Potential denitrification stimulated by water-soluble organic carbon from plant residues during initial decomposition
Denitrification usually takes place under anoxic conditions and over short periods of time, and depends on readily available nitrate and carbon sources. Variations in CO2 and N2O emissions associated with plant residues have mainly been explained by differences in their decomposability. A factor rar...
Saved in:
Published in | Soil biology & biochemistry Vol. 147; p. 107841 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Denitrification usually takes place under anoxic conditions and over short periods of time, and depends on readily available nitrate and carbon sources. Variations in CO2 and N2O emissions associated with plant residues have mainly been explained by differences in their decomposability. A factor rarely considered so far is water-extractable organic matter (WEOM) released to the soil during residue decomposition. Here, we examined the potential effect of plant residues on denitrification with special emphasis on WEOM. A range of fresh and leached plant residues was characterized by elemental analyses, 13C-NMR spectroscopy, and extraction with ultrapure water. The obtained solutions were analyzed for the concentrations of organic carbon (OC) and organic nitrogen (ON), and by UV-VIS spectroscopy. To test the potential denitrification induced by plant residues or three different OM solutions, these carbon sources were added to soil suspensions and incubated for 24 h at 20 °C in the dark under anoxic conditions; KNO3 was added to ensure unlimited nitrate supply. Evolving N2O and CO2 were analyzed by gas chromatography, and acetylene inhibition was used to determine denitrification and its product ratio. The production of all gases, as well as the molar (N2O + N2)–N/CO2–C ratio, was directly related to the water-extractable OC (WEOC) content of the plant residues, and the WEOC increased with carboxylic/carbonyl C and decreasing OC/ON ratio of the plant residues. Incubation of OM solutions revealed that the molar (N2O + N2)–N/CO2–C ratio and share of N2O are influenced by the WEOM's chemical composition. In conclusion, our results emphasize the potential of WEOM in largely undecomposed plant residues to support short-term denitrification activity in a typical ˈhot spot–hot momentˈ situation.
•Potential denitrification is closely related to water-soluble OC in plant residues.•Amount of water-soluble OC depends on the residue's chemical composition.•Chemical composition of water-soluble OM controls the molar (N2O + N2)–N/CO2–C ratio. |
---|---|
AbstractList | Denitrification usually takes place under anoxic conditions and over short periods of time, and depends on readily available nitrate and carbon sources. Variations in CO2 and N2O emissions associated with plant residues have mainly been explained by differences in their decomposability. A factor rarely considered so far is water-extractable organic matter (WEOM) released to the soil during residue decomposition. Here, we examined the potential effect of plant residues on denitrification with special emphasis on WEOM. A range of fresh and leached plant residues was characterized by elemental analyses, 13C-NMR spectroscopy, and extraction with ultrapure water. The obtained solutions were analyzed for the concentrations of organic carbon (OC) and organic nitrogen (ON), and by UV-VIS spectroscopy. To test the potential denitrification induced by plant residues or three different OM solutions, these carbon sources were added to soil suspensions and incubated for 24 h at 20 °C in the dark under anoxic conditions; KNO3 was added to ensure unlimited nitrate supply. Evolving N2O and CO2 were analyzed by gas chromatography, and acetylene inhibition was used to determine denitrification and its product ratio. The production of all gases, as well as the molar (N2O + N2)–N/CO2–C ratio, was directly related to the water-extractable OC (WEOC) content of the plant residues, and the WEOC increased with carboxylic/carbonyl C and decreasing OC/ON ratio of the plant residues. Incubation of OM solutions revealed that the molar (N2O + N2)–N/CO2–C ratio and share of N2O are influenced by the WEOM's chemical composition. In conclusion, our results emphasize the potential of WEOM in largely undecomposed plant residues to support short-term denitrification activity in a typical ˈhot spot–hot momentˈ situation.
•Potential denitrification is closely related to water-soluble OC in plant residues.•Amount of water-soluble OC depends on the residue's chemical composition.•Chemical composition of water-soluble OM controls the molar (N2O + N2)–N/CO2–C ratio. Denitrification usually takes place under anoxic conditions and over short periods of time, and depends on readily available nitrate and carbon sources. Variations in CO₂ and N₂O emissions associated with plant residues have mainly been explained by differences in their decomposability. A factor rarely considered so far is water-extractable organic matter (WEOM) released to the soil during residue decomposition. Here, we examined the potential effect of plant residues on denitrification with special emphasis on WEOM. A range of fresh and leached plant residues was characterized by elemental analyses, ¹³C-NMR spectroscopy, and extraction with ultrapure water. The obtained solutions were analyzed for the concentrations of organic carbon (OC) and organic nitrogen (ON), and by UV-VIS spectroscopy. To test the potential denitrification induced by plant residues or three different OM solutions, these carbon sources were added to soil suspensions and incubated for 24 h at 20 °C in the dark under anoxic conditions; KNO₃ was added to ensure unlimited nitrate supply. Evolving N₂O and CO₂ were analyzed by gas chromatography, and acetylene inhibition was used to determine denitrification and its product ratio. The production of all gases, as well as the molar (N₂O + N₂)–N/CO₂–C ratio, was directly related to the water-extractable OC (WEOC) content of the plant residues, and the WEOC increased with carboxylic/carbonyl C and decreasing OC/ON ratio of the plant residues. Incubation of OM solutions revealed that the molar (N₂O + N₂)–N/CO₂–C ratio and share of N₂O are influenced by the WEOM's chemical composition. In conclusion, our results emphasize the potential of WEOM in largely undecomposed plant residues to support short-term denitrification activity in a typical ˈhot spot–hot momentˈ situation. |
ArticleNumber | 107841 |
Author | Surey, Ronny Mikutta, Robert Schimpf, Corinna M. Mueller, Carsten W. Kaiser, Klaus Dittert, Klaus Böttcher, Jürgen Sauheitl, Leopold Rummel, Pauline S. |
Author_xml | – sequence: 1 givenname: Ronny surname: Surey fullname: Surey, Ronny email: ronny.surey@landw.uni-halle.de organization: Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Halle, Germany – sequence: 2 givenname: Corinna M. surname: Schimpf fullname: Schimpf, Corinna M. organization: Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Halle, Germany – sequence: 3 givenname: Leopold surname: Sauheitl fullname: Sauheitl, Leopold organization: Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany – sequence: 4 givenname: Carsten W. surname: Mueller fullname: Mueller, Carsten W. organization: Chair of Soil Science, Technical University of Munich, Freising, Germany – sequence: 5 givenname: Pauline S. surname: Rummel fullname: Rummel, Pauline S. organization: Plant Nutrition and Crop Physiology, University of Göttingen, Göttingen, Germany – sequence: 6 givenname: Klaus surname: Dittert fullname: Dittert, Klaus organization: Plant Nutrition and Crop Physiology, University of Göttingen, Göttingen, Germany – sequence: 7 givenname: Klaus surname: Kaiser fullname: Kaiser, Klaus organization: Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Halle, Germany – sequence: 8 givenname: Jürgen surname: Böttcher fullname: Böttcher, Jürgen organization: Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany – sequence: 9 givenname: Robert surname: Mikutta fullname: Mikutta, Robert organization: Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Halle, Germany |
BookMark | eNqFkMFK5TAUhoM44NWZRxCydNM7Sds0LS5kEHUEQRcz65Amp3IuaXJN0hHffnKtKzeuEs75_4_Dd0qOffBAyDlnW85493O3TQHdiGFbs_owk33Lj8iG93Komrbuj8mGsaavmOTyhJymtGOM1YI3G7I8hQw-o3bUgscccUKjMwZPU8Z5cTqDpeMbfS2fWKXgltEBDfFZezTU6DiW6BTDTPdO-0wjJLQLJGqXiP6ZYoGudBPmfUh4YH8n3ybtEvz4eM_I39ubP9e_q4fHu_vrXw-VaYXI1dhNHQxS8hrqTkjJtB2GqS07Y0Q7lLHWkndNK0XHRz32nZisaSewPWsGLZozcrFy9zG8lKOymjEZcOVSCEtS9dCLfhC1bEpUrFETQ0oRJrWPOOv4pjhTB81qpz40q4NmtWouvctPPYP5XWCOGt2X7au1DcXCP4SokkHwBixGMFnZgF8Q_gNHJKG4 |
CitedBy_id | crossref_primary_10_1007_s42729_023_01464_4 crossref_primary_10_1016_j_scitotenv_2022_154388 crossref_primary_10_3390_agriculture10110546 crossref_primary_10_3389_fsoil_2024_1369971 crossref_primary_10_3390_soilsystems9010024 crossref_primary_10_1007_s11368_022_03406_6 crossref_primary_10_1016_j_geoderma_2022_116032 crossref_primary_10_1016_j_envres_2022_114679 crossref_primary_10_1016_j_envpol_2021_117721 crossref_primary_10_3389_fmicb_2024_1499302 crossref_primary_10_1016_j_scitotenv_2021_152532 crossref_primary_10_1007_s00374_025_01894_5 crossref_primary_10_3389_fenvs_2021_773901 crossref_primary_10_1016_j_agwat_2022_108039 crossref_primary_10_1007_s11368_021_02942_x crossref_primary_10_1016_j_geoderma_2022_115875 crossref_primary_10_1007_s11368_020_02797_8 crossref_primary_10_1016_j_soilbio_2023_109274 crossref_primary_10_1016_j_soilbio_2024_109694 crossref_primary_10_5194_bg_19_4811_2022 crossref_primary_10_3390_nitrogen3040040 crossref_primary_10_1007_s10533_022_00925_9 crossref_primary_10_1016_j_jhydrol_2021_127132 crossref_primary_10_1016_j_envpol_2023_122370 crossref_primary_10_1016_j_scitotenv_2021_150883 crossref_primary_10_1016_j_still_2024_106065 crossref_primary_10_1007_s00374_024_01864_3 crossref_primary_10_3390_soilsystems7020062 crossref_primary_10_3390_su16135368 crossref_primary_10_1016_j_soilbio_2022_108757 crossref_primary_10_1016_j_scitotenv_2021_145852 crossref_primary_10_1016_j_scitotenv_2021_151051 crossref_primary_10_1016_j_agee_2021_107473 crossref_primary_10_1016_j_scitotenv_2024_175383 crossref_primary_10_1016_j_still_2024_106309 crossref_primary_10_3390_app11115309 crossref_primary_10_3390_rs16152731 crossref_primary_10_1007_s10750_024_05634_y crossref_primary_10_1016_j_jclepro_2022_130451 crossref_primary_10_1007_s00374_024_01819_8 crossref_primary_10_1016_j_scitotenv_2024_170524 crossref_primary_10_1002_clen_202100038 crossref_primary_10_3389_fmars_2021_642143 crossref_primary_10_1007_s42773_024_00386_3 crossref_primary_10_1007_s42729_024_01769_y crossref_primary_10_3390_microorganisms12101940 crossref_primary_10_1088_1748_9326_ac417e crossref_primary_10_1016_j_biortech_2023_128909 crossref_primary_10_1016_j_envpol_2021_117176 crossref_primary_10_3389_fenvs_2021_640534 crossref_primary_10_1111_gcb_16190 crossref_primary_10_1016_j_fcr_2025_109850 crossref_primary_10_3390_agronomy14061167 crossref_primary_10_1016_j_chemosphere_2022_136385 crossref_primary_10_1016_j_scitotenv_2021_150525 |
Cites_doi | 10.1016/0043-1354(93)90217-6 10.1016/j.soilbio.2006.04.013 10.1080/00103620009370484 10.1016/0006-291X(76)90932-3 10.1007/s10533-008-9277-5 10.1016/0038-0717(87)90102-7 10.1046/j.1365-2389.2000.00298.x 10.1007/BF02371193 10.1016/j.soilbio.2018.03.018 10.1021/es00060a015 10.2136/sssaj1991.03615995005500040022x 10.1186/s40064-016-2651-1 10.2136/sssaj1982.03615995004600010014x 10.1016/S0065-2113(07)96003-4 10.1111/j.1462-2920.2008.01599.x 10.1016/0038-0717(84)90052-X 10.5194/bg-17-1181-2020 10.1023/A:1004207219678 10.1016/j.geoderma.2012.08.007 10.1016/0038-0717(78)90046-9 10.1016/0038-0717(80)90087-5 10.1002/ecy.2917 10.1007/s11104-013-1761-6 10.1007/s10021-003-0161-9 10.1007/BF00257635 10.2136/sssaj1985.03615995004900010018x 10.1016/j.soilbio.2005.03.019 10.1016/S0038-0717(01)00209-7 10.1007/s10021-016-0103-y 10.1016/0038-0717(75)90055-3 10.1016/j.soilbio.2004.02.009 10.1016/S1164-5563(99)80006-5 10.1016/j.geoderma.2004.12.025 10.2136/sssaj1987.03615995005100050019x 10.1016/j.soilbio.2003.09.012 10.1017/S0021859600032779 10.1007/BF00011437 10.1038/ngeo2963 10.1007/BF01400460 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) |
Copyright_xml | – notice: 2020 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.soilbio.2020.107841 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
ExternalDocumentID | 10_1016_j_soilbio_2020_107841 S0038071720301383 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c455t-b6f6e97712e265770ad99f4455cc54912eaa716347561bab865fdc4fed8039a53 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Thu Jul 10 22:47:59 EDT 2025 Tue Jul 01 03:20:03 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Fri Feb 23 02:47:27 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water-extractable organic carbon Denitrification potential N2O/(N2O+N2) ratio Chemical composition of organic matter Root exudates Crop residues |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-b6f6e97712e265770ad99f4455cc54912eaa716347561bab865fdc4fed8039a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0038071720301383 |
PQID | 2985895273 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2985895273 crossref_primary_10_1016_j_soilbio_2020_107841 crossref_citationtrail_10_1016_j_soilbio_2020_107841 elsevier_sciencedirect_doi_10_1016_j_soilbio_2020_107841 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Don, Kalbitz (bib15) 2005; 37 Neumann, Römheld (bib31) 2007 Mastný, Kaštovská, Bárta, Chroňáková, Borovec, Šantrůčková, Urbanová, Edwards, Picek (bib28) 2018; 121 Clemente, Simpson, Simpson, Yanni, Whalen (bib12) 2013; 192 Angers, Recous (bib4) 1997; 189 Ottow (bib32) 2011 Reinertsen, Elliott, Cochran, Campbell (bib37) 1984; 16 deCatanzaro, Beauchamp (bib13) 1985; 1 Philippot, Hallin, Schloter (bib35) 2007 Ambus, Jensen, Robertson (bib3) 2001; 41 Huang, Zou, Zheng, Wang, Xu (bib21) 2004; 36 Chantigny, Angers, Rochette (bib10) 2002; 34 Hadas, Kautsky, Goek, Erman Kara (bib19) 2004; 36 Lynch, Mulvaney, Hodges, Thompson, Thomason (bib26) 2016; 5 Jacobson, Alexander (bib22) 1980; 12 Marschner, Kalbitz (bib27) 2003; 113 Ellerbrock, Kaiser (bib16) 2005; 128 Akunna, Bizeau, Moletta (bib1) 1993; 27 Parkin (bib33) 1987; 51 Kalbitz, Schmerwitz, Schwesig, Matzner (bib23) 2003; 113 Parry, Renault, Chadœuf, Chenu, Lensi (bib34) 2000; 51 Rashid, Schaefer (bib36) 1988; 106 Bernhardt, Blaszczak, Ficken, Fork, Kaiser, Seybold (bib7) 2017; 20 Burford, Bremner (bib9) 1975; 7 Yeomans, Beauchamp (bib43) 1982; 46 Kravchenko, Toosi, Guber, Ostrom, Yu, 449 Azeem, Rivers, Robertson (bib25) 2017; 10 McClain, Boyer, Dent, Gergel, Grimm, Groffman, Hart, Harvey, Johnston, Mayorga, McDowell, Pinay (bib29) 2003; 6 Yeomans, Beauchamp (bib44) 1978; 10 Bremner, Shaw (bib8) 1958; 51 Almaraz, Wong, Yang (bib2) 2020; 101 Aulakh, Walters, Doran, Francis, Mosier (bib5) 1991; 55 Yoshinari, Knowles (bib45) 1976; 69 Henry, Texier, Hallet, Bru, Dambreville, Chèneby, Bizouard, Germon, Philippot (bib20) 2008; 10 Groffman, Butterbach-Bahl, Fulweiler, Gold, Morse, Stander, Tague, Tonitto, Vidon (bib18) 2009; 93 Terry, Duxbury (bib46) 1985; 49 Rummel, Pfeiffer, Pausch, Well, Schneider, Dittert (bib38) 2020; 17 Fazzolari, Nicolardot, Germon (bib17) 1998; 34 Shelp, Beauchamp, Thurtell (bib39) 2000; 31 Vanlauwe, Nwoke, Sanginga, Merckx (bib41) 1996; 183 deCatanzaro, Beauchamp, Drury (bib14) 1987; 19 Valera, Alexander (bib40) 1961; 15 Chin, Aiken, O'Loughlin (bib11) 1994; 28 Yamashita, Flessa, John, Helfrich, Ludwig (bib42) 2006; 38 Berg, McClaugherty (bib6) 2014 Mengutay, Ceylan, Kutman, Cakmak (bib30) 2013; 368 Knowles (bib24) 1990 Chantigny (10.1016/j.soilbio.2020.107841_bib10) 2002; 34 Rummel (10.1016/j.soilbio.2020.107841_bib38) 2020; 17 Yamashita (10.1016/j.soilbio.2020.107841_bib42) 2006; 38 Clemente (10.1016/j.soilbio.2020.107841_bib12) 2013; 192 Shelp (10.1016/j.soilbio.2020.107841_bib39) 2000; 31 Philippot (10.1016/j.soilbio.2020.107841_bib35) 2007 Valera (10.1016/j.soilbio.2020.107841_bib40) 1961; 15 Almaraz (10.1016/j.soilbio.2020.107841_bib2) 2020; 101 deCatanzaro (10.1016/j.soilbio.2020.107841_bib14) 1987; 19 Groffman (10.1016/j.soilbio.2020.107841_bib18) 2009; 93 Kalbitz (10.1016/j.soilbio.2020.107841_bib23) 2003; 113 Mastný (10.1016/j.soilbio.2020.107841_bib28) 2018; 121 Yoshinari (10.1016/j.soilbio.2020.107841_bib45) 1976; 69 Bernhardt (10.1016/j.soilbio.2020.107841_bib7) 2017; 20 Mengutay (10.1016/j.soilbio.2020.107841_bib30) 2013; 368 Henry (10.1016/j.soilbio.2020.107841_bib20) 2008; 10 Burford (10.1016/j.soilbio.2020.107841_bib9) 1975; 7 Angers (10.1016/j.soilbio.2020.107841_bib4) 1997; 189 Lynch (10.1016/j.soilbio.2020.107841_bib26) 2016; 5 Hadas (10.1016/j.soilbio.2020.107841_bib19) 2004; 36 McClain (10.1016/j.soilbio.2020.107841_bib29) 2003; 6 Parkin (10.1016/j.soilbio.2020.107841_bib33) 1987; 51 Parry (10.1016/j.soilbio.2020.107841_bib34) 2000; 51 Yeomans (10.1016/j.soilbio.2020.107841_bib43) 1982; 46 Don (10.1016/j.soilbio.2020.107841_bib15) 2005; 37 Yeomans (10.1016/j.soilbio.2020.107841_bib44) 1978; 10 Jacobson (10.1016/j.soilbio.2020.107841_bib22) 1980; 12 Terry (10.1016/j.soilbio.2020.107841_bib46) 1985; 49 Chin (10.1016/j.soilbio.2020.107841_bib11) 1994; 28 Huang (10.1016/j.soilbio.2020.107841_bib21) 2004; 36 Marschner (10.1016/j.soilbio.2020.107841_bib27) 2003; 113 Berg (10.1016/j.soilbio.2020.107841_bib6) 2014 Akunna (10.1016/j.soilbio.2020.107841_bib1) 1993; 27 Ottow (10.1016/j.soilbio.2020.107841_bib32) 2011 Fazzolari (10.1016/j.soilbio.2020.107841_bib17) 1998; 34 Ambus (10.1016/j.soilbio.2020.107841_bib3) 2001; 41 Kravchenko (10.1016/j.soilbio.2020.107841_bib25) 2017; 10 Reinertsen (10.1016/j.soilbio.2020.107841_bib37) 1984; 16 deCatanzaro (10.1016/j.soilbio.2020.107841_bib13) 1985; 1 Rashid (10.1016/j.soilbio.2020.107841_bib36) 1988; 106 Neumann (10.1016/j.soilbio.2020.107841_bib31) 2007 Vanlauwe (10.1016/j.soilbio.2020.107841_bib41) 1996; 183 Aulakh (10.1016/j.soilbio.2020.107841_bib5) 1991; 55 Ellerbrock (10.1016/j.soilbio.2020.107841_bib16) 2005; 128 Knowles (10.1016/j.soilbio.2020.107841_bib24) 1990 Bremner (10.1016/j.soilbio.2020.107841_bib8) 1958; 51 |
References_xml | – volume: 19 start-page: 583 year: 1987 end-page: 587 ident: bib14 article-title: Denitrification vs dissimilatory nitrate reduction in soil with alfalfa, straw, glucose and sulfide treatments publication-title: Soil Biology and Biochemistry – volume: 34 start-page: 47 year: 1998 end-page: 52 ident: bib17 article-title: Simultaneous effects of increasing levels of glucose and oxygen partial pressures on denitrification and dissimilatory nitrate reduction to ammonium in repacked soil cores publication-title: European Journal of Soil Biology – volume: 16 start-page: 459 year: 1984 end-page: 464 ident: bib37 article-title: Role of available carbon and nitrogen in determining the rate of wheat straw decomposition publication-title: Soil Biology and Biochemistry – volume: 12 start-page: 501 year: 1980 end-page: 505 ident: bib22 article-title: Nitrate loss from soil in relation to temperature, carbon source and denitrifier populations publication-title: Soil Biology and Biochemistry – volume: 93 start-page: 49 year: 2009 end-page: 77 ident: bib18 article-title: Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models publication-title: Biogeochemistry – volume: 368 start-page: 57 year: 2013 end-page: 72 ident: bib30 article-title: Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat publication-title: Plant and Soil – volume: 69 start-page: 705 year: 1976 end-page: 710 ident: bib45 article-title: Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria publication-title: Biochemical and Biophysical Research Communications – volume: 189 start-page: 197 year: 1997 end-page: 203 ident: bib4 article-title: Decomposition of wheat straw and rye residues as affected by particle size publication-title: Plant and Soil – volume: 10 start-page: 496 year: 2017 end-page: 500 ident: bib25 article-title: Hotspots of soil N publication-title: Nature Geoscience – volume: 51 start-page: 1194 year: 1987 ident: bib33 article-title: Soil microsites as a source of denitrification variability publication-title: Soil Science Society of America Journal – volume: 51 start-page: 40 year: 1958 end-page: 52 ident: bib8 article-title: Denitrification in soil. II. Factors affecting denitrification publication-title: The Journal of Agricultural Science – volume: 37 start-page: 2171 year: 2005 end-page: 2179 ident: bib15 article-title: Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages publication-title: Soil Biology and Biochemistry – volume: 106 start-page: 43 year: 1988 end-page: 48 ident: bib36 article-title: The influence of glucose and other sources of carbon on nitrate reduction rates in two temperate forest soils publication-title: Plant and Soil – volume: 15 start-page: 268 year: 1961 end-page: 280 ident: bib40 article-title: Nutrition and physiology of denitrifying bacteria publication-title: Plant and Soil – volume: 36 start-page: 973 year: 2004 end-page: 981 ident: bib21 article-title: Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios publication-title: Soil Biology and Biochemistry – start-page: 23 year: 2007 end-page: 72 ident: bib31 article-title: The release of root exudates as affected by the plant physiological status publication-title: The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface – volume: 27 start-page: 1303 year: 1993 end-page: 1312 ident: bib1 article-title: Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol publication-title: Water Research – volume: 28 start-page: 1853 year: 1994 end-page: 1858 ident: bib11 article-title: Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances publication-title: Environmental Science & Technology – start-page: 151 year: 1990 end-page: 166 ident: bib24 article-title: Acetylene inhibition technique: development, advantages, and potential problems publication-title: Denitrification in Soil and Sediment, Federation of European Microbiological Societies Symposium Series – volume: 17 start-page: 1181 year: 2020 end-page: 1198 ident: bib38 article-title: Maize root and shoot litter quality controls short-term CO publication-title: Biogeosciences – volume: 7 start-page: 389 year: 1975 end-page: 394 ident: bib9 article-title: Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter publication-title: Soil Biology and Biochemistry – volume: 34 start-page: 509 year: 2002 end-page: 517 ident: bib10 article-title: Fate of carbon and nitrogen from animal manure and crop residues in wet and cold soils publication-title: Soil Biology and Biochemistry – volume: 6 start-page: 301 year: 2003 end-page: 312 ident: bib29 article-title: Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems publication-title: Ecosystems – volume: 128 start-page: 28 year: 2005 end-page: 37 ident: bib16 article-title: Stability and composition of different soluble soil organic matter fractions - evidence from δ publication-title: Geoderma – volume: 121 start-page: 221 year: 2018 end-page: 230 ident: bib28 article-title: Quality of DOC produced during litter decomposition of peatland plant dominants publication-title: Soil Biology and Biochemistry – volume: 51 start-page: 271 year: 2000 end-page: 281 ident: bib34 article-title: Particulate organic matter as a source of variation in denitrification in clods of soil publication-title: European Journal of Soil Science – volume: 55 start-page: 1020 year: 1991 end-page: 1025 ident: bib5 article-title: Crop residue type and placement effects on denitrification and mineralization publication-title: Soil Science Society of America Journal – volume: 10 start-page: 3082 year: 2008 end-page: 3092 ident: bib20 article-title: Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates publication-title: Environmental Microbiology – volume: 31 start-page: 877 year: 2000 end-page: 892 ident: bib39 article-title: Nitrous oxide emissions from soil amended with glucose, alfalfa, or corn residues publication-title: Communications in Soil Science and Plant Analysis – volume: 5 year: 2016 ident: bib26 article-title: Decomposition, nitrogen and carbon mineralization from food and cover crop residues in the central plateau of Haiti publication-title: SpringerPlus – volume: 41 start-page: 7 year: 2001 end-page: 15 ident: bib3 article-title: Nitrous oxide and N-leaching losses from agricultural soil: influence of crop residue particle size, quality and placement publication-title: Phyton. Annales Rei Botanicae – volume: 20 start-page: 665 year: 2017 end-page: 682 ident: bib7 article-title: Control points in ecosystems: moving beyond the hot spot hot moment concept publication-title: Ecosystems – year: 2011 ident: bib32 article-title: Mikrobiologie von Böden – volume: 49 start-page: 90 year: 1985 end-page: 94 ident: bib46 article-title: Acetylene decomposition in soils publication-title: Soil Science Society of America Journal – volume: 1 start-page: 183 year: 1985 end-page: 187 ident: bib13 article-title: The effect of some carbon substrates on denitrification rates and carbon utilization in soil publication-title: Biology and Fertility of Soils – volume: 46 start-page: 75 year: 1982 end-page: 77 ident: bib43 article-title: Sulfur in acetylene inhibition of nitrous oxide reduction by soil microorganisms publication-title: Soil Science Society of America Journal – volume: 183 start-page: 221 year: 1996 end-page: 231 ident: bib41 article-title: Impact of residue quality on the C and N mineralization of leaf and root residues of three agroforestry species publication-title: Plant and Soil – volume: 36 start-page: 255 year: 2004 end-page: 266 ident: bib19 article-title: Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover publication-title: Soil Biology and Biochemistry – volume: 38 start-page: 3222 year: 2006 end-page: 3234 ident: bib42 article-title: Organic matter in density fractions of water-stable aggregates in silty soils: effect of land use publication-title: Soil Biology and Biochemistry – volume: 192 start-page: 86 year: 2013 end-page: 96 ident: bib12 article-title: Comparison of soil organic matter composition after incubation with maize leaves, roots, and stems publication-title: Geoderma – volume: 10 start-page: 517 year: 1978 end-page: 519 ident: bib44 article-title: Limited inhibition of nitrous oxide reduction in soil in the presence of acetylene publication-title: Soil Biology and Biochemistry – volume: 101 year: 2020 ident: bib2 article-title: Looking back to look ahead: a vision for soil denitrification research publication-title: Ecology – start-page: 249 year: 2007 end-page: 305 ident: bib35 article-title: Ecology of denitrifying prokaryotes in agricultural soil publication-title: Advances in Agronomy – volume: 113 start-page: 273 year: 2003 end-page: 291 ident: bib23 article-title: Biodegradation of soil-derived dissolved organic matter as related to its properties publication-title: Geoderma, Ecological aspects of dissolved organic matter in soils – volume: 113 start-page: 211 year: 2003 end-page: 235 ident: bib27 article-title: Controls of bioavailability and biodegradability of dissolved organic matter in soils publication-title: Geoderma, Ecological aspects of dissolved organic matter in soils – start-page: 11 year: 2014 end-page: 34 ident: bib6 article-title: Decomposition as a process: some main features publication-title: Plant Litter – volume: 27 start-page: 1303 year: 1993 ident: 10.1016/j.soilbio.2020.107841_bib1 article-title: Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol publication-title: Water Research doi: 10.1016/0043-1354(93)90217-6 – start-page: 23 year: 2007 ident: 10.1016/j.soilbio.2020.107841_bib31 article-title: The release of root exudates as affected by the plant physiological status – volume: 38 start-page: 3222 year: 2006 ident: 10.1016/j.soilbio.2020.107841_bib42 article-title: Organic matter in density fractions of water-stable aggregates in silty soils: effect of land use publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2006.04.013 – volume: 31 start-page: 877 year: 2000 ident: 10.1016/j.soilbio.2020.107841_bib39 article-title: Nitrous oxide emissions from soil amended with glucose, alfalfa, or corn residues publication-title: Communications in Soil Science and Plant Analysis doi: 10.1080/00103620009370484 – volume: 69 start-page: 705 year: 1976 ident: 10.1016/j.soilbio.2020.107841_bib45 article-title: Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria publication-title: Biochemical and Biophysical Research Communications doi: 10.1016/0006-291X(76)90932-3 – volume: 93 start-page: 49 year: 2009 ident: 10.1016/j.soilbio.2020.107841_bib18 article-title: Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models publication-title: Biogeochemistry doi: 10.1007/s10533-008-9277-5 – volume: 19 start-page: 583 year: 1987 ident: 10.1016/j.soilbio.2020.107841_bib14 article-title: Denitrification vs dissimilatory nitrate reduction in soil with alfalfa, straw, glucose and sulfide treatments publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(87)90102-7 – volume: 51 start-page: 271 year: 2000 ident: 10.1016/j.soilbio.2020.107841_bib34 article-title: Particulate organic matter as a source of variation in denitrification in clods of soil publication-title: European Journal of Soil Science doi: 10.1046/j.1365-2389.2000.00298.x – start-page: 11 year: 2014 ident: 10.1016/j.soilbio.2020.107841_bib6 article-title: Decomposition as a process: some main features – volume: 113 start-page: 273 year: 2003 ident: 10.1016/j.soilbio.2020.107841_bib23 article-title: Biodegradation of soil-derived dissolved organic matter as related to its properties publication-title: Geoderma, Ecological aspects of dissolved organic matter in soils – volume: 106 start-page: 43 year: 1988 ident: 10.1016/j.soilbio.2020.107841_bib36 article-title: The influence of glucose and other sources of carbon on nitrate reduction rates in two temperate forest soils publication-title: Plant and Soil doi: 10.1007/BF02371193 – volume: 41 start-page: 7 year: 2001 ident: 10.1016/j.soilbio.2020.107841_bib3 article-title: Nitrous oxide and N-leaching losses from agricultural soil: influence of crop residue particle size, quality and placement publication-title: Phyton. Annales Rei Botanicae – volume: 113 start-page: 211 year: 2003 ident: 10.1016/j.soilbio.2020.107841_bib27 article-title: Controls of bioavailability and biodegradability of dissolved organic matter in soils publication-title: Geoderma, Ecological aspects of dissolved organic matter in soils – volume: 121 start-page: 221 year: 2018 ident: 10.1016/j.soilbio.2020.107841_bib28 article-title: Quality of DOC produced during litter decomposition of peatland plant dominants publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.03.018 – volume: 28 start-page: 1853 year: 1994 ident: 10.1016/j.soilbio.2020.107841_bib11 article-title: Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances publication-title: Environmental Science & Technology doi: 10.1021/es00060a015 – volume: 55 start-page: 1020 year: 1991 ident: 10.1016/j.soilbio.2020.107841_bib5 article-title: Crop residue type and placement effects on denitrification and mineralization publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1991.03615995005500040022x – volume: 5 year: 2016 ident: 10.1016/j.soilbio.2020.107841_bib26 article-title: Decomposition, nitrogen and carbon mineralization from food and cover crop residues in the central plateau of Haiti publication-title: SpringerPlus doi: 10.1186/s40064-016-2651-1 – volume: 46 start-page: 75 year: 1982 ident: 10.1016/j.soilbio.2020.107841_bib43 article-title: Sulfur in acetylene inhibition of nitrous oxide reduction by soil microorganisms publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1982.03615995004600010014x – start-page: 249 year: 2007 ident: 10.1016/j.soilbio.2020.107841_bib35 article-title: Ecology of denitrifying prokaryotes in agricultural soil doi: 10.1016/S0065-2113(07)96003-4 – volume: 10 start-page: 3082 year: 2008 ident: 10.1016/j.soilbio.2020.107841_bib20 article-title: Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates publication-title: Environmental Microbiology doi: 10.1111/j.1462-2920.2008.01599.x – volume: 16 start-page: 459 year: 1984 ident: 10.1016/j.soilbio.2020.107841_bib37 article-title: Role of available carbon and nitrogen in determining the rate of wheat straw decomposition publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(84)90052-X – volume: 17 start-page: 1181 year: 2020 ident: 10.1016/j.soilbio.2020.107841_bib38 article-title: Maize root and shoot litter quality controls short-term CO2 and N2O emissions and bacterial community structure of arable soil publication-title: Biogeosciences doi: 10.5194/bg-17-1181-2020 – volume: 189 start-page: 197 year: 1997 ident: 10.1016/j.soilbio.2020.107841_bib4 article-title: Decomposition of wheat straw and rye residues as affected by particle size publication-title: Plant and Soil doi: 10.1023/A:1004207219678 – volume: 192 start-page: 86 year: 2013 ident: 10.1016/j.soilbio.2020.107841_bib12 article-title: Comparison of soil organic matter composition after incubation with maize leaves, roots, and stems publication-title: Geoderma doi: 10.1016/j.geoderma.2012.08.007 – volume: 10 start-page: 517 year: 1978 ident: 10.1016/j.soilbio.2020.107841_bib44 article-title: Limited inhibition of nitrous oxide reduction in soil in the presence of acetylene publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(78)90046-9 – volume: 12 start-page: 501 year: 1980 ident: 10.1016/j.soilbio.2020.107841_bib22 article-title: Nitrate loss from soil in relation to temperature, carbon source and denitrifier populations publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(80)90087-5 – volume: 101 year: 2020 ident: 10.1016/j.soilbio.2020.107841_bib2 article-title: Looking back to look ahead: a vision for soil denitrification research publication-title: Ecology doi: 10.1002/ecy.2917 – volume: 368 start-page: 57 year: 2013 ident: 10.1016/j.soilbio.2020.107841_bib30 article-title: Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat publication-title: Plant and Soil doi: 10.1007/s11104-013-1761-6 – start-page: 151 year: 1990 ident: 10.1016/j.soilbio.2020.107841_bib24 article-title: Acetylene inhibition technique: development, advantages, and potential problems – volume: 6 start-page: 301 year: 2003 ident: 10.1016/j.soilbio.2020.107841_bib29 article-title: Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems publication-title: Ecosystems doi: 10.1007/s10021-003-0161-9 – volume: 1 start-page: 183 year: 1985 ident: 10.1016/j.soilbio.2020.107841_bib13 article-title: The effect of some carbon substrates on denitrification rates and carbon utilization in soil publication-title: Biology and Fertility of Soils doi: 10.1007/BF00257635 – volume: 49 start-page: 90 year: 1985 ident: 10.1016/j.soilbio.2020.107841_bib46 article-title: Acetylene decomposition in soils publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1985.03615995004900010018x – volume: 37 start-page: 2171 year: 2005 ident: 10.1016/j.soilbio.2020.107841_bib15 article-title: Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2005.03.019 – volume: 34 start-page: 509 year: 2002 ident: 10.1016/j.soilbio.2020.107841_bib10 article-title: Fate of carbon and nitrogen from animal manure and crop residues in wet and cold soils publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(01)00209-7 – volume: 20 start-page: 665 year: 2017 ident: 10.1016/j.soilbio.2020.107841_bib7 article-title: Control points in ecosystems: moving beyond the hot spot hot moment concept publication-title: Ecosystems doi: 10.1007/s10021-016-0103-y – volume: 7 start-page: 389 year: 1975 ident: 10.1016/j.soilbio.2020.107841_bib9 article-title: Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(75)90055-3 – volume: 36 start-page: 973 year: 2004 ident: 10.1016/j.soilbio.2020.107841_bib21 article-title: Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2004.02.009 – volume: 34 start-page: 47 year: 1998 ident: 10.1016/j.soilbio.2020.107841_bib17 article-title: Simultaneous effects of increasing levels of glucose and oxygen partial pressures on denitrification and dissimilatory nitrate reduction to ammonium in repacked soil cores publication-title: European Journal of Soil Biology doi: 10.1016/S1164-5563(99)80006-5 – volume: 128 start-page: 28 year: 2005 ident: 10.1016/j.soilbio.2020.107841_bib16 article-title: Stability and composition of different soluble soil organic matter fractions - evidence from δ13C and FTIR signatures publication-title: Geoderma doi: 10.1016/j.geoderma.2004.12.025 – volume: 51 start-page: 1194 year: 1987 ident: 10.1016/j.soilbio.2020.107841_bib33 article-title: Soil microsites as a source of denitrification variability publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1987.03615995005100050019x – volume: 36 start-page: 255 year: 2004 ident: 10.1016/j.soilbio.2020.107841_bib19 article-title: Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2003.09.012 – volume: 51 start-page: 40 year: 1958 ident: 10.1016/j.soilbio.2020.107841_bib8 article-title: Denitrification in soil. II. Factors affecting denitrification publication-title: The Journal of Agricultural Science doi: 10.1017/S0021859600032779 – volume: 183 start-page: 221 year: 1996 ident: 10.1016/j.soilbio.2020.107841_bib41 article-title: Impact of residue quality on the C and N mineralization of leaf and root residues of three agroforestry species publication-title: Plant and Soil doi: 10.1007/BF00011437 – volume: 10 start-page: 496 year: 2017 ident: 10.1016/j.soilbio.2020.107841_bib25 article-title: Hotspots of soil N2O emission enhanced through water absorption by plant residue publication-title: Nature Geoscience doi: 10.1038/ngeo2963 – year: 2011 ident: 10.1016/j.soilbio.2020.107841_bib32 – volume: 15 start-page: 268 year: 1961 ident: 10.1016/j.soilbio.2020.107841_bib40 article-title: Nutrition and physiology of denitrifying bacteria publication-title: Plant and Soil doi: 10.1007/BF01400460 |
SSID | ssj0002513 |
Score | 2.544812 |
Snippet | Denitrification usually takes place under anoxic conditions and over short periods of time, and depends on readily available nitrate and carbon sources.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107841 |
SubjectTerms | biochemistry carbon dioxide Chemical composition of organic matter Crop residues denitrification Denitrification potential gas chromatography N2O/(N2O+N2) ratio organic carbon organic nitrogen Root exudates soil ultraviolet-visible spectroscopy water solubility Water-extractable organic carbon |
Title | Potential denitrification stimulated by water-soluble organic carbon from plant residues during initial decomposition |
URI | https://dx.doi.org/10.1016/j.soilbio.2020.107841 https://www.proquest.com/docview/2985895273 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhc2h7CEna0rwWBXr1PmzJko7LkrBJSMghgdyEJEvFy3Z3cb2UXPLbM2PLDSmEQG62LAmhkWdGzDffEPIzNRIMHcsTkYUsYTL4RAXBEg7mjYUClGZDX3x9k8_u2eUDf9gi0y4XBmGVUfe3Or3R1rFlGHdzuC5LzPFFsvQxxhEx3IaMn4wJPOWDpxeYB9jvSLwrMVlHvGTxDOfIl7uwJeYAptiGMbi37NN_mroxP-e7ZCf6jXTSLm2PbPnlPvky-VVF7gy_Tz5Nu-JtX8nmdlUjDgiGgGIp6woRQY0QKPzTv7Fmly-ofaR_4aFK8ADahadtjSdHnaksdMXcE7pewOZTuJWXBSyMtnmNtETQUTM7gtIj8usbuT8_u5vOklhhIXGM8zqxecg9eIDj1Kc5F2JkCqUCg2_OwcURmo2BC1XGBLhZ1liZ81A4FnwhR5kyPPtOesvV0v8gNFdKjBx0U4VkhlkpwPNUIXV2bKXkxQFh3b5qF-nHsQrGQnc4s7mO4tAoDt2K44AM_g1bt_wb7w2QndD0q4OkwUa8N_S0E7IGcWHkxCz9avNHp0pyqZCr7vDj0x-Rz_jWogePSa-uNv4EPJra9psj2yfbk4ur2c0zTxX3Yg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4heqAcUIEiFii4Ej2G3c06iX3oAUHRUh7qASRuxnZsFLTsrkJWiAt_qn-wM4kDKlKFVIlb5Jcif_bMWPPNDMBurAUqOp5G2cAPIi68i6TPeJSgeuM-R6FZpy8-O0-Hl_znVXI1B7_bWBiiVQbZ38j0WlqHlm7Yze60KCjGl5Kl98mPSO62toL1iXt8wHfb_ffjQwT5Wxwf_bg4GEahtEBkeZJUkUl96tD06ccuTpMs6-lcSs-xz1p8MWGz1viSGPAM7QujjUgTn1vuXS56A6mpVATK_Q8cxQWVTdh7euGVoMEQMv0Kig7KXsKGureUoHdkCgo6jKmNnH7_UoivVEOt744-wVIwVNl-sxfLMOfGK7C4f1OGZB1uBRYO2mpxqzD7NamIeIRTUJIVVUkUpBp1hkLkjoqEuZyZR_aAH2VEJ96MHGuKSllmdWlwKAW7sOkI0Walw3uCP8aaQEpWEMupXp1Y8IFq9hku32Xf12B-PBm7dWCplFnP4jCZC665ERmautLH1vSNEEneAd7uq7Ih3zmV3Riplth2qwIciuBQDRwd2HueNm0Sfrw1QbSgqb9OrkKl9NbUry3ICuEiV40eu8nsXsVSJEJScryN_19-BxaGF2en6vT4_GQTPlJPQ13cgvmqnLkvaE5VZrs-vgyu3_u-_AHqFTJN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+denitrification+stimulated+by+water-soluble+organic+carbon+from+plant+residues+during+initial+decomposition&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Surey%2C+Ronny&rft.au=Schimpf%2C+Corinna+M.&rft.au=Sauheitl%2C+Leopold&rft.au=Mueller%2C+Carsten+W.&rft.date=2020-08-01&rft.issn=0038-0717&rft.volume=147&rft.spage=107841&rft_id=info:doi/10.1016%2Fj.soilbio.2020.107841&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soilbio_2020_107841 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |