Spatiotemporal variations and the driving factors of PM2.5 in Xi’an, China between 2004 and 2018
[Display omitted] •Spatial autocorrelation and clustering characteristics of city-level PM2.5 levels were observed.•The resonance cycles of PM2.5 concentrations with each influence factor were identified.•The influence of long-term driving elements on PM2.5 is quantitatively explored.•LUCC coupled w...
Saved in:
Published in | Ecological indicators Vol. 146; p. 109802 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2023
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1470-160X 1872-7034 |
DOI | 10.1016/j.ecolind.2022.109802 |
Cover
Loading…
Abstract | [Display omitted]
•Spatial autocorrelation and clustering characteristics of city-level PM2.5 levels were observed.•The resonance cycles of PM2.5 concentrations with each influence factor were identified.•The influence of long-term driving elements on PM2.5 is quantitatively explored.•LUCC coupled with other factors had a large influence on PM2.5 concentrations.
High-intensity human socioeconomic activities in Xi’an have caused fine particulate matter (PM2.5) pollution. Understanding the spatial and temporal patterns and key factors influencing PM2.5 concentration was the basic step for taking targeted measures. Thus, spatial analysis techniques are used to reveal the temporal and spatial distribution characteristics of PM2.5 in Xi’an over a long time series; wavelet analysis and Geo-detector models are applied to assess the strength of the association between meteorological and socio-economic conditions on PM2.5 concentrations. The results illustrated that the average PM2.5 concentration was 40.13 μg/m3 in 2004 and peaked at 62.06 μg/m3 in 2011, before failing to 38.77 μg/m3 by 2018. The PM2.5 concentration distribution had a characteristic of high in winter and autumn but low in spring and summer, presenting a U-shaped profile. The main distribution of PM2.5 concentrations was oriented in a northeast-southwest direction, with obvious spatial autocorrelation and spatial aggregation characteristics. The resonance cycles of the meteorological and socioeconomic elements and PM2.5 concentrations were synchronous and divergent at different scales. U-wind was the influencing factor on PM2.5 concentration with a positive correlation coefficient of 0.9. Before 2011, the interaction of temperature (Tem) and relative humidity (RH) had the greatest impact on PM2.5 concentrations. Additionally, the land use and cover change (LUCC) coupled with other factors had a large influence on PM2.5 concentrations. These relationships can shed new light on the underlying mechanisms of PM2.5 contamination at the city level, assisting relevant departments in developing effective PM2.5 pollution management strategies. |
---|---|
AbstractList | High-intensity human socioeconomic activities in Xi’an have caused fine particulate matter (PM2.5) pollution. Understanding the spatial and temporal patterns and key factors influencing PM2.5 concentration was the basic step for taking targeted measures. Thus, spatial analysis techniques are used to reveal the temporal and spatial distribution characteristics of PM2.5 in Xi’an over a long time series; wavelet analysis and Geo-detector models are applied to assess the strength of the association between meteorological and socio-economic conditions on PM2.5 concentrations. The results illustrated that the average PM2.5 concentration was 40.13 μg/m3 in 2004 and peaked at 62.06 μg/m3 in 2011, before failing to 38.77 μg/m3 by 2018. The PM2.5 concentration distribution had a characteristic of high in winter and autumn but low in spring and summer, presenting a U-shaped profile. The main distribution of PM2.5 concentrations was oriented in a northeast-southwest direction, with obvious spatial autocorrelation and spatial aggregation characteristics. The resonance cycles of the meteorological and socioeconomic elements and PM2.5 concentrations were synchronous and divergent at different scales. U-wind was the influencing factor on PM2.5 concentration with a positive correlation coefficient of 0.9. Before 2011, the interaction of temperature (Tem) and relative humidity (RH) had the greatest impact on PM2.5 concentrations. Additionally, the land use and cover change (LUCC) coupled with other factors had a large influence on PM2.5 concentrations. These relationships can shed new light on the underlying mechanisms of PM2.5 contamination at the city level, assisting relevant departments in developing effective PM2.5 pollution management strategies. High-intensity human socioeconomic activities in Xi’an have caused fine particulate matter (PM₂.₅) pollution. Understanding the spatial and temporal patterns and key factors influencing PM₂.₅ concentration was the basic step for taking targeted measures. Thus, spatial analysis techniques are used to reveal the temporal and spatial distribution characteristics of PM₂.₅ in Xi’an over a long time series; wavelet analysis and Geo-detector models are applied to assess the strength of the association between meteorological and socio-economic conditions on PM₂.₅ concentrations. The results illustrated that the average PM₂.₅ concentration was 40.13 μg/m³ in 2004 and peaked at 62.06 μg/m³ in 2011, before failing to 38.77 μg/m³ by 2018. The PM₂.₅ concentration distribution had a characteristic of high in winter and autumn but low in spring and summer, presenting a U-shaped profile. The main distribution of PM₂.₅ concentrations was oriented in a northeast-southwest direction, with obvious spatial autocorrelation and spatial aggregation characteristics. The resonance cycles of the meteorological and socioeconomic elements and PM₂.₅ concentrations were synchronous and divergent at different scales. U-wind was the influencing factor on PM₂.₅ concentration with a positive correlation coefficient of 0.9. Before 2011, the interaction of temperature (Tem) and relative humidity (RH) had the greatest impact on PM₂.₅ concentrations. Additionally, the land use and cover change (LUCC) coupled with other factors had a large influence on PM₂.₅ concentrations. These relationships can shed new light on the underlying mechanisms of PM₂.₅ contamination at the city level, assisting relevant departments in developing effective PM₂.₅ pollution management strategies. [Display omitted] •Spatial autocorrelation and clustering characteristics of city-level PM2.5 levels were observed.•The resonance cycles of PM2.5 concentrations with each influence factor were identified.•The influence of long-term driving elements on PM2.5 is quantitatively explored.•LUCC coupled with other factors had a large influence on PM2.5 concentrations. High-intensity human socioeconomic activities in Xi’an have caused fine particulate matter (PM2.5) pollution. Understanding the spatial and temporal patterns and key factors influencing PM2.5 concentration was the basic step for taking targeted measures. Thus, spatial analysis techniques are used to reveal the temporal and spatial distribution characteristics of PM2.5 in Xi’an over a long time series; wavelet analysis and Geo-detector models are applied to assess the strength of the association between meteorological and socio-economic conditions on PM2.5 concentrations. The results illustrated that the average PM2.5 concentration was 40.13 μg/m3 in 2004 and peaked at 62.06 μg/m3 in 2011, before failing to 38.77 μg/m3 by 2018. The PM2.5 concentration distribution had a characteristic of high in winter and autumn but low in spring and summer, presenting a U-shaped profile. The main distribution of PM2.5 concentrations was oriented in a northeast-southwest direction, with obvious spatial autocorrelation and spatial aggregation characteristics. The resonance cycles of the meteorological and socioeconomic elements and PM2.5 concentrations were synchronous and divergent at different scales. U-wind was the influencing factor on PM2.5 concentration with a positive correlation coefficient of 0.9. Before 2011, the interaction of temperature (Tem) and relative humidity (RH) had the greatest impact on PM2.5 concentrations. Additionally, the land use and cover change (LUCC) coupled with other factors had a large influence on PM2.5 concentrations. These relationships can shed new light on the underlying mechanisms of PM2.5 contamination at the city level, assisting relevant departments in developing effective PM2.5 pollution management strategies. |
ArticleNumber | 109802 |
Author | Li, Guanghua Deng, Shunxi Liu, Jiayao Wang, Wei Lu, Zhenzhen Tuheti, Abula Lu, Pan Du, Chenhui Li, Jianghao |
Author_xml | – sequence: 1 givenname: Abula surname: Tuheti fullname: Tuheti, Abula organization: School of Water and Environment, Chang’an University, Xi’an 710064, China – sequence: 2 givenname: Shunxi surname: Deng fullname: Deng, Shunxi email: dengsx@chd.edu.cn organization: School of Water and Environment, Chang’an University, Xi’an 710064, China – sequence: 3 givenname: Jianghao surname: Li fullname: Li, Jianghao organization: School of Water and Environment, Chang’an University, Xi’an 710064, China – sequence: 4 givenname: Guanghua surname: Li fullname: Li, Guanghua organization: School of Water and Environment, Chang’an University, Xi’an 710064, China – sequence: 5 givenname: Pan surname: Lu fullname: Lu, Pan organization: School of Water and Environment, Chang’an University, Xi’an 710064, China – sequence: 6 givenname: Zhenzhen surname: Lu fullname: Lu, Zhenzhen organization: School of Water and Environment, Chang’an University, Xi’an 710064, China – sequence: 7 givenname: Jiayao surname: Liu fullname: Liu, Jiayao organization: School of Water and Environment, Chang’an University, Xi’an 710064, China – sequence: 8 givenname: Chenhui surname: Du fullname: Du, Chenhui organization: School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710064, Shaanxi, China – sequence: 9 givenname: Wei surname: Wang fullname: Wang, Wei organization: State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China |
BookMark | eNqFkU1uFDEQhVsoSCSBIyB5yYIeym7_tVggNAoQKQgkssjOqnbbiUc99mA7g9hxDa7HSeiZDhs2WVXpub6ncr2z5iSm6JrmJYUVBSrfbFbOpinEccWAsVnrNbAnzSnVirUKOn4y91xBSyXcPGvOStnAzPW9PG2GbzusIVW33aWME9ljDgchFoJxJPXOkTGHfYi3xKOtKReSPPn6ma0ECZHchD-_fmN8TdZ3ISIZXP3hXCQMgB95BlQ_b556nIp78VDPm-sPF9frT-3Vl4-X6_dXreVC1BYVcK4lAz4qJtQgewGIPSjmxo5aKeZX1IOQ4BntwIMX0oIWGvuBUdadN5eL7ZhwY3Y5bDH_NAmDOQop3xrMNdjJGdlpLcCqwXrKmRi176VHpnhHQQHS2evV4rXL6fu9K9VsQ7FumjC6dF8M0x1nTGom59G3y6jNqZTsvLGhHi9YM4bJUDCHkMzGPIRkDiGZJaSZFv_R_xZ_jHu3cG4-6D64bIoNLlo3huxsnb8cHnH4C9PnrTc |
CitedBy_id | crossref_primary_10_1016_j_envpol_2024_125274 crossref_primary_10_1016_j_jastp_2025_106494 crossref_primary_10_1007_s10661_024_12831_8 crossref_primary_10_3390_f14122376 crossref_primary_10_3390_f15122136 crossref_primary_10_1016_j_uclim_2024_102167 crossref_primary_10_1016_j_apr_2024_102305 crossref_primary_10_1016_j_ecolind_2024_112218 crossref_primary_10_1016_j_scitotenv_2024_171910 |
Cites_doi | 10.3390/su12010135 10.1016/j.atmosenv.2015.09.031 10.3390/su12093550 10.1016/j.atmosenv.2016.10.044 10.1016/j.scitotenv.2017.12.172 10.1016/j.envpol.2022.120392 10.1007/BF02656848 10.1016/j.ecolind.2021.107491 10.1016/j.scitotenv.2020.143266 10.1016/j.atmosenv.2022.119015 10.1007/s11434-014-0607-9 10.1016/j.scitotenv.2017.11.124 10.1016/j.scitotenv.2018.10.367 10.1016/j.envpol.2018.05.043 10.1038/517145d 10.1086/214027 10.1016/j.atmosenv.2016.10.029 10.1016/j.ecolind.2015.11.012 10.1016/j.atmosenv.2018.03.041 10.20937/ATM.52979 10.1021/acs.est.5b05833 10.1016/j.enpol.2018.04.040 10.1016/j.atmosenv.2017.05.008 10.1016/j.jclepro.2016.11.104 10.1016/j.apr.2017.05.005 10.1016/j.scitotenv.2014.03.138 10.3390/ijerph17062157 10.1016/j.jclepro.2019.118065 10.1016/j.envint.2016.09.003 10.1016/j.scitotenv.2018.01.083 10.1016/j.jenvman.2021.112000 10.1016/j.envpol.2014.03.020 10.1016/j.envint.2019.105145 10.1016/j.apr.2018.07.004 10.1038/ngeo1591 10.1016/j.ecolind.2017.06.043 10.5194/acp-22-8473-2022 10.1016/j.jclepro.2021.126904 10.1016/j.jclepro.2015.05.006 10.1016/j.jclepro.2019.02.123 10.1016/j.atmosenv.2014.08.020 10.1016/j.envpol.2020.114257 10.1016/j.scitotenv.2018.08.181 10.1016/j.uclim.2021.100942 10.1016/j.scitotenv.2020.136623 10.1016/j.scitotenv.2022.158504 10.1016/j.envpol.2020.114276 10.1016/j.scitotenv.2018.11.365 10.1016/j.envpol.2016.06.014 10.1016/j.chemosphere.2015.12.118 10.1016/j.ecolind.2021.107541 10.1016/j.envpol.2020.115907 10.1016/j.apr.2022.101546 10.1016/j.jclepro.2022.130607 10.1016/j.scs.2020.102106 10.1016/j.apenergy.2020.115246 10.1007/s11442-019-1617-y 10.1038/s41598-018-29366-x 10.1016/j.envint.2016.11.002 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.ecolind.2022.109802 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1872-7034 |
ExternalDocumentID | oai_doaj_org_article_638850c7bcf1425d8f96fa27431070a1 10_1016_j_ecolind_2022_109802 S1470160X22012754 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABVA AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSJ SSZ T5K ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c455t-a704486204d7257b6950aa9072ed31c65448a8b560f2130f0f56c0858a9b2123 |
IEDL.DBID | .~1 |
ISSN | 1470-160X |
IngestDate | Wed Aug 27 01:24:09 EDT 2025 Fri Aug 22 20:23:00 EDT 2025 Tue Jul 01 04:27:01 EDT 2025 Thu Apr 24 23:02:23 EDT 2025 Fri Feb 23 02:35:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Geo-detector Wavelet analysis Driving factors Spatio-temporal variation |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-a704486204d7257b6950aa9072ed31c65448a8b560f2130f0f56c0858a9b2123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1470160X22012754 |
PQID | 2834226826 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_638850c7bcf1425d8f96fa27431070a1 proquest_miscellaneous_2834226826 crossref_citationtrail_10_1016_j_ecolind_2022_109802 crossref_primary_10_1016_j_ecolind_2022_109802 elsevier_sciencedirect_doi_10_1016_j_ecolind_2022_109802 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 20230201 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Ecological indicators |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Lu, Xu, Yang, Zhao (b0160) 2017; 8 Cao, J., PM Liu, Li, Chen (b0140) 2015; 517 Mi, Sun, Li, Lei, Wu, Tang, Wang, Yang (b0185) 2021; 299 Xie, Sabel, Lu, Zhu, Kan, Nielsen, Wang (b0260) 2016; 97 Zhang, Zhu, Zhu, Cui, He, Ren (b0325) 2019; 29 Ouyang, Wei, Li, Wang, Kleme (b0195) 2021; 283 Mateus-Fontecha, Vargas-Burbano, Jimenez, Rojas, Rueda-Saa, van Pinxteren, van Pinxteren, Fomba, Herrmann (b0175) 2022; 22 Yan, Ren, Kong, Ye, Liao (b0285) 2020; 272 Zhu, Wang, Zhang (b0355) 2019; 239 Song, Wang, Maher, Li, Xu, Liu, Sun, Zhang (b0215) 2016; 112 Rupakheti, Yin, Rupakheti, Zhang, Li, Rai, Kang (b0205) 2021; 268 and the environment in China. Science Press 2014: 115-116. Huang, Zhao, Sun, Tang, Liang (b0090) 2021; 42 Chu, Huang, Liu, Cai, Liu (b0030) 2020; 12 Dong, Liu, Song, Yang, Yang, Song, Miao, Zhang, Zhang (b0040) 2022; 315 Zhao, Zhou, Han, Locke (b0340) 2019; 133 Zhang, Xu, Xiao (b0315) 2020; 713 Niu, Cao, Shen, Ho, Tie, Zhao, Xu, Zhang, Huang (b0190) 2016; 147 Zhu, Xu, Zheng, Yan, Wang, Cai (b0350) 2018; 626 Jing, Liu, Wang, Song, Lee, Xu (b0105) 2020; 12 Hudgins, Huang (b0095) 1996; 13 Hu, Yang, Qiu, Pei, Song, Ma (b0075) 2017; 40 Yang, Yuan, Yue, Li (b0305) 2020; 262 Zhang, Xu, Liang (b0320) 2022; 275 Duan, Wang, Cheng, Wang (b0050) 2022; 337 Hogrefe (b0070) 2012; 5 Wu, Guo, Luo, Chen (b0255) 2021; 125 Zhang, An, Liu, Li, Liu, Tao, Liu, Zhang, Zheng, Gao, Guo, Luo (b0310) 2020; 262 Du, Zhou, Pan, Sun, Wu (b0045) 2019; 220 Rodríguez-Gómez, Echeverry, Jaramillo, Ladino (b0200) 2021 Yan, Lei, Shi, Zhu, Li, Zhang (b0280) 2018; 183 Wang, Zhou, Wang, Feng, Hubacek (b0250) 2017; 142 Huang, Zhao, Cao, Xin (b0085) 2020; 41 Guo, Mu, Ding, Qin (b0060) 2021; 76 Lu, Lin, Li, Yao, Fung, Lau (b0155) 2017; 98 Cheng, Li, Liu (b0025) 2017; 82 He, Geng, Li, Mu, Zhou, Liu, Gao, Wang, Cheng (b0065) 2018; 8 Li, Li, Gao, Ding, Xu, Song (b0115) 2015; 60 Meng, Cheng, Gu, Shi, Wang, Wu, Bao (b0180) 2019; 656 Shi, Wu, Li (b0210) 2021; 125 Huang, Shao, Jing-bo, Song (b0080) 2019; 39 Yang, Jiang (b0295) 2020; 41 Xu, Luo, Lin (b0270) 2016; 63 Wang, Hu, Xu, Lv, Xie, Kleeman, Xing, Zhang, Ying (b0235) 2014; 97 Yang, Wang, Xu, Xu, Lu, Ye, Wang, Bai (b0300) 2018; 241 Lv, Zhang, Bai (b0165) 2016; 2016 Sun, Zhang, Xiang, Fan, Fu, Lv, Zheng (b0220) 2022; 13 Ji, Yao, Long (b0100) 2018; 119 Londoño Pineda, Cano (b0150) 2021; 39 Li, Cui, Li, Zhao, Fu, Wu, Zhang, Kong, Chen (b0120) 2017; 161 Xu, Yan, Hong, Guo (b0275) 2015; 2022 Liu, Wang, Zhang, Li, Dong (b0145) 2019; 653 van Donkelaar, Martin, Brauer, Hsu, Kahn, Levy, Lyapustin, Sayer, Winker (b0225) 2016; 50 Zhou, Chen, Wang (b0345) 2018; 619–620 Xu, Ju, Ji, Zhang, Yue, Hu (b0265) 2014; 35 Lefever (b0110) 1926; 32 Wang, Fang (b0230) 2016; 148 Zhao, Yu, Yin, Qin, He, Dong (b0330) 2018; 624 Zhao, Zhan, Yao, Yang (b0335) 2020; 56 Wang, Samat, Abuduwaili, Ge (b0240) 2020; 17 Li, Wang, Cui, Fu, Zhang, Kong, Chen, Chen (b0130) 2019; 648 Csavina, Field, Félix, Corral-Avitia, Sáez, Betterton (b0035) 2014; 487 Masiol, Hopke, Felton, Frank, Rattigan, Wurth, LaDuke (b0170) 2016; 148 Amantai, Ding, Ge, Bao (b0005) 2021; 76 Guang, Li, Xiang (b0055) 2019; 10 Casallas, Castillo-Camacho, Guevara-Luna, González, Sanchez, Belalcazar (b0020) 2022; 852 Ling, Yang, Qiang, Song (b0135) 2020; 36 Yan, Kong, Jiang, Huang, Ye (b0290) 2021; 761 Li, Qian, Ou, Zhou, Guo, Guo (b0125) 2014; 190 Bari, Kindzierski (b0010) 2016; 218 Wang, Xu (b0245) 2017; 72 Bari (10.1016/j.ecolind.2022.109802_b0010) 2016; 218 Ouyang (10.1016/j.ecolind.2022.109802_b0195) 2021; 283 Li (10.1016/j.ecolind.2022.109802_b0120) 2017; 161 Zhu (10.1016/j.ecolind.2022.109802_b0355) 2019; 239 Li (10.1016/j.ecolind.2022.109802_b0125) 2014; 190 He (10.1016/j.ecolind.2022.109802_b0065) 2018; 8 Zhao (10.1016/j.ecolind.2022.109802_b0340) 2019; 133 Masiol (10.1016/j.ecolind.2022.109802_b0170) 2016; 148 Wang (10.1016/j.ecolind.2022.109802_b0235) 2014; 97 Xu (10.1016/j.ecolind.2022.109802_b0265) 2014; 35 Shi (10.1016/j.ecolind.2022.109802_b0210) 2021; 125 Xu (10.1016/j.ecolind.2022.109802_b0270) 2016; 63 Londoño Pineda (10.1016/j.ecolind.2022.109802_b0150) 2021; 39 Zhang (10.1016/j.ecolind.2022.109802_b0310) 2020; 262 Yan (10.1016/j.ecolind.2022.109802_b0285) 2020; 272 Csavina (10.1016/j.ecolind.2022.109802_b0035) 2014; 487 Wang (10.1016/j.ecolind.2022.109802_b0240) 2020; 17 Huang (10.1016/j.ecolind.2022.109802_b0090) 2021; 42 Yan (10.1016/j.ecolind.2022.109802_b0280) 2018; 183 Yang (10.1016/j.ecolind.2022.109802_b0295) 2020; 41 Wang (10.1016/j.ecolind.2022.109802_b0230) 2016; 148 Wu (10.1016/j.ecolind.2022.109802_b0255) 2021; 125 Yang (10.1016/j.ecolind.2022.109802_b0305) 2020; 262 Li (10.1016/j.ecolind.2022.109802_b0130) 2019; 648 Zhao (10.1016/j.ecolind.2022.109802_b0335) 2020; 56 Casallas (10.1016/j.ecolind.2022.109802_b0020) 2022; 852 Huang (10.1016/j.ecolind.2022.109802_b0085) 2020; 41 van Donkelaar (10.1016/j.ecolind.2022.109802_b0225) 2016; 50 Ji (10.1016/j.ecolind.2022.109802_b0100) 2018; 119 Ling (10.1016/j.ecolind.2022.109802_b0135) 2020; 36 Liu (10.1016/j.ecolind.2022.109802_b0140) 2015; 517 Hogrefe (10.1016/j.ecolind.2022.109802_b0070) 2012; 5 Jing (10.1016/j.ecolind.2022.109802_b0105) 2020; 12 10.1016/j.ecolind.2022.109802_b0015 Rodríguez-Gómez (10.1016/j.ecolind.2022.109802_b0200) 2021 Lefever (10.1016/j.ecolind.2022.109802_b0110) 1926; 32 Xie (10.1016/j.ecolind.2022.109802_b0260) 2016; 97 Amantai (10.1016/j.ecolind.2022.109802_b0005) 2021; 76 Lu (10.1016/j.ecolind.2022.109802_b0155) 2017; 98 Lv (10.1016/j.ecolind.2022.109802_b0165) 2016; 2016 Rupakheti (10.1016/j.ecolind.2022.109802_b0205) 2021; 268 Yang (10.1016/j.ecolind.2022.109802_b0300) 2018; 241 Guang (10.1016/j.ecolind.2022.109802_b0055) 2019; 10 Yan (10.1016/j.ecolind.2022.109802_b0290) 2021; 761 Xu (10.1016/j.ecolind.2022.109802_b0275) 2015; 2022 Meng (10.1016/j.ecolind.2022.109802_b0180) 2019; 656 Song (10.1016/j.ecolind.2022.109802_b0215) 2016; 112 Liu (10.1016/j.ecolind.2022.109802_b0145) 2019; 653 Wang (10.1016/j.ecolind.2022.109802_b0250) 2017; 142 Sun (10.1016/j.ecolind.2022.109802_b0220) 2022; 13 Cheng (10.1016/j.ecolind.2022.109802_b0025) 2017; 82 Zhou (10.1016/j.ecolind.2022.109802_b0345) 2018; 619–620 Hudgins (10.1016/j.ecolind.2022.109802_b0095) 1996; 13 Wang (10.1016/j.ecolind.2022.109802_b0245) 2017; 72 Zhang (10.1016/j.ecolind.2022.109802_b0315) 2020; 713 Guo (10.1016/j.ecolind.2022.109802_b0060) 2021; 76 Zhao (10.1016/j.ecolind.2022.109802_b0330) 2018; 624 Huang (10.1016/j.ecolind.2022.109802_b0080) 2019; 39 Mi (10.1016/j.ecolind.2022.109802_b0185) 2021; 299 Du (10.1016/j.ecolind.2022.109802_b0045) 2019; 220 Mateus-Fontecha (10.1016/j.ecolind.2022.109802_b0175) 2022; 22 Chu (10.1016/j.ecolind.2022.109802_b0030) 2020; 12 Dong (10.1016/j.ecolind.2022.109802_b0040) 2022; 315 Niu (10.1016/j.ecolind.2022.109802_b0190) 2016; 147 Lu (10.1016/j.ecolind.2022.109802_b0160) 2017; 8 Zhu (10.1016/j.ecolind.2022.109802_b0350) 2018; 626 Zhang (10.1016/j.ecolind.2022.109802_b0325) 2019; 29 Duan (10.1016/j.ecolind.2022.109802_b0050) 2022; 337 Zhang (10.1016/j.ecolind.2022.109802_b0320) 2022; 275 Li (10.1016/j.ecolind.2022.109802_b0115) 2015; 60 Hu (10.1016/j.ecolind.2022.109802_b0075) 2017; 40 |
References_xml | – volume: 13 start-page: 299 year: 1996 end-page: 312 ident: b0095 article-title: Bivariate wavelet analysis of Asia Monsoon and Enso publication-title: Adv. Atmos. Sci. – volume: 39 start-page: 3539 year: 2019 end-page: 3548 ident: b0080 article-title: Influence factors and spillover effect of PM publication-title: China Environ. Sci. – volume: 32 start-page: 88 year: 1926 end-page: 94 ident: b0110 article-title: Measuring geographic concentration by means of the Standard Deviational Ellipse publication-title: Am. J. Sociol. – volume: 60 start-page: 387 year: 2015 end-page: 395 ident: b0115 article-title: Diurnal, seasonal, and spatial variation of PM publication-title: Sci. Bull. – volume: 76 start-page: 1177 year: 2021 end-page: 1192 ident: b0005 article-title: Variation characteristics of actual evapotranspiration and meteorological elements in the Ebinur Lake basin from 1960 to 2017 publication-title: Acta Geograph. Sin. – volume: 133 start-page: 105145 year: 2019 ident: b0340 article-title: Spatiotemporal variation in PM publication-title: Environ. Int. – volume: 315 start-page: 120392 year: 2022 ident: b0040 article-title: Effects of anthropogenic precursor emissions and meteorological conditions on PM publication-title: Environ. Pollut. – volume: 218 start-page: 219 year: 2016 end-page: 229 ident: b0010 article-title: Fine particulate matter (PM publication-title: Environ. Pollut. – volume: 262 start-page: 114257 year: 2020 ident: b0305 article-title: by using modified geographically weighted regression publication-title: Environ. Pollut. – volume: 262 start-page: 114276 year: 2020 ident: b0310 article-title: Spatiotemporal variations and influencing factors of PM publication-title: Environ. Pollut. – volume: 29 start-page: 598 year: 2019 end-page: 612 ident: b0325 article-title: Topographical relief characteristics and its impact on population and economy: a case study of the mountainous area in western Henan, China publication-title: J. Geogr. Sci. – volume: 42 start-page: 4582 year: 2021 end-page: 4592 ident: b0090 article-title: Orographic influences on the spatial distribution of PM publication-title: Environ. Sci. – volume: 10 start-page: 162 year: 2019 end-page: 167 ident: b0055 article-title: PM publication-title: Atmos. Pollut. Res. – volume: 761 start-page: 143266 year: 2021 end-page: 143279 ident: b0290 article-title: How do socioeconomic factors influence urban PM publication-title: Sci. Total Environ. – volume: 619–620 start-page: 436 year: 2018 end-page: 445 ident: b0345 article-title: Examining the effects of socioeconomic development on fine particulate matter (PM publication-title: Sci. Total Environ. – volume: 8 year: 2018 ident: b0065 article-title: Long-term variation of satellite-based PM publication-title: Sci. Rep. – reference: Cao, J., PM – volume: 97 start-page: 182 year: 2014 end-page: 194 ident: b0235 article-title: Source contributions to primary and secondary inorganic particulate matter during a severe wintertime PM publication-title: Atmos. Environ. – volume: 142 start-page: 1800 year: 2017 end-page: 1809 ident: b0250 article-title: The characteristics and drivers of fine particulate matter (PM2.5) distribution in China publication-title: J. Clean. Prod. – volume: 41 start-page: 1013 year: 2020 end-page: 1024 ident: b0085 article-title: Evolution of the distribution of PM publication-title: Environ. Sci. – volume: 125 start-page: 107541 year: 2021 end-page: 107551 ident: b0210 article-title: Quantifying and evaluating the effect of urban expansion on the fine particulate matter (PM publication-title: Ecol. Ind. – volume: 56 start-page: 102106 year: 2020 ident: b0335 article-title: A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM publication-title: Sustain. Cities Soc. – volume: 624 start-page: 540 year: 2018 end-page: 557 ident: b0330 article-title: Spatial patterns and temporal variations of six criteria air pollutants during 2015 to 2017 in the city clusters of Sichuan Basin, China publication-title: Sci. Total Environ. – volume: 82 start-page: 61 year: 2017 end-page: 75 ident: b0025 article-title: Identifying the spatial effects and driving factors of urban PM publication-title: Ecol. Ind. – volume: 183 start-page: 225 year: 2018 end-page: 233 ident: b0280 article-title: Evolution of the spatiotemporal pattern of PM publication-title: Atmos. Environ. – volume: 241 start-page: 475 year: 2018 end-page: 483 ident: b0300 article-title: Quantifying the influence of natural and socioeconomic factors and their interactive impact on PM publication-title: Environ. Pollut. – volume: 713 start-page: 136623 year: 2020 end-page: 136629 ident: b0315 article-title: Spatial heterogeneity of the association between temperature and hand, foot, and mouth disease risk in metropolitan and other areas publication-title: Sci. Total Environ. – volume: 2022 start-page: 1697 year: 2015 end-page: 1705 ident: b0275 article-title: Analysis on spatial-temporal characteristics and driving factors of PM publication-title: Environ. Sci. – volume: 147 start-page: 458 year: 2016 end-page: 469 ident: b0190 article-title: PM publication-title: Atmos. Environ. – volume: 41 start-page: 2995 year: 2020 end-page: 3003 ident: b0295 article-title: Interannual characteristics of fine particulate matter in north China and its relationship with land use and land cover change publication-title: Environ. Sci. – volume: 275 start-page: 119015 year: 2022 ident: b0320 article-title: Spatiotemporal variations and connections of single and multiple meteorological factors on PM publication-title: Atmos. Environ. – reference: and the environment in China. Science Press 2014: 115-116. – volume: 337 start-page: 130607 year: 2022 ident: b0050 article-title: Regional division and influencing mechanisms for the collaborative control of PM publication-title: J. Clean. Prod. – volume: 487 start-page: 82 year: 2014 end-page: 90 ident: b0035 article-title: Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates publication-title: Sci. Total Environ. – volume: 148 start-page: 148 year: 2016 end-page: 162 ident: b0230 article-title: Spatial-temporal characteristics and determinants of PM publication-title: Chemosphere – volume: 12 start-page: 135 year: 2020 end-page: 156 ident: b0030 article-title: Spatial heterogeneity of winter wheat yield and its determinants in the Yellow River Delta, China publication-title: Sustainability – volume: 76 start-page: 1274 year: 2021 end-page: 1293 ident: b0060 article-title: Nonlinear effects and driving mechanism of multidimensional urbanization on PM publication-title: Acta Geograph. Sin. – volume: 35 start-page: 820 year: 2014 end-page: 828 ident: b0265 article-title: Observation of atmospheric pollutants in the urban area of beibei district, Chongqing publication-title: Environ. Sci. – volume: 272 year: 2020 ident: b0285 article-title: The heterogeneous effects of socioeconomic determinants on PM publication-title: Appl. Energy – year: 2021 ident: b0200 article-title: The negative impact of biomass burning and the orinoco low-level jet on the air quality of the Orinoco River Basin publication-title: Atmósfera – volume: 50 start-page: 3762 year: 2016 end-page: 3772 ident: b0225 article-title: Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors publication-title: Environ. Sci. Tech. – volume: 852 start-page: 158504 year: 2022 ident: b0020 article-title: Spatio-temporal analysis of PM publication-title: Sci. Total Environ. – volume: 12 start-page: 3350 year: 2020 end-page: 3363 ident: b0105 article-title: Effects of meteorological factors and anthropogenic precursors on PM publication-title: Sustainability – volume: 22 start-page: 8473 year: 2022 end-page: 8495 ident: b0175 article-title: Understanding aerosol composition in a tropical inter-Andean valley impacted by agro-industrial and urban emissions publication-title: Atmos. Chem. Phys. – volume: 39 start-page: 100942 year: 2021 ident: b0150 article-title: Assessment of air quality in the Aburrá Valley (Colombia) using composite indices: Towards comprehensive sustainable development planning publication-title: Urban Clim. – volume: 112 start-page: 1312 year: 2016 end-page: 1318 ident: b0215 article-title: The spatial-temporal characteristics and health impacts of ambient fine particulate matter in China publication-title: J. Clean. Prod. – volume: 97 start-page: 180 year: 2016 end-page: 186 ident: b0260 article-title: Long-term trend and spatial pattern of PM publication-title: Environ. Int. – volume: 63 start-page: 346 year: 2016 end-page: 358 ident: b0270 article-title: A dynamic analysis of air pollution emissions in China: Evidence from nonparametric additive regression models publication-title: Ecol. Ind. – volume: 648 start-page: 902 year: 2019 end-page: 915 ident: b0130 article-title: Air pollution characteristics in China during 2015–2016: spatiotemporal variations and key meteorological factors publication-title: Sci. Total Environ. – volume: 239 start-page: 118065 year: 2019 ident: b0355 article-title: The effects of urbanization on PM publication-title: J. Clean. Prod. – volume: 656 start-page: 977 year: 2019 end-page: 985 ident: b0180 article-title: Contribution of meteorological factors to particulate pollution during winters in Beijing publication-title: Sci. Total Environ. – volume: 283 start-page: 112000 year: 2021 end-page: 112011 ident: b0195 article-title: Impacts of urban land morphology on PM publication-title: J. Environ. Manage. – volume: 299 start-page: 126904 year: 2021 ident: b0185 article-title: Spatiotemporal pattern analysis of PM publication-title: J. Clean. Prod. – volume: 148 start-page: 215 year: 2016 end-page: 229 ident: b0170 article-title: Source apportionment of PM publication-title: Atmos. Environ. – volume: 36 start-page: 176 year: 2020 end-page: 181 ident: b0135 article-title: Study on spatial variation of China’s territorial ecological space based on standard deviation ellipse publication-title: Ecological Economy – volume: 268 start-page: 115907 year: 2021 ident: b0205 article-title: Spatio-temporal characteristics of air pollutants over Xinjiang, northwestern China publication-title: Environ. Pollut. – volume: 13 start-page: 101546 year: 2022 ident: b0220 article-title: Application of data assimilation technology in source apportionment of PM publication-title: Atmos. Pollut. Res. – volume: 161 start-page: 235 year: 2017 end-page: 246 ident: b0120 article-title: Spatial and temporal variation of particulate matter and gaseous pollutants in China during 2014–2016 publication-title: Atmos. Environ. – volume: 190 start-page: 75 year: 2014 end-page: 81 ident: b0125 article-title: Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011 publication-title: Environ. Pollut. – volume: 40 start-page: 967 year: 2017 end-page: 978 ident: b0075 article-title: Influencing mechanisms of climate change on runoff process in the north slope of Qinling Mountains: a case of the Bahe River Basin publication-title: Arid Land Geography – volume: 220 start-page: 99 year: 2019 end-page: 109 ident: b0045 article-title: Relationship of carbon emissions and economic growth in China's construction industry publication-title: J. Clean. Prod. – volume: 125 start-page: 107491 year: 2021 end-page: 107504 ident: b0255 article-title: Spatiotemporal evolution and the driving factors of PM publication-title: Ecol. Ind. – volume: 119 start-page: 458 year: 2018 end-page: 472 ident: b0100 article-title: What causes PM publication-title: Energy Policy – volume: 72 start-page: 116 year: 2017 end-page: 134 ident: b0245 article-title: Geodetector: principle and prospective publication-title: Acta Geograph. Sin. – volume: 517 start-page: 145 year: 2015 ident: b0140 article-title: Pollution build on success in China publication-title: Nature – volume: 626 start-page: 887 year: 2018 end-page: 898 ident: b0350 article-title: The characteristics of abnormal wintertime pollution events in the Jing-Jin-Ji region and its relationships with meteorological factors publication-title: Sci. Total Environ. – volume: 8 start-page: 1151 year: 2017 end-page: 1159 ident: b0160 article-title: Spatio-temporal variation and influence factors of PM publication-title: Atmos. Pollut. Res. – volume: 653 start-page: 157 year: 2019 end-page: 167 ident: b0145 article-title: The effect of natural and anthropogenic factors on PM publication-title: Sci. Total Environ. – volume: 5 start-page: 685 year: 2012 end-page: 686 ident: b0070 article-title: Emissions versus climate change publication-title: Nature Geosci. – volume: 98 start-page: 160 year: 2017 end-page: 170 ident: b0155 article-title: Assessment of health burden caused by particulate matter in southern China using high-resolution satellite observation publication-title: Environ. Int. – volume: 2016 start-page: 98 year: 2016 end-page: 108 ident: b0165 article-title: A systematic analysis of PM publication-title: Atmos. Environ. – volume: 17 start-page: 2157 year: 2020 end-page: 2181 ident: b0240 article-title: Spatio-temporal variations of satellite-based PM publication-title: Int. J. Environ. Res. Public Health – volume: 12 start-page: 135 year: 2020 ident: 10.1016/j.ecolind.2022.109802_b0030 article-title: Spatial heterogeneity of winter wheat yield and its determinants in the Yellow River Delta, China publication-title: Sustainability doi: 10.3390/su12010135 – volume: 2016 start-page: 98 issue: 124 year: 2016 ident: 10.1016/j.ecolind.2022.109802_b0165 article-title: A systematic analysis of PM2.5 in Beijing and its sources from 2000 to 2012 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.09.031 – volume: 12 start-page: 3350 year: 2020 ident: 10.1016/j.ecolind.2022.109802_b0105 article-title: Effects of meteorological factors and anthropogenic precursors on PM2.5 concentrations in cities in China publication-title: Sustainability doi: 10.3390/su12093550 – volume: 72 start-page: 116 year: 2017 ident: 10.1016/j.ecolind.2022.109802_b0245 article-title: Geodetector: principle and prospective publication-title: Acta Geograph. Sin. – ident: 10.1016/j.ecolind.2022.109802_b0015 – volume: 42 start-page: 4582 year: 2021 ident: 10.1016/j.ecolind.2022.109802_b0090 article-title: Orographic influences on the spatial distribution of PM2.5 on the Fen-Wei Plain publication-title: Environ. Sci. – volume: 41 start-page: 1013 year: 2020 ident: 10.1016/j.ecolind.2022.109802_b0085 article-title: Evolution of the distribution of PM2.5 concentration in the yangtze river economic belt and its influencing factors publication-title: Environ. Sci. – volume: 148 start-page: 215 year: 2016 ident: 10.1016/j.ecolind.2022.109802_b0170 article-title: Source apportionment of PM2.5 chemically speciated mass and particle number concentrations in New York city publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.10.044 – volume: 624 start-page: 540 year: 2018 ident: 10.1016/j.ecolind.2022.109802_b0330 article-title: Spatial patterns and temporal variations of six criteria air pollutants during 2015 to 2017 in the city clusters of Sichuan Basin, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.172 – volume: 315 start-page: 120392 year: 2022 ident: 10.1016/j.ecolind.2022.109802_b0040 article-title: Effects of anthropogenic precursor emissions and meteorological conditions on PM2.5 concentrations over the “2+26” cities of northern China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.120392 – volume: 13 start-page: 299 issue: 3 year: 1996 ident: 10.1016/j.ecolind.2022.109802_b0095 article-title: Bivariate wavelet analysis of Asia Monsoon and Enso publication-title: Adv. Atmos. Sci. doi: 10.1007/BF02656848 – volume: 125 start-page: 107491 year: 2021 ident: 10.1016/j.ecolind.2022.109802_b0255 article-title: Spatiotemporal evolution and the driving factors of PM2.5 in Chinese urban agglomerations between 2000 and 2017 publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2021.107491 – volume: 761 start-page: 143266 year: 2021 ident: 10.1016/j.ecolind.2022.109802_b0290 article-title: How do socioeconomic factors influence urban PM2.5 pollution in China? Empirical analysis from the perspective of spatiotemporal disequilibrium publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143266 – volume: 275 start-page: 119015 year: 2022 ident: 10.1016/j.ecolind.2022.109802_b0320 article-title: Spatiotemporal variations and connections of single and multiple meteorological factors on PM2.5 concentrations in Xi'an, China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2022.119015 – volume: 60 start-page: 387 issue: 3 year: 2015 ident: 10.1016/j.ecolind.2022.109802_b0115 article-title: Diurnal, seasonal, and spatial variation of PM2.5 in Beijing publication-title: Sci. Bull. doi: 10.1007/s11434-014-0607-9 – volume: 619–620 start-page: 436 year: 2018 ident: 10.1016/j.ecolind.2022.109802_b0345 article-title: Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in China's cities using spatial regression and the geographical detector technique publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.124 – volume: 653 start-page: 157 year: 2019 ident: 10.1016/j.ecolind.2022.109802_b0145 article-title: The effect of natural and anthropogenic factors on PM2.5: empirical evidence from Chinese cities with different income levels publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.367 – volume: 241 start-page: 475 year: 2018 ident: 10.1016/j.ecolind.2022.109802_b0300 article-title: Quantifying the influence of natural and socioeconomic factors and their interactive impact on PM2.5 pollution in China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.05.043 – volume: 517 start-page: 145 issue: 7533 year: 2015 ident: 10.1016/j.ecolind.2022.109802_b0140 article-title: Pollution build on success in China publication-title: Nature doi: 10.1038/517145d – volume: 32 start-page: 88 issue: 1 year: 1926 ident: 10.1016/j.ecolind.2022.109802_b0110 article-title: Measuring geographic concentration by means of the Standard Deviational Ellipse publication-title: Am. J. Sociol. doi: 10.1086/214027 – volume: 147 start-page: 458 year: 2016 ident: 10.1016/j.ecolind.2022.109802_b0190 article-title: PM2.5 from the Guanzhong Plain: Chemical composition and implications for emission reductions publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.10.029 – volume: 63 start-page: 346 year: 2016 ident: 10.1016/j.ecolind.2022.109802_b0270 article-title: A dynamic analysis of air pollution emissions in China: Evidence from nonparametric additive regression models publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2015.11.012 – volume: 183 start-page: 225 year: 2018 ident: 10.1016/j.ecolind.2022.109802_b0280 article-title: Evolution of the spatiotemporal pattern of PM2.5 concentrations in China-A case study from the Beijing-Tianjin-Hebei region publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.03.041 – volume: 76 start-page: 1274 year: 2021 ident: 10.1016/j.ecolind.2022.109802_b0060 article-title: Nonlinear effects and driving mechanism of multidimensional urbanization on PM2.5 concentrations in the Yangtze River Delta publication-title: Acta Geograph. Sin. – year: 2021 ident: 10.1016/j.ecolind.2022.109802_b0200 article-title: The negative impact of biomass burning and the orinoco low-level jet on the air quality of the Orinoco River Basin publication-title: Atmósfera doi: 10.20937/ATM.52979 – volume: 50 start-page: 3762 issue: 7 year: 2016 ident: 10.1016/j.ecolind.2022.109802_b0225 article-title: Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.5b05833 – volume: 119 start-page: 458 year: 2018 ident: 10.1016/j.ecolind.2022.109802_b0100 article-title: What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective publication-title: Energy Policy doi: 10.1016/j.enpol.2018.04.040 – volume: 161 start-page: 235 year: 2017 ident: 10.1016/j.ecolind.2022.109802_b0120 article-title: Spatial and temporal variation of particulate matter and gaseous pollutants in China during 2014–2016 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.05.008 – volume: 142 start-page: 1800 year: 2017 ident: 10.1016/j.ecolind.2022.109802_b0250 article-title: The characteristics and drivers of fine particulate matter (PM2.5) distribution in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.11.104 – volume: 8 start-page: 1151 issue: 6 year: 2017 ident: 10.1016/j.ecolind.2022.109802_b0160 article-title: Spatio-temporal variation and influence factors of PM2.5 concentrations in China from 1998 to 2014 publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2017.05.005 – volume: 487 start-page: 82 year: 2014 ident: 10.1016/j.ecolind.2022.109802_b0035 article-title: Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.03.138 – volume: 40 start-page: 967 year: 2017 ident: 10.1016/j.ecolind.2022.109802_b0075 article-title: Influencing mechanisms of climate change on runoff process in the north slope of Qinling Mountains: a case of the Bahe River Basin publication-title: Arid Land Geography – volume: 17 start-page: 2157 year: 2020 ident: 10.1016/j.ecolind.2022.109802_b0240 article-title: Spatio-temporal variations of satellite-based PM2.5 concentrations and Its determinants in Xinjiang, Northwest of China publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17062157 – volume: 239 start-page: 118065 year: 2019 ident: 10.1016/j.ecolind.2022.109802_b0355 article-title: The effects of urbanization on PM2.5 concentrations in China's Yangtze River Economic Belt: New evidence from spatial econometric analysis publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118065 – volume: 35 start-page: 820 year: 2014 ident: 10.1016/j.ecolind.2022.109802_b0265 article-title: Observation of atmospheric pollutants in the urban area of beibei district, Chongqing publication-title: Environ. Sci. – volume: 97 start-page: 180 year: 2016 ident: 10.1016/j.ecolind.2022.109802_b0260 article-title: Long-term trend and spatial pattern of PM2.5 induced premature mortality in China publication-title: Environ. Int. doi: 10.1016/j.envint.2016.09.003 – volume: 41 start-page: 2995 year: 2020 ident: 10.1016/j.ecolind.2022.109802_b0295 article-title: Interannual characteristics of fine particulate matter in north China and its relationship with land use and land cover change publication-title: Environ. Sci. – volume: 626 start-page: 887 year: 2018 ident: 10.1016/j.ecolind.2022.109802_b0350 article-title: The characteristics of abnormal wintertime pollution events in the Jing-Jin-Ji region and its relationships with meteorological factors publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.083 – volume: 283 start-page: 112000 year: 2021 ident: 10.1016/j.ecolind.2022.109802_b0195 article-title: Impacts of urban land morphology on PM2.5 concentration in the urban agglomerations of China publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.112000 – volume: 190 start-page: 75 year: 2014 ident: 10.1016/j.ecolind.2022.109802_b0125 article-title: Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2014.03.020 – volume: 133 start-page: 105145 year: 2019 ident: 10.1016/j.ecolind.2022.109802_b0340 article-title: Spatiotemporal variation in PM2.5 concentrations and their relationship with socioeconomic factors in China's major cities publication-title: Environ. Int. doi: 10.1016/j.envint.2019.105145 – volume: 10 start-page: 162 issue: 1 year: 2019 ident: 10.1016/j.ecolind.2022.109802_b0055 article-title: PM2.5 and its ionic components at a roadside site in Wuhan, China publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2018.07.004 – volume: 5 start-page: 685 issue: 10 year: 2012 ident: 10.1016/j.ecolind.2022.109802_b0070 article-title: Emissions versus climate change publication-title: Nature Geosci. doi: 10.1038/ngeo1591 – volume: 82 start-page: 61 year: 2017 ident: 10.1016/j.ecolind.2022.109802_b0025 article-title: Identifying the spatial effects and driving factors of urban PM2.5 pollution in China publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2017.06.043 – volume: 36 start-page: 176 year: 2020 ident: 10.1016/j.ecolind.2022.109802_b0135 article-title: Study on spatial variation of China’s territorial ecological space based on standard deviation ellipse publication-title: Ecological Economy – volume: 76 start-page: 1177 year: 2021 ident: 10.1016/j.ecolind.2022.109802_b0005 article-title: Variation characteristics of actual evapotranspiration and meteorological elements in the Ebinur Lake basin from 1960 to 2017 publication-title: Acta Geograph. Sin. – volume: 22 start-page: 8473 issue: 13 year: 2022 ident: 10.1016/j.ecolind.2022.109802_b0175 article-title: Understanding aerosol composition in a tropical inter-Andean valley impacted by agro-industrial and urban emissions publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-22-8473-2022 – volume: 299 start-page: 126904 year: 2021 ident: 10.1016/j.ecolind.2022.109802_b0185 article-title: Spatiotemporal pattern analysis of PM2.5 and the driving factors in the middle Yellow River urban agglomerations publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126904 – volume: 39 start-page: 3539 year: 2019 ident: 10.1016/j.ecolind.2022.109802_b0080 article-title: Influence factors and spillover effect of PM2.5 concentration on Fen-wei Plain publication-title: China Environ. Sci. – volume: 112 start-page: 1312 year: 2016 ident: 10.1016/j.ecolind.2022.109802_b0215 article-title: The spatial-temporal characteristics and health impacts of ambient fine particulate matter in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.05.006 – volume: 220 start-page: 99 year: 2019 ident: 10.1016/j.ecolind.2022.109802_b0045 article-title: Relationship of carbon emissions and economic growth in China's construction industry publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.02.123 – volume: 97 start-page: 182 year: 2014 ident: 10.1016/j.ecolind.2022.109802_b0235 article-title: Source contributions to primary and secondary inorganic particulate matter during a severe wintertime PM2.5 pollution episode in Xi'an, China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.08.020 – volume: 262 start-page: 114257 year: 2020 ident: 10.1016/j.ecolind.2022.109802_b0305 article-title: by using modified geographically weighted regression publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114257 – volume: 648 start-page: 902 year: 2019 ident: 10.1016/j.ecolind.2022.109802_b0130 article-title: Air pollution characteristics in China during 2015–2016: spatiotemporal variations and key meteorological factors publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.181 – volume: 39 start-page: 100942 year: 2021 ident: 10.1016/j.ecolind.2022.109802_b0150 article-title: Assessment of air quality in the Aburrá Valley (Colombia) using composite indices: Towards comprehensive sustainable development planning publication-title: Urban Clim. doi: 10.1016/j.uclim.2021.100942 – volume: 713 start-page: 136623 year: 2020 ident: 10.1016/j.ecolind.2022.109802_b0315 article-title: Spatial heterogeneity of the association between temperature and hand, foot, and mouth disease risk in metropolitan and other areas publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136623 – volume: 852 start-page: 158504 year: 2022 ident: 10.1016/j.ecolind.2022.109802_b0020 article-title: Spatio-temporal analysis of PM2.5 and policies in Northwestern South America publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.158504 – volume: 262 start-page: 114276 year: 2020 ident: 10.1016/j.ecolind.2022.109802_b0310 article-title: Spatiotemporal variations and influencing factors of PM2.5 concentrations in Beijing, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114276 – volume: 656 start-page: 977 year: 2019 ident: 10.1016/j.ecolind.2022.109802_b0180 article-title: Contribution of meteorological factors to particulate pollution during winters in Beijing publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.365 – volume: 218 start-page: 219 year: 2016 ident: 10.1016/j.ecolind.2022.109802_b0010 article-title: Fine particulate matter (PM2.5) in Edmonton, Canada: source apportionment and potential risk for human health publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.06.014 – volume: 148 start-page: 148 year: 2016 ident: 10.1016/j.ecolind.2022.109802_b0230 article-title: Spatial-temporal characteristics and determinants of PM2.5 in the Bohai Rim urban agglomeration publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.12.118 – volume: 125 start-page: 107541 year: 2021 ident: 10.1016/j.ecolind.2022.109802_b0210 article-title: Quantifying and evaluating the effect of urban expansion on the fine particulate matter (PM2.5) emissions from fossil fuel combustion in China publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2021.107541 – volume: 268 start-page: 115907 year: 2021 ident: 10.1016/j.ecolind.2022.109802_b0205 article-title: Spatio-temporal characteristics of air pollutants over Xinjiang, northwestern China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.115907 – volume: 13 start-page: 101546 issue: 10 year: 2022 ident: 10.1016/j.ecolind.2022.109802_b0220 article-title: Application of data assimilation technology in source apportionment of PM2.5 during winter haze episodes in the Beijing-Tianjin-Hebei region in China publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2022.101546 – volume: 2022 start-page: 1697 issue: 43 year: 2015 ident: 10.1016/j.ecolind.2022.109802_b0275 article-title: Analysis on spatial-temporal characteristics and driving factors of PM2.5 in Henan province from 2015 to 2019 publication-title: Environ. Sci. – volume: 337 start-page: 130607 year: 2022 ident: 10.1016/j.ecolind.2022.109802_b0050 article-title: Regional division and influencing mechanisms for the collaborative control of PM2.5 and O3 in China: A joint application of multiple mathematic models and data mining technologies publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.130607 – volume: 56 start-page: 102106 year: 2020 ident: 10.1016/j.ecolind.2022.109802_b0335 article-title: A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2.5 publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102106 – volume: 272 year: 2020 ident: 10.1016/j.ecolind.2022.109802_b0285 article-title: The heterogeneous effects of socioeconomic determinants on PM2.5 concentrations using a two-step panel quantile regression publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115246 – volume: 29 start-page: 598 issue: 4 year: 2019 ident: 10.1016/j.ecolind.2022.109802_b0325 article-title: Topographical relief characteristics and its impact on population and economy: a case study of the mountainous area in western Henan, China publication-title: J. Geogr. Sci. doi: 10.1007/s11442-019-1617-y – volume: 8 issue: 1 year: 2018 ident: 10.1016/j.ecolind.2022.109802_b0065 article-title: Long-term variation of satellite-based PM2.5 and influence factors over East China publication-title: Sci. Rep. doi: 10.1038/s41598-018-29366-x – volume: 98 start-page: 160 year: 2017 ident: 10.1016/j.ecolind.2022.109802_b0155 article-title: Assessment of health burden caused by particulate matter in southern China using high-resolution satellite observation publication-title: Environ. Int. doi: 10.1016/j.envint.2016.11.002 |
SSID | ssj0016996 |
Score | 2.4267561 |
Snippet | [Display omitted]
•Spatial autocorrelation and clustering characteristics of city-level PM2.5 levels were observed.•The resonance cycles of PM2.5... High-intensity human socioeconomic activities in Xi’an have caused fine particulate matter (PM₂.₅) pollution. Understanding the spatial and temporal patterns... High-intensity human socioeconomic activities in Xi’an have caused fine particulate matter (PM2.5) pollution. Understanding the spatial and temporal patterns... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109802 |
SubjectTerms | autocorrelation autumn China Driving factors Geo-detector humans land use particulates pollution relative humidity socioeconomics Spatio-temporal variation spring summer temperature time series analysis wavelet Wavelet analysis winter |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVQT1wQW0XZZCSOpE3cOHGOgIoqpCIkipSbZce2lKpKURfO_Aa_x5cwjp0WuPTCNY6TyPOceWOP3yB0LZnWhDIZaENMEEcmCjKgzYHMpGEK4map7Y7u6CkZvsaPOc1_lPqyOWFOHtgNXA_wwWhYpLIwEeBLMZMlRhDr-ACtog58wOc1wZTfP0iyzJ0rSsMgSsJ8c3anN-lCXAcUzsqEEmLllJhfU2m8Ui3e_8s5_flN177nYR_tedKIb93HHqAdXR2i9mBzRg0a_SRdHCH5UmdJe9GpKX6HcNity2FRKQyMD6t5aRcSsK-2g2cGP49Il-Kywnn59fEpqhtcl9bGPpELW5zX_cGXs2M0fhiM74eBL6UQFDGly0CkIcRhVntepTBJZZLRUAgIjIlW_ahIKLQKJoH-GAJezYSGJgWwMSYyaZ1bG7WqWaVPEFaRICSSKVM6jIUhmWFEJ5ERfQ1WIaqD4mYkeeFlxm21iylv8skm3BuAWwNwZ4AO6q67vTmdjW0d7qyZ1jdbmez6AoCHe_DwbeDpINYYmXvG4ZgEPKrc9v6rBhQcZqTdZhGVnq0WHAibPZ4Mcdvpf3zjGdq1Je5dpvg5ai3nK30BRGgpL2vMfwNRkQFR priority: 102 providerName: Directory of Open Access Journals |
Title | Spatiotemporal variations and the driving factors of PM2.5 in Xi’an, China between 2004 and 2018 |
URI | https://dx.doi.org/10.1016/j.ecolind.2022.109802 https://www.proquest.com/docview/2834226826 https://doaj.org/article/638850c7bcf1425d8f96fa27431070a1 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTuMwELYQXPaC-BUFtvJKeyRtbOLEOQICdVmBVgKk3iw7tlEQSqtSOCJeg9fbJ2HGcYrggsQ1iZPIM575xp75hpDfRjrHhTSJ89wnGfMsKQE2J6Y0XlqIm43DE92Ly3x0k52PxXiJnHS1MJhWGW1_a9ODtY5XhnE2h9O6Hl6xrEB6tDHneHwqkBMU2etApwfPizQPlpdlW2FUpAk-_V7FM7wbQIQHYA4JQzlHYiUZd1c6_xRo_D-4qU8GO3ihszWyGuEjPWr_cJ0suWaDbJ--V6vBzbhcHzaJuQr50pF-6p4-QWDc7tBR3VgK2I_aWY1bCjT23aETT_9d8IGgdUPH9f-XV90c0NBkm8aULooaH8bDjMgtcn12en0ySmJThaTKhJgnukghIkMWelvAcjV5KVKtIUTmzh6yKhdwV0sDQMhz8G8-9SKvAJdJXRp0c9tkuZk0bodQyzTnzBTSujTTnpdecpczrw-d5gW3PZJ1M6mqSDiOfS_uVZdZdqeiABQKQLUC6JHBYti0Zdz4asAximnxMBJmhwuT2a2KGqPAzEiRVoWpPAMzZaUvcw-_CfgJjJ5mPSI7IasP-gevqr_6_q9OKRSsTTxw0Y2bPD4ogG5YqAwR3O73X79HfmCL-zZTfJ8sz2eP7icAobnpB03vk5WjP39Hl_2wnfAGyJoGYA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7R5dBeKvqDui1tXanHZjc2ceIcKQIthV1VYivtzbJjGwWhLFqWnvsafb0-SWcSZxFckLgmcRJ5xjPf2DPfAHy1ynshlU18ECHJeOBJibA5saUNymHcbD2d6E5n-eRX9mMhF1tw2NfCUFpltP2dTW-tdbwyjrM5vq7r8TnPCqJHWwhBx6cyewbbxE6VDWD74OR0MtscJuRl2RUZFWlCA-4KecaXIwzyEM8RZ6gQxK2k4gZL76JaJv97nuqBzW4d0fEOvIwIkh10P_kKtnzzGnaP7grW8GZcsTdvwJ63KdORgeqK_cbYuNukY6ZxDOEfc6uadhVYbL3DloH9nIqRZHXDFvW_P39N8421fbZZzOpipPTteJwU9Rbmx0fzw0kS-yokVSblOjFFikEZEdG7AleszUuZGoNRsvBun1e5xLtGWcRCQaCLC2mQeYXQTJnSkqfbhUGzbPw7YI4bIbgtlPNpZoIogxI-58HseyMK4YaQ9TOpq8g5Tq0vrnSfXHapowA0CUB3AhjCaDPsuiPdeGzAdxLT5mHizG4vLFcXOiqNRkujZFoVtgocLZVTocwD_iZCKLR7hg9B9ULW91QQX1U_9v0vvVJoXJ505mIav7y90YjeqFYZg7j3T3_9Z3g-mU_P9NnJ7PQDvKCO913i-B4M1qtb_xFx0dp-inr_H5pQCBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+variations+and+the+driving+factors+of+PM2.5+in+Xi%E2%80%99an%2C+China+between+2004+and+2018&rft.jtitle=Ecological+indicators&rft.au=Tuheti%2C+Abula&rft.au=Deng%2C+Shunxi&rft.au=Li%2C+Jianghao&rft.au=Li%2C+Guanghua&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=1470-160X&rft.eissn=1872-7034&rft.volume=146&rft_id=info:doi/10.1016%2Fj.ecolind.2022.109802&rft.externalDocID=S1470160X22012754 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon |