Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite
Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. He...
Saved in:
Published in | Cell host & microbe Vol. 29; no. 5; pp. 819 - 833.e7 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
12.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here, we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD. These structures defined several antibody classes, with at least one observed in multiple convalescent donors. The structures revealed that all seven antibodies target a common surface, bordered by glycans N17, N74, N122, and N149. This site—formed primarily by a mobile β-hairpin and several flexible loops—was highly electropositive, located at the periphery of the spike, and the largest glycan-free surface of NTD facing away from the viral membrane. Thus, in contrast to neutralizing RBD-directed antibodies that recognize multiple non-overlapping epitopes, potent NTD-directed neutralizing antibodies appear to target a single supersite.
[Display omitted]
•Structures of seven NTD-directed neutralizing antibody complexes with spike or NTD•Structures define distinct recognition classes, one observed in multiple donors•Supersite is glycan free, electropositive, with mobile β-hairpin and flexible loops•Most potent NTD-directed neutralizing antibodies may target this supersite
Cerutti et al. report structural analysis of seven potent neutralizing antibodies targeting the N-terminal domain of SARS-CoV-2 spike. All antibodies recognize a common glycan-free, electropositive surface comprised of a mobile β-hairpin and flexible loops. While RBD-directed antibodies recognize non-overlapping epitopes, these findings indicate that NTD-directed antibodies predominantly target a single supersite. |
---|---|
AbstractList | Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here, we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD. These structures defined several antibody classes, with at least one observed in multiple convalescent donors. The structures revealed that all seven antibodies target a common surface, bordered by glycans N17, N74, N122, and N149. This site—formed primarily by a mobile β-hairpin and several flexible loops—was highly electropositive, located at the periphery of the spike, and the largest glycan-free surface of NTD facing away from the viral membrane. Thus, in contrast to neutralizing RBD-directed antibodies that recognize multiple non-overlapping epitopes, potent NTD-directed neutralizing antibodies appear to target a single supersite.
[Display omitted]
•Structures of seven NTD-directed neutralizing antibody complexes with spike or NTD•Structures define distinct recognition classes, one observed in multiple donors•Supersite is glycan free, electropositive, with mobile β-hairpin and flexible loops•Most potent NTD-directed neutralizing antibodies may target this supersite
Cerutti et al. report structural analysis of seven potent neutralizing antibodies targeting the N-terminal domain of SARS-CoV-2 spike. All antibodies recognize a common glycan-free, electropositive surface comprised of a mobile β-hairpin and flexible loops. While RBD-directed antibodies recognize non-overlapping epitopes, these findings indicate that NTD-directed antibodies predominantly target a single supersite. Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here, we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD. These structures defined several antibody classes, with at least one observed in multiple convalescent donors. The structures revealed that all seven antibodies target a common surface, bordered by glycans N17, N74, N122, and N149. This site-formed primarily by a mobile β-hairpin and several flexible loops-was highly electropositive, located at the periphery of the spike, and the largest glycan-free surface of NTD facing away from the viral membrane. Thus, in contrast to neutralizing RBD-directed antibodies that recognize multiple non-overlapping epitopes, potent NTD-directed neutralizing antibodies appear to target a single supersite.Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here, we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD. These structures defined several antibody classes, with at least one observed in multiple convalescent donors. The structures revealed that all seven antibodies target a common surface, bordered by glycans N17, N74, N122, and N149. This site-formed primarily by a mobile β-hairpin and several flexible loops-was highly electropositive, located at the periphery of the spike, and the largest glycan-free surface of NTD facing away from the viral membrane. Thus, in contrast to neutralizing RBD-directed antibodies that recognize multiple non-overlapping epitopes, potent NTD-directed neutralizing antibodies appear to target a single supersite. Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here, we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD. These structures defined several antibody classes, with at least one observed in multiple convalescent donors. The structures revealed that all seven antibodies target a common surface, bordered by glycans N17, N74, N122, and N149. This site-formed primarily by a mobile β-hairpin and several flexible loops-was highly electropositive, located at the periphery of the spike, and the largest glycan-free surface of NTD facing away from the viral membrane. Thus, in contrast to neutralizing RBD-directed antibodies that recognize multiple non-overlapping epitopes, potent NTD-directed neutralizing antibodies appear to target a single supersite. Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here, we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD. These structures defined several antibody classes, with at least one observed in multiple convalescent donors. The structures revealed that all seven antibodies target a common surface, bordered by glycans N 17, N 74, N 122, and N 149. This site—formed primarily by a mobile β-hairpin and several flexible loops—was highly electropositive, located at the periphery of the spike, and the largest glycan-free surface of NTD facing away from the viral membrane. Thus, in contrast to neutralizing RBD-directed antibodies that recognize multiple non-overlapping epitopes, potent NTD-directed neutralizing antibodies appear to target a single supersite. Cerutti et al. report structural analysis of seven potent neutralizing antibodies targeting the N-terminal domain of SARS-CoV-2 spike. All antibodies recognize a common glycan-free, electropositive surface comprised of a mobile β-hairpin and flexible loops. While RBD-directed antibodies recognize non-overlapping epitopes, these findings indicate that NTD-directed antibodies predominantly target a single supersite. |
Author | Gorman, Jason Yu, Jian Bimela, Jude Huang, Yaoxing Zhang, Baoshan Nair, Manoj S. Liu, Lihong Rawi, Reda Reddem, Eswar R. Olia, Adam S. Kwong, Peter D. Rapp, Micah Chuang, Gwo-Yu Guo, Yicheng Bahna, Fabiana Katsamba, Phinikoula S. Zhou, Tongqing Cerutti, Gabriele Sheng, Zizhang Ho, David D. Lee, Myungjin Shapiro, Lawrence Wang, Pengfei |
Author_xml | – sequence: 1 givenname: Gabriele surname: Cerutti fullname: Cerutti, Gabriele organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA – sequence: 2 givenname: Yicheng surname: Guo fullname: Guo, Yicheng organization: Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA – sequence: 3 givenname: Tongqing surname: Zhou fullname: Zhou, Tongqing organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 4 givenname: Jason surname: Gorman fullname: Gorman, Jason organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 5 givenname: Myungjin surname: Lee fullname: Lee, Myungjin organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 6 givenname: Micah surname: Rapp fullname: Rapp, Micah organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA – sequence: 7 givenname: Eswar R. surname: Reddem fullname: Reddem, Eswar R. organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA – sequence: 8 givenname: Jian surname: Yu fullname: Yu, Jian organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA – sequence: 9 givenname: Fabiana surname: Bahna fullname: Bahna, Fabiana organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA – sequence: 10 givenname: Jude surname: Bimela fullname: Bimela, Jude organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA – sequence: 11 givenname: Yaoxing surname: Huang fullname: Huang, Yaoxing organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA – sequence: 12 givenname: Phinikoula S. surname: Katsamba fullname: Katsamba, Phinikoula S. organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA – sequence: 13 givenname: Lihong surname: Liu fullname: Liu, Lihong organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA – sequence: 14 givenname: Manoj S. surname: Nair fullname: Nair, Manoj S. organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA – sequence: 15 givenname: Reda surname: Rawi fullname: Rawi, Reda organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 16 givenname: Adam S. surname: Olia fullname: Olia, Adam S. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 17 givenname: Pengfei surname: Wang fullname: Wang, Pengfei organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA – sequence: 18 givenname: Baoshan surname: Zhang fullname: Zhang, Baoshan organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 19 givenname: Gwo-Yu surname: Chuang fullname: Chuang, Gwo-Yu organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 20 givenname: David D. surname: Ho fullname: Ho, David D. organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA – sequence: 21 givenname: Zizhang surname: Sheng fullname: Sheng, Zizhang organization: Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA – sequence: 22 givenname: Peter D. surname: Kwong fullname: Kwong, Peter D. email: pdkwong@nih.gov organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA – sequence: 23 givenname: Lawrence surname: Shapiro fullname: Shapiro, Lawrence email: lss8@columbia.edu organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33789084$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uctu1DAUtVARfcAPsEBeskmw43ESSwipGvGSKkAU2FqOfTO9Q2JPbacSfD0epkXAoitbuudx7zmn5MgHD4Q85azmjLcvtrW9CnPdsIbXTNSMyQfkhCuxqlrWqqPff14J3vTH5DSlbQFI1vFH5FiIrlesX52Q6VPI4DO9PP98Wa3Dt6qhHpYczYQ_0W-o8RmH4BASdRjBZnDUbAz6lGna4XegH6oMcUZvJurCXCY0m7iBTA1NRWECmpYdxIQZHpOHo5kSPLl9z8jXN6-_rN9VFx_fvl-fX1R2JWWuzNCNyoJYtXxsbdsPxijrRmdUozo7dMPYirYXHeulEp0VUg3OuVG2vXTc2VGckVcH3d0yzOBsObAcpHcRZxN_6GBQ_zvxeKU34UZ3SoqVkEXg-a1ADNcLpKxnTBamyXgIS9JNybEry_RNgT772-uPyV3EBdAfADaGlCKM2mI2GcPeGifNmd63qbd636bet6mZ0KWsQm3-o96p30t6eSBBSfgGIepkEbyFQ3_aBbyP_gsT87u8 |
CitedBy_id | crossref_primary_10_1016_j_imj_2023_09_001 crossref_primary_10_1371_journal_pone_0289198 crossref_primary_10_1186_s12934_021_01576_5 crossref_primary_10_1099_acmi_0_000853_v4 crossref_primary_10_1080_22221751_2024_2406300 crossref_primary_10_1371_journal_ppat_1010465 crossref_primary_10_3390_vaccines9121419 crossref_primary_10_4049_jimmunol_2300675 crossref_primary_10_1016_j_chom_2022_05_001 crossref_primary_10_1080_0889311X_2024_2363756 crossref_primary_10_1002_eji_202149374 crossref_primary_10_1016_j_isci_2022_105855 crossref_primary_10_1016_j_immuni_2021_06_003 crossref_primary_10_1038_s44298_023_00007_z crossref_primary_10_1016_j_sbi_2022_102402 crossref_primary_10_1126_science_abn8897 crossref_primary_10_3390_vaccines12101089 crossref_primary_10_3389_fimmu_2022_877101 crossref_primary_10_3390_v15010070 crossref_primary_10_1016_j_celrep_2022_110368 crossref_primary_10_3390_v13061002 crossref_primary_10_1371_journal_ppat_1011308 crossref_primary_10_1038_s41467_022_33985_4 crossref_primary_10_1016_j_cell_2022_01_019 crossref_primary_10_1016_j_celrep_2022_111220 crossref_primary_10_1039_D1CP05059A crossref_primary_10_1093_glycob_cwad097 crossref_primary_10_1371_journal_ppat_1011545 crossref_primary_10_1038_s44318_024_00303_1 crossref_primary_10_1126_scitranslmed_abm4908 crossref_primary_10_1126_science_abi7994 crossref_primary_10_3390_v13112114 crossref_primary_10_5564_jimdt_v4i1_2659 crossref_primary_10_1128_mmbr_00026_21 crossref_primary_10_1038_s41598_022_26646_5 crossref_primary_10_1038_s41467_023_37422_y crossref_primary_10_20411_pai_v9i2_679 crossref_primary_10_1172_jci_insight_165299 crossref_primary_10_1039_D1CS01170G crossref_primary_10_1038_s42003_021_02858_9 crossref_primary_10_1016_j_vaccine_2023_08_076 crossref_primary_10_1371_journal_ppat_1012624 crossref_primary_10_3390_v13101911 crossref_primary_10_15252_msb_202110673 crossref_primary_10_3390_vaccines11040771 crossref_primary_10_7554_eLife_82516 crossref_primary_10_3389_fimmu_2023_1266829 crossref_primary_10_1038_s41392_021_00733_x crossref_primary_10_1172_JCI162192 crossref_primary_10_1016_j_cell_2021_06_020 crossref_primary_10_1016_j_ebiom_2022_103902 crossref_primary_10_1093_cid_ciab581 crossref_primary_10_1038_s41467_023_37128_1 crossref_primary_10_1016_j_celrep_2021_109679 crossref_primary_10_3390_covid3090089 crossref_primary_10_1016_j_ijbiomac_2022_03_058 crossref_primary_10_3389_fimmu_2022_960985 crossref_primary_10_3389_fimmu_2023_1111385 crossref_primary_10_1186_s41232_022_00233_7 crossref_primary_10_1002_jmv_27555 crossref_primary_10_3389_fimmu_2021_790469 crossref_primary_10_1038_s41590_022_01248_5 crossref_primary_10_1016_j_xcrm_2024_101553 crossref_primary_10_1126_scitranslmed_adf4100 crossref_primary_10_1002_rmv_2277 crossref_primary_10_1002_aic_17440 crossref_primary_10_7554_eLife_75433 crossref_primary_10_1016_j_coviro_2021_11_011 crossref_primary_10_3390_vaccines10091545 crossref_primary_10_1038_s41467_023_38435_3 crossref_primary_10_1016_j_chom_2022_09_018 crossref_primary_10_17816_clinpract111120 crossref_primary_10_1093_bib_bbab383 crossref_primary_10_1080_22221751_2024_2359004 crossref_primary_10_26508_lsa_202201415 crossref_primary_10_1126_science_abg9175 crossref_primary_10_1038_s41591_021_01542_z crossref_primary_10_3390_vaccines12030218 crossref_primary_10_1038_s41577_022_00784_3 crossref_primary_10_3390_ijerph192316084 crossref_primary_10_1002_mef2_90 crossref_primary_10_1039_D3CP01378B crossref_primary_10_1016_j_immuni_2022_04_003 crossref_primary_10_3390_v15010167 crossref_primary_10_1016_j_tim_2023_07_002 crossref_primary_10_1172_JCI178880 crossref_primary_10_1002_prot_26497 crossref_primary_10_1016_j_xcrm_2024_101668 crossref_primary_10_37349_ei_2024_00140 crossref_primary_10_1126_science_abl9463 crossref_primary_10_1038_s41586_021_04385_3 crossref_primary_10_1371_journal_ppat_1012724 crossref_primary_10_1021_acsnano_4c00809 crossref_primary_10_1128_mbio_01206_23 crossref_primary_10_1089_vim_2022_0122 crossref_primary_10_1128_jvi_01955_21 crossref_primary_10_3389_fimmu_2021_752003 crossref_primary_10_1016_j_str_2024_07_020 crossref_primary_10_1038_s41467_022_28766_y crossref_primary_10_1038_s41392_024_01917_x crossref_primary_10_1016_j_isci_2023_107208 crossref_primary_10_3390_vaccines12040365 crossref_primary_10_1038_s41467_024_47393_3 crossref_primary_10_3390_microorganisms10071356 crossref_primary_10_1080_22221751_2024_2412990 crossref_primary_10_1016_j_cell_2021_05_005 crossref_primary_10_1021_acsinfecdis_2c00006 crossref_primary_10_1016_j_chom_2021_04_007 crossref_primary_10_1016_j_virs_2022_11_005 crossref_primary_10_3389_fimmu_2021_778913 crossref_primary_10_1080_21645515_2022_2057161 crossref_primary_10_1016_j_str_2021_05_014 crossref_primary_10_1016_j_cell_2021_12_046 crossref_primary_10_1126_science_abi6226 crossref_primary_10_1080_22221751_2021_2024455 crossref_primary_10_1007_s12291_022_01030_2 crossref_primary_10_3389_fimmu_2022_888794 crossref_primary_10_1016_j_compbiomed_2022_105735 crossref_primary_10_1038_s41392_023_01615_0 crossref_primary_10_1016_j_ijbiomac_2024_134850 crossref_primary_10_1126_science_abh2315 crossref_primary_10_3389_fsysb_2024_1309891 crossref_primary_10_2478_fzm_2023_0019 crossref_primary_10_1016_j_envres_2022_112720 crossref_primary_10_3389_fimmu_2021_723585 crossref_primary_10_1016_j_xcrm_2023_101305 crossref_primary_10_3390_v13102009 crossref_primary_10_1128_jvi_00383_22 crossref_primary_10_1007_s40259_022_00529_7 crossref_primary_10_1016_j_csbj_2021_12_011 crossref_primary_10_3390_biomedicines9101303 crossref_primary_10_3389_fviro_2023_1128253 crossref_primary_10_1371_journal_ppat_1012383 crossref_primary_10_3389_fmedt_2022_867982 crossref_primary_10_1002_jmv_29893 crossref_primary_10_1016_j_jviromet_2022_114597 crossref_primary_10_1038_s41467_024_51770_3 crossref_primary_10_1021_acsbiomedchemau_3c00010 crossref_primary_10_1126_sciadv_abn2911 crossref_primary_10_1371_journal_pmed_1003868 crossref_primary_10_1038_s41586_022_04399_5 crossref_primary_10_1126_science_abl8506 crossref_primary_10_1016_j_celrep_2024_115036 crossref_primary_10_1016_j_celrep_2022_110348 crossref_primary_10_1016_j_mcpro_2023_100507 crossref_primary_10_1038_s41422_021_00514_9 crossref_primary_10_1016_j_coviro_2023_101349 crossref_primary_10_1016_j_micinf_2022_105077 crossref_primary_10_1093_glycob_cwab102 crossref_primary_10_1016_j_immuni_2022_03_019 crossref_primary_10_1038_s41467_023_42408_x crossref_primary_10_1016_j_nbt_2023_12_004 crossref_primary_10_1038_s42003_022_04160_8 crossref_primary_10_3389_fmicb_2022_946549 crossref_primary_10_1016_j_str_2023_11_015 crossref_primary_10_1128_mbio_02030_21 crossref_primary_10_1016_j_immuni_2023_09_003 crossref_primary_10_1038_s41586_022_05053_w crossref_primary_10_1093_bioinformatics_btab791 crossref_primary_10_1016_j_immuni_2024_02_016 crossref_primary_10_3390_vaccines11091451 crossref_primary_10_3390_antib10030026 crossref_primary_10_1126_sciadv_adg2122 crossref_primary_10_1007_s15010_024_02223_y crossref_primary_10_1016_j_antiviral_2024_105820 crossref_primary_10_1038_s41423_021_00752_2 crossref_primary_10_3390_vaccines12050487 crossref_primary_10_1080_22221751_2024_2412643 crossref_primary_10_3390_v15020558 crossref_primary_10_1016_j_chom_2022_01_005 crossref_primary_10_1002_mco2_239 crossref_primary_10_1016_j_celrep_2023_112271 crossref_primary_10_1016_j_str_2021_12_011 crossref_primary_10_3389_fpubh_2022_915363 crossref_primary_10_1038_s41590_021_01068_z crossref_primary_10_1007_s00216_023_04771_y crossref_primary_10_1016_j_chom_2021_04_010 crossref_primary_10_3390_v16091480 crossref_primary_10_1016_j_coviro_2021_08_010 crossref_primary_10_1016_j_virs_2022_10_006 crossref_primary_10_1016_j_cell_2022_06_005 crossref_primary_10_3389_fimmu_2023_1197588 crossref_primary_10_1016_j_chom_2022_07_016 crossref_primary_10_1371_journal_pone_0273323 crossref_primary_10_1128_jvi_01596_22 crossref_primary_10_1371_journal_ppat_1010981 crossref_primary_10_1126_sciadv_adg0330 crossref_primary_10_1126_sciimmunol_adf1421 crossref_primary_10_1002_jmv_27927 crossref_primary_10_1038_s41580_021_00418_x crossref_primary_10_1038_s41467_023_36745_0 crossref_primary_10_1021_acscentsci_2c01513 crossref_primary_10_3390_v15061382 crossref_primary_10_1016_j_cytogfr_2023_03_001 crossref_primary_10_1016_j_smim_2021_101533 crossref_primary_10_1016_j_virusres_2022_198688 crossref_primary_10_1111_imr_13431 crossref_primary_10_1038_s41467_023_37786_1 crossref_primary_10_1128_mBio_02473_21 crossref_primary_10_1016_j_ebiom_2022_104297 crossref_primary_10_3390_biologics3020008 crossref_primary_10_1126_scitranslmed_adq5720 crossref_primary_10_3390_ijms25073696 crossref_primary_10_1128_Spectrum_00965_21 crossref_primary_10_1038_s41392_022_00997_x crossref_primary_10_29328_journal_icci_1001020 crossref_primary_10_1038_s41467_022_35456_2 crossref_primary_10_3390_bios12050351 crossref_primary_10_1007_s10875_021_01193_2 crossref_primary_10_1038_s41586_021_04005_0 crossref_primary_10_1038_s41576_021_00408_x crossref_primary_10_1038_s41421_021_00331_9 crossref_primary_10_3390_v14071415 crossref_primary_10_3923_rjm_2023_46_56 crossref_primary_10_1128_jvi_00109_25 crossref_primary_10_1126_scitranslmed_abo2847 crossref_primary_10_1093_ve_veab069 crossref_primary_10_1016_j_celrep_2021_109928 crossref_primary_10_1016_j_coviro_2021_05_005 crossref_primary_10_1016_j_virol_2024_110383 crossref_primary_10_1038_s41586_023_06617_0 crossref_primary_10_1016_j_celrep_2024_114307 crossref_primary_10_1007_s00018_021_04008_0 crossref_primary_10_1111_imr_70000 crossref_primary_10_1016_j_celrep_2021_110143 crossref_primary_10_3390_v16071066 crossref_primary_10_1016_j_clim_2024_110164 crossref_primary_10_1016_j_jinf_2021_06_001 crossref_primary_10_1038_s41392_021_00797_9 crossref_primary_10_3390_biology13030134 crossref_primary_10_3389_fmicb_2023_1228128 crossref_primary_10_1172_JCI159062 crossref_primary_10_1080_22221751_2021_2011623 crossref_primary_10_3390_v14020410 crossref_primary_10_1515_jib_2024_0025 crossref_primary_10_3390_v15102009 crossref_primary_10_1038_s41467_024_46982_6 crossref_primary_10_1080_19420862_2021_2002236 crossref_primary_10_1128_jvi_00775_22 crossref_primary_10_1128_jvi_01070_23 crossref_primary_10_1371_journal_pcbi_1012215 crossref_primary_10_1016_j_tibs_2021_10_005 crossref_primary_10_1111_trf_16652 crossref_primary_10_1016_j_celrep_2022_110428 crossref_primary_10_1128_jvi_00922_23 crossref_primary_10_1038_s41577_022_00813_1 crossref_primary_10_1016_j_celrep_2022_110786 crossref_primary_10_1016_j_ebiom_2023_104475 crossref_primary_10_1371_journal_ppat_1010155 crossref_primary_10_1038_s42003_022_03866_z crossref_primary_10_2217_fvl_2022_0181 crossref_primary_10_1038_s41392_022_00996_y crossref_primary_10_1097_CJI_0000000000000455 crossref_primary_10_1126_sciadv_abl7682 crossref_primary_10_1093_ve_veab097 crossref_primary_10_1007_s11427_022_2215_6 crossref_primary_10_1016_j_str_2022_06_004 crossref_primary_10_1126_sciimmunol_abo3425 crossref_primary_10_1016_j_celrep_2021_109822 crossref_primary_10_1093_infdis_jiac343 crossref_primary_10_1016_j_jviromet_2022_114564 crossref_primary_10_1016_j_chom_2022_03_035 crossref_primary_10_3390_ijms22126462 crossref_primary_10_1016_j_virusres_2022_198674 crossref_primary_10_1111_imr_13084 crossref_primary_10_1016_S2666_5247_22_00090_8 crossref_primary_10_1111_imr_13086 crossref_primary_10_1126_scitranslmed_abj5413 crossref_primary_10_1016_j_diagmicrobio_2023_115900 crossref_primary_10_1016_j_ijbiomac_2023_125997 crossref_primary_10_1038_s41392_022_00907_1 crossref_primary_10_1080_22221751_2023_2290841 crossref_primary_10_1093_gigascience_giae080 crossref_primary_10_1093_infdis_jiab622 crossref_primary_10_1371_journal_ppat_1010260 crossref_primary_10_1002_mco2_70008 crossref_primary_10_1016_j_isci_2022_104722 crossref_primary_10_1016_j_isci_2022_105016 crossref_primary_10_1371_journal_ppat_1011901 crossref_primary_10_1128_spectrum_02676_21 crossref_primary_10_3389_fcimb_2021_763687 crossref_primary_10_1371_journal_pone_0298033 crossref_primary_10_1128_mBio_01590_21 crossref_primary_10_1556_650_2021_32414 crossref_primary_10_1038_s41573_022_00495_3 crossref_primary_10_1021_acsinfecdis_4c00015 crossref_primary_10_1016_j_lfs_2023_121525 crossref_primary_10_1056_NEJMc2107799 crossref_primary_10_1016_j_chom_2021_12_010 crossref_primary_10_1186_s12985_021_01690_1 crossref_primary_10_1038_s41467_022_28317_5 crossref_primary_10_1126_scitranslmed_abn7737 crossref_primary_10_1016_j_chom_2022_10_003 crossref_primary_10_1097_MRM_0000000000000386 crossref_primary_10_3389_fmolb_2023_1205919 crossref_primary_10_1038_s41598_021_02904_w crossref_primary_10_3390_v16060900 crossref_primary_10_3390_vaccines9121442 crossref_primary_10_1038_s41586_021_04388_0 crossref_primary_10_1146_annurev_med_042420_113838 crossref_primary_10_1038_s41598_023_43661_2 crossref_primary_10_1016_j_celrep_2022_111276 crossref_primary_10_1016_j_jaut_2021_102715 crossref_primary_10_1016_j_csbj_2021_10_004 crossref_primary_10_1016_j_celrep_2021_109353 crossref_primary_10_3390_v16111647 crossref_primary_10_1038_s41586_021_03908_2 crossref_primary_10_1080_22221751_2022_2030200 crossref_primary_10_1128_jvi_01626_21 crossref_primary_10_1002_eji_202149234 crossref_primary_10_1016_j_sbi_2022_102385 crossref_primary_10_1016_j_sbi_2023_102664 crossref_primary_10_2174_1389450124666221014102927 crossref_primary_10_3390_vaccines11030497 crossref_primary_10_1038_s41467_021_23473_6 crossref_primary_10_3390_jdb9040058 crossref_primary_10_3390_ijms222011211 crossref_primary_10_1038_s41594_021_00596_4 crossref_primary_10_1016_j_xpro_2021_100869 crossref_primary_10_1126_sciadv_add7221 crossref_primary_10_1126_science_adp2407 crossref_primary_10_1016_j_immuni_2022_05_005 crossref_primary_10_3389_fimmu_2023_1152522 crossref_primary_10_1371_journal_pone_0268767 crossref_primary_10_1371_journal_ppat_1010592 crossref_primary_10_3892_mmr_2024_13272 crossref_primary_10_1016_j_crstbi_2022_05_001 crossref_primary_10_1021_acs_jpclett_4c03654 crossref_primary_10_3390_v15010248 crossref_primary_10_3389_fmed_2022_916241 crossref_primary_10_3390_v13091687 crossref_primary_10_1016_j_isci_2023_108009 crossref_primary_10_1039_D1CB00169H crossref_primary_10_1126_science_abq1841 crossref_primary_10_1126_sciadv_adk4920 crossref_primary_10_15252_embr_202154322 crossref_primary_10_1038_s41541_024_00982_1 crossref_primary_10_1016_j_chom_2021_06_009 crossref_primary_10_1016_j_celrep_2022_110757 crossref_primary_10_1038_s42003_022_04138_6 crossref_primary_10_1016_j_molcel_2021_11_024 crossref_primary_10_1093_jmcb_mjad021 |
Cites_doi | 10.1126/science.abc7520 10.1038/s41586-020-2349-y 10.1107/S0907444913000061 10.1080/14728222.2020.1752183 10.1128/JVI.02002-17 10.1016/S1473-3099(20)30120-1 10.1002/jcc.20084 10.1016/j.jmb.2007.05.022 10.1093/nar/gky427 10.1126/science.abd0826 10.1073/pnas.1707304114 10.1016/j.cell.2020.04.031 10.1126/science.abb2507 10.1107/S0909049503024130 10.1038/s41594-020-0468-7 10.1093/nar/gkw361 10.1126/science.abd0827 10.3389/fimmu.2013.00302 10.1016/j.jsb.2012.09.006 10.1038/s41423-020-0426-7 10.1038/s41586-020-2380-z 10.1016/j.cell.2020.05.025 10.3389/fimmu.2017.00537 10.1038/nsmb.2594 10.1038/s41586-020-2456-9 10.1093/nar/gkf436 10.1038/nmeth.4169 10.1093/nar/gkt382 10.1128/JVI.01012-16 10.1016/j.cell.2015.05.007 10.1002/pro.3943 10.1038/s41586-020-2852-1 10.1093/nar/gkh340 10.1002/jcc.20945 10.1126/science.abb7269 10.1021/acscentsci.0c01056 10.1038/s41592-019-0575-8 10.1038/nmeth.4347 10.1371/journal.pone.0099881 10.1038/s41586-020-2571-7 10.1093/nar/gkn316 10.1126/sciadv.abb1328 10.1107/S0907444904019158 10.1126/science.abb2762 10.1107/S0907444909047374 10.1126/science.abc5881 10.1038/d41586-020-00758-2 10.1107/S2052252514009324 10.1016/j.chom.2020.11.004 10.1038/s41586-020-2772-0 10.1007/s12033-008-9062-7 10.1107/S0907444910045749 10.1038/s41422-020-00446-w 10.1107/S0907444909052925 10.1038/emi.2017.50 10.1016/j.chom.2020.04.022 10.1093/bioinformatics/btl461 10.1016/j.cell.2020.08.046 10.1126/science.abc6952 10.1093/abt/tbaa008 10.1016/j.jsb.2005.03.010 10.1093/nar/gkh398 10.1038/nmeth.3541 10.1126/science.abc2241 10.3389/fimmu.2016.00372 10.1016/j.cell.2020.02.058 10.1107/S0907444906045975 10.12688/f1000research.7931.1 10.1038/s41467-020-16256-y 10.1126/science.abc5902 10.1038/s41467-019-10897-4 10.1016/j.cell.2020.03.045 10.1016/j.cell.2020.06.025 10.1038/s41591-020-0998-x 10.1126/science.abd2321 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. 2021 Elsevier Inc. 2021 Elsevier Inc. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. – notice: 2021 Elsevier Inc. 2021 Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.chom.2021.03.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1934-6069 |
EndPage | 833.e7 |
ExternalDocumentID | PMC7953435 33789084 10_1016_j_chom_2021_03_005 S1931312821001335 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH HHS grantid: DP5 OD023118 – fundername: NIGMS NIH HHS grantid: U24 GM129539 – fundername: NIAID NIH HHS grantid: R21 AI144408 – fundername: Intramural NIH HHS grantid: ZIA AI005022 – fundername: NIGMS NIH HHS grantid: P41 GM103310 – fundername: NIAID NIH HHS grantid: R21 AI143407 – fundername: NIGMS NIH HHS grantid: P30 GM124165 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG K97 M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 53G AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT RIG ZBA CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c455t-ab7f9ce3461f6c68baa9cdfda9297cb7bf636837085937c359bdddf5685d1dcf3 |
IEDL.DBID | IXB |
ISSN | 1931-3128 1934-6069 |
IngestDate | Thu Aug 21 18:15:03 EDT 2025 Fri Jul 11 11:32:56 EDT 2025 Mon Jul 21 06:00:02 EDT 2025 Tue Jul 01 02:44:23 EDT 2025 Thu Apr 24 23:05:38 EDT 2025 Fri Feb 23 02:45:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | COVID-19 SARS-CoV-2 antibody class neutralizing antibody multi-donor antibody antigenic supersite N-terminal domain |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-ab7f9ce3461f6c68baa9cdfda9297cb7bf636837085937c359bdddf5685d1dcf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7953435 |
PMID | 33789084 |
PQID | 2507729782 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7953435 proquest_miscellaneous_2507729782 pubmed_primary_33789084 crossref_citationtrail_10_1016_j_chom_2021_03_005 crossref_primary_10_1016_j_chom_2021_03_005 elsevier_sciencedirect_doi_10_1016_j_chom_2021_03_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-12 |
PublicationDateYYYYMMDD | 2021-05-12 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell host & microbe |
PublicationTitleAlternate | Cell Host Microbe |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ye, Ma, Madden, Ostell (bib71) 2013; 41 Zhou, Tsybovsky, Gorman, Rapp, Cerutti, Chuang, Katsamba, Sampson, Schon, Bimela (bib78) 2020; 28 Punjani, Rubinstein, Fleet, Brubaker (bib48) 2017; 14 Ju, Zhang, Ge, Wang, Sun, Ge, Yu, Shan, Zhou, Song (bib27) 2020; 584 Dong, Du, Gardner (bib19) 2020; 20 Zhou, Chen, Zhang, Niu, Qin, Jia, Huang, Zhang, Lan, Zhang (bib77) 2019; 10 Winn, Ballard, Cowtan, Dodson, Emsley, Evans, Keegan, Krissinel, Leslie, McCoy (bib65) 2011; 67 Pallesen, Wang, Corbett, Wrapp, Kirchdoerfer, Turner, Cottrell, Becker, Wang, Shi (bib43) 2017; 114 Zost, Gilchuk, Chen, Case, Reidy, Trivette, Nargi, Sutton, Suryadevara, Chen (bib79) 2020; 26 Liu, Wang, Nair, Yu, Rapp, Wang, Luo, Chan, Sahi, Figueroa (bib36) 2020; 584 Zeng, Li, Lin, Li, Liu, Kong, Zeng, Du, Xiao, Zhang (bib74) 2020; 3 Davis, Murray, Richardson, Richardson (bib18) 2004; 32 Lefranc (bib35) 2008; 40 Suloway, Pulokas, Fellmann, Cheng, Guerra, Quispe, Stagg, Potter, Carragher (bib56) 2005; 151 Wang, Zhang, Wu, Niu, Song, Zhang, Lu, Qiao, Hu, Yuen (bib62) 2020; 181 Bepler, Morin, Rapp, Brasch, Shapiro, Noble, Berger (bib7) 2019; 16 Cao, Su, Guo, Sun, Deng, Bao, Zhu, Zhang, Zheng, Geng (bib12) 2020; 182 Evans, Murshudov (bib23) 2013; 69 Scheres (bib51) 2012; 180 Adams, Gopal, Grosse-Kunstleve, Hung, Ioerger, McCoy, Moriarty, Pai, Read, Romo (bib1) 2004; 11 Hansen, Baum, Pascal, Russo, Giordano, Wloga, Fulton, Yan, Koon, Patel (bib24) 2020; 369 Tan, Baldwin, Davis, Williamson, Potter, Carragher, Lyumkis (bib57) 2017; 14 Yuan, Liu, Wu, Lee, Zhu, Zhao, Huang, Yu, Hua, Tien (bib72) 2020; 369 Yuan, Wu, Zhu, Lee, So, Lv, Mok, Wilson (bib73) 2020; 368 Grant, Rodrigues, ElSawy, McCammon, Caves (bib80) 2006; 22 Robbiani, Gaebler, Muecksch, Lorenzi, Wang, Cho, Agudelo, Barnes, Gazumyan, Finkin (bib49) 2020; 584 Kong, Lee, Doores, Murin, Julien, McBride, Liu, Marozsan, Cupo, Klasse (bib30) 2013; 20 Burton, Walker (bib10) 2020; 27 Schramm, Sheng, Zhang, Mascola, Kwong, Shapiro (bib52) 2016; 7 Mitternacht (bib41) 2016; 5 Brochet, Lefranc, Giudicelli (bib8) 2008; 36 Hsieh, Goldsmith, Schaub, DiVenere, Kuo, Javanmardi, Le, Wrapp, Lee, Liu (bib82) 2020; 369 Voss, Hou, Johnson, Kim, Delidakis, Horton, Bartzoka, Paresi, Tanno, Abbasi (bib58) 2020 Rogers, Zhao, Huang, Beutler, Burns, He, Limbo, Smith, Song, Woehl (bib50) 2020; 369 Joosten, Long, Murshudov, Perrakis (bib26) 2014; 1 Wang, Shi, Chappell, Joyce, Zhang, Kanekiyo, Becker, van Doremalen, Fischer, Wang (bib60) 2018; 92 Chi, Yan, Zhang, Zhang, Zhang, Hao, Zhang, Fan, Dong, Yang (bib16) 2020; 369 Casalino, Gaieb, Goldsmith, Hjorth, Dommer, Harbison, Fogarty, Barros, Taylor, McLellan (bib13) 2020; 6 Sela-Culang, Kunik, Ofran (bib53) 2013; 4 Waterhouse, Bertoni, Bienert, Studer, Tauriello, Gumienny, Heer, de Beer, Rempfer, Bordoli (bib64) 2018; 46 Zhou, Lynch, Chen, Acharya, Wu, Doria-Rose, Joyce, Lingwood, Soto, Bailer (bib76) 2015; 161 Wrobel, Benton, Xu, Roustan, Martin, Rosenthal, Skehel, Gamblin (bib68) 2020; 27 Pinto, Park, Beltramello, Walls, Tortorici, Bianchi, Jaconi, Culap, Zatta, De Marco (bib46) 2020; 583 Moyo, Kitchin, Moore (bib42) 2020; 24 Katoh, Misawa, Kuma, Miyata (bib29) 2002; 30 Lv, Deng, Ye, Cao, Sun, Fan, Huang, Sun, Sun, Zhu (bib39) 2020; 369 Wang, Li, Drabek, Okba, van Haperen, Osterhaus, van Kuppeveld, Haagmans, Grosveld, Bosch (bib61) 2020; 11 Longo, Sutton, Shiakolas, Guenaga, Jarosinski, Georgiev, McKee, Bailer, Louder, O’Dell (bib38) 2016; 90 Kabsch (bib28) 2010; 66 Chen, Li, Pan, Qian, Yang, You, Zhao, Liu, Gao, Li (bib15) 2020; 17 Emsley, Cowtan (bib22) 2004; 60 Jo, Kim, Iyer, Im (bib25) 2008; 29 Brouwer, Caniels, van der Straten, Snitselaar, Aldon, Bangaru, Torres, Okba, Claireaux, Kerster (bib9) 2020; 369 Chen, Lu, Jia, Deng, Zhou, Huang, Yu, Lan, Wang, Lou (bib14) 2017; 6 Lee, Wilson (bib34) 2015; 386 Barad, Echols, Wang, Cheng, DiMaio, Adams, Fraser (bib3) 2015; 12 Wang, Sun, Feng, Wang, Guo, Zhang, Deng, Wang, Cui, Cao (bib63) 2021; 31 Wrapp, De Vlieger, Corbett, Torres, Wang, Van Breedam, Roose, van Schie, Hoffmann (bib66) 2020; 181 Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib44) 2004; 25 Wu, Wang, Shen, Peng, Li, Zhao, Li, Li, Bi, Yang (bib69) 2020; 368 Callaway, Cyranoski, Mallapaty, Stoye, Tollefson (bib11) 2020; 579 McCoy (bib40) 2007; 63 Barnes, West, Huey-Tubman, Hoffmann, Sharaf, Hoffman, Koranda, Gristick, Gaebler, Muecksch (bib5) 2020; 182 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib67) 2020; 367 Yan, Zhang, Li, Xia, Guo, Zhou (bib70) 2020; 367 Sheng, Schramm, Kong, Mullikin, Mascola, Kwong, Shapiro (bib55) 2017; 8 Walls, Park, Tortorici, Wall, McGuire, Veesler (bib59) 2020; 181 Benton, Wrobel, Xu, Roustan, Martin, Rosenthal, Skehel, Gamblin (bib6) 2020; 588 Seydoux, Homad, MacCamy, Parks, Hurlburt, Jennewein, Akins, Stuart, Wan, Feng (bib54) 2020 Dunbar, Krawczyk, Leem, Marks, Nowak, Regep, Georges, Kelm, Popovic, Deane (bib20) 2016; 44 Pettersen, Goddard, Huang, Meng, Couch, Croll, Morris, Ferrin (bib45) 2021; 30 Krissinel, Henrick (bib32) 2007; 372 Kumar, Ju, Shapero, Lin, Ren, Zhang, Li, Zhou, Feng, Sou (bib33) 2020; 6 Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve (bib2) 2010; 66 Cucinotta, Vanelli (bib17) 2020; 91 Barnes, Jette, Abernathy, Dam, Esswein, Gristick, Malyutin, Sharaf, Huey-Tubman, Lee (bib4) 2020; 588 Liu, Gao, Gou, Chen, Gu, Ao, Shen, Hu, Guo, Gao (bib37) 2020 Edgar (bib21) 2004; 32 Kreer, Zehner, Weber, Ercanoglu, Gieselmann, Rohde, Halwe, Korenkov, Schommers, Vanshylla (bib31) 2020; 182 Zhou, Zhu, Yang, Gorman, Ofek, Srivatsan, Druz, Lees, Lu, Soto (bib75) 2014; 9 Zhou (10.1016/j.chom.2021.03.005_bib75) 2014; 9 Winn (10.1016/j.chom.2021.03.005_bib65) 2011; 67 Zeng (10.1016/j.chom.2021.03.005_bib74) 2020; 3 Lee (10.1016/j.chom.2021.03.005_bib34) 2015; 386 Hansen (10.1016/j.chom.2021.03.005_bib24) 2020; 369 Dong (10.1016/j.chom.2021.03.005_bib19) 2020; 20 Moyo (10.1016/j.chom.2021.03.005_bib42) 2020; 24 Wang (10.1016/j.chom.2021.03.005_bib61) 2020; 11 Pallesen (10.1016/j.chom.2021.03.005_bib43) 2017; 114 Zhou (10.1016/j.chom.2021.03.005_bib78) 2020; 28 Zost (10.1016/j.chom.2021.03.005_bib79) 2020; 26 Zhou (10.1016/j.chom.2021.03.005_bib76) 2015; 161 Barnes (10.1016/j.chom.2021.03.005_bib4) 2020; 588 Punjani (10.1016/j.chom.2021.03.005_bib48) 2017; 14 Pettersen (10.1016/j.chom.2021.03.005_bib44) 2004; 25 Wrobel (10.1016/j.chom.2021.03.005_bib68) 2020; 27 Brochet (10.1016/j.chom.2021.03.005_bib8) 2008; 36 Burton (10.1016/j.chom.2021.03.005_bib10) 2020; 27 Wrapp (10.1016/j.chom.2021.03.005_bib66) 2020; 181 Brouwer (10.1016/j.chom.2021.03.005_bib9) 2020; 369 Lv (10.1016/j.chom.2021.03.005_bib39) 2020; 369 Suloway (10.1016/j.chom.2021.03.005_bib56) 2005; 151 Wu (10.1016/j.chom.2021.03.005_bib69) 2020; 368 Yuan (10.1016/j.chom.2021.03.005_bib73) 2020; 368 Wang (10.1016/j.chom.2021.03.005_bib63) 2021; 31 Tan (10.1016/j.chom.2021.03.005_bib57) 2017; 14 Emsley (10.1016/j.chom.2021.03.005_bib22) 2004; 60 Kong (10.1016/j.chom.2021.03.005_bib30) 2013; 20 Cao (10.1016/j.chom.2021.03.005_bib12) 2020; 182 Waterhouse (10.1016/j.chom.2021.03.005_bib64) 2018; 46 Adams (10.1016/j.chom.2021.03.005_bib1) 2004; 11 Joosten (10.1016/j.chom.2021.03.005_bib26) 2014; 1 Lefranc (10.1016/j.chom.2021.03.005_bib35) 2008; 40 Dunbar (10.1016/j.chom.2021.03.005_bib20) 2016; 44 Liu (10.1016/j.chom.2021.03.005_bib37) 2020 Hsieh (10.1016/j.chom.2021.03.005_bib82) 2020; 369 Bepler (10.1016/j.chom.2021.03.005_bib7) 2019; 16 Kumar (10.1016/j.chom.2021.03.005_bib33) 2020; 6 Scheres (10.1016/j.chom.2021.03.005_bib51) 2012; 180 Kabsch (10.1016/j.chom.2021.03.005_bib28) 2010; 66 Davis (10.1016/j.chom.2021.03.005_bib18) 2004; 32 Wang (10.1016/j.chom.2021.03.005_bib60) 2018; 92 Wrapp (10.1016/j.chom.2021.03.005_bib67) 2020; 367 Katoh (10.1016/j.chom.2021.03.005_bib29) 2002; 30 Rogers (10.1016/j.chom.2021.03.005_bib50) 2020; 369 Sheng (10.1016/j.chom.2021.03.005_bib55) 2017; 8 Adams (10.1016/j.chom.2021.03.005_bib2) 2010; 66 Ye (10.1016/j.chom.2021.03.005_bib71) 2013; 41 Ju (10.1016/j.chom.2021.03.005_bib27) 2020; 584 Schramm (10.1016/j.chom.2021.03.005_bib52) 2016; 7 Kreer (10.1016/j.chom.2021.03.005_bib31) 2020; 182 Evans (10.1016/j.chom.2021.03.005_bib23) 2013; 69 Yuan (10.1016/j.chom.2021.03.005_bib72) 2020; 369 Chen (10.1016/j.chom.2021.03.005_bib15) 2020; 17 Cucinotta (10.1016/j.chom.2021.03.005_bib17) 2020; 91 McCoy (10.1016/j.chom.2021.03.005_bib40) 2007; 63 Benton (10.1016/j.chom.2021.03.005_bib6) 2020; 588 Seydoux (10.1016/j.chom.2021.03.005_bib54) 2020 Mitternacht (10.1016/j.chom.2021.03.005_bib41) 2016; 5 Grant (10.1016/j.chom.2021.03.005_bib80) 2006; 22 Chi (10.1016/j.chom.2021.03.005_bib16) 2020; 369 Sela-Culang (10.1016/j.chom.2021.03.005_bib53) 2013; 4 Longo (10.1016/j.chom.2021.03.005_bib38) 2016; 90 Callaway (10.1016/j.chom.2021.03.005_bib11) 2020; 579 Liu (10.1016/j.chom.2021.03.005_bib36) 2020; 584 Robbiani (10.1016/j.chom.2021.03.005_bib49) 2020; 584 Barnes (10.1016/j.chom.2021.03.005_bib5) 2020; 182 Krissinel (10.1016/j.chom.2021.03.005_bib32) 2007; 372 Casalino (10.1016/j.chom.2021.03.005_bib13) 2020; 6 Yan (10.1016/j.chom.2021.03.005_bib70) 2020; 367 Jo (10.1016/j.chom.2021.03.005_bib25) 2008; 29 Pettersen (10.1016/j.chom.2021.03.005_bib45) 2021; 30 Voss (10.1016/j.chom.2021.03.005_bib58) 2020 Chen (10.1016/j.chom.2021.03.005_bib14) 2017; 6 Wang (10.1016/j.chom.2021.03.005_bib62) 2020; 181 Barad (10.1016/j.chom.2021.03.005_bib3) 2015; 12 Edgar (10.1016/j.chom.2021.03.005_bib21) 2004; 32 Pinto (10.1016/j.chom.2021.03.005_bib46) 2020; 583 Zhou (10.1016/j.chom.2021.03.005_bib77) 2019; 10 Walls (10.1016/j.chom.2021.03.005_bib59) 2020; 181 33984277 - Cell Host Microbe. 2021 May 12;29(5):744-746. doi: 10.1016/j.chom.2021.04.010. |
References_xml | – volume: 372 start-page: 774 year: 2007 end-page: 797 ident: bib32 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. – volume: 41 start-page: W34 year: 2013 end-page: W40 ident: bib71 article-title: IgBLAST: an immunoglobulin variable domain sequence analysis tool publication-title: Nucleic Acids Res. – volume: 32 start-page: 1792 year: 2004 end-page: 1797 ident: bib21 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res. – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: bib2 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 181 start-page: 894 year: 2020 end-page: 904.e9 ident: bib62 article-title: Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2 publication-title: Cell – volume: 182 start-page: 828 year: 2020 end-page: 842.e16 ident: bib5 article-title: Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies publication-title: Cell – volume: 90 start-page: 10574 year: 2016 end-page: 10586 ident: bib38 article-title: Multiple Antibody Lineages in One Donor Target the Glycan-V3 Supersite of the HIV-1 Envelope Glycoprotein and Display a Preference for Quaternary Binding publication-title: J. Virol. – volume: 31 start-page: 101 year: 2021 end-page: 103 ident: bib63 article-title: Structure-based development of human antibody cocktails against SARS-CoV-2 publication-title: Cell Res. – volume: 66 start-page: 133 year: 2010 end-page: 144 ident: bib28 article-title: Integration, scaling, space-group assignment and post-refinement publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 7 start-page: 372 year: 2016 ident: bib52 article-title: SONAR: A High-Throughput Pipeline for Inferring Antibody Ontogenies from Longitudinal Sequencing of B Cell Transcripts publication-title: Front. Immunol. – volume: 151 start-page: 41 year: 2005 end-page: 60 ident: bib56 article-title: Automated molecular microscopy: the new Leginon system publication-title: J. Struct. Biol. – volume: 182 start-page: 73 year: 2020 end-page: 84.e16 ident: bib12 article-title: Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells publication-title: Cell – volume: 6 year: 2020 ident: bib33 article-title: A V publication-title: Sci. Adv. – volume: 584 start-page: 437 year: 2020 end-page: 442 ident: bib49 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature – volume: 367 start-page: 1444 year: 2020 end-page: 1448 ident: bib70 article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 publication-title: Science – volume: 8 start-page: 537 year: 2017 ident: bib55 article-title: Gene-Specific Substitution Profiles Describe the Types and Frequencies of Amino Acid Changes during Antibody Somatic Hypermutation publication-title: Front. Immunol. – volume: 29 start-page: 1859 year: 2008 end-page: 1865 ident: bib25 article-title: CHARMM-GUI: a web-based graphical user interface for CHARMM publication-title: J. Comput. Chem. – volume: 12 start-page: 943 year: 2015 end-page: 946 ident: bib3 article-title: EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy publication-title: Nat. Methods – volume: 161 start-page: 1280 year: 2015 end-page: 1292 ident: bib76 article-title: Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors publication-title: Cell – volume: 588 start-page: 327 year: 2020 end-page: 330 ident: bib6 article-title: Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion publication-title: Nature – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: bib22 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 5 start-page: 189 year: 2016 ident: bib41 article-title: FreeSASA: An open source C library for solvent accessible surface area calculations publication-title: F1000Res. – volume: 16 start-page: 1153 year: 2019 end-page: 1160 ident: bib7 article-title: Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs publication-title: Nat. Methods – volume: 36 start-page: W503 year: 2008 end-page: W508 ident: bib8 article-title: IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis publication-title: Nucleic Acids Res. – volume: 369 start-page: 1010 year: 2020 end-page: 1014 ident: bib24 article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail publication-title: Science – volume: 584 start-page: 115 year: 2020 end-page: 119 ident: bib27 article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Nature – volume: 114 start-page: E7348 year: 2017 end-page: E7357 ident: bib43 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl. Acad. Sci. USA – year: 2020 ident: bib58 article-title: Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes in COVID-19 convalescent plasma publication-title: bioRxiv – volume: 181 start-page: 1004 year: 2020 end-page: 1015.e15 ident: bib66 article-title: Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies publication-title: Cell – volume: 369 start-page: 643 year: 2020 end-page: 650 ident: bib9 article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability publication-title: Science – volume: 9 start-page: e99881 year: 2014 ident: bib75 article-title: Transplanting supersites of HIV-1 vulnerability publication-title: PLoS ONE – volume: 20 start-page: 533 year: 2020 end-page: 534 ident: bib19 article-title: An interactive web-based dashboard to track COVID-19 in real time publication-title: Lancet Infect. Dis. – volume: 14 start-page: 793 year: 2017 end-page: 796 ident: bib57 article-title: Addressing preferred specimen orientation in single-particle cryo-EM through tilting publication-title: Nat. Methods – volume: 27 start-page: 763 year: 2020 end-page: 767 ident: bib68 article-title: SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects publication-title: Nat. Struct. Mol. Biol. – volume: 40 start-page: 101 year: 2008 end-page: 111 ident: bib35 article-title: IMGT, the International ImMunoGeneTics Information System for Immunoinformatics : methods for querying IMGT databases, tools, and web resources in the context of immunoinformatics publication-title: Mol. Biotechnol. – volume: 14 start-page: 290 year: 2017 end-page: 296 ident: bib48 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods – volume: 24 start-page: 499 year: 2020 end-page: 509 ident: bib42 article-title: Targeting the N332-supersite of the HIV-1 envelope for vaccine design publication-title: Expert Opin. Ther. Targets – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bib44 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 181 start-page: 281 year: 2020 end-page: 292.e6 ident: bib59 article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein publication-title: Cell – volume: 46 start-page: W296 year: 2018 end-page: W303 ident: bib64 article-title: SWISS-MODEL: homology modelling of protein structures and complexes publication-title: Nucleic Acids Res. – volume: 369 start-page: 1505 year: 2020 end-page: 1509 ident: bib39 article-title: Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody publication-title: Science – volume: 10 start-page: 3068 year: 2019 ident: bib77 article-title: Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein publication-title: Nat. Commun. – volume: 22 start-page: 2695 year: 2006 end-page: 2696 ident: bib80 article-title: Bio3d: an R package for the comparative analysis of protein structures publication-title: Bioinformatics – volume: 368 start-page: 630 year: 2020 end-page: 633 ident: bib73 article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science – volume: 369 start-page: 650 year: 2020 end-page: 655 ident: bib16 article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 publication-title: Science – volume: 369 start-page: 1119 year: 2020 end-page: 1123 ident: bib72 article-title: Structural basis of a shared antibody response to SARS-CoV-2 publication-title: Science – volume: 44 start-page: W474 year: 2016 end-page: W478 ident: bib20 article-title: SAbPred: a structure-based antibody prediction server publication-title: Nucleic Acids Res. – volume: 369 start-page: 956 year: 2020 end-page: 963 ident: bib50 article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model publication-title: Science – volume: 67 start-page: 235 year: 2011 end-page: 242 ident: bib65 article-title: Overview of the CCP4 suite and current developments publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 26 start-page: 1422 year: 2020 end-page: 1427 ident: bib79 article-title: Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein publication-title: Nat. Med. – volume: 4 start-page: 302 year: 2013 ident: bib53 article-title: The structural basis of antibody-antigen recognition publication-title: Front. Immunol. – volume: 583 start-page: 290 year: 2020 end-page: 295 ident: bib46 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature – volume: 6 start-page: e60 year: 2017 ident: bib14 article-title: A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein publication-title: Emerg. Microbes Infect. – volume: 1 start-page: 213 year: 2014 end-page: 220 ident: bib26 article-title: The PDB_REDO server for macromolecular structure model optimization publication-title: IUCrJ – volume: 584 start-page: 450 year: 2020 end-page: 456 ident: bib36 article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike publication-title: Nature – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bib67 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 386 start-page: 323 year: 2015 end-page: 341 ident: bib34 article-title: Structural characterization of viral epitopes recognized by broadly cross-reactive antibodies publication-title: Curr. Top. Microbiol. Immunol. – volume: 182 start-page: 1663 year: 2020 end-page: 1673 ident: bib31 article-title: Longitudinal Isolation of Potent Near-Germline SARS-CoV-2-Neutralizing Antibodies from COVID-19 Patients publication-title: Cell – volume: 17 start-page: 647 year: 2020 end-page: 649 ident: bib15 article-title: Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor publication-title: Cell. Mol. Immunol. – volume: 32 start-page: W615 year: 2004 end-page: W619 ident: bib18 article-title: MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes publication-title: Nucleic Acids Res. – volume: 69 start-page: 1204 year: 2013 end-page: 1214 ident: bib23 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 27 start-page: 695 year: 2020 end-page: 698 ident: bib10 article-title: Rational Vaccine Design in the Time of COVID-19 publication-title: Cell Host Microbe – volume: 91 start-page: 157 year: 2020 end-page: 160 ident: bib17 article-title: WHO Declares COVID-19 a Pandemic publication-title: Acta Biomed. – volume: 3 start-page: 95 year: 2020 end-page: 100 ident: bib74 article-title: Isolation of a human monoclonal antibody specific for the receptor binding domain of SARS-CoV-2 using a competitive phage biopanning strategy publication-title: Antibody Therapeutics – volume: 30 start-page: 3059 year: 2002 end-page: 3066 ident: bib29 article-title: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform publication-title: Nucleic Acids Res. – year: 2020 ident: bib37 article-title: Neutralizing Antibodies Isolated by a site-directed Screening have Potent Protection on SARS-CoV-2 Infection publication-title: bioRxiv – volume: 11 start-page: 53 year: 2004 end-page: 55 ident: bib1 article-title: Recent developments in the PHENIX software for automated crystallographic structure determination publication-title: J. Synchrotron Radiat. – volume: 30 start-page: 70 year: 2021 end-page: 82 ident: bib45 article-title: UCSF ChimeraX: Structure visualization for researchers, educators, and developers publication-title: Protein Sci. – volume: 11 start-page: 2251 year: 2020 ident: bib61 article-title: A human monoclonal antibody blocking SARS-CoV-2 infection publication-title: Nat. Commun. – volume: 369 start-page: 1501 year: 2020 end-page: 1505 ident: bib82 article-title: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes publication-title: Science – volume: 588 start-page: 682 year: 2020 end-page: 687 ident: bib4 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature – volume: 20 start-page: 796 year: 2013 end-page: 803 ident: bib30 article-title: Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120 publication-title: Nat. Struct. Mol. Biol. – volume: 63 start-page: 32 year: 2007 end-page: 41 ident: bib40 article-title: Solving structures of protein complexes by molecular replacement with Phaser publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 368 start-page: 1274 year: 2020 end-page: 1278 ident: bib69 article-title: A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 publication-title: Science – volume: 579 start-page: 482 year: 2020 end-page: 483 ident: bib11 article-title: The coronavirus pandemic in five powerful charts publication-title: Nature – volume: 6 start-page: 1722 year: 2020 end-page: 1734 ident: bib13 article-title: Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein publication-title: ACS Cent. Sci. – volume: 180 start-page: 519 year: 2012 end-page: 530 ident: bib51 article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. – volume: 92 start-page: 1 year: 2018 end-page: 21 ident: bib60 article-title: Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape publication-title: J. Virol. – year: 2020 ident: bib54 article-title: Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual publication-title: bioRxiv – volume: 28 start-page: 867 year: 2020 end-page: 879.e5 ident: bib78 article-title: Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains publication-title: Cell Host Microbe – volume: 369 start-page: 956 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib50 article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model publication-title: Science doi: 10.1126/science.abc7520 – volume: 583 start-page: 290 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib46 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature doi: 10.1038/s41586-020-2349-y – volume: 69 start-page: 1204 year: 2013 ident: 10.1016/j.chom.2021.03.005_bib23 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444913000061 – volume: 24 start-page: 499 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib42 article-title: Targeting the N332-supersite of the HIV-1 envelope for vaccine design publication-title: Expert Opin. Ther. Targets doi: 10.1080/14728222.2020.1752183 – volume: 92 start-page: 1 year: 2018 ident: 10.1016/j.chom.2021.03.005_bib60 article-title: Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape publication-title: J. Virol. doi: 10.1128/JVI.02002-17 – volume: 20 start-page: 533 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib19 article-title: An interactive web-based dashboard to track COVID-19 in real time publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30120-1 – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.chom.2021.03.005_bib44 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 372 start-page: 774 year: 2007 ident: 10.1016/j.chom.2021.03.005_bib32 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 – volume: 46 start-page: W296 issue: W1 year: 2018 ident: 10.1016/j.chom.2021.03.005_bib64 article-title: SWISS-MODEL: homology modelling of protein structures and complexes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky427 – volume: 369 start-page: 1501 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib82 article-title: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes publication-title: Science doi: 10.1126/science.abd0826 – volume: 114 start-page: E7348 year: 2017 ident: 10.1016/j.chom.2021.03.005_bib43 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1707304114 – year: 2020 ident: 10.1016/j.chom.2021.03.005_bib37 article-title: Neutralizing Antibodies Isolated by a site-directed Screening have Potent Protection on SARS-CoV-2 Infection publication-title: bioRxiv – volume: 181 start-page: 1004 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib66 article-title: Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies publication-title: Cell doi: 10.1016/j.cell.2020.04.031 – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib67 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 11 start-page: 53 year: 2004 ident: 10.1016/j.chom.2021.03.005_bib1 article-title: Recent developments in the PHENIX software for automated crystallographic structure determination publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049503024130 – volume: 27 start-page: 763 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib68 article-title: SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0468-7 – volume: 44 start-page: W474 issue: W1 year: 2016 ident: 10.1016/j.chom.2021.03.005_bib20 article-title: SAbPred: a structure-based antibody prediction server publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw361 – volume: 369 start-page: 1010 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib24 article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail publication-title: Science doi: 10.1126/science.abd0827 – volume: 4 start-page: 302 year: 2013 ident: 10.1016/j.chom.2021.03.005_bib53 article-title: The structural basis of antibody-antigen recognition publication-title: Front. Immunol. doi: 10.3389/fimmu.2013.00302 – volume: 180 start-page: 519 year: 2012 ident: 10.1016/j.chom.2021.03.005_bib51 article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.09.006 – volume: 17 start-page: 647 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib15 article-title: Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor publication-title: Cell. Mol. Immunol. doi: 10.1038/s41423-020-0426-7 – volume: 584 start-page: 115 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib27 article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Nature doi: 10.1038/s41586-020-2380-z – year: 2020 ident: 10.1016/j.chom.2021.03.005_bib54 article-title: Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual publication-title: bioRxiv – volume: 182 start-page: 73 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib12 article-title: Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells publication-title: Cell doi: 10.1016/j.cell.2020.05.025 – volume: 8 start-page: 537 year: 2017 ident: 10.1016/j.chom.2021.03.005_bib55 article-title: Gene-Specific Substitution Profiles Describe the Types and Frequencies of Amino Acid Changes during Antibody Somatic Hypermutation publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.00537 – volume: 20 start-page: 796 year: 2013 ident: 10.1016/j.chom.2021.03.005_bib30 article-title: Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2594 – year: 2020 ident: 10.1016/j.chom.2021.03.005_bib58 article-title: Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes in COVID-19 convalescent plasma publication-title: bioRxiv – volume: 584 start-page: 437 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib49 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature doi: 10.1038/s41586-020-2456-9 – volume: 30 start-page: 3059 year: 2002 ident: 10.1016/j.chom.2021.03.005_bib29 article-title: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf436 – volume: 14 start-page: 290 year: 2017 ident: 10.1016/j.chom.2021.03.005_bib48 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 41 start-page: W34 year: 2013 ident: 10.1016/j.chom.2021.03.005_bib71 article-title: IgBLAST: an immunoglobulin variable domain sequence analysis tool publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt382 – volume: 90 start-page: 10574 year: 2016 ident: 10.1016/j.chom.2021.03.005_bib38 article-title: Multiple Antibody Lineages in One Donor Target the Glycan-V3 Supersite of the HIV-1 Envelope Glycoprotein and Display a Preference for Quaternary Binding publication-title: J. Virol. doi: 10.1128/JVI.01012-16 – volume: 161 start-page: 1280 year: 2015 ident: 10.1016/j.chom.2021.03.005_bib76 article-title: Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors publication-title: Cell doi: 10.1016/j.cell.2015.05.007 – volume: 386 start-page: 323 year: 2015 ident: 10.1016/j.chom.2021.03.005_bib34 article-title: Structural characterization of viral epitopes recognized by broadly cross-reactive antibodies publication-title: Curr. Top. Microbiol. Immunol. – volume: 30 start-page: 70 year: 2021 ident: 10.1016/j.chom.2021.03.005_bib45 article-title: UCSF ChimeraX: Structure visualization for researchers, educators, and developers publication-title: Protein Sci. doi: 10.1002/pro.3943 – volume: 588 start-page: 682 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib4 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature doi: 10.1038/s41586-020-2852-1 – volume: 91 start-page: 157 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib17 article-title: WHO Declares COVID-19 a Pandemic publication-title: Acta Biomed. – volume: 32 start-page: 1792 year: 2004 ident: 10.1016/j.chom.2021.03.005_bib21 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh340 – volume: 29 start-page: 1859 year: 2008 ident: 10.1016/j.chom.2021.03.005_bib25 article-title: CHARMM-GUI: a web-based graphical user interface for CHARMM publication-title: J. Comput. Chem. doi: 10.1002/jcc.20945 – volume: 368 start-page: 630 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib73 article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science doi: 10.1126/science.abb7269 – volume: 6 start-page: 1722 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib13 article-title: Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c01056 – volume: 16 start-page: 1153 year: 2019 ident: 10.1016/j.chom.2021.03.005_bib7 article-title: Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs publication-title: Nat. Methods doi: 10.1038/s41592-019-0575-8 – volume: 14 start-page: 793 year: 2017 ident: 10.1016/j.chom.2021.03.005_bib57 article-title: Addressing preferred specimen orientation in single-particle cryo-EM through tilting publication-title: Nat. Methods doi: 10.1038/nmeth.4347 – volume: 9 start-page: e99881 year: 2014 ident: 10.1016/j.chom.2021.03.005_bib75 article-title: Transplanting supersites of HIV-1 vulnerability publication-title: PLoS ONE doi: 10.1371/journal.pone.0099881 – volume: 584 start-page: 450 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib36 article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike publication-title: Nature doi: 10.1038/s41586-020-2571-7 – volume: 36 start-page: W503 year: 2008 ident: 10.1016/j.chom.2021.03.005_bib8 article-title: IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn316 – volume: 6 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib33 article-title: A VH1-69 antibody lineage from an infected Chinese donor potently neutralizes HIV-1 by targeting the V3 glycan supersite publication-title: Sci. Adv. doi: 10.1126/sciadv.abb1328 – volume: 60 start-page: 2126 year: 2004 ident: 10.1016/j.chom.2021.03.005_bib22 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 367 start-page: 1444 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib70 article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 publication-title: Science doi: 10.1126/science.abb2762 – volume: 66 start-page: 133 year: 2010 ident: 10.1016/j.chom.2021.03.005_bib28 article-title: Integration, scaling, space-group assignment and post-refinement publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909047374 – volume: 369 start-page: 1505 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib39 article-title: Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody publication-title: Science doi: 10.1126/science.abc5881 – volume: 579 start-page: 482 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib11 article-title: The coronavirus pandemic in five powerful charts publication-title: Nature doi: 10.1038/d41586-020-00758-2 – volume: 1 start-page: 213 year: 2014 ident: 10.1016/j.chom.2021.03.005_bib26 article-title: The PDB_REDO server for macromolecular structure model optimization publication-title: IUCrJ doi: 10.1107/S2052252514009324 – volume: 28 start-page: 867 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib78 article-title: Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.11.004 – volume: 588 start-page: 327 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib6 article-title: Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion publication-title: Nature doi: 10.1038/s41586-020-2772-0 – volume: 40 start-page: 101 year: 2008 ident: 10.1016/j.chom.2021.03.005_bib35 article-title: IMGT, the International ImMunoGeneTics Information System for Immunoinformatics : methods for querying IMGT databases, tools, and web resources in the context of immunoinformatics publication-title: Mol. Biotechnol. doi: 10.1007/s12033-008-9062-7 – volume: 67 start-page: 235 year: 2011 ident: 10.1016/j.chom.2021.03.005_bib65 article-title: Overview of the CCP4 suite and current developments publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910045749 – volume: 31 start-page: 101 year: 2021 ident: 10.1016/j.chom.2021.03.005_bib63 article-title: Structure-based development of human antibody cocktails against SARS-CoV-2 publication-title: Cell Res. doi: 10.1038/s41422-020-00446-w – volume: 66 start-page: 213 year: 2010 ident: 10.1016/j.chom.2021.03.005_bib2 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909052925 – volume: 6 start-page: e60 year: 2017 ident: 10.1016/j.chom.2021.03.005_bib14 article-title: A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein publication-title: Emerg. Microbes Infect. doi: 10.1038/emi.2017.50 – volume: 27 start-page: 695 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib10 article-title: Rational Vaccine Design in the Time of COVID-19 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.04.022 – volume: 22 start-page: 2695 year: 2006 ident: 10.1016/j.chom.2021.03.005_bib80 article-title: Bio3d: an R package for the comparative analysis of protein structures publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl461 – volume: 182 start-page: 1663 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib31 article-title: Longitudinal Isolation of Potent Near-Germline SARS-CoV-2-Neutralizing Antibodies from COVID-19 Patients publication-title: Cell doi: 10.1016/j.cell.2020.08.046 – volume: 369 start-page: 650 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib16 article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 publication-title: Science doi: 10.1126/science.abc6952 – volume: 3 start-page: 95 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib74 article-title: Isolation of a human monoclonal antibody specific for the receptor binding domain of SARS-CoV-2 using a competitive phage biopanning strategy publication-title: Antibody Therapeutics doi: 10.1093/abt/tbaa008 – volume: 151 start-page: 41 year: 2005 ident: 10.1016/j.chom.2021.03.005_bib56 article-title: Automated molecular microscopy: the new Leginon system publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.03.010 – volume: 32 start-page: W615 year: 2004 ident: 10.1016/j.chom.2021.03.005_bib18 article-title: MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh398 – volume: 12 start-page: 943 year: 2015 ident: 10.1016/j.chom.2021.03.005_bib3 article-title: EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.3541 – volume: 368 start-page: 1274 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib69 article-title: A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 publication-title: Science doi: 10.1126/science.abc2241 – volume: 7 start-page: 372 year: 2016 ident: 10.1016/j.chom.2021.03.005_bib52 article-title: SONAR: A High-Throughput Pipeline for Inferring Antibody Ontogenies from Longitudinal Sequencing of B Cell Transcripts publication-title: Front. Immunol. doi: 10.3389/fimmu.2016.00372 – volume: 181 start-page: 281 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib59 article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 63 start-page: 32 year: 2007 ident: 10.1016/j.chom.2021.03.005_bib40 article-title: Solving structures of protein complexes by molecular replacement with Phaser publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444906045975 – volume: 5 start-page: 189 year: 2016 ident: 10.1016/j.chom.2021.03.005_bib41 article-title: FreeSASA: An open source C library for solvent accessible surface area calculations publication-title: F1000Res. doi: 10.12688/f1000research.7931.1 – volume: 11 start-page: 2251 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib61 article-title: A human monoclonal antibody blocking SARS-CoV-2 infection publication-title: Nat. Commun. doi: 10.1038/s41467-020-16256-y – volume: 369 start-page: 643 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib9 article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability publication-title: Science doi: 10.1126/science.abc5902 – volume: 10 start-page: 3068 year: 2019 ident: 10.1016/j.chom.2021.03.005_bib77 article-title: Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein publication-title: Nat. Commun. doi: 10.1038/s41467-019-10897-4 – volume: 181 start-page: 894 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib62 article-title: Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2 publication-title: Cell doi: 10.1016/j.cell.2020.03.045 – volume: 182 start-page: 828 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib5 article-title: Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies publication-title: Cell doi: 10.1016/j.cell.2020.06.025 – volume: 26 start-page: 1422 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib79 article-title: Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein publication-title: Nat. Med. doi: 10.1038/s41591-020-0998-x – volume: 369 start-page: 1119 year: 2020 ident: 10.1016/j.chom.2021.03.005_bib72 article-title: Structural basis of a shared antibody response to SARS-CoV-2 publication-title: Science doi: 10.1126/science.abd2321 – reference: 33984277 - Cell Host Microbe. 2021 May 12;29(5):744-746. doi: 10.1016/j.chom.2021.04.010. |
SSID | ssj0055071 |
Score | 2.6981437 |
Snippet | Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 819 |
SubjectTerms | Antibodies, Neutralizing - chemistry Antibodies, Neutralizing - immunology Antibodies, Viral - chemistry Antibodies, Viral - immunology antibody class antigenic supersite COVID-19 Humans multi-donor antibody Mutation N-terminal domain neutralizing antibody Protein Conformation Protein Domains SARS-CoV-2 SARS-CoV-2 - immunology Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - immunology |
Title | Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite |
URI | https://dx.doi.org/10.1016/j.chom.2021.03.005 https://www.ncbi.nlm.nih.gov/pubmed/33789084 https://www.proquest.com/docview/2507729782 https://pubmed.ncbi.nlm.nih.gov/PMC7953435 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWKyFxQSzP8pKRuCGrdfxIclwqViskVoiyqDfLTwhbkoq2h-XXMxMnFQWxB45JbMnyODOf7W--IeQVDzoVKZXMubJgUs4cs1qUrKiitFIHYXvJ_PcX-vxSvluq5RGZj7kwSKscfH_26b23Ht5Mh9mcrptmugDowQW41wJlhITARHMhqz6Jb_lm9MYo18XzzTJn2HpInMkcL6xHAnvEgmehU_Wv4PQ3-PyTQ_lbUDq7S-4MaJKe5gGfkKPY3iO3cn3J6_tk9aEDSLyli9OPCzbvPrOCtnHXn238hJBFYVYb1yGPkOZpiIHaL7YByEg36-Yq0gs2sGVWNHTf4QvN1HFqKR4yrCLd7NY9sSM-IJdnbz_Nz9lQXoF5qdSWWVem2kchNU_a68pZW_uQggXEVHpXuqSFRm0clEQrvVC1CyEkpSsVePBJPCTHbdfGx4SCwTXsb2urLJd-BhDCF8rBXrH2dQqRTwgf59X4QXscS2CszEgy-2bQFgZtYWbCgC0m5PW-zzorb9zYWo3mMgfrx0BouLHfy9G2Bn4svC2xbex2GwPYEHcegKAm5FG29X4cQmD-cCUnpDxYBfsGKNp9-KVtvvbi3WWtBEDUJ_853qfkNj4hf4EXz8jx9scuPgdYtHUv-nX_C9NJDS0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQguiDflaSRuyGodv5rjUrHqwm6F6C7qzfITAiWpaHuAX884TioKYg9cY1uyPPbMN87nbxB6Sb2MRYyKWKsKwvnIEiOZIsU4cMOlZ6aVzD-byekFf7sQiwM06d_CJFpl5_uzT2-9dfdl2K3mcFVVwzlAD8rAvRZJRogxcQVdBTSgUv2Gk8Xr3h0nvS6afy1Tkrp3L2cyySsVJIEksaBZ6VT8Kzr9jT7_JFH-FpWOb6GbHZzER3nGt9FBqO-ga7nA5I-7aPm-AUy8wfOjD3MyaT6SAtdh215u_ISYhWFZK9skIiHO6xA8Np9MBZgRr1fV14BnpKPLLLFvvkELztxxbHC6ZVgGvN6uWmZHuIcujt-cT6akq69AHBdiQ4xVsXSBcUmjdHJsjSmdj94AZFLOKhslk0kcJ2miKcdEab33Ucix8NS7yO6jw7qpw0OEweISEtzSCEO5GwGGcIWwkCyWrow-0AGi_bpq14mPpxoYS92zzL7oZAudbKFHTIMtBujVbswqS29c2lv05tJ7G0hDbLh03IvethpOVvpdYurQbNcawGFKPQBCDdCDbOvdPBhLD4jHfIDU3i7YdUiq3fstdfW5Ve9WpWCAUR_953yfo-vT87NTfXoye_cY3UgticxAiyfocPN9G54CRtrYZ-0Z-AVXZBBM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potent+SARS-CoV-2+neutralizing+antibodies+directed+against+spike+N-terminal+domain+target+a+single+supersite&rft.jtitle=Cell+host+%26+microbe&rft.au=Cerutti%2C+Gabriele&rft.au=Guo%2C+Yicheng&rft.au=Zhou%2C+Tongqing&rft.au=Gorman%2C+Jason&rft.date=2021-05-12&rft.eissn=1934-6069&rft.volume=29&rft.issue=5&rft.spage=819&rft_id=info:doi/10.1016%2Fj.chom.2021.03.005&rft_id=info%3Apmid%2F33789084&rft.externalDocID=33789084 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon |