Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses

Estimates of hemodynamic response functions (HRF) are often integral parts of event-related fMRI analyses. Although HRFs vary across individuals and brain regions, few studies have investigated how variations affect the results of statistical analyses using the general linear model (GLM). In this st...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 21; no. 4; pp. 1639 - 1651
Main Authors Handwerker, Daniel A., Ollinger, John M., D'Esposito, Mark
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2004
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Estimates of hemodynamic response functions (HRF) are often integral parts of event-related fMRI analyses. Although HRFs vary across individuals and brain regions, few studies have investigated how variations affect the results of statistical analyses using the general linear model (GLM). In this study, we empirically estimated HRFs from primary motor and visual cortices and frontal and supplementary eye fields (SEF) in 20 subjects. We observed more variability across subjects than regions and correlated variation of time-to-peak values across several pairs of regions. Simulations examined the effects of observed variability on statistical results and ways different experimental designs and statistical models can limit these effects. Widely spaced and rapid event-related experimental designs with two sampling rates were tested. Statistical models compared an empirically derived HRF to a canonical HRF and included the first derivative of the HRF in the GLM. Small differences between the estimated and true HRFs did not cause false negatives, but larger differences within an observed range of variation, such as a 2.5-s time-to-onset misestimate, led to false negatives. Although small errors minimally affected detection of activity, time-to-onset misestimates as small as 1 s influenced model parameter estimation and therefore random effects analyses across subjects. Experiment and analysis design methods such as decreasing the sampling rate or including the HRF's temporal derivative in the GLM improved results, but did not eliminate errors caused by HRF misestimates. These results highlight the benefits of determining the best possible HRF estimate and potential negative consequences of assuming HRF consistency across subjects or brain regions.
AbstractList Estimates of hemodynamic response functions (HRF) are often integral parts of event-related fMRI analyses. Although HRFs vary across individuals and brain regions, few studies have investigated how variations affect the results of statistical analyses using the general linear model (GLM). In this study, we empirically estimated HRFs from primary motor and visual cortices and frontal and supplementary eye fields (SEF) in 20 subjects. We observed more variability across subjects than regions and correlated variation of time-to-peak values across several pairs of regions. Simulations examined the effects of observed variability on statistical results and ways different experimental designs and statistical models can limit these effects. Widely spaced and rapid event-related experimental designs with two sampling rates were tested. Statistical models compared an empirically derived HRF to a canonical HRF and included the first derivative of the HRF in the GLM. Small differences between the estimated and true HRFs did not cause false negatives, but larger differences within an observed range of variation, such as a 2.5-s time-to-onset misestimate, led to false negatives. Although small errors minimally affected detection of activity, time-to-onset misestimates as small as 1 s influenced model parameter estimation and therefore random effects analyses across subjects. Experiment and analysis design methods such as decreasing the sampling rate or including the HRF's temporal derivative in the GLM improved results, but did not eliminate errors caused by HRF misestimates. These results highlight the benefits of determining the best possible HRF estimate and potential negative consequences of assuming HRF consistency across subjects or brain regions.
Estimates of hemodynamic response functions (HRF) are often integral parts of event-related fMRI analyses. Although HRFs vary across individuals and brain regions, few studies have investigated how variations affect the results of statistical analyses using the general linear model (GLM). In this study, we empirically estimated HRFs from primary motor and visual cortices and frontal and supplementary eye fields (SEF) in 20 subjects. We observed more variability across subjects than regions and correlated variation of time-to-peak values across several pairs of regions. Simulations examined the effects of observed variability on statistical results and ways different experimental designs and statistical models can limit these effects. Widely spaced and rapid event-related experimental designs with two sampling rates were tested. Statistical models compared an empirically derived HRF to a canonical HRF and included the first derivative of the HRF in the GLM. Small differences between the estimated and true HRFs did not cause false negatives, but larger differences within an observed range of variation, such as a 2.5-s time-to-onset misestimate, led to false negatives. Although small errors minimally affected detection of activity, time-to-onset misestimates as small as 1 s influenced model parameter estimation and therefore random effects analyses across subjects. Experiment and analysis design methods such as decreasing the sampling rate or including the HRF's temporal derivative in the GLM improved results, but did not eliminate errors caused by HRF misestimates. These results highlight the benefits of determining the best possible HRF estimate and potential negative consequences of assuming HRF consistency across subjects or brain regions.Estimates of hemodynamic response functions (HRF) are often integral parts of event-related fMRI analyses. Although HRFs vary across individuals and brain regions, few studies have investigated how variations affect the results of statistical analyses using the general linear model (GLM). In this study, we empirically estimated HRFs from primary motor and visual cortices and frontal and supplementary eye fields (SEF) in 20 subjects. We observed more variability across subjects than regions and correlated variation of time-to-peak values across several pairs of regions. Simulations examined the effects of observed variability on statistical results and ways different experimental designs and statistical models can limit these effects. Widely spaced and rapid event-related experimental designs with two sampling rates were tested. Statistical models compared an empirically derived HRF to a canonical HRF and included the first derivative of the HRF in the GLM. Small differences between the estimated and true HRFs did not cause false negatives, but larger differences within an observed range of variation, such as a 2.5-s time-to-onset misestimate, led to false negatives. Although small errors minimally affected detection of activity, time-to-onset misestimates as small as 1 s influenced model parameter estimation and therefore random effects analyses across subjects. Experiment and analysis design methods such as decreasing the sampling rate or including the HRF's temporal derivative in the GLM improved results, but did not eliminate errors caused by HRF misestimates. These results highlight the benefits of determining the best possible HRF estimate and potential negative consequences of assuming HRF consistency across subjects or brain regions.
Author Ollinger, John M.
Handwerker, Daniel A.
D'Esposito, Mark
Author_xml – sequence: 1
  givenname: Daniel A.
  surname: Handwerker
  fullname: Handwerker, Daniel A.
  email: werker@socrates.berkeley.edu
  organization: Henry H. Wheeler Jr. Brain Imaging Center, Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA 94720, USA
– sequence: 2
  givenname: John M.
  surname: Ollinger
  fullname: Ollinger, John M.
  organization: Henry H. Wheeler Jr. Brain Imaging Center, Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA 94720, USA
– sequence: 3
  givenname: Mark
  surname: D'Esposito
  fullname: D'Esposito, Mark
  organization: Henry H. Wheeler Jr. Brain Imaging Center, Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA 94720, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15050587$$D View this record in MEDLINE/PubMed
BookMark eNqNkV2L1DAUhoOsuB_6FyQgeNeatJNpciO6q7sKA3uj3oY0PdlNbZMxaYX5957OrCzM1ZCLfPCch_C-l-QsxACEUM5Kzvj6Q18GmFP0o3mAsmKsLjkvWaVekAvOlCiUaKqz5SzqQnKuzsllzj1jTPGVfEXOuWC4ZHNB8i-TvJl8DDQ6en2_-UIfYYzdLpjRW5ogb2PIkKmxKeZM89z2YCe8h462yfiAzAOOH16mR_CJgnN7BqV5QnmevDUDAmbYoes1eenMkOHN035Fft5-_XHzrdjc332_-bwp7EqIqWhlt6olk60EoSrrBLSNk1XDpeskQGWl5FZJkOtVzZlxzvDWKXxzbdO0ktVX5P3Bu03xzwx50qPPFobBBIhz1g1vGsWFRPDdEdjHOeFvs8ak1muMtF6ot0_U3I7Q6W3C_NNO_w8TAXkA9lElcM8I00tvutfPvemlN825xt5w9OPRqPXTvpYJMx5OEVwfBICB_vWQdLYegoXOJ-xCd9GfIvl0JLGDD0t3v2F3muIfNjHSpw
CitedBy_id crossref_primary_10_1016_j_jneumeth_2013_10_018
crossref_primary_10_1016_j_neuroimage_2013_10_018
crossref_primary_10_1523_JNEUROSCI_3086_07_2008
crossref_primary_10_3389_fpsyg_2022_891682
crossref_primary_10_1002_hbm_21073
crossref_primary_10_3390_brainsci12111468
crossref_primary_10_1002_hbm_23256
crossref_primary_10_1016_j_ijinfomgt_2022_102531
crossref_primary_10_1016_j_neuroimage_2015_06_039
crossref_primary_10_1016_j_bspc_2014_07_004
crossref_primary_10_1016_j_neuroimage_2010_05_063
crossref_primary_10_1162_089892905774589208
crossref_primary_10_1016_j_neuropsychologia_2015_12_014
crossref_primary_10_1016_j_neuroimage_2005_08_024
crossref_primary_10_1007_s11336_012_9294_0
crossref_primary_10_3389_fnins_2017_00246
crossref_primary_10_1002_hbm_23008
crossref_primary_10_1002_hbm_24692
crossref_primary_10_1016_j_neuroimage_2013_10_029
crossref_primary_10_1016_j_neuroimage_2005_01_020
crossref_primary_10_1016_j_neuroimage_2023_120120
crossref_primary_10_1111_j_1528_1167_2010_02698_x
crossref_primary_10_1016_j_neuroimage_2012_01_067
crossref_primary_10_1016_j_cogbrainres_2005_09_018
crossref_primary_10_1007_s00422_007_0198_5
crossref_primary_10_1152_jn_00804_2013
crossref_primary_10_1016_j_media_2006_09_003
crossref_primary_10_1016_j_neuroimage_2021_118719
crossref_primary_10_1016_j_neuroimage_2010_05_053
crossref_primary_10_1016_j_neuroimage_2004_07_061
crossref_primary_10_1016_j_neuroimage_2017_12_094
crossref_primary_10_1016_j_neuroimage_2020_117459
crossref_primary_10_1016_j_neuroimage_2008_07_065
crossref_primary_10_1016_j_neures_2009_01_015
crossref_primary_10_1016_j_neuroimage_2006_04_199
crossref_primary_10_1016_j_neuroimage_2023_120118
crossref_primary_10_1109_TNSRE_2016_2593655
crossref_primary_10_1080_17470919_2016_1153518
crossref_primary_10_1002_hbm_26781
crossref_primary_10_1007_s11682_015_9359_7
crossref_primary_10_1016_j_neurad_2023_10_001
crossref_primary_10_1016_j_ejmp_2017_10_003
crossref_primary_10_1016_j_neuroimage_2011_05_009
crossref_primary_10_1002_hbm_23275
crossref_primary_10_1080_10255840903062552
crossref_primary_10_1016_j_neuroimage_2014_03_001
crossref_primary_10_1002_hipo_20141
crossref_primary_10_1016_j_neuroimage_2015_05_013
crossref_primary_10_1371_journal_pone_0234104
crossref_primary_10_1016_j_neuroimage_2009_07_007
crossref_primary_10_1016_j_neuroimage_2017_12_081
crossref_primary_10_1093_nc_nix013
crossref_primary_10_1016_j_neuroimage_2020_117328
crossref_primary_10_3389_fnins_2021_700171
crossref_primary_10_1016_j_neuroimage_2006_11_058
crossref_primary_10_1016_j_neuroimage_2020_117321
crossref_primary_10_1016_j_neuroimage_2008_06_030
crossref_primary_10_1038_s41467_022_28986_2
crossref_primary_10_1016_j_mri_2011_02_017
crossref_primary_10_1109_TIP_2017_2686014
crossref_primary_10_1016_j_neuroimage_2006_02_016
crossref_primary_10_1109_TMM_2013_2250267
crossref_primary_10_1007_s11517_020_02133_9
crossref_primary_10_1016_j_neuroimage_2005_01_040
crossref_primary_10_1016_j_neuroimage_2009_08_054
crossref_primary_10_1007_s12021_022_09613_3
crossref_primary_10_1016_j_neuroimage_2017_03_053
crossref_primary_10_1016_j_neuroimage_2009_07_015
crossref_primary_10_1038_s41598_018_23287_5
crossref_primary_10_1016_j_jneumeth_2010_03_013
crossref_primary_10_1093_scan_nsu126
crossref_primary_10_1016_j_neuroimage_2017_12_070
crossref_primary_10_1016_j_bspc_2015_09_006
crossref_primary_10_3389_fphys_2023_1167148
crossref_primary_10_1016_j_artmed_2019_03_007
crossref_primary_10_3389_fnins_2022_1009295
crossref_primary_10_3389_fnins_2023_1202705
crossref_primary_10_1016_j_cogbrainres_2005_01_010
crossref_primary_10_1038_s41467_021_23311_9
crossref_primary_10_1089_brain_2017_0571
crossref_primary_10_1002_hbm_22002
crossref_primary_10_1016_j_mri_2012_02_007
crossref_primary_10_1038_s41593_022_01218_y
crossref_primary_10_1016_j_yebeh_2013_11_019
crossref_primary_10_1080_26941899_2024_2426785
crossref_primary_10_1016_j_xpro_2021_101094
crossref_primary_10_1523_JNEUROSCI_4299_10_2011
crossref_primary_10_3389_fnins_2015_00375
crossref_primary_10_1016_j_neuroimage_2006_12_042
crossref_primary_10_1016_j_neuroimage_2021_117814
crossref_primary_10_1016_j_neuroimage_2008_05_019
crossref_primary_10_7554_eLife_86453
crossref_primary_10_1007_s10044_010_0186_6
crossref_primary_10_1038_s42003_024_05846_x
crossref_primary_10_1523_JNEUROSCI_1873_06_2006
crossref_primary_10_1016_j_neuroimage_2012_01_137
crossref_primary_10_1016_j_neuroimage_2017_02_052
crossref_primary_10_1111_j_1460_9568_2005_04092_x
crossref_primary_10_1016_j_yebeh_2010_11_010
crossref_primary_10_1002_hbm_25627
crossref_primary_10_1111_j_1528_1167_2010_02643_x
crossref_primary_10_1016_j_neuroimage_2016_08_001
crossref_primary_10_1371_journal_pone_0097296
crossref_primary_10_1016_j_neuroimage_2017_01_005
crossref_primary_10_1016_j_jneumeth_2020_108778
crossref_primary_10_1089_brain_2017_0566
crossref_primary_10_1186_s40708_021_00150_4
crossref_primary_10_1002_brb3_1341
crossref_primary_10_1523_JNEUROSCI_2353_05_2006
crossref_primary_10_1038_srep18262
crossref_primary_10_1007_s10548_008_0064_3
crossref_primary_10_1016_j_neuroimage_2020_117414
crossref_primary_10_1016_j_yebeh_2010_05_009
crossref_primary_10_3389_fnins_2017_00573
crossref_primary_10_1016_j_neuroimage_2020_117652
crossref_primary_10_1007_s10334_013_0401_8
crossref_primary_10_1016_j_neuroimage_2020_117654
crossref_primary_10_1002_hbm_22466
crossref_primary_10_1523_JNEUROSCI_3814_11_2012
crossref_primary_10_1016_j_neuroimage_2011_06_068
crossref_primary_10_1016_j_neuroimage_2013_04_071
crossref_primary_10_1016_j_neuroimage_2006_02_046
crossref_primary_10_1016_j_procs_2023_10_337
crossref_primary_10_1016_j_conb_2019_06_004
crossref_primary_10_1016_j_neuroimage_2005_10_018
crossref_primary_10_1007_s11682_021_00593_7
crossref_primary_10_1016_j_neuroimage_2006_12_029
crossref_primary_10_3389_fnhum_2015_00707
crossref_primary_10_3389_fnins_2019_00400
crossref_primary_10_1016_j_neuroimage_2011_01_074
crossref_primary_10_1038_s41598_025_94580_3
crossref_primary_10_1016_j_neuroimage_2012_07_056
crossref_primary_10_1016_j_heares_2022_108593
crossref_primary_10_1109_TAMD_2015_2411740
crossref_primary_10_1002_hbm_21289
crossref_primary_10_1002_hbm_23348
crossref_primary_10_1016_j_neuroimage_2023_120204
crossref_primary_10_1111_j_0021_8782_2004_00359_x
crossref_primary_10_7554_eLife_12047
crossref_primary_10_1002_hbm_23582
crossref_primary_10_1016_j_neuroimage_2023_120224
crossref_primary_10_1109_JPROC_2015_2425807
crossref_primary_10_1016_j_eplepsyres_2010_07_003
crossref_primary_10_1142_S0129065713500032
crossref_primary_10_3389_fnins_2014_00239
crossref_primary_10_1016_j_neuroimage_2006_12_031
crossref_primary_10_1016_j_neuroimage_2019_01_061
crossref_primary_10_1016_j_neures_2006_09_018
crossref_primary_10_1016_j_neuroimage_2019_04_012
crossref_primary_10_1016_j_conb_2004_08_006
crossref_primary_10_1007_s10548_013_0331_9
crossref_primary_10_1016_j_neuroimage_2017_12_032
crossref_primary_10_1016_j_ajp_2018_08_001
crossref_primary_10_1002_hbm_24424
crossref_primary_10_1016_j_neuroimage_2016_10_024
crossref_primary_10_1109_TMI_2012_2225636
crossref_primary_10_1002_hbm_22009
crossref_primary_10_1016_j_neuroimage_2024_120515
crossref_primary_10_3389_fneur_2014_00222
crossref_primary_10_1016_j_cub_2020_10_034
crossref_primary_10_1038_s41583_024_00881_3
crossref_primary_10_3389_fnins_2023_934138
crossref_primary_10_1016_j_clinph_2013_05_024
crossref_primary_10_1016_j_expneurol_2009_10_014
crossref_primary_10_1016_j_neuroimage_2008_05_052
crossref_primary_10_3389_fncom_2014_00173
crossref_primary_10_1002_jmri_21494
crossref_primary_10_1016_j_neuroimage_2009_07_064
crossref_primary_10_1523_JNEUROSCI_5053_03_2004
crossref_primary_10_1002_hipo_20087
crossref_primary_10_1016_j_neuroimage_2014_02_018
crossref_primary_10_1016_j_jneumeth_2010_09_005
crossref_primary_10_1017_S0007114513001384
crossref_primary_10_3390_e24040556
crossref_primary_10_3389_fnagi_2017_00211
crossref_primary_10_1371_journal_pone_0067428
crossref_primary_10_1073_pnas_1121049109
crossref_primary_10_1371_journal_pcbi_1008069
crossref_primary_10_1016_j_jneumeth_2007_11_033
crossref_primary_10_1016_j_neuropsychologia_2014_12_016
crossref_primary_10_1002_hbm_20379
crossref_primary_10_1093_cercor_bhab125
crossref_primary_10_1002_cb_1575
crossref_primary_10_1016_j_neuroimage_2017_02_090
crossref_primary_10_1089_brain_2014_0243
crossref_primary_10_1038_s41598_018_23996_x
crossref_primary_10_1016_j_neuroimage_2013_01_047
crossref_primary_10_1016_j_neuroimage_2022_118940
crossref_primary_10_1016_j_neuroimage_2017_01_041
crossref_primary_10_3389_fnins_2021_665707
crossref_primary_10_3389_fnins_2021_752332
crossref_primary_10_1161_01_STR_0000198807_31299_43
crossref_primary_10_1016_j_neuroimage_2008_01_044
crossref_primary_10_1017_S0033291709991632
crossref_primary_10_1073_pnas_2023265118
crossref_primary_10_1073_pnas_1525369113
crossref_primary_10_1002_hbm_23518
crossref_primary_10_1038_s42003_022_04000_9
crossref_primary_10_1002_hbm_23519
crossref_primary_10_1016_j_neuroimage_2008_10_065
crossref_primary_10_1016_j_neuroimage_2018_09_028
crossref_primary_10_1016_j_mri_2010_01_005
crossref_primary_10_1109_RBME_2011_2170675
crossref_primary_10_1093_cercor_bhaa165
crossref_primary_10_1186_1471_2202_10_137
crossref_primary_10_1016_j_nicl_2013_08_004
crossref_primary_10_1016_j_dsp_2018_09_007
crossref_primary_10_1016_j_neuroimage_2010_07_059
crossref_primary_10_1002_hbm_21010
crossref_primary_10_1111_ejn_12427
crossref_primary_10_1002_hbm_23551
crossref_primary_10_1073_pnas_1711567115
crossref_primary_10_3389_fpsyg_2023_1211528
crossref_primary_10_1016_j_tics_2024_07_008
crossref_primary_10_1016_j_cmpb_2017_03_015
crossref_primary_10_1016_j_neuroimage_2008_01_011
crossref_primary_10_1523_JNEUROSCI_5101_09_2010
crossref_primary_10_1007_s11055_014_0013_4
crossref_primary_10_1016_j_neuroimage_2021_118418
crossref_primary_10_1016_j_nicl_2018_101616
crossref_primary_10_1093_cercor_bhm195
crossref_primary_10_1016_j_neuroimage_2021_118658
crossref_primary_10_1016_j_neuroimage_2014_10_030
crossref_primary_10_1093_schbul_sbv188
crossref_primary_10_3233_JAD_190035
crossref_primary_10_1080_17470919_2011_638799
crossref_primary_10_1007_s10334_024_01197_0
crossref_primary_10_3389_fncom_2015_00054
crossref_primary_10_1371_journal_pone_0004645
crossref_primary_10_3389_fnins_2015_00304
crossref_primary_10_1016_j_neuron_2022_02_012
crossref_primary_10_1016_j_neuroimage_2013_01_067
crossref_primary_10_1089_brain_2016_0458
crossref_primary_10_1016_j_neuroimage_2009_11_014
crossref_primary_10_1016_j_heares_2024_109155
crossref_primary_10_1016_j_neuron_2008_07_035
crossref_primary_10_1016_j_neuroimage_2018_03_074
crossref_primary_10_1111_ejn_14970
crossref_primary_10_1016_j_neuroimage_2017_01_060
crossref_primary_10_1016_j_neuroimage_2004_05_012
crossref_primary_10_1109_TBME_2024_3395154
crossref_primary_10_1002_mrm_27146
crossref_primary_10_1016_j_neuroimage_2018_02_045
crossref_primary_10_1002_hbm_20389
crossref_primary_10_1016_j_neuroimage_2011_08_031
crossref_primary_10_1002_hbm_22569
crossref_primary_10_1002_hbm_25717
crossref_primary_10_1002_hbm_21116
crossref_primary_10_1016_j_neuroimage_2015_04_054
crossref_primary_10_1016_j_neuroimage_2012_09_049
crossref_primary_10_1016_j_neulet_2010_05_054
crossref_primary_10_1016_j_bandc_2012_01_001
crossref_primary_10_1016_j_neuroimage_2017_08_006
crossref_primary_10_1038_s41467_022_33010_8
crossref_primary_10_3389_fnins_2015_00419
crossref_primary_10_1016_j_neuroimage_2009_05_094
crossref_primary_10_1073_pnas_1503960112
crossref_primary_10_1162_jocn_2006_18_10_1712
crossref_primary_10_1016_j_neuroimage_2012_01_093
crossref_primary_10_1016_j_cogbrainres_2003_11_017
crossref_primary_10_1016_j_pneurobio_2021_102171
crossref_primary_10_1002_hbm_23608
crossref_primary_10_1126_science_1110913
crossref_primary_10_1016_j_tips_2014_05_001
crossref_primary_10_1016_j_neuroimage_2020_117146
crossref_primary_10_1016_j_neuroimage_2010_11_010
crossref_primary_10_1016_j_neuropsychologia_2014_05_008
crossref_primary_10_1002_hbm_23841
crossref_primary_10_1002_hbm_22514
crossref_primary_10_1007_s10334_016_0533_8
crossref_primary_10_1016_j_neuroimage_2012_09_038
crossref_primary_10_1098_rstb_2023_0093
crossref_primary_10_1155_2015_830849
crossref_primary_10_1523_JNEUROSCI_3482_12_2013
crossref_primary_10_1016_j_neuroimage_2009_03_014
crossref_primary_10_1016_j_neuroimage_2004_12_057
crossref_primary_10_1016_j_brainresbull_2005_06_008
crossref_primary_10_1016_j_neuroimage_2006_08_056
crossref_primary_10_1016_j_neuroimage_2013_02_048
crossref_primary_10_1098_rsta_2015_0185
crossref_primary_10_7554_eLife_77599
crossref_primary_10_3389_fnimg_2022_983324
crossref_primary_10_3390_ani12010108
crossref_primary_10_1162_netn_a_00116
crossref_primary_10_1162_netn_a_00117
crossref_primary_10_1073_pnas_0708965105
crossref_primary_10_1016_j_cortex_2016_11_017
crossref_primary_10_1016_j_pneurobio_2021_102174
crossref_primary_10_1016_j_neuroimage_2009_04_050
crossref_primary_10_1016_j_nicl_2016_06_016
crossref_primary_10_1002_hbm_20321
crossref_primary_10_1002_hbm_20446
crossref_primary_10_1016_j_cpet_2013_04_003
crossref_primary_10_1093_cercor_bhab210
crossref_primary_10_1002_hbm_22623
crossref_primary_10_1016_j_neuroimage_2009_11_081
crossref_primary_10_1109_ACCESS_2020_2994276
crossref_primary_10_1016_j_neuroimage_2014_04_052
crossref_primary_10_1016_j_neuroimage_2018_02_061
crossref_primary_10_1016_j_neuron_2020_07_024
crossref_primary_10_1371_journal_pone_0140537
crossref_primary_10_1016_j_neuroimage_2019_116059
crossref_primary_10_1016_j_cortex_2022_06_014
crossref_primary_10_1002_hbm_21452
crossref_primary_10_1016_j_dib_2017_07_072
crossref_primary_10_1016_j_neuroimage_2012_01_079
crossref_primary_10_1016_j_neuroimage_2016_06_019
crossref_primary_10_1002_hbm_20362
crossref_primary_10_1016_j_neuroimage_2015_11_045
crossref_primary_10_1002_sim_5449
crossref_primary_10_1016_j_jneumeth_2006_05_035
crossref_primary_10_3389_fninf_2014_00045
crossref_primary_10_7554_eLife_25606
crossref_primary_10_1016_j_neuroimage_2008_02_017
crossref_primary_10_1002_hbm_22897
crossref_primary_10_1007_s10334_020_00891_z
crossref_primary_10_1002_hbm_20234
crossref_primary_10_1016_j_compmedimag_2007_04_002
crossref_primary_10_1002_epi4_12252
crossref_primary_10_1002_hbm_21207
crossref_primary_10_1007_s00429_018_1630_4
crossref_primary_10_1016_j_neuroimage_2016_06_011
crossref_primary_10_1016_j_jneumeth_2018_12_007
crossref_primary_10_1016_j_jneumeth_2008_08_013
crossref_primary_10_1016_j_neuroimage_2011_07_049
crossref_primary_10_1016_j_nicl_2017_07_016
crossref_primary_10_1016_j_neuroimage_2014_02_008
crossref_primary_10_3389_fnagi_2017_00370
crossref_primary_10_3389_fnins_2019_00803
crossref_primary_10_1016_j_neuroimage_2015_10_002
crossref_primary_10_1016_j_neuroimage_2009_11_060
crossref_primary_10_1016_j_neuroimage_2012_08_014
crossref_primary_10_1068_i0536
crossref_primary_10_1007_s12576_018_0607_7
crossref_primary_10_1016_j_neuroimage_2011_02_018
crossref_primary_10_1016_j_celrep_2024_114723
crossref_primary_10_1371_journal_pone_0241695
crossref_primary_10_1111_desc_12812
crossref_primary_10_1016_j_neuroimage_2012_12_024
crossref_primary_10_1016_j_heares_2011_03_008
crossref_primary_10_1007_s11682_020_00304_8
crossref_primary_10_1016_j_bspc_2020_102099
crossref_primary_10_1186_1471_2202_9_84
crossref_primary_10_1007_s00259_023_06542_4
crossref_primary_10_1016_j_neuroimage_2005_05_043
crossref_primary_10_1093_cercor_bhl123
crossref_primary_10_1038_npp_2017_249
crossref_primary_10_1002_hbm_20771
crossref_primary_10_3389_fphy_2021_645249
crossref_primary_10_1002_hbm_23802
crossref_primary_10_1002_hbm_22711
crossref_primary_10_1093_cercor_bhac057
crossref_primary_10_1002_hbm_22714
crossref_primary_10_1016_j_neuroimage_2012_04_015
crossref_primary_10_1016_j_neuroimage_2011_02_008
crossref_primary_10_1016_j_neuroimage_2019_116367
crossref_primary_10_1016_j_nicl_2015_03_014
crossref_primary_10_1016_j_brainres_2019_04_005
crossref_primary_10_1016_j_neurobiolaging_2020_10_023
crossref_primary_10_3389_fnins_2016_00279
crossref_primary_10_1007_s00221_019_05613_z
crossref_primary_10_1093_cercor_bhv269
crossref_primary_10_1016_j_neuroimage_2011_03_071
crossref_primary_10_1097_WNR_0000000000000881
crossref_primary_10_1121_10_0000984
crossref_primary_10_1073_pnas_2219666120
crossref_primary_10_1109_TMI_2014_2379914
crossref_primary_10_1016_j_neuroimage_2007_01_020
crossref_primary_10_1002_hbm_20647
crossref_primary_10_1016_j_neuroimage_2013_05_100
crossref_primary_10_1016_j_neuroimage_2020_116920
crossref_primary_10_1109_TBME_2007_900795
crossref_primary_10_1117_1_NPh_1_1_015004
crossref_primary_10_1016_j_neuroimage_2013_05_105
crossref_primary_10_1093_schbul_sbab140
crossref_primary_10_1080_13803395_2014_953039
crossref_primary_10_1002_hbm_20760
crossref_primary_10_1093_scan_nsz037
crossref_primary_10_1523_JNEUROSCI_2428_16_2017
crossref_primary_10_1038_nn_3470
crossref_primary_10_3389_fpsyg_2021_690198
crossref_primary_10_3389_fpsyt_2018_00218
crossref_primary_10_1093_cercor_bhv294
crossref_primary_10_3390_brainsci11111472
crossref_primary_10_1016_j_neuroimage_2009_12_108
crossref_primary_10_1016_j_neuroimage_2022_119301
crossref_primary_10_1016_j_neuroimage_2019_116019
crossref_primary_10_1016_j_neuroimage_2010_01_075
crossref_primary_10_1016_j_jpain_2018_03_011
crossref_primary_10_1016_j_mri_2010_03_022
crossref_primary_10_1016_j_neuroimage_2023_119949
crossref_primary_10_3348_kjr_2011_12_4_463
crossref_primary_10_1098_rstb_2019_0635
crossref_primary_10_1016_j_neuroimage_2014_09_060
crossref_primary_10_1002_hbm_20310
crossref_primary_10_1016_j_mri_2017_01_019
crossref_primary_10_1016_j_neuroimage_2016_12_045
crossref_primary_10_1002_hbm_21403
crossref_primary_10_1098_rstb_2019_0631
crossref_primary_10_1016_j_neuroimage_2006_06_003
crossref_primary_10_1016_j_mri_2006_09_044
crossref_primary_10_1016_j_neuroimage_2009_05_027
crossref_primary_10_7554_eLife_84822
crossref_primary_10_1002_hbm_26094
crossref_primary_10_1016_j_neuroimage_2023_119959
crossref_primary_10_1002_hbm_20307
crossref_primary_10_1016_j_neuroimage_2007_02_045
crossref_primary_10_1371_journal_pcbi_1006299
crossref_primary_10_1371_journal_pone_0278753
crossref_primary_10_1016_j_jneumeth_2021_109218
crossref_primary_10_1016_j_ynirp_2021_100050
crossref_primary_10_1088_1741_2552_aaefda
crossref_primary_10_1371_journal_pone_0129970
crossref_primary_10_1016_j_neuroimage_2015_01_013
crossref_primary_10_1007_s00213_010_2111_5
crossref_primary_10_1002_hbm_26047
crossref_primary_10_4329_wjr_v6_i7_437
crossref_primary_10_1016_j_neuroimage_2009_12_044
crossref_primary_10_1016_j_nicl_2021_102901
crossref_primary_10_1523_JNEUROSCI_2036_19_2020
crossref_primary_10_1080_02664760802443962
crossref_primary_10_1038_nn_4406
crossref_primary_10_1371_journal_pone_0073629
crossref_primary_10_1162_jocn_a_00712
crossref_primary_10_1002_mrm_26365
crossref_primary_10_1109_TBME_2013_2258344
crossref_primary_10_1016_j_jpain_2013_08_004
crossref_primary_10_1016_j_neuroimage_2014_08_005
crossref_primary_10_1016_j_neuroimage_2019_116446
crossref_primary_10_1016_j_neuron_2014_10_013
crossref_primary_10_3390_e26090751
crossref_primary_10_1089_brain_2012_0091
crossref_primary_10_1016_j_neuroimage_2015_01_006
crossref_primary_10_1093_scan_nsn029
crossref_primary_10_1007_s10548_012_0225_2
crossref_primary_10_3389_fnins_2020_596084
crossref_primary_10_1016_j_neuroimage_2008_12_059
crossref_primary_10_3389_fams_2018_00025
crossref_primary_10_1016_j_neuroimage_2016_11_037
crossref_primary_10_1002_cnm_3828
crossref_primary_10_1016_j_neuroimage_2012_11_005
crossref_primary_10_1517_17460441_2_8_1029
crossref_primary_10_1109_TMI_2021_3122226
crossref_primary_10_1002_hbm_20606
crossref_primary_10_1016_j_dib_2018_01_003
crossref_primary_10_1162_0898929054475118
crossref_primary_10_1002_mrm_27566
crossref_primary_10_1002_jmri_24274
crossref_primary_10_1007_s00221_013_3558_5
crossref_primary_10_1109_TBME_2009_2039569
crossref_primary_10_1002_mrm_20839
crossref_primary_10_1093_cercor_bhab064
crossref_primary_10_1214_13_AOAS658
crossref_primary_10_1093_cercor_bhab065
crossref_primary_10_1016_j_cub_2020_01_090
crossref_primary_10_1016_j_pneurobio_2013_12_005
crossref_primary_10_1073_pnas_1804340115
crossref_primary_10_3389_fnins_2016_00322
crossref_primary_10_1093_cercor_bhx036
crossref_primary_10_1097_RMR_0b013e3182699283
crossref_primary_10_1523_JNEUROSCI_0298_23_2024
crossref_primary_10_1162_netn_a_00062
crossref_primary_10_1002_mrm_28208
crossref_primary_10_1016_j_schres_2022_02_007
crossref_primary_10_1016_j_neuroimage_2007_10_058
crossref_primary_10_1371_journal_pone_0039747
crossref_primary_10_1038_s41598_022_17601_5
crossref_primary_10_1016_j_neuroimage_2010_08_063
crossref_primary_10_1093_cercor_bhae458
crossref_primary_10_3389_fnins_2023_1220848
crossref_primary_10_1002_hbm_26057
crossref_primary_10_1016_j_neuroimage_2005_04_039
crossref_primary_10_1177_0271678X16643090
crossref_primary_10_1016_j_neuroimage_2019_116465
crossref_primary_10_1016_j_neuroimage_2014_01_046
crossref_primary_10_1038_s41598_024_51694_4
crossref_primary_10_1016_j_mri_2010_10_012
crossref_primary_10_1177_1073858418805427
crossref_primary_10_1016_j_neuroimage_2017_05_001
crossref_primary_10_1089_brain_2015_0392
crossref_primary_10_1002_jmri_20935
crossref_primary_10_1016_j_neuroimage_2008_09_036
crossref_primary_10_1126_sciadv_abc1304
crossref_primary_10_1016_j_cognition_2021_104735
crossref_primary_10_3389_fnhum_2019_00117
crossref_primary_10_1016_j_neuroimage_2015_02_026
crossref_primary_10_1016_j_neuropsychologia_2019_107307
crossref_primary_10_35193_bseufbd_1091035
crossref_primary_10_1002_hbm_22929
crossref_primary_10_1016_j_mri_2011_12_015
crossref_primary_10_3389_fnins_2022_928841
crossref_primary_10_1162_imag_a_00399
crossref_primary_10_1038_s41467_022_29770_y
crossref_primary_10_1038_s41598_019_39188_0
crossref_primary_10_1186_s40708_021_00140_6
crossref_primary_10_1016_j_neuri_2022_100092
crossref_primary_10_1016_j_neuri_2022_100093
crossref_primary_10_1098_rstb_2015_0546
crossref_primary_10_1016_j_neuroimage_2012_02_015
crossref_primary_10_1016_j_neuroimage_2016_11_069
crossref_primary_10_3390_brainsci11101294
crossref_primary_10_1016_j_neurobiolaging_2011_12_021
crossref_primary_10_3389_fnins_2024_1381722
crossref_primary_10_1016_j_jneumeth_2019_108451
crossref_primary_10_3389_fnhum_2015_00689
crossref_primary_10_1080_02643290442000464
crossref_primary_10_1007_s11517_008_0347_6
crossref_primary_10_1016_j_brainres_2007_08_011
crossref_primary_10_7554_eLife_21749
crossref_primary_10_1038_jcbfm_2013_200
crossref_primary_10_1038_s41398_022_02099_2
crossref_primary_10_1016_j_media_2023_102892
crossref_primary_10_1016_j_neuroimage_2022_119592
crossref_primary_10_1002_hbm_25264
crossref_primary_10_1162_jocn_2010_21459
crossref_primary_10_1177_2331216518786850
crossref_primary_10_1093_cercor_bhs396
crossref_primary_10_1523_JNEUROSCI_1940_23_2024
crossref_primary_10_1002_nbm_1575
crossref_primary_10_1007_s11682_020_00358_8
crossref_primary_10_1117_1_NPh_9_2_025003
crossref_primary_10_1073_pnas_1608117113
crossref_primary_10_1002_hbm_20925
crossref_primary_10_1016_j_mri_2013_03_015
crossref_primary_10_1016_j_neuroimage_2012_02_023
crossref_primary_10_1038_s41467_022_35117_4
crossref_primary_10_1038_srep21861
crossref_primary_10_3389_fnimg_2022_919694
crossref_primary_10_3389_fnins_2018_00287
crossref_primary_10_1002_jmri_24190
crossref_primary_10_1016_j_neuroimage_2010_01_109
crossref_primary_10_1016_j_neuroimage_2019_116412
crossref_primary_10_1523_JNEUROSCI_3754_14_2015
crossref_primary_10_1088_1741_2560_14_1_016004
crossref_primary_10_3389_fnins_2020_613990
crossref_primary_10_1038_s41562_016_0036
crossref_primary_10_1162_imag_a_00227
crossref_primary_10_1016_j_neuroimage_2005_03_022
crossref_primary_10_3389_fpsyt_2018_00273
crossref_primary_10_3389_fnhum_2016_00511
crossref_primary_10_1016_j_tics_2021_09_005
crossref_primary_10_2196_38407
crossref_primary_10_1093_cercor_bht153
crossref_primary_10_1016_j_neuroimage_2012_05_015
crossref_primary_10_1016_j_neuroimage_2020_116992
crossref_primary_10_1016_j_neuroimage_2011_03_005
crossref_primary_10_1016_j_neuroimage_2011_02_074
crossref_primary_10_1016_j_neuroimage_2012_06_054
crossref_primary_10_1007_s11336_012_9309_x
crossref_primary_10_1038_s41598_018_25705_0
crossref_primary_10_1007_s12559_023_10150_7
crossref_primary_10_1016_j_jneumeth_2015_11_011
crossref_primary_10_1097_WNR_0b013e3282f4a14f
crossref_primary_10_1093_scan_nsaa143
crossref_primary_10_1109_JSTSP_2008_2007763
crossref_primary_10_1162_netn_a_00099
crossref_primary_10_1016_j_cogbrainres_2004_02_008
crossref_primary_10_1016_j_neuroimage_2020_116621
crossref_primary_10_1038_s41386_020_00805_6
crossref_primary_10_1089_brain_2020_0790
crossref_primary_10_1162_nol_a_00101
crossref_primary_10_1007_s00221_010_2277_4
crossref_primary_10_1002_mrm_24557
crossref_primary_10_1093_cercor_bht258
crossref_primary_10_1002_mrm_27941
crossref_primary_10_1016_j_cortex_2007_11_005
crossref_primary_10_1016_j_neuroimage_2011_02_066
crossref_primary_10_1016_j_neuroimage_2013_04_010
crossref_primary_10_1089_brain_2017_0547
crossref_primary_10_1016_j_neuroimage_2018_06_021
crossref_primary_10_1080_1047840X_2011_567962
crossref_primary_10_1002_brb3_2042
crossref_primary_10_1038_s41597_021_01033_3
crossref_primary_10_1523_JNEUROSCI_2825_10_2010
crossref_primary_10_1002_hbm_23057
crossref_primary_10_1002_hbm_25357
crossref_primary_10_1177_0271678X17691056
crossref_primary_10_1016_j_nicl_2018_04_013
crossref_primary_10_1016_j_neuroimage_2012_10_052
crossref_primary_10_1523_JNEUROSCI_0824_06_2006
crossref_primary_10_1016_j_cobeha_2021_04_017
crossref_primary_10_1016_j_neuroimage_2016_02_056
crossref_primary_10_1016_j_cub_2012_05_022
crossref_primary_10_1038_nn2017
crossref_primary_10_1016_j_neuroimage_2009_09_020
crossref_primary_10_1002_ima_20141
crossref_primary_10_1016_j_neuroimage_2018_06_079
crossref_primary_10_1089_brain_2020_0864
crossref_primary_10_1162_imag_a_00203
crossref_primary_10_1007_s10548_017_0598_3
crossref_primary_10_1002_brb3_777
crossref_primary_10_1093_scan_nsl021
crossref_primary_10_1016_j_neubiorev_2024_105877
crossref_primary_10_1016_j_neuroimage_2016_01_028
crossref_primary_10_1007_s11724_014_0372_1
crossref_primary_10_1016_j_neuroimage_2006_10_020
crossref_primary_10_1016_j_neuroimage_2016_02_068
crossref_primary_10_1016_j_dcn_2017_09_005
crossref_primary_10_1016_j_brainres_2008_01_059
crossref_primary_10_1088_0031_9155_54_1_011
crossref_primary_10_1177_1550059413497946
crossref_primary_10_1016_j_bpsc_2021_10_008
crossref_primary_10_1007_s10548_013_0311_0
crossref_primary_10_1016_j_media_2013_01_003
crossref_primary_10_1038_s41593_019_0510_4
crossref_primary_10_1007_s00221_007_1221_8
crossref_primary_10_3389_fnins_2019_01451
crossref_primary_10_1016_j_brainres_2007_09_074
crossref_primary_10_1162_imag_a_00427
crossref_primary_10_1523_JNEUROSCI_0406_07_2007
crossref_primary_10_1523_JNEUROSCI_0803_23_2023
crossref_primary_10_1016_j_neuroimage_2020_116707
crossref_primary_10_1044_2021_JSLHR_20_00328
crossref_primary_10_1016_j_neuroimage_2010_01_031
crossref_primary_10_1111_j_1528_1167_2007_01239_x
crossref_primary_10_1177_0271678X15615133
crossref_primary_10_1016_j_neuroimage_2010_09_024
crossref_primary_10_1016_j_schres_2024_03_001
crossref_primary_10_3389_fnins_2019_00127
crossref_primary_10_1016_j_bandl_2016_11_004
crossref_primary_10_1016_j_neubiorev_2015_08_018
crossref_primary_10_1016_j_pscychresns_2012_03_005
crossref_primary_10_7717_peerj_923
crossref_primary_10_1088_1741_2560_13_4_046010
crossref_primary_10_1016_j_neuroimage_2018_06_056
crossref_primary_10_1027_2151_2604_a000145
crossref_primary_10_1002_hbm_26458
crossref_primary_10_1186_1471_2342_8_7
crossref_primary_10_1002_hbm_25243
crossref_primary_10_1016_j_jneumeth_2020_108836
crossref_primary_10_1016_j_mri_2017_09_007
crossref_primary_10_1016_j_neuron_2020_02_013
crossref_primary_10_1016_j_neucli_2007_05_001
crossref_primary_10_1080_03640210802451588
crossref_primary_10_1016_j_neuroimage_2017_03_017
crossref_primary_10_1002_hbm_24034
crossref_primary_10_1016_j_neucli_2007_05_003
crossref_primary_10_3389_fnhum_2016_00542
crossref_primary_10_1371_journal_pone_0026290
crossref_primary_10_1007_s10827_010_0271_2
crossref_primary_10_1016_j_neuroimage_2006_10_044
crossref_primary_10_1002_jmri_23802
crossref_primary_10_1007_s10384_024_01077_z
crossref_primary_10_1016_j_neuroimage_2007_05_025
crossref_primary_10_1016_j_neuroimage_2013_11_005
crossref_primary_10_1002_hbm_20907
crossref_primary_10_1093_cercor_bhu148
crossref_primary_10_3389_fnins_2017_00031
crossref_primary_10_1016_j_neuroimage_2018_12_054
crossref_primary_10_1371_journal_pcbi_1003265
crossref_primary_10_1002_sim_2981
crossref_primary_10_1111_j_1460_9568_2007_05816_x
Cites_doi 10.1002/hbm.10131
10.1006/nimg.2000.0568
10.1016/S1053-8119(03)00202-7
10.1006/nimg.2000.0728
10.1016/S0730-725X(01)00460-X
10.1006/nimg.2001.1017
10.1002/mrm.1910350618
10.1006/nimg.1998.0369
10.1002/ana.410370504
10.1006/nimg.2002.1096
10.1093/cercor/9.7.705
10.1006/nimg.1995.1007
10.1006/nimg.2001.0940
10.1002/(SICI)1097-0193(1997)5:4<243::AID-HBM7>3.0.CO;2-3
10.1002/mrm.1910350219
10.1148/radiology.173.1.2781017
10.1016/S1385-299X(99)00053-7
10.1239/aap/1029955192
10.1016/S0925-4927(98)00022-5
10.1006/nimg.2000.0560
10.1006/nimg.1997.0264
10.1006/nimg.1995.1023
10.1006/nimg.1997.0306
10.1002/hbm.460010207
10.1006/nimg.1999.0498
ContentType Journal Article
Copyright 2004 Elsevier Inc.
Copyright Elsevier Limited Apr 1, 2004
Copyright_xml – notice: 2004 Elsevier Inc.
– notice: Copyright Elsevier Limited Apr 1, 2004
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2003.11.029
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database (ProQuest)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


ProQuest One Psychology
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1651
ExternalDocumentID 3244232611
15050587
10_1016_j_neuroimage_2003_11_029
S1053811903007584
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: NS40813
– fundername: NIMH NIH HHS
  grantid: MH63901
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c455t-b8d43808b8e592cf5eb7f82718fd8ee2c881c98e864310affa1bf981cfb77b803
IEDL.DBID .~1
ISSN 1053-8119
IngestDate Fri Jul 11 11:41:54 EDT 2025
Wed Aug 13 10:42:22 EDT 2025
Wed Feb 19 01:37:27 EST 2025
Thu Apr 24 23:07:05 EDT 2025
Tue Jul 01 00:49:24 EDT 2025
Fri Feb 23 02:29:06 EST 2024
Tue Aug 26 18:14:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords fMRI
Saccades
Linear regression
Functional neuroimaging
Random effects
Activation latency
Hemodynamic response function
Visual areas
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-b8d43808b8e592cf5eb7f82718fd8ee2c881c98e864310affa1bf981cfb77b803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 15050587
PQID 1506609538
PQPubID 2031077
PageCount 13
ParticipantIDs proquest_miscellaneous_71779158
proquest_journals_1506609538
pubmed_primary_15050587
crossref_primary_10_1016_j_neuroimage_2003_11_029
crossref_citationtrail_10_1016_j_neuroimage_2003_11_029
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2003_11_029
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2003_11_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-04-01
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: 2004-04-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2004
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Duvernoy (BIB7) 1999
Curtis, Hirsch (BIB6) 2002
Kim, Hu (BIB19) 1996; 35
Friston, Fletcher (BIB10) 1998; 7
Friston, Jezzard, Turner (BIB30) 1994; 1
Friston, Zarahn (BIB12) 1999; 10
Zarahn (BIB29) 2000; 11
Gibbs, D'Esposito (BIB14) 2002
Liao, Worsley (BIB22) 2002; 16
Levin, Ross (BIB21) 1998; 82
Miezin, Maccotta (BIB24) 2000; 11
Bullmore, Brammer (BIB3) 1996; 35
Cao (BIB5) 1999; 31
Pierrot-Deseilligny, Rivaud (BIB26) 1995; 37
Ehman, Felmlee (BIB8) 1989; 173
Aguirre, Zarahn (BIB2) 1998; 8
Postle, Zarahn (BIB27) 2000; 5
Friston, Holmes (BIB9) 1995; 2
Grosbras, Lobel (BIB15) 1999; 9
Noseworthy, Alfonsi (BIB25) 2003; 20
Buxton (BIB4) 2002
Josephs, Turner (BIB18) 1997; 5
Levin, Frederick (BIB20) 2001; 19
Henson, Price (BIB16) 2002; 15
Aguirre, Zarahn (BIB1) 1997; 5
Friston, Holmes, Ashburner (BIB11) 1999
Friston, Harrison (BIB13) 2003; 19
Hernandez, Badre (BIB17) 2002; 17
Liu, Frank (BIB23) 2001; 13
Worsley, Friston (BIB28) 1995; 2
Postle (10.1016/j.neuroimage.2003.11.029_BIB27) 2000; 5
Kim (10.1016/j.neuroimage.2003.11.029_BIB19) 1996; 35
Noseworthy (10.1016/j.neuroimage.2003.11.029_BIB25) 2003; 20
Buxton (10.1016/j.neuroimage.2003.11.029_BIB4) 2002
Miezin (10.1016/j.neuroimage.2003.11.029_BIB24) 2000; 11
Curtis (10.1016/j.neuroimage.2003.11.029_BIB6) 2002
Duvernoy (10.1016/j.neuroimage.2003.11.029_BIB7) 1999
Levin (10.1016/j.neuroimage.2003.11.029_BIB20) 2001; 19
Josephs (10.1016/j.neuroimage.2003.11.029_BIB18) 1997; 5
Friston (10.1016/j.neuroimage.2003.11.029_BIB11) 1999
Friston (10.1016/j.neuroimage.2003.11.029_BIB12) 1999; 10
Friston (10.1016/j.neuroimage.2003.11.029_BIB13) 2003; 19
Levin (10.1016/j.neuroimage.2003.11.029_BIB21) 1998; 82
Gibbs (10.1016/j.neuroimage.2003.11.029_BIB14) 2002
Cao (10.1016/j.neuroimage.2003.11.029_BIB5) 1999; 31
Henson (10.1016/j.neuroimage.2003.11.029_BIB16) 2002; 15
Friston (10.1016/j.neuroimage.2003.11.029_BIB30) 1994; 1
Worsley (10.1016/j.neuroimage.2003.11.029_BIB28) 1995; 2
Aguirre (10.1016/j.neuroimage.2003.11.029_BIB2) 1998; 8
Bullmore (10.1016/j.neuroimage.2003.11.029_BIB3) 1996; 35
Hernandez (10.1016/j.neuroimage.2003.11.029_BIB17) 2002; 17
Friston (10.1016/j.neuroimage.2003.11.029_BIB9) 1995; 2
Friston (10.1016/j.neuroimage.2003.11.029_BIB10) 1998; 7
Aguirre (10.1016/j.neuroimage.2003.11.029_BIB1) 1997; 5
Zarahn (10.1016/j.neuroimage.2003.11.029_BIB29) 2000; 11
Ehman (10.1016/j.neuroimage.2003.11.029_BIB8) 1989; 173
Pierrot-Deseilligny (10.1016/j.neuroimage.2003.11.029_BIB26) 1995; 37
Liu (10.1016/j.neuroimage.2003.11.029_BIB23) 2001; 13
Grosbras (10.1016/j.neuroimage.2003.11.029_BIB15) 1999; 9
Liao (10.1016/j.neuroimage.2003.11.029_BIB22) 2002; 16
References_xml – volume: 8
  start-page: 360
  year: 1998
  end-page: 369
  ident: BIB2
  article-title: The variability of human, BOLD hemodynamic responses
  publication-title: NeuroImage
– volume: 35
  start-page: 895
  year: 1996
  end-page: 902
  ident: BIB19
  article-title: Fast interleaved echo-planar imaging with navigator: high resolution anatomic and functional images at 5 Tesla
  publication-title: Magn. Reson. Med.
– volume: 5
  start-page: 243
  year: 1997
  end-page: 248
  ident: BIB18
  article-title: Event-related fMRI
  publication-title: Hum. Brain Mapp.
– volume: 17
  start-page: 1018
  year: 2002
  end-page: 1026
  ident: BIB17
  article-title: Temporal sensitivity of event-related fMRI
  publication-title: NeuroImage
– volume: 19
  start-page: 1055
  year: 2001
  end-page: 1062
  ident: BIB20
  article-title: Influence of baseline hematocrit and hemodilution on BOLD fMRI activation
  publication-title: Magn. Reson. Imaging
– volume: 7
  start-page: 30
  year: 1998
  end-page: 40
  ident: BIB10
  article-title: Event-related fMRI: characterizing differential responses
  publication-title: NeuroImage
– volume: 20
  start-page: 116
  year: 2003
  end-page: 121
  ident: BIB25
  article-title: Attenuation of brain BOLD response following lipid ingestion
  publication-title: Hum. Brain Mapp.
– volume: 15
  start-page: 83
  year: 2002
  end-page: 97
  ident: BIB16
  article-title: Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations
  publication-title: NeuroImage
– volume: 35
  start-page: 261
  year: 1996
  end-page: 277
  ident: BIB3
  article-title: Statistical methods of estimation and inference for functional MR image analysis
  publication-title: Magn. Reson. Med.
– volume: 2
  start-page: 173
  year: 1995
  end-page: 181
  ident: BIB28
  article-title: Analysis of fMRI time-series revisited—Again
  publication-title: NeuroImage
– year: 2002
  ident: BIB6
  article-title: Maintenance of Spatial Information in the Frontal Cortex During Oculomotor Delayed-Response Tasks
– volume: 31
  start-page: 579
  year: 1999
  end-page: 595
  ident: BIB5
  article-title: The size of the connected components of excursion sets of chi-square, t, and F fields
  publication-title: Adv. Appl. Probab.
– volume: 5
  start-page: 57
  year: 2000
  end-page: 66
  ident: BIB27
  article-title: Using event-related fMRI to assess delay-period activity during performance of spatial and nonspatial working memory tasks
  publication-title: Brain Res. Protoc.
– year: 2002
  ident: BIB4
  article-title: Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques
– volume: 11
  start-page: 783
  year: 2000
  end-page: 796
  ident: BIB29
  article-title: Testing for neural responses during temporal components of trials with BOLD fMRI
  publication-title: NeuroImage
– volume: 2
  start-page: 45
  year: 1995
  end-page: 53
  ident: BIB9
  article-title: Analysis of fMRI time-series revisited
  publication-title: NeuroImage
– volume: 19
  start-page: 1273
  year: 2003
  end-page: 1302
  ident: BIB13
  article-title: Dynamic causal modelling
  publication-title: NeuroImage
– volume: 9
  start-page: 705
  year: 1999
  end-page: 711
  ident: BIB15
  article-title: An anatomical landmark for the supplementary eye fields in human revealed with functional magnetic resonance imaging
  publication-title: Cereb. Cortex
– year: 2002
  ident: BIB14
  article-title: Effects of a Dopaminergic Agonist on Working Memory Performance Assessed with fMRI
– year: 1999
  ident: BIB11
  article-title: Statistical Parametric Mapping (SPM)
– volume: 16
  start-page: 593
  year: 2002
  end-page: 606
  ident: BIB22
  article-title: Estimating the delay of the fMRI response
  publication-title: NeuroImage
– volume: 13
  start-page: 759
  year: 2001
  end-page: 773
  ident: BIB23
  article-title: Detection power, estimation efficiency, and predictability in event-related fMRI
  publication-title: NeuroImage
– volume: 11
  start-page: 735
  year: 2000
  end-page: 759
  ident: BIB24
  article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing
  publication-title: NeuroImage
– volume: 5
  start-page: 199
  year: 1997
  end-page: 212
  ident: BIB1
  article-title: Empirical analyses of BOLD fMRI statistics: II. Spatially smoothed data collected under null-hypothesis and experimental conditions
  publication-title: NeuroImage
– year: 1999
  ident: BIB7
  article-title: The Human Brain Surface, Blood Supply, and Three-dimensional Sectional Anatomy
– volume: 1
  start-page: 153
  year: 1994
  end-page: 171
  ident: BIB30
  article-title: Analysis of functional MRI time-series
  publication-title: Human Brain Mapping
– volume: 82
  start-page: 135
  year: 1998
  end-page: 146
  ident: BIB21
  article-title: Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion
  publication-title: Psychiatry Res.
– volume: 10
  start-page: 607
  year: 1999
  end-page: 619
  ident: BIB12
  article-title: Stochastic designs in event-related fMRI
  publication-title: NeuroImage
– volume: 37
  start-page: 557
  year: 1995
  end-page: 567
  ident: BIB26
  article-title: Cortical control of saccades
  publication-title: Ann. Neurol.
– volume: 173
  start-page: 255
  year: 1989
  end-page: 263
  ident: BIB8
  article-title: Adaptive technique for high-definition MR imaging of moving structures
  publication-title: Radiology
– volume: 20
  start-page: 116
  issue: 2
  year: 2003
  ident: 10.1016/j.neuroimage.2003.11.029_BIB25
  article-title: Attenuation of brain BOLD response following lipid ingestion
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10131
– year: 1999
  ident: 10.1016/j.neuroimage.2003.11.029_BIB11
– volume: 11
  start-page: 735
  issue: 6 Pt. 1
  year: 2000
  ident: 10.1016/j.neuroimage.2003.11.029_BIB24
  article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0568
– year: 1999
  ident: 10.1016/j.neuroimage.2003.11.029_BIB7
– volume: 19
  start-page: 1273
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2003.11.029_BIB13
  article-title: Dynamic causal modelling
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00202-7
– year: 2002
  ident: 10.1016/j.neuroimage.2003.11.029_BIB4
– volume: 13
  start-page: 759
  issue: 4
  year: 2001
  ident: 10.1016/j.neuroimage.2003.11.029_BIB23
  article-title: Detection power, estimation efficiency, and predictability in event-related fMRI
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0728
– volume: 19
  start-page: 1055
  issue: 8
  year: 2001
  ident: 10.1016/j.neuroimage.2003.11.029_BIB20
  article-title: Influence of baseline hematocrit and hemodilution on BOLD fMRI activation
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(01)00460-X
– volume: 17
  start-page: 1018
  issue: 2
  year: 2002
  ident: 10.1016/j.neuroimage.2003.11.029_BIB17
  article-title: Temporal sensitivity of event-related fMRI
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.1017
– volume: 35
  start-page: 895
  issue: 6
  year: 1996
  ident: 10.1016/j.neuroimage.2003.11.029_BIB19
  article-title: Fast interleaved echo-planar imaging with navigator: high resolution anatomic and functional images at 5 Tesla
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910350618
– volume: 8
  start-page: 360
  issue: 4
  year: 1998
  ident: 10.1016/j.neuroimage.2003.11.029_BIB2
  article-title: The variability of human, BOLD hemodynamic responses
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0369
– year: 2002
  ident: 10.1016/j.neuroimage.2003.11.029_BIB6
– volume: 37
  start-page: 557
  issue: 5
  year: 1995
  ident: 10.1016/j.neuroimage.2003.11.029_BIB26
  article-title: Cortical control of saccades
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410370504
– volume: 16
  start-page: 593
  issue: 3 Pt. 1
  year: 2002
  ident: 10.1016/j.neuroimage.2003.11.029_BIB22
  article-title: Estimating the delay of the fMRI response
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1096
– volume: 9
  start-page: 705
  issue: 7
  year: 1999
  ident: 10.1016/j.neuroimage.2003.11.029_BIB15
  article-title: An anatomical landmark for the supplementary eye fields in human revealed with functional magnetic resonance imaging
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/9.7.705
– volume: 2
  start-page: 45
  issue: 1
  year: 1995
  ident: 10.1016/j.neuroimage.2003.11.029_BIB9
  article-title: Analysis of fMRI time-series revisited
  publication-title: NeuroImage
  doi: 10.1006/nimg.1995.1007
– volume: 15
  start-page: 83
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2003.11.029_BIB16
  article-title: Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0940
– volume: 5
  start-page: 243
  issue: 4
  year: 1997
  ident: 10.1016/j.neuroimage.2003.11.029_BIB18
  article-title: Event-related fMRI
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1997)5:4<243::AID-HBM7>3.0.CO;2-3
– volume: 35
  start-page: 261
  issue: 2
  year: 1996
  ident: 10.1016/j.neuroimage.2003.11.029_BIB3
  article-title: Statistical methods of estimation and inference for functional MR image analysis
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910350219
– volume: 173
  start-page: 255
  issue: 1
  year: 1989
  ident: 10.1016/j.neuroimage.2003.11.029_BIB8
  article-title: Adaptive technique for high-definition MR imaging of moving structures
  publication-title: Radiology
  doi: 10.1148/radiology.173.1.2781017
– volume: 5
  start-page: 57
  issue: 1
  year: 2000
  ident: 10.1016/j.neuroimage.2003.11.029_BIB27
  article-title: Using event-related fMRI to assess delay-period activity during performance of spatial and nonspatial working memory tasks
  publication-title: Brain Res. Protoc.
  doi: 10.1016/S1385-299X(99)00053-7
– year: 2002
  ident: 10.1016/j.neuroimage.2003.11.029_BIB14
– volume: 31
  start-page: 579
  year: 1999
  ident: 10.1016/j.neuroimage.2003.11.029_BIB5
  article-title: The size of the connected components of excursion sets of chi-square, t, and F fields
  publication-title: Adv. Appl. Probab.
  doi: 10.1239/aap/1029955192
– volume: 82
  start-page: 135
  issue: 3
  year: 1998
  ident: 10.1016/j.neuroimage.2003.11.029_BIB21
  article-title: Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion
  publication-title: Psychiatry Res.
  doi: 10.1016/S0925-4927(98)00022-5
– volume: 11
  start-page: 783
  issue: 6 Pt. 1
  year: 2000
  ident: 10.1016/j.neuroimage.2003.11.029_BIB29
  article-title: Testing for neural responses during temporal components of trials with BOLD fMRI
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0560
– volume: 5
  start-page: 199
  issue: 3
  year: 1997
  ident: 10.1016/j.neuroimage.2003.11.029_BIB1
  article-title: Empirical analyses of BOLD fMRI statistics: II. Spatially smoothed data collected under null-hypothesis and experimental conditions
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0264
– volume: 2
  start-page: 173
  issue: 3
  year: 1995
  ident: 10.1016/j.neuroimage.2003.11.029_BIB28
  article-title: Analysis of fMRI time-series revisited—Again
  publication-title: NeuroImage
  doi: 10.1006/nimg.1995.1023
– volume: 7
  start-page: 30
  issue: 1
  year: 1998
  ident: 10.1016/j.neuroimage.2003.11.029_BIB10
  article-title: Event-related fMRI: characterizing differential responses
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0306
– volume: 1
  start-page: 153
  year: 1994
  ident: 10.1016/j.neuroimage.2003.11.029_BIB30
  article-title: Analysis of functional MRI time-series
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.460010207
– volume: 10
  start-page: 607
  issue: 5
  year: 1999
  ident: 10.1016/j.neuroimage.2003.11.029_BIB12
  article-title: Stochastic designs in event-related fMRI
  publication-title: NeuroImage
  doi: 10.1006/nimg.1999.0498
SSID ssj0009148
Score 2.3868742
Snippet Estimates of hemodynamic response functions (HRF) are often integral parts of event-related fMRI analyses. Although HRFs vary across individuals and brain...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1639
SubjectTerms Activation latency
Adolescent
Adult
Analysis of Variance
Brain - blood supply
Brain Mapping
Cerebral Cortex - physiology
Dominance, Cerebral - physiology
Echo-Planar Imaging
Estimates
Evoked Potentials - physiology
Experiments
Female
fMRI
Frontal Lobe - physiology
Functional neuroimaging
Hemodynamic response function
Hemodynamics - physiology
Humans
Image Enhancement
Image Interpretation, Computer-Assisted
Image Processing, Computer-Assisted
Linear Models
Linear regression
Magnetic Resonance Imaging - statistics & numerical data
Male
Mathematical Computing
Motor Cortex - physiology
Oxygen - blood
Pattern Recognition, Visual - physiology
Psychomotor Performance - physiology
Random effects
Reaction Time - physiology
Reflex - physiology
Saccades
Saccades - physiology
Statistics as Topic
Studies
Time series
Visual areas
Visual Cortex - physiology
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELXKVkJcKigfXVhaH7gGNps4dtQDoh8IVUAvBe3Nip2xALEJkN3_3xnH2VwA7XGznijJeOxnz_g9xo5cmlhJGUZRxGmUgoPIFBjuuS3HCThKDdFB4avr7OIm_TMV07Dh1oSyym5M9AN1WVvaIz8hJjxPjqZOn54jUo2i7GqQ0FhjH4m6jHq1nMqedDdO26NwIokUNgiVPG19l-eLvJ9h1HpW0GPi8vRA89Xp6S346aeh8032KeBHftY6fIt9gOozW78KGfJt1tzi4td_bV47_uPv5S9-B7O6bIXn-UtbEgsNL_wD8GZhaCcGf1clN6QXwUmrAdv4Kz6PwEPRB8eb0gEkz-2MD1F4QhNodtjN-e9_Py-iIKwQ2VSIeWRUSUTzyigQ-cQ6AUY6NcFpypUKYGKVim2uQCFciceFc0VsXI7XnJHSqHGyywZVXcEXxgnB4KomK4TIUqtSjOccIEsm6OYMweOQye57ahtYx0n84lF35WUPuvcEiWImuCjR6Ikhi5eWTy3zxgo2eecy3Z0sxbFQ4_Swgu33pW1AHy2qWNF61PUQHUaBRvd9dsi-Lf_G-KWkTFFBvWg0LqdlHgtssdf2q_5lBakMKrn__q0P2EZfTTRig_nLAg4RKM3NVx8N_wEafxOP
  priority: 102
  providerName: ProQuest
Title Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811903007584
https://dx.doi.org/10.1016/j.neuroimage.2003.11.029
https://www.ncbi.nlm.nih.gov/pubmed/15050587
https://www.proquest.com/docview/1506609538
https://www.proquest.com/docview/71779158
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelg7KXsbVdly1t9dBXN3EsWTJ7Sr_IPpqNbS15E5Z9YhmLU-rkdX9772Q5obBCoC82lnVGkXQfyt39jrETJ5JCkYdR5rGIBDiIbI7snhVlPwFHriFKFL4ep6Mb8XkiJ1vsvM2FobDKIPsbme6ldWjphdns3U2nvZ9oGaC6QYWWkN7ThAkqhKJdfvpvHeaRxaJJh5NJRL1DNE8T4-UxI6cz5FyPDHpKeJ7e2PyvinrKBPWq6Oo1exVsSD5shvmGbUG1y3aug5d8j9W3eAD2M87njp99-3rBf8NsXjbF5_l9ExYLNc_9AHi9tPRvDD5XJbdUM4JTvQbs41u8L4GHwA-OH6UkJI_vjIPIPagJ1Pvs5ury1_koCsUVokJIuYisLglsXlsNMhsUToJVTg9QVblSAwwKreMi06DRZIn7uXN5bF2Gbc4qZXU_ecu2q3kF7xgnKwZPNmkuZSoKLZCnM4A0GeBSp2hAdphq59MUAXmcCmD8NW2I2R-zXgkqjJngwcTgSnRYvKK8a9A3NqDJ2iUzbXYpykODKmID2o8r2ke7cEPqbrtDTJAEtSEERw_qpzvsePUaeZgcM3kF82Vt8Eitslhij4NmX61_rKRKg1q9f9bAPrCX64CjLtte3C_hEG2phT3yzIJXNVFH7MXw05fRGO9nl-PvPx4As2Ii-A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDI_GkIAXxN9xbLA8wGPh0jZNqmlCwJhu7G68bOjeQpM6AsTasd4J8aX4jLPT9voC6F722KaO0tpx7Nr-mbEXPk2cogijLEQapeAhsgVu99yV4wQ8hYaoUHh2kk3O0o9zOd9gf_paGEqr7HViUNRl7egf-WtCwgvgaPrNxc-IukZRdLVvodGKxTH8_oUuW7N_dID8fRnHhx9O30-irqtA5FIpF5HVJaGsa6tB5rHzEqzyOkYd7UsNEDuthcs1aDyrxbjwvhDW53jPW6WsHic47w12kwbJ2VNzNYD8irQtvZNJpIXIu8yhNp8s4FN-O0ctEVBIXxF2aDBs_3oc_svcDcfe4T12t7NX-dtWwO6zDagesFuzLiL_kDWf0dkO3OW15-8-TQ_4Vzivy7bRPb9sU3Ch4UVYAG-Wlv784HVVckv9KTj1hsBnwp0Qt-BdkgnHSangKWBJ4yKKAKACzSN2di2f_DHbrOoKnjBOFhN6UVkhZZY6naL-yAGyJEaxytBYHTHVf0_jOpRzarbxw_TpbN_NwAlqwpmgE2SQEyMmVpQXLdLHGjR5zzLTV7Ki7jV4HK1Bu7ei7ayd1opZk3qnlxDTaZ3GDHtkxHZXw6gvKAhUVFAvG4Puu8qFxCe2WrkaXlZSV0Otnv5_6l12e3I6m5rp0cnxNrszZDLtsM3F5RKeoZG2sM_DzuDsy3VvxSvUxFFC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRBfjN8eouyDPlZu2267DSFGPC4gcBIjhrel2-5GCbRA72L81_zrnNlury9q7oXHfsym7XzsTGfmNwBvbBwVKWUYRc7jIDbWBDpHdc-KchQZS6khahQ-nib7p_GnM3G2Ar-7Xhgqq-xsojPUZV3QP_ItQsJz4Ghyy_qyiJPx5P31TUATpCjT2o3TaEXk0Pz6ieFbs3MwRl6_DcPJ3teP-4GfMBAUsRCzQMuSENellkZkYWGF0amVIdprW0pjwkJKXmTSSNy3-Si3NufaZnjO6jTVchThuvdgNaWoaACru3vTky895C-P20Y8EQWS88zXEbXVZQ6t8scV2gyHSfqOkESdm_vXzfFfzq_bBCcP4YH3XtmHVtwewYqpHsPasc_PP4HmG4bejtestmz389GYfTdXddmOvWe3bUGuaVjuHoA1c03_gfC4KpmmaRWMJkXgPe6My2IwX3LCcFFqf3LI0vgQuYNTMc1TOL2Tj_4MBlVdmRfAyH_CmCrJhUjiQsZoTTJjkihEIUvQdR1C2n1PVXjMcxq9cam64rYL1XOCRnJGGBIp5MQQ-ILyusX9WIIm61imur5WtMQKN6claLcXtN73aX2aJak3OglR3gY1qteYIWwuLqP1oJRQXpl63igM5tOMC7zjeStX_csKmnEo0_X_L70Ja6iG6uhgevgS7vdlTRswmN3OzSv02Gb6tVcNBud3rY1_ACaRVt0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variation+of+BOLD+hemodynamic+responses+across+subjects+and+brain+regions+and+their+effects+on+statistical+analyses&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Handwerker%2C+Daniel+A.&rft.au=Ollinger%2C+John+M.&rft.au=D%27Esposito%2C+Mark&rft.date=2004-04-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=21&rft.issue=4&rft.spage=1639&rft.epage=1651&rft_id=info:doi/10.1016%2Fj.neuroimage.2003.11.029&rft.externalDocID=S1053811903007584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon