Electrosynthesis and characterization of nanostructured polyquinone for use in detection and quantification of naturally occurring dsDNA

The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the pre...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 79; pp. 280 - 287
Main Authors Hernández, Loreto A., del Valle, María A., Armijo, Francisco
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 15.05.2016
Subjects
Online AccessGet full text
ISSN0956-5663
1873-4235
1873-4235
DOI10.1016/j.bios.2015.12.041

Cover

Loading…
Abstract The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the preparation of a low-cost electrode, modified with poly(1-amino-9,10-anthraquinone) nanowires using a SiO2 template, is carried out; the assembly is next modified by covalently attaching ssDNA strands. It must be noted that all this is accomplished by using solely electrochemical techniques, according to methodology developed for this purpose. SEM images of the modified surface show high order and homogeneity in the distribution of modified nanowires over the electrode surface. In turn, after the hybridization with its complementary strand, the voltammetric responses enable corroborating the linear relationship between hybridization at different DNA concentrations and normalized current response, obtaining a limit of detection (LOD) 5.7·10−12gL−1 and limit of quantification (LOQ) 1.9·10−11gL−1. The working dynamic range is between 1.4·10−7 and 8.5·10−9gL−1 with a correlation coefficient 0.9998. The successful obtaining of the modified electrode allows concluding that the high order reached by the nanostructures, guides the subsequent single strand of DNA (ssDNA) covalent attachment, which after hybridization with its complementary strand brings about a considerable current increase. This result allows foreseeing a guaranteed breakthrough with regard to the use of the biosensor in real samples. •P1AAQnanowires were electro-synthesized directly on a steel electrode.•Covalent modification of the P1AAQ nanowires with DNA, was corroborated by SEM images.•The analytic parameters for this new biosensor of DNA was: LOD of 5.7·10−12gL−1with a R2 of 0.9998.
AbstractList The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the preparation of a low-cost electrode, modified with poly(1-amino-9,10-anthraquinone) nanowires using a SiO2 template, is carried out; the assembly is next modified by covalently attaching ssDNA strands. It must be noted that all this is accomplished by using solely electrochemical techniques, according to methodology developed for this purpose. SEM images of the modified surface show high order and homogeneity in the distribution of modified nanowires over the electrode surface. In turn, after the hybridization with its complementary strand, the voltammetric responses enable corroborating the linear relationship between hybridization at different DNA concentrations and normalized current response, obtaining a limit of detection (LOD) 5.7·10⁻¹²gL⁻¹ and limit of quantification (LOQ) 1.9·10⁻¹¹gL⁻¹. The working dynamic range is between 1.4·10⁻⁷ and 8.5·10⁻⁹gL⁻¹ with a correlation coefficient 0.9998. The successful obtaining of the modified electrode allows concluding that the high order reached by the nanostructures, guides the subsequent single strand of DNA (ssDNA) covalent attachment, which after hybridization with its complementary strand brings about a considerable current increase. This result allows foreseeing a guaranteed breakthrough with regard to the use of the biosensor in real samples.
The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the preparation of a low-cost electrode, modified with poly(1-amino-9,10-anthraquinone) nanowires using a SiO2 template, is carried out; the assembly is next modified by covalently attaching ssDNA strands. It must be noted that all this is accomplished by using solely electrochemical techniques, according to methodology developed for this purpose. SEM images of the modified surface show high order and homogeneity in the distribution of modified nanowires over the electrode surface. In turn, after the hybridization with its complementary strand, the voltammetric responses enable corroborating the linear relationship between hybridization at different DNA concentrations and normalized current response, obtaining a limit of detection (LOD) 5.7.10-12 gL-1 and limit of quantification (LOQ) 1.9.10-11 gL-1. The working dynamic range is between 1.4.10-7 and 8.5.10-9 gL-1 with a correlation coefficient 0.9998. The successful obtaining of the modified electrode allows concluding that the high order reached by the nanostructures, guides the subsequent single strand of DNA (ssDNA) covalent attachment, which after hybridization with its complementary strand brings about a considerable current increase. This result allows foreseeing a guaranteed breakthrough with regard to the use of the biosensor in real samples.
The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the preparation of a low-cost electrode, modified with poly(1-amino-9,10-anthraquinone) nanowires using a SiO2 template, is carried out; the assembly is next modified by covalently attaching ssDNA strands. It must be noted that all this is accomplished by using solely electrochemical techniques, according to methodology developed for this purpose. SEM images of the modified surface show high order and homogeneity in the distribution of modified nanowires over the electrode surface. In turn, after the hybridization with its complementary strand, the voltammetric responses enable corroborating the linear relationship between hybridization at different DNA concentrations and normalized current response, obtaining a limit of detection (LOD) 5.7·10(-12)gL(-1) and limit of quantification (LOQ) 1.9·10(-11)gL(-1). The working dynamic range is between 1.4·10(-7) and 8.5·10(-9)gL(-1) with a correlation coefficient 0.9998. The successful obtaining of the modified electrode allows concluding that the high order reached by the nanostructures, guides the subsequent single strand of DNA (ssDNA) covalent attachment, which after hybridization with its complementary strand brings about a considerable current increase. This result allows foreseeing a guaranteed breakthrough with regard to the use of the biosensor in real samples.
The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the preparation of a low-cost electrode, modified with poly(1-amino-9,10-anthraquinone) nanowires using a SiO2 template, is carried out; the assembly is next modified by covalently attaching ssDNA strands. It must be noted that all this is accomplished by using solely electrochemical techniques, according to methodology developed for this purpose. SEM images of the modified surface show high order and homogeneity in the distribution of modified nanowires over the electrode surface. In turn, after the hybridization with its complementary strand, the voltammetric responses enable corroborating the linear relationship between hybridization at different DNA concentrations and normalized current response, obtaining a limit of detection (LOD) 5.7·10(-12)gL(-1) and limit of quantification (LOQ) 1.9·10(-11)gL(-1). The working dynamic range is between 1.4·10(-7) and 8.5·10(-9)gL(-1) with a correlation coefficient 0.9998. The successful obtaining of the modified electrode allows concluding that the high order reached by the nanostructures, guides the subsequent single strand of DNA (ssDNA) covalent attachment, which after hybridization with its complementary strand brings about a considerable current increase. This result allows foreseeing a guaranteed breakthrough with regard to the use of the biosensor in real samples.The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the preparation of a low-cost electrode, modified with poly(1-amino-9,10-anthraquinone) nanowires using a SiO2 template, is carried out; the assembly is next modified by covalently attaching ssDNA strands. It must be noted that all this is accomplished by using solely electrochemical techniques, according to methodology developed for this purpose. SEM images of the modified surface show high order and homogeneity in the distribution of modified nanowires over the electrode surface. In turn, after the hybridization with its complementary strand, the voltammetric responses enable corroborating the linear relationship between hybridization at different DNA concentrations and normalized current response, obtaining a limit of detection (LOD) 5.7·10(-12)gL(-1) and limit of quantification (LOQ) 1.9·10(-11)gL(-1). The working dynamic range is between 1.4·10(-7) and 8.5·10(-9)gL(-1) with a correlation coefficient 0.9998. The successful obtaining of the modified electrode allows concluding that the high order reached by the nanostructures, guides the subsequent single strand of DNA (ssDNA) covalent attachment, which after hybridization with its complementary strand brings about a considerable current increase. This result allows foreseeing a guaranteed breakthrough with regard to the use of the biosensor in real samples.
The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the preparation of a low-cost electrode, modified with poly(1-amino-9,10-anthraquinone) nanowires using a SiO2 template, is carried out; the assembly is next modified by covalently attaching ssDNA strands. It must be noted that all this is accomplished by using solely electrochemical techniques, according to methodology developed for this purpose. SEM images of the modified surface show high order and homogeneity in the distribution of modified nanowires over the electrode surface. In turn, after the hybridization with its complementary strand, the voltammetric responses enable corroborating the linear relationship between hybridization at different DNA concentrations and normalized current response, obtaining a limit of detection (LOD) 5.7·10−12gL−1 and limit of quantification (LOQ) 1.9·10−11gL−1. The working dynamic range is between 1.4·10−7 and 8.5·10−9gL−1 with a correlation coefficient 0.9998. The successful obtaining of the modified electrode allows concluding that the high order reached by the nanostructures, guides the subsequent single strand of DNA (ssDNA) covalent attachment, which after hybridization with its complementary strand brings about a considerable current increase. This result allows foreseeing a guaranteed breakthrough with regard to the use of the biosensor in real samples. •P1AAQnanowires were electro-synthesized directly on a steel electrode.•Covalent modification of the P1AAQ nanowires with DNA, was corroborated by SEM images.•The analytic parameters for this new biosensor of DNA was: LOD of 5.7·10−12gL−1with a R2 of 0.9998.
Author del Valle, María A.
Hernández, Loreto A.
Armijo, Francisco
Author_xml – sequence: 1
  givenname: Loreto A.
  surname: Hernández
  fullname: Hernández, Loreto A.
– sequence: 2
  givenname: María A.
  surname: del Valle
  fullname: del Valle, María A.
  email: mdvalle@uc.cl
– sequence: 3
  givenname: Francisco
  surname: Armijo
  fullname: Armijo, Francisco
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26710345$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URKeFF2CBvGQz4dqJ41hiU5XyI1WwgbXl2DfUo4w9YzuVhifgsUk6BSEWpStvvu_I9jln5CTEgIS8ZFAxYO2bTdX7mCsOTFSMV9CwJ2TFOlmvG16LE7ICJdq1aNv6lJzlvAEAyRQ8I6e8lQzqRqzIz6sRbUkxH0K5wewzNcFRe2OSsQWT_2GKj4HGgQYTYi5psmVK6Ogujof95Jcr0SEmOmWkPlCHZc5blCVnP5lQ_ODtXymzbsbxQKO1U0o-fKcuv_t88Zw8HcyY8cX9eU6-vb_6evlxff3lw6fLi-u1bYQo6142aLrB9K4bOq7aGnojh06gQtdA7xq03DgBVgyqNv1gFYNOAu9cj9IYWZ-T18fcXYr7CXPRW58tjqMJGKes-fxLrFWqYf9FmVQ1V5LV8hFoK5QULfDHoBy4BLGgr-7Rqd-i07vktyYd9O_6ZoAfATs3mBMOfxAGetmI3uhlI3rZiGZcw92zun8k68tdQSUZPz6svj2qODd06zHpbD0Gi86nuXbton9I_wVWOdp_
CitedBy_id crossref_primary_10_1007_s11581_016_1796_9
crossref_primary_10_1016_j_molstruc_2022_133810
crossref_primary_10_1002_app_44723
crossref_primary_10_1016_j_carbon_2017_12_060
crossref_primary_10_3390_polym15051168
crossref_primary_10_1016_j_electacta_2017_04_076
crossref_primary_10_3389_fmats_2020_583739
crossref_primary_10_3390_nano11010107
crossref_primary_10_1016_j_arabjc_2018_04_008
crossref_primary_10_20964_2019_08_64
crossref_primary_10_3390_polym15061450
crossref_primary_10_1016_j_elecom_2019_04_007
crossref_primary_10_1088_2399_7532_ac2292
crossref_primary_10_1007_s10854_019_01555_y
crossref_primary_10_1016_j_jelechem_2020_114877
crossref_primary_10_3390_polym14245476
Cites_doi 10.1038/nbt873
10.1016/j.ijbiomac.2009.10.005
10.1016/S0022-0728(97)00109-5
10.1016/j.electacta.2012.04.001
10.1016/j.progpolymsci.2004.03.002
10.1016/j.electacta.2008.07.087
10.1149/2.023309jes
10.1021/ed077p97
10.1007/s10800-014-0728-5
10.1038/nature01595
10.1016/j.cell.2015.06.001
10.1021/cr500100j
10.1016/j.bios.2015.04.065
10.5796/electrochemistry.81.954
10.1016/j.aca.2004.03.072
10.1038/356164a0
10.1016/j.bios.2015.04.018
10.1016/j.electacta.2015.03.119
10.1021/cr200303p
10.1016/j.apsusc.2011.06.015
10.1021/cr0684467
10.1016/j.ab.2014.07.025
10.1021/cr900226k
10.1016/j.jbiotec.2012.03.024
10.1016/j.snb.2014.08.043
10.1021/cr300115g
10.1016/j.elecom.2009.09.009
10.1016/j.bios.2007.02.007
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright © 2015 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Copyright © 2015 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TM
8FD
FR3
P64
7SP
7U5
L7M
7S9
L.6
DOI 10.1016/j.bios.2015.12.041
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Solid State and Superconductivity Abstracts
MEDLINE
Engineering Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1873-4235
EndPage 287
ExternalDocumentID 26710345
10_1016_j_bios_2015_12_041
S0956566315306965
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LX3
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSU
SSZ
T5K
TN5
XPP
Y6R
YK3
ZMT
~G-
~KM
.HR
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLW
HMU
HVGLF
HZ~
R2-
SBG
SCB
SCH
SEW
SSH
WUQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TM
8FD
FR3
P64
7SP
7U5
L7M
7S9
L.6
ID FETCH-LOGICAL-c455t-b74ea8fabd8f829630ba7f85e9ed40bd4ec2ad50c5f93abfc91087028dbe7aa73
IEDL.DBID .~1
ISSN 0956-5663
1873-4235
IngestDate Thu Jul 10 19:04:52 EDT 2025
Fri Jul 11 08:43:15 EDT 2025
Fri Jul 11 16:35:17 EDT 2025
Thu Jul 10 19:31:26 EDT 2025
Wed Feb 19 02:00:32 EST 2025
Tue Jul 01 02:51:20 EDT 2025
Thu Apr 24 23:08:32 EDT 2025
Fri Feb 23 02:27:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nanowire electrosynthesis
DNA quantification
Polymer nanowires
Poly(1-amino-9,10-anthraquinone)
Electrochemical DNA sensor
Language English
License Copyright © 2015 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-b74ea8fabd8f829630ba7f85e9ed40bd4ec2ad50c5f93abfc91087028dbe7aa73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26710345
PQID 1762027052
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000169941
proquest_miscellaneous_1793297137
proquest_miscellaneous_1765975602
proquest_miscellaneous_1762027052
pubmed_primary_26710345
crossref_primary_10_1016_j_bios_2015_12_041
crossref_citationtrail_10_1016_j_bios_2015_12_041
elsevier_sciencedirect_doi_10_1016_j_bios_2015_12_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-15
PublicationDateYYYYMMDD 2016-05-15
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biosensors & bioelectronics
PublicationTitleAlternate Biosens Bioelectron
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bandyopadhyay, Sarkar (bib2) 2014; 465
Chung, Kim, Choi (bib4) 2011; 257
Hernández, del Valle, Díaz, Fermin, Risbridger (bib13) 2015; 166
Adhikari, Majumdar (bib1) 2004; 29
Rasheed, Sandhyarani (bib17) 2014; 204
Salgado, del Valle, Duran, Pardo, Armijo (bib21) 2014; 44
Paleček, Bartošík (bib15) 2012; 112
Schrebler, Grez, Cury, Veas, Merino, Gómez, Córdova, Del Valle (bib23) 1997; 430
Hernandez, del Valle, Armijo, Diaz, Louarn (bib12) 2013; 81
Smith (bib24) 1992; 356
Sassolas, Leca-Bouvier, Blum (bib22) 2008; 108
Sun, Xiang, Zhou, Yang, Xu, Tang (bib25) 2010; 46
Richmond, Davey (bib19) 2003; 423
Piro, Reisberg, Noel, Pham (bib16) 2007; 22
Wang, Fan, Xu, Davis, Luo (bib26) 2015; 71
Reisberg, Piro, Noel, Nguyen, Nielsen, Pham (bib18) 2008; 54
East, Del Valle (bib9) 2000; 77
del Valle, Gacitua, Diaz, Armijo, Soto (bib6) 2012; 71
Zhao, Xu, Chen (bib29) 2014; 114
Heinze, Frontana-Uribe, Ludwigs (bib11) 2010; 110
Chen, Feng, Li (bib3) 2012; 112
Romero, del Valle, Del Río, Díaz, Armijo, Dalchiele (bib20) 2013; 160
Dupont-Filliard, Billon, Livache, Guillerez (bib8) 2004; 515
Zeng, Zhang, Zhu, Li, San, Wang, Wang, Wang, Wang, Zuo, Mi (bib27) 2015; 71
Man, Zhu, Zhu, Liu, Karki, Malik, Sharma, Li, Malireddi, Gurung, Neale, Olsen, Carter, McGoldrick, Wu, Finkelstein, Vogel, Gilbertson, Kanneganti (bib14) 2015; 162
del Valle, Gacitúa, Díaz, Armijo, Río (bib5) 2009; 11
Gaussian 09, R.D., Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. Gaussian, Inc., Wallingford CT., 2009.
Zhang, Yan, Li, Yu, Cheng, Wang, Ju, Ding (bib28) 2012; 160
Drummond, Hill, Barton (bib7) 2003; 21
Adhikari (10.1016/j.bios.2015.12.041_bib1) 2004; 29
Zhang (10.1016/j.bios.2015.12.041_bib28) 2012; 160
Rasheed (10.1016/j.bios.2015.12.041_bib17) 2014; 204
Heinze (10.1016/j.bios.2015.12.041_bib11) 2010; 110
Hernández (10.1016/j.bios.2015.12.041_bib13) 2015; 166
Wang (10.1016/j.bios.2015.12.041_bib26) 2015; 71
10.1016/j.bios.2015.12.041_bib10
Piro (10.1016/j.bios.2015.12.041_bib16) 2007; 22
Schrebler (10.1016/j.bios.2015.12.041_bib23) 1997; 430
Dupont-Filliard (10.1016/j.bios.2015.12.041_bib8) 2004; 515
Chen (10.1016/j.bios.2015.12.041_bib3) 2012; 112
Man (10.1016/j.bios.2015.12.041_bib14) 2015; 162
Zeng (10.1016/j.bios.2015.12.041_bib27) 2015; 71
Reisberg (10.1016/j.bios.2015.12.041_bib18) 2008; 54
Romero (10.1016/j.bios.2015.12.041_bib20) 2013; 160
Sassolas (10.1016/j.bios.2015.12.041_bib22) 2008; 108
Sun (10.1016/j.bios.2015.12.041_bib25) 2010; 46
Richmond (10.1016/j.bios.2015.12.041_bib19) 2003; 423
Salgado (10.1016/j.bios.2015.12.041_bib21) 2014; 44
del Valle (10.1016/j.bios.2015.12.041_bib6) 2012; 71
Chung (10.1016/j.bios.2015.12.041_bib4) 2011; 257
Paleček (10.1016/j.bios.2015.12.041_bib15) 2012; 112
Bandyopadhyay (10.1016/j.bios.2015.12.041_bib2) 2014; 465
Smith (10.1016/j.bios.2015.12.041_bib24) 1992; 356
Hernandez (10.1016/j.bios.2015.12.041_bib12) 2013; 81
Zhao (10.1016/j.bios.2015.12.041_bib29) 2014; 114
del Valle (10.1016/j.bios.2015.12.041_bib5) 2009; 11
Drummond (10.1016/j.bios.2015.12.041_bib7) 2003; 21
East (10.1016/j.bios.2015.12.041_bib9) 2000; 77
References_xml – volume: 11
  start-page: 2117
  year: 2009
  end-page: 2120
  ident: bib5
  publication-title: Electrochem. Commun.
– volume: 112
  start-page: 6027
  year: 2012
  end-page: 6053
  ident: bib3
  publication-title: Chem. Rev.
– volume: 114
  start-page: 7421
  year: 2014
  end-page: 7441
  ident: bib29
  publication-title: Chem. Rev.
– volume: 257
  start-page: 9390
  year: 2011
  end-page: 9396
  ident: bib4
  publication-title: Appl. Surf. Sci.
– volume: 430
  start-page: 77
  year: 1997
  end-page: 90
  ident: bib23
  publication-title: J. Electroanal. Chem.
– volume: 166
  start-page: 163
  year: 2015
  end-page: 167
  ident: bib13
  publication-title: Electrochim. Acta
– volume: 160
  start-page: G125
  year: 2013
  end-page: G134
  ident: bib20
  publication-title: J. Electrochem. Soc.
– volume: 162
  start-page: 45
  year: 2015
  end-page: 58
  ident: bib14
  publication-title: Cell
– volume: 22
  start-page: 3126
  year: 2007
  end-page: 3131
  ident: bib16
  publication-title: Biosens. Bioelectron.
– volume: 71
  start-page: 51
  year: 2015
  end-page: 56
  ident: bib26
  publication-title: Biosens. Bioelectron.
– volume: 160
  start-page: 123
  year: 2012
  end-page: 128
  ident: bib28
  publication-title: J. Biotechnol.
– volume: 112
  start-page: 3427
  year: 2012
  end-page: 3481
  ident: bib15
  publication-title: Chem. Rev.
– volume: 71
  start-page: 434
  year: 2015
  end-page: 438
  ident: bib27
  publication-title: Biosens. Bioelectron.
– volume: 515
  start-page: 271
  year: 2004
  end-page: 277
  ident: bib8
  publication-title: Anal. Chim. Acta
– volume: 108
  start-page: 109
  year: 2008
  end-page: 139
  ident: bib22
  publication-title: Chem. Rev.
– volume: 46
  start-page: 123
  year: 2010
  end-page: 125
  ident: bib25
  publication-title: Int. J. Biol. Macromol.
– volume: 110
  start-page: 4724
  year: 2010
  end-page: 4771
  ident: bib11
  publication-title: Chem. Rev.
– volume: 29
  start-page: 699
  year: 2004
  end-page: 766
  ident: bib1
  publication-title: Prog. Polym. Sci.
– volume: 423
  start-page: 145
  year: 2003
  end-page: 150
  ident: bib19
  publication-title: Nature
– volume: 465
  start-page: 156
  year: 2014
  end-page: 163
  ident: bib2
  publication-title: Anal. Biochem.
– volume: 71
  start-page: 277
  year: 2012
  end-page: 282
  ident: bib6
  publication-title: Electrochim. Acta
– volume: 77
  start-page: 97
  year: 2000
  ident: bib9
  publication-title: J. Chem. Educ.
– volume: 204
  start-page: 777
  year: 2014
  end-page: 782
  ident: bib17
  publication-title: Sensor. Actuators B -Chem.
– volume: 81
  start-page: 954
  year: 2013
  end-page: 960
  ident: bib12
  publication-title: Electrochemistry
– volume: 44
  start-page: 1289
  year: 2014
  end-page: 1294
  ident: bib21
  publication-title: J. Appl. Electrochem.
– volume: 356
  start-page: 164
  year: 1992
  end-page: 168
  ident: bib24
  publication-title: Nature
– volume: 21
  start-page: 1192
  year: 2003
  end-page: 1199
  ident: bib7
  publication-title: Nat. Biotech.
– volume: 54
  start-page: 346
  year: 2008
  end-page: 351
  ident: bib18
  publication-title: Electrochim. Acta
– reference: Gaussian 09, R.D., Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. Gaussian, Inc., Wallingford CT., 2009.
– volume: 21
  start-page: 1192
  year: 2003
  ident: 10.1016/j.bios.2015.12.041_bib7
  publication-title: Nat. Biotech.
  doi: 10.1038/nbt873
– volume: 46
  start-page: 123
  year: 2010
  ident: 10.1016/j.bios.2015.12.041_bib25
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2009.10.005
– volume: 430
  start-page: 77
  year: 1997
  ident: 10.1016/j.bios.2015.12.041_bib23
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(97)00109-5
– volume: 71
  start-page: 277
  year: 2012
  ident: 10.1016/j.bios.2015.12.041_bib6
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.04.001
– volume: 29
  start-page: 699
  year: 2004
  ident: 10.1016/j.bios.2015.12.041_bib1
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2004.03.002
– volume: 54
  start-page: 346
  year: 2008
  ident: 10.1016/j.bios.2015.12.041_bib18
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.07.087
– volume: 160
  start-page: G125
  year: 2013
  ident: 10.1016/j.bios.2015.12.041_bib20
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.023309jes
– volume: 77
  start-page: 97
  year: 2000
  ident: 10.1016/j.bios.2015.12.041_bib9
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed077p97
– volume: 44
  start-page: 1289
  year: 2014
  ident: 10.1016/j.bios.2015.12.041_bib21
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-014-0728-5
– ident: 10.1016/j.bios.2015.12.041_bib10
– volume: 423
  start-page: 145
  year: 2003
  ident: 10.1016/j.bios.2015.12.041_bib19
  publication-title: Nature
  doi: 10.1038/nature01595
– volume: 162
  start-page: 45
  year: 2015
  ident: 10.1016/j.bios.2015.12.041_bib14
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.001
– volume: 114
  start-page: 7421
  year: 2014
  ident: 10.1016/j.bios.2015.12.041_bib29
  publication-title: Chem. Rev.
  doi: 10.1021/cr500100j
– volume: 71
  start-page: 434
  year: 2015
  ident: 10.1016/j.bios.2015.12.041_bib27
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.04.065
– volume: 81
  start-page: 954
  year: 2013
  ident: 10.1016/j.bios.2015.12.041_bib12
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.81.954
– volume: 515
  start-page: 271
  year: 2004
  ident: 10.1016/j.bios.2015.12.041_bib8
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2004.03.072
– volume: 356
  start-page: 164
  year: 1992
  ident: 10.1016/j.bios.2015.12.041_bib24
  publication-title: Nature
  doi: 10.1038/356164a0
– volume: 71
  start-page: 51
  year: 2015
  ident: 10.1016/j.bios.2015.12.041_bib26
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.04.018
– volume: 166
  start-page: 163
  year: 2015
  ident: 10.1016/j.bios.2015.12.041_bib13
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.03.119
– volume: 112
  start-page: 3427
  year: 2012
  ident: 10.1016/j.bios.2015.12.041_bib15
  publication-title: Chem. Rev.
  doi: 10.1021/cr200303p
– volume: 257
  start-page: 9390
  year: 2011
  ident: 10.1016/j.bios.2015.12.041_bib4
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.06.015
– volume: 108
  start-page: 109
  year: 2008
  ident: 10.1016/j.bios.2015.12.041_bib22
  publication-title: Chem. Rev.
  doi: 10.1021/cr0684467
– volume: 465
  start-page: 156
  year: 2014
  ident: 10.1016/j.bios.2015.12.041_bib2
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2014.07.025
– volume: 110
  start-page: 4724
  year: 2010
  ident: 10.1016/j.bios.2015.12.041_bib11
  publication-title: Chem. Rev.
  doi: 10.1021/cr900226k
– volume: 160
  start-page: 123
  year: 2012
  ident: 10.1016/j.bios.2015.12.041_bib28
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2012.03.024
– volume: 204
  start-page: 777
  year: 2014
  ident: 10.1016/j.bios.2015.12.041_bib17
  publication-title: Sensor. Actuators B -Chem.
  doi: 10.1016/j.snb.2014.08.043
– volume: 112
  start-page: 6027
  year: 2012
  ident: 10.1016/j.bios.2015.12.041_bib3
  publication-title: Chem. Rev.
  doi: 10.1021/cr300115g
– volume: 11
  start-page: 2117
  year: 2009
  ident: 10.1016/j.bios.2015.12.041_bib5
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.09.009
– volume: 22
  start-page: 3126
  year: 2007
  ident: 10.1016/j.bios.2015.12.041_bib16
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2007.02.007
SSID ssj0007190
Score 2.264139
Snippet The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 280
SubjectTerms Anthraquinones - chemistry
Biosensing Techniques
Biosensors
correlation
Covalence
Deoxyribonucleic acid
detection limit
DNA - isolation & purification
DNA quantification
Electrochemical DNA sensor
Electrochemical Techniques - methods
electrochemistry
Electrodes
Homogeneity
Limit of Detection
Nanostructure
Nanostructures - chemistry
Nanowire electrosynthesis
Nanowires
nucleic acid hybridization
Nucleic Acid Hybridization - methods
Poly(1-amino-9,10-anthraquinone)
Polymer nanowires
Quinones - chemistry
scanning electron microscopy
silica
Silicon Dioxide - chemistry
single-stranded DNA
Strands
Title Electrosynthesis and characterization of nanostructured polyquinone for use in detection and quantification of naturally occurring dsDNA
URI https://dx.doi.org/10.1016/j.bios.2015.12.041
https://www.ncbi.nlm.nih.gov/pubmed/26710345
https://www.proquest.com/docview/1762027052
https://www.proquest.com/docview/1765975602
https://www.proquest.com/docview/1793297137
https://www.proquest.com/docview/2000169941
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQ4ICiv8qiMxA2FjRM7to-r0moBsReo1JvlV1DQytmSzWEvnPnZjONkKYfdA8dEY8vxzNifnZlvEHpLpS6pFCaLeCGjRuhMioJnXhJrJSm0H8q3fVlWiyv66ZpdH6HzKRcmhlWOa39a04fVenwzG2dztm6a2ddIoQdgpASfzStZxURzSnm08ve__oZ5cJLuWSLfXpQeE2dSjJdp2kjZTdhwJUjJvs1pH_gcNqHLh-jBiB7xPA3wETry4QTdTfUktyfo_i12wcfo90UqcdNtA6C8rumwDg7bHUNzSsDEbY2DDm0iku1_eofX7Wp70zehDR4DpsV953ETsPObIW4rDP3c9DrFGd3qZeDwWG1xa228WQzfses-LOdP0NXlxbfzRTYWXsgsZWyTGU69FrU2TtSiABfNjea1YF56R3PjqLeFdiy3rJalNjUoNQe_L4QznmvNy6foOI7xOcKOkErQmlVaxJxVJ0XNoRNndcmZJPIUkWnGlR1ZyWNxjJWaws9-qKglFbWkSKFAS6fo3a7NOnFyHJRmkyLVP5alYNM42O7NpHUFLhf_o-jg275TBDYQOM3nrDgoA0c1gJMHZQA8S05Kvl-mGEC5lHE8z5Lp7b65qAAelpS9-M8vfInuwVMVYyEIe4WOwc78a4BYG3M2-NAZujP_-Hmx_APbuSis
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9wgEEbpRlXbQ9Wmr_RJpd4qa40NBo6rNNGmSfbSRMoNgcGVqxXe1OvD_oP-7A7GXqWH3UOvNiDMMDMfeOYbhL5QqXMqhUkCXkioETqRIuOJk6QsJcm068u3XS2K-Q39fstuD9DJmAsTwioH2x9tem-thyfTYTWnq7qe_ggUegBGctDZtJAFe4AOAzsVm6DD2fnFfLE1yJzEq5ZAuRc6DLkzMczL1E1g7SasvxWkZJd_2oU_ez909gw9HQAknsU5PkcHzh-hh7Gk5OYIPblHMPgC_TmNVW7ajQeg19Yt1t7ickvSHHMwcVNhr30TuWS7387iVbPc3HW1b7zDAGtx1zpce2zdug_d8v04d52OoUb3RulpPJYb3JRluFz0P7Ftvy1mL9HN2en1yTwZai8kJWVsnRhOnRaVNlZUIgMtTY3mlWBOOktTY6krM21ZWrJK5tpUINcUVD8T1jiuNc9foUmY4xuELSGFoBUrtAhpq1aKisMgttQ5Z5LIY0TGFVflQEwe6mMs1RiB9ksFKakgJUUyBVI6Rl-3fVaRlmNvazYKUv2zuRT4jb39Po9SV6B14VeK9q7pWkXAh8CBPmXZ3jZwWgNEubcN4GfJSc53t8l6XC5lmM_ruPW235wVgBBzyt7-5xd-Qo_m11eX6vJ8cfEOPYY3RQiNIOw9msCecx8Aca3Nx0Gj_gLlzCtd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrosynthesis+and+characterization+of+nanostructured+polyquinone+for+use+in+detection+and+quantification+of+naturally+occurring+dsDNA&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Hern%C3%A1ndez%2C+Loreto+A&rft.au=Del+Valle%2C+Mar%C3%ADa+A&rft.au=Armijo%2C+Francisco&rft.date=2016-05-15&rft.eissn=1873-4235&rft.volume=79&rft.spage=280&rft_id=info:doi/10.1016%2Fj.bios.2015.12.041&rft_id=info%3Apmid%2F26710345&rft.externalDocID=26710345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon