Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite

Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. He...

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 29; no. 5; pp. 819 - 833.e7
Main Authors Cerutti, Gabriele, Guo, Yicheng, Zhou, Tongqing, Gorman, Jason, Lee, Myungjin, Rapp, Micah, Reddem, Eswar R., Yu, Jian, Bahna, Fabiana, Bimela, Jude, Huang, Yaoxing, Katsamba, Phinikoula S., Liu, Lihong, Nair, Manoj S., Rawi, Reda, Olia, Adam S., Wang, Pengfei, Zhang, Baoshan, Chuang, Gwo-Yu, Ho, David D., Sheng, Zizhang, Kwong, Peter D., Shapiro, Lawrence
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 12.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here, we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD. These structures defined several antibody classes, with at least one observed in multiple convalescent donors. The structures revealed that all seven antibodies target a common surface, bordered by glycans N17, N74, N122, and N149. This site—formed primarily by a mobile β-hairpin and several flexible loops—was highly electropositive, located at the periphery of the spike, and the largest glycan-free surface of NTD facing away from the viral membrane. Thus, in contrast to neutralizing RBD-directed antibodies that recognize multiple non-overlapping epitopes, potent NTD-directed neutralizing antibodies appear to target a single supersite. [Display omitted] •Structures of seven NTD-directed neutralizing antibody complexes with spike or NTD•Structures define distinct recognition classes, one observed in multiple donors•Supersite is glycan free, electropositive, with mobile β-hairpin and flexible loops•Most potent NTD-directed neutralizing antibodies may target this supersite Cerutti et al. report structural analysis of seven potent neutralizing antibodies targeting the N-terminal domain of SARS-CoV-2 spike. All antibodies recognize a common glycan-free, electropositive surface comprised of a mobile β-hairpin and flexible loops. While RBD-directed antibodies recognize non-overlapping epitopes, these findings indicate that NTD-directed antibodies predominantly target a single supersite.
AbstractList Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here, we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD. These structures defined several antibody classes, with at least one observed in multiple convalescent donors. The structures revealed that all seven antibodies target a common surface, bordered by glycans N17, N74, N122, and N149. This site—formed primarily by a mobile β-hairpin and several flexible loops—was highly electropositive, located at the periphery of the spike, and the largest glycan-free surface of NTD facing away from the viral membrane. Thus, in contrast to neutralizing RBD-directed antibodies that recognize multiple non-overlapping epitopes, potent NTD-directed neutralizing antibodies appear to target a single supersite. [Display omitted] •Structures of seven NTD-directed neutralizing antibody complexes with spike or NTD•Structures define distinct recognition classes, one observed in multiple donors•Supersite is glycan free, electropositive, with mobile β-hairpin and flexible loops•Most potent NTD-directed neutralizing antibodies may target this supersite Cerutti et al. report structural analysis of seven potent neutralizing antibodies targeting the N-terminal domain of SARS-CoV-2 spike. All antibodies recognize a common glycan-free, electropositive surface comprised of a mobile β-hairpin and flexible loops. While RBD-directed antibodies recognize non-overlapping epitopes, these findings indicate that NTD-directed antibodies predominantly target a single supersite.
Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here, we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD. These structures defined several antibody classes, with at least one observed in multiple convalescent donors. The structures revealed that all seven antibodies target a common surface, bordered by glycans N17, N74, N122, and N149. This site-formed primarily by a mobile β-hairpin and several flexible loops-was highly electropositive, located at the periphery of the spike, and the largest glycan-free surface of NTD facing away from the viral membrane. Thus, in contrast to neutralizing RBD-directed antibodies that recognize multiple non-overlapping epitopes, potent NTD-directed neutralizing antibodies appear to target a single supersite.Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here, we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD. These structures defined several antibody classes, with at least one observed in multiple convalescent donors. The structures revealed that all seven antibodies target a common surface, bordered by glycans N17, N74, N122, and N149. This site-formed primarily by a mobile β-hairpin and several flexible loops-was highly electropositive, located at the periphery of the spike, and the largest glycan-free surface of NTD facing away from the viral membrane. Thus, in contrast to neutralizing RBD-directed antibodies that recognize multiple non-overlapping epitopes, potent NTD-directed neutralizing antibodies appear to target a single supersite.
Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here, we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD. These structures defined several antibody classes, with at least one observed in multiple convalescent donors. The structures revealed that all seven antibodies target a common surface, bordered by glycans N17, N74, N122, and N149. This site-formed primarily by a mobile β-hairpin and several flexible loops-was highly electropositive, located at the periphery of the spike, and the largest glycan-free surface of NTD facing away from the viral membrane. Thus, in contrast to neutralizing RBD-directed antibodies that recognize multiple non-overlapping epitopes, potent NTD-directed neutralizing antibodies appear to target a single supersite.
Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here, we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD. These structures defined several antibody classes, with at least one observed in multiple convalescent donors. The structures revealed that all seven antibodies target a common surface, bordered by glycans N 17, N 74, N 122, and N 149. This site—formed primarily by a mobile β-hairpin and several flexible loops—was highly electropositive, located at the periphery of the spike, and the largest glycan-free surface of NTD facing away from the viral membrane. Thus, in contrast to neutralizing RBD-directed antibodies that recognize multiple non-overlapping epitopes, potent NTD-directed neutralizing antibodies appear to target a single supersite. Cerutti et al. report structural analysis of seven potent neutralizing antibodies targeting the N-terminal domain of SARS-CoV-2 spike. All antibodies recognize a common glycan-free, electropositive surface comprised of a mobile β-hairpin and flexible loops. While RBD-directed antibodies recognize non-overlapping epitopes, these findings indicate that NTD-directed antibodies predominantly target a single supersite.
Author Gorman, Jason
Yu, Jian
Bimela, Jude
Huang, Yaoxing
Zhang, Baoshan
Nair, Manoj S.
Liu, Lihong
Rawi, Reda
Reddem, Eswar R.
Olia, Adam S.
Kwong, Peter D.
Rapp, Micah
Chuang, Gwo-Yu
Guo, Yicheng
Bahna, Fabiana
Katsamba, Phinikoula S.
Zhou, Tongqing
Cerutti, Gabriele
Sheng, Zizhang
Ho, David D.
Lee, Myungjin
Shapiro, Lawrence
Wang, Pengfei
Author_xml – sequence: 1
  givenname: Gabriele
  surname: Cerutti
  fullname: Cerutti, Gabriele
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
– sequence: 2
  givenname: Yicheng
  surname: Guo
  fullname: Guo, Yicheng
  organization: Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
– sequence: 3
  givenname: Tongqing
  surname: Zhou
  fullname: Zhou, Tongqing
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 4
  givenname: Jason
  surname: Gorman
  fullname: Gorman, Jason
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 5
  givenname: Myungjin
  surname: Lee
  fullname: Lee, Myungjin
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 6
  givenname: Micah
  surname: Rapp
  fullname: Rapp, Micah
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
– sequence: 7
  givenname: Eswar R.
  surname: Reddem
  fullname: Reddem, Eswar R.
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
– sequence: 8
  givenname: Jian
  surname: Yu
  fullname: Yu, Jian
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
– sequence: 9
  givenname: Fabiana
  surname: Bahna
  fullname: Bahna, Fabiana
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
– sequence: 10
  givenname: Jude
  surname: Bimela
  fullname: Bimela, Jude
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
– sequence: 11
  givenname: Yaoxing
  surname: Huang
  fullname: Huang, Yaoxing
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
– sequence: 12
  givenname: Phinikoula S.
  surname: Katsamba
  fullname: Katsamba, Phinikoula S.
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
– sequence: 13
  givenname: Lihong
  surname: Liu
  fullname: Liu, Lihong
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
– sequence: 14
  givenname: Manoj S.
  surname: Nair
  fullname: Nair, Manoj S.
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
– sequence: 15
  givenname: Reda
  surname: Rawi
  fullname: Rawi, Reda
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 16
  givenname: Adam S.
  surname: Olia
  fullname: Olia, Adam S.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 17
  givenname: Pengfei
  surname: Wang
  fullname: Wang, Pengfei
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
– sequence: 18
  givenname: Baoshan
  surname: Zhang
  fullname: Zhang, Baoshan
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 19
  givenname: Gwo-Yu
  surname: Chuang
  fullname: Chuang, Gwo-Yu
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 20
  givenname: David D.
  surname: Ho
  fullname: Ho, David D.
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
– sequence: 21
  givenname: Zizhang
  surname: Sheng
  fullname: Sheng, Zizhang
  organization: Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
– sequence: 22
  givenname: Peter D.
  surname: Kwong
  fullname: Kwong, Peter D.
  email: pdkwong@nih.gov
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
– sequence: 23
  givenname: Lawrence
  surname: Shapiro
  fullname: Shapiro, Lawrence
  email: lss8@columbia.edu
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33789084$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctu1DAUtVARfcAPsEBeskmw43ESSwipGvGSKkAU2FqOfTO9Q2JPbacSfD0epkXAoitbuudx7zmn5MgHD4Q85azmjLcvtrW9CnPdsIbXTNSMyQfkhCuxqlrWqqPff14J3vTH5DSlbQFI1vFH5FiIrlesX52Q6VPI4DO9PP98Wa3Dt6qhHpYczYQ_0W-o8RmH4BASdRjBZnDUbAz6lGna4XegH6oMcUZvJurCXCY0m7iBTA1NRWECmpYdxIQZHpOHo5kSPLl9z8jXN6-_rN9VFx_fvl-fX1R2JWWuzNCNyoJYtXxsbdsPxijrRmdUozo7dMPYirYXHeulEp0VUg3OuVG2vXTc2VGckVcH3d0yzOBsObAcpHcRZxN_6GBQ_zvxeKU34UZ3SoqVkEXg-a1ADNcLpKxnTBamyXgIS9JNybEry_RNgT772-uPyV3EBdAfADaGlCKM2mI2GcPeGifNmd63qbd636bet6mZ0KWsQm3-o96p30t6eSBBSfgGIepkEbyFQ3_aBbyP_gsT87u8
CitedBy_id crossref_primary_10_1016_j_imj_2023_09_001
crossref_primary_10_1371_journal_pone_0289198
crossref_primary_10_1186_s12934_021_01576_5
crossref_primary_10_1099_acmi_0_000853_v4
crossref_primary_10_1080_22221751_2024_2406300
crossref_primary_10_1371_journal_ppat_1010465
crossref_primary_10_3390_vaccines9121419
crossref_primary_10_4049_jimmunol_2300675
crossref_primary_10_1016_j_chom_2022_05_001
crossref_primary_10_1080_0889311X_2024_2363756
crossref_primary_10_1002_eji_202149374
crossref_primary_10_1016_j_isci_2022_105855
crossref_primary_10_1016_j_immuni_2021_06_003
crossref_primary_10_1038_s44298_023_00007_z
crossref_primary_10_1016_j_sbi_2022_102402
crossref_primary_10_1126_science_abn8897
crossref_primary_10_3390_vaccines12101089
crossref_primary_10_3389_fimmu_2022_877101
crossref_primary_10_3390_v15010070
crossref_primary_10_1016_j_celrep_2022_110368
crossref_primary_10_3390_v13061002
crossref_primary_10_1371_journal_ppat_1011308
crossref_primary_10_1038_s41467_022_33985_4
crossref_primary_10_1016_j_cell_2022_01_019
crossref_primary_10_1016_j_celrep_2022_111220
crossref_primary_10_1039_D1CP05059A
crossref_primary_10_1093_glycob_cwad097
crossref_primary_10_1371_journal_ppat_1011545
crossref_primary_10_1038_s44318_024_00303_1
crossref_primary_10_1126_scitranslmed_abm4908
crossref_primary_10_1126_science_abi7994
crossref_primary_10_3390_v13112114
crossref_primary_10_5564_jimdt_v4i1_2659
crossref_primary_10_1128_mmbr_00026_21
crossref_primary_10_1038_s41598_022_26646_5
crossref_primary_10_1038_s41467_023_37422_y
crossref_primary_10_20411_pai_v9i2_679
crossref_primary_10_1172_jci_insight_165299
crossref_primary_10_1039_D1CS01170G
crossref_primary_10_1038_s42003_021_02858_9
crossref_primary_10_1016_j_vaccine_2023_08_076
crossref_primary_10_1371_journal_ppat_1012624
crossref_primary_10_3390_v13101911
crossref_primary_10_15252_msb_202110673
crossref_primary_10_3390_vaccines11040771
crossref_primary_10_7554_eLife_82516
crossref_primary_10_3389_fimmu_2023_1266829
crossref_primary_10_1038_s41392_021_00733_x
crossref_primary_10_1172_JCI162192
crossref_primary_10_1016_j_cell_2021_06_020
crossref_primary_10_1016_j_ebiom_2022_103902
crossref_primary_10_1093_cid_ciab581
crossref_primary_10_1038_s41467_023_37128_1
crossref_primary_10_1016_j_celrep_2021_109679
crossref_primary_10_3390_covid3090089
crossref_primary_10_1016_j_ijbiomac_2022_03_058
crossref_primary_10_3389_fimmu_2022_960985
crossref_primary_10_3389_fimmu_2023_1111385
crossref_primary_10_1186_s41232_022_00233_7
crossref_primary_10_1002_jmv_27555
crossref_primary_10_3389_fimmu_2021_790469
crossref_primary_10_1038_s41590_022_01248_5
crossref_primary_10_1016_j_xcrm_2024_101553
crossref_primary_10_1126_scitranslmed_adf4100
crossref_primary_10_1002_rmv_2277
crossref_primary_10_1002_aic_17440
crossref_primary_10_7554_eLife_75433
crossref_primary_10_1016_j_coviro_2021_11_011
crossref_primary_10_3390_vaccines10091545
crossref_primary_10_1038_s41467_023_38435_3
crossref_primary_10_1016_j_chom_2022_09_018
crossref_primary_10_17816_clinpract111120
crossref_primary_10_1093_bib_bbab383
crossref_primary_10_1080_22221751_2024_2359004
crossref_primary_10_26508_lsa_202201415
crossref_primary_10_1126_science_abg9175
crossref_primary_10_1038_s41591_021_01542_z
crossref_primary_10_3390_vaccines12030218
crossref_primary_10_1038_s41577_022_00784_3
crossref_primary_10_3390_ijerph192316084
crossref_primary_10_1002_mef2_90
crossref_primary_10_1039_D3CP01378B
crossref_primary_10_1016_j_immuni_2022_04_003
crossref_primary_10_3390_v15010167
crossref_primary_10_1016_j_tim_2023_07_002
crossref_primary_10_1172_JCI178880
crossref_primary_10_1002_prot_26497
crossref_primary_10_1016_j_xcrm_2024_101668
crossref_primary_10_37349_ei_2024_00140
crossref_primary_10_1126_science_abl9463
crossref_primary_10_1038_s41586_021_04385_3
crossref_primary_10_1371_journal_ppat_1012724
crossref_primary_10_1021_acsnano_4c00809
crossref_primary_10_1128_mbio_01206_23
crossref_primary_10_1089_vim_2022_0122
crossref_primary_10_1128_jvi_01955_21
crossref_primary_10_3389_fimmu_2021_752003
crossref_primary_10_1016_j_str_2024_07_020
crossref_primary_10_1038_s41467_022_28766_y
crossref_primary_10_1038_s41392_024_01917_x
crossref_primary_10_1016_j_isci_2023_107208
crossref_primary_10_3390_vaccines12040365
crossref_primary_10_1038_s41467_024_47393_3
crossref_primary_10_3390_microorganisms10071356
crossref_primary_10_1080_22221751_2024_2412990
crossref_primary_10_1016_j_cell_2021_05_005
crossref_primary_10_1021_acsinfecdis_2c00006
crossref_primary_10_1016_j_chom_2021_04_007
crossref_primary_10_1016_j_virs_2022_11_005
crossref_primary_10_3389_fimmu_2021_778913
crossref_primary_10_1080_21645515_2022_2057161
crossref_primary_10_1016_j_str_2021_05_014
crossref_primary_10_1016_j_cell_2021_12_046
crossref_primary_10_1126_science_abi6226
crossref_primary_10_1080_22221751_2021_2024455
crossref_primary_10_1007_s12291_022_01030_2
crossref_primary_10_3389_fimmu_2022_888794
crossref_primary_10_1016_j_compbiomed_2022_105735
crossref_primary_10_1038_s41392_023_01615_0
crossref_primary_10_1016_j_ijbiomac_2024_134850
crossref_primary_10_1126_science_abh2315
crossref_primary_10_3389_fsysb_2024_1309891
crossref_primary_10_2478_fzm_2023_0019
crossref_primary_10_1016_j_envres_2022_112720
crossref_primary_10_3389_fimmu_2021_723585
crossref_primary_10_1016_j_xcrm_2023_101305
crossref_primary_10_3390_v13102009
crossref_primary_10_1128_jvi_00383_22
crossref_primary_10_1007_s40259_022_00529_7
crossref_primary_10_1016_j_csbj_2021_12_011
crossref_primary_10_3390_biomedicines9101303
crossref_primary_10_3389_fviro_2023_1128253
crossref_primary_10_1371_journal_ppat_1012383
crossref_primary_10_3389_fmedt_2022_867982
crossref_primary_10_1002_jmv_29893
crossref_primary_10_1016_j_jviromet_2022_114597
crossref_primary_10_1038_s41467_024_51770_3
crossref_primary_10_1021_acsbiomedchemau_3c00010
crossref_primary_10_1126_sciadv_abn2911
crossref_primary_10_1371_journal_pmed_1003868
crossref_primary_10_1038_s41586_022_04399_5
crossref_primary_10_1126_science_abl8506
crossref_primary_10_1016_j_celrep_2024_115036
crossref_primary_10_1016_j_celrep_2022_110348
crossref_primary_10_1016_j_mcpro_2023_100507
crossref_primary_10_1038_s41422_021_00514_9
crossref_primary_10_1016_j_coviro_2023_101349
crossref_primary_10_1016_j_micinf_2022_105077
crossref_primary_10_1093_glycob_cwab102
crossref_primary_10_1016_j_immuni_2022_03_019
crossref_primary_10_1038_s41467_023_42408_x
crossref_primary_10_1016_j_nbt_2023_12_004
crossref_primary_10_1038_s42003_022_04160_8
crossref_primary_10_3389_fmicb_2022_946549
crossref_primary_10_1016_j_str_2023_11_015
crossref_primary_10_1128_mbio_02030_21
crossref_primary_10_1016_j_immuni_2023_09_003
crossref_primary_10_1038_s41586_022_05053_w
crossref_primary_10_1093_bioinformatics_btab791
crossref_primary_10_1016_j_immuni_2024_02_016
crossref_primary_10_3390_vaccines11091451
crossref_primary_10_3390_antib10030026
crossref_primary_10_1126_sciadv_adg2122
crossref_primary_10_1007_s15010_024_02223_y
crossref_primary_10_1016_j_antiviral_2024_105820
crossref_primary_10_1038_s41423_021_00752_2
crossref_primary_10_3390_vaccines12050487
crossref_primary_10_1080_22221751_2024_2412643
crossref_primary_10_3390_v15020558
crossref_primary_10_1016_j_chom_2022_01_005
crossref_primary_10_1002_mco2_239
crossref_primary_10_1016_j_celrep_2023_112271
crossref_primary_10_1016_j_str_2021_12_011
crossref_primary_10_3389_fpubh_2022_915363
crossref_primary_10_1038_s41590_021_01068_z
crossref_primary_10_1007_s00216_023_04771_y
crossref_primary_10_1016_j_chom_2021_04_010
crossref_primary_10_3390_v16091480
crossref_primary_10_1016_j_coviro_2021_08_010
crossref_primary_10_1016_j_virs_2022_10_006
crossref_primary_10_1016_j_cell_2022_06_005
crossref_primary_10_3389_fimmu_2023_1197588
crossref_primary_10_1016_j_chom_2022_07_016
crossref_primary_10_1371_journal_pone_0273323
crossref_primary_10_1128_jvi_01596_22
crossref_primary_10_1371_journal_ppat_1010981
crossref_primary_10_1126_sciadv_adg0330
crossref_primary_10_1126_sciimmunol_adf1421
crossref_primary_10_1002_jmv_27927
crossref_primary_10_1038_s41580_021_00418_x
crossref_primary_10_1038_s41467_023_36745_0
crossref_primary_10_1021_acscentsci_2c01513
crossref_primary_10_3390_v15061382
crossref_primary_10_1016_j_cytogfr_2023_03_001
crossref_primary_10_1016_j_smim_2021_101533
crossref_primary_10_1016_j_virusres_2022_198688
crossref_primary_10_1111_imr_13431
crossref_primary_10_1038_s41467_023_37786_1
crossref_primary_10_1128_mBio_02473_21
crossref_primary_10_1016_j_ebiom_2022_104297
crossref_primary_10_3390_biologics3020008
crossref_primary_10_1126_scitranslmed_adq5720
crossref_primary_10_3390_ijms25073696
crossref_primary_10_1128_Spectrum_00965_21
crossref_primary_10_1038_s41392_022_00997_x
crossref_primary_10_29328_journal_icci_1001020
crossref_primary_10_1038_s41467_022_35456_2
crossref_primary_10_3390_bios12050351
crossref_primary_10_1007_s10875_021_01193_2
crossref_primary_10_1038_s41586_021_04005_0
crossref_primary_10_1038_s41576_021_00408_x
crossref_primary_10_1038_s41421_021_00331_9
crossref_primary_10_3390_v14071415
crossref_primary_10_3923_rjm_2023_46_56
crossref_primary_10_1128_jvi_00109_25
crossref_primary_10_1126_scitranslmed_abo2847
crossref_primary_10_1093_ve_veab069
crossref_primary_10_1016_j_celrep_2021_109928
crossref_primary_10_1016_j_coviro_2021_05_005
crossref_primary_10_1016_j_virol_2024_110383
crossref_primary_10_1038_s41586_023_06617_0
crossref_primary_10_1016_j_celrep_2024_114307
crossref_primary_10_1007_s00018_021_04008_0
crossref_primary_10_1111_imr_70000
crossref_primary_10_1016_j_celrep_2021_110143
crossref_primary_10_3390_v16071066
crossref_primary_10_1016_j_clim_2024_110164
crossref_primary_10_1016_j_jinf_2021_06_001
crossref_primary_10_1038_s41392_021_00797_9
crossref_primary_10_3390_biology13030134
crossref_primary_10_3389_fmicb_2023_1228128
crossref_primary_10_1172_JCI159062
crossref_primary_10_1080_22221751_2021_2011623
crossref_primary_10_3390_v14020410
crossref_primary_10_1515_jib_2024_0025
crossref_primary_10_3390_v15102009
crossref_primary_10_1038_s41467_024_46982_6
crossref_primary_10_1080_19420862_2021_2002236
crossref_primary_10_1128_jvi_00775_22
crossref_primary_10_1128_jvi_01070_23
crossref_primary_10_1371_journal_pcbi_1012215
crossref_primary_10_1016_j_tibs_2021_10_005
crossref_primary_10_1111_trf_16652
crossref_primary_10_1016_j_celrep_2022_110428
crossref_primary_10_1128_jvi_00922_23
crossref_primary_10_1038_s41577_022_00813_1
crossref_primary_10_1016_j_celrep_2022_110786
crossref_primary_10_1016_j_ebiom_2023_104475
crossref_primary_10_1371_journal_ppat_1010155
crossref_primary_10_1038_s42003_022_03866_z
crossref_primary_10_2217_fvl_2022_0181
crossref_primary_10_1038_s41392_022_00996_y
crossref_primary_10_1097_CJI_0000000000000455
crossref_primary_10_1126_sciadv_abl7682
crossref_primary_10_1093_ve_veab097
crossref_primary_10_1007_s11427_022_2215_6
crossref_primary_10_1016_j_str_2022_06_004
crossref_primary_10_1126_sciimmunol_abo3425
crossref_primary_10_1016_j_celrep_2021_109822
crossref_primary_10_1093_infdis_jiac343
crossref_primary_10_1016_j_jviromet_2022_114564
crossref_primary_10_1016_j_chom_2022_03_035
crossref_primary_10_3390_ijms22126462
crossref_primary_10_1016_j_virusres_2022_198674
crossref_primary_10_1111_imr_13084
crossref_primary_10_1016_S2666_5247_22_00090_8
crossref_primary_10_1111_imr_13086
crossref_primary_10_1126_scitranslmed_abj5413
crossref_primary_10_1016_j_diagmicrobio_2023_115900
crossref_primary_10_1016_j_ijbiomac_2023_125997
crossref_primary_10_1038_s41392_022_00907_1
crossref_primary_10_1080_22221751_2023_2290841
crossref_primary_10_1093_gigascience_giae080
crossref_primary_10_1093_infdis_jiab622
crossref_primary_10_1371_journal_ppat_1010260
crossref_primary_10_1002_mco2_70008
crossref_primary_10_1016_j_isci_2022_104722
crossref_primary_10_1016_j_isci_2022_105016
crossref_primary_10_1371_journal_ppat_1011901
crossref_primary_10_1128_spectrum_02676_21
crossref_primary_10_3389_fcimb_2021_763687
crossref_primary_10_1371_journal_pone_0298033
crossref_primary_10_1128_mBio_01590_21
crossref_primary_10_1556_650_2021_32414
crossref_primary_10_1038_s41573_022_00495_3
crossref_primary_10_1021_acsinfecdis_4c00015
crossref_primary_10_1016_j_lfs_2023_121525
crossref_primary_10_1056_NEJMc2107799
crossref_primary_10_1016_j_chom_2021_12_010
crossref_primary_10_1186_s12985_021_01690_1
crossref_primary_10_1038_s41467_022_28317_5
crossref_primary_10_1126_scitranslmed_abn7737
crossref_primary_10_1016_j_chom_2022_10_003
crossref_primary_10_1097_MRM_0000000000000386
crossref_primary_10_3389_fmolb_2023_1205919
crossref_primary_10_1038_s41598_021_02904_w
crossref_primary_10_3390_v16060900
crossref_primary_10_3390_vaccines9121442
crossref_primary_10_1038_s41586_021_04388_0
crossref_primary_10_1146_annurev_med_042420_113838
crossref_primary_10_1038_s41598_023_43661_2
crossref_primary_10_1016_j_celrep_2022_111276
crossref_primary_10_1016_j_jaut_2021_102715
crossref_primary_10_1016_j_csbj_2021_10_004
crossref_primary_10_1016_j_celrep_2021_109353
crossref_primary_10_3390_v16111647
crossref_primary_10_1038_s41586_021_03908_2
crossref_primary_10_1080_22221751_2022_2030200
crossref_primary_10_1128_jvi_01626_21
crossref_primary_10_1002_eji_202149234
crossref_primary_10_1016_j_sbi_2022_102385
crossref_primary_10_1016_j_sbi_2023_102664
crossref_primary_10_2174_1389450124666221014102927
crossref_primary_10_3390_vaccines11030497
crossref_primary_10_1038_s41467_021_23473_6
crossref_primary_10_3390_jdb9040058
crossref_primary_10_3390_ijms222011211
crossref_primary_10_1038_s41594_021_00596_4
crossref_primary_10_1016_j_xpro_2021_100869
crossref_primary_10_1126_sciadv_add7221
crossref_primary_10_1126_science_adp2407
crossref_primary_10_1016_j_immuni_2022_05_005
crossref_primary_10_3389_fimmu_2023_1152522
crossref_primary_10_1371_journal_pone_0268767
crossref_primary_10_1371_journal_ppat_1010592
crossref_primary_10_3892_mmr_2024_13272
crossref_primary_10_1016_j_crstbi_2022_05_001
crossref_primary_10_1021_acs_jpclett_4c03654
crossref_primary_10_3390_v15010248
crossref_primary_10_3389_fmed_2022_916241
crossref_primary_10_3390_v13091687
crossref_primary_10_1016_j_isci_2023_108009
crossref_primary_10_1039_D1CB00169H
crossref_primary_10_1126_science_abq1841
crossref_primary_10_1126_sciadv_adk4920
crossref_primary_10_15252_embr_202154322
crossref_primary_10_1038_s41541_024_00982_1
crossref_primary_10_1016_j_chom_2021_06_009
crossref_primary_10_1016_j_celrep_2022_110757
crossref_primary_10_1038_s42003_022_04138_6
crossref_primary_10_1016_j_molcel_2021_11_024
crossref_primary_10_1093_jmcb_mjad021
Cites_doi 10.1126/science.abc7520
10.1038/s41586-020-2349-y
10.1107/S0907444913000061
10.1080/14728222.2020.1752183
10.1128/JVI.02002-17
10.1016/S1473-3099(20)30120-1
10.1002/jcc.20084
10.1016/j.jmb.2007.05.022
10.1093/nar/gky427
10.1126/science.abd0826
10.1073/pnas.1707304114
10.1016/j.cell.2020.04.031
10.1126/science.abb2507
10.1107/S0909049503024130
10.1038/s41594-020-0468-7
10.1093/nar/gkw361
10.1126/science.abd0827
10.3389/fimmu.2013.00302
10.1016/j.jsb.2012.09.006
10.1038/s41423-020-0426-7
10.1038/s41586-020-2380-z
10.1016/j.cell.2020.05.025
10.3389/fimmu.2017.00537
10.1038/nsmb.2594
10.1038/s41586-020-2456-9
10.1093/nar/gkf436
10.1038/nmeth.4169
10.1093/nar/gkt382
10.1128/JVI.01012-16
10.1016/j.cell.2015.05.007
10.1002/pro.3943
10.1038/s41586-020-2852-1
10.1093/nar/gkh340
10.1002/jcc.20945
10.1126/science.abb7269
10.1021/acscentsci.0c01056
10.1038/s41592-019-0575-8
10.1038/nmeth.4347
10.1371/journal.pone.0099881
10.1038/s41586-020-2571-7
10.1093/nar/gkn316
10.1126/sciadv.abb1328
10.1107/S0907444904019158
10.1126/science.abb2762
10.1107/S0907444909047374
10.1126/science.abc5881
10.1038/d41586-020-00758-2
10.1107/S2052252514009324
10.1016/j.chom.2020.11.004
10.1038/s41586-020-2772-0
10.1007/s12033-008-9062-7
10.1107/S0907444910045749
10.1038/s41422-020-00446-w
10.1107/S0907444909052925
10.1038/emi.2017.50
10.1016/j.chom.2020.04.022
10.1093/bioinformatics/btl461
10.1016/j.cell.2020.08.046
10.1126/science.abc6952
10.1093/abt/tbaa008
10.1016/j.jsb.2005.03.010
10.1093/nar/gkh398
10.1038/nmeth.3541
10.1126/science.abc2241
10.3389/fimmu.2016.00372
10.1016/j.cell.2020.02.058
10.1107/S0907444906045975
10.12688/f1000research.7931.1
10.1038/s41467-020-16256-y
10.1126/science.abc5902
10.1038/s41467-019-10897-4
10.1016/j.cell.2020.03.045
10.1016/j.cell.2020.06.025
10.1038/s41591-020-0998-x
10.1126/science.abd2321
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
2021 Elsevier Inc. 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
– notice: 2021 Elsevier Inc. 2021 Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.chom.2021.03.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 833.e7
ExternalDocumentID PMC7953435
33789084
10_1016_j_chom_2021_03_005
S1931312821001335
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH HHS
  grantid: DP5 OD023118
– fundername: NIGMS NIH HHS
  grantid: U24 GM129539
– fundername: NIAID NIH HHS
  grantid: R21 AI144408
– fundername: Intramural NIH HHS
  grantid: ZIA AI005022
– fundername: NIGMS NIH HHS
  grantid: P41 GM103310
– fundername: NIAID NIH HHS
  grantid: R21 AI143407
– fundername: NIGMS NIH HHS
  grantid: P30 GM124165
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
5GY
62-
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
K97
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
53G
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
RIG
ZBA
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c455t-ab7f9ce3461f6c68baa9cdfda9297cb7bf636837085937c359bdddf5685d1dcf3
IEDL.DBID IXB
ISSN 1931-3128
1934-6069
IngestDate Thu Aug 21 18:15:03 EDT 2025
Fri Jul 11 11:32:56 EDT 2025
Mon Jul 21 06:00:02 EDT 2025
Tue Jul 01 02:44:23 EDT 2025
Thu Apr 24 23:05:38 EDT 2025
Fri Feb 23 02:45:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords COVID-19
SARS-CoV-2
antibody class
neutralizing antibody
multi-donor antibody
antigenic supersite
N-terminal domain
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-ab7f9ce3461f6c68baa9cdfda9297cb7bf636837085937c359bdddf5685d1dcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
Lead contact
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7953435
PMID 33789084
PQID 2507729782
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7953435
proquest_miscellaneous_2507729782
pubmed_primary_33789084
crossref_citationtrail_10_1016_j_chom_2021_03_005
crossref_primary_10_1016_j_chom_2021_03_005
elsevier_sciencedirect_doi_10_1016_j_chom_2021_03_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-12
PublicationDateYYYYMMDD 2021-05-12
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ye, Ma, Madden, Ostell (bib71) 2013; 41
Zhou, Tsybovsky, Gorman, Rapp, Cerutti, Chuang, Katsamba, Sampson, Schon, Bimela (bib78) 2020; 28
Punjani, Rubinstein, Fleet, Brubaker (bib48) 2017; 14
Ju, Zhang, Ge, Wang, Sun, Ge, Yu, Shan, Zhou, Song (bib27) 2020; 584
Dong, Du, Gardner (bib19) 2020; 20
Zhou, Chen, Zhang, Niu, Qin, Jia, Huang, Zhang, Lan, Zhang (bib77) 2019; 10
Winn, Ballard, Cowtan, Dodson, Emsley, Evans, Keegan, Krissinel, Leslie, McCoy (bib65) 2011; 67
Pallesen, Wang, Corbett, Wrapp, Kirchdoerfer, Turner, Cottrell, Becker, Wang, Shi (bib43) 2017; 114
Zost, Gilchuk, Chen, Case, Reidy, Trivette, Nargi, Sutton, Suryadevara, Chen (bib79) 2020; 26
Liu, Wang, Nair, Yu, Rapp, Wang, Luo, Chan, Sahi, Figueroa (bib36) 2020; 584
Zeng, Li, Lin, Li, Liu, Kong, Zeng, Du, Xiao, Zhang (bib74) 2020; 3
Davis, Murray, Richardson, Richardson (bib18) 2004; 32
Lefranc (bib35) 2008; 40
Suloway, Pulokas, Fellmann, Cheng, Guerra, Quispe, Stagg, Potter, Carragher (bib56) 2005; 151
Wang, Zhang, Wu, Niu, Song, Zhang, Lu, Qiao, Hu, Yuen (bib62) 2020; 181
Bepler, Morin, Rapp, Brasch, Shapiro, Noble, Berger (bib7) 2019; 16
Cao, Su, Guo, Sun, Deng, Bao, Zhu, Zhang, Zheng, Geng (bib12) 2020; 182
Evans, Murshudov (bib23) 2013; 69
Scheres (bib51) 2012; 180
Adams, Gopal, Grosse-Kunstleve, Hung, Ioerger, McCoy, Moriarty, Pai, Read, Romo (bib1) 2004; 11
Hansen, Baum, Pascal, Russo, Giordano, Wloga, Fulton, Yan, Koon, Patel (bib24) 2020; 369
Tan, Baldwin, Davis, Williamson, Potter, Carragher, Lyumkis (bib57) 2017; 14
Yuan, Liu, Wu, Lee, Zhu, Zhao, Huang, Yu, Hua, Tien (bib72) 2020; 369
Yuan, Wu, Zhu, Lee, So, Lv, Mok, Wilson (bib73) 2020; 368
Grant, Rodrigues, ElSawy, McCammon, Caves (bib80) 2006; 22
Robbiani, Gaebler, Muecksch, Lorenzi, Wang, Cho, Agudelo, Barnes, Gazumyan, Finkin (bib49) 2020; 584
Kong, Lee, Doores, Murin, Julien, McBride, Liu, Marozsan, Cupo, Klasse (bib30) 2013; 20
Burton, Walker (bib10) 2020; 27
Schramm, Sheng, Zhang, Mascola, Kwong, Shapiro (bib52) 2016; 7
Mitternacht (bib41) 2016; 5
Brochet, Lefranc, Giudicelli (bib8) 2008; 36
Hsieh, Goldsmith, Schaub, DiVenere, Kuo, Javanmardi, Le, Wrapp, Lee, Liu (bib82) 2020; 369
Voss, Hou, Johnson, Kim, Delidakis, Horton, Bartzoka, Paresi, Tanno, Abbasi (bib58) 2020
Rogers, Zhao, Huang, Beutler, Burns, He, Limbo, Smith, Song, Woehl (bib50) 2020; 369
Joosten, Long, Murshudov, Perrakis (bib26) 2014; 1
Wang, Shi, Chappell, Joyce, Zhang, Kanekiyo, Becker, van Doremalen, Fischer, Wang (bib60) 2018; 92
Chi, Yan, Zhang, Zhang, Zhang, Hao, Zhang, Fan, Dong, Yang (bib16) 2020; 369
Casalino, Gaieb, Goldsmith, Hjorth, Dommer, Harbison, Fogarty, Barros, Taylor, McLellan (bib13) 2020; 6
Sela-Culang, Kunik, Ofran (bib53) 2013; 4
Waterhouse, Bertoni, Bienert, Studer, Tauriello, Gumienny, Heer, de Beer, Rempfer, Bordoli (bib64) 2018; 46
Zhou, Lynch, Chen, Acharya, Wu, Doria-Rose, Joyce, Lingwood, Soto, Bailer (bib76) 2015; 161
Wrobel, Benton, Xu, Roustan, Martin, Rosenthal, Skehel, Gamblin (bib68) 2020; 27
Pinto, Park, Beltramello, Walls, Tortorici, Bianchi, Jaconi, Culap, Zatta, De Marco (bib46) 2020; 583
Moyo, Kitchin, Moore (bib42) 2020; 24
Katoh, Misawa, Kuma, Miyata (bib29) 2002; 30
Lv, Deng, Ye, Cao, Sun, Fan, Huang, Sun, Sun, Zhu (bib39) 2020; 369
Wang, Li, Drabek, Okba, van Haperen, Osterhaus, van Kuppeveld, Haagmans, Grosveld, Bosch (bib61) 2020; 11
Longo, Sutton, Shiakolas, Guenaga, Jarosinski, Georgiev, McKee, Bailer, Louder, O’Dell (bib38) 2016; 90
Kabsch (bib28) 2010; 66
Chen, Li, Pan, Qian, Yang, You, Zhao, Liu, Gao, Li (bib15) 2020; 17
Emsley, Cowtan (bib22) 2004; 60
Jo, Kim, Iyer, Im (bib25) 2008; 29
Brouwer, Caniels, van der Straten, Snitselaar, Aldon, Bangaru, Torres, Okba, Claireaux, Kerster (bib9) 2020; 369
Chen, Lu, Jia, Deng, Zhou, Huang, Yu, Lan, Wang, Lou (bib14) 2017; 6
Lee, Wilson (bib34) 2015; 386
Barad, Echols, Wang, Cheng, DiMaio, Adams, Fraser (bib3) 2015; 12
Wang, Sun, Feng, Wang, Guo, Zhang, Deng, Wang, Cui, Cao (bib63) 2021; 31
Wrapp, De Vlieger, Corbett, Torres, Wang, Van Breedam, Roose, van Schie, Hoffmann (bib66) 2020; 181
Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib44) 2004; 25
Wu, Wang, Shen, Peng, Li, Zhao, Li, Li, Bi, Yang (bib69) 2020; 368
Callaway, Cyranoski, Mallapaty, Stoye, Tollefson (bib11) 2020; 579
McCoy (bib40) 2007; 63
Barnes, West, Huey-Tubman, Hoffmann, Sharaf, Hoffman, Koranda, Gristick, Gaebler, Muecksch (bib5) 2020; 182
Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib67) 2020; 367
Yan, Zhang, Li, Xia, Guo, Zhou (bib70) 2020; 367
Sheng, Schramm, Kong, Mullikin, Mascola, Kwong, Shapiro (bib55) 2017; 8
Walls, Park, Tortorici, Wall, McGuire, Veesler (bib59) 2020; 181
Benton, Wrobel, Xu, Roustan, Martin, Rosenthal, Skehel, Gamblin (bib6) 2020; 588
Seydoux, Homad, MacCamy, Parks, Hurlburt, Jennewein, Akins, Stuart, Wan, Feng (bib54) 2020
Dunbar, Krawczyk, Leem, Marks, Nowak, Regep, Georges, Kelm, Popovic, Deane (bib20) 2016; 44
Pettersen, Goddard, Huang, Meng, Couch, Croll, Morris, Ferrin (bib45) 2021; 30
Krissinel, Henrick (bib32) 2007; 372
Kumar, Ju, Shapero, Lin, Ren, Zhang, Li, Zhou, Feng, Sou (bib33) 2020; 6
Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve (bib2) 2010; 66
Cucinotta, Vanelli (bib17) 2020; 91
Barnes, Jette, Abernathy, Dam, Esswein, Gristick, Malyutin, Sharaf, Huey-Tubman, Lee (bib4) 2020; 588
Liu, Gao, Gou, Chen, Gu, Ao, Shen, Hu, Guo, Gao (bib37) 2020
Edgar (bib21) 2004; 32
Kreer, Zehner, Weber, Ercanoglu, Gieselmann, Rohde, Halwe, Korenkov, Schommers, Vanshylla (bib31) 2020; 182
Zhou, Zhu, Yang, Gorman, Ofek, Srivatsan, Druz, Lees, Lu, Soto (bib75) 2014; 9
Zhou (10.1016/j.chom.2021.03.005_bib75) 2014; 9
Winn (10.1016/j.chom.2021.03.005_bib65) 2011; 67
Zeng (10.1016/j.chom.2021.03.005_bib74) 2020; 3
Lee (10.1016/j.chom.2021.03.005_bib34) 2015; 386
Hansen (10.1016/j.chom.2021.03.005_bib24) 2020; 369
Dong (10.1016/j.chom.2021.03.005_bib19) 2020; 20
Moyo (10.1016/j.chom.2021.03.005_bib42) 2020; 24
Wang (10.1016/j.chom.2021.03.005_bib61) 2020; 11
Pallesen (10.1016/j.chom.2021.03.005_bib43) 2017; 114
Zhou (10.1016/j.chom.2021.03.005_bib78) 2020; 28
Zost (10.1016/j.chom.2021.03.005_bib79) 2020; 26
Zhou (10.1016/j.chom.2021.03.005_bib76) 2015; 161
Barnes (10.1016/j.chom.2021.03.005_bib4) 2020; 588
Punjani (10.1016/j.chom.2021.03.005_bib48) 2017; 14
Pettersen (10.1016/j.chom.2021.03.005_bib44) 2004; 25
Wrobel (10.1016/j.chom.2021.03.005_bib68) 2020; 27
Brochet (10.1016/j.chom.2021.03.005_bib8) 2008; 36
Burton (10.1016/j.chom.2021.03.005_bib10) 2020; 27
Wrapp (10.1016/j.chom.2021.03.005_bib66) 2020; 181
Brouwer (10.1016/j.chom.2021.03.005_bib9) 2020; 369
Lv (10.1016/j.chom.2021.03.005_bib39) 2020; 369
Suloway (10.1016/j.chom.2021.03.005_bib56) 2005; 151
Wu (10.1016/j.chom.2021.03.005_bib69) 2020; 368
Yuan (10.1016/j.chom.2021.03.005_bib73) 2020; 368
Wang (10.1016/j.chom.2021.03.005_bib63) 2021; 31
Tan (10.1016/j.chom.2021.03.005_bib57) 2017; 14
Emsley (10.1016/j.chom.2021.03.005_bib22) 2004; 60
Kong (10.1016/j.chom.2021.03.005_bib30) 2013; 20
Cao (10.1016/j.chom.2021.03.005_bib12) 2020; 182
Waterhouse (10.1016/j.chom.2021.03.005_bib64) 2018; 46
Adams (10.1016/j.chom.2021.03.005_bib1) 2004; 11
Joosten (10.1016/j.chom.2021.03.005_bib26) 2014; 1
Lefranc (10.1016/j.chom.2021.03.005_bib35) 2008; 40
Dunbar (10.1016/j.chom.2021.03.005_bib20) 2016; 44
Liu (10.1016/j.chom.2021.03.005_bib37) 2020
Hsieh (10.1016/j.chom.2021.03.005_bib82) 2020; 369
Bepler (10.1016/j.chom.2021.03.005_bib7) 2019; 16
Kumar (10.1016/j.chom.2021.03.005_bib33) 2020; 6
Scheres (10.1016/j.chom.2021.03.005_bib51) 2012; 180
Kabsch (10.1016/j.chom.2021.03.005_bib28) 2010; 66
Davis (10.1016/j.chom.2021.03.005_bib18) 2004; 32
Wang (10.1016/j.chom.2021.03.005_bib60) 2018; 92
Wrapp (10.1016/j.chom.2021.03.005_bib67) 2020; 367
Katoh (10.1016/j.chom.2021.03.005_bib29) 2002; 30
Rogers (10.1016/j.chom.2021.03.005_bib50) 2020; 369
Sheng (10.1016/j.chom.2021.03.005_bib55) 2017; 8
Adams (10.1016/j.chom.2021.03.005_bib2) 2010; 66
Ye (10.1016/j.chom.2021.03.005_bib71) 2013; 41
Ju (10.1016/j.chom.2021.03.005_bib27) 2020; 584
Schramm (10.1016/j.chom.2021.03.005_bib52) 2016; 7
Kreer (10.1016/j.chom.2021.03.005_bib31) 2020; 182
Evans (10.1016/j.chom.2021.03.005_bib23) 2013; 69
Yuan (10.1016/j.chom.2021.03.005_bib72) 2020; 369
Chen (10.1016/j.chom.2021.03.005_bib15) 2020; 17
Cucinotta (10.1016/j.chom.2021.03.005_bib17) 2020; 91
McCoy (10.1016/j.chom.2021.03.005_bib40) 2007; 63
Benton (10.1016/j.chom.2021.03.005_bib6) 2020; 588
Seydoux (10.1016/j.chom.2021.03.005_bib54) 2020
Mitternacht (10.1016/j.chom.2021.03.005_bib41) 2016; 5
Grant (10.1016/j.chom.2021.03.005_bib80) 2006; 22
Chi (10.1016/j.chom.2021.03.005_bib16) 2020; 369
Sela-Culang (10.1016/j.chom.2021.03.005_bib53) 2013; 4
Longo (10.1016/j.chom.2021.03.005_bib38) 2016; 90
Callaway (10.1016/j.chom.2021.03.005_bib11) 2020; 579
Liu (10.1016/j.chom.2021.03.005_bib36) 2020; 584
Robbiani (10.1016/j.chom.2021.03.005_bib49) 2020; 584
Barnes (10.1016/j.chom.2021.03.005_bib5) 2020; 182
Krissinel (10.1016/j.chom.2021.03.005_bib32) 2007; 372
Casalino (10.1016/j.chom.2021.03.005_bib13) 2020; 6
Yan (10.1016/j.chom.2021.03.005_bib70) 2020; 367
Jo (10.1016/j.chom.2021.03.005_bib25) 2008; 29
Pettersen (10.1016/j.chom.2021.03.005_bib45) 2021; 30
Voss (10.1016/j.chom.2021.03.005_bib58) 2020
Chen (10.1016/j.chom.2021.03.005_bib14) 2017; 6
Wang (10.1016/j.chom.2021.03.005_bib62) 2020; 181
Barad (10.1016/j.chom.2021.03.005_bib3) 2015; 12
Edgar (10.1016/j.chom.2021.03.005_bib21) 2004; 32
Pinto (10.1016/j.chom.2021.03.005_bib46) 2020; 583
Zhou (10.1016/j.chom.2021.03.005_bib77) 2019; 10
Walls (10.1016/j.chom.2021.03.005_bib59) 2020; 181
33984277 - Cell Host Microbe. 2021 May 12;29(5):744-746. doi: 10.1016/j.chom.2021.04.010.
References_xml – volume: 372
  start-page: 774
  year: 2007
  end-page: 797
  ident: bib32
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J. Mol. Biol.
– volume: 41
  start-page: W34
  year: 2013
  end-page: W40
  ident: bib71
  article-title: IgBLAST: an immunoglobulin variable domain sequence analysis tool
  publication-title: Nucleic Acids Res.
– volume: 32
  start-page: 1792
  year: 2004
  end-page: 1797
  ident: bib21
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Res.
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: bib2
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 181
  start-page: 894
  year: 2020
  end-page: 904.e9
  ident: bib62
  article-title: Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2
  publication-title: Cell
– volume: 182
  start-page: 828
  year: 2020
  end-page: 842.e16
  ident: bib5
  article-title: Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies
  publication-title: Cell
– volume: 90
  start-page: 10574
  year: 2016
  end-page: 10586
  ident: bib38
  article-title: Multiple Antibody Lineages in One Donor Target the Glycan-V3 Supersite of the HIV-1 Envelope Glycoprotein and Display a Preference for Quaternary Binding
  publication-title: J. Virol.
– volume: 31
  start-page: 101
  year: 2021
  end-page: 103
  ident: bib63
  article-title: Structure-based development of human antibody cocktails against SARS-CoV-2
  publication-title: Cell Res.
– volume: 66
  start-page: 133
  year: 2010
  end-page: 144
  ident: bib28
  article-title: Integration, scaling, space-group assignment and post-refinement
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 7
  start-page: 372
  year: 2016
  ident: bib52
  article-title: SONAR: A High-Throughput Pipeline for Inferring Antibody Ontogenies from Longitudinal Sequencing of B Cell Transcripts
  publication-title: Front. Immunol.
– volume: 151
  start-page: 41
  year: 2005
  end-page: 60
  ident: bib56
  article-title: Automated molecular microscopy: the new Leginon system
  publication-title: J. Struct. Biol.
– volume: 182
  start-page: 73
  year: 2020
  end-page: 84.e16
  ident: bib12
  article-title: Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells
  publication-title: Cell
– volume: 6
  year: 2020
  ident: bib33
  article-title: A V
  publication-title: Sci. Adv.
– volume: 584
  start-page: 437
  year: 2020
  end-page: 442
  ident: bib49
  article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals
  publication-title: Nature
– volume: 367
  start-page: 1444
  year: 2020
  end-page: 1448
  ident: bib70
  article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2
  publication-title: Science
– volume: 8
  start-page: 537
  year: 2017
  ident: bib55
  article-title: Gene-Specific Substitution Profiles Describe the Types and Frequencies of Amino Acid Changes during Antibody Somatic Hypermutation
  publication-title: Front. Immunol.
– volume: 29
  start-page: 1859
  year: 2008
  end-page: 1865
  ident: bib25
  article-title: CHARMM-GUI: a web-based graphical user interface for CHARMM
  publication-title: J. Comput. Chem.
– volume: 12
  start-page: 943
  year: 2015
  end-page: 946
  ident: bib3
  article-title: EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy
  publication-title: Nat. Methods
– volume: 161
  start-page: 1280
  year: 2015
  end-page: 1292
  ident: bib76
  article-title: Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors
  publication-title: Cell
– volume: 588
  start-page: 327
  year: 2020
  end-page: 330
  ident: bib6
  article-title: Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion
  publication-title: Nature
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: bib22
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 5
  start-page: 189
  year: 2016
  ident: bib41
  article-title: FreeSASA: An open source C library for solvent accessible surface area calculations
  publication-title: F1000Res.
– volume: 16
  start-page: 1153
  year: 2019
  end-page: 1160
  ident: bib7
  article-title: Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs
  publication-title: Nat. Methods
– volume: 36
  start-page: W503
  year: 2008
  end-page: W508
  ident: bib8
  article-title: IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis
  publication-title: Nucleic Acids Res.
– volume: 369
  start-page: 1010
  year: 2020
  end-page: 1014
  ident: bib24
  article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail
  publication-title: Science
– volume: 584
  start-page: 115
  year: 2020
  end-page: 119
  ident: bib27
  article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection
  publication-title: Nature
– volume: 114
  start-page: E7348
  year: 2017
  end-page: E7357
  ident: bib43
  article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2020
  ident: bib58
  article-title: Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes in COVID-19 convalescent plasma
  publication-title: bioRxiv
– volume: 181
  start-page: 1004
  year: 2020
  end-page: 1015.e15
  ident: bib66
  article-title: Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies
  publication-title: Cell
– volume: 369
  start-page: 643
  year: 2020
  end-page: 650
  ident: bib9
  article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability
  publication-title: Science
– volume: 9
  start-page: e99881
  year: 2014
  ident: bib75
  article-title: Transplanting supersites of HIV-1 vulnerability
  publication-title: PLoS ONE
– volume: 20
  start-page: 533
  year: 2020
  end-page: 534
  ident: bib19
  article-title: An interactive web-based dashboard to track COVID-19 in real time
  publication-title: Lancet Infect. Dis.
– volume: 14
  start-page: 793
  year: 2017
  end-page: 796
  ident: bib57
  article-title: Addressing preferred specimen orientation in single-particle cryo-EM through tilting
  publication-title: Nat. Methods
– volume: 27
  start-page: 763
  year: 2020
  end-page: 767
  ident: bib68
  article-title: SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects
  publication-title: Nat. Struct. Mol. Biol.
– volume: 40
  start-page: 101
  year: 2008
  end-page: 111
  ident: bib35
  article-title: IMGT, the International ImMunoGeneTics Information System for Immunoinformatics : methods for querying IMGT databases, tools, and web resources in the context of immunoinformatics
  publication-title: Mol. Biotechnol.
– volume: 14
  start-page: 290
  year: 2017
  end-page: 296
  ident: bib48
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
– volume: 24
  start-page: 499
  year: 2020
  end-page: 509
  ident: bib42
  article-title: Targeting the N332-supersite of the HIV-1 envelope for vaccine design
  publication-title: Expert Opin. Ther. Targets
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: bib44
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 181
  start-page: 281
  year: 2020
  end-page: 292.e6
  ident: bib59
  article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein
  publication-title: Cell
– volume: 46
  start-page: W296
  year: 2018
  end-page: W303
  ident: bib64
  article-title: SWISS-MODEL: homology modelling of protein structures and complexes
  publication-title: Nucleic Acids Res.
– volume: 369
  start-page: 1505
  year: 2020
  end-page: 1509
  ident: bib39
  article-title: Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody
  publication-title: Science
– volume: 10
  start-page: 3068
  year: 2019
  ident: bib77
  article-title: Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein
  publication-title: Nat. Commun.
– volume: 22
  start-page: 2695
  year: 2006
  end-page: 2696
  ident: bib80
  article-title: Bio3d: an R package for the comparative analysis of protein structures
  publication-title: Bioinformatics
– volume: 368
  start-page: 630
  year: 2020
  end-page: 633
  ident: bib73
  article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV
  publication-title: Science
– volume: 369
  start-page: 650
  year: 2020
  end-page: 655
  ident: bib16
  article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2
  publication-title: Science
– volume: 369
  start-page: 1119
  year: 2020
  end-page: 1123
  ident: bib72
  article-title: Structural basis of a shared antibody response to SARS-CoV-2
  publication-title: Science
– volume: 44
  start-page: W474
  year: 2016
  end-page: W478
  ident: bib20
  article-title: SAbPred: a structure-based antibody prediction server
  publication-title: Nucleic Acids Res.
– volume: 369
  start-page: 956
  year: 2020
  end-page: 963
  ident: bib50
  article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model
  publication-title: Science
– volume: 67
  start-page: 235
  year: 2011
  end-page: 242
  ident: bib65
  article-title: Overview of the CCP4 suite and current developments
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 26
  start-page: 1422
  year: 2020
  end-page: 1427
  ident: bib79
  article-title: Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein
  publication-title: Nat. Med.
– volume: 4
  start-page: 302
  year: 2013
  ident: bib53
  article-title: The structural basis of antibody-antigen recognition
  publication-title: Front. Immunol.
– volume: 583
  start-page: 290
  year: 2020
  end-page: 295
  ident: bib46
  article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
  publication-title: Nature
– volume: 6
  start-page: e60
  year: 2017
  ident: bib14
  article-title: A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein
  publication-title: Emerg. Microbes Infect.
– volume: 1
  start-page: 213
  year: 2014
  end-page: 220
  ident: bib26
  article-title: The PDB_REDO server for macromolecular structure model optimization
  publication-title: IUCrJ
– volume: 584
  start-page: 450
  year: 2020
  end-page: 456
  ident: bib36
  article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike
  publication-title: Nature
– volume: 367
  start-page: 1260
  year: 2020
  end-page: 1263
  ident: bib67
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
– volume: 386
  start-page: 323
  year: 2015
  end-page: 341
  ident: bib34
  article-title: Structural characterization of viral epitopes recognized by broadly cross-reactive antibodies
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 182
  start-page: 1663
  year: 2020
  end-page: 1673
  ident: bib31
  article-title: Longitudinal Isolation of Potent Near-Germline SARS-CoV-2-Neutralizing Antibodies from COVID-19 Patients
  publication-title: Cell
– volume: 17
  start-page: 647
  year: 2020
  end-page: 649
  ident: bib15
  article-title: Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor
  publication-title: Cell. Mol. Immunol.
– volume: 32
  start-page: W615
  year: 2004
  end-page: W619
  ident: bib18
  article-title: MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes
  publication-title: Nucleic Acids Res.
– volume: 69
  start-page: 1204
  year: 2013
  end-page: 1214
  ident: bib23
  article-title: How good are my data and what is the resolution?
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 27
  start-page: 695
  year: 2020
  end-page: 698
  ident: bib10
  article-title: Rational Vaccine Design in the Time of COVID-19
  publication-title: Cell Host Microbe
– volume: 91
  start-page: 157
  year: 2020
  end-page: 160
  ident: bib17
  article-title: WHO Declares COVID-19 a Pandemic
  publication-title: Acta Biomed.
– volume: 3
  start-page: 95
  year: 2020
  end-page: 100
  ident: bib74
  article-title: Isolation of a human monoclonal antibody specific for the receptor binding domain of SARS-CoV-2 using a competitive phage biopanning strategy
  publication-title: Antibody Therapeutics
– volume: 30
  start-page: 3059
  year: 2002
  end-page: 3066
  ident: bib29
  article-title: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform
  publication-title: Nucleic Acids Res.
– year: 2020
  ident: bib37
  article-title: Neutralizing Antibodies Isolated by a site-directed Screening have Potent Protection on SARS-CoV-2 Infection
  publication-title: bioRxiv
– volume: 11
  start-page: 53
  year: 2004
  end-page: 55
  ident: bib1
  article-title: Recent developments in the PHENIX software for automated crystallographic structure determination
  publication-title: J. Synchrotron Radiat.
– volume: 30
  start-page: 70
  year: 2021
  end-page: 82
  ident: bib45
  article-title: UCSF ChimeraX: Structure visualization for researchers, educators, and developers
  publication-title: Protein Sci.
– volume: 11
  start-page: 2251
  year: 2020
  ident: bib61
  article-title: A human monoclonal antibody blocking SARS-CoV-2 infection
  publication-title: Nat. Commun.
– volume: 369
  start-page: 1501
  year: 2020
  end-page: 1505
  ident: bib82
  article-title: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes
  publication-title: Science
– volume: 588
  start-page: 682
  year: 2020
  end-page: 687
  ident: bib4
  article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies
  publication-title: Nature
– volume: 20
  start-page: 796
  year: 2013
  end-page: 803
  ident: bib30
  article-title: Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120
  publication-title: Nat. Struct. Mol. Biol.
– volume: 63
  start-page: 32
  year: 2007
  end-page: 41
  ident: bib40
  article-title: Solving structures of protein complexes by molecular replacement with Phaser
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 368
  start-page: 1274
  year: 2020
  end-page: 1278
  ident: bib69
  article-title: A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2
  publication-title: Science
– volume: 579
  start-page: 482
  year: 2020
  end-page: 483
  ident: bib11
  article-title: The coronavirus pandemic in five powerful charts
  publication-title: Nature
– volume: 6
  start-page: 1722
  year: 2020
  end-page: 1734
  ident: bib13
  article-title: Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein
  publication-title: ACS Cent. Sci.
– volume: 180
  start-page: 519
  year: 2012
  end-page: 530
  ident: bib51
  article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination
  publication-title: J. Struct. Biol.
– volume: 92
  start-page: 1
  year: 2018
  end-page: 21
  ident: bib60
  article-title: Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape
  publication-title: J. Virol.
– year: 2020
  ident: bib54
  article-title: Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual
  publication-title: bioRxiv
– volume: 28
  start-page: 867
  year: 2020
  end-page: 879.e5
  ident: bib78
  article-title: Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains
  publication-title: Cell Host Microbe
– volume: 369
  start-page: 956
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib50
  article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model
  publication-title: Science
  doi: 10.1126/science.abc7520
– volume: 583
  start-page: 290
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib46
  article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
  publication-title: Nature
  doi: 10.1038/s41586-020-2349-y
– volume: 69
  start-page: 1204
  year: 2013
  ident: 10.1016/j.chom.2021.03.005_bib23
  article-title: How good are my data and what is the resolution?
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444913000061
– volume: 24
  start-page: 499
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib42
  article-title: Targeting the N332-supersite of the HIV-1 envelope for vaccine design
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1080/14728222.2020.1752183
– volume: 92
  start-page: 1
  year: 2018
  ident: 10.1016/j.chom.2021.03.005_bib60
  article-title: Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape
  publication-title: J. Virol.
  doi: 10.1128/JVI.02002-17
– volume: 20
  start-page: 533
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib19
  article-title: An interactive web-based dashboard to track COVID-19 in real time
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30120-1
– volume: 25
  start-page: 1605
  year: 2004
  ident: 10.1016/j.chom.2021.03.005_bib44
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 372
  start-page: 774
  year: 2007
  ident: 10.1016/j.chom.2021.03.005_bib32
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.05.022
– volume: 46
  start-page: W296
  issue: W1
  year: 2018
  ident: 10.1016/j.chom.2021.03.005_bib64
  article-title: SWISS-MODEL: homology modelling of protein structures and complexes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky427
– volume: 369
  start-page: 1501
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib82
  article-title: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes
  publication-title: Science
  doi: 10.1126/science.abd0826
– volume: 114
  start-page: E7348
  year: 2017
  ident: 10.1016/j.chom.2021.03.005_bib43
  article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1707304114
– year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib37
  article-title: Neutralizing Antibodies Isolated by a site-directed Screening have Potent Protection on SARS-CoV-2 Infection
  publication-title: bioRxiv
– volume: 181
  start-page: 1004
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib66
  article-title: Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.031
– volume: 367
  start-page: 1260
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib67
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 11
  start-page: 53
  year: 2004
  ident: 10.1016/j.chom.2021.03.005_bib1
  article-title: Recent developments in the PHENIX software for automated crystallographic structure determination
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049503024130
– volume: 27
  start-page: 763
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib68
  article-title: SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0468-7
– volume: 44
  start-page: W474
  issue: W1
  year: 2016
  ident: 10.1016/j.chom.2021.03.005_bib20
  article-title: SAbPred: a structure-based antibody prediction server
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw361
– volume: 369
  start-page: 1010
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib24
  article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail
  publication-title: Science
  doi: 10.1126/science.abd0827
– volume: 4
  start-page: 302
  year: 2013
  ident: 10.1016/j.chom.2021.03.005_bib53
  article-title: The structural basis of antibody-antigen recognition
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2013.00302
– volume: 180
  start-page: 519
  year: 2012
  ident: 10.1016/j.chom.2021.03.005_bib51
  article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2012.09.006
– volume: 17
  start-page: 647
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib15
  article-title: Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/s41423-020-0426-7
– volume: 584
  start-page: 115
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib27
  article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection
  publication-title: Nature
  doi: 10.1038/s41586-020-2380-z
– year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib54
  article-title: Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual
  publication-title: bioRxiv
– volume: 182
  start-page: 73
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib12
  article-title: Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.025
– volume: 8
  start-page: 537
  year: 2017
  ident: 10.1016/j.chom.2021.03.005_bib55
  article-title: Gene-Specific Substitution Profiles Describe the Types and Frequencies of Amino Acid Changes during Antibody Somatic Hypermutation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00537
– volume: 20
  start-page: 796
  year: 2013
  ident: 10.1016/j.chom.2021.03.005_bib30
  article-title: Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2594
– year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib58
  article-title: Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes in COVID-19 convalescent plasma
  publication-title: bioRxiv
– volume: 584
  start-page: 437
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib49
  article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals
  publication-title: Nature
  doi: 10.1038/s41586-020-2456-9
– volume: 30
  start-page: 3059
  year: 2002
  ident: 10.1016/j.chom.2021.03.005_bib29
  article-title: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkf436
– volume: 14
  start-page: 290
  year: 2017
  ident: 10.1016/j.chom.2021.03.005_bib48
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4169
– volume: 41
  start-page: W34
  year: 2013
  ident: 10.1016/j.chom.2021.03.005_bib71
  article-title: IgBLAST: an immunoglobulin variable domain sequence analysis tool
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt382
– volume: 90
  start-page: 10574
  year: 2016
  ident: 10.1016/j.chom.2021.03.005_bib38
  article-title: Multiple Antibody Lineages in One Donor Target the Glycan-V3 Supersite of the HIV-1 Envelope Glycoprotein and Display a Preference for Quaternary Binding
  publication-title: J. Virol.
  doi: 10.1128/JVI.01012-16
– volume: 161
  start-page: 1280
  year: 2015
  ident: 10.1016/j.chom.2021.03.005_bib76
  article-title: Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.007
– volume: 386
  start-page: 323
  year: 2015
  ident: 10.1016/j.chom.2021.03.005_bib34
  article-title: Structural characterization of viral epitopes recognized by broadly cross-reactive antibodies
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 30
  start-page: 70
  year: 2021
  ident: 10.1016/j.chom.2021.03.005_bib45
  article-title: UCSF ChimeraX: Structure visualization for researchers, educators, and developers
  publication-title: Protein Sci.
  doi: 10.1002/pro.3943
– volume: 588
  start-page: 682
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib4
  article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies
  publication-title: Nature
  doi: 10.1038/s41586-020-2852-1
– volume: 91
  start-page: 157
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib17
  article-title: WHO Declares COVID-19 a Pandemic
  publication-title: Acta Biomed.
– volume: 32
  start-page: 1792
  year: 2004
  ident: 10.1016/j.chom.2021.03.005_bib21
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh340
– volume: 29
  start-page: 1859
  year: 2008
  ident: 10.1016/j.chom.2021.03.005_bib25
  article-title: CHARMM-GUI: a web-based graphical user interface for CHARMM
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20945
– volume: 368
  start-page: 630
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib73
  article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV
  publication-title: Science
  doi: 10.1126/science.abb7269
– volume: 6
  start-page: 1722
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib13
  article-title: Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c01056
– volume: 16
  start-page: 1153
  year: 2019
  ident: 10.1016/j.chom.2021.03.005_bib7
  article-title: Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0575-8
– volume: 14
  start-page: 793
  year: 2017
  ident: 10.1016/j.chom.2021.03.005_bib57
  article-title: Addressing preferred specimen orientation in single-particle cryo-EM through tilting
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4347
– volume: 9
  start-page: e99881
  year: 2014
  ident: 10.1016/j.chom.2021.03.005_bib75
  article-title: Transplanting supersites of HIV-1 vulnerability
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0099881
– volume: 584
  start-page: 450
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib36
  article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike
  publication-title: Nature
  doi: 10.1038/s41586-020-2571-7
– volume: 36
  start-page: W503
  year: 2008
  ident: 10.1016/j.chom.2021.03.005_bib8
  article-title: IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn316
– volume: 6
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib33
  article-title: A VH1-69 antibody lineage from an infected Chinese donor potently neutralizes HIV-1 by targeting the V3 glycan supersite
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb1328
– volume: 60
  start-page: 2126
  year: 2004
  ident: 10.1016/j.chom.2021.03.005_bib22
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444904019158
– volume: 367
  start-page: 1444
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib70
  article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2
  publication-title: Science
  doi: 10.1126/science.abb2762
– volume: 66
  start-page: 133
  year: 2010
  ident: 10.1016/j.chom.2021.03.005_bib28
  article-title: Integration, scaling, space-group assignment and post-refinement
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909047374
– volume: 369
  start-page: 1505
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib39
  article-title: Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody
  publication-title: Science
  doi: 10.1126/science.abc5881
– volume: 579
  start-page: 482
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib11
  article-title: The coronavirus pandemic in five powerful charts
  publication-title: Nature
  doi: 10.1038/d41586-020-00758-2
– volume: 1
  start-page: 213
  year: 2014
  ident: 10.1016/j.chom.2021.03.005_bib26
  article-title: The PDB_REDO server for macromolecular structure model optimization
  publication-title: IUCrJ
  doi: 10.1107/S2052252514009324
– volume: 28
  start-page: 867
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib78
  article-title: Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.11.004
– volume: 588
  start-page: 327
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib6
  article-title: Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion
  publication-title: Nature
  doi: 10.1038/s41586-020-2772-0
– volume: 40
  start-page: 101
  year: 2008
  ident: 10.1016/j.chom.2021.03.005_bib35
  article-title: IMGT, the International ImMunoGeneTics Information System for Immunoinformatics : methods for querying IMGT databases, tools, and web resources in the context of immunoinformatics
  publication-title: Mol. Biotechnol.
  doi: 10.1007/s12033-008-9062-7
– volume: 67
  start-page: 235
  year: 2011
  ident: 10.1016/j.chom.2021.03.005_bib65
  article-title: Overview of the CCP4 suite and current developments
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910045749
– volume: 31
  start-page: 101
  year: 2021
  ident: 10.1016/j.chom.2021.03.005_bib63
  article-title: Structure-based development of human antibody cocktails against SARS-CoV-2
  publication-title: Cell Res.
  doi: 10.1038/s41422-020-00446-w
– volume: 66
  start-page: 213
  year: 2010
  ident: 10.1016/j.chom.2021.03.005_bib2
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909052925
– volume: 6
  start-page: e60
  year: 2017
  ident: 10.1016/j.chom.2021.03.005_bib14
  article-title: A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein
  publication-title: Emerg. Microbes Infect.
  doi: 10.1038/emi.2017.50
– volume: 27
  start-page: 695
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib10
  article-title: Rational Vaccine Design in the Time of COVID-19
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.04.022
– volume: 22
  start-page: 2695
  year: 2006
  ident: 10.1016/j.chom.2021.03.005_bib80
  article-title: Bio3d: an R package for the comparative analysis of protein structures
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl461
– volume: 182
  start-page: 1663
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib31
  article-title: Longitudinal Isolation of Potent Near-Germline SARS-CoV-2-Neutralizing Antibodies from COVID-19 Patients
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.046
– volume: 369
  start-page: 650
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib16
  article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2
  publication-title: Science
  doi: 10.1126/science.abc6952
– volume: 3
  start-page: 95
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib74
  article-title: Isolation of a human monoclonal antibody specific for the receptor binding domain of SARS-CoV-2 using a competitive phage biopanning strategy
  publication-title: Antibody Therapeutics
  doi: 10.1093/abt/tbaa008
– volume: 151
  start-page: 41
  year: 2005
  ident: 10.1016/j.chom.2021.03.005_bib56
  article-title: Automated molecular microscopy: the new Leginon system
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.03.010
– volume: 32
  start-page: W615
  year: 2004
  ident: 10.1016/j.chom.2021.03.005_bib18
  article-title: MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh398
– volume: 12
  start-page: 943
  year: 2015
  ident: 10.1016/j.chom.2021.03.005_bib3
  article-title: EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3541
– volume: 368
  start-page: 1274
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib69
  article-title: A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2
  publication-title: Science
  doi: 10.1126/science.abc2241
– volume: 7
  start-page: 372
  year: 2016
  ident: 10.1016/j.chom.2021.03.005_bib52
  article-title: SONAR: A High-Throughput Pipeline for Inferring Antibody Ontogenies from Longitudinal Sequencing of B Cell Transcripts
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2016.00372
– volume: 181
  start-page: 281
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib59
  article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– volume: 63
  start-page: 32
  year: 2007
  ident: 10.1016/j.chom.2021.03.005_bib40
  article-title: Solving structures of protein complexes by molecular replacement with Phaser
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444906045975
– volume: 5
  start-page: 189
  year: 2016
  ident: 10.1016/j.chom.2021.03.005_bib41
  article-title: FreeSASA: An open source C library for solvent accessible surface area calculations
  publication-title: F1000Res.
  doi: 10.12688/f1000research.7931.1
– volume: 11
  start-page: 2251
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib61
  article-title: A human monoclonal antibody blocking SARS-CoV-2 infection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16256-y
– volume: 369
  start-page: 643
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib9
  article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability
  publication-title: Science
  doi: 10.1126/science.abc5902
– volume: 10
  start-page: 3068
  year: 2019
  ident: 10.1016/j.chom.2021.03.005_bib77
  article-title: Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10897-4
– volume: 181
  start-page: 894
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib62
  article-title: Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.045
– volume: 182
  start-page: 828
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib5
  article-title: Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.025
– volume: 26
  start-page: 1422
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib79
  article-title: Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0998-x
– volume: 369
  start-page: 1119
  year: 2020
  ident: 10.1016/j.chom.2021.03.005_bib72
  article-title: Structural basis of a shared antibody response to SARS-CoV-2
  publication-title: Science
  doi: 10.1126/science.abd2321
– reference: 33984277 - Cell Host Microbe. 2021 May 12;29(5):744-746. doi: 10.1016/j.chom.2021.04.010.
SSID ssj0055071
Score 2.6981437
Snippet Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 819
SubjectTerms Antibodies, Neutralizing - chemistry
Antibodies, Neutralizing - immunology
Antibodies, Viral - chemistry
Antibodies, Viral - immunology
antibody class
antigenic supersite
COVID-19
Humans
multi-donor antibody
Mutation
N-terminal domain
neutralizing antibody
Protein Conformation
Protein Domains
SARS-CoV-2
SARS-CoV-2 - immunology
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - immunology
Title Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite
URI https://dx.doi.org/10.1016/j.chom.2021.03.005
https://www.ncbi.nlm.nih.gov/pubmed/33789084
https://www.proquest.com/docview/2507729782
https://pubmed.ncbi.nlm.nih.gov/PMC7953435
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWKyFxQSzP8pKRuCGrdfxIclwqViskVoiyqDfLTwhbkoq2h-XXMxMnFQWxB45JbMnyODOf7W--IeQVDzoVKZXMubJgUs4cs1qUrKiitFIHYXvJ_PcX-vxSvluq5RGZj7kwSKscfH_26b23Ht5Mh9mcrptmugDowQW41wJlhITARHMhqz6Jb_lm9MYo18XzzTJn2HpInMkcL6xHAnvEgmehU_Wv4PQ3-PyTQ_lbUDq7S-4MaJKe5gGfkKPY3iO3cn3J6_tk9aEDSLyli9OPCzbvPrOCtnHXn238hJBFYVYb1yGPkOZpiIHaL7YByEg36-Yq0gs2sGVWNHTf4QvN1HFqKR4yrCLd7NY9sSM-IJdnbz_Nz9lQXoF5qdSWWVem2kchNU_a68pZW_uQggXEVHpXuqSFRm0clEQrvVC1CyEkpSsVePBJPCTHbdfGx4SCwTXsb2urLJd-BhDCF8rBXrH2dQqRTwgf59X4QXscS2CszEgy-2bQFgZtYWbCgC0m5PW-zzorb9zYWo3mMgfrx0BouLHfy9G2Bn4svC2xbex2GwPYEHcegKAm5FG29X4cQmD-cCUnpDxYBfsGKNp9-KVtvvbi3WWtBEDUJ_853qfkNj4hf4EXz8jx9scuPgdYtHUv-nX_C9NJDS0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQguiDflaSRuyGodv5rjUrHqwm6F6C7qzfITAiWpaHuAX884TioKYg9cY1uyPPbMN87nbxB6Sb2MRYyKWKsKwvnIEiOZIsU4cMOlZ6aVzD-byekFf7sQiwM06d_CJFpl5_uzT2-9dfdl2K3mcFVVwzlAD8rAvRZJRogxcQVdBTSgUv2Gk8Xr3h0nvS6afy1Tkrp3L2cyySsVJIEksaBZ6VT8Kzr9jT7_JFH-FpWOb6GbHZzER3nGt9FBqO-ga7nA5I-7aPm-AUy8wfOjD3MyaT6SAtdh215u_ISYhWFZK9skIiHO6xA8Np9MBZgRr1fV14BnpKPLLLFvvkELztxxbHC6ZVgGvN6uWmZHuIcujt-cT6akq69AHBdiQ4xVsXSBcUmjdHJsjSmdj94AZFLOKhslk0kcJ2miKcdEab33Ucix8NS7yO6jw7qpw0OEweISEtzSCEO5GwGGcIWwkCyWrow-0AGi_bpq14mPpxoYS92zzL7oZAudbKFHTIMtBujVbswqS29c2lv05tJ7G0hDbLh03IvethpOVvpdYurQbNcawGFKPQBCDdCDbOvdPBhLD4jHfIDU3i7YdUiq3fstdfW5Ve9WpWCAUR_953yfo-vT87NTfXoye_cY3UgticxAiyfocPN9G54CRtrYZ-0Z-AVXZBBM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potent+SARS-CoV-2+neutralizing+antibodies+directed+against+spike+N-terminal+domain+target+a+single+supersite&rft.jtitle=Cell+host+%26+microbe&rft.au=Cerutti%2C+Gabriele&rft.au=Guo%2C+Yicheng&rft.au=Zhou%2C+Tongqing&rft.au=Gorman%2C+Jason&rft.date=2021-05-12&rft.eissn=1934-6069&rft.volume=29&rft.issue=5&rft.spage=819&rft_id=info:doi/10.1016%2Fj.chom.2021.03.005&rft_id=info%3Apmid%2F33789084&rft.externalDocID=33789084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon