Zygotic Genome Activation Triggers the DNA Replication Checkpoint at the Midblastula Transition
A conserved feature of the midblastula transition (MBT) is a requirement for a functional DNA replication checkpoint to coordinate cell-cycle remodeling and zygotic genome activation (ZGA). We have investigated what triggers this checkpoint during Drosophila embryogenesis. We find that the magnitude...
Saved in:
Published in | Cell Vol. 160; no. 6; pp. 1169 - 1181 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
12.03.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A conserved feature of the midblastula transition (MBT) is a requirement for a functional DNA replication checkpoint to coordinate cell-cycle remodeling and zygotic genome activation (ZGA). We have investigated what triggers this checkpoint during Drosophila embryogenesis. We find that the magnitude of the checkpoint scales with the quantity of transcriptionally engaged DNA. Measuring RNA polymerase II (Pol II) binding at 20 min intervals over the course of ZGA reveals that the checkpoint coincides with widespread de novo recruitment of Pol II that precedes and does not require a functional checkpoint. This recruitment drives slowing or stalling of DNA replication at transcriptionally engaged loci. Reducing Pol II recruitment in zelda mutants both reduces replication stalling and bypasses the requirement for a functional checkpoint. This suggests a model where the checkpoint functions as a feedback mechanism to remodel the cell cycle in response to nascent ZGA.
[Display omitted]
•Dosage of transcribed DNA correlates with degree of replication checkpoint activity•Time-resolved RNA Pol II ChIP-seq over the course of zygotic genome activation•Sites of stalled DNA replication overlap with transcribed genomic loci•Reducing zygotic transcription eliminates a genetic requirement for the checkpoint
The maternal-to-zygotic transition during early development results in a conflict between de novo RNA polymerase recruitment and ongoing DNA replication. The replication checkpoint functions in this context as a feedback mechanism to drive the initial steps of cell-cycle remodeling in response to increased cellular transcription. |
---|---|
AbstractList | A conserved feature of the midblastula transition (MBT) is a requirement for a functional DNA replication checkpoint to coordinate cell cycle remodeling and zygotic genome activation (ZGA). We have investigated what triggers this checkpoint during
Drosophila
embryogenesis. We find that the magnitude of the checkpoint scales with the quantity of transcriptionally engaged DNA. Measuring RNA Polymerase II (Pol II) binding at 20-minute intervals over the course of ZGA reveals that the checkpoint coincides with widespread
de novo
recruitment of Pol II that precedes and does not require a functional checkpoint. This recruitment drives slowing or stalling of DNA replication at transcriptionally engaged loci. Reducing Pol II recruitment in
zelda
mutants both reduces replication stalling and bypasses the requirement for a functional checkpoint. This suggests a model where the checkpoint functions as a feedback mechanism to remodel the cell cycle in response to nascent ZGA. A conserved feature of the midblastula transition (MBT) is a requirement for a functional DNA replication checkpoint to coordinate cell-cycle remodeling and zygotic genome activation (ZGA). We have investigated what triggers this checkpoint during Drosophila embryogenesis. We find that the magnitude of the checkpoint scales with the quantity of transcriptionally engaged DNA. Measuring RNA polymerase II (Pol II) binding at 20 min intervals over the course of ZGA reveals that the checkpoint coincides with widespread de novo recruitment of Pol II that precedes and does not require a functional checkpoint. This recruitment drives slowing or stalling of DNA replication at transcriptionally engaged loci. Reducing Pol II recruitment in zelda mutants both reduces replication stalling and bypasses the requirement for a functional checkpoint. This suggests a model where the checkpoint functions as a feedback mechanism to remodel the cell cycle in response to nascent ZGA. A conserved feature of the midblastula transition (MBT) is a requirement for a functional DNA replication checkpoint to coordinate cell-cycle remodeling and zygotic genome activation (ZGA). We have investigated what triggers this checkpoint during Drosophila embryogenesis. We find that the magnitude of the checkpoint scales with the quantity of transcriptionally engaged DNA. Measuring RNA polymerase II (Pol II) binding at 20 min intervals over the course of ZGA reveals that the checkpoint coincides with widespread de novo recruitment of Pol II that precedes and does not require a functional checkpoint. This recruitment drives slowing or stalling of DNA replication at transcriptionally engaged loci. Reducing Pol II recruitment in zelda mutants both reduces replication stalling and bypasses the requirement for a functional checkpoint. This suggests a model where the checkpoint functions as a feedback mechanism to remodel the cell cycle in response to nascent ZGA. [Display omitted] •Dosage of transcribed DNA correlates with degree of replication checkpoint activity•Time-resolved RNA Pol II ChIP-seq over the course of zygotic genome activation•Sites of stalled DNA replication overlap with transcribed genomic loci•Reducing zygotic transcription eliminates a genetic requirement for the checkpoint The maternal-to-zygotic transition during early development results in a conflict between de novo RNA polymerase recruitment and ongoing DNA replication. The replication checkpoint functions in this context as a feedback mechanism to drive the initial steps of cell-cycle remodeling in response to increased cellular transcription. |
Author | Blythe, Shelby A. Wieschaus, Eric F. |
AuthorAffiliation | 1 Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA |
AuthorAffiliation_xml | – name: 1 Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA |
Author_xml | – sequence: 1 givenname: Shelby A. surname: Blythe fullname: Blythe, Shelby A. organization: Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA – sequence: 2 givenname: Eric F. surname: Wieschaus fullname: Wieschaus, Eric F. email: efw@princeton.edu organization: Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25748651$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URLeFL8AB5cglYezEfyIhpNVCW6QCEioXLpbjTHa9ZO3F9q7Ub0_ClgounCx5fu_N6L0LcuaDR0JeUqgoUPFmW1kcx4oB5RXQCjg8IQsKrSwbKtkZWQC0rFRCNufkIqUtACjO-TNyzrhslOB0QfT3-3XIzhbX6MMOi6XN7miyC764i269xpiKvMHi_edl8RX3o7On4WqD9sc-OJ8Lk38Tn1zfjSblw2gmqfHJzeBz8nQwY8IXD-8l-Xb14W51U95-uf64Wt6WtuE8l12jDOdUCspq2g9M0kEq1dd9LbkBCU1HlcKhlcYMQgrV8r7uejb9s64FWteX5N3Jd3_odthb9DmaUe-j25l4r4Nx-t-Jdxu9Dkfd1LwVDUwGrx8MYvh5wJT1zqU5X-MxHJKmQtSqnUKbd7ETamNIKeLwuIaCnpvRWz0r9dyMBqqnZibRq78PfJT8qWIC3p4AnGI6Oow6WYfeYu8i2qz74P7n_ws5mqIc |
CitedBy_id | crossref_primary_10_3390_genes13101864 crossref_primary_10_1016_j_cub_2021_09_027 crossref_primary_10_1038_s41594_023_01033_4 crossref_primary_10_1242_dev_156521 crossref_primary_10_1534_g3_119_400662 crossref_primary_10_1038_s41588_020_00712_y crossref_primary_10_1146_annurev_genet_080320_030537 crossref_primary_10_1038_s41467_019_08487_5 crossref_primary_10_1016_j_cell_2015_02_051 crossref_primary_10_1016_j_cub_2018_12_020 crossref_primary_10_1073_pnas_2010210118 crossref_primary_10_7554_eLife_29988 crossref_primary_10_1038_s41594_019_0269_z crossref_primary_10_1016_j_cub_2022_03_007 crossref_primary_10_1371_journal_pgen_1007676 crossref_primary_10_1016_j_molcel_2022_09_005 crossref_primary_10_1016_j_cub_2024_04_044 crossref_primary_10_1038_s41588_021_00799_x crossref_primary_10_1038_s41598_020_58655_7 crossref_primary_10_1091_mbc_E20_03_0176 crossref_primary_10_1007_s00412_020_00743_8 crossref_primary_10_1093_nar_gkac1155 crossref_primary_10_1016_j_isci_2019_06_013 crossref_primary_10_1016_j_tig_2016_05_006 crossref_primary_10_1021_acs_jproteome_3c00056 crossref_primary_10_7554_eLife_20148 crossref_primary_10_1242_dev_126946 crossref_primary_10_1016_j_bbalip_2015_04_002 crossref_primary_10_15252_embr_202256530 crossref_primary_10_1016_j_cub_2015_11_065 crossref_primary_10_1126_science_abn5800 crossref_primary_10_3390_ijms23158154 crossref_primary_10_1016_j_molcel_2019_01_011 crossref_primary_10_1016_j_molcel_2019_01_014 crossref_primary_10_1016_j_jmb_2022_167645 crossref_primary_10_1016_j_semcdb_2016_03_013 crossref_primary_10_3389_fcell_2022_978962 crossref_primary_10_1101_gad_300855_117 crossref_primary_10_1126_sciadv_ade1085 crossref_primary_10_1038_s41467_023_41408_1 crossref_primary_10_1093_nar_gkab1223 crossref_primary_10_3390_biology10060513 crossref_primary_10_1038_s41467_021_27125_7 crossref_primary_10_1534_g3_117_043133 crossref_primary_10_3390_jdb6010005 crossref_primary_10_1038_s41586_020_2847_y crossref_primary_10_1242_jeb_164848 crossref_primary_10_7554_eLife_36021 crossref_primary_10_1371_journal_pgen_1007367 crossref_primary_10_7554_eLife_68636 crossref_primary_10_1371_journal_pgen_1008735 crossref_primary_10_1016_j_cell_2018_09_056 crossref_primary_10_1016_j_xgen_2023_100265 crossref_primary_10_1016_j_devcel_2015_04_019 crossref_primary_10_1098_rsob_180183 crossref_primary_10_1101_gad_272237_115 crossref_primary_10_1093_jxb_eraa230 crossref_primary_10_1016_j_devcel_2022_12_007 crossref_primary_10_7554_eLife_23326 crossref_primary_10_1016_j_cub_2019_09_041 crossref_primary_10_1016_j_devcel_2023_06_010 crossref_primary_10_1038_s41467_020_14651_z crossref_primary_10_1016_j_celrep_2023_112102 crossref_primary_10_1016_j_cub_2020_04_078 crossref_primary_10_3389_fcell_2024_1358971 crossref_primary_10_1016_j_jmb_2017_01_022 crossref_primary_10_1007_s00018_021_03776_z crossref_primary_10_1242_dev_161190 crossref_primary_10_7554_eLife_13222 crossref_primary_10_1016_j_celrep_2019_11_095 crossref_primary_10_1016_j_celrep_2024_114251 crossref_primary_10_1242_dev_193128 crossref_primary_10_1242_dev_161471 crossref_primary_10_1016_j_reprotox_2019_08_012 crossref_primary_10_1186_s13059_023_03135_0 crossref_primary_10_1016_j_devcel_2020_02_004 crossref_primary_10_1016_j_cub_2022_01_052 crossref_primary_10_7554_eLife_28275 crossref_primary_10_1242_dev_177402 crossref_primary_10_3390_genes8010042 crossref_primary_10_7554_eLife_26258 crossref_primary_10_7554_eLife_67516 crossref_primary_10_7554_eLife_69937 crossref_primary_10_1016_j_cell_2020_05_026 crossref_primary_10_3390_insects12110969 crossref_primary_10_7554_eLife_66668 crossref_primary_10_1016_j_devcel_2017_06_010 crossref_primary_10_2139_ssrn_3305587 crossref_primary_10_1101_gr_192682_115 crossref_primary_10_1016_j_devcel_2017_06_013 crossref_primary_10_1242_dev_165027 crossref_primary_10_7554_eLife_53916 crossref_primary_10_1002_mrd_22517 crossref_primary_10_1016_j_tig_2018_09_002 crossref_primary_10_1080_15384101_2019_1665948 crossref_primary_10_1126_sciadv_aaz9115 crossref_primary_10_1371_journal_pgen_1007174 crossref_primary_10_1371_journal_pbio_3000891 crossref_primary_10_3390_genes10020094 crossref_primary_10_1016_j_cub_2019_02_028 crossref_primary_10_1016_j_molcel_2018_05_032 crossref_primary_10_1073_pnas_1516450113 crossref_primary_10_1073_pnas_1615395114 crossref_primary_10_1016_j_cub_2021_03_035 crossref_primary_10_1063_5_0043671 crossref_primary_10_1016_j_cell_2016_09_053 crossref_primary_10_1016_j_gde_2016_12_001 crossref_primary_10_1016_j_cub_2019_02_021 crossref_primary_10_1080_15384101_2019_1618641 crossref_primary_10_1016_j_cell_2017_03_024 |
Cites_doi | 10.1242/jcs.61.1.31 10.7554/eLife.03737 10.1038/nature07388 10.1128/MCB.16.10.5433 10.1016/j.cub.2003.12.022 10.1016/0092-8674(90)90191-G 10.1093/bioinformatics/btp616 10.1016/j.devcel.2004.07.003 10.1016/j.molcel.2012.03.001 10.1126/science.1241530 10.1038/40439 10.1016/j.ydbio.2010.06.026 10.1016/j.molcel.2012.07.026 10.1093/genetics/164.3.989 10.1093/nar/gni035 10.1016/j.devcel.2013.08.011 10.1074/jbc.M402163200 10.1016/j.cub.2012.12.013 10.1016/0092-8674(86)90009-7 10.1371/journal.pgen.1002266 10.1126/science.1083430 10.1126/science.1134426 10.1242/dev.122.4.1113 10.1016/j.molcel.2011.09.013 10.1016/S0960-9822(99)80138-9 10.1038/nmeth.1331 10.1534/genetics.106.065219 10.1016/j.cub.2012.11.029 10.1242/dev.00944 10.1016/j.molcel.2009.05.022 10.1371/journal.pcbi.1003118 10.1534/genetics.107.073635 10.1016/j.cub.2010.10.021 10.1101/gad.186429.111 10.1146/annurev.bi.49.070180.003455 10.1101/gad.8.4.440 10.1242/dev.033183 10.1006/geno.2000.6451 10.1101/gad.10.15.1966 10.1093/bioinformatics/btp120 10.1002/dvdy.21931 10.1101/gad.14.6.666 10.1101/gad.9.22.2756 10.1242/dev.120.8.2131 10.1186/gb-2011-12-7-r67 10.1146/annurev.biochem.66.1.61 10.1186/gb-2009-10-3-r25 10.1371/journal.pbio.1000590 10.1126/science.277.5331.1501 10.1038/ng.2007.26 10.7554/eLife.00861 10.1091/mbc.E11-10-0832 10.1371/journal.pgen.1002339 10.1016/j.cub.2012.11.036 10.1242/dev.034421 10.1016/j.cell.2011.08.047 10.1038/381086a0 10.1242/dev.031815 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. 2015 Published by Elsevier Inc. 2015 |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. – notice: 2015 Published by Elsevier Inc. 2015 |
DBID | 6I. AAFTH CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.cell.2015.01.050 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 1181 |
ExternalDocumentID | 10_1016_j_cell_2015_01_050 25748651 S0092867415001282 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R37 HD015587 – fundername: NICHD NIH HHS grantid: 5R37HD15587 – fundername: NICHD NIH HHS grantid: 1F32HD072653 – fundername: NICHD NIH HHS grantid: F32 HD072653 – fundername: Howard Hughes Medical Institute |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AAUCE AAVLU AAXJY AAXUO AAYJJ ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGHSJ AGKMS AHHHB AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA 0SF AAHBH AALRI AAMRU ADVLN AKAPO AKRWK CGR CUY CVF ECM EIF NPM .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAIKJ AAQFI AAQXK AAYXX ABEFU ABTAH ADMUD AI. CITATION FEDTE FGOYB G-2 G8K HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 7X8 5PM |
ID | FETCH-LOGICAL-c455t-b48a551761231df271f788d3d375a0704b188ef97aaf676895d3bd204b2b90133 |
IEDL.DBID | ABVKL |
ISSN | 0092-8674 |
IngestDate | Tue Sep 17 21:26:35 EDT 2024 Fri Oct 25 07:37:45 EDT 2024 Thu Sep 26 17:02:43 EDT 2024 Sat Sep 28 08:33:06 EDT 2024 Fri Feb 23 02:30:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-b48a551761231df271f788d3d375a0704b188ef97aaf676895d3bd204b2b90133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867415001282 |
PMID | 25748651 |
PQID | 1663898653 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4359640 proquest_miscellaneous_1663898653 crossref_primary_10_1016_j_cell_2015_01_050 pubmed_primary_25748651 elsevier_sciencedirect_doi_10_1016_j_cell_2015_01_050 |
PublicationCentury | 2000 |
PublicationDate | 2015-03-12 |
PublicationDateYYYYMMDD | 2015-03-12 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Edgar, Sprenger, Duronio, Leopold, O’Farrell (bib15) 1994; 8 LaRocque, Dougherty, Hussain, Sekelsky (bib28) 2007; 176 Bermejo, Lai, Foiani (bib3) 2012; 45 Fujimoto, Takaki, Takii, Tan, Prakasam, Hayashida, Iemura, Natsume, Nakai (bib21) 2012; 48 Lu, Li, Elemento, Tavazoie, Wieschaus (bib35) 2009; 136 Shermoen, McCleland, O’Farrell (bib43) 2010; 20 Long, Dawid (bib33) 1980; 49 Zou, Elledge (bib53) 2003; 300 Peng, Graves, Thoma, Wu, Shaw, Piwnica-Worms (bib39) 1997; 277 Wold (bib51) 1997; 66 Sikorski, Ficarro, Holik, Kim, Rando, Marto, Buratowski (bib47) 2011; 44 Chen, Johnston, Shao, Meier, Staber, Zeitlinger (bib7) 2013; 2 Sung, Spangenberg, Vogt, Großhans (bib48) 2013; 23 Farrell, Shermoen, Yuan, O’Farrell (bib17) 2012; 26 Langmead, Trapnell, Pop, Salzberg (bib27) 2009; 10 Rashid, Giresi, Ibrahim, Sun, Lieb (bib41) 2011; 12 Foe, Alberts (bib19) 1983; 61 Azvolinsky, Giresi, Lieb, Zakian (bib1) 2009; 34 Ji, Squirrell, Schubiger (bib26) 2004; 131 Farrell, O’Farrell (bib16) 2013; 23 Li, Weber, Chen, Greenleaf, Gilmour (bib30) 1996; 16 Harrison, Botchan, Cline (bib24) 2010; 345 Fogarty, Kalpin, Sullivan (bib20) 1994; 120 Edgar, Schubiger (bib14) 1986; 44 Gong, Nedialkov, Burton (bib22) 2004; 279 Guruharsha, Rual, Zhai, Mintseris, Vaidya, Vaidya, Beekman, Wong, Rhee, Cenaj (bib23) 2011; 147 Nien, Liang, Butcher, Sun, Fu, Gocha, Kirov, Manak, Rushlow (bib37) 2011; 7 Pérez-Montero, Carbonell, Morán, Vaquero, Azorín (bib40) 2013; 26 O’Farrell, Stumpff, Su (bib38) 2004; 14 Tadros, Lipshitz (bib49) 2009; 136 Collart, Allen, Bradshaw, Smith, Zegerman (bib8) 2013; 341 Fasulo, Koyama, Yu, Homola, Hsieh, Campbell, Sullivan (bib18) 2012; 23 Sibon, Stevenson, Theurkauf (bib45) 1997; 388 Shopland, Hirayoshi, Fernandes, Lis (bib44) 1995; 9 Lawrence, Huber, Pagès, Aboyoun, Carlson, Gentleman, Morgan, Carey (bib29) 2013; 9 Li, Harrison, Villalta, Kaplan, Eisen (bib31) 2014; 3 Bhat, Farkas, Karch, Gyurkovics, Gausz, Schedl (bib4) 1996; 122 Zeitlinger, Stark, Kellis, Hong, Nechaev, Adelman, Levine, Young (bib52) 2007; 39 Benoit, He, Zhang, Votruba, Tadros, Westwood, Smibert, Lipshitz, Theurkauf (bib2) 2009; 136 Conn, Lewellyn, Maller (bib9) 2004; 7 Brodsky, Sekelsky, Tsang, Hawley, Rubin (bib6) 2000; 14 Harrison, Li, Kaplan, Botchan, Eisen (bib25) 2011; 7 Crest, Oxnard, Ji, Schubiger (bib10) 2007; 175 Blythe, Reid, Kessler, Klein (bib5) 2009; 238 Edgar, Datar (bib13) 1996; 10 Tadros, Houston, Bashirullah, Cooperstock, Semotok, Reed, Lipshitz (bib50) 2003; 164 Liang, Nien, Liu, Metzstein, Kirov, Rushlow (bib32) 2008; 456 Lott, Villalta, Schroth, Luo, Tonkin, Eisen (bib34) 2011; 9 Dasso, Newport (bib11) 1990; 61 Robinson, McCarthy, Smyth (bib42) 2010; 26 Di Talia, She, Blythe, Lu, Zhang, Wieschaus (bib12) 2013; 23 Maldonado, Shiekhattar, Sheldon, Cho, Drapkin, Rickert, Lees, Anderson, Linn, Reinberg (bib36) 1996; 381 Sibon, Laurençon, Hawley, Theurkauf (bib46) 1999; 9 25768900 - Cell. 2015 Mar 12;160(6):1043-4 LaRocque (10.1016/j.cell.2015.01.050_bib28) 2007; 176 Robinson (10.1016/j.cell.2015.01.050_bib42) 2010; 26 Sikorski (10.1016/j.cell.2015.01.050_bib47) 2011; 44 Wold (10.1016/j.cell.2015.01.050_bib51) 1997; 66 Edgar (10.1016/j.cell.2015.01.050_bib13) 1996; 10 Ji (10.1016/j.cell.2015.01.050_bib26) 2004; 131 Tadros (10.1016/j.cell.2015.01.050_bib50) 2003; 164 Farrell (10.1016/j.cell.2015.01.050_bib16) 2013; 23 Bhat (10.1016/j.cell.2015.01.050_bib4) 1996; 122 Farrell (10.1016/j.cell.2015.01.050_bib17) 2012; 26 Fujimoto (10.1016/j.cell.2015.01.050_bib21) 2012; 48 Venken (10.1016/j.cell.2015.01.050_bib56) 2006; 314 Harrison (10.1016/j.cell.2015.01.050_bib24) 2010; 345 Sibon (10.1016/j.cell.2015.01.050_bib45) 1997; 388 Langmead (10.1016/j.cell.2015.01.050_bib27) 2009; 10 Fasulo (10.1016/j.cell.2015.01.050_bib18) 2012; 23 Dasso (10.1016/j.cell.2015.01.050_bib11) 1990; 61 Collart (10.1016/j.cell.2015.01.050_bib8) 2013; 341 Pérez-Montero (10.1016/j.cell.2015.01.050_bib40) 2013; 26 Lawrence (10.1016/j.cell.2015.01.050_bib29) 2013; 9 Long (10.1016/j.cell.2015.01.050_bib33) 1980; 49 Brodsky (10.1016/j.cell.2015.01.050_bib6) 2000; 14 Conn (10.1016/j.cell.2015.01.050_bib9) 2004; 7 Fogarty (10.1016/j.cell.2015.01.050_bib20) 1994; 120 Guruharsha (10.1016/j.cell.2015.01.050_bib23) 2011; 147 O’Farrell (10.1016/j.cell.2015.01.050_bib38) 2004; 14 Benoit (10.1016/j.cell.2015.01.050_bib2) 2009; 136 Liang (10.1016/j.cell.2015.01.050_bib32) 2008; 456 Warming (10.1016/j.cell.2015.01.050_bib58) 2005; 33 Maldonado (10.1016/j.cell.2015.01.050_bib36) 1996; 381 Zou (10.1016/j.cell.2015.01.050_bib53) 2003; 300 Venken (10.1016/j.cell.2015.01.050_bib57) 2009; 6 Tadros (10.1016/j.cell.2015.01.050_bib49) 2009; 136 Lee (10.1016/j.cell.2015.01.050_bib54) 2001; 73 Trapnell (10.1016/j.cell.2015.01.050_bib55) 2009; 25 Shermoen (10.1016/j.cell.2015.01.050_bib43) 2010; 20 Blythe (10.1016/j.cell.2015.01.050_bib5) 2009; 238 Sung (10.1016/j.cell.2015.01.050_bib48) 2013; 23 Harrison (10.1016/j.cell.2015.01.050_bib25) 2011; 7 Shopland (10.1016/j.cell.2015.01.050_bib44) 1995; 9 Di Talia (10.1016/j.cell.2015.01.050_bib12) 2013; 23 Zeitlinger (10.1016/j.cell.2015.01.050_bib52) 2007; 39 Lott (10.1016/j.cell.2015.01.050_bib34) 2011; 9 Sibon (10.1016/j.cell.2015.01.050_bib46) 1999; 9 Li (10.1016/j.cell.2015.01.050_bib31) 2014; 3 Chen (10.1016/j.cell.2015.01.050_bib7) 2013; 2 Bermejo (10.1016/j.cell.2015.01.050_bib3) 2012; 45 Rashid (10.1016/j.cell.2015.01.050_bib41) 2011; 12 Edgar (10.1016/j.cell.2015.01.050_bib14) 1986; 44 Azvolinsky (10.1016/j.cell.2015.01.050_bib1) 2009; 34 Edgar (10.1016/j.cell.2015.01.050_bib15) 1994; 8 Gong (10.1016/j.cell.2015.01.050_bib22) 2004; 279 Nien (10.1016/j.cell.2015.01.050_bib37) 2011; 7 Peng (10.1016/j.cell.2015.01.050_bib39) 1997; 277 Lu (10.1016/j.cell.2015.01.050_bib35) 2009; 136 Li (10.1016/j.cell.2015.01.050_bib30) 1996; 16 Crest (10.1016/j.cell.2015.01.050_bib10) 2007; 175 Foe (10.1016/j.cell.2015.01.050_bib19) 1983; 61 |
References_xml | – volume: 381 start-page: 86 year: 1996 end-page: 89 ident: bib36 article-title: A human RNA polymerase II complex associated with SRB and DNA-repair proteins publication-title: Nature contributor: fullname: Reinberg – volume: 34 start-page: 722 year: 2009 end-page: 734 ident: bib1 article-title: Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae publication-title: Mol. Cell contributor: fullname: Zakian – volume: 61 start-page: 811 year: 1990 end-page: 823 ident: bib11 article-title: Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus publication-title: Cell contributor: fullname: Newport – volume: 61 start-page: 31 year: 1983 end-page: 70 ident: bib19 article-title: Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis publication-title: J. Cell Sci. contributor: fullname: Alberts – volume: 49 start-page: 727 year: 1980 end-page: 764 ident: bib33 article-title: Repeated genes in eukaryotes publication-title: Annu. Rev. Biochem. contributor: fullname: Dawid – volume: 23 start-page: 127 year: 2013 end-page: 132 ident: bib12 article-title: Posttranslational control of Cdc25 degradation terminates Drosophila’s early cell-cycle program publication-title: Curr. Biol. contributor: fullname: Wieschaus – volume: 147 start-page: 690 year: 2011 end-page: 703 ident: bib23 article-title: A protein complex network of Drosophila melanogaster publication-title: Cell contributor: fullname: Cenaj – volume: 16 start-page: 5433 year: 1996 end-page: 5443 ident: bib30 article-title: Analyses of promoter-proximal pausing by RNA polymerase II on the hsp70 heat shock gene promoter in a Drosophila nuclear extract publication-title: Mol. Cell. Biol. contributor: fullname: Gilmour – volume: 9 start-page: e1000590 year: 2011 ident: bib34 article-title: Noncanonical compensation of zygotic X transcription in early Drosophila melanogaster development revealed through single-embryo RNA-seq publication-title: PLoS Biol. contributor: fullname: Eisen – volume: 10 start-page: R25 year: 2009 ident: bib27 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. contributor: fullname: Salzberg – volume: 238 start-page: 1422 year: 2009 end-page: 1432 ident: bib5 article-title: Chromatin immunoprecipitation in early Xenopus laevis embryos publication-title: Dev. Dyn. contributor: fullname: Klein – volume: 20 start-page: 2067 year: 2010 end-page: 2077 ident: bib43 article-title: Developmental control of late replication and S phase length publication-title: Curr. Biol. contributor: fullname: O’Farrell – volume: 2 start-page: e00861 year: 2013 ident: bib7 article-title: A global change in RNA polymerase II pausing during the Drosophila midblastula transition publication-title: eLife contributor: fullname: Zeitlinger – volume: 9 start-page: 2756 year: 1995 end-page: 2769 ident: bib44 article-title: HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites publication-title: Genes Dev. contributor: fullname: Lis – volume: 7 start-page: e1002339 year: 2011 ident: bib37 article-title: Temporal coordination of gene networks by Zelda in the early Drosophila embryo publication-title: PLoS Genet. contributor: fullname: Rushlow – volume: 277 start-page: 1501 year: 1997 end-page: 1505 ident: bib39 article-title: Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216 publication-title: Science contributor: fullname: Piwnica-Worms – volume: 12 start-page: R67 year: 2011 ident: bib41 article-title: ZINBA integrates local covariates with DNA-seq data to identify broad and narrow regions of enrichment, even within amplified genomic regions publication-title: Genome Biol. contributor: fullname: Lieb – volume: 14 start-page: 666 year: 2000 end-page: 678 ident: bib6 article-title: mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development publication-title: Genes Dev. contributor: fullname: Rubin – volume: 388 start-page: 93 year: 1997 end-page: 97 ident: bib45 article-title: DNA-replication checkpoint control at the Drosophila midblastula transition publication-title: Nature contributor: fullname: Theurkauf – volume: 341 start-page: 893 year: 2013 end-page: 896 ident: bib8 article-title: Titration of four replication factors is essential for the Xenopus laevis midblastula transition publication-title: Science contributor: fullname: Zegerman – volume: 9 start-page: 302 year: 1999 end-page: 312 ident: bib46 article-title: The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition publication-title: Curr. Biol. contributor: fullname: Theurkauf – volume: 3 start-page: 3 year: 2014 ident: bib31 article-title: Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition publication-title: eLife contributor: fullname: Eisen – volume: 136 start-page: 2101 year: 2009 end-page: 2110 ident: bib35 article-title: Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition publication-title: Development contributor: fullname: Wieschaus – volume: 456 start-page: 400 year: 2008 end-page: 403 ident: bib32 article-title: The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila publication-title: Nature contributor: fullname: Rushlow – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: bib42 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics contributor: fullname: Smyth – volume: 26 start-page: 714 year: 2012 end-page: 725 ident: bib17 article-title: Embryonic onset of late replication requires Cdc25 down-regulation publication-title: Genes Dev. contributor: fullname: O’Farrell – volume: 23 start-page: 133 year: 2013 end-page: 138 ident: bib48 article-title: Number of nuclear divisions in the Drosophila blastoderm controlled by onset of zygotic transcription publication-title: Curr. Biol. contributor: fullname: Großhans – volume: 136 start-page: 923 year: 2009 end-page: 932 ident: bib2 article-title: An essential role for the RNA-binding protein Smaug during the Drosophila maternal-to-zygotic transition publication-title: Development contributor: fullname: Theurkauf – volume: 131 start-page: 401 year: 2004 end-page: 411 ident: bib26 article-title: Both cyclin B levels and DNA-replication checkpoint control the early embryonic mitoses in Drosophila publication-title: Development contributor: fullname: Schubiger – volume: 10 start-page: 1966 year: 1996 end-page: 1977 ident: bib13 article-title: Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila’s early cell cycle program publication-title: Genes Dev. contributor: fullname: Datar – volume: 136 start-page: 3033 year: 2009 end-page: 3042 ident: bib49 article-title: The maternal-to-zygotic transition: a play in two acts publication-title: Development contributor: fullname: Lipshitz – volume: 175 start-page: 567 year: 2007 end-page: 584 ident: bib10 article-title: Onset of the DNA replication checkpoint in the early Drosophila embryo publication-title: Genetics contributor: fullname: Schubiger – volume: 48 start-page: 182 year: 2012 end-page: 194 ident: bib21 article-title: RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT publication-title: Mol. Cell contributor: fullname: Nakai – volume: 345 start-page: 248 year: 2010 end-page: 255 ident: bib24 article-title: Grainyhead and Zelda compete for binding to the promoters of the earliest-expressed Drosophila genes publication-title: Dev. Biol. contributor: fullname: Cline – volume: 7 start-page: 275 year: 2004 end-page: 281 ident: bib9 article-title: The DNA damage checkpoint in embryonic cell cycles is dependent on the DNA-to-cytoplasmic ratio publication-title: Dev. Cell contributor: fullname: Maller – volume: 45 start-page: 710 year: 2012 end-page: 718 ident: bib3 article-title: Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription publication-title: Mol. Cell contributor: fullname: Foiani – volume: 26 start-page: 578 year: 2013 end-page: 590 ident: bib40 article-title: The embryonic linker histone H1 variant of Drosophila, dBigH1, regulates zygotic genome activation publication-title: Dev. Cell contributor: fullname: Azorín – volume: 66 start-page: 61 year: 1997 end-page: 92 ident: bib51 article-title: Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism publication-title: Annu. Rev. Biochem. contributor: fullname: Wold – volume: 120 start-page: 2131 year: 1994 end-page: 2142 ident: bib20 article-title: The Drosophila maternal-effect mutation grapes causes a metaphase arrest at nuclear cycle 13 publication-title: Development contributor: fullname: Sullivan – volume: 7 start-page: e1002266 year: 2011 ident: bib25 article-title: Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition publication-title: PLoS Genet. contributor: fullname: Eisen – volume: 44 start-page: 397 year: 2011 end-page: 409 ident: bib47 article-title: Sub1 and RPA associate with RNA polymerase II at different stages of transcription publication-title: Mol. Cell contributor: fullname: Buratowski – volume: 23 start-page: 1047 year: 2012 end-page: 1057 ident: bib18 article-title: Chk1 and Wee1 kinases coordinate DNA replication, chromosome condensation, and anaphase entry publication-title: Mol. Biol. Cell contributor: fullname: Sullivan – volume: 164 start-page: 989 year: 2003 end-page: 1001 ident: bib50 article-title: Regulation of maternal transcript destabilization during egg activation in Drosophila publication-title: Genetics contributor: fullname: Lipshitz – volume: 300 start-page: 1542 year: 2003 end-page: 1548 ident: bib53 article-title: Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes publication-title: Science contributor: fullname: Elledge – volume: 44 start-page: 871 year: 1986 end-page: 877 ident: bib14 article-title: Parameters controlling transcriptional activation during early Drosophila development publication-title: Cell contributor: fullname: Schubiger – volume: 176 start-page: 1441 year: 2007 end-page: 1451 ident: bib28 article-title: Reducing DNA polymerase alpha in the absence of Drosophila ATR leads to P53-dependent apoptosis and developmental defects publication-title: Genetics contributor: fullname: Sekelsky – volume: 8 start-page: 440 year: 1994 end-page: 452 ident: bib15 article-title: Distinct molecular mechanism regulate cell cycle timing at successive stages of Drosophila embryogenesis publication-title: Genes Dev. contributor: fullname: O’Farrell – volume: 279 start-page: 27422 year: 2004 end-page: 27427 ident: bib22 article-title: Alpha-amanitin blocks translocation by human RNA polymerase II publication-title: J. Biol. Chem. contributor: fullname: Burton – volume: 14 start-page: R35 year: 2004 end-page: R45 ident: bib38 article-title: Embryonic cleavage cycles: how is a mouse like a fly? publication-title: Curr. Biol. contributor: fullname: Su – volume: 122 start-page: 1113 year: 1996 end-page: 1124 ident: bib4 article-title: The GAGA factor is required in the early Drosophila embryo not only for transcriptional regulation but also for nuclear division publication-title: Development contributor: fullname: Schedl – volume: 39 start-page: 1512 year: 2007 end-page: 1516 ident: bib52 article-title: RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo publication-title: Nat. Genet. contributor: fullname: Young – volume: 9 start-page: e1003118 year: 2013 ident: bib29 article-title: Software for computing and annotating genomic ranges publication-title: PLoS Comput. Biol. contributor: fullname: Carey – volume: 23 start-page: 118 year: 2013 end-page: 126 ident: bib16 article-title: Mechanism and regulation of Cdc25/Twine protein destruction in embryonic cell-cycle remodeling publication-title: Curr. Biol. contributor: fullname: O’Farrell – volume: 61 start-page: 31 year: 1983 ident: 10.1016/j.cell.2015.01.050_bib19 article-title: Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis publication-title: J. Cell Sci. doi: 10.1242/jcs.61.1.31 contributor: fullname: Foe – volume: 3 start-page: 3 year: 2014 ident: 10.1016/j.cell.2015.01.050_bib31 article-title: Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition publication-title: eLife doi: 10.7554/eLife.03737 contributor: fullname: Li – volume: 456 start-page: 400 year: 2008 ident: 10.1016/j.cell.2015.01.050_bib32 article-title: The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila publication-title: Nature doi: 10.1038/nature07388 contributor: fullname: Liang – volume: 16 start-page: 5433 year: 1996 ident: 10.1016/j.cell.2015.01.050_bib30 article-title: Analyses of promoter-proximal pausing by RNA polymerase II on the hsp70 heat shock gene promoter in a Drosophila nuclear extract publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.10.5433 contributor: fullname: Li – volume: 14 start-page: R35 year: 2004 ident: 10.1016/j.cell.2015.01.050_bib38 article-title: Embryonic cleavage cycles: how is a mouse like a fly? publication-title: Curr. Biol. doi: 10.1016/j.cub.2003.12.022 contributor: fullname: O’Farrell – volume: 61 start-page: 811 year: 1990 ident: 10.1016/j.cell.2015.01.050_bib11 article-title: Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus publication-title: Cell doi: 10.1016/0092-8674(90)90191-G contributor: fullname: Dasso – volume: 26 start-page: 139 year: 2010 ident: 10.1016/j.cell.2015.01.050_bib42 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 contributor: fullname: Robinson – volume: 7 start-page: 275 year: 2004 ident: 10.1016/j.cell.2015.01.050_bib9 article-title: The DNA damage checkpoint in embryonic cell cycles is dependent on the DNA-to-cytoplasmic ratio publication-title: Dev. Cell doi: 10.1016/j.devcel.2004.07.003 contributor: fullname: Conn – volume: 45 start-page: 710 year: 2012 ident: 10.1016/j.cell.2015.01.050_bib3 article-title: Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.03.001 contributor: fullname: Bermejo – volume: 341 start-page: 893 year: 2013 ident: 10.1016/j.cell.2015.01.050_bib8 article-title: Titration of four replication factors is essential for the Xenopus laevis midblastula transition publication-title: Science doi: 10.1126/science.1241530 contributor: fullname: Collart – volume: 388 start-page: 93 year: 1997 ident: 10.1016/j.cell.2015.01.050_bib45 article-title: DNA-replication checkpoint control at the Drosophila midblastula transition publication-title: Nature doi: 10.1038/40439 contributor: fullname: Sibon – volume: 345 start-page: 248 year: 2010 ident: 10.1016/j.cell.2015.01.050_bib24 article-title: Grainyhead and Zelda compete for binding to the promoters of the earliest-expressed Drosophila genes publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2010.06.026 contributor: fullname: Harrison – volume: 48 start-page: 182 year: 2012 ident: 10.1016/j.cell.2015.01.050_bib21 article-title: RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.07.026 contributor: fullname: Fujimoto – volume: 164 start-page: 989 year: 2003 ident: 10.1016/j.cell.2015.01.050_bib50 article-title: Regulation of maternal transcript destabilization during egg activation in Drosophila publication-title: Genetics doi: 10.1093/genetics/164.3.989 contributor: fullname: Tadros – volume: 33 start-page: e36 year: 2005 ident: 10.1016/j.cell.2015.01.050_bib58 article-title: Simple and highly efficient BAC recombineering using galK selection publication-title: Nucleic Acids Res. doi: 10.1093/nar/gni035 contributor: fullname: Warming – volume: 26 start-page: 578 year: 2013 ident: 10.1016/j.cell.2015.01.050_bib40 article-title: The embryonic linker histone H1 variant of Drosophila, dBigH1, regulates zygotic genome activation publication-title: Dev. Cell doi: 10.1016/j.devcel.2013.08.011 contributor: fullname: Pérez-Montero – volume: 279 start-page: 27422 year: 2004 ident: 10.1016/j.cell.2015.01.050_bib22 article-title: Alpha-amanitin blocks translocation by human RNA polymerase II publication-title: J. Biol. Chem. doi: 10.1074/jbc.M402163200 contributor: fullname: Gong – volume: 23 start-page: 133 year: 2013 ident: 10.1016/j.cell.2015.01.050_bib48 article-title: Number of nuclear divisions in the Drosophila blastoderm controlled by onset of zygotic transcription publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.12.013 contributor: fullname: Sung – volume: 44 start-page: 871 year: 1986 ident: 10.1016/j.cell.2015.01.050_bib14 article-title: Parameters controlling transcriptional activation during early Drosophila development publication-title: Cell doi: 10.1016/0092-8674(86)90009-7 contributor: fullname: Edgar – volume: 7 start-page: e1002266 year: 2011 ident: 10.1016/j.cell.2015.01.050_bib25 article-title: Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002266 contributor: fullname: Harrison – volume: 300 start-page: 1542 year: 2003 ident: 10.1016/j.cell.2015.01.050_bib53 article-title: Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes publication-title: Science doi: 10.1126/science.1083430 contributor: fullname: Zou – volume: 314 start-page: 1747 year: 2006 ident: 10.1016/j.cell.2015.01.050_bib56 article-title: P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster publication-title: Science doi: 10.1126/science.1134426 contributor: fullname: Venken – volume: 122 start-page: 1113 year: 1996 ident: 10.1016/j.cell.2015.01.050_bib4 article-title: The GAGA factor is required in the early Drosophila embryo not only for transcriptional regulation but also for nuclear division publication-title: Development doi: 10.1242/dev.122.4.1113 contributor: fullname: Bhat – volume: 44 start-page: 397 year: 2011 ident: 10.1016/j.cell.2015.01.050_bib47 article-title: Sub1 and RPA associate with RNA polymerase II at different stages of transcription publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.09.013 contributor: fullname: Sikorski – volume: 9 start-page: 302 year: 1999 ident: 10.1016/j.cell.2015.01.050_bib46 article-title: The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition publication-title: Curr. Biol. doi: 10.1016/S0960-9822(99)80138-9 contributor: fullname: Sibon – volume: 6 start-page: 431 year: 2009 ident: 10.1016/j.cell.2015.01.050_bib57 article-title: Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster publication-title: Nat. Methods doi: 10.1038/nmeth.1331 contributor: fullname: Venken – volume: 175 start-page: 567 year: 2007 ident: 10.1016/j.cell.2015.01.050_bib10 article-title: Onset of the DNA replication checkpoint in the early Drosophila embryo publication-title: Genetics doi: 10.1534/genetics.106.065219 contributor: fullname: Crest – volume: 23 start-page: 127 year: 2013 ident: 10.1016/j.cell.2015.01.050_bib12 article-title: Posttranslational control of Cdc25 degradation terminates Drosophila’s early cell-cycle program publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.11.029 contributor: fullname: Di Talia – volume: 131 start-page: 401 year: 2004 ident: 10.1016/j.cell.2015.01.050_bib26 article-title: Both cyclin B levels and DNA-replication checkpoint control the early embryonic mitoses in Drosophila publication-title: Development doi: 10.1242/dev.00944 contributor: fullname: Ji – volume: 34 start-page: 722 year: 2009 ident: 10.1016/j.cell.2015.01.050_bib1 article-title: Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.05.022 contributor: fullname: Azvolinsky – volume: 9 start-page: e1003118 year: 2013 ident: 10.1016/j.cell.2015.01.050_bib29 article-title: Software for computing and annotating genomic ranges publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003118 contributor: fullname: Lawrence – volume: 176 start-page: 1441 year: 2007 ident: 10.1016/j.cell.2015.01.050_bib28 article-title: Reducing DNA polymerase alpha in the absence of Drosophila ATR leads to P53-dependent apoptosis and developmental defects publication-title: Genetics doi: 10.1534/genetics.107.073635 contributor: fullname: LaRocque – volume: 20 start-page: 2067 year: 2010 ident: 10.1016/j.cell.2015.01.050_bib43 article-title: Developmental control of late replication and S phase length publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.10.021 contributor: fullname: Shermoen – volume: 26 start-page: 714 year: 2012 ident: 10.1016/j.cell.2015.01.050_bib17 article-title: Embryonic onset of late replication requires Cdc25 down-regulation publication-title: Genes Dev. doi: 10.1101/gad.186429.111 contributor: fullname: Farrell – volume: 49 start-page: 727 year: 1980 ident: 10.1016/j.cell.2015.01.050_bib33 article-title: Repeated genes in eukaryotes publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.49.070180.003455 contributor: fullname: Long – volume: 8 start-page: 440 year: 1994 ident: 10.1016/j.cell.2015.01.050_bib15 article-title: Distinct molecular mechanism regulate cell cycle timing at successive stages of Drosophila embryogenesis publication-title: Genes Dev. doi: 10.1101/gad.8.4.440 contributor: fullname: Edgar – volume: 136 start-page: 3033 year: 2009 ident: 10.1016/j.cell.2015.01.050_bib49 article-title: The maternal-to-zygotic transition: a play in two acts publication-title: Development doi: 10.1242/dev.033183 contributor: fullname: Tadros – volume: 73 start-page: 56 year: 2001 ident: 10.1016/j.cell.2015.01.050_bib54 article-title: A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA publication-title: Genomics doi: 10.1006/geno.2000.6451 contributor: fullname: Lee – volume: 10 start-page: 1966 year: 1996 ident: 10.1016/j.cell.2015.01.050_bib13 article-title: Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila’s early cell cycle program publication-title: Genes Dev. doi: 10.1101/gad.10.15.1966 contributor: fullname: Edgar – volume: 25 start-page: 1105 year: 2009 ident: 10.1016/j.cell.2015.01.050_bib55 article-title: TopHat: discovering splice junctions with RNA-Seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp120 contributor: fullname: Trapnell – volume: 238 start-page: 1422 year: 2009 ident: 10.1016/j.cell.2015.01.050_bib5 article-title: Chromatin immunoprecipitation in early Xenopus laevis embryos publication-title: Dev. Dyn. doi: 10.1002/dvdy.21931 contributor: fullname: Blythe – volume: 14 start-page: 666 year: 2000 ident: 10.1016/j.cell.2015.01.050_bib6 article-title: mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development publication-title: Genes Dev. doi: 10.1101/gad.14.6.666 contributor: fullname: Brodsky – volume: 9 start-page: 2756 year: 1995 ident: 10.1016/j.cell.2015.01.050_bib44 article-title: HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites publication-title: Genes Dev. doi: 10.1101/gad.9.22.2756 contributor: fullname: Shopland – volume: 120 start-page: 2131 year: 1994 ident: 10.1016/j.cell.2015.01.050_bib20 article-title: The Drosophila maternal-effect mutation grapes causes a metaphase arrest at nuclear cycle 13 publication-title: Development doi: 10.1242/dev.120.8.2131 contributor: fullname: Fogarty – volume: 12 start-page: R67 year: 2011 ident: 10.1016/j.cell.2015.01.050_bib41 article-title: ZINBA integrates local covariates with DNA-seq data to identify broad and narrow regions of enrichment, even within amplified genomic regions publication-title: Genome Biol. doi: 10.1186/gb-2011-12-7-r67 contributor: fullname: Rashid – volume: 66 start-page: 61 year: 1997 ident: 10.1016/j.cell.2015.01.050_bib51 article-title: Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.66.1.61 contributor: fullname: Wold – volume: 10 start-page: R25 year: 2009 ident: 10.1016/j.cell.2015.01.050_bib27 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 contributor: fullname: Langmead – volume: 9 start-page: e1000590 year: 2011 ident: 10.1016/j.cell.2015.01.050_bib34 article-title: Noncanonical compensation of zygotic X transcription in early Drosophila melanogaster development revealed through single-embryo RNA-seq publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000590 contributor: fullname: Lott – volume: 277 start-page: 1501 year: 1997 ident: 10.1016/j.cell.2015.01.050_bib39 article-title: Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216 publication-title: Science doi: 10.1126/science.277.5331.1501 contributor: fullname: Peng – volume: 39 start-page: 1512 year: 2007 ident: 10.1016/j.cell.2015.01.050_bib52 article-title: RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo publication-title: Nat. Genet. doi: 10.1038/ng.2007.26 contributor: fullname: Zeitlinger – volume: 2 start-page: e00861 year: 2013 ident: 10.1016/j.cell.2015.01.050_bib7 article-title: A global change in RNA polymerase II pausing during the Drosophila midblastula transition publication-title: eLife doi: 10.7554/eLife.00861 contributor: fullname: Chen – volume: 23 start-page: 1047 year: 2012 ident: 10.1016/j.cell.2015.01.050_bib18 article-title: Chk1 and Wee1 kinases coordinate DNA replication, chromosome condensation, and anaphase entry publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E11-10-0832 contributor: fullname: Fasulo – volume: 7 start-page: e1002339 year: 2011 ident: 10.1016/j.cell.2015.01.050_bib37 article-title: Temporal coordination of gene networks by Zelda in the early Drosophila embryo publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002339 contributor: fullname: Nien – volume: 23 start-page: 118 year: 2013 ident: 10.1016/j.cell.2015.01.050_bib16 article-title: Mechanism and regulation of Cdc25/Twine protein destruction in embryonic cell-cycle remodeling publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.11.036 contributor: fullname: Farrell – volume: 136 start-page: 2101 year: 2009 ident: 10.1016/j.cell.2015.01.050_bib35 article-title: Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition publication-title: Development doi: 10.1242/dev.034421 contributor: fullname: Lu – volume: 147 start-page: 690 year: 2011 ident: 10.1016/j.cell.2015.01.050_bib23 article-title: A protein complex network of Drosophila melanogaster publication-title: Cell doi: 10.1016/j.cell.2011.08.047 contributor: fullname: Guruharsha – volume: 381 start-page: 86 year: 1996 ident: 10.1016/j.cell.2015.01.050_bib36 article-title: A human RNA polymerase II complex associated with SRB and DNA-repair proteins publication-title: Nature doi: 10.1038/381086a0 contributor: fullname: Maldonado – volume: 136 start-page: 923 year: 2009 ident: 10.1016/j.cell.2015.01.050_bib2 article-title: An essential role for the RNA-binding protein Smaug during the Drosophila maternal-to-zygotic transition publication-title: Development doi: 10.1242/dev.031815 contributor: fullname: Benoit |
SSID | ssj0008555 |
Score | 2.558874 |
Snippet | A conserved feature of the midblastula transition (MBT) is a requirement for a functional DNA replication checkpoint to coordinate cell-cycle remodeling and... A conserved feature of the midblastula transition (MBT) is a requirement for a functional DNA replication checkpoint to coordinate cell cycle remodeling and... |
SourceID | pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1169 |
SubjectTerms | Animals Blastula - cytology Blastula - metabolism Cell Cycle DNA Replication Drosophila melanogaster - cytology Drosophila melanogaster - embryology Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Drosophila Proteins - metabolism Embryo, Nonmammalian - cytology Embryo, Nonmammalian - metabolism Female Male Promoter Regions, Genetic Replication Protein A - metabolism RNA Polymerase II - metabolism Transcription Factors - metabolism Zygote - metabolism |
Title | Zygotic Genome Activation Triggers the DNA Replication Checkpoint at the Midblastula Transition |
URI | https://dx.doi.org/10.1016/j.cell.2015.01.050 https://www.ncbi.nlm.nih.gov/pubmed/25748651 https://search.proquest.com/docview/1663898653 https://pubmed.ncbi.nlm.nih.gov/PMC4359640 |
Volume | 160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH8qICQuaIyvboCMxA1FJE6cOMe2wNgG5dKiiotlx06bjSUVpAf-e57zUa1j2mFH-9mR9ez33s_O-wA4Y7H2tEyY42rtOkEaMYcHUjpUc62YSRitSifcDcObcfBtwiYdGLSxMNatstH9tU6vtHXTc9Fw82KeZTbGN6Y8tBax-h-EeniDIvpF6dzo9R--3y4VMmesLmQQo_DjhCZ2pnbzsu_j1sOrzt5pw-__bp_e488_3Sh_s0vXH2C7AZSkV695Bzom_wibdYnJ110Qj6_TAknki8mLX4b0kraeGRnhxXyK6I8gBiSXwx5BMN4-4ZHBzCQ_50WWl0SW1Yi7TCuE2uXiSZLKwlXOXnswvr4aDW6cpqiCkwSMlY4KuESUFNm0K55OaeSleAvWvvYjJlH-A-VxbtI4kjIN8S4SM-0rTbGfKsQOvr8P63mRm0MgjGpElyxKQ65QFUhpA0JUgh-MXOUbtwvnLSvFvM6dIVqnsh_CMl5YxgvXE8j4LrCW22LlBAhU7v-cd9pujUDRsGSZm2LxIrzQwjEeMr8LB_VWLdeBmipAiteFaGUTlwNs2u1VSp7NqvTbCDDjMHA__ed6P8OWbVk_No8ewXr5vDDHCGxKddIc3BNY-zrpY2s4mNw_vgF63_mF |
link.rule.ids | 230,315,783,787,888,3513,27581,27936,27937,45675,45886 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hEKIXRCm0C20xUm8oIi8nznHZQpeW3dMirXqx7NiBFEhWkD3w75nJY8VCxYGrx4msGfubz8k8AH7wxHhGpdxxjXGdMIu5I0KlHN8Io7lNuV-3ThiNo-Fl-HvKpysw6HJhKKyyxf4G02u0bkeOW20ez_KccnwTX0TkEev_QYjDa5R2Sdv8fHqygGPBedPGIMGjj9PbzJkmyIu-jlN8V1O7k5Lv_--dXrPPl0GUz7zS2RZstnSS9ZsVf4QVW2zDetNg8vETyL-PVyWK2C9blHeW9dOumxmb4LX8CrkfQwbIfo77DKl49wGPDa5tejMr86JiqqpnjHKjkWhX81vFav9Wh3rtwOXZ6WQwdNqWCk4acl45OhQKOVJMRVc8k_mxl-Ed2AQmiLnC0x9qTwibJbFSWYQ3kYSbQBsfx32NzCEIdmG1KAv7BRj3DXJLHmeR0AgESlE6iE7xhbGrA-v24KhTpZw1lTNkF1L2T5LiJSleup5ExfeAd9qWS_aXCO1vPnfYmUbiwSCxKmw5f5BeRGRMRDzowefGVIt1IE6FKPF6EC8ZcTGBim4vS4r8ui6-jfQyiUJ3753rPYCN4WR0IS_Ox3_24QNJKKLN87_CanU_t9-Q4lT6e72FnwDpOfig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zygotic+genome+activation+triggers+the+DNA+replication+checkpoint+at+the+midblastula+transition&rft.jtitle=Cell&rft.au=Blythe%2C+Shelby+A&rft.au=Wieschaus%2C+Eric+F&rft.date=2015-03-12&rft.eissn=1097-4172&rft.volume=160&rft.issue=6&rft.spage=1169&rft_id=info:doi/10.1016%2Fj.cell.2015.01.050&rft_id=info%3Apmid%2F25748651&rft.externalDocID=25748651 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |