Potential denitrification stimulated by water-soluble organic carbon from plant residues during initial decomposition

Denitrification usually takes place under anoxic conditions and over short periods of time, and depends on readily available nitrate and carbon sources. Variations in CO2 and N2O emissions associated with plant residues have mainly been explained by differences in their decomposability. A factor rar...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 147; p. 107841
Main Authors Surey, Ronny, Schimpf, Corinna M., Sauheitl, Leopold, Mueller, Carsten W., Rummel, Pauline S., Dittert, Klaus, Kaiser, Klaus, Böttcher, Jürgen, Mikutta, Robert
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Denitrification usually takes place under anoxic conditions and over short periods of time, and depends on readily available nitrate and carbon sources. Variations in CO2 and N2O emissions associated with plant residues have mainly been explained by differences in their decomposability. A factor rarely considered so far is water-extractable organic matter (WEOM) released to the soil during residue decomposition. Here, we examined the potential effect of plant residues on denitrification with special emphasis on WEOM. A range of fresh and leached plant residues was characterized by elemental analyses, 13C-NMR spectroscopy, and extraction with ultrapure water. The obtained solutions were analyzed for the concentrations of organic carbon (OC) and organic nitrogen (ON), and by UV-VIS spectroscopy. To test the potential denitrification induced by plant residues or three different OM solutions, these carbon sources were added to soil suspensions and incubated for 24 h at 20 °C in the dark under anoxic conditions; KNO3 was added to ensure unlimited nitrate supply. Evolving N2O and CO2 were analyzed by gas chromatography, and acetylene inhibition was used to determine denitrification and its product ratio. The production of all gases, as well as the molar (N2O + N2)–N/CO2–C ratio, was directly related to the water-extractable OC (WEOC) content of the plant residues, and the WEOC increased with carboxylic/carbonyl C and decreasing OC/ON ratio of the plant residues. Incubation of OM solutions revealed that the molar (N2O + N2)–N/CO2–C ratio and share of N2O are influenced by the WEOM's chemical composition. In conclusion, our results emphasize the potential of WEOM in largely undecomposed plant residues to support short-term denitrification activity in a typical ˈhot spot–hot momentˈ situation. •Potential denitrification is closely related to water-soluble OC in plant residues.•Amount of water-soluble OC depends on the residue's chemical composition.•Chemical composition of water-soluble OM controls the molar (N2O + N2)–N/CO2–C ratio.
AbstractList Denitrification usually takes place under anoxic conditions and over short periods of time, and depends on readily available nitrate and carbon sources. Variations in CO2 and N2O emissions associated with plant residues have mainly been explained by differences in their decomposability. A factor rarely considered so far is water-extractable organic matter (WEOM) released to the soil during residue decomposition. Here, we examined the potential effect of plant residues on denitrification with special emphasis on WEOM. A range of fresh and leached plant residues was characterized by elemental analyses, 13C-NMR spectroscopy, and extraction with ultrapure water. The obtained solutions were analyzed for the concentrations of organic carbon (OC) and organic nitrogen (ON), and by UV-VIS spectroscopy. To test the potential denitrification induced by plant residues or three different OM solutions, these carbon sources were added to soil suspensions and incubated for 24 h at 20 °C in the dark under anoxic conditions; KNO3 was added to ensure unlimited nitrate supply. Evolving N2O and CO2 were analyzed by gas chromatography, and acetylene inhibition was used to determine denitrification and its product ratio. The production of all gases, as well as the molar (N2O + N2)–N/CO2–C ratio, was directly related to the water-extractable OC (WEOC) content of the plant residues, and the WEOC increased with carboxylic/carbonyl C and decreasing OC/ON ratio of the plant residues. Incubation of OM solutions revealed that the molar (N2O + N2)–N/CO2–C ratio and share of N2O are influenced by the WEOM's chemical composition. In conclusion, our results emphasize the potential of WEOM in largely undecomposed plant residues to support short-term denitrification activity in a typical ˈhot spot–hot momentˈ situation. •Potential denitrification is closely related to water-soluble OC in plant residues.•Amount of water-soluble OC depends on the residue's chemical composition.•Chemical composition of water-soluble OM controls the molar (N2O + N2)–N/CO2–C ratio.
Denitrification usually takes place under anoxic conditions and over short periods of time, and depends on readily available nitrate and carbon sources. Variations in CO₂ and N₂O emissions associated with plant residues have mainly been explained by differences in their decomposability. A factor rarely considered so far is water-extractable organic matter (WEOM) released to the soil during residue decomposition. Here, we examined the potential effect of plant residues on denitrification with special emphasis on WEOM. A range of fresh and leached plant residues was characterized by elemental analyses, ¹³C-NMR spectroscopy, and extraction with ultrapure water. The obtained solutions were analyzed for the concentrations of organic carbon (OC) and organic nitrogen (ON), and by UV-VIS spectroscopy. To test the potential denitrification induced by plant residues or three different OM solutions, these carbon sources were added to soil suspensions and incubated for 24 h at 20 °C in the dark under anoxic conditions; KNO₃ was added to ensure unlimited nitrate supply. Evolving N₂O and CO₂ were analyzed by gas chromatography, and acetylene inhibition was used to determine denitrification and its product ratio. The production of all gases, as well as the molar (N₂O + N₂)–N/CO₂–C ratio, was directly related to the water-extractable OC (WEOC) content of the plant residues, and the WEOC increased with carboxylic/carbonyl C and decreasing OC/ON ratio of the plant residues. Incubation of OM solutions revealed that the molar (N₂O + N₂)–N/CO₂–C ratio and share of N₂O are influenced by the WEOM's chemical composition. In conclusion, our results emphasize the potential of WEOM in largely undecomposed plant residues to support short-term denitrification activity in a typical ˈhot spot–hot momentˈ situation.
ArticleNumber 107841
Author Surey, Ronny
Mikutta, Robert
Schimpf, Corinna M.
Mueller, Carsten W.
Kaiser, Klaus
Dittert, Klaus
Böttcher, Jürgen
Sauheitl, Leopold
Rummel, Pauline S.
Author_xml – sequence: 1
  givenname: Ronny
  surname: Surey
  fullname: Surey, Ronny
  email: ronny.surey@landw.uni-halle.de
  organization: Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Halle, Germany
– sequence: 2
  givenname: Corinna M.
  surname: Schimpf
  fullname: Schimpf, Corinna M.
  organization: Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Halle, Germany
– sequence: 3
  givenname: Leopold
  surname: Sauheitl
  fullname: Sauheitl, Leopold
  organization: Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany
– sequence: 4
  givenname: Carsten W.
  surname: Mueller
  fullname: Mueller, Carsten W.
  organization: Chair of Soil Science, Technical University of Munich, Freising, Germany
– sequence: 5
  givenname: Pauline S.
  surname: Rummel
  fullname: Rummel, Pauline S.
  organization: Plant Nutrition and Crop Physiology, University of Göttingen, Göttingen, Germany
– sequence: 6
  givenname: Klaus
  surname: Dittert
  fullname: Dittert, Klaus
  organization: Plant Nutrition and Crop Physiology, University of Göttingen, Göttingen, Germany
– sequence: 7
  givenname: Klaus
  surname: Kaiser
  fullname: Kaiser, Klaus
  organization: Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Halle, Germany
– sequence: 8
  givenname: Jürgen
  surname: Böttcher
  fullname: Böttcher, Jürgen
  organization: Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany
– sequence: 9
  givenname: Robert
  surname: Mikutta
  fullname: Mikutta, Robert
  organization: Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Halle, Germany
BookMark eNqFkMFK5TAUhoM44NWZRxCydNM7Sds0LS5kEHUEQRcz65Amp3IuaXJN0hHffnKtKzeuEs75_4_Dd0qOffBAyDlnW85493O3TQHdiGFbs_owk33Lj8iG93Komrbuj8mGsaavmOTyhJymtGOM1YI3G7I8hQw-o3bUgscccUKjMwZPU8Z5cTqDpeMbfS2fWKXgltEBDfFZezTU6DiW6BTDTPdO-0wjJLQLJGqXiP6ZYoGudBPmfUh4YH8n3ybtEvz4eM_I39ubP9e_q4fHu_vrXw-VaYXI1dhNHQxS8hrqTkjJtB2GqS07Y0Q7lLHWkndNK0XHRz32nZisaSewPWsGLZozcrFy9zG8lKOymjEZcOVSCEtS9dCLfhC1bEpUrFETQ0oRJrWPOOv4pjhTB81qpz40q4NmtWouvctPPYP5XWCOGt2X7au1DcXCP4SokkHwBixGMFnZgF8Q_gNHJKG4
CitedBy_id crossref_primary_10_1007_s42729_023_01464_4
crossref_primary_10_1016_j_scitotenv_2022_154388
crossref_primary_10_3390_agriculture10110546
crossref_primary_10_3389_fsoil_2024_1369971
crossref_primary_10_3390_soilsystems9010024
crossref_primary_10_1007_s11368_022_03406_6
crossref_primary_10_1016_j_geoderma_2022_116032
crossref_primary_10_1016_j_envres_2022_114679
crossref_primary_10_1016_j_envpol_2021_117721
crossref_primary_10_3389_fmicb_2024_1499302
crossref_primary_10_1016_j_scitotenv_2021_152532
crossref_primary_10_1007_s00374_025_01894_5
crossref_primary_10_3389_fenvs_2021_773901
crossref_primary_10_1016_j_agwat_2022_108039
crossref_primary_10_1007_s11368_021_02942_x
crossref_primary_10_1016_j_geoderma_2022_115875
crossref_primary_10_1007_s11368_020_02797_8
crossref_primary_10_1016_j_soilbio_2023_109274
crossref_primary_10_1016_j_soilbio_2024_109694
crossref_primary_10_5194_bg_19_4811_2022
crossref_primary_10_3390_nitrogen3040040
crossref_primary_10_1007_s10533_022_00925_9
crossref_primary_10_1016_j_jhydrol_2021_127132
crossref_primary_10_1016_j_envpol_2023_122370
crossref_primary_10_1016_j_scitotenv_2021_150883
crossref_primary_10_1016_j_still_2024_106065
crossref_primary_10_1007_s00374_024_01864_3
crossref_primary_10_3390_soilsystems7020062
crossref_primary_10_3390_su16135368
crossref_primary_10_1016_j_soilbio_2022_108757
crossref_primary_10_1016_j_scitotenv_2021_145852
crossref_primary_10_1016_j_scitotenv_2021_151051
crossref_primary_10_1016_j_agee_2021_107473
crossref_primary_10_1016_j_scitotenv_2024_175383
crossref_primary_10_1016_j_still_2024_106309
crossref_primary_10_3390_app11115309
crossref_primary_10_3390_rs16152731
crossref_primary_10_1007_s10750_024_05634_y
crossref_primary_10_1016_j_jclepro_2022_130451
crossref_primary_10_1007_s00374_024_01819_8
crossref_primary_10_1016_j_scitotenv_2024_170524
crossref_primary_10_1002_clen_202100038
crossref_primary_10_3389_fmars_2021_642143
crossref_primary_10_1007_s42773_024_00386_3
crossref_primary_10_1007_s42729_024_01769_y
crossref_primary_10_3390_microorganisms12101940
crossref_primary_10_1088_1748_9326_ac417e
crossref_primary_10_1016_j_biortech_2023_128909
crossref_primary_10_1016_j_envpol_2021_117176
crossref_primary_10_3389_fenvs_2021_640534
crossref_primary_10_1111_gcb_16190
crossref_primary_10_1016_j_fcr_2025_109850
crossref_primary_10_3390_agronomy14061167
crossref_primary_10_1016_j_chemosphere_2022_136385
crossref_primary_10_1016_j_scitotenv_2021_150525
Cites_doi 10.1016/0043-1354(93)90217-6
10.1016/j.soilbio.2006.04.013
10.1080/00103620009370484
10.1016/0006-291X(76)90932-3
10.1007/s10533-008-9277-5
10.1016/0038-0717(87)90102-7
10.1046/j.1365-2389.2000.00298.x
10.1007/BF02371193
10.1016/j.soilbio.2018.03.018
10.1021/es00060a015
10.2136/sssaj1991.03615995005500040022x
10.1186/s40064-016-2651-1
10.2136/sssaj1982.03615995004600010014x
10.1016/S0065-2113(07)96003-4
10.1111/j.1462-2920.2008.01599.x
10.1016/0038-0717(84)90052-X
10.5194/bg-17-1181-2020
10.1023/A:1004207219678
10.1016/j.geoderma.2012.08.007
10.1016/0038-0717(78)90046-9
10.1016/0038-0717(80)90087-5
10.1002/ecy.2917
10.1007/s11104-013-1761-6
10.1007/s10021-003-0161-9
10.1007/BF00257635
10.2136/sssaj1985.03615995004900010018x
10.1016/j.soilbio.2005.03.019
10.1016/S0038-0717(01)00209-7
10.1007/s10021-016-0103-y
10.1016/0038-0717(75)90055-3
10.1016/j.soilbio.2004.02.009
10.1016/S1164-5563(99)80006-5
10.1016/j.geoderma.2004.12.025
10.2136/sssaj1987.03615995005100050019x
10.1016/j.soilbio.2003.09.012
10.1017/S0021859600032779
10.1007/BF00011437
10.1038/ngeo2963
10.1007/BF01400460
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright_xml – notice: 2020 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.soilbio.2020.107841
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1879-3428
ExternalDocumentID 10_1016_j_soilbio_2020_107841
S0038071720301383
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c455t-b6f6e97712e265770ad99f4455cc54912eaa716347561bab865fdc4fed8039a53
IEDL.DBID .~1
ISSN 0038-0717
IngestDate Thu Jul 10 22:47:59 EDT 2025
Tue Jul 01 03:20:03 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
Fri Feb 23 02:47:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Water-extractable organic carbon
Denitrification potential
N2O/(N2O+N2) ratio
Chemical composition of organic matter
Root exudates
Crop residues
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-b6f6e97712e265770ad99f4455cc54912eaa716347561bab865fdc4fed8039a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0038071720301383
PQID 2985895273
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2985895273
crossref_primary_10_1016_j_soilbio_2020_107841
crossref_citationtrail_10_1016_j_soilbio_2020_107841
elsevier_sciencedirect_doi_10_1016_j_soilbio_2020_107841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Soil biology & biochemistry
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Don, Kalbitz (bib15) 2005; 37
Neumann, Römheld (bib31) 2007
Mastný, Kaštovská, Bárta, Chroňáková, Borovec, Šantrůčková, Urbanová, Edwards, Picek (bib28) 2018; 121
Clemente, Simpson, Simpson, Yanni, Whalen (bib12) 2013; 192
Angers, Recous (bib4) 1997; 189
Ottow (bib32) 2011
Reinertsen, Elliott, Cochran, Campbell (bib37) 1984; 16
deCatanzaro, Beauchamp (bib13) 1985; 1
Philippot, Hallin, Schloter (bib35) 2007
Ambus, Jensen, Robertson (bib3) 2001; 41
Huang, Zou, Zheng, Wang, Xu (bib21) 2004; 36
Chantigny, Angers, Rochette (bib10) 2002; 34
Hadas, Kautsky, Goek, Erman Kara (bib19) 2004; 36
Lynch, Mulvaney, Hodges, Thompson, Thomason (bib26) 2016; 5
Jacobson, Alexander (bib22) 1980; 12
Marschner, Kalbitz (bib27) 2003; 113
Ellerbrock, Kaiser (bib16) 2005; 128
Akunna, Bizeau, Moletta (bib1) 1993; 27
Parkin (bib33) 1987; 51
Kalbitz, Schmerwitz, Schwesig, Matzner (bib23) 2003; 113
Parry, Renault, Chadœuf, Chenu, Lensi (bib34) 2000; 51
Rashid, Schaefer (bib36) 1988; 106
Bernhardt, Blaszczak, Ficken, Fork, Kaiser, Seybold (bib7) 2017; 20
Burford, Bremner (bib9) 1975; 7
Yeomans, Beauchamp (bib43) 1982; 46
Kravchenko, Toosi, Guber, Ostrom, Yu, 449 Azeem, Rivers, Robertson (bib25) 2017; 10
McClain, Boyer, Dent, Gergel, Grimm, Groffman, Hart, Harvey, Johnston, Mayorga, McDowell, Pinay (bib29) 2003; 6
Yeomans, Beauchamp (bib44) 1978; 10
Bremner, Shaw (bib8) 1958; 51
Almaraz, Wong, Yang (bib2) 2020; 101
Aulakh, Walters, Doran, Francis, Mosier (bib5) 1991; 55
Yoshinari, Knowles (bib45) 1976; 69
Henry, Texier, Hallet, Bru, Dambreville, Chèneby, Bizouard, Germon, Philippot (bib20) 2008; 10
Groffman, Butterbach-Bahl, Fulweiler, Gold, Morse, Stander, Tague, Tonitto, Vidon (bib18) 2009; 93
Terry, Duxbury (bib46) 1985; 49
Rummel, Pfeiffer, Pausch, Well, Schneider, Dittert (bib38) 2020; 17
Fazzolari, Nicolardot, Germon (bib17) 1998; 34
Shelp, Beauchamp, Thurtell (bib39) 2000; 31
Vanlauwe, Nwoke, Sanginga, Merckx (bib41) 1996; 183
deCatanzaro, Beauchamp, Drury (bib14) 1987; 19
Valera, Alexander (bib40) 1961; 15
Chin, Aiken, O'Loughlin (bib11) 1994; 28
Yamashita, Flessa, John, Helfrich, Ludwig (bib42) 2006; 38
Berg, McClaugherty (bib6) 2014
Mengutay, Ceylan, Kutman, Cakmak (bib30) 2013; 368
Knowles (bib24) 1990
Chantigny (10.1016/j.soilbio.2020.107841_bib10) 2002; 34
Rummel (10.1016/j.soilbio.2020.107841_bib38) 2020; 17
Yamashita (10.1016/j.soilbio.2020.107841_bib42) 2006; 38
Clemente (10.1016/j.soilbio.2020.107841_bib12) 2013; 192
Shelp (10.1016/j.soilbio.2020.107841_bib39) 2000; 31
Philippot (10.1016/j.soilbio.2020.107841_bib35) 2007
Valera (10.1016/j.soilbio.2020.107841_bib40) 1961; 15
Almaraz (10.1016/j.soilbio.2020.107841_bib2) 2020; 101
deCatanzaro (10.1016/j.soilbio.2020.107841_bib14) 1987; 19
Groffman (10.1016/j.soilbio.2020.107841_bib18) 2009; 93
Kalbitz (10.1016/j.soilbio.2020.107841_bib23) 2003; 113
Mastný (10.1016/j.soilbio.2020.107841_bib28) 2018; 121
Yoshinari (10.1016/j.soilbio.2020.107841_bib45) 1976; 69
Bernhardt (10.1016/j.soilbio.2020.107841_bib7) 2017; 20
Mengutay (10.1016/j.soilbio.2020.107841_bib30) 2013; 368
Henry (10.1016/j.soilbio.2020.107841_bib20) 2008; 10
Burford (10.1016/j.soilbio.2020.107841_bib9) 1975; 7
Angers (10.1016/j.soilbio.2020.107841_bib4) 1997; 189
Lynch (10.1016/j.soilbio.2020.107841_bib26) 2016; 5
Hadas (10.1016/j.soilbio.2020.107841_bib19) 2004; 36
McClain (10.1016/j.soilbio.2020.107841_bib29) 2003; 6
Parkin (10.1016/j.soilbio.2020.107841_bib33) 1987; 51
Parry (10.1016/j.soilbio.2020.107841_bib34) 2000; 51
Yeomans (10.1016/j.soilbio.2020.107841_bib43) 1982; 46
Don (10.1016/j.soilbio.2020.107841_bib15) 2005; 37
Yeomans (10.1016/j.soilbio.2020.107841_bib44) 1978; 10
Jacobson (10.1016/j.soilbio.2020.107841_bib22) 1980; 12
Terry (10.1016/j.soilbio.2020.107841_bib46) 1985; 49
Chin (10.1016/j.soilbio.2020.107841_bib11) 1994; 28
Huang (10.1016/j.soilbio.2020.107841_bib21) 2004; 36
Marschner (10.1016/j.soilbio.2020.107841_bib27) 2003; 113
Berg (10.1016/j.soilbio.2020.107841_bib6) 2014
Akunna (10.1016/j.soilbio.2020.107841_bib1) 1993; 27
Ottow (10.1016/j.soilbio.2020.107841_bib32) 2011
Fazzolari (10.1016/j.soilbio.2020.107841_bib17) 1998; 34
Ambus (10.1016/j.soilbio.2020.107841_bib3) 2001; 41
Kravchenko (10.1016/j.soilbio.2020.107841_bib25) 2017; 10
Reinertsen (10.1016/j.soilbio.2020.107841_bib37) 1984; 16
deCatanzaro (10.1016/j.soilbio.2020.107841_bib13) 1985; 1
Rashid (10.1016/j.soilbio.2020.107841_bib36) 1988; 106
Neumann (10.1016/j.soilbio.2020.107841_bib31) 2007
Vanlauwe (10.1016/j.soilbio.2020.107841_bib41) 1996; 183
Aulakh (10.1016/j.soilbio.2020.107841_bib5) 1991; 55
Ellerbrock (10.1016/j.soilbio.2020.107841_bib16) 2005; 128
Knowles (10.1016/j.soilbio.2020.107841_bib24) 1990
Bremner (10.1016/j.soilbio.2020.107841_bib8) 1958; 51
References_xml – volume: 19
  start-page: 583
  year: 1987
  end-page: 587
  ident: bib14
  article-title: Denitrification vs dissimilatory nitrate reduction in soil with alfalfa, straw, glucose and sulfide treatments
  publication-title: Soil Biology and Biochemistry
– volume: 34
  start-page: 47
  year: 1998
  end-page: 52
  ident: bib17
  article-title: Simultaneous effects of increasing levels of glucose and oxygen partial pressures on denitrification and dissimilatory nitrate reduction to ammonium in repacked soil cores
  publication-title: European Journal of Soil Biology
– volume: 16
  start-page: 459
  year: 1984
  end-page: 464
  ident: bib37
  article-title: Role of available carbon and nitrogen in determining the rate of wheat straw decomposition
  publication-title: Soil Biology and Biochemistry
– volume: 12
  start-page: 501
  year: 1980
  end-page: 505
  ident: bib22
  article-title: Nitrate loss from soil in relation to temperature, carbon source and denitrifier populations
  publication-title: Soil Biology and Biochemistry
– volume: 93
  start-page: 49
  year: 2009
  end-page: 77
  ident: bib18
  article-title: Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models
  publication-title: Biogeochemistry
– volume: 368
  start-page: 57
  year: 2013
  end-page: 72
  ident: bib30
  article-title: Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat
  publication-title: Plant and Soil
– volume: 69
  start-page: 705
  year: 1976
  end-page: 710
  ident: bib45
  article-title: Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria
  publication-title: Biochemical and Biophysical Research Communications
– volume: 189
  start-page: 197
  year: 1997
  end-page: 203
  ident: bib4
  article-title: Decomposition of wheat straw and rye residues as affected by particle size
  publication-title: Plant and Soil
– volume: 10
  start-page: 496
  year: 2017
  end-page: 500
  ident: bib25
  article-title: Hotspots of soil N
  publication-title: Nature Geoscience
– volume: 51
  start-page: 1194
  year: 1987
  ident: bib33
  article-title: Soil microsites as a source of denitrification variability
  publication-title: Soil Science Society of America Journal
– volume: 51
  start-page: 40
  year: 1958
  end-page: 52
  ident: bib8
  article-title: Denitrification in soil. II. Factors affecting denitrification
  publication-title: The Journal of Agricultural Science
– volume: 37
  start-page: 2171
  year: 2005
  end-page: 2179
  ident: bib15
  article-title: Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages
  publication-title: Soil Biology and Biochemistry
– volume: 106
  start-page: 43
  year: 1988
  end-page: 48
  ident: bib36
  article-title: The influence of glucose and other sources of carbon on nitrate reduction rates in two temperate forest soils
  publication-title: Plant and Soil
– volume: 15
  start-page: 268
  year: 1961
  end-page: 280
  ident: bib40
  article-title: Nutrition and physiology of denitrifying bacteria
  publication-title: Plant and Soil
– volume: 36
  start-page: 973
  year: 2004
  end-page: 981
  ident: bib21
  article-title: Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios
  publication-title: Soil Biology and Biochemistry
– start-page: 23
  year: 2007
  end-page: 72
  ident: bib31
  article-title: The release of root exudates as affected by the plant physiological status
  publication-title: The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface
– volume: 27
  start-page: 1303
  year: 1993
  end-page: 1312
  ident: bib1
  article-title: Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol
  publication-title: Water Research
– volume: 28
  start-page: 1853
  year: 1994
  end-page: 1858
  ident: bib11
  article-title: Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances
  publication-title: Environmental Science & Technology
– start-page: 151
  year: 1990
  end-page: 166
  ident: bib24
  article-title: Acetylene inhibition technique: development, advantages, and potential problems
  publication-title: Denitrification in Soil and Sediment, Federation of European Microbiological Societies Symposium Series
– volume: 17
  start-page: 1181
  year: 2020
  end-page: 1198
  ident: bib38
  article-title: Maize root and shoot litter quality controls short-term CO
  publication-title: Biogeosciences
– volume: 7
  start-page: 389
  year: 1975
  end-page: 394
  ident: bib9
  article-title: Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter
  publication-title: Soil Biology and Biochemistry
– volume: 34
  start-page: 509
  year: 2002
  end-page: 517
  ident: bib10
  article-title: Fate of carbon and nitrogen from animal manure and crop residues in wet and cold soils
  publication-title: Soil Biology and Biochemistry
– volume: 6
  start-page: 301
  year: 2003
  end-page: 312
  ident: bib29
  article-title: Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems
  publication-title: Ecosystems
– volume: 128
  start-page: 28
  year: 2005
  end-page: 37
  ident: bib16
  article-title: Stability and composition of different soluble soil organic matter fractions - evidence from δ
  publication-title: Geoderma
– volume: 121
  start-page: 221
  year: 2018
  end-page: 230
  ident: bib28
  article-title: Quality of DOC produced during litter decomposition of peatland plant dominants
  publication-title: Soil Biology and Biochemistry
– volume: 51
  start-page: 271
  year: 2000
  end-page: 281
  ident: bib34
  article-title: Particulate organic matter as a source of variation in denitrification in clods of soil
  publication-title: European Journal of Soil Science
– volume: 55
  start-page: 1020
  year: 1991
  end-page: 1025
  ident: bib5
  article-title: Crop residue type and placement effects on denitrification and mineralization
  publication-title: Soil Science Society of America Journal
– volume: 10
  start-page: 3082
  year: 2008
  end-page: 3092
  ident: bib20
  article-title: Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates
  publication-title: Environmental Microbiology
– volume: 31
  start-page: 877
  year: 2000
  end-page: 892
  ident: bib39
  article-title: Nitrous oxide emissions from soil amended with glucose, alfalfa, or corn residues
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 5
  year: 2016
  ident: bib26
  article-title: Decomposition, nitrogen and carbon mineralization from food and cover crop residues in the central plateau of Haiti
  publication-title: SpringerPlus
– volume: 41
  start-page: 7
  year: 2001
  end-page: 15
  ident: bib3
  article-title: Nitrous oxide and N-leaching losses from agricultural soil: influence of crop residue particle size, quality and placement
  publication-title: Phyton. Annales Rei Botanicae
– volume: 20
  start-page: 665
  year: 2017
  end-page: 682
  ident: bib7
  article-title: Control points in ecosystems: moving beyond the hot spot hot moment concept
  publication-title: Ecosystems
– year: 2011
  ident: bib32
  article-title: Mikrobiologie von Böden
– volume: 49
  start-page: 90
  year: 1985
  end-page: 94
  ident: bib46
  article-title: Acetylene decomposition in soils
  publication-title: Soil Science Society of America Journal
– volume: 1
  start-page: 183
  year: 1985
  end-page: 187
  ident: bib13
  article-title: The effect of some carbon substrates on denitrification rates and carbon utilization in soil
  publication-title: Biology and Fertility of Soils
– volume: 46
  start-page: 75
  year: 1982
  end-page: 77
  ident: bib43
  article-title: Sulfur in acetylene inhibition of nitrous oxide reduction by soil microorganisms
  publication-title: Soil Science Society of America Journal
– volume: 183
  start-page: 221
  year: 1996
  end-page: 231
  ident: bib41
  article-title: Impact of residue quality on the C and N mineralization of leaf and root residues of three agroforestry species
  publication-title: Plant and Soil
– volume: 36
  start-page: 255
  year: 2004
  end-page: 266
  ident: bib19
  article-title: Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover
  publication-title: Soil Biology and Biochemistry
– volume: 38
  start-page: 3222
  year: 2006
  end-page: 3234
  ident: bib42
  article-title: Organic matter in density fractions of water-stable aggregates in silty soils: effect of land use
  publication-title: Soil Biology and Biochemistry
– volume: 192
  start-page: 86
  year: 2013
  end-page: 96
  ident: bib12
  article-title: Comparison of soil organic matter composition after incubation with maize leaves, roots, and stems
  publication-title: Geoderma
– volume: 10
  start-page: 517
  year: 1978
  end-page: 519
  ident: bib44
  article-title: Limited inhibition of nitrous oxide reduction in soil in the presence of acetylene
  publication-title: Soil Biology and Biochemistry
– volume: 101
  year: 2020
  ident: bib2
  article-title: Looking back to look ahead: a vision for soil denitrification research
  publication-title: Ecology
– start-page: 249
  year: 2007
  end-page: 305
  ident: bib35
  article-title: Ecology of denitrifying prokaryotes in agricultural soil
  publication-title: Advances in Agronomy
– volume: 113
  start-page: 273
  year: 2003
  end-page: 291
  ident: bib23
  article-title: Biodegradation of soil-derived dissolved organic matter as related to its properties
  publication-title: Geoderma, Ecological aspects of dissolved organic matter in soils
– volume: 113
  start-page: 211
  year: 2003
  end-page: 235
  ident: bib27
  article-title: Controls of bioavailability and biodegradability of dissolved organic matter in soils
  publication-title: Geoderma, Ecological aspects of dissolved organic matter in soils
– start-page: 11
  year: 2014
  end-page: 34
  ident: bib6
  article-title: Decomposition as a process: some main features
  publication-title: Plant Litter
– volume: 27
  start-page: 1303
  year: 1993
  ident: 10.1016/j.soilbio.2020.107841_bib1
  article-title: Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol
  publication-title: Water Research
  doi: 10.1016/0043-1354(93)90217-6
– start-page: 23
  year: 2007
  ident: 10.1016/j.soilbio.2020.107841_bib31
  article-title: The release of root exudates as affected by the plant physiological status
– volume: 38
  start-page: 3222
  year: 2006
  ident: 10.1016/j.soilbio.2020.107841_bib42
  article-title: Organic matter in density fractions of water-stable aggregates in silty soils: effect of land use
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2006.04.013
– volume: 31
  start-page: 877
  year: 2000
  ident: 10.1016/j.soilbio.2020.107841_bib39
  article-title: Nitrous oxide emissions from soil amended with glucose, alfalfa, or corn residues
  publication-title: Communications in Soil Science and Plant Analysis
  doi: 10.1080/00103620009370484
– volume: 69
  start-page: 705
  year: 1976
  ident: 10.1016/j.soilbio.2020.107841_bib45
  article-title: Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria
  publication-title: Biochemical and Biophysical Research Communications
  doi: 10.1016/0006-291X(76)90932-3
– volume: 93
  start-page: 49
  year: 2009
  ident: 10.1016/j.soilbio.2020.107841_bib18
  article-title: Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-008-9277-5
– volume: 19
  start-page: 583
  year: 1987
  ident: 10.1016/j.soilbio.2020.107841_bib14
  article-title: Denitrification vs dissimilatory nitrate reduction in soil with alfalfa, straw, glucose and sulfide treatments
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(87)90102-7
– volume: 51
  start-page: 271
  year: 2000
  ident: 10.1016/j.soilbio.2020.107841_bib34
  article-title: Particulate organic matter as a source of variation in denitrification in clods of soil
  publication-title: European Journal of Soil Science
  doi: 10.1046/j.1365-2389.2000.00298.x
– start-page: 11
  year: 2014
  ident: 10.1016/j.soilbio.2020.107841_bib6
  article-title: Decomposition as a process: some main features
– volume: 113
  start-page: 273
  year: 2003
  ident: 10.1016/j.soilbio.2020.107841_bib23
  article-title: Biodegradation of soil-derived dissolved organic matter as related to its properties
  publication-title: Geoderma, Ecological aspects of dissolved organic matter in soils
– volume: 106
  start-page: 43
  year: 1988
  ident: 10.1016/j.soilbio.2020.107841_bib36
  article-title: The influence of glucose and other sources of carbon on nitrate reduction rates in two temperate forest soils
  publication-title: Plant and Soil
  doi: 10.1007/BF02371193
– volume: 41
  start-page: 7
  year: 2001
  ident: 10.1016/j.soilbio.2020.107841_bib3
  article-title: Nitrous oxide and N-leaching losses from agricultural soil: influence of crop residue particle size, quality and placement
  publication-title: Phyton. Annales Rei Botanicae
– volume: 113
  start-page: 211
  year: 2003
  ident: 10.1016/j.soilbio.2020.107841_bib27
  article-title: Controls of bioavailability and biodegradability of dissolved organic matter in soils
  publication-title: Geoderma, Ecological aspects of dissolved organic matter in soils
– volume: 121
  start-page: 221
  year: 2018
  ident: 10.1016/j.soilbio.2020.107841_bib28
  article-title: Quality of DOC produced during litter decomposition of peatland plant dominants
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.03.018
– volume: 28
  start-page: 1853
  year: 1994
  ident: 10.1016/j.soilbio.2020.107841_bib11
  article-title: Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances
  publication-title: Environmental Science & Technology
  doi: 10.1021/es00060a015
– volume: 55
  start-page: 1020
  year: 1991
  ident: 10.1016/j.soilbio.2020.107841_bib5
  article-title: Crop residue type and placement effects on denitrification and mineralization
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1991.03615995005500040022x
– volume: 5
  year: 2016
  ident: 10.1016/j.soilbio.2020.107841_bib26
  article-title: Decomposition, nitrogen and carbon mineralization from food and cover crop residues in the central plateau of Haiti
  publication-title: SpringerPlus
  doi: 10.1186/s40064-016-2651-1
– volume: 46
  start-page: 75
  year: 1982
  ident: 10.1016/j.soilbio.2020.107841_bib43
  article-title: Sulfur in acetylene inhibition of nitrous oxide reduction by soil microorganisms
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1982.03615995004600010014x
– start-page: 249
  year: 2007
  ident: 10.1016/j.soilbio.2020.107841_bib35
  article-title: Ecology of denitrifying prokaryotes in agricultural soil
  doi: 10.1016/S0065-2113(07)96003-4
– volume: 10
  start-page: 3082
  year: 2008
  ident: 10.1016/j.soilbio.2020.107841_bib20
  article-title: Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates
  publication-title: Environmental Microbiology
  doi: 10.1111/j.1462-2920.2008.01599.x
– volume: 16
  start-page: 459
  year: 1984
  ident: 10.1016/j.soilbio.2020.107841_bib37
  article-title: Role of available carbon and nitrogen in determining the rate of wheat straw decomposition
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(84)90052-X
– volume: 17
  start-page: 1181
  year: 2020
  ident: 10.1016/j.soilbio.2020.107841_bib38
  article-title: Maize root and shoot litter quality controls short-term CO2 and N2O emissions and bacterial community structure of arable soil
  publication-title: Biogeosciences
  doi: 10.5194/bg-17-1181-2020
– volume: 189
  start-page: 197
  year: 1997
  ident: 10.1016/j.soilbio.2020.107841_bib4
  article-title: Decomposition of wheat straw and rye residues as affected by particle size
  publication-title: Plant and Soil
  doi: 10.1023/A:1004207219678
– volume: 192
  start-page: 86
  year: 2013
  ident: 10.1016/j.soilbio.2020.107841_bib12
  article-title: Comparison of soil organic matter composition after incubation with maize leaves, roots, and stems
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.08.007
– volume: 10
  start-page: 517
  year: 1978
  ident: 10.1016/j.soilbio.2020.107841_bib44
  article-title: Limited inhibition of nitrous oxide reduction in soil in the presence of acetylene
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(78)90046-9
– volume: 12
  start-page: 501
  year: 1980
  ident: 10.1016/j.soilbio.2020.107841_bib22
  article-title: Nitrate loss from soil in relation to temperature, carbon source and denitrifier populations
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(80)90087-5
– volume: 101
  year: 2020
  ident: 10.1016/j.soilbio.2020.107841_bib2
  article-title: Looking back to look ahead: a vision for soil denitrification research
  publication-title: Ecology
  doi: 10.1002/ecy.2917
– volume: 368
  start-page: 57
  year: 2013
  ident: 10.1016/j.soilbio.2020.107841_bib30
  article-title: Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat
  publication-title: Plant and Soil
  doi: 10.1007/s11104-013-1761-6
– start-page: 151
  year: 1990
  ident: 10.1016/j.soilbio.2020.107841_bib24
  article-title: Acetylene inhibition technique: development, advantages, and potential problems
– volume: 6
  start-page: 301
  year: 2003
  ident: 10.1016/j.soilbio.2020.107841_bib29
  article-title: Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems
  publication-title: Ecosystems
  doi: 10.1007/s10021-003-0161-9
– volume: 1
  start-page: 183
  year: 1985
  ident: 10.1016/j.soilbio.2020.107841_bib13
  article-title: The effect of some carbon substrates on denitrification rates and carbon utilization in soil
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/BF00257635
– volume: 49
  start-page: 90
  year: 1985
  ident: 10.1016/j.soilbio.2020.107841_bib46
  article-title: Acetylene decomposition in soils
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1985.03615995004900010018x
– volume: 37
  start-page: 2171
  year: 2005
  ident: 10.1016/j.soilbio.2020.107841_bib15
  article-title: Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2005.03.019
– volume: 34
  start-page: 509
  year: 2002
  ident: 10.1016/j.soilbio.2020.107841_bib10
  article-title: Fate of carbon and nitrogen from animal manure and crop residues in wet and cold soils
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(01)00209-7
– volume: 20
  start-page: 665
  year: 2017
  ident: 10.1016/j.soilbio.2020.107841_bib7
  article-title: Control points in ecosystems: moving beyond the hot spot hot moment concept
  publication-title: Ecosystems
  doi: 10.1007/s10021-016-0103-y
– volume: 7
  start-page: 389
  year: 1975
  ident: 10.1016/j.soilbio.2020.107841_bib9
  article-title: Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(75)90055-3
– volume: 36
  start-page: 973
  year: 2004
  ident: 10.1016/j.soilbio.2020.107841_bib21
  article-title: Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2004.02.009
– volume: 34
  start-page: 47
  year: 1998
  ident: 10.1016/j.soilbio.2020.107841_bib17
  article-title: Simultaneous effects of increasing levels of glucose and oxygen partial pressures on denitrification and dissimilatory nitrate reduction to ammonium in repacked soil cores
  publication-title: European Journal of Soil Biology
  doi: 10.1016/S1164-5563(99)80006-5
– volume: 128
  start-page: 28
  year: 2005
  ident: 10.1016/j.soilbio.2020.107841_bib16
  article-title: Stability and composition of different soluble soil organic matter fractions - evidence from δ13C and FTIR signatures
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.12.025
– volume: 51
  start-page: 1194
  year: 1987
  ident: 10.1016/j.soilbio.2020.107841_bib33
  article-title: Soil microsites as a source of denitrification variability
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1987.03615995005100050019x
– volume: 36
  start-page: 255
  year: 2004
  ident: 10.1016/j.soilbio.2020.107841_bib19
  article-title: Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2003.09.012
– volume: 51
  start-page: 40
  year: 1958
  ident: 10.1016/j.soilbio.2020.107841_bib8
  article-title: Denitrification in soil. II. Factors affecting denitrification
  publication-title: The Journal of Agricultural Science
  doi: 10.1017/S0021859600032779
– volume: 183
  start-page: 221
  year: 1996
  ident: 10.1016/j.soilbio.2020.107841_bib41
  article-title: Impact of residue quality on the C and N mineralization of leaf and root residues of three agroforestry species
  publication-title: Plant and Soil
  doi: 10.1007/BF00011437
– volume: 10
  start-page: 496
  year: 2017
  ident: 10.1016/j.soilbio.2020.107841_bib25
  article-title: Hotspots of soil N2O emission enhanced through water absorption by plant residue
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo2963
– year: 2011
  ident: 10.1016/j.soilbio.2020.107841_bib32
– volume: 15
  start-page: 268
  year: 1961
  ident: 10.1016/j.soilbio.2020.107841_bib40
  article-title: Nutrition and physiology of denitrifying bacteria
  publication-title: Plant and Soil
  doi: 10.1007/BF01400460
SSID ssj0002513
Score 2.544812
Snippet Denitrification usually takes place under anoxic conditions and over short periods of time, and depends on readily available nitrate and carbon sources....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107841
SubjectTerms biochemistry
carbon dioxide
Chemical composition of organic matter
Crop residues
denitrification
Denitrification potential
gas chromatography
N2O/(N2O+N2) ratio
organic carbon
organic nitrogen
Root exudates
soil
ultraviolet-visible spectroscopy
water solubility
Water-extractable organic carbon
Title Potential denitrification stimulated by water-soluble organic carbon from plant residues during initial decomposition
URI https://dx.doi.org/10.1016/j.soilbio.2020.107841
https://www.proquest.com/docview/2985895273
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhc2h7CEna0rwWBXr1PmzJko7LkrBJSMghgdyEJEvFy3Z3cb2UXPLbM2PLDSmEQG62LAmhkWdGzDffEPIzNRIMHcsTkYUsYTL4RAXBEg7mjYUClGZDX3x9k8_u2eUDf9gi0y4XBmGVUfe3Or3R1rFlGHdzuC5LzPFFsvQxxhEx3IaMn4wJPOWDpxeYB9jvSLwrMVlHvGTxDOfIl7uwJeYAptiGMbi37NN_mroxP-e7ZCf6jXTSLm2PbPnlPvky-VVF7gy_Tz5Nu-JtX8nmdlUjDgiGgGIp6woRQY0QKPzTv7Fmly-ofaR_4aFK8ADahadtjSdHnaksdMXcE7pewOZTuJWXBSyMtnmNtETQUTM7gtIj8usbuT8_u5vOklhhIXGM8zqxecg9eIDj1Kc5F2JkCqUCg2_OwcURmo2BC1XGBLhZ1liZ81A4FnwhR5kyPPtOesvV0v8gNFdKjBx0U4VkhlkpwPNUIXV2bKXkxQFh3b5qF-nHsQrGQnc4s7mO4tAoDt2K44AM_g1bt_wb7w2QndD0q4OkwUa8N_S0E7IGcWHkxCz9avNHp0pyqZCr7vDj0x-Rz_jWogePSa-uNv4EPJra9psj2yfbk4ur2c0zTxX3Yg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4heqAcUIEiFii4Ej2G3c06iX3oAUHRUh7qASRuxnZsFLTsrkJWiAt_qn-wM4kDKlKFVIlb5Jcif_bMWPPNDMBurAUqOp5G2cAPIi68i6TPeJSgeuM-R6FZpy8-O0-Hl_znVXI1B7_bWBiiVQbZ38j0WlqHlm7Yze60KCjGl5Kl98mPSO62toL1iXt8wHfb_ffjQwT5Wxwf_bg4GEahtEBkeZJUkUl96tD06ccuTpMs6-lcSs-xz1p8MWGz1viSGPAM7QujjUgTn1vuXS56A6mpVATK_Q8cxQWVTdh7euGVoMEQMv0Kig7KXsKGureUoHdkCgo6jKmNnH7_UoivVEOt744-wVIwVNl-sxfLMOfGK7C4f1OGZB1uBRYO2mpxqzD7NamIeIRTUJIVVUkUpBp1hkLkjoqEuZyZR_aAH2VEJ96MHGuKSllmdWlwKAW7sOkI0Walw3uCP8aaQEpWEMupXp1Y8IFq9hku32Xf12B-PBm7dWCplFnP4jCZC665ERmautLH1vSNEEneAd7uq7Ih3zmV3Riplth2qwIciuBQDRwd2HueNm0Sfrw1QbSgqb9OrkKl9NbUry3ICuEiV40eu8nsXsVSJEJScryN_19-BxaGF2en6vT4_GQTPlJPQ13cgvmqnLkvaE5VZrs-vgyu3_u-_AHqFTJN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+denitrification+stimulated+by+water-soluble+organic+carbon+from+plant+residues+during+initial+decomposition&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Surey%2C+Ronny&rft.au=Schimpf%2C+Corinna+M.&rft.au=Sauheitl%2C+Leopold&rft.au=Mueller%2C+Carsten+W.&rft.date=2020-08-01&rft.issn=0038-0717&rft.volume=147&rft.spage=107841&rft_id=info:doi/10.1016%2Fj.soilbio.2020.107841&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soilbio_2020_107841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon