Hyperspectral retrieval of leaf physiological traits and their links to ecosystem productivity in grassland monocultures
•Leaf traits should be hyperspectrally estimated on an area basis in grasslands.•LAI-based upscaling in spectral estimates of canopy traits outperforms biomass basis.•Plot-level leaf trait values and intraspecific variations link traits to productivity. Plant functional traits are closely associated...
Saved in:
Published in | Ecological indicators Vol. 122; p. 107267 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Leaf traits should be hyperspectrally estimated on an area basis in grasslands.•LAI-based upscaling in spectral estimates of canopy traits outperforms biomass basis.•Plot-level leaf trait values and intraspecific variations link traits to productivity.
Plant functional traits are closely associated with key ecological processes and ecosystem functions. Recent studies have demonstrated that plant functional traits, especially physiological traits, can be successfully derived from hyperspectral images. Plant physiological traits are frequently quantified either as area-based content [μg cm−2] or mass-based concentration [mg g−1 or %]. However, it remains unclear whether the two metrics of traits can be quantified using remote sensing approaches. We quantified area- and mass-based foliar physiological traits to compare the prediction accuracy of the two metrics based on leaf spectra using partial least squares regression (PLSR) at a grassland monoculture experiment. These two metrics were then scaled up to canopy traits, respectively, based on leaf area index (LAI) and biomass to test their performance at the canopy level. The canopy physiological traits with high prediction accuracy (R2 ≥ 0.60) were selected for mapping using the unmanned aerial vehicle (UAV)-based UHD185 spectrometer. Biomass and LAI were also estimated and mapped using the PLSR method. The mapped leaf traits (canopy traits divided by the corresponding LAI), were used to explore the relationships between the interspecific and intraspecific variations in leaf physiological traits and ecosystem productivity (i.e., aboveground biomass). The results showed that the retrieval of leaf physiological traits using leaf spectra and canopy spectra or remote sensing was better performed on an area basis rather than a mass basis, especially for the physiological traits related to photosynthesis. Model selection results also indicted that remotely sensed physiological traits (chlorophyll a, chlorophyll b, carotenoid, carbon, nitrogen, and leaf mass per area (LMA)) and their intraspecific variations (coefficient variation (CV) for a single trait and functional richness (FRic) for multiple traits) were significant predictors of community aboveground biomass across grassland monocultures. Our study highlights the potential of hyperspectral images for trait mapping and estimating ecosystem productivity at large scales. Our findings also provide a vital insight for disentangling the links of functional traits and intra- and interspecific trait variations to key ecological processes and functions. |
---|---|
AbstractList | •Leaf traits should be hyperspectrally estimated on an area basis in grasslands.•LAI-based upscaling in spectral estimates of canopy traits outperforms biomass basis.•Plot-level leaf trait values and intraspecific variations link traits to productivity.
Plant functional traits are closely associated with key ecological processes and ecosystem functions. Recent studies have demonstrated that plant functional traits, especially physiological traits, can be successfully derived from hyperspectral images. Plant physiological traits are frequently quantified either as area-based content [μg cm−2] or mass-based concentration [mg g−1 or %]. However, it remains unclear whether the two metrics of traits can be quantified using remote sensing approaches. We quantified area- and mass-based foliar physiological traits to compare the prediction accuracy of the two metrics based on leaf spectra using partial least squares regression (PLSR) at a grassland monoculture experiment. These two metrics were then scaled up to canopy traits, respectively, based on leaf area index (LAI) and biomass to test their performance at the canopy level. The canopy physiological traits with high prediction accuracy (R2 ≥ 0.60) were selected for mapping using the unmanned aerial vehicle (UAV)-based UHD185 spectrometer. Biomass and LAI were also estimated and mapped using the PLSR method. The mapped leaf traits (canopy traits divided by the corresponding LAI), were used to explore the relationships between the interspecific and intraspecific variations in leaf physiological traits and ecosystem productivity (i.e., aboveground biomass). The results showed that the retrieval of leaf physiological traits using leaf spectra and canopy spectra or remote sensing was better performed on an area basis rather than a mass basis, especially for the physiological traits related to photosynthesis. Model selection results also indicted that remotely sensed physiological traits (chlorophyll a, chlorophyll b, carotenoid, carbon, nitrogen, and leaf mass per area (LMA)) and their intraspecific variations (coefficient variation (CV) for a single trait and functional richness (FRic) for multiple traits) were significant predictors of community aboveground biomass across grassland monocultures. Our study highlights the potential of hyperspectral images for trait mapping and estimating ecosystem productivity at large scales. Our findings also provide a vital insight for disentangling the links of functional traits and intra- and interspecific trait variations to key ecological processes and functions. Plant functional traits are closely associated with key ecological processes and ecosystem functions. Recent studies have demonstrated that plant functional traits, especially physiological traits, can be successfully derived from hyperspectral images. Plant physiological traits are frequently quantified either as area-based content [μg cm−2] or mass-based concentration [mg g−1 or %]. However, it remains unclear whether the two metrics of traits can be quantified using remote sensing approaches. We quantified area- and mass-based foliar physiological traits to compare the prediction accuracy of the two metrics based on leaf spectra using partial least squares regression (PLSR) at a grassland monoculture experiment. These two metrics were then scaled up to canopy traits, respectively, based on leaf area index (LAI) and biomass to test their performance at the canopy level. The canopy physiological traits with high prediction accuracy (R2 ≥ 0.60) were selected for mapping using the unmanned aerial vehicle (UAV)-based UHD185 spectrometer. Biomass and LAI were also estimated and mapped using the PLSR method. The mapped leaf traits (canopy traits divided by the corresponding LAI), were used to explore the relationships between the interspecific and intraspecific variations in leaf physiological traits and ecosystem productivity (i.e., aboveground biomass). The results showed that the retrieval of leaf physiological traits using leaf spectra and canopy spectra or remote sensing was better performed on an area basis rather than a mass basis, especially for the physiological traits related to photosynthesis. Model selection results also indicted that remotely sensed physiological traits (chlorophyll a, chlorophyll b, carotenoid, carbon, nitrogen, and leaf mass per area (LMA)) and their intraspecific variations (coefficient variation (CV) for a single trait and functional richness (FRic) for multiple traits) were significant predictors of community aboveground biomass across grassland monocultures. Our study highlights the potential of hyperspectral images for trait mapping and estimating ecosystem productivity at large scales. Our findings also provide a vital insight for disentangling the links of functional traits and intra- and interspecific trait variations to key ecological processes and functions. Plant functional traits are closely associated with key ecological processes and ecosystem functions. Recent studies have demonstrated that plant functional traits, especially physiological traits, can be successfully derived from hyperspectral images. Plant physiological traits are frequently quantified either as area-based content [μg cm⁻²] or mass-based concentration [mg g⁻¹ or %]. However, it remains unclear whether the two metrics of traits can be quantified using remote sensing approaches. We quantified area- and mass-based foliar physiological traits to compare the prediction accuracy of the two metrics based on leaf spectra using partial least squares regression (PLSR) at a grassland monoculture experiment. These two metrics were then scaled up to canopy traits, respectively, based on leaf area index (LAI) and biomass to test their performance at the canopy level. The canopy physiological traits with high prediction accuracy (R² ≥ 0.60) were selected for mapping using the unmanned aerial vehicle (UAV)-based UHD185 spectrometer. Biomass and LAI were also estimated and mapped using the PLSR method. The mapped leaf traits (canopy traits divided by the corresponding LAI), were used to explore the relationships between the interspecific and intraspecific variations in leaf physiological traits and ecosystem productivity (i.e., aboveground biomass). The results showed that the retrieval of leaf physiological traits using leaf spectra and canopy spectra or remote sensing was better performed on an area basis rather than a mass basis, especially for the physiological traits related to photosynthesis. Model selection results also indicted that remotely sensed physiological traits (chlorophyll a, chlorophyll b, carotenoid, carbon, nitrogen, and leaf mass per area (LMA)) and their intraspecific variations (coefficient variation (CV) for a single trait and functional richness (FRic) for multiple traits) were significant predictors of community aboveground biomass across grassland monocultures. Our study highlights the potential of hyperspectral images for trait mapping and estimating ecosystem productivity at large scales. Our findings also provide a vital insight for disentangling the links of functional traits and intra- and interspecific trait variations to key ecological processes and functions. |
ArticleNumber | 107267 |
Author | Bai, Yongfei Zhao, Yujin Yang, Long Zhao, Xuezhen Sun, Zhongyu Sun, Yihan Lu, Xiaoming |
Author_xml | – sequence: 1 givenname: Yujin surname: Zhao fullname: Zhao, Yujin organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan 100093, Beijing, China – sequence: 2 givenname: Yihan surname: Sun fullname: Sun, Yihan organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan 100093, Beijing, China – sequence: 3 givenname: Xiaoming surname: Lu fullname: Lu, Xiaoming organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan 100093, Beijing, China – sequence: 4 givenname: Xuezhen surname: Zhao fullname: Zhao, Xuezhen organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan 100093, Beijing, China – sequence: 5 givenname: Long surname: Yang fullname: Yang, Long organization: Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou 510070, China – sequence: 6 givenname: Zhongyu surname: Sun fullname: Sun, Zhongyu organization: Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou 510070, China – sequence: 7 givenname: Yongfei surname: Bai fullname: Bai, Yongfei email: yfbai@ibcas.ac.cn organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan 100093, Beijing, China |
BookMark | eNqFUctu1DAUjVCRaAufgOQlmwx-xE4tFghVQCtV6gYkdpYf11MPmTjYzqj5exxSseimK19dnYfPPRfN2RhHaJr3BO8IJuLjYQc2DmF0O4rpuuup6F815-Sqp22PWXdW567HLRH415vmIucDrjwpxXnzeLNMkPIEtiQ9oAQlBTjVKXo0gPZoelhyiEPcB1u3FRRKRnp0qDxASKja_s6oRFS_kJdc4IimFN1sSziFsqAwon3SOQ8r5RjHaOehzAny2-a110OGd0_vZfPz29cf1zft3f332-svd63tOC-tvvLcCCI5B-O5l-CxsRZ7xwyzVjghRWfAcCBeAGayJwxAOKkBG8qtYJfN7abroj6oKYWjTouKOqh_i5j2SqcS7ACK9bpaGCeNZB1l1hgpKemcIM6zTrKq9WHTqhH_zJCLOoZsYajhIM5ZUU47SmWHcYXyDWpTzDmB_29NsFpbUwf11JpaW1Nba5X36RnPhqJLiON6-uFF9ueNDfWipwBJZRtgtOBCqg3XyOEFhb-iQb1B |
CitedBy_id | crossref_primary_10_1016_j_fmre_2024_01_012 crossref_primary_10_1029_2024EF004648 crossref_primary_10_1016_j_rse_2023_113958 crossref_primary_10_1002_ece3_11533 crossref_primary_10_1016_j_jag_2024_103868 crossref_primary_10_3390_rs13153034 crossref_primary_10_1016_j_ecoinf_2025_103068 crossref_primary_10_3390_rs15030639 crossref_primary_10_1016_j_gecco_2024_e03196 crossref_primary_10_1016_j_jag_2023_103383 crossref_primary_10_3390_drones7070432 crossref_primary_10_1007_s11356_022_20305_y crossref_primary_10_3390_rs14020242 crossref_primary_10_1080_2150704X_2022_2088255 crossref_primary_10_3390_rs15081973 crossref_primary_10_1016_j_rse_2023_113580 crossref_primary_10_3390_rs14143399 crossref_primary_10_1016_j_tplants_2023_09_001 crossref_primary_10_1016_j_fcr_2024_109660 crossref_primary_10_3390_drones8100585 crossref_primary_10_1016_j_isprsjprs_2022_09_012 crossref_primary_10_1088_1748_9326_ac1291 crossref_primary_10_3390_rs14030671 |
Cites_doi | 10.1890/09-2335.1 10.1111/j.1461-0248.2010.01476.x 10.2307/2937116 10.1016/j.jag.2009.08.006 10.1021/ac60214a047 10.1016/j.isprsjprs.2018.09.008 10.1016/j.rse.2018.11.016 10.1016/j.isprsjprs.2008.01.006 10.1111/j.1469-8137.2010.03468.x 10.1016/j.rse.2019.03.025 10.1016/j.ecocom.2013.06.003 10.1111/jvs.12525 10.1890/11-0843.1 10.1016/j.isprsjprs.2011.09.013 10.1073/pnas.1803989115 10.1111/j.1365-2486.2009.01950.x 10.3390/rs8030216 10.1016/0034-4257(95)00238-3 10.1890/09-1999.1 10.1111/j.1469-8137.2010.03284.x 10.1890/070152 10.1111/j.1654-1103.2012.01473.x 10.1126/sciadv.aaw8114 10.1016/j.rse.2008.10.019 10.1016/j.rse.2008.06.005 10.1016/j.rse.2019.05.014 10.1016/j.isprsjprs.2015.08.002 10.3390/rs10101532 10.1038/nature02850 10.3390/rs10071082 10.1071/BT12225 10.1111/j.1365-2664.2011.02048.x 10.1038/nature16489 10.1111/1365-2745.13151 10.1016/j.rse.2017.03.004 10.1016/j.rse.2012.12.015 10.1038/s41467-017-01530-3 10.1016/S0924-2716(02)00158-2 10.1038/s41559-017-0402-5 10.1093/jxb/erl123 10.1890/13-2186.1 10.1016/j.jag.2015.06.001 10.1111/2041-210X.12642 10.1038/nature02403 10.1109/TSMCB.2003.817107 10.1016/S0169-7439(01)00155-1 10.1016/j.rse.2008.07.003 10.1016/j.rse.2004.12.016 10.3390/agronomy9020054 10.1016/S0034-4257(98)00038-8 10.1016/S0034-4257(02)00011-1 10.1016/j.rse.2014.11.011 10.1111/1365-2745.13249 10.1016/j.isprsjprs.2017.03.011 10.1111/j.1469-8137.2011.03952.x 10.1016/j.rse.2019.111273 10.1016/j.jag.2012.07.011 10.1016/j.tree.2011.11.014 10.1007/s11104-010-0369-3 10.1016/j.rse.2010.09.011 10.1126/science.1231574 10.1016/j.tree.2016.02.003 10.1016/S0022-4073(01)00007-3 10.1016/S0034-4257(01)00182-1 10.1890/07-1206.1 10.1093/aob/mcq066 |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.ecolind.2020.107267 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1872-7034 |
ExternalDocumentID | oai_doaj_org_article_37af5fbd9b93423cbb99214d61df3493 10_1016_j_ecolind_2020_107267 S1470160X20312073 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABVA AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSJ SSZ T5K ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c455t-a8f5b61955ebf5f9ef0bcc0fd3b3cc6d6964beb5e1f6e039713ee6d9ae0b25c63 |
IEDL.DBID | .~1 |
ISSN | 1470-160X |
IngestDate | Wed Aug 27 01:27:51 EDT 2025 Fri Jul 11 00:54:09 EDT 2025 Tue Jul 01 01:32:42 EDT 2025 Thu Apr 24 23:10:10 EDT 2025 Fri Feb 23 02:48:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Partial least squares regression (PLSR) Unmanned aerial vehicle (UAV) Hyperspectral image Functional trait Ecosystem function Aboveground biomass |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-a8f5b61955ebf5f9ef0bcc0fd3b3cc6d6964beb5e1f6e039713ee6d9ae0b25c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1470160X20312073 |
PQID | 2524229400 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_37af5fbd9b93423cbb99214d61df3493 proquest_miscellaneous_2524229400 crossref_primary_10_1016_j_ecolind_2020_107267 crossref_citationtrail_10_1016_j_ecolind_2020_107267 elsevier_sciencedirect_doi_10_1016_j_ecolind_2020_107267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 20210301 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationTitle | Ecological indicators |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Kattenborn, Schiefer, Zarco-Tejada, Schmidtlein (b0155) 2019; 230 Messier, McGill, Lechowicz (b0185) 2010; 13 Asner, Martin (b0015) 2008; 112 Villéger, Mason, Mouillot (b0300) 2008; 89 Asner, Martin, Anderson, Knapp (b0025) 2015; 158 Reich, Walters, Ellsworth (b0230) 1992; 62 Jacquemoud, Ustin, Verdebout, Schmuck, Andreoli, Hosgood (b0140) 1996; 56 Schlerf, Atzberger, Hill (b0245) 2005; 95 Curran, Dungan, Peterson (b0075) 2001; 76 Deng, Mao, Li, Hu, Duan, Yan (b0085) 2018; 146 Näsi, Viljanen, Kaivosoja, Alhonoja, Hakala, Markelin, Honkavaara (b0195) 2018; 10 Asner, Martin (b0020) 2009; 7 Kuusk (b0165) 2001; 71 Wright, Kitajima, Kraft, Reich, Wright, Bunker, Condit, Dalling, Davies, Díaz, Engelbrecht, Harms, Hubbell, Marks, Ruiz-Jaen, Salvador, Zanne (b0325) 2010; 91 Des Roches, Post, Turley, Bailey, Hendry, Kinnison, Schweitzer, Palkovacs (b0090) 2018; 2 Hoover, Knapp, Smith (b0130) 2014; 95 Pontes, Louault, Carrere, Maire, Andueza, Soussana (b0220) 2010; 105 Brovelli, Crespi, Fratarcangeli, Giannone, Realini (b0055) 2008; 63 Díaz, Kattge, Cornelissen, Wright, Lavorel, Dray, Reu, Kleyer, Wirth, Prentice, Garnier, Bonisch, Westoby, Poorter, Reich, Moles, Dickie, Gillison, Zanne, Chave, Wright, Sheremet'ev, Jactel, Baraloto, Cerabolini, Pierce, Shipley, Kirkup, Casanoves, Joswig, Gunther, Falczuk, Ruger, Mahecha, Gorne (b0095) 2016; 529 Violle, Enquist, McGill, Jiang, Albert, Hulshof, Jung, Messier (b0305) 2012; 27 Val, Abadia, Heras, Monge (b0295) 1986; 2 Homolová, Malenovský, Clevers, García-Santos, Schaepman (b0125) 2013; 15 Talbot, Treseder (b0270) 2012; 93 Chen, Hong, Harris, Sharkey (b0070) 2004; 34 Wang, Townsend, Schweiger, Couture, Singh, Hobbie, Cavender-Bares (b0310) 2019; 221 Zheng, Lan, Li, Shao, Shan, Wan, Taube, Bai (b0335) 2011; 340 Féret, Gitelson, Noble, Jacquemoud (b0110) 2017; 193 Durán, S.M., Martin, R.E., Diáz, S., Maitner, B.S., Malhi, Y., Salinas, N., Shenkin, A., Silman, M.R., Wieczynski, D.J., Asner, G.P., Bentley, L.P., Savage, V.M., Enquist, B.J., 2019. Informing trait-based ecology by assessing remotely sensed functional diversity across a broad tropical temperature gradient. Science advances 5, eaaw8114-eaaw8114. Ustin, Gitelson, Jacquemoud, Schaepman, Asner, Gamon, Zarco-Tejada (b0285) 2009; 113 Cadotte, Carscadden, Mirotchnick (b0060) 2011; 48 Osnas, Lichstein, Reich, Pacala (b0210) 2013; 340 Serrano, Penuelas, Ustin (b0265) 2002; 81 Houborg, Fisher, Skidmore (b0135) 2015; 43 Asner, Martin, Tupayachi, Emerson, Martinez, Sinca, Powell, Wright, Lugo (b0030) 2011; 21 Pérez-Harguindeguy, Díaz, Garnier, Lavorel, Poorter, Jaureguiberry, Bret-Harte, Cornwell, Craine, Gurvich, Urcelay, Veneklaas, Reich, Poorter, Wright, Ray, Enrico, Pausas, de Vos, Buchmann, Funes, Quétier, Hodgson, Thompson, Morgan, ter Steege, Sack, Blonder, Poschlod, Vaieretti, Conti, Staver, Aquino, Cornelissen (b0215) 2016; 61 Wright, Reich, Westoby, Ackerly, Baruch, Bongers, Cavender-Bares, Chapin, Cornelissen, Diemer, Flexas, Garnier, Groom, Gulias, Hikosaka, Lamont, Lee, Lee, Lusk, Midgley, Navas, Niinemets, Oleksyn, Osada, Poorter, Poot, Prior, Pyankov, Roumet, Thomas, Tjoelker, Veneklaas, Villar (b0320) 2004; 428 Blackburn (b0050) 2007; 58 Bai, Han, Wu, Chen, Li (b0040) 2004; 431 Darvishzadeh, Atzberger, Skidmore, Schlerf (b0080) 2011; 66 Kattenborn, Lopatin, Förster, Braun, Fassnacht (b0150) 2019; 227 Malenovský, Homolová, Zurita-Milla, Lukeš, Kaplan, Hanuš, Gastellu-Etchegorry, Schaepman (b0180) 2013; 131 Aasen, Burkart, Bolten, Bareth (b0005) 2015; 108 Zhao, Zeng, Zhao, Wu, Zhao (b0330) 2016; 8 Grüner, Astor, Wachendorf (b0120) 2019; 9 Schlerf, Atzberger, Hill, Buddenbaum, Werner, Schueler (b0250) 2010; 12 Auger, Shipley (b0035) 2013; 24 Poorter, Niklas, Reich, Oleksyn, Poot, Mommer (b0225) 2012; 193 Gerber, Marion, Olioso, Jacquemoud, da Luz, Fabre (b0115) 2011; 115 Kattenborn, Fassnacht, Pierce, Lopatin, Grime, Schmidtlein (b0145) 2017; 28 Mutanga, Skidmore, van Wieren (b0190) 2003; 57 Osnas, Katabuchi, Kitajima, Wright, Reich, Van Bael, Kraft, Samaniego, Pacala, Lichstein (b0205) 2018; 115 Adjorlolo, Mutanga, Cho, Ismail (b0010) 2013; 21 Bai, Wu, Clark, Naeem, Pan, Huang, Zhang, Han (b0045) 2010; 16 le Maire, Francois, Soudani, Berveiller, Pontailler, Breda, Genet, Davi, Dufrene (b0170) 2008; 112 Schweiger, Schutz, Risch, Kneubuhler, Haller, Schaepman (b0260) 2017; 8 Sasaki, Lu, Hirota, Bai (b0235) 2019; 107 Ustin, Gamon (b0280) 2010; 186 Schneider, Morsdorf, Schmid, Petchey, Hueni, Schimel, Schaepman (b0255) 2017; 8 Wold, Sjostrom, Eriksson (b0315) 2001; 58 Carmona, de Bello, Mason, Leps (b0065) 2016; 31 Lu, He (b0175) 2017; 128 Ustin, Roberts, Pinzon, Jacquemoud, Gardner, Scheer, Castaneda, Palacios-Orueta (b0290) 1998; 65 Khalil, Gibson, Baer (b0160) 2019; 107 Thomson, Malhi, Bartholomeus, Oliveras, Doughty (b0275) 2018; 10 Fajardo, Piper (b0105) 2011; 189 Savitzky, Golay (b0240) 1964; 36 Obermeier, Lehnert, Pohl, Makowski Gianonni, Silva, Seibert, Laser, Moser, Müller, Luterbacher, Bendix (b0200) 2019; 232 Carmona (10.1016/j.ecolind.2020.107267_b0065) 2016; 31 Zhao (10.1016/j.ecolind.2020.107267_b0330) 2016; 8 le Maire (10.1016/j.ecolind.2020.107267_b0170) 2008; 112 Schlerf (10.1016/j.ecolind.2020.107267_b0245) 2005; 95 Wold (10.1016/j.ecolind.2020.107267_b0315) 2001; 58 Sasaki (10.1016/j.ecolind.2020.107267_b0235) 2019; 107 Khalil (10.1016/j.ecolind.2020.107267_b0160) 2019; 107 Savitzky (10.1016/j.ecolind.2020.107267_b0240) 1964; 36 Schlerf (10.1016/j.ecolind.2020.107267_b0250) 2010; 12 Brovelli (10.1016/j.ecolind.2020.107267_b0055) 2008; 63 Bai (10.1016/j.ecolind.2020.107267_b0040) 2004; 431 Gerber (10.1016/j.ecolind.2020.107267_b0115) 2011; 115 Malenovský (10.1016/j.ecolind.2020.107267_b0180) 2013; 131 Serrano (10.1016/j.ecolind.2020.107267_b0265) 2002; 81 Asner (10.1016/j.ecolind.2020.107267_b0015) 2008; 112 Adjorlolo (10.1016/j.ecolind.2020.107267_b0010) 2013; 21 Asner (10.1016/j.ecolind.2020.107267_b0030) 2011; 21 Cadotte (10.1016/j.ecolind.2020.107267_b0060) 2011; 48 Chen (10.1016/j.ecolind.2020.107267_b0070) 2004; 34 Darvishzadeh (10.1016/j.ecolind.2020.107267_b0080) 2011; 66 Auger (10.1016/j.ecolind.2020.107267_b0035) 2013; 24 Asner (10.1016/j.ecolind.2020.107267_b0025) 2015; 158 Grüner (10.1016/j.ecolind.2020.107267_b0120) 2019; 9 Kuusk (10.1016/j.ecolind.2020.107267_b0165) 2001; 71 Féret (10.1016/j.ecolind.2020.107267_b0110) 2017; 193 Houborg (10.1016/j.ecolind.2020.107267_b0135) 2015; 43 Wright (10.1016/j.ecolind.2020.107267_b0325) 2010; 91 Asner (10.1016/j.ecolind.2020.107267_b0020) 2009; 7 10.1016/j.ecolind.2020.107267_b0100 Homolová (10.1016/j.ecolind.2020.107267_b0125) 2013; 15 Fajardo (10.1016/j.ecolind.2020.107267_b0105) 2011; 189 Hoover (10.1016/j.ecolind.2020.107267_b0130) 2014; 95 Näsi (10.1016/j.ecolind.2020.107267_b0195) 2018; 10 Zheng (10.1016/j.ecolind.2020.107267_b0335) 2011; 340 Schneider (10.1016/j.ecolind.2020.107267_b0255) 2017; 8 Obermeier (10.1016/j.ecolind.2020.107267_b0200) 2019; 232 Wang (10.1016/j.ecolind.2020.107267_b0310) 2019; 221 Kattenborn (10.1016/j.ecolind.2020.107267_b0150) 2019; 227 Blackburn (10.1016/j.ecolind.2020.107267_b0050) 2007; 58 Ustin (10.1016/j.ecolind.2020.107267_b0280) 2010; 186 Díaz (10.1016/j.ecolind.2020.107267_b0095) 2016; 529 Kattenborn (10.1016/j.ecolind.2020.107267_b0155) 2019; 230 Violle (10.1016/j.ecolind.2020.107267_b0305) 2012; 27 Talbot (10.1016/j.ecolind.2020.107267_b0270) 2012; 93 Des Roches (10.1016/j.ecolind.2020.107267_b0090) 2018; 2 Kattenborn (10.1016/j.ecolind.2020.107267_b0145) 2017; 28 Bai (10.1016/j.ecolind.2020.107267_b0045) 2010; 16 Curran (10.1016/j.ecolind.2020.107267_b0075) 2001; 76 Villéger (10.1016/j.ecolind.2020.107267_b0300) 2008; 89 Messier (10.1016/j.ecolind.2020.107267_b0185) 2010; 13 Deng (10.1016/j.ecolind.2020.107267_b0085) 2018; 146 Mutanga (10.1016/j.ecolind.2020.107267_b0190) 2003; 57 Osnas (10.1016/j.ecolind.2020.107267_b0210) 2013; 340 Aasen (10.1016/j.ecolind.2020.107267_b0005) 2015; 108 Poorter (10.1016/j.ecolind.2020.107267_b0225) 2012; 193 Pérez-Harguindeguy (10.1016/j.ecolind.2020.107267_b0215) 2016; 61 Wright (10.1016/j.ecolind.2020.107267_b0320) 2004; 428 Lu (10.1016/j.ecolind.2020.107267_b0175) 2017; 128 Ustin (10.1016/j.ecolind.2020.107267_b0285) 2009; 113 Val (10.1016/j.ecolind.2020.107267_b0295) 1986; 2 Reich (10.1016/j.ecolind.2020.107267_b0230) 1992; 62 Jacquemoud (10.1016/j.ecolind.2020.107267_b0140) 1996; 56 Osnas (10.1016/j.ecolind.2020.107267_b0205) 2018; 115 Schweiger (10.1016/j.ecolind.2020.107267_b0260) 2017; 8 Ustin (10.1016/j.ecolind.2020.107267_b0290) 1998; 65 Pontes (10.1016/j.ecolind.2020.107267_b0220) 2010; 105 Thomson (10.1016/j.ecolind.2020.107267_b0275) 2018; 10 |
References_xml | – volume: 221 start-page: 405 year: 2019 end-page: 416 ident: b0310 article-title: Mapping foliar functional traits and their uncertainties across three years in a grassland experiment publication-title: Remote Sens. Environ. – volume: 232 year: 2019 ident: b0200 article-title: Grassland ecosystem services in a changing environment: the potential of hyperspectral monitoring publication-title: Remote Sens. Environ. – volume: 15 start-page: 1 year: 2013 end-page: 16 ident: b0125 article-title: Review of optical-based remote sensing for plant trait mapping publication-title: Ecol. Complexity – volume: 8 start-page: 86 year: 2017 end-page: 95 ident: b0260 article-title: How to predict plant functional types using imaging spectroscopy: linking vegetation community traits, plant functional types and spectral response publication-title: Methods Ecol. Evol. – volume: 158 start-page: 15 year: 2015 end-page: 27 ident: b0025 article-title: Quantifying forest canopy traits: imaging spectroscopy versus field survey publication-title: Remote Sens. Environ. – volume: 58 start-page: 855 year: 2007 end-page: 867 ident: b0050 article-title: Hyperspectral remote sensing of plant pigments publication-title: J. Exp. Bot. – volume: 2 start-page: 57 year: 2018 end-page: 64 ident: b0090 article-title: The ecological importance of intraspecific variation publication-title: Nat. Ecol. Evol. – volume: 21 start-page: 85 year: 2011 end-page: 98 ident: b0030 article-title: Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests publication-title: Ecol. Appl. – volume: 34 start-page: 898 year: 2004 end-page: 911 ident: b0070 article-title: Sparse mzodeling using orthogonal forward regression with PRESS statistic and regularization publication-title: IEEE Trans Syst. Man Cybern. Part B-Cybern. – reference: Durán, S.M., Martin, R.E., Diáz, S., Maitner, B.S., Malhi, Y., Salinas, N., Shenkin, A., Silman, M.R., Wieczynski, D.J., Asner, G.P., Bentley, L.P., Savage, V.M., Enquist, B.J., 2019. Informing trait-based ecology by assessing remotely sensed functional diversity across a broad tropical temperature gradient. Science advances 5, eaaw8114-eaaw8114. – volume: 24 start-page: 419 year: 2013 end-page: 428 ident: b0035 article-title: Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest publication-title: J. Veg. Sci. – volume: 193 start-page: 204 year: 2017 end-page: 215 ident: b0110 article-title: PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle publication-title: Remote Sens. Environ. – volume: 428 start-page: 821 year: 2004 end-page: 827 ident: b0320 article-title: The worldwide leaf economics spectrum publication-title: Nature – volume: 63 start-page: 427 year: 2008 end-page: 440 ident: b0055 article-title: Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 431 start-page: 181 year: 2004 end-page: 184 ident: b0040 article-title: Ecosystem stability and compensatory effects in the Inner Mongolia grassland publication-title: Nature – volume: 189 start-page: 259 year: 2011 end-page: 271 ident: b0105 article-title: Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile publication-title: New Phytol. – volume: 112 start-page: 3846 year: 2008 end-page: 3864 ident: b0170 article-title: Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass publication-title: Remote Sens. Environ. – volume: 2 start-page: 305 year: 1986 end-page: 312 ident: b0295 article-title: Higher-plant photosynthetic pigment analysis - determination of carotenoids and chlorophylls by hplc publication-title: J. Micronutrient Anal. – volume: 230 year: 2019 ident: b0155 article-title: Advantages of retrieving pigment content [μg/cm2] versus concentration [%] from canopy reflectance publication-title: Remote Sens. Environ. – volume: 81 start-page: 355 year: 2002 end-page: 364 ident: b0265 article-title: Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals publication-title: Remote Sens. Environ. – volume: 36 start-page: 1627 year: 1964 end-page: 1639 ident: b0240 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. – volume: 115 start-page: 404 year: 2011 end-page: 414 ident: b0115 article-title: Modeling directional-hemispherical reflectance and transmittance of fresh and dry leaves from 0.4 mu m to 5.7 mu m with the PROSPECT-VISIR model publication-title: Remote Sens. Environ. – volume: 340 start-page: 741 year: 2013 end-page: 744 ident: b0210 article-title: Global leaf trait relationships: mass, area, and the leaf economics spectrum publication-title: Science – volume: 56 start-page: 194 year: 1996 end-page: 202 ident: b0140 article-title: Estimating leaf biochemistry using the PROSPECT leaf optical properties model publication-title: Remote Sens. Environ. – volume: 57 start-page: 263 year: 2003 end-page: 272 ident: b0190 article-title: Discriminating tropical grass (Cenchrus ciliaris) canopies grown under different nitrogen treatments using spectroradiometry publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 91 start-page: 3664 year: 2010 end-page: 3674 ident: b0325 article-title: Functional traits and the growth-mortality trade-off in tropical trees publication-title: Ecology – volume: 28 start-page: 717 year: 2017 end-page: 727 ident: b0145 article-title: Linking plant strategies and plant traits derived by radiative transfer modelling publication-title: J. Veg. Sci. – volume: 8 start-page: 216 year: 2016 ident: b0330 article-title: The optimal leaf biochemical selection for mapping species diversity based on imaging spectroscopy publication-title: Remote Sens. – volume: 62 start-page: 365 year: 1992 end-page: 392 ident: b0230 article-title: Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems publication-title: Ecol. Monogr. – volume: 10 start-page: 1082 year: 2018 ident: b0195 article-title: Estimating biomass and nitrogen amount of barley and grass using UAV and aircraft based spectral and photogrammetric 3D features publication-title: Rem. Sens. – volume: 7 start-page: 269 year: 2009 end-page: 276 ident: b0020 article-title: Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests publication-title: Front. Ecol. Environ. – volume: 12 start-page: 17 year: 2010 end-page: 26 ident: b0250 article-title: Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 21 start-page: 535 year: 2013 end-page: 544 ident: b0010 article-title: Spectral resampling based on user-defined inter-band correlation filter: C 3 and C 4 grass species classification publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 8 start-page: 1441 year: 2017 ident: b0255 article-title: Mapping functional diversity from remotely sensed morphological and physiological forest traits publication-title: Nat. Commun. – volume: 16 start-page: 358 year: 2010 end-page: 372 ident: b0045 article-title: Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia Grasslands publication-title: Glob. Change Biol. – volume: 9 year: 2019 ident: b0120 article-title: Biomass prediction of heterogeneous temperate grasslands using an SfM approach based on UAV imaging publication-title: Agronomy – volume: 48 start-page: 1079 year: 2011 end-page: 1087 ident: b0060 article-title: Beyond species: functional diversity and the maintenance of ecological processes and services publication-title: J. Appl. Ecol. – volume: 186 start-page: 795 year: 2010 end-page: 816 ident: b0280 article-title: Remote sensing of plant functional types publication-title: New Phytol. – volume: 58 start-page: 109 year: 2001 end-page: 130 ident: b0315 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemometrics Intel. Lab. Syst. – volume: 108 start-page: 245 year: 2015 end-page: 259 ident: b0005 article-title: Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 95 start-page: 2646 year: 2014 end-page: 2656 ident: b0130 article-title: Resistance and resilience of a grassland ecosystem to climate extremes publication-title: Ecology – volume: 71 start-page: 1 year: 2001 end-page: 9 ident: b0165 article-title: A two-layer canopy reflectance model publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 65 start-page: 280 year: 1998 end-page: 291 ident: b0290 article-title: Estimating canopy water content of chaparral shrubs using optical methods publication-title: Remote Sens. Environ. – volume: 115 start-page: 5480 year: 2018 end-page: 5485 ident: b0205 article-title: Divergent drivers of leaf trait variation within species, among species, and among functional groups publication-title: Proc. Natl. Acad. Sci. – volume: 107 start-page: 1862 year: 2019 end-page: 1875 ident: b0235 article-title: Species asynchrony and response diversity determine multifunctional stability of natural grasslands publication-title: J. Ecol. – volume: 43 start-page: 1 year: 2015 end-page: 6 ident: b0135 article-title: Advances in remote sensing of vegetation function and traits publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 107 start-page: 2040 year: 2019 end-page: 2053 ident: b0160 article-title: Functional response of subordinate species to intraspecific trait variability within dominant species publication-title: J. Ecol. – volume: 227 start-page: 61 year: 2019 end-page: 73 ident: b0150 article-title: UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data publication-title: Remote Sens. Environ. – volume: 31 start-page: 382 year: 2016 end-page: 394 ident: b0065 article-title: Traits without borders: Integrating functional diversity across scales publication-title: Trends Ecol. Evol. – volume: 61 start-page: 167 year: 2016 end-page: 234 ident: b0215 article-title: New handbook for standardised measurement of plant functional traits worldwide publication-title: Aust. J. Bot. – volume: 105 start-page: 957 year: 2010 end-page: 965 ident: b0220 article-title: The role of plant traits and their plasticity in the response of pasture grasses to nutrients and cutting frequency publication-title: Ann. Bot. – volume: 27 start-page: 244 year: 2012 end-page: 252 ident: b0305 article-title: The return of the variance: intraspecific variability in community ecology publication-title: Trends Ecol. Evol. – volume: 76 start-page: 349 year: 2001 end-page: 359 ident: b0075 article-title: Estimating the foliar biochemical concentration of leaves with reflectance spectrometry testing the Kokaly and Clark methodologies publication-title: Remote Sens. Environ. – volume: 340 start-page: 141 year: 2011 end-page: 155 ident: b0335 article-title: Differential responses of plant functional trait to grazing between two contrasting dominant C3 and C4 species in a typical steppe of Inner Mongolia, China publication-title: Plant Soil – volume: 95 start-page: 177 year: 2005 end-page: 194 ident: b0245 article-title: Remote sensing of forest biophysical variables using HyMap imaging spectrometer data publication-title: Remote Sens. Environ. – volume: 112 start-page: 3958 year: 2008 end-page: 3970 ident: b0015 article-title: Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels publication-title: Remote Sens. Environ. – volume: 128 start-page: 73 year: 2017 end-page: 85 ident: b0175 article-title: Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 93 start-page: 345 year: 2012 end-page: 354 ident: b0270 article-title: Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships publication-title: Ecology – volume: 10 start-page: 1532 year: 2018 ident: b0275 article-title: Mapping the leaf economic spectrum across west african tropical forests using UAV-acquired hyperspectral imagery publication-title: Remote Sensing – volume: 193 start-page: 30 year: 2012 end-page: 50 ident: b0225 article-title: Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control publication-title: New Phytol. – volume: 66 start-page: 894 year: 2011 end-page: 906 ident: b0080 article-title: Mapping grassland leaf area index with airborne hyperspectral imagery: a comparison study of statistical approaches and inversion of radiative transfer models publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 89 start-page: 2290 year: 2008 end-page: 2301 ident: b0300 article-title: New multidimensional functional diversity indices for a multifaceted framework in functional ecology publication-title: Ecology – volume: 529 start-page: 167 year: 2016 end-page: U173 ident: b0095 article-title: The global spectrum of plant form and function publication-title: Nature – volume: 131 start-page: 85 year: 2013 end-page: 102 ident: b0180 article-title: Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer publication-title: Remote Sens. Environ. – volume: 13 start-page: 838 year: 2010 end-page: 848 ident: b0185 article-title: How do traits vary across ecological scales? A case for trait-based ecology publication-title: Ecol. Lett. – volume: 146 start-page: 124 year: 2018 end-page: 136 ident: b0085 article-title: UAV-based multispectral remote sensing for precision agriculture: a comparison between different cameras publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 113 start-page: S67 year: 2009 end-page: S77 ident: b0285 article-title: Retrieval of foliar information about plant pigment systems from high resolution spectroscopy publication-title: Remote Sens. Environ. – volume: 91 start-page: 3664 year: 2010 ident: 10.1016/j.ecolind.2020.107267_b0325 article-title: Functional traits and the growth-mortality trade-off in tropical trees publication-title: Ecology doi: 10.1890/09-2335.1 – volume: 13 start-page: 838 year: 2010 ident: 10.1016/j.ecolind.2020.107267_b0185 article-title: How do traits vary across ecological scales? A case for trait-based ecology publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2010.01476.x – volume: 62 start-page: 365 year: 1992 ident: 10.1016/j.ecolind.2020.107267_b0230 article-title: Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems publication-title: Ecol. Monogr. doi: 10.2307/2937116 – volume: 12 start-page: 17 year: 2010 ident: 10.1016/j.ecolind.2020.107267_b0250 article-title: Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2009.08.006 – volume: 36 start-page: 1627 year: 1964 ident: 10.1016/j.ecolind.2020.107267_b0240 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. doi: 10.1021/ac60214a047 – volume: 146 start-page: 124 year: 2018 ident: 10.1016/j.ecolind.2020.107267_b0085 article-title: UAV-based multispectral remote sensing for precision agriculture: a comparison between different cameras publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.09.008 – volume: 221 start-page: 405 year: 2019 ident: 10.1016/j.ecolind.2020.107267_b0310 article-title: Mapping foliar functional traits and their uncertainties across three years in a grassland experiment publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.016 – volume: 63 start-page: 427 year: 2008 ident: 10.1016/j.ecolind.2020.107267_b0055 article-title: Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2008.01.006 – volume: 189 start-page: 259 year: 2011 ident: 10.1016/j.ecolind.2020.107267_b0105 article-title: Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03468.x – volume: 227 start-page: 61 year: 2019 ident: 10.1016/j.ecolind.2020.107267_b0150 article-title: UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.03.025 – volume: 15 start-page: 1 year: 2013 ident: 10.1016/j.ecolind.2020.107267_b0125 article-title: Review of optical-based remote sensing for plant trait mapping publication-title: Ecol. Complexity doi: 10.1016/j.ecocom.2013.06.003 – volume: 28 start-page: 717 year: 2017 ident: 10.1016/j.ecolind.2020.107267_b0145 article-title: Linking plant strategies and plant traits derived by radiative transfer modelling publication-title: J. Veg. Sci. doi: 10.1111/jvs.12525 – volume: 93 start-page: 345 year: 2012 ident: 10.1016/j.ecolind.2020.107267_b0270 article-title: Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships publication-title: Ecology doi: 10.1890/11-0843.1 – volume: 66 start-page: 894 year: 2011 ident: 10.1016/j.ecolind.2020.107267_b0080 article-title: Mapping grassland leaf area index with airborne hyperspectral imagery: a comparison study of statistical approaches and inversion of radiative transfer models publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2011.09.013 – volume: 115 start-page: 5480 year: 2018 ident: 10.1016/j.ecolind.2020.107267_b0205 article-title: Divergent drivers of leaf trait variation within species, among species, and among functional groups publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1803989115 – volume: 16 start-page: 358 year: 2010 ident: 10.1016/j.ecolind.2020.107267_b0045 article-title: Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia Grasslands publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2009.01950.x – volume: 8 start-page: 216 year: 2016 ident: 10.1016/j.ecolind.2020.107267_b0330 article-title: The optimal leaf biochemical selection for mapping species diversity based on imaging spectroscopy publication-title: Remote Sens. doi: 10.3390/rs8030216 – volume: 56 start-page: 194 year: 1996 ident: 10.1016/j.ecolind.2020.107267_b0140 article-title: Estimating leaf biochemistry using the PROSPECT leaf optical properties model publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00238-3 – volume: 21 start-page: 85 year: 2011 ident: 10.1016/j.ecolind.2020.107267_b0030 article-title: Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests publication-title: Ecol. Appl. doi: 10.1890/09-1999.1 – volume: 186 start-page: 795 year: 2010 ident: 10.1016/j.ecolind.2020.107267_b0280 article-title: Remote sensing of plant functional types publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03284.x – volume: 7 start-page: 269 year: 2009 ident: 10.1016/j.ecolind.2020.107267_b0020 article-title: Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests publication-title: Front. Ecol. Environ. doi: 10.1890/070152 – volume: 24 start-page: 419 year: 2013 ident: 10.1016/j.ecolind.2020.107267_b0035 article-title: Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest publication-title: J. Veg. Sci. doi: 10.1111/j.1654-1103.2012.01473.x – ident: 10.1016/j.ecolind.2020.107267_b0100 doi: 10.1126/sciadv.aaw8114 – volume: 113 start-page: S67 year: 2009 ident: 10.1016/j.ecolind.2020.107267_b0285 article-title: Retrieval of foliar information about plant pigment systems from high resolution spectroscopy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.10.019 – volume: 112 start-page: 3846 year: 2008 ident: 10.1016/j.ecolind.2020.107267_b0170 article-title: Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.06.005 – volume: 230 year: 2019 ident: 10.1016/j.ecolind.2020.107267_b0155 article-title: Advantages of retrieving pigment content [μg/cm2] versus concentration [%] from canopy reflectance publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.05.014 – volume: 108 start-page: 245 year: 2015 ident: 10.1016/j.ecolind.2020.107267_b0005 article-title: Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.08.002 – volume: 10 start-page: 1532 year: 2018 ident: 10.1016/j.ecolind.2020.107267_b0275 article-title: Mapping the leaf economic spectrum across west african tropical forests using UAV-acquired hyperspectral imagery publication-title: Remote Sensing doi: 10.3390/rs10101532 – volume: 431 start-page: 181 year: 2004 ident: 10.1016/j.ecolind.2020.107267_b0040 article-title: Ecosystem stability and compensatory effects in the Inner Mongolia grassland publication-title: Nature doi: 10.1038/nature02850 – volume: 10 start-page: 1082 year: 2018 ident: 10.1016/j.ecolind.2020.107267_b0195 article-title: Estimating biomass and nitrogen amount of barley and grass using UAV and aircraft based spectral and photogrammetric 3D features publication-title: Rem. Sens. doi: 10.3390/rs10071082 – volume: 61 start-page: 167 year: 2016 ident: 10.1016/j.ecolind.2020.107267_b0215 article-title: New handbook for standardised measurement of plant functional traits worldwide publication-title: Aust. J. Bot. doi: 10.1071/BT12225 – volume: 48 start-page: 1079 year: 2011 ident: 10.1016/j.ecolind.2020.107267_b0060 article-title: Beyond species: functional diversity and the maintenance of ecological processes and services publication-title: J. Appl. Ecol. doi: 10.1111/j.1365-2664.2011.02048.x – volume: 529 start-page: 167 year: 2016 ident: 10.1016/j.ecolind.2020.107267_b0095 article-title: The global spectrum of plant form and function publication-title: Nature doi: 10.1038/nature16489 – volume: 107 start-page: 1862 year: 2019 ident: 10.1016/j.ecolind.2020.107267_b0235 article-title: Species asynchrony and response diversity determine multifunctional stability of natural grasslands publication-title: J. Ecol. doi: 10.1111/1365-2745.13151 – volume: 193 start-page: 204 year: 2017 ident: 10.1016/j.ecolind.2020.107267_b0110 article-title: PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.004 – volume: 131 start-page: 85 year: 2013 ident: 10.1016/j.ecolind.2020.107267_b0180 article-title: Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.015 – volume: 8 start-page: 1441 year: 2017 ident: 10.1016/j.ecolind.2020.107267_b0255 article-title: Mapping functional diversity from remotely sensed morphological and physiological forest traits publication-title: Nat. Commun. doi: 10.1038/s41467-017-01530-3 – volume: 57 start-page: 263 year: 2003 ident: 10.1016/j.ecolind.2020.107267_b0190 article-title: Discriminating tropical grass (Cenchrus ciliaris) canopies grown under different nitrogen treatments using spectroradiometry publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/S0924-2716(02)00158-2 – volume: 2 start-page: 57 year: 2018 ident: 10.1016/j.ecolind.2020.107267_b0090 article-title: The ecological importance of intraspecific variation publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-017-0402-5 – volume: 58 start-page: 855 year: 2007 ident: 10.1016/j.ecolind.2020.107267_b0050 article-title: Hyperspectral remote sensing of plant pigments publication-title: J. Exp. Bot. doi: 10.1093/jxb/erl123 – volume: 95 start-page: 2646 year: 2014 ident: 10.1016/j.ecolind.2020.107267_b0130 article-title: Resistance and resilience of a grassland ecosystem to climate extremes publication-title: Ecology doi: 10.1890/13-2186.1 – volume: 43 start-page: 1 year: 2015 ident: 10.1016/j.ecolind.2020.107267_b0135 article-title: Advances in remote sensing of vegetation function and traits publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2015.06.001 – volume: 8 start-page: 86 year: 2017 ident: 10.1016/j.ecolind.2020.107267_b0260 article-title: How to predict plant functional types using imaging spectroscopy: linking vegetation community traits, plant functional types and spectral response publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12642 – volume: 428 start-page: 821 year: 2004 ident: 10.1016/j.ecolind.2020.107267_b0320 article-title: The worldwide leaf economics spectrum publication-title: Nature doi: 10.1038/nature02403 – volume: 34 start-page: 898 year: 2004 ident: 10.1016/j.ecolind.2020.107267_b0070 article-title: Sparse mzodeling using orthogonal forward regression with PRESS statistic and regularization publication-title: IEEE Trans Syst. Man Cybern. Part B-Cybern. doi: 10.1109/TSMCB.2003.817107 – volume: 58 start-page: 109 year: 2001 ident: 10.1016/j.ecolind.2020.107267_b0315 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemometrics Intel. Lab. Syst. doi: 10.1016/S0169-7439(01)00155-1 – volume: 112 start-page: 3958 year: 2008 ident: 10.1016/j.ecolind.2020.107267_b0015 article-title: Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.07.003 – volume: 95 start-page: 177 year: 2005 ident: 10.1016/j.ecolind.2020.107267_b0245 article-title: Remote sensing of forest biophysical variables using HyMap imaging spectrometer data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.12.016 – volume: 9 year: 2019 ident: 10.1016/j.ecolind.2020.107267_b0120 article-title: Biomass prediction of heterogeneous temperate grasslands using an SfM approach based on UAV imaging publication-title: Agronomy doi: 10.3390/agronomy9020054 – volume: 65 start-page: 280 year: 1998 ident: 10.1016/j.ecolind.2020.107267_b0290 article-title: Estimating canopy water content of chaparral shrubs using optical methods publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00038-8 – volume: 2 start-page: 305 year: 1986 ident: 10.1016/j.ecolind.2020.107267_b0295 article-title: Higher-plant photosynthetic pigment analysis - determination of carotenoids and chlorophylls by hplc publication-title: J. Micronutrient Anal. – volume: 81 start-page: 355 year: 2002 ident: 10.1016/j.ecolind.2020.107267_b0265 article-title: Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00011-1 – volume: 158 start-page: 15 year: 2015 ident: 10.1016/j.ecolind.2020.107267_b0025 article-title: Quantifying forest canopy traits: imaging spectroscopy versus field survey publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.011 – volume: 107 start-page: 2040 year: 2019 ident: 10.1016/j.ecolind.2020.107267_b0160 article-title: Functional response of subordinate species to intraspecific trait variability within dominant species publication-title: J. Ecol. doi: 10.1111/1365-2745.13249 – volume: 128 start-page: 73 year: 2017 ident: 10.1016/j.ecolind.2020.107267_b0175 article-title: Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.03.011 – volume: 193 start-page: 30 year: 2012 ident: 10.1016/j.ecolind.2020.107267_b0225 article-title: Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03952.x – volume: 232 year: 2019 ident: 10.1016/j.ecolind.2020.107267_b0200 article-title: Grassland ecosystem services in a changing environment: the potential of hyperspectral monitoring publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111273 – volume: 21 start-page: 535 year: 2013 ident: 10.1016/j.ecolind.2020.107267_b0010 article-title: Spectral resampling based on user-defined inter-band correlation filter: C 3 and C 4 grass species classification publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2012.07.011 – volume: 27 start-page: 244 year: 2012 ident: 10.1016/j.ecolind.2020.107267_b0305 article-title: The return of the variance: intraspecific variability in community ecology publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2011.11.014 – volume: 340 start-page: 141 year: 2011 ident: 10.1016/j.ecolind.2020.107267_b0335 article-title: Differential responses of plant functional trait to grazing between two contrasting dominant C3 and C4 species in a typical steppe of Inner Mongolia, China publication-title: Plant Soil doi: 10.1007/s11104-010-0369-3 – volume: 115 start-page: 404 year: 2011 ident: 10.1016/j.ecolind.2020.107267_b0115 article-title: Modeling directional-hemispherical reflectance and transmittance of fresh and dry leaves from 0.4 mu m to 5.7 mu m with the PROSPECT-VISIR model publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.09.011 – volume: 340 start-page: 741 year: 2013 ident: 10.1016/j.ecolind.2020.107267_b0210 article-title: Global leaf trait relationships: mass, area, and the leaf economics spectrum publication-title: Science doi: 10.1126/science.1231574 – volume: 31 start-page: 382 year: 2016 ident: 10.1016/j.ecolind.2020.107267_b0065 article-title: Traits without borders: Integrating functional diversity across scales publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2016.02.003 – volume: 71 start-page: 1 year: 2001 ident: 10.1016/j.ecolind.2020.107267_b0165 article-title: A two-layer canopy reflectance model publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/S0022-4073(01)00007-3 – volume: 76 start-page: 349 year: 2001 ident: 10.1016/j.ecolind.2020.107267_b0075 article-title: Estimating the foliar biochemical concentration of leaves with reflectance spectrometry testing the Kokaly and Clark methodologies publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00182-1 – volume: 89 start-page: 2290 year: 2008 ident: 10.1016/j.ecolind.2020.107267_b0300 article-title: New multidimensional functional diversity indices for a multifaceted framework in functional ecology publication-title: Ecology doi: 10.1890/07-1206.1 – volume: 105 start-page: 957 year: 2010 ident: 10.1016/j.ecolind.2020.107267_b0220 article-title: The role of plant traits and their plasticity in the response of pasture grasses to nutrients and cutting frequency publication-title: Ann. Bot. doi: 10.1093/aob/mcq066 |
SSID | ssj0016996 |
Score | 2.4236648 |
Snippet | •Leaf traits should be hyperspectrally estimated on an area basis in grasslands.•LAI-based upscaling in spectral estimates of canopy traits outperforms biomass... Plant functional traits are closely associated with key ecological processes and ecosystem functions. Recent studies have demonstrated that plant functional... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107267 |
SubjectTerms | Aboveground biomass canopy carbon carotenoids chlorophyll Ecosystem function ecosystems Functional trait grasslands Hyperspectral image leaf area index leaves nitrogen Partial least squares regression (PLSR) photosynthesis prediction specific leaf weight spectrometers Unmanned aerial vehicle (UAV) unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTr1UUEBdoJWReg04duzER1qBVpXoCaS9Wf4YVyCUoN0g9ed3bCds28teuNqxE3vG9pvM-A0hX4NWntvaVcIKqJoo2spyD1VsfYjCImSOyaN7-1Mt75sfK7n6K9VXigkr9MBl4i5Fa6OMLminE1mdd05rXjdB1dhXozPPJ555szE1-Q-U1uVeUcuqWrHV9u7O5eMF2nUI4RJNKE9lLc9J5renUibv_-dw-m-bzmfPzT75MIFGelU-9oC8g_4jOb7e3lHDymmRbg7J7yXaluUK5Ror1jlnFioUHSJ9Ahtp_psxb3o0JYkYN9T2gWavAc0-XToOFEdQiJ7pc-GFzYkm6ENPf60Rc6eYSIpaPBT2Dtgckfub67vvy2pKsFD5Rsqxsl2UDi0oKcHhJGuIzHnPYhBOeK-C0qpx4CTUUQFD5FILABW0Bea49Eock71-6OEToUxw0ULbee150wXbMce64K31rNNehAVp5gk2fmIfT-N7MnOY2aOZ5GKSXEyRy4JcvDZ7LvQbuxp8S9J7fTixZ-cC1Ckz6ZTZpVML0s2yNxMQKQADu3rY9f7zWVcMLtTkfbE9DC8bwyWiIZ7y0J-8xTeekvc8hdfkcLgzsjeuX-Az4qPRfclL4Q_nBhKy priority: 102 providerName: Directory of Open Access Journals |
Title | Hyperspectral retrieval of leaf physiological traits and their links to ecosystem productivity in grassland monocultures |
URI | https://dx.doi.org/10.1016/j.ecolind.2020.107267 https://www.proquest.com/docview/2524229400 https://doaj.org/article/37af5fbd9b93423cbb99214d61df3493 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuGCKFCxFFZG4prdxK_Ex7ZqtYDoBSrtzfKz2qpKVtlU4sRvZ2wnuyqXSlydpz2fx2PPzDcIfXFSWKIrU1BNfcECrQtNrC9CbV2gGkzmED26P27E6pZ9W_P1EbqccmFiWOWo-7NOT9p6bFmOo7ncbjbLnxWrIz3amgAuCSA1ZrCzOqJ88Wcf5lEJKXOGUV0W8e5DFs_yfgE7PDDmImEoiW01SeXmD-tTovF_skz9o7DTKnT9Gr0azUd8nv_wBB359g06vTpkq8HFcbru3qLfK9hl5mTKHi70qXoWQAt3AT94HXA615jUH47lIoYd1q3DyX-Ak3cXDx2GHmTKZ7zNDLGp5ATetPiuB-s7RkdiwHOXeTz87h26vb76dbkqxlILhWWcD4VuAjewl-Lcm8CD9KE01pbBUUOtFU5IwYw33FdB-BJsmIp6L5zUvjSEW0FP0XHbtf49wiUltPZ1Y6UlrHG6KU3ZOKu1LRtpqZshNg2wsiMPeezfg5oCzu7VKBcV5aKyXGZosX9sm4k4nnvgIkpvf3Pk0U4NXX-nRiApWmvornHSyEiFaI2RklTMiQqQyiSdoWaSvXoCS3jV5rnvf56womDKRj-Mbn33uFOEg11EYkX6D___-jP0ksTwmhQO9xEdD_2j_wT20WDmaQLM0Yvzr99XN_N0yvAXBroWjA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocmgvVV-oC324Uq9hEzt24iNFoFBgLwVpb5afaBFKVtlF6s9n7Di7ohekXp04iT2fx-PMzDcI_bSCG6IKnVFFXVZ6WmWKGJf5ylhPFZjMPnh0r-e8uS1_L9hiD52OuTAhrDLp_kGnR22dWmZpNmer5XL2pyirQI-2IIBLAkh9hfYDOxWboP2Ti8tmvnUmcCGGJKMqz0KHXSLP7P4YDnlgzwXOUBLaKhIrzu-2qMjk_2yn-kdnx43o_B16myxIfDJ85Hu059oP6OBsl7AGF9OKXX9Efxs4aA75lD1c6GMBLUAX7jx-cMrj-Gtj1IA4VIzYrLFqLY4uBBwdvHjTYRjBwPqMVwNJbKw6gZctvuvBAA8Bkhgg3Q1UHm79Cd2en92cNlmqtpCZkrFNpmrPNBynGHPaMy-cz7UxubdUU2O45YKX2mnmCs9dDmZMQZ3jViiXa8IMpwdo0nat-4xwTgmtXFUbYUhZW1XnOq-tUcrktTDUTlE5TrA0iYo8jO9BjjFn9zLJRQa5yEEuU3S87bYauDhe6vArSG97c6DSjg1dfycTliStFAxXW6FFYEM0WgtBitLyAsBaCjpF9Sh7-QyZ8KjlS-__MWJFwqoNrhjVuu5xLQkD04iEovSH___47-h1c3N9Ja8u5pdH6A0J0TYxOu4Lmmz6R_cVzKWN_paWwxPq_RhI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+retrieval+of+leaf+physiological+traits+and+their+links+to+ecosystem+productivity+in+grassland+monocultures&rft.jtitle=Ecological+indicators&rft.au=Zhao%2C+Yujin&rft.au=Sun%2C+Yihan&rft.au=Lu%2C+Xiaoming&rft.au=Zhao%2C+Xuezhen&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=1470-160X&rft.eissn=1872-7034&rft.volume=122&rft_id=info:doi/10.1016%2Fj.ecolind.2020.107267&rft.externalDocID=S1470160X20312073 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon |