Electrosynthesis and characterization of nanostructured polyquinone for use in detection and quantification of naturally occurring dsDNA
The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the pre...
Saved in:
Published in | Biosensors & bioelectronics Vol. 79; pp. 280 - 287 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
15.05.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0956-5663 1873-4235 1873-4235 |
DOI | 10.1016/j.bios.2015.12.041 |
Cover
Loading…
Abstract | The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the preparation of a low-cost electrode, modified with poly(1-amino-9,10-anthraquinone) nanowires using a SiO2 template, is carried out; the assembly is next modified by covalently attaching ssDNA strands. It must be noted that all this is accomplished by using solely electrochemical techniques, according to methodology developed for this purpose. SEM images of the modified surface show high order and homogeneity in the distribution of modified nanowires over the electrode surface. In turn, after the hybridization with its complementary strand, the voltammetric responses enable corroborating the linear relationship between hybridization at different DNA concentrations and normalized current response, obtaining a limit of detection (LOD) 5.7·10−12gL−1 and limit of quantification (LOQ) 1.9·10−11gL−1. The working dynamic range is between 1.4·10−7 and 8.5·10−9gL−1 with a correlation coefficient 0.9998. The successful obtaining of the modified electrode allows concluding that the high order reached by the nanostructures, guides the subsequent single strand of DNA (ssDNA) covalent attachment, which after hybridization with its complementary strand brings about a considerable current increase. This result allows foreseeing a guaranteed breakthrough with regard to the use of the biosensor in real samples.
•P1AAQnanowires were electro-synthesized directly on a steel electrode.•Covalent modification of the P1AAQ nanowires with DNA, was corroborated by SEM images.•The analytic parameters for this new biosensor of DNA was: LOD of 5.7·10−12gL−1with a R2 of 0.9998. |
---|---|
AbstractList | The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the preparation of a low-cost electrode, modified with poly(1-amino-9,10-anthraquinone) nanowires using a SiO2 template, is carried out; the assembly is next modified by covalently attaching ssDNA strands. It must be noted that all this is accomplished by using solely electrochemical techniques, according to methodology developed for this purpose. SEM images of the modified surface show high order and homogeneity in the distribution of modified nanowires over the electrode surface. In turn, after the hybridization with its complementary strand, the voltammetric responses enable corroborating the linear relationship between hybridization at different DNA concentrations and normalized current response, obtaining a limit of detection (LOD) 5.7·10⁻¹²gL⁻¹ and limit of quantification (LOQ) 1.9·10⁻¹¹gL⁻¹. The working dynamic range is between 1.4·10⁻⁷ and 8.5·10⁻⁹gL⁻¹ with a correlation coefficient 0.9998. The successful obtaining of the modified electrode allows concluding that the high order reached by the nanostructures, guides the subsequent single strand of DNA (ssDNA) covalent attachment, which after hybridization with its complementary strand brings about a considerable current increase. This result allows foreseeing a guaranteed breakthrough with regard to the use of the biosensor in real samples. The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the preparation of a low-cost electrode, modified with poly(1-amino-9,10-anthraquinone) nanowires using a SiO2 template, is carried out; the assembly is next modified by covalently attaching ssDNA strands. It must be noted that all this is accomplished by using solely electrochemical techniques, according to methodology developed for this purpose. SEM images of the modified surface show high order and homogeneity in the distribution of modified nanowires over the electrode surface. In turn, after the hybridization with its complementary strand, the voltammetric responses enable corroborating the linear relationship between hybridization at different DNA concentrations and normalized current response, obtaining a limit of detection (LOD) 5.7.10-12 gL-1 and limit of quantification (LOQ) 1.9.10-11 gL-1. The working dynamic range is between 1.4.10-7 and 8.5.10-9 gL-1 with a correlation coefficient 0.9998. The successful obtaining of the modified electrode allows concluding that the high order reached by the nanostructures, guides the subsequent single strand of DNA (ssDNA) covalent attachment, which after hybridization with its complementary strand brings about a considerable current increase. This result allows foreseeing a guaranteed breakthrough with regard to the use of the biosensor in real samples. The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the preparation of a low-cost electrode, modified with poly(1-amino-9,10-anthraquinone) nanowires using a SiO2 template, is carried out; the assembly is next modified by covalently attaching ssDNA strands. It must be noted that all this is accomplished by using solely electrochemical techniques, according to methodology developed for this purpose. SEM images of the modified surface show high order and homogeneity in the distribution of modified nanowires over the electrode surface. In turn, after the hybridization with its complementary strand, the voltammetric responses enable corroborating the linear relationship between hybridization at different DNA concentrations and normalized current response, obtaining a limit of detection (LOD) 5.7·10(-12)gL(-1) and limit of quantification (LOQ) 1.9·10(-11)gL(-1). The working dynamic range is between 1.4·10(-7) and 8.5·10(-9)gL(-1) with a correlation coefficient 0.9998. The successful obtaining of the modified electrode allows concluding that the high order reached by the nanostructures, guides the subsequent single strand of DNA (ssDNA) covalent attachment, which after hybridization with its complementary strand brings about a considerable current increase. This result allows foreseeing a guaranteed breakthrough with regard to the use of the biosensor in real samples. The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the preparation of a low-cost electrode, modified with poly(1-amino-9,10-anthraquinone) nanowires using a SiO2 template, is carried out; the assembly is next modified by covalently attaching ssDNA strands. It must be noted that all this is accomplished by using solely electrochemical techniques, according to methodology developed for this purpose. SEM images of the modified surface show high order and homogeneity in the distribution of modified nanowires over the electrode surface. In turn, after the hybridization with its complementary strand, the voltammetric responses enable corroborating the linear relationship between hybridization at different DNA concentrations and normalized current response, obtaining a limit of detection (LOD) 5.7·10(-12)gL(-1) and limit of quantification (LOQ) 1.9·10(-11)gL(-1). The working dynamic range is between 1.4·10(-7) and 8.5·10(-9)gL(-1) with a correlation coefficient 0.9998. The successful obtaining of the modified electrode allows concluding that the high order reached by the nanostructures, guides the subsequent single strand of DNA (ssDNA) covalent attachment, which after hybridization with its complementary strand brings about a considerable current increase. This result allows foreseeing a guaranteed breakthrough with regard to the use of the biosensor in real samples.The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the preparation of a low-cost electrode, modified with poly(1-amino-9,10-anthraquinone) nanowires using a SiO2 template, is carried out; the assembly is next modified by covalently attaching ssDNA strands. It must be noted that all this is accomplished by using solely electrochemical techniques, according to methodology developed for this purpose. SEM images of the modified surface show high order and homogeneity in the distribution of modified nanowires over the electrode surface. In turn, after the hybridization with its complementary strand, the voltammetric responses enable corroborating the linear relationship between hybridization at different DNA concentrations and normalized current response, obtaining a limit of detection (LOD) 5.7·10(-12)gL(-1) and limit of quantification (LOQ) 1.9·10(-11)gL(-1). The working dynamic range is between 1.4·10(-7) and 8.5·10(-9)gL(-1) with a correlation coefficient 0.9998. The successful obtaining of the modified electrode allows concluding that the high order reached by the nanostructures, guides the subsequent single strand of DNA (ssDNA) covalent attachment, which after hybridization with its complementary strand brings about a considerable current increase. This result allows foreseeing a guaranteed breakthrough with regard to the use of the biosensor in real samples. The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the preparation of a low-cost electrode, modified with poly(1-amino-9,10-anthraquinone) nanowires using a SiO2 template, is carried out; the assembly is next modified by covalently attaching ssDNA strands. It must be noted that all this is accomplished by using solely electrochemical techniques, according to methodology developed for this purpose. SEM images of the modified surface show high order and homogeneity in the distribution of modified nanowires over the electrode surface. In turn, after the hybridization with its complementary strand, the voltammetric responses enable corroborating the linear relationship between hybridization at different DNA concentrations and normalized current response, obtaining a limit of detection (LOD) 5.7·10−12gL−1 and limit of quantification (LOQ) 1.9·10−11gL−1. The working dynamic range is between 1.4·10−7 and 8.5·10−9gL−1 with a correlation coefficient 0.9998. The successful obtaining of the modified electrode allows concluding that the high order reached by the nanostructures, guides the subsequent single strand of DNA (ssDNA) covalent attachment, which after hybridization with its complementary strand brings about a considerable current increase. This result allows foreseeing a guaranteed breakthrough with regard to the use of the biosensor in real samples. •P1AAQnanowires were electro-synthesized directly on a steel electrode.•Covalent modification of the P1AAQ nanowires with DNA, was corroborated by SEM images.•The analytic parameters for this new biosensor of DNA was: LOD of 5.7·10−12gL−1with a R2 of 0.9998. |
Author | del Valle, María A. Hernández, Loreto A. Armijo, Francisco |
Author_xml | – sequence: 1 givenname: Loreto A. surname: Hernández fullname: Hernández, Loreto A. – sequence: 2 givenname: María A. surname: del Valle fullname: del Valle, María A. email: mdvalle@uc.cl – sequence: 3 givenname: Francisco surname: Armijo fullname: Armijo, Francisco |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26710345$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhS1URKeFF2CBvGQz4dqJ41hiU5XyI1WwgbXl2DfUo4w9YzuVhifgsUk6BSEWpStvvu_I9jln5CTEgIS8ZFAxYO2bTdX7mCsOTFSMV9CwJ2TFOlmvG16LE7ICJdq1aNv6lJzlvAEAyRQ8I6e8lQzqRqzIz6sRbUkxH0K5wewzNcFRe2OSsQWT_2GKj4HGgQYTYi5psmVK6Ogujof95Jcr0SEmOmWkPlCHZc5blCVnP5lQ_ODtXymzbsbxQKO1U0o-fKcuv_t88Zw8HcyY8cX9eU6-vb_6evlxff3lw6fLi-u1bYQo6142aLrB9K4bOq7aGnojh06gQtdA7xq03DgBVgyqNv1gFYNOAu9cj9IYWZ-T18fcXYr7CXPRW58tjqMJGKes-fxLrFWqYf9FmVQ1V5LV8hFoK5QULfDHoBy4BLGgr-7Rqd-i07vktyYd9O_6ZoAfATs3mBMOfxAGetmI3uhlI3rZiGZcw92zun8k68tdQSUZPz6svj2qODd06zHpbD0Gi86nuXbton9I_wVWOdp_ |
CitedBy_id | crossref_primary_10_1007_s11581_016_1796_9 crossref_primary_10_1016_j_molstruc_2022_133810 crossref_primary_10_1002_app_44723 crossref_primary_10_1016_j_carbon_2017_12_060 crossref_primary_10_3390_polym15051168 crossref_primary_10_1016_j_electacta_2017_04_076 crossref_primary_10_3389_fmats_2020_583739 crossref_primary_10_3390_nano11010107 crossref_primary_10_1016_j_arabjc_2018_04_008 crossref_primary_10_20964_2019_08_64 crossref_primary_10_3390_polym15061450 crossref_primary_10_1016_j_elecom_2019_04_007 crossref_primary_10_1088_2399_7532_ac2292 crossref_primary_10_1007_s10854_019_01555_y crossref_primary_10_1016_j_jelechem_2020_114877 crossref_primary_10_3390_polym14245476 |
Cites_doi | 10.1038/nbt873 10.1016/j.ijbiomac.2009.10.005 10.1016/S0022-0728(97)00109-5 10.1016/j.electacta.2012.04.001 10.1016/j.progpolymsci.2004.03.002 10.1016/j.electacta.2008.07.087 10.1149/2.023309jes 10.1021/ed077p97 10.1007/s10800-014-0728-5 10.1038/nature01595 10.1016/j.cell.2015.06.001 10.1021/cr500100j 10.1016/j.bios.2015.04.065 10.5796/electrochemistry.81.954 10.1016/j.aca.2004.03.072 10.1038/356164a0 10.1016/j.bios.2015.04.018 10.1016/j.electacta.2015.03.119 10.1021/cr200303p 10.1016/j.apsusc.2011.06.015 10.1021/cr0684467 10.1016/j.ab.2014.07.025 10.1021/cr900226k 10.1016/j.jbiotec.2012.03.024 10.1016/j.snb.2014.08.043 10.1021/cr300115g 10.1016/j.elecom.2009.09.009 10.1016/j.bios.2007.02.007 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. Copyright © 2015 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Copyright © 2015 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7TM 8FD FR3 P64 7SP 7U5 L7M 7S9 L.6 |
DOI | 10.1016/j.bios.2015.12.041 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Solid State and Superconductivity Abstracts MEDLINE Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1873-4235 |
EndPage | 287 |
ExternalDocumentID | 26710345 10_1016_j_bios_2015_12_041 S0956566315306965 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSU SSZ T5K TN5 XPP Y6R YK3 ZMT ~G- ~KM .HR 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLW HMU HVGLF HZ~ R2- SBG SCB SCH SEW SSH WUQ CGR CUY CVF ECM EIF NPM 7X8 7QO 7TM 8FD FR3 P64 7SP 7U5 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c455t-b74ea8fabd8f829630ba7f85e9ed40bd4ec2ad50c5f93abfc91087028dbe7aa73 |
IEDL.DBID | .~1 |
ISSN | 0956-5663 1873-4235 |
IngestDate | Thu Jul 10 19:04:52 EDT 2025 Fri Jul 11 08:43:15 EDT 2025 Fri Jul 11 16:35:17 EDT 2025 Thu Jul 10 19:31:26 EDT 2025 Wed Feb 19 02:00:32 EST 2025 Tue Jul 01 02:51:20 EDT 2025 Thu Apr 24 23:08:32 EDT 2025 Fri Feb 23 02:27:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanowire electrosynthesis DNA quantification Polymer nanowires Poly(1-amino-9,10-anthraquinone) Electrochemical DNA sensor |
Language | English |
License | Copyright © 2015 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-b74ea8fabd8f829630ba7f85e9ed40bd4ec2ad50c5f93abfc91087028dbe7aa73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26710345 |
PQID | 1762027052 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000169941 proquest_miscellaneous_1793297137 proquest_miscellaneous_1765975602 proquest_miscellaneous_1762027052 pubmed_primary_26710345 crossref_primary_10_1016_j_bios_2015_12_041 crossref_citationtrail_10_1016_j_bios_2015_12_041 elsevier_sciencedirect_doi_10_1016_j_bios_2015_12_041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-15 |
PublicationDateYYYYMMDD | 2016-05-15 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biosensors & bioelectronics |
PublicationTitleAlternate | Biosens Bioelectron |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bandyopadhyay, Sarkar (bib2) 2014; 465 Chung, Kim, Choi (bib4) 2011; 257 Hernández, del Valle, Díaz, Fermin, Risbridger (bib13) 2015; 166 Adhikari, Majumdar (bib1) 2004; 29 Rasheed, Sandhyarani (bib17) 2014; 204 Salgado, del Valle, Duran, Pardo, Armijo (bib21) 2014; 44 Paleček, Bartošík (bib15) 2012; 112 Schrebler, Grez, Cury, Veas, Merino, Gómez, Córdova, Del Valle (bib23) 1997; 430 Hernandez, del Valle, Armijo, Diaz, Louarn (bib12) 2013; 81 Smith (bib24) 1992; 356 Sassolas, Leca-Bouvier, Blum (bib22) 2008; 108 Sun, Xiang, Zhou, Yang, Xu, Tang (bib25) 2010; 46 Richmond, Davey (bib19) 2003; 423 Piro, Reisberg, Noel, Pham (bib16) 2007; 22 Wang, Fan, Xu, Davis, Luo (bib26) 2015; 71 Reisberg, Piro, Noel, Nguyen, Nielsen, Pham (bib18) 2008; 54 East, Del Valle (bib9) 2000; 77 del Valle, Gacitua, Diaz, Armijo, Soto (bib6) 2012; 71 Zhao, Xu, Chen (bib29) 2014; 114 Heinze, Frontana-Uribe, Ludwigs (bib11) 2010; 110 Chen, Feng, Li (bib3) 2012; 112 Romero, del Valle, Del Río, Díaz, Armijo, Dalchiele (bib20) 2013; 160 Dupont-Filliard, Billon, Livache, Guillerez (bib8) 2004; 515 Zeng, Zhang, Zhu, Li, San, Wang, Wang, Wang, Wang, Zuo, Mi (bib27) 2015; 71 Man, Zhu, Zhu, Liu, Karki, Malik, Sharma, Li, Malireddi, Gurung, Neale, Olsen, Carter, McGoldrick, Wu, Finkelstein, Vogel, Gilbertson, Kanneganti (bib14) 2015; 162 del Valle, Gacitúa, Díaz, Armijo, Río (bib5) 2009; 11 Gaussian 09, R.D., Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. Gaussian, Inc., Wallingford CT., 2009. Zhang, Yan, Li, Yu, Cheng, Wang, Ju, Ding (bib28) 2012; 160 Drummond, Hill, Barton (bib7) 2003; 21 Adhikari (10.1016/j.bios.2015.12.041_bib1) 2004; 29 Zhang (10.1016/j.bios.2015.12.041_bib28) 2012; 160 Rasheed (10.1016/j.bios.2015.12.041_bib17) 2014; 204 Heinze (10.1016/j.bios.2015.12.041_bib11) 2010; 110 Hernández (10.1016/j.bios.2015.12.041_bib13) 2015; 166 Wang (10.1016/j.bios.2015.12.041_bib26) 2015; 71 10.1016/j.bios.2015.12.041_bib10 Piro (10.1016/j.bios.2015.12.041_bib16) 2007; 22 Schrebler (10.1016/j.bios.2015.12.041_bib23) 1997; 430 Dupont-Filliard (10.1016/j.bios.2015.12.041_bib8) 2004; 515 Chen (10.1016/j.bios.2015.12.041_bib3) 2012; 112 Man (10.1016/j.bios.2015.12.041_bib14) 2015; 162 Zeng (10.1016/j.bios.2015.12.041_bib27) 2015; 71 Reisberg (10.1016/j.bios.2015.12.041_bib18) 2008; 54 Romero (10.1016/j.bios.2015.12.041_bib20) 2013; 160 Sassolas (10.1016/j.bios.2015.12.041_bib22) 2008; 108 Sun (10.1016/j.bios.2015.12.041_bib25) 2010; 46 Richmond (10.1016/j.bios.2015.12.041_bib19) 2003; 423 Salgado (10.1016/j.bios.2015.12.041_bib21) 2014; 44 del Valle (10.1016/j.bios.2015.12.041_bib6) 2012; 71 Chung (10.1016/j.bios.2015.12.041_bib4) 2011; 257 Paleček (10.1016/j.bios.2015.12.041_bib15) 2012; 112 Bandyopadhyay (10.1016/j.bios.2015.12.041_bib2) 2014; 465 Smith (10.1016/j.bios.2015.12.041_bib24) 1992; 356 Hernandez (10.1016/j.bios.2015.12.041_bib12) 2013; 81 Zhao (10.1016/j.bios.2015.12.041_bib29) 2014; 114 del Valle (10.1016/j.bios.2015.12.041_bib5) 2009; 11 Drummond (10.1016/j.bios.2015.12.041_bib7) 2003; 21 East (10.1016/j.bios.2015.12.041_bib9) 2000; 77 |
References_xml | – volume: 11 start-page: 2117 year: 2009 end-page: 2120 ident: bib5 publication-title: Electrochem. Commun. – volume: 112 start-page: 6027 year: 2012 end-page: 6053 ident: bib3 publication-title: Chem. Rev. – volume: 114 start-page: 7421 year: 2014 end-page: 7441 ident: bib29 publication-title: Chem. Rev. – volume: 257 start-page: 9390 year: 2011 end-page: 9396 ident: bib4 publication-title: Appl. Surf. Sci. – volume: 430 start-page: 77 year: 1997 end-page: 90 ident: bib23 publication-title: J. Electroanal. Chem. – volume: 166 start-page: 163 year: 2015 end-page: 167 ident: bib13 publication-title: Electrochim. Acta – volume: 160 start-page: G125 year: 2013 end-page: G134 ident: bib20 publication-title: J. Electrochem. Soc. – volume: 162 start-page: 45 year: 2015 end-page: 58 ident: bib14 publication-title: Cell – volume: 22 start-page: 3126 year: 2007 end-page: 3131 ident: bib16 publication-title: Biosens. Bioelectron. – volume: 71 start-page: 51 year: 2015 end-page: 56 ident: bib26 publication-title: Biosens. Bioelectron. – volume: 160 start-page: 123 year: 2012 end-page: 128 ident: bib28 publication-title: J. Biotechnol. – volume: 112 start-page: 3427 year: 2012 end-page: 3481 ident: bib15 publication-title: Chem. Rev. – volume: 71 start-page: 434 year: 2015 end-page: 438 ident: bib27 publication-title: Biosens. Bioelectron. – volume: 515 start-page: 271 year: 2004 end-page: 277 ident: bib8 publication-title: Anal. Chim. Acta – volume: 108 start-page: 109 year: 2008 end-page: 139 ident: bib22 publication-title: Chem. Rev. – volume: 46 start-page: 123 year: 2010 end-page: 125 ident: bib25 publication-title: Int. J. Biol. Macromol. – volume: 110 start-page: 4724 year: 2010 end-page: 4771 ident: bib11 publication-title: Chem. Rev. – volume: 29 start-page: 699 year: 2004 end-page: 766 ident: bib1 publication-title: Prog. Polym. Sci. – volume: 423 start-page: 145 year: 2003 end-page: 150 ident: bib19 publication-title: Nature – volume: 465 start-page: 156 year: 2014 end-page: 163 ident: bib2 publication-title: Anal. Biochem. – volume: 71 start-page: 277 year: 2012 end-page: 282 ident: bib6 publication-title: Electrochim. Acta – volume: 77 start-page: 97 year: 2000 ident: bib9 publication-title: J. Chem. Educ. – volume: 204 start-page: 777 year: 2014 end-page: 782 ident: bib17 publication-title: Sensor. Actuators B -Chem. – volume: 81 start-page: 954 year: 2013 end-page: 960 ident: bib12 publication-title: Electrochemistry – volume: 44 start-page: 1289 year: 2014 end-page: 1294 ident: bib21 publication-title: J. Appl. Electrochem. – volume: 356 start-page: 164 year: 1992 end-page: 168 ident: bib24 publication-title: Nature – volume: 21 start-page: 1192 year: 2003 end-page: 1199 ident: bib7 publication-title: Nat. Biotech. – volume: 54 start-page: 346 year: 2008 end-page: 351 ident: bib18 publication-title: Electrochim. Acta – reference: Gaussian 09, R.D., Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. Gaussian, Inc., Wallingford CT., 2009. – volume: 21 start-page: 1192 year: 2003 ident: 10.1016/j.bios.2015.12.041_bib7 publication-title: Nat. Biotech. doi: 10.1038/nbt873 – volume: 46 start-page: 123 year: 2010 ident: 10.1016/j.bios.2015.12.041_bib25 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2009.10.005 – volume: 430 start-page: 77 year: 1997 ident: 10.1016/j.bios.2015.12.041_bib23 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(97)00109-5 – volume: 71 start-page: 277 year: 2012 ident: 10.1016/j.bios.2015.12.041_bib6 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.04.001 – volume: 29 start-page: 699 year: 2004 ident: 10.1016/j.bios.2015.12.041_bib1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2004.03.002 – volume: 54 start-page: 346 year: 2008 ident: 10.1016/j.bios.2015.12.041_bib18 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.07.087 – volume: 160 start-page: G125 year: 2013 ident: 10.1016/j.bios.2015.12.041_bib20 publication-title: J. Electrochem. Soc. doi: 10.1149/2.023309jes – volume: 77 start-page: 97 year: 2000 ident: 10.1016/j.bios.2015.12.041_bib9 publication-title: J. Chem. Educ. doi: 10.1021/ed077p97 – volume: 44 start-page: 1289 year: 2014 ident: 10.1016/j.bios.2015.12.041_bib21 publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-014-0728-5 – ident: 10.1016/j.bios.2015.12.041_bib10 – volume: 423 start-page: 145 year: 2003 ident: 10.1016/j.bios.2015.12.041_bib19 publication-title: Nature doi: 10.1038/nature01595 – volume: 162 start-page: 45 year: 2015 ident: 10.1016/j.bios.2015.12.041_bib14 publication-title: Cell doi: 10.1016/j.cell.2015.06.001 – volume: 114 start-page: 7421 year: 2014 ident: 10.1016/j.bios.2015.12.041_bib29 publication-title: Chem. Rev. doi: 10.1021/cr500100j – volume: 71 start-page: 434 year: 2015 ident: 10.1016/j.bios.2015.12.041_bib27 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.04.065 – volume: 81 start-page: 954 year: 2013 ident: 10.1016/j.bios.2015.12.041_bib12 publication-title: Electrochemistry doi: 10.5796/electrochemistry.81.954 – volume: 515 start-page: 271 year: 2004 ident: 10.1016/j.bios.2015.12.041_bib8 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2004.03.072 – volume: 356 start-page: 164 year: 1992 ident: 10.1016/j.bios.2015.12.041_bib24 publication-title: Nature doi: 10.1038/356164a0 – volume: 71 start-page: 51 year: 2015 ident: 10.1016/j.bios.2015.12.041_bib26 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.04.018 – volume: 166 start-page: 163 year: 2015 ident: 10.1016/j.bios.2015.12.041_bib13 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.03.119 – volume: 112 start-page: 3427 year: 2012 ident: 10.1016/j.bios.2015.12.041_bib15 publication-title: Chem. Rev. doi: 10.1021/cr200303p – volume: 257 start-page: 9390 year: 2011 ident: 10.1016/j.bios.2015.12.041_bib4 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.06.015 – volume: 108 start-page: 109 year: 2008 ident: 10.1016/j.bios.2015.12.041_bib22 publication-title: Chem. Rev. doi: 10.1021/cr0684467 – volume: 465 start-page: 156 year: 2014 ident: 10.1016/j.bios.2015.12.041_bib2 publication-title: Anal. Biochem. doi: 10.1016/j.ab.2014.07.025 – volume: 110 start-page: 4724 year: 2010 ident: 10.1016/j.bios.2015.12.041_bib11 publication-title: Chem. Rev. doi: 10.1021/cr900226k – volume: 160 start-page: 123 year: 2012 ident: 10.1016/j.bios.2015.12.041_bib28 publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2012.03.024 – volume: 204 start-page: 777 year: 2014 ident: 10.1016/j.bios.2015.12.041_bib17 publication-title: Sensor. Actuators B -Chem. doi: 10.1016/j.snb.2014.08.043 – volume: 112 start-page: 6027 year: 2012 ident: 10.1016/j.bios.2015.12.041_bib3 publication-title: Chem. Rev. doi: 10.1021/cr300115g – volume: 11 start-page: 2117 year: 2009 ident: 10.1016/j.bios.2015.12.041_bib5 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.09.009 – volume: 22 start-page: 3126 year: 2007 ident: 10.1016/j.bios.2015.12.041_bib16 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2007.02.007 |
SSID | ssj0007190 |
Score | 2.264139 |
Snippet | The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 280 |
SubjectTerms | Anthraquinones - chemistry Biosensing Techniques Biosensors correlation Covalence Deoxyribonucleic acid detection limit DNA - isolation & purification DNA quantification Electrochemical DNA sensor Electrochemical Techniques - methods electrochemistry Electrodes Homogeneity Limit of Detection Nanostructure Nanostructures - chemistry Nanowire electrosynthesis Nanowires nucleic acid hybridization Nucleic Acid Hybridization - methods Poly(1-amino-9,10-anthraquinone) Polymer nanowires Quinones - chemistry scanning electron microscopy silica Silicon Dioxide - chemistry single-stranded DNA Strands |
Title | Electrosynthesis and characterization of nanostructured polyquinone for use in detection and quantification of naturally occurring dsDNA |
URI | https://dx.doi.org/10.1016/j.bios.2015.12.041 https://www.ncbi.nlm.nih.gov/pubmed/26710345 https://www.proquest.com/docview/1762027052 https://www.proquest.com/docview/1765975602 https://www.proquest.com/docview/1793297137 https://www.proquest.com/docview/2000169941 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQ4ICiv8qiMxA2FjRM7to-r0moBsReo1JvlV1DQytmSzWEvnPnZjONkKYfdA8dEY8vxzNifnZlvEHpLpS6pFCaLeCGjRuhMioJnXhJrJSm0H8q3fVlWiyv66ZpdH6HzKRcmhlWOa39a04fVenwzG2dztm6a2ddIoQdgpASfzStZxURzSnm08ve__oZ5cJLuWSLfXpQeE2dSjJdp2kjZTdhwJUjJvs1pH_gcNqHLh-jBiB7xPA3wETry4QTdTfUktyfo_i12wcfo90UqcdNtA6C8rumwDg7bHUNzSsDEbY2DDm0iku1_eofX7Wp70zehDR4DpsV953ETsPObIW4rDP3c9DrFGd3qZeDwWG1xa228WQzfses-LOdP0NXlxbfzRTYWXsgsZWyTGU69FrU2TtSiABfNjea1YF56R3PjqLeFdiy3rJalNjUoNQe_L4QznmvNy6foOI7xOcKOkErQmlVaxJxVJ0XNoRNndcmZJPIUkWnGlR1ZyWNxjJWaws9-qKglFbWkSKFAS6fo3a7NOnFyHJRmkyLVP5alYNM42O7NpHUFLhf_o-jg275TBDYQOM3nrDgoA0c1gJMHZQA8S05Kvl-mGEC5lHE8z5Lp7b65qAAelpS9-M8vfInuwVMVYyEIe4WOwc78a4BYG3M2-NAZujP_-Hmx_APbuSis |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9wgEEbpRlXbQ9Wmr_RJpd4qa40NBo6rNNGmSfbSRMoNgcGVqxXe1OvD_oP-7A7GXqWH3UOvNiDMMDMfeOYbhL5QqXMqhUkCXkioETqRIuOJk6QsJcm068u3XS2K-Q39fstuD9DJmAsTwioH2x9tem-thyfTYTWnq7qe_ggUegBGctDZtJAFe4AOAzsVm6DD2fnFfLE1yJzEq5ZAuRc6DLkzMczL1E1g7SasvxWkZJd_2oU_ez909gw9HQAknsU5PkcHzh-hh7Gk5OYIPblHMPgC_TmNVW7ajQeg19Yt1t7ickvSHHMwcVNhr30TuWS7387iVbPc3HW1b7zDAGtx1zpce2zdug_d8v04d52OoUb3RulpPJYb3JRluFz0P7Ftvy1mL9HN2en1yTwZai8kJWVsnRhOnRaVNlZUIgMtTY3mlWBOOktTY6krM21ZWrJK5tpUINcUVD8T1jiuNc9foUmY4xuELSGFoBUrtAhpq1aKisMgttQ5Z5LIY0TGFVflQEwe6mMs1RiB9ksFKakgJUUyBVI6Rl-3fVaRlmNvazYKUv2zuRT4jb39Po9SV6B14VeK9q7pWkXAh8CBPmXZ3jZwWgNEubcN4GfJSc53t8l6XC5lmM_ruPW235wVgBBzyt7-5xd-Qo_m11eX6vJ8cfEOPYY3RQiNIOw9msCecx8Aca3Nx0Gj_gLlzCtd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrosynthesis+and+characterization+of+nanostructured+polyquinone+for+use+in+detection+and+quantification+of+naturally+occurring+dsDNA&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Hern%C3%A1ndez%2C+Loreto+A&rft.au=Del+Valle%2C+Mar%C3%ADa+A&rft.au=Armijo%2C+Francisco&rft.date=2016-05-15&rft.eissn=1873-4235&rft.volume=79&rft.spage=280&rft_id=info:doi/10.1016%2Fj.bios.2015.12.041&rft_id=info%3Apmid%2F26710345&rft.externalDocID=26710345 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon |