with two sampling rates were tested. Statistical models compared an empirically derived HRF to a canonical HRF and included the first derivative of the HRF in the GLM. Small differences between the estimated and true HRFs did not cause false negatives, but larger differences within an observed range of variation, such as a 2.5-s time-to-onset misestimate, led to false negatives. Although small errors minimally affected detection of activity, time-to-onset misestimates as small as 1 s influenced model parameter estimation and therefore random effects analyses across subjects. Experiment and analysis design methods such as decreasing the sampling rate or including the HRF's temporal derivative in the GLM improved results, but did not eliminate errors caused by HRF misestimates. These results highlight the benefits of determining the best possible HRF estimate and potential negative consequences of assuming HRF consistency across subjects or brain regions. |
---|---|
AbstractList | Estimates of hemodynamic response functions (HRF) are often integral parts of event-related fMRI analyses. Although HRFs vary across individuals and brain regions, few studies have investigated how variations affect the results of statistical analyses using the general linear model (GLM). In this study, we empirically estimated HRFs from primary motor and visual cortices and frontal and supplementary eye fields (SEF) in 20 subjects. We observed more variability across subjects than regions and correlated variation of time-to-peak values across several pairs of regions. Simulations examined the effects of observed variability on statistical results and ways different experimental designs and statistical models can limit these effects. Widely spaced and rapid event-related experimental designs with two sampling rates were tested. Statistical models compared an empirically derived HRF to a canonical HRF and included the first derivative of the HRF in the GLM. Small differences between the estimated and true HRFs did not cause false negatives, but larger differences within an observed range of variation, such as a 2.5-s time-to-onset misestimate, led to false negatives. Although small errors minimally affected detection of activity, time-to-onset misestimates as small as 1 s influenced model parameter estimation and therefore random effects analyses across subjects. Experiment and analysis design methods such as decreasing the sampling rate or including the HRF's temporal derivative in the GLM improved results, but did not eliminate errors caused by HRF misestimates. These results highlight the benefits of determining the best possible HRF estimate and potential negative consequences of assuming HRF consistency across subjects or brain regions. Estimates of hemodynamic response functions (HRF) are often integral parts of event-related fMRI analyses. Although HRFs vary across individuals and brain regions, few studies have investigated how variations affect the results of statistical analyses using the general linear model (GLM). In this study, we empirically estimated HRFs from primary motor and visual cortices and frontal and supplementary eye fields (SEF) in 20 subjects. We observed more variability across subjects than regions and correlated variation of time-to-peak values across several pairs of regions. Simulations examined the effects of observed variability on statistical results and ways different experimental designs and statistical models can limit these effects. Widely spaced and rapid event-related experimental designs with two sampling rates were tested. Statistical models compared an empirically derived HRF to a canonical HRF and included the first derivative of the HRF in the GLM. Small differences between the estimated and true HRFs did not cause false negatives, but larger differences within an observed range of variation, such as a 2.5-s time-to-onset misestimate, led to false negatives. Although small errors minimally affected detection of activity, time-to-onset misestimates as small as 1 s influenced model parameter estimation and therefore random effects analyses across subjects. Experiment and analysis design methods such as decreasing the sampling rate or including the HRF's temporal derivative in the GLM improved results, but did not eliminate errors caused by HRF misestimates. These results highlight the benefits of determining the best possible HRF estimate and potential negative consequences of assuming HRF consistency across subjects or brain regions.Estimates of hemodynamic response functions (HRF) are often integral parts of event-related fMRI analyses. Although HRFs vary across individuals and brain regions, few studies have investigated how variations affect the results of statistical analyses using the general linear model (GLM). In this study, we empirically estimated HRFs from primary motor and visual cortices and frontal and supplementary eye fields (SEF) in 20 subjects. We observed more variability across subjects than regions and correlated variation of time-to-peak values across several pairs of regions. Simulations examined the effects of observed variability on statistical results and ways different experimental designs and statistical models can limit these effects. Widely spaced and rapid event-related experimental designs with two sampling rates were tested. Statistical models compared an empirically derived HRF to a canonical HRF and included the first derivative of the HRF in the GLM. Small differences between the estimated and true HRFs did not cause false negatives, but larger differences within an observed range of variation, such as a 2.5-s time-to-onset misestimate, led to false negatives. Although small errors minimally affected detection of activity, time-to-onset misestimates as small as 1 s influenced model parameter estimation and therefore random effects analyses across subjects. Experiment and analysis design methods such as decreasing the sampling rate or including the HRF's temporal derivative in the GLM improved results, but did not eliminate errors caused by HRF misestimates. These results highlight the benefits of determining the best possible HRF estimate and potential negative consequences of assuming HRF consistency across subjects or brain regions. |
Author | Ollinger, John M. Handwerker, Daniel A. D'Esposito, Mark |
Author_xml | – sequence: 1 givenname: Daniel A. surname: Handwerker fullname: Handwerker, Daniel A. email: werker@socrates.berkeley.edu organization: Henry H. Wheeler Jr. Brain Imaging Center, Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA 94720, USA – sequence: 2 givenname: John M. surname: Ollinger fullname: Ollinger, John M. organization: Henry H. Wheeler Jr. Brain Imaging Center, Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA 94720, USA – sequence: 3 givenname: Mark surname: D'Esposito fullname: D'Esposito, Mark organization: Henry H. Wheeler Jr. Brain Imaging Center, Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA 94720, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15050587$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV2L1DAUhoOsuB_6FyQgeNeatJNpciO6q7sKA3uj3oY0PdlNbZMxaYX5957OrCzM1ZCLfPCch_C-l-QsxACEUM5Kzvj6Q18GmFP0o3mAsmKsLjkvWaVekAvOlCiUaKqz5SzqQnKuzsllzj1jTPGVfEXOuWC4ZHNB8i-TvJl8DDQ6en2_-UIfYYzdLpjRW5ogb2PIkKmxKeZM89z2YCe8h462yfiAzAOOH16mR_CJgnN7BqV5QnmevDUDAmbYoes1eenMkOHN035Fft5-_XHzrdjc332_-bwp7EqIqWhlt6olk60EoSrrBLSNk1XDpeskQGWl5FZJkOtVzZlxzvDWKXxzbdO0ktVX5P3Bu03xzwx50qPPFobBBIhz1g1vGsWFRPDdEdjHOeFvs8ak1muMtF6ot0_U3I7Q6W3C_NNO_w8TAXkA9lElcM8I00tvutfPvemlN825xt5w9OPRqPXTvpYJMx5OEVwfBICB_vWQdLYegoXOJ-xCd9GfIvl0JLGDD0t3v2F3muIfNjHSpw |
CitedBy_id | crossref_primary_10_1016_j_jneumeth_2013_10_018 crossref_primary_10_1016_j_neuroimage_2013_10_018 crossref_primary_10_1523_JNEUROSCI_3086_07_2008 crossref_primary_10_3389_fpsyg_2022_891682 crossref_primary_10_1002_hbm_21073 crossref_primary_10_3390_brainsci12111468 crossref_primary_10_1002_hbm_23256 crossref_primary_10_1016_j_ijinfomgt_2022_102531 crossref_primary_10_1016_j_neuroimage_2015_06_039 crossref_primary_10_1016_j_bspc_2014_07_004 crossref_primary_10_1016_j_neuroimage_2010_05_063 crossref_primary_10_1162_089892905774589208 crossref_primary_10_1016_j_neuropsychologia_2015_12_014 crossref_primary_10_1016_j_neuroimage_2005_08_024 crossref_primary_10_1007_s11336_012_9294_0 crossref_primary_10_3389_fnins_2017_00246 crossref_primary_10_1002_hbm_23008 crossref_primary_10_1002_hbm_24692 crossref_primary_10_1016_j_neuroimage_2013_10_029 crossref_primary_10_1016_j_neuroimage_2005_01_020 crossref_primary_10_1016_j_neuroimage_2023_120120 crossref_primary_10_1111_j_1528_1167_2010_02698_x crossref_primary_10_1016_j_neuroimage_2012_01_067 crossref_primary_10_1016_j_cogbrainres_2005_09_018 crossref_primary_10_1007_s00422_007_0198_5 crossref_primary_10_1152_jn_00804_2013 crossref_primary_10_1016_j_media_2006_09_003 crossref_primary_10_1016_j_neuroimage_2021_118719 crossref_primary_10_1016_j_neuroimage_2010_05_053 crossref_primary_10_1016_j_neuroimage_2004_07_061 crossref_primary_10_1016_j_neuroimage_2017_12_094 crossref_primary_10_1016_j_neuroimage_2020_117459 crossref_primary_10_1016_j_neuroimage_2008_07_065 crossref_primary_10_1016_j_neures_2009_01_015 crossref_primary_10_1016_j_neuroimage_2006_04_199 crossref_primary_10_1016_j_neuroimage_2023_120118 crossref_primary_10_1109_TNSRE_2016_2593655 crossref_primary_10_1080_17470919_2016_1153518 crossref_primary_10_1002_hbm_26781 crossref_primary_10_1007_s11682_015_9359_7 crossref_primary_10_1016_j_neurad_2023_10_001 crossref_primary_10_1016_j_ejmp_2017_10_003 crossref_primary_10_1016_j_neuroimage_2011_05_009 crossref_primary_10_1002_hbm_23275 crossref_primary_10_1080_10255840903062552 crossref_primary_10_1016_j_neuroimage_2014_03_001 crossref_primary_10_1002_hipo_20141 crossref_primary_10_1016_j_neuroimage_2015_05_013 crossref_primary_10_1371_journal_pone_0234104 crossref_primary_10_1016_j_neuroimage_2009_07_007 crossref_primary_10_1016_j_neuroimage_2017_12_081 crossref_primary_10_1093_nc_nix013 crossref_primary_10_1016_j_neuroimage_2020_117328 crossref_primary_10_3389_fnins_2021_700171 crossref_primary_10_1016_j_neuroimage_2006_11_058 crossref_primary_10_1016_j_neuroimage_2020_117321 crossref_primary_10_1016_j_neuroimage_2008_06_030 crossref_primary_10_1038_s41467_022_28986_2 crossref_primary_10_1016_j_mri_2011_02_017 crossref_primary_10_1109_TIP_2017_2686014 crossref_primary_10_1016_j_neuroimage_2006_02_016 crossref_primary_10_1109_TMM_2013_2250267 crossref_primary_10_1007_s11517_020_02133_9 crossref_primary_10_1016_j_neuroimage_2005_01_040 crossref_primary_10_1016_j_neuroimage_2009_08_054 crossref_primary_10_1007_s12021_022_09613_3 crossref_primary_10_1016_j_neuroimage_2017_03_053 crossref_primary_10_1016_j_neuroimage_2009_07_015 crossref_primary_10_1038_s41598_018_23287_5 crossref_primary_10_1016_j_jneumeth_2010_03_013 crossref_primary_10_1093_scan_nsu126 crossref_primary_10_1016_j_neuroimage_2017_12_070 crossref_primary_10_1016_j_bspc_2015_09_006 crossref_primary_10_3389_fphys_2023_1167148 crossref_primary_10_1016_j_artmed_2019_03_007 crossref_primary_10_3389_fnins_2022_1009295 crossref_primary_10_3389_fnins_2023_1202705 crossref_primary_10_1016_j_cogbrainres_2005_01_010 crossref_primary_10_1038_s41467_021_23311_9 crossref_primary_10_1089_brain_2017_0571 crossref_primary_10_1002_hbm_22002 crossref_primary_10_1016_j_mri_2012_02_007 crossref_primary_10_1038_s41593_022_01218_y crossref_primary_10_1016_j_yebeh_2013_11_019 crossref_primary_10_1080_26941899_2024_2426785 crossref_primary_10_1016_j_xpro_2021_101094 crossref_primary_10_1523_JNEUROSCI_4299_10_2011 crossref_primary_10_3389_fnins_2015_00375 crossref_primary_10_1016_j_neuroimage_2006_12_042 crossref_primary_10_1016_j_neuroimage_2021_117814 crossref_primary_10_1016_j_neuroimage_2008_05_019 crossref_primary_10_7554_eLife_86453 crossref_primary_10_1007_s10044_010_0186_6 crossref_primary_10_1038_s42003_024_05846_x crossref_primary_10_1523_JNEUROSCI_1873_06_2006 crossref_primary_10_1016_j_neuroimage_2012_01_137 crossref_primary_10_1016_j_neuroimage_2017_02_052 crossref_primary_10_1111_j_1460_9568_2005_04092_x crossref_primary_10_1016_j_yebeh_2010_11_010 crossref_primary_10_1002_hbm_25627 crossref_primary_10_1111_j_1528_1167_2010_02643_x crossref_primary_10_1016_j_neuroimage_2016_08_001 crossref_primary_10_1371_journal_pone_0097296 crossref_primary_10_1016_j_neuroimage_2017_01_005 crossref_primary_10_1016_j_jneumeth_2020_108778 crossref_primary_10_1089_brain_2017_0566 crossref_primary_10_1186_s40708_021_00150_4 crossref_primary_10_1002_brb3_1341 crossref_primary_10_1523_JNEUROSCI_2353_05_2006 crossref_primary_10_1038_srep18262 crossref_primary_10_1007_s10548_008_0064_3 crossref_primary_10_1016_j_neuroimage_2020_117414 crossref_primary_10_1016_j_yebeh_2010_05_009 crossref_primary_10_3389_fnins_2017_00573 crossref_primary_10_1016_j_neuroimage_2020_117652 crossref_primary_10_1007_s10334_013_0401_8 crossref_primary_10_1016_j_neuroimage_2020_117654 crossref_primary_10_1002_hbm_22466 crossref_primary_10_1523_JNEUROSCI_3814_11_2012 crossref_primary_10_1016_j_neuroimage_2011_06_068 crossref_primary_10_1016_j_neuroimage_2013_04_071 crossref_primary_10_1016_j_neuroimage_2006_02_046 crossref_primary_10_1016_j_procs_2023_10_337 crossref_primary_10_1016_j_conb_2019_06_004 crossref_primary_10_1016_j_neuroimage_2005_10_018 crossref_primary_10_1007_s11682_021_00593_7 crossref_primary_10_1016_j_neuroimage_2006_12_029 crossref_primary_10_3389_fnhum_2015_00707 crossref_primary_10_3389_fnins_2019_00400 crossref_primary_10_1016_j_neuroimage_2011_01_074 crossref_primary_10_1038_s41598_025_94580_3 crossref_primary_10_1016_j_neuroimage_2012_07_056 crossref_primary_10_1016_j_heares_2022_108593 crossref_primary_10_1109_TAMD_2015_2411740 crossref_primary_10_1002_hbm_21289 crossref_primary_10_1002_hbm_23348 crossref_primary_10_1016_j_neuroimage_2023_120204 crossref_primary_10_1111_j_0021_8782_2004_00359_x crossref_primary_10_7554_eLife_12047 crossref_primary_10_1002_hbm_23582 crossref_primary_10_1016_j_neuroimage_2023_120224 crossref_primary_10_1109_JPROC_2015_2425807 crossref_primary_10_1016_j_eplepsyres_2010_07_003 crossref_primary_10_1142_S0129065713500032 crossref_primary_10_3389_fnins_2014_00239 crossref_primary_10_1016_j_neuroimage_2006_12_031 crossref_primary_10_1016_j_neuroimage_2019_01_061 crossref_primary_10_1016_j_neures_2006_09_018 crossref_primary_10_1016_j_neuroimage_2019_04_012 crossref_primary_10_1016_j_conb_2004_08_006 crossref_primary_10_1007_s10548_013_0331_9 crossref_primary_10_1016_j_neuroimage_2017_12_032 crossref_primary_10_1016_j_ajp_2018_08_001 crossref_primary_10_1002_hbm_24424 crossref_primary_10_1016_j_neuroimage_2016_10_024 crossref_primary_10_1109_TMI_2012_2225636 crossref_primary_10_1002_hbm_22009 crossref_primary_10_1016_j_neuroimage_2024_120515 crossref_primary_10_3389_fneur_2014_00222 crossref_primary_10_1016_j_cub_2020_10_034 crossref_primary_10_1038_s41583_024_00881_3 crossref_primary_10_3389_fnins_2023_934138 crossref_primary_10_1016_j_clinph_2013_05_024 crossref_primary_10_1016_j_expneurol_2009_10_014 crossref_primary_10_1016_j_neuroimage_2008_05_052 crossref_primary_10_3389_fncom_2014_00173 crossref_primary_10_1002_jmri_21494 crossref_primary_10_1016_j_neuroimage_2009_07_064 crossref_primary_10_1523_JNEUROSCI_5053_03_2004 crossref_primary_10_1002_hipo_20087 crossref_primary_10_1016_j_neuroimage_2014_02_018 crossref_primary_10_1016_j_jneumeth_2010_09_005 crossref_primary_10_1017_S0007114513001384 crossref_primary_10_3390_e24040556 crossref_primary_10_3389_fnagi_2017_00211 crossref_primary_10_1371_journal_pone_0067428 crossref_primary_10_1073_pnas_1121049109 crossref_primary_10_1371_journal_pcbi_1008069 crossref_primary_10_1016_j_jneumeth_2007_11_033 crossref_primary_10_1016_j_neuropsychologia_2014_12_016 crossref_primary_10_1002_hbm_20379 crossref_primary_10_1093_cercor_bhab125 crossref_primary_10_1002_cb_1575 crossref_primary_10_1016_j_neuroimage_2017_02_090 crossref_primary_10_1089_brain_2014_0243 crossref_primary_10_1038_s41598_018_23996_x crossref_primary_10_1016_j_neuroimage_2013_01_047 crossref_primary_10_1016_j_neuroimage_2022_118940 crossref_primary_10_1016_j_neuroimage_2017_01_041 crossref_primary_10_3389_fnins_2021_665707 crossref_primary_10_3389_fnins_2021_752332 crossref_primary_10_1161_01_STR_0000198807_31299_43 crossref_primary_10_1016_j_neuroimage_2008_01_044 crossref_primary_10_1017_S0033291709991632 crossref_primary_10_1073_pnas_2023265118 crossref_primary_10_1073_pnas_1525369113 crossref_primary_10_1002_hbm_23518 crossref_primary_10_1038_s42003_022_04000_9 crossref_primary_10_1002_hbm_23519 crossref_primary_10_1016_j_neuroimage_2008_10_065 crossref_primary_10_1016_j_neuroimage_2018_09_028 crossref_primary_10_1016_j_mri_2010_01_005 crossref_primary_10_1109_RBME_2011_2170675 crossref_primary_10_1093_cercor_bhaa165 crossref_primary_10_1186_1471_2202_10_137 crossref_primary_10_1016_j_nicl_2013_08_004 crossref_primary_10_1016_j_dsp_2018_09_007 crossref_primary_10_1016_j_neuroimage_2010_07_059 crossref_primary_10_1002_hbm_21010 crossref_primary_10_1111_ejn_12427 crossref_primary_10_1002_hbm_23551 crossref_primary_10_1073_pnas_1711567115 crossref_primary_10_3389_fpsyg_2023_1211528 crossref_primary_10_1016_j_tics_2024_07_008 crossref_primary_10_1016_j_cmpb_2017_03_015 crossref_primary_10_1016_j_neuroimage_2008_01_011 crossref_primary_10_1523_JNEUROSCI_5101_09_2010 crossref_primary_10_1007_s11055_014_0013_4 crossref_primary_10_1016_j_neuroimage_2021_118418 crossref_primary_10_1016_j_nicl_2018_101616 crossref_primary_10_1093_cercor_bhm195 crossref_primary_10_1016_j_neuroimage_2021_118658 crossref_primary_10_1016_j_neuroimage_2014_10_030 crossref_primary_10_1093_schbul_sbv188 crossref_primary_10_3233_JAD_190035 crossref_primary_10_1080_17470919_2011_638799 crossref_primary_10_1007_s10334_024_01197_0 crossref_primary_10_3389_fncom_2015_00054 crossref_primary_10_1371_journal_pone_0004645 crossref_primary_10_3389_fnins_2015_00304 crossref_primary_10_1016_j_neuron_2022_02_012 crossref_primary_10_1016_j_neuroimage_2013_01_067 crossref_primary_10_1089_brain_2016_0458 crossref_primary_10_1016_j_neuroimage_2009_11_014 crossref_primary_10_1016_j_heares_2024_109155 crossref_primary_10_1016_j_neuron_2008_07_035 crossref_primary_10_1016_j_neuroimage_2018_03_074 crossref_primary_10_1111_ejn_14970 crossref_primary_10_1016_j_neuroimage_2017_01_060 crossref_primary_10_1016_j_neuroimage_2004_05_012 crossref_primary_10_1109_TBME_2024_3395154 crossref_primary_10_1002_mrm_27146 crossref_primary_10_1016_j_neuroimage_2018_02_045 crossref_primary_10_1002_hbm_20389 crossref_primary_10_1016_j_neuroimage_2011_08_031 crossref_primary_10_1002_hbm_22569 crossref_primary_10_1002_hbm_25717 crossref_primary_10_1002_hbm_21116 crossref_primary_10_1016_j_neuroimage_2015_04_054 crossref_primary_10_1016_j_neuroimage_2012_09_049 crossref_primary_10_1016_j_neulet_2010_05_054 crossref_primary_10_1016_j_bandc_2012_01_001 crossref_primary_10_1016_j_neuroimage_2017_08_006 crossref_primary_10_1038_s41467_022_33010_8 crossref_primary_10_3389_fnins_2015_00419 crossref_primary_10_1016_j_neuroimage_2009_05_094 crossref_primary_10_1073_pnas_1503960112 crossref_primary_10_1162_jocn_2006_18_10_1712 crossref_primary_10_1016_j_neuroimage_2012_01_093 crossref_primary_10_1016_j_cogbrainres_2003_11_017 crossref_primary_10_1016_j_pneurobio_2021_102171 crossref_primary_10_1002_hbm_23608 crossref_primary_10_1126_science_1110913 crossref_primary_10_1016_j_tips_2014_05_001 crossref_primary_10_1016_j_neuroimage_2020_117146 crossref_primary_10_1016_j_neuroimage_2010_11_010 crossref_primary_10_1016_j_neuropsychologia_2014_05_008 crossref_primary_10_1002_hbm_23841 crossref_primary_10_1002_hbm_22514 crossref_primary_10_1007_s10334_016_0533_8 crossref_primary_10_1016_j_neuroimage_2012_09_038 crossref_primary_10_1098_rstb_2023_0093 crossref_primary_10_1155_2015_830849 crossref_primary_10_1523_JNEUROSCI_3482_12_2013 crossref_primary_10_1016_j_neuroimage_2009_03_014 crossref_primary_10_1016_j_neuroimage_2004_12_057 crossref_primary_10_1016_j_brainresbull_2005_06_008 crossref_primary_10_1016_j_neuroimage_2006_08_056 crossref_primary_10_1016_j_neuroimage_2013_02_048 crossref_primary_10_1098_rsta_2015_0185 crossref_primary_10_7554_eLife_77599 crossref_primary_10_3389_fnimg_2022_983324 crossref_primary_10_3390_ani12010108 crossref_primary_10_1162_netn_a_00116 crossref_primary_10_1162_netn_a_00117 crossref_primary_10_1073_pnas_0708965105 crossref_primary_10_1016_j_cortex_2016_11_017 crossref_primary_10_1016_j_pneurobio_2021_102174 crossref_primary_10_1016_j_neuroimage_2009_04_050 crossref_primary_10_1016_j_nicl_2016_06_016 crossref_primary_10_1002_hbm_20321 crossref_primary_10_1002_hbm_20446 crossref_primary_10_1016_j_cpet_2013_04_003 crossref_primary_10_1093_cercor_bhab210 crossref_primary_10_1002_hbm_22623 crossref_primary_10_1016_j_neuroimage_2009_11_081 crossref_primary_10_1109_ACCESS_2020_2994276 crossref_primary_10_1016_j_neuroimage_2014_04_052 crossref_primary_10_1016_j_neuroimage_2018_02_061 crossref_primary_10_1016_j_neuron_2020_07_024 crossref_primary_10_1371_journal_pone_0140537 crossref_primary_10_1016_j_neuroimage_2019_116059 crossref_primary_10_1016_j_cortex_2022_06_014 crossref_primary_10_1002_hbm_21452 crossref_primary_10_1016_j_dib_2017_07_072 crossref_primary_10_1016_j_neuroimage_2012_01_079 crossref_primary_10_1016_j_neuroimage_2016_06_019 crossref_primary_10_1002_hbm_20362 crossref_primary_10_1016_j_neuroimage_2015_11_045 crossref_primary_10_1002_sim_5449 crossref_primary_10_1016_j_jneumeth_2006_05_035 crossref_primary_10_3389_fninf_2014_00045 crossref_primary_10_7554_eLife_25606 crossref_primary_10_1016_j_neuroimage_2008_02_017 crossref_primary_10_1002_hbm_22897 crossref_primary_10_1007_s10334_020_00891_z crossref_primary_10_1002_hbm_20234 crossref_primary_10_1016_j_compmedimag_2007_04_002 crossref_primary_10_1002_epi4_12252 crossref_primary_10_1002_hbm_21207 crossref_primary_10_1007_s00429_018_1630_4 crossref_primary_10_1016_j_neuroimage_2016_06_011 crossref_primary_10_1016_j_jneumeth_2018_12_007 crossref_primary_10_1016_j_jneumeth_2008_08_013 crossref_primary_10_1016_j_neuroimage_2011_07_049 crossref_primary_10_1016_j_nicl_2017_07_016 crossref_primary_10_1016_j_neuroimage_2014_02_008 crossref_primary_10_3389_fnagi_2017_00370 crossref_primary_10_3389_fnins_2019_00803 crossref_primary_10_1016_j_neuroimage_2015_10_002 crossref_primary_10_1016_j_neuroimage_2009_11_060 crossref_primary_10_1016_j_neuroimage_2012_08_014 crossref_primary_10_1068_i0536 crossref_primary_10_1007_s12576_018_0607_7 crossref_primary_10_1016_j_neuroimage_2011_02_018 crossref_primary_10_1016_j_celrep_2024_114723 crossref_primary_10_1371_journal_pone_0241695 crossref_primary_10_1111_desc_12812 crossref_primary_10_1016_j_neuroimage_2012_12_024 crossref_primary_10_1016_j_heares_2011_03_008 crossref_primary_10_1007_s11682_020_00304_8 crossref_primary_10_1016_j_bspc_2020_102099 crossref_primary_10_1186_1471_2202_9_84 crossref_primary_10_1007_s00259_023_06542_4 crossref_primary_10_1016_j_neuroimage_2005_05_043 crossref_primary_10_1093_cercor_bhl123 crossref_primary_10_1038_npp_2017_249 crossref_primary_10_1002_hbm_20771 crossref_primary_10_3389_fphy_2021_645249 crossref_primary_10_1002_hbm_23802 crossref_primary_10_1002_hbm_22711 crossref_primary_10_1093_cercor_bhac057 crossref_primary_10_1002_hbm_22714 crossref_primary_10_1016_j_neuroimage_2012_04_015 crossref_primary_10_1016_j_neuroimage_2011_02_008 crossref_primary_10_1016_j_neuroimage_2019_116367 crossref_primary_10_1016_j_nicl_2015_03_014 crossref_primary_10_1016_j_brainres_2019_04_005 crossref_primary_10_1016_j_neurobiolaging_2020_10_023 crossref_primary_10_3389_fnins_2016_00279 crossref_primary_10_1007_s00221_019_05613_z crossref_primary_10_1093_cercor_bhv269 crossref_primary_10_1016_j_neuroimage_2011_03_071 crossref_primary_10_1097_WNR_0000000000000881 crossref_primary_10_1121_10_0000984 crossref_primary_10_1073_pnas_2219666120 crossref_primary_10_1109_TMI_2014_2379914 crossref_primary_10_1016_j_neuroimage_2007_01_020 crossref_primary_10_1002_hbm_20647 crossref_primary_10_1016_j_neuroimage_2013_05_100 crossref_primary_10_1016_j_neuroimage_2020_116920 crossref_primary_10_1109_TBME_2007_900795 crossref_primary_10_1117_1_NPh_1_1_015004 crossref_primary_10_1016_j_neuroimage_2013_05_105 crossref_primary_10_1093_schbul_sbab140 crossref_primary_10_1080_13803395_2014_953039 crossref_primary_10_1002_hbm_20760 crossref_primary_10_1093_scan_nsz037 crossref_primary_10_1523_JNEUROSCI_2428_16_2017 crossref_primary_10_1038_nn_3470 crossref_primary_10_3389_fpsyg_2021_690198 crossref_primary_10_3389_fpsyt_2018_00218 crossref_primary_10_1093_cercor_bhv294 crossref_primary_10_3390_brainsci11111472 crossref_primary_10_1016_j_neuroimage_2009_12_108 crossref_primary_10_1016_j_neuroimage_2022_119301 crossref_primary_10_1016_j_neuroimage_2019_116019 crossref_primary_10_1016_j_neuroimage_2010_01_075 crossref_primary_10_1016_j_jpain_2018_03_011 crossref_primary_10_1016_j_mri_2010_03_022 crossref_primary_10_1016_j_neuroimage_2023_119949 crossref_primary_10_3348_kjr_2011_12_4_463 crossref_primary_10_1098_rstb_2019_0635 crossref_primary_10_1016_j_neuroimage_2014_09_060 crossref_primary_10_1002_hbm_20310 crossref_primary_10_1016_j_mri_2017_01_019 crossref_primary_10_1016_j_neuroimage_2016_12_045 crossref_primary_10_1002_hbm_21403 crossref_primary_10_1098_rstb_2019_0631 crossref_primary_10_1016_j_neuroimage_2006_06_003 crossref_primary_10_1016_j_mri_2006_09_044 crossref_primary_10_1016_j_neuroimage_2009_05_027 crossref_primary_10_7554_eLife_84822 crossref_primary_10_1002_hbm_26094 crossref_primary_10_1016_j_neuroimage_2023_119959 crossref_primary_10_1002_hbm_20307 crossref_primary_10_1016_j_neuroimage_2007_02_045 crossref_primary_10_1371_journal_pcbi_1006299 crossref_primary_10_1371_journal_pone_0278753 crossref_primary_10_1016_j_jneumeth_2021_109218 crossref_primary_10_1016_j_ynirp_2021_100050 crossref_primary_10_1088_1741_2552_aaefda crossref_primary_10_1371_journal_pone_0129970 crossref_primary_10_1016_j_neuroimage_2015_01_013 crossref_primary_10_1007_s00213_010_2111_5 crossref_primary_10_1002_hbm_26047 crossref_primary_10_4329_wjr_v6_i7_437 crossref_primary_10_1016_j_neuroimage_2009_12_044 crossref_primary_10_1016_j_nicl_2021_102901 crossref_primary_10_1523_JNEUROSCI_2036_19_2020 crossref_primary_10_1080_02664760802443962 crossref_primary_10_1038_nn_4406 crossref_primary_10_1371_journal_pone_0073629 crossref_primary_10_1162_jocn_a_00712 crossref_primary_10_1002_mrm_26365 crossref_primary_10_1109_TBME_2013_2258344 crossref_primary_10_1016_j_jpain_2013_08_004 crossref_primary_10_1016_j_neuroimage_2014_08_005 crossref_primary_10_1016_j_neuroimage_2019_116446 crossref_primary_10_1016_j_neuron_2014_10_013 crossref_primary_10_3390_e26090751 crossref_primary_10_1089_brain_2012_0091 crossref_primary_10_1016_j_neuroimage_2015_01_006 crossref_primary_10_1093_scan_nsn029 crossref_primary_10_1007_s10548_012_0225_2 crossref_primary_10_3389_fnins_2020_596084 crossref_primary_10_1016_j_neuroimage_2008_12_059 crossref_primary_10_3389_fams_2018_00025 crossref_primary_10_1016_j_neuroimage_2016_11_037 crossref_primary_10_1002_cnm_3828 crossref_primary_10_1016_j_neuroimage_2012_11_005 crossref_primary_10_1517_17460441_2_8_1029 crossref_primary_10_1109_TMI_2021_3122226 crossref_primary_10_1002_hbm_20606 crossref_primary_10_1016_j_dib_2018_01_003 crossref_primary_10_1162_0898929054475118 crossref_primary_10_1002_mrm_27566 crossref_primary_10_1002_jmri_24274 crossref_primary_10_1007_s00221_013_3558_5 crossref_primary_10_1109_TBME_2009_2039569 crossref_primary_10_1002_mrm_20839 crossref_primary_10_1093_cercor_bhab064 crossref_primary_10_1214_13_AOAS658 crossref_primary_10_1093_cercor_bhab065 crossref_primary_10_1016_j_cub_2020_01_090 crossref_primary_10_1016_j_pneurobio_2013_12_005 crossref_primary_10_1073_pnas_1804340115 crossref_primary_10_3389_fnins_2016_00322 crossref_primary_10_1093_cercor_bhx036 crossref_primary_10_1097_RMR_0b013e3182699283 crossref_primary_10_1523_JNEUROSCI_0298_23_2024 crossref_primary_10_1162_netn_a_00062 crossref_primary_10_1002_mrm_28208 crossref_primary_10_1016_j_schres_2022_02_007 crossref_primary_10_1016_j_neuroimage_2007_10_058 crossref_primary_10_1371_journal_pone_0039747 crossref_primary_10_1038_s41598_022_17601_5 crossref_primary_10_1016_j_neuroimage_2010_08_063 crossref_primary_10_1093_cercor_bhae458 crossref_primary_10_3389_fnins_2023_1220848 crossref_primary_10_1002_hbm_26057 crossref_primary_10_1016_j_neuroimage_2005_04_039 crossref_primary_10_1177_0271678X16643090 crossref_primary_10_1016_j_neuroimage_2019_116465 crossref_primary_10_1016_j_neuroimage_2014_01_046 crossref_primary_10_1038_s41598_024_51694_4 crossref_primary_10_1016_j_mri_2010_10_012 crossref_primary_10_1177_1073858418805427 crossref_primary_10_1016_j_neuroimage_2017_05_001 crossref_primary_10_1089_brain_2015_0392 crossref_primary_10_1002_jmri_20935 crossref_primary_10_1016_j_neuroimage_2008_09_036 crossref_primary_10_1126_sciadv_abc1304 crossref_primary_10_1016_j_cognition_2021_104735 crossref_primary_10_3389_fnhum_2019_00117 crossref_primary_10_1016_j_neuroimage_2015_02_026 crossref_primary_10_1016_j_neuropsychologia_2019_107307 crossref_primary_10_35193_bseufbd_1091035 crossref_primary_10_1002_hbm_22929 crossref_primary_10_1016_j_mri_2011_12_015 crossref_primary_10_3389_fnins_2022_928841 crossref_primary_10_1162_imag_a_00399 crossref_primary_10_1038_s41467_022_29770_y crossref_primary_10_1038_s41598_019_39188_0 crossref_primary_10_1186_s40708_021_00140_6 crossref_primary_10_1016_j_neuri_2022_100092 crossref_primary_10_1016_j_neuri_2022_100093 crossref_primary_10_1098_rstb_2015_0546 crossref_primary_10_1016_j_neuroimage_2012_02_015 crossref_primary_10_1016_j_neuroimage_2016_11_069 crossref_primary_10_3390_brainsci11101294 crossref_primary_10_1016_j_neurobiolaging_2011_12_021 crossref_primary_10_3389_fnins_2024_1381722 crossref_primary_10_1016_j_jneumeth_2019_108451 crossref_primary_10_3389_fnhum_2015_00689 crossref_primary_10_1080_02643290442000464 crossref_primary_10_1007_s11517_008_0347_6 crossref_primary_10_1016_j_brainres_2007_08_011 crossref_primary_10_7554_eLife_21749 crossref_primary_10_1038_jcbfm_2013_200 crossref_primary_10_1038_s41398_022_02099_2 crossref_primary_10_1016_j_media_2023_102892 crossref_primary_10_1016_j_neuroimage_2022_119592 crossref_primary_10_1002_hbm_25264 crossref_primary_10_1162_jocn_2010_21459 crossref_primary_10_1177_2331216518786850 crossref_primary_10_1093_cercor_bhs396 crossref_primary_10_1523_JNEUROSCI_1940_23_2024 crossref_primary_10_1002_nbm_1575 crossref_primary_10_1007_s11682_020_00358_8 crossref_primary_10_1117_1_NPh_9_2_025003 crossref_primary_10_1073_pnas_1608117113 crossref_primary_10_1002_hbm_20925 crossref_primary_10_1016_j_mri_2013_03_015 crossref_primary_10_1016_j_neuroimage_2012_02_023 crossref_primary_10_1038_s41467_022_35117_4 crossref_primary_10_1038_srep21861 crossref_primary_10_3389_fnimg_2022_919694 crossref_primary_10_3389_fnins_2018_00287 crossref_primary_10_1002_jmri_24190 crossref_primary_10_1016_j_neuroimage_2010_01_109 crossref_primary_10_1016_j_neuroimage_2019_116412 crossref_primary_10_1523_JNEUROSCI_3754_14_2015 crossref_primary_10_1088_1741_2560_14_1_016004 crossref_primary_10_3389_fnins_2020_613990 crossref_primary_10_1038_s41562_016_0036 crossref_primary_10_1162_imag_a_00227 crossref_primary_10_1016_j_neuroimage_2005_03_022 crossref_primary_10_3389_fpsyt_2018_00273 crossref_primary_10_3389_fnhum_2016_00511 crossref_primary_10_1016_j_tics_2021_09_005 crossref_primary_10_2196_38407 crossref_primary_10_1093_cercor_bht153 crossref_primary_10_1016_j_neuroimage_2012_05_015 crossref_primary_10_1016_j_neuroimage_2020_116992 crossref_primary_10_1016_j_neuroimage_2011_03_005 crossref_primary_10_1016_j_neuroimage_2011_02_074 crossref_primary_10_1016_j_neuroimage_2012_06_054 crossref_primary_10_1007_s11336_012_9309_x crossref_primary_10_1038_s41598_018_25705_0 crossref_primary_10_1007_s12559_023_10150_7 crossref_primary_10_1016_j_jneumeth_2015_11_011 crossref_primary_10_1097_WNR_0b013e3282f4a14f crossref_primary_10_1093_scan_nsaa143 crossref_primary_10_1109_JSTSP_2008_2007763 crossref_primary_10_1162_netn_a_00099 crossref_primary_10_1016_j_cogbrainres_2004_02_008 crossref_primary_10_1016_j_neuroimage_2020_116621 crossref_primary_10_1038_s41386_020_00805_6 crossref_primary_10_1089_brain_2020_0790 crossref_primary_10_1162_nol_a_00101 crossref_primary_10_1007_s00221_010_2277_4 crossref_primary_10_1002_mrm_24557 crossref_primary_10_1093_cercor_bht258 crossref_primary_10_1002_mrm_27941 crossref_primary_10_1016_j_cortex_2007_11_005 crossref_primary_10_1016_j_neuroimage_2011_02_066 crossref_primary_10_1016_j_neuroimage_2013_04_010 crossref_primary_10_1089_brain_2017_0547 crossref_primary_10_1016_j_neuroimage_2018_06_021 crossref_primary_10_1080_1047840X_2011_567962 crossref_primary_10_1002_brb3_2042 crossref_primary_10_1038_s41597_021_01033_3 crossref_primary_10_1523_JNEUROSCI_2825_10_2010 crossref_primary_10_1002_hbm_23057 crossref_primary_10_1002_hbm_25357 crossref_primary_10_1177_0271678X17691056 crossref_primary_10_1016_j_nicl_2018_04_013 crossref_primary_10_1016_j_neuroimage_2012_10_052 crossref_primary_10_1523_JNEUROSCI_0824_06_2006 crossref_primary_10_1016_j_cobeha_2021_04_017 crossref_primary_10_1016_j_neuroimage_2016_02_056 crossref_primary_10_1016_j_cub_2012_05_022 crossref_primary_10_1038_nn2017 crossref_primary_10_1016_j_neuroimage_2009_09_020 crossref_primary_10_1002_ima_20141 crossref_primary_10_1016_j_neuroimage_2018_06_079 crossref_primary_10_1089_brain_2020_0864 crossref_primary_10_1162_imag_a_00203 crossref_primary_10_1007_s10548_017_0598_3 crossref_primary_10_1002_brb3_777 crossref_primary_10_1093_scan_nsl021 crossref_primary_10_1016_j_neubiorev_2024_105877 crossref_primary_10_1016_j_neuroimage_2016_01_028 crossref_primary_10_1007_s11724_014_0372_1 crossref_primary_10_1016_j_neuroimage_2006_10_020 crossref_primary_10_1016_j_neuroimage_2016_02_068 crossref_primary_10_1016_j_dcn_2017_09_005 crossref_primary_10_1016_j_brainres_2008_01_059 crossref_primary_10_1088_0031_9155_54_1_011 crossref_primary_10_1177_1550059413497946 crossref_primary_10_1016_j_bpsc_2021_10_008 crossref_primary_10_1007_s10548_013_0311_0 crossref_primary_10_1016_j_media_2013_01_003 crossref_primary_10_1038_s41593_019_0510_4 crossref_primary_10_1007_s00221_007_1221_8 crossref_primary_10_3389_fnins_2019_01451 crossref_primary_10_1016_j_brainres_2007_09_074 crossref_primary_10_1162_imag_a_00427 crossref_primary_10_1523_JNEUROSCI_0406_07_2007 crossref_primary_10_1523_JNEUROSCI_0803_23_2023 crossref_primary_10_1016_j_neuroimage_2020_116707 crossref_primary_10_1044_2021_JSLHR_20_00328 crossref_primary_10_1016_j_neuroimage_2010_01_031 crossref_primary_10_1111_j_1528_1167_2007_01239_x crossref_primary_10_1177_0271678X15615133 crossref_primary_10_1016_j_neuroimage_2010_09_024 crossref_primary_10_1016_j_schres_2024_03_001 crossref_primary_10_3389_fnins_2019_00127 crossref_primary_10_1016_j_bandl_2016_11_004 crossref_primary_10_1016_j_neubiorev_2015_08_018 crossref_primary_10_1016_j_pscychresns_2012_03_005 crossref_primary_10_7717_peerj_923 crossref_primary_10_1088_1741_2560_13_4_046010 crossref_primary_10_1016_j_neuroimage_2018_06_056 crossref_primary_10_1027_2151_2604_a000145 crossref_primary_10_1002_hbm_26458 crossref_primary_10_1186_1471_2342_8_7 crossref_primary_10_1002_hbm_25243 crossref_primary_10_1016_j_jneumeth_2020_108836 crossref_primary_10_1016_j_mri_2017_09_007 crossref_primary_10_1016_j_neuron_2020_02_013 crossref_primary_10_1016_j_neucli_2007_05_001 crossref_primary_10_1080_03640210802451588 crossref_primary_10_1016_j_neuroimage_2017_03_017 crossref_primary_10_1002_hbm_24034 crossref_primary_10_1016_j_neucli_2007_05_003 crossref_primary_10_3389_fnhum_2016_00542 crossref_primary_10_1371_journal_pone_0026290 crossref_primary_10_1007_s10827_010_0271_2 crossref_primary_10_1016_j_neuroimage_2006_10_044 crossref_primary_10_1002_jmri_23802 crossref_primary_10_1007_s10384_024_01077_z crossref_primary_10_1016_j_neuroimage_2007_05_025 crossref_primary_10_1016_j_neuroimage_2013_11_005 crossref_primary_10_1002_hbm_20907 crossref_primary_10_1093_cercor_bhu148 crossref_primary_10_3389_fnins_2017_00031 crossref_primary_10_1016_j_neuroimage_2018_12_054 crossref_primary_10_1371_journal_pcbi_1003265 crossref_primary_10_1002_sim_2981 crossref_primary_10_1111_j_1460_9568_2007_05816_x |
Cites_doi | 10.1002/hbm.10131 10.1006/nimg.2000.0568 10.1016/S1053-8119(03)00202-7 10.1006/nimg.2000.0728 10.1016/S0730-725X(01)00460-X 10.1006/nimg.2001.1017 10.1002/mrm.1910350618 10.1006/nimg.1998.0369 10.1002/ana.410370504 10.1006/nimg.2002.1096 10.1093/cercor/9.7.705 10.1006/nimg.1995.1007 10.1006/nimg.2001.0940 10.1002/(SICI)1097-0193(1997)5:4<243::AID-HBM7>3.0.CO;2-3 10.1002/mrm.1910350219 10.1148/radiology.173.1.2781017 10.1016/S1385-299X(99)00053-7 10.1239/aap/1029955192 10.1016/S0925-4927(98)00022-5 10.1006/nimg.2000.0560 10.1006/nimg.1997.0264 10.1006/nimg.1995.1023 10.1006/nimg.1997.0306 10.1002/hbm.460010207 10.1006/nimg.1999.0498 |
ContentType | Journal Article |
Copyright | 2004 Elsevier Inc. Copyright Elsevier Limited Apr 1, 2004 |
Copyright_xml | – notice: 2004 Elsevier Inc. – notice: Copyright Elsevier Limited Apr 1, 2004 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1016/j.neuroimage.2003.11.029 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database (ProQuest) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 1651 |
ExternalDocumentID | 3244232611 15050587 10_1016_j_neuroimage_2003_11_029 S1053811903007584 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: NS40813 – fundername: NIMH NIH HHS grantid: MH63901 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c455t-b8d43808b8e592cf5eb7f82718fd8ee2c881c98e864310affa1bf981cfb77b803 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 |
IngestDate | Fri Jul 11 11:41:54 EDT 2025 Wed Aug 13 10:42:22 EDT 2025 Wed Feb 19 01:37:27 EST 2025 Thu Apr 24 23:07:05 EDT 2025 Tue Jul 01 00:49:24 EDT 2025 Fri Feb 23 02:29:06 EST 2024 Tue Aug 26 18:14:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | fMRI Saccades Linear regression Functional neuroimaging Random effects Activation latency Hemodynamic response function Visual areas |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-b8d43808b8e592cf5eb7f82718fd8ee2c881c98e864310affa1bf981cfb77b803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 15050587 |
PQID | 1506609538 |
PQPubID | 2031077 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_71779158 proquest_journals_1506609538 pubmed_primary_15050587 crossref_primary_10_1016_j_neuroimage_2003_11_029 crossref_citationtrail_10_1016_j_neuroimage_2003_11_029 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2003_11_029 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2003_11_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-04-01 |
PublicationDateYYYYMMDD | 2004-04-01 |
PublicationDate_xml | – month: 04 year: 2004 text: 2004-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2004 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Duvernoy (BIB7) 1999 Curtis, Hirsch (BIB6) 2002 Kim, Hu (BIB19) 1996; 35 Friston, Fletcher (BIB10) 1998; 7 Friston, Jezzard, Turner (BIB30) 1994; 1 Friston, Zarahn (BIB12) 1999; 10 Zarahn (BIB29) 2000; 11 Gibbs, D'Esposito (BIB14) 2002 Liao, Worsley (BIB22) 2002; 16 Levin, Ross (BIB21) 1998; 82 Miezin, Maccotta (BIB24) 2000; 11 Bullmore, Brammer (BIB3) 1996; 35 Cao (BIB5) 1999; 31 Pierrot-Deseilligny, Rivaud (BIB26) 1995; 37 Ehman, Felmlee (BIB8) 1989; 173 Aguirre, Zarahn (BIB2) 1998; 8 Postle, Zarahn (BIB27) 2000; 5 Friston, Holmes (BIB9) 1995; 2 Grosbras, Lobel (BIB15) 1999; 9 Noseworthy, Alfonsi (BIB25) 2003; 20 Buxton (BIB4) 2002 Josephs, Turner (BIB18) 1997; 5 Levin, Frederick (BIB20) 2001; 19 Henson, Price (BIB16) 2002; 15 Aguirre, Zarahn (BIB1) 1997; 5 Friston, Holmes, Ashburner (BIB11) 1999 Friston, Harrison (BIB13) 2003; 19 Hernandez, Badre (BIB17) 2002; 17 Liu, Frank (BIB23) 2001; 13 Worsley, Friston (BIB28) 1995; 2 Postle (10.1016/j.neuroimage.2003.11.029_BIB27) 2000; 5 Kim (10.1016/j.neuroimage.2003.11.029_BIB19) 1996; 35 Noseworthy (10.1016/j.neuroimage.2003.11.029_BIB25) 2003; 20 Buxton (10.1016/j.neuroimage.2003.11.029_BIB4) 2002 Miezin (10.1016/j.neuroimage.2003.11.029_BIB24) 2000; 11 Curtis (10.1016/j.neuroimage.2003.11.029_BIB6) 2002 Duvernoy (10.1016/j.neuroimage.2003.11.029_BIB7) 1999 Levin (10.1016/j.neuroimage.2003.11.029_BIB20) 2001; 19 Josephs (10.1016/j.neuroimage.2003.11.029_BIB18) 1997; 5 Friston (10.1016/j.neuroimage.2003.11.029_BIB11) 1999 Friston (10.1016/j.neuroimage.2003.11.029_BIB12) 1999; 10 Friston (10.1016/j.neuroimage.2003.11.029_BIB13) 2003; 19 Levin (10.1016/j.neuroimage.2003.11.029_BIB21) 1998; 82 Gibbs (10.1016/j.neuroimage.2003.11.029_BIB14) 2002 Cao (10.1016/j.neuroimage.2003.11.029_BIB5) 1999; 31 Henson (10.1016/j.neuroimage.2003.11.029_BIB16) 2002; 15 Friston (10.1016/j.neuroimage.2003.11.029_BIB30) 1994; 1 Worsley (10.1016/j.neuroimage.2003.11.029_BIB28) 1995; 2 Aguirre (10.1016/j.neuroimage.2003.11.029_BIB2) 1998; 8 Bullmore (10.1016/j.neuroimage.2003.11.029_BIB3) 1996; 35 Hernandez (10.1016/j.neuroimage.2003.11.029_BIB17) 2002; 17 Friston (10.1016/j.neuroimage.2003.11.029_BIB9) 1995; 2 Friston (10.1016/j.neuroimage.2003.11.029_BIB10) 1998; 7 Aguirre (10.1016/j.neuroimage.2003.11.029_BIB1) 1997; 5 Zarahn (10.1016/j.neuroimage.2003.11.029_BIB29) 2000; 11 Ehman (10.1016/j.neuroimage.2003.11.029_BIB8) 1989; 173 Pierrot-Deseilligny (10.1016/j.neuroimage.2003.11.029_BIB26) 1995; 37 Liu (10.1016/j.neuroimage.2003.11.029_BIB23) 2001; 13 Grosbras (10.1016/j.neuroimage.2003.11.029_BIB15) 1999; 9 Liao (10.1016/j.neuroimage.2003.11.029_BIB22) 2002; 16 |
References_xml | – volume: 8 start-page: 360 year: 1998 end-page: 369 ident: BIB2 article-title: The variability of human, BOLD hemodynamic responses publication-title: NeuroImage – volume: 35 start-page: 895 year: 1996 end-page: 902 ident: BIB19 article-title: Fast interleaved echo-planar imaging with navigator: high resolution anatomic and functional images at 5 Tesla publication-title: Magn. Reson. Med. – volume: 5 start-page: 243 year: 1997 end-page: 248 ident: BIB18 article-title: Event-related fMRI publication-title: Hum. Brain Mapp. – volume: 17 start-page: 1018 year: 2002 end-page: 1026 ident: BIB17 article-title: Temporal sensitivity of event-related fMRI publication-title: NeuroImage – volume: 19 start-page: 1055 year: 2001 end-page: 1062 ident: BIB20 article-title: Influence of baseline hematocrit and hemodilution on BOLD fMRI activation publication-title: Magn. Reson. Imaging – volume: 7 start-page: 30 year: 1998 end-page: 40 ident: BIB10 article-title: Event-related fMRI: characterizing differential responses publication-title: NeuroImage – volume: 20 start-page: 116 year: 2003 end-page: 121 ident: BIB25 article-title: Attenuation of brain BOLD response following lipid ingestion publication-title: Hum. Brain Mapp. – volume: 15 start-page: 83 year: 2002 end-page: 97 ident: BIB16 article-title: Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations publication-title: NeuroImage – volume: 35 start-page: 261 year: 1996 end-page: 277 ident: BIB3 article-title: Statistical methods of estimation and inference for functional MR image analysis publication-title: Magn. Reson. Med. – volume: 2 start-page: 173 year: 1995 end-page: 181 ident: BIB28 article-title: Analysis of fMRI time-series revisited—Again publication-title: NeuroImage – year: 2002 ident: BIB6 article-title: Maintenance of Spatial Information in the Frontal Cortex During Oculomotor Delayed-Response Tasks – volume: 31 start-page: 579 year: 1999 end-page: 595 ident: BIB5 article-title: The size of the connected components of excursion sets of chi-square, t, and F fields publication-title: Adv. Appl. Probab. – volume: 5 start-page: 57 year: 2000 end-page: 66 ident: BIB27 article-title: Using event-related fMRI to assess delay-period activity during performance of spatial and nonspatial working memory tasks publication-title: Brain Res. Protoc. – year: 2002 ident: BIB4 article-title: Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques – volume: 11 start-page: 783 year: 2000 end-page: 796 ident: BIB29 article-title: Testing for neural responses during temporal components of trials with BOLD fMRI publication-title: NeuroImage – volume: 2 start-page: 45 year: 1995 end-page: 53 ident: BIB9 article-title: Analysis of fMRI time-series revisited publication-title: NeuroImage – volume: 19 start-page: 1273 year: 2003 end-page: 1302 ident: BIB13 article-title: Dynamic causal modelling publication-title: NeuroImage – volume: 9 start-page: 705 year: 1999 end-page: 711 ident: BIB15 article-title: An anatomical landmark for the supplementary eye fields in human revealed with functional magnetic resonance imaging publication-title: Cereb. Cortex – year: 2002 ident: BIB14 article-title: Effects of a Dopaminergic Agonist on Working Memory Performance Assessed with fMRI – year: 1999 ident: BIB11 article-title: Statistical Parametric Mapping (SPM) – volume: 16 start-page: 593 year: 2002 end-page: 606 ident: BIB22 article-title: Estimating the delay of the fMRI response publication-title: NeuroImage – volume: 13 start-page: 759 year: 2001 end-page: 773 ident: BIB23 article-title: Detection power, estimation efficiency, and predictability in event-related fMRI publication-title: NeuroImage – volume: 11 start-page: 735 year: 2000 end-page: 759 ident: BIB24 article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing publication-title: NeuroImage – volume: 5 start-page: 199 year: 1997 end-page: 212 ident: BIB1 article-title: Empirical analyses of BOLD fMRI statistics: II. Spatially smoothed data collected under null-hypothesis and experimental conditions publication-title: NeuroImage – year: 1999 ident: BIB7 article-title: The Human Brain Surface, Blood Supply, and Three-dimensional Sectional Anatomy – volume: 1 start-page: 153 year: 1994 end-page: 171 ident: BIB30 article-title: Analysis of functional MRI time-series publication-title: Human Brain Mapping – volume: 82 start-page: 135 year: 1998 end-page: 146 ident: BIB21 article-title: Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion publication-title: Psychiatry Res. – volume: 10 start-page: 607 year: 1999 end-page: 619 ident: BIB12 article-title: Stochastic designs in event-related fMRI publication-title: NeuroImage – volume: 37 start-page: 557 year: 1995 end-page: 567 ident: BIB26 article-title: Cortical control of saccades publication-title: Ann. Neurol. – volume: 173 start-page: 255 year: 1989 end-page: 263 ident: BIB8 article-title: Adaptive technique for high-definition MR imaging of moving structures publication-title: Radiology – volume: 20 start-page: 116 issue: 2 year: 2003 ident: 10.1016/j.neuroimage.2003.11.029_BIB25 article-title: Attenuation of brain BOLD response following lipid ingestion publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10131 – year: 1999 ident: 10.1016/j.neuroimage.2003.11.029_BIB11 – volume: 11 start-page: 735 issue: 6 Pt. 1 year: 2000 ident: 10.1016/j.neuroimage.2003.11.029_BIB24 article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing publication-title: NeuroImage doi: 10.1006/nimg.2000.0568 – year: 1999 ident: 10.1016/j.neuroimage.2003.11.029_BIB7 – volume: 19 start-page: 1273 issue: 4 year: 2003 ident: 10.1016/j.neuroimage.2003.11.029_BIB13 article-title: Dynamic causal modelling publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00202-7 – year: 2002 ident: 10.1016/j.neuroimage.2003.11.029_BIB4 – volume: 13 start-page: 759 issue: 4 year: 2001 ident: 10.1016/j.neuroimage.2003.11.029_BIB23 article-title: Detection power, estimation efficiency, and predictability in event-related fMRI publication-title: NeuroImage doi: 10.1006/nimg.2000.0728 – volume: 19 start-page: 1055 issue: 8 year: 2001 ident: 10.1016/j.neuroimage.2003.11.029_BIB20 article-title: Influence of baseline hematocrit and hemodilution on BOLD fMRI activation publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(01)00460-X – volume: 17 start-page: 1018 issue: 2 year: 2002 ident: 10.1016/j.neuroimage.2003.11.029_BIB17 article-title: Temporal sensitivity of event-related fMRI publication-title: NeuroImage doi: 10.1006/nimg.2001.1017 – volume: 35 start-page: 895 issue: 6 year: 1996 ident: 10.1016/j.neuroimage.2003.11.029_BIB19 article-title: Fast interleaved echo-planar imaging with navigator: high resolution anatomic and functional images at 5 Tesla publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910350618 – volume: 8 start-page: 360 issue: 4 year: 1998 ident: 10.1016/j.neuroimage.2003.11.029_BIB2 article-title: The variability of human, BOLD hemodynamic responses publication-title: NeuroImage doi: 10.1006/nimg.1998.0369 – year: 2002 ident: 10.1016/j.neuroimage.2003.11.029_BIB6 – volume: 37 start-page: 557 issue: 5 year: 1995 ident: 10.1016/j.neuroimage.2003.11.029_BIB26 article-title: Cortical control of saccades publication-title: Ann. Neurol. doi: 10.1002/ana.410370504 – volume: 16 start-page: 593 issue: 3 Pt. 1 year: 2002 ident: 10.1016/j.neuroimage.2003.11.029_BIB22 article-title: Estimating the delay of the fMRI response publication-title: NeuroImage doi: 10.1006/nimg.2002.1096 – volume: 9 start-page: 705 issue: 7 year: 1999 ident: 10.1016/j.neuroimage.2003.11.029_BIB15 article-title: An anatomical landmark for the supplementary eye fields in human revealed with functional magnetic resonance imaging publication-title: Cereb. Cortex doi: 10.1093/cercor/9.7.705 – volume: 2 start-page: 45 issue: 1 year: 1995 ident: 10.1016/j.neuroimage.2003.11.029_BIB9 article-title: Analysis of fMRI time-series revisited publication-title: NeuroImage doi: 10.1006/nimg.1995.1007 – volume: 15 start-page: 83 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2003.11.029_BIB16 article-title: Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations publication-title: NeuroImage doi: 10.1006/nimg.2001.0940 – volume: 5 start-page: 243 issue: 4 year: 1997 ident: 10.1016/j.neuroimage.2003.11.029_BIB18 article-title: Event-related fMRI publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1997)5:4<243::AID-HBM7>3.0.CO;2-3 – volume: 35 start-page: 261 issue: 2 year: 1996 ident: 10.1016/j.neuroimage.2003.11.029_BIB3 article-title: Statistical methods of estimation and inference for functional MR image analysis publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910350219 – volume: 173 start-page: 255 issue: 1 year: 1989 ident: 10.1016/j.neuroimage.2003.11.029_BIB8 article-title: Adaptive technique for high-definition MR imaging of moving structures publication-title: Radiology doi: 10.1148/radiology.173.1.2781017 – volume: 5 start-page: 57 issue: 1 year: 2000 ident: 10.1016/j.neuroimage.2003.11.029_BIB27 article-title: Using event-related fMRI to assess delay-period activity during performance of spatial and nonspatial working memory tasks publication-title: Brain Res. Protoc. doi: 10.1016/S1385-299X(99)00053-7 – year: 2002 ident: 10.1016/j.neuroimage.2003.11.029_BIB14 – volume: 31 start-page: 579 year: 1999 ident: 10.1016/j.neuroimage.2003.11.029_BIB5 article-title: The size of the connected components of excursion sets of chi-square, t, and F fields publication-title: Adv. Appl. Probab. doi: 10.1239/aap/1029955192 – volume: 82 start-page: 135 issue: 3 year: 1998 ident: 10.1016/j.neuroimage.2003.11.029_BIB21 article-title: Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion publication-title: Psychiatry Res. doi: 10.1016/S0925-4927(98)00022-5 – volume: 11 start-page: 783 issue: 6 Pt. 1 year: 2000 ident: 10.1016/j.neuroimage.2003.11.029_BIB29 article-title: Testing for neural responses during temporal components of trials with BOLD fMRI publication-title: NeuroImage doi: 10.1006/nimg.2000.0560 – volume: 5 start-page: 199 issue: 3 year: 1997 ident: 10.1016/j.neuroimage.2003.11.029_BIB1 article-title: Empirical analyses of BOLD fMRI statistics: II. Spatially smoothed data collected under null-hypothesis and experimental conditions publication-title: NeuroImage doi: 10.1006/nimg.1997.0264 – volume: 2 start-page: 173 issue: 3 year: 1995 ident: 10.1016/j.neuroimage.2003.11.029_BIB28 article-title: Analysis of fMRI time-series revisited—Again publication-title: NeuroImage doi: 10.1006/nimg.1995.1023 – volume: 7 start-page: 30 issue: 1 year: 1998 ident: 10.1016/j.neuroimage.2003.11.029_BIB10 article-title: Event-related fMRI: characterizing differential responses publication-title: NeuroImage doi: 10.1006/nimg.1997.0306 – volume: 1 start-page: 153 year: 1994 ident: 10.1016/j.neuroimage.2003.11.029_BIB30 article-title: Analysis of functional MRI time-series publication-title: Human Brain Mapping doi: 10.1002/hbm.460010207 – volume: 10 start-page: 607 issue: 5 year: 1999 ident: 10.1016/j.neuroimage.2003.11.029_BIB12 article-title: Stochastic designs in event-related fMRI publication-title: NeuroImage doi: 10.1006/nimg.1999.0498 |
SSID | ssj0009148 |
Score | 2.3868742 |
Snippet | Estimates of hemodynamic response functions (HRF) are often integral parts of event-related fMRI analyses. Although HRFs vary across individuals and brain... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1639 |
SubjectTerms | Activation latency Adolescent Adult Analysis of Variance Brain - blood supply Brain Mapping Cerebral Cortex - physiology Dominance, Cerebral - physiology Echo-Planar Imaging Estimates Evoked Potentials - physiology Experiments Female fMRI Frontal Lobe - physiology Functional neuroimaging Hemodynamic response function Hemodynamics - physiology Humans Image Enhancement Image Interpretation, Computer-Assisted Image Processing, Computer-Assisted Linear Models Linear regression Magnetic Resonance Imaging - statistics & numerical data Male Mathematical Computing Motor Cortex - physiology Oxygen - blood Pattern Recognition, Visual - physiology Psychomotor Performance - physiology Random effects Reaction Time - physiology Reflex - physiology Saccades Saccades - physiology Statistics as Topic Studies Time series Visual areas Visual Cortex - physiology |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELXKVkJcKigfXVhaH7gGNps4dtQDoh8IVUAvBe3Nip2xALEJkN3_3xnH2VwA7XGznijJeOxnz_g9xo5cmlhJGUZRxGmUgoPIFBjuuS3HCThKDdFB4avr7OIm_TMV07Dh1oSyym5M9AN1WVvaIz8hJjxPjqZOn54jUo2i7GqQ0FhjH4m6jHq1nMqedDdO26NwIokUNgiVPG19l-eLvJ9h1HpW0GPi8vRA89Xp6S346aeh8032KeBHftY6fIt9gOozW78KGfJt1tzi4td_bV47_uPv5S9-B7O6bIXn-UtbEgsNL_wD8GZhaCcGf1clN6QXwUmrAdv4Kz6PwEPRB8eb0gEkz-2MD1F4QhNodtjN-e9_Py-iIKwQ2VSIeWRUSUTzyigQ-cQ6AUY6NcFpypUKYGKVim2uQCFciceFc0VsXI7XnJHSqHGyywZVXcEXxgnB4KomK4TIUqtSjOccIEsm6OYMweOQye57ahtYx0n84lF35WUPuvcEiWImuCjR6Ikhi5eWTy3zxgo2eecy3Z0sxbFQ4_Swgu33pW1AHy2qWNF61PUQHUaBRvd9dsi-Lf_G-KWkTFFBvWg0LqdlHgtssdf2q_5lBakMKrn__q0P2EZfTTRig_nLAg4RKM3NVx8N_wEafxOP priority: 102 providerName: ProQuest |
Title | Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811903007584 https://dx.doi.org/10.1016/j.neuroimage.2003.11.029 https://www.ncbi.nlm.nih.gov/pubmed/15050587 https://www.proquest.com/docview/1506609538 https://www.proquest.com/docview/71779158 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelg7KXsbVdly1t9dBXN3EsWTJ7Sr_IPpqNbS15E5Z9YhmLU-rkdX9772Q5obBCoC82lnVGkXQfyt39jrETJ5JCkYdR5rGIBDiIbI7snhVlPwFHriFKFL4ep6Mb8XkiJ1vsvM2FobDKIPsbme6ldWjphdns3U2nvZ9oGaC6QYWWkN7ThAkqhKJdfvpvHeaRxaJJh5NJRL1DNE8T4-UxI6cz5FyPDHpKeJ7e2PyvinrKBPWq6Oo1exVsSD5shvmGbUG1y3aug5d8j9W3eAD2M87njp99-3rBf8NsXjbF5_l9ExYLNc_9AHi9tPRvDD5XJbdUM4JTvQbs41u8L4GHwA-OH6UkJI_vjIPIPagJ1Pvs5ury1_koCsUVokJIuYisLglsXlsNMhsUToJVTg9QVblSAwwKreMi06DRZIn7uXN5bF2Gbc4qZXU_ecu2q3kF7xgnKwZPNmkuZSoKLZCnM4A0GeBSp2hAdphq59MUAXmcCmD8NW2I2R-zXgkqjJngwcTgSnRYvKK8a9A3NqDJ2iUzbXYpykODKmID2o8r2ke7cEPqbrtDTJAEtSEERw_qpzvsePUaeZgcM3kF82Vt8Eitslhij4NmX61_rKRKg1q9f9bAPrCX64CjLtte3C_hEG2phT3yzIJXNVFH7MXw05fRGO9nl-PvPx4As2Ii-A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDI_GkIAXxN9xbLA8wGPh0jZNqmlCwJhu7G68bOjeQpM6AsTasd4J8aX4jLPT9voC6F722KaO0tpx7Nr-mbEXPk2cogijLEQapeAhsgVu99yV4wQ8hYaoUHh2kk3O0o9zOd9gf_paGEqr7HViUNRl7egf-WtCwgvgaPrNxc-IukZRdLVvodGKxTH8_oUuW7N_dID8fRnHhx9O30-irqtA5FIpF5HVJaGsa6tB5rHzEqzyOkYd7UsNEDuthcs1aDyrxbjwvhDW53jPW6WsHic47w12kwbJ2VNzNYD8irQtvZNJpIXIu8yhNp8s4FN-O0ctEVBIXxF2aDBs_3oc_svcDcfe4T12t7NX-dtWwO6zDagesFuzLiL_kDWf0dkO3OW15-8-TQ_4Vzivy7bRPb9sU3Ch4UVYAG-Wlv784HVVckv9KTj1hsBnwp0Qt-BdkgnHSangKWBJ4yKKAKACzSN2di2f_DHbrOoKnjBOFhN6UVkhZZY6naL-yAGyJEaxytBYHTHVf0_jOpRzarbxw_TpbN_NwAlqwpmgE2SQEyMmVpQXLdLHGjR5zzLTV7Ki7jV4HK1Bu7ei7ayd1opZk3qnlxDTaZ3GDHtkxHZXw6gvKAhUVFAvG4Puu8qFxCe2WrkaXlZSV0Otnv5_6l12e3I6m5rp0cnxNrszZDLtsM3F5RKeoZG2sM_DzuDsy3VvxSvUxFFC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRBfjN8eouyDPlZu2267DSFGPC4gcBIjhrel2-5GCbRA72L81_zrnNlury9q7oXHfsym7XzsTGfmNwBvbBwVKWUYRc7jIDbWBDpHdc-KchQZS6khahQ-nib7p_GnM3G2Ar-7Xhgqq-xsojPUZV3QP_ItQsJz4Ghyy_qyiJPx5P31TUATpCjT2o3TaEXk0Pz6ieFbs3MwRl6_DcPJ3teP-4GfMBAUsRCzQMuSENellkZkYWGF0amVIdprW0pjwkJKXmTSSNy3-Si3NufaZnjO6jTVchThuvdgNaWoaACru3vTky895C-P20Y8EQWS88zXEbXVZQ6t8scV2gyHSfqOkESdm_vXzfFfzq_bBCcP4YH3XtmHVtwewYqpHsPasc_PP4HmG4bejtestmz389GYfTdXddmOvWe3bUGuaVjuHoA1c03_gfC4KpmmaRWMJkXgPe6My2IwX3LCcFFqf3LI0vgQuYNTMc1TOL2Tj_4MBlVdmRfAyH_CmCrJhUjiQsZoTTJjkihEIUvQdR1C2n1PVXjMcxq9cam64rYL1XOCRnJGGBIp5MQQ-ILyusX9WIIm61imur5WtMQKN6claLcXtN73aX2aJak3OglR3gY1qteYIWwuLqP1oJRQXpl63igM5tOMC7zjeStX_csKmnEo0_X_L70Ja6iG6uhgevgS7vdlTRswmN3OzSv02Gb6tVcNBud3rY1_ACaRVt0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variation+of+BOLD+hemodynamic+responses+across+subjects+and+brain+regions+and+their+effects+on+statistical+analyses&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Handwerker%2C+Daniel+A.&rft.au=Ollinger%2C+John+M.&rft.au=D%27Esposito%2C+Mark&rft.date=2004-04-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=21&rft.issue=4&rft.spage=1639&rft.epage=1651&rft_id=info:doi/10.1016%2Fj.neuroimage.2003.11.029&rft.externalDocID=S1053811903007584 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |