Online Membrane Sampling for the Mass Spectrometric Analysis of Oil Sands Process Affected Water-Derived Naphthenic Acids in Real-World Samples

Large volumes of oil sands process-affected waters (OSPW) result from heavy oil extraction in Alberta, Canada. Currently, a toxic legacy of ca. 500 Mm3 is stored in tailings ponds under a zero-discharge policy. OSPW is a complex mixture of suspended and dissolved materials including a wide range of...

Full description

Saved in:
Bibliographic Details
Published inSeparations Vol. 10; no. 4; p. 228
Main Authors Monaghan, Joseph, Steenis, Dylan, Vander Meulen, Ian J., Peru, Kerry M., Headley, John V., Gill, Chris G., Krogh, Erik T.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Large volumes of oil sands process-affected waters (OSPW) result from heavy oil extraction in Alberta, Canada. Currently, a toxic legacy of ca. 500 Mm3 is stored in tailings ponds under a zero-discharge policy. OSPW is a complex mixture of suspended and dissolved materials including a wide range of inorganic and organic contaminants. Classically defined naphthenic acids (NAs; CnH2n+ZO2) are one of the primary toxic fractions in OSPW and have therefore been the subject of considerable research interest. Most studies employ considerable sample cleanup followed by liquid chromatography and/or high-resolution mass spectrometry (HRMS) for the characterization of these complex mixtures. However, these strategies can be time- and cost-intensive, limiting the scope of research and adoption for regulatory purposes. Condensed phase membrane introduction mass spectrometry (CP-MIMS) is emerging as a “fit-for-purpose” approach for the analysis of NAs. This technique directly interfaces the mass spectrometer with an aqueous sample using a hydrophobic semi-permeable membrane, requiring only pH adjustment to convert NAs to a membrane-permeable form. Here, we examine the perm-selectivity of classical NAs (O2) relative to their more oxidized counterparts (O3–O7) and heteroatomic (N, S) species collectively termed naphthenic acid fraction compounds (NAFCs). The investigation of 14 model compounds revealed that classically defined NAs are greater than 50-fold more membrane permeable than their oxidized/heteroatomic analogs. HRMS analysis of real OSPW extracts with and without membrane clean-up further supported selectivity towards the toxic O2 class of NAs, with >85% of the overall signal intensity attributable to O2 NAs in the membrane permeate despite as little as 34.7 ± 0.6% O2 NAs observed in the directly infused mixture. The information collected with HRMS is leveraged to refine our method for analysis of NAs at unit mass resolution. This new method is applied to 28 archived real-world samples containing NAs/NAFCs from constructed wetlands, OSPW, and environmental monitoring campaigns. Concentrations ranged from 0–25 mg/L O2 NAs and the results measured by CP-MIMS (unit mass) and SPE-HRMS (Orbitrap) showed good agreement (slope = 0.80; R2 = 0.76).
AbstractList Large volumes of oil sands process-affected waters (OSPW) result from heavy oil extraction in Alberta, Canada. Currently, a toxic legacy of ca. 500 Mm3 is stored in tailings ponds under a zero-discharge policy. OSPW is a complex mixture of suspended and dissolved materials including a wide range of inorganic and organic contaminants. Classically defined naphthenic acids (NAs; CnH2n+ZO2) are one of the primary toxic fractions in OSPW and have therefore been the subject of considerable research interest. Most studies employ considerable sample cleanup followed by liquid chromatography and/or high-resolution mass spectrometry (HRMS) for the characterization of these complex mixtures. However, these strategies can be time- and cost-intensive, limiting the scope of research and adoption for regulatory purposes. Condensed phase membrane introduction mass spectrometry (CP-MIMS) is emerging as a “fit-for-purpose” approach for the analysis of NAs. This technique directly interfaces the mass spectrometer with an aqueous sample using a hydrophobic semi-permeable membrane, requiring only pH adjustment to convert NAs to a membrane-permeable form. Here, we examine the perm-selectivity of classical NAs (O2) relative to their more oxidized counterparts (O3–O7) and heteroatomic (N, S) species collectively termed naphthenic acid fraction compounds (NAFCs). The investigation of 14 model compounds revealed that classically defined NAs are greater than 50-fold more membrane permeable than their oxidized/heteroatomic analogs. HRMS analysis of real OSPW extracts with and without membrane clean-up further supported selectivity towards the toxic O2 class of NAs, with >85% of the overall signal intensity attributable to O2 NAs in the membrane permeate despite as little as 34.7 ± 0.6% O2 NAs observed in the directly infused mixture. The information collected with HRMS is leveraged to refine our method for analysis of NAs at unit mass resolution. This new method is applied to 28 archived real-world samples containing NAs/NAFCs from constructed wetlands, OSPW, and environmental monitoring campaigns. Concentrations ranged from 0–25 mg/L O2 NAs and the results measured by CP-MIMS (unit mass) and SPE-HRMS (Orbitrap) showed good agreement (slope = 0.80; R2 = 0.76).
Large volumes of oil sands process-affected waters (OSPW) result from heavy oil extraction in Alberta, Canada. Currently, a toxic legacy of ca. 500 Mm[sup.3] is stored in tailings ponds under a zero-discharge policy. OSPW is a complex mixture of suspended and dissolved materials including a wide range of inorganic and organic contaminants. Classically defined naphthenic acids (NAs; C[sub.n]H[sub.2n+Z]O[sub.2]) are one of the primary toxic fractions in OSPW and have therefore been the subject of considerable research interest. Most studies employ considerable sample cleanup followed by liquid chromatography and/or high-resolution mass spectrometry (HRMS) for the characterization of these complex mixtures. However, these strategies can be time- and cost-intensive, limiting the scope of research and adoption for regulatory purposes. Condensed phase membrane introduction mass spectrometry (CP-MIMS) is emerging as a “fit-for-purpose” approach for the analysis of NAs. This technique directly interfaces the mass spectrometer with an aqueous sample using a hydrophobic semi-permeable membrane, requiring only pH adjustment to convert NAs to a membrane-permeable form. Here, we examine the perm-selectivity of classical NAs (O[sub.2]) relative to their more oxidized counterparts (O[sub.3]–O[sub.7]) and heteroatomic (N, S) species collectively termed naphthenic acid fraction compounds (NAFCs). The investigation of 14 model compounds revealed that classically defined NAs are greater than 50-fold more membrane permeable than their oxidized/heteroatomic analogs. HRMS analysis of real OSPW extracts with and without membrane clean-up further supported selectivity towards the toxic O[sub.2] class of NAs, with >85% of the overall signal intensity attributable to O[sub.2] NAs in the membrane permeate despite as little as 34.7 ± 0.6% O[sub.2] NAs observed in the directly infused mixture. The information collected with HRMS is leveraged to refine our method for analysis of NAs at unit mass resolution. This new method is applied to 28 archived real-world samples containing NAs/NAFCs from constructed wetlands, OSPW, and environmental monitoring campaigns. Concentrations ranged from 0–25 mg/L O[sub.2] NAs and the results measured by CP-MIMS (unit mass) and SPE-HRMS (Orbitrap) showed good agreement (slope = 0.80; R[sup.2] = 0.76).
Audience Academic
Author Monaghan, Joseph
Gill, Chris G.
Vander Meulen, Ian J.
Headley, John V.
Krogh, Erik T.
Steenis, Dylan
Peru, Kerry M.
Author_xml – sequence: 1
  givenname: Joseph
  orcidid: 0000-0001-6984-6993
  surname: Monaghan
  fullname: Monaghan, Joseph
– sequence: 2
  givenname: Dylan
  orcidid: 0009-0003-7358-2021
  surname: Steenis
  fullname: Steenis, Dylan
– sequence: 3
  givenname: Ian J.
  surname: Vander Meulen
  fullname: Vander Meulen, Ian J.
– sequence: 4
  givenname: Kerry M.
  orcidid: 0000-0002-2819-8595
  surname: Peru
  fullname: Peru, Kerry M.
– sequence: 5
  givenname: John V.
  surname: Headley
  fullname: Headley, John V.
– sequence: 6
  givenname: Chris G.
  orcidid: 0000-0001-7696-5894
  surname: Gill
  fullname: Gill, Chris G.
– sequence: 7
  givenname: Erik T.
  orcidid: 0000-0003-0575-7451
  surname: Krogh
  fullname: Krogh, Erik T.
BookMark eNp9kttuFSEUhiemJtbaJ_CGxOupHOYAlzv11KS6jdX0kqyBxS7NDIxATfoUvrK0W-MhjeGCxc___SSL9bQ5CDFg0zxn9EQIRV9mXCFB8TFkRmlHOZePmkPO1djKUaiDP-onzXHO15RSNophYPyw-b4Nsw9I3uMyJajFBSxrVXbExUTKVb2BnMnFiqakuGBJ3pBNgPk2-0yiI1s_VybYTD6maLB6N85VM1pyCQVT-wqT_1ZPH2C9qnnhjje--n0gnxDm9jKm2e7fxfyseexgznj8cz9qvrx5_fn0XXu-fXt2ujlvTdf3pQWKo5yoVB2dQDIxCOyNRQGUKWvc2KuJd1Z1yCmXTklJYeC9YJPjvWVKiKPmbJ9rI1zrNfkF0q2O4PW9ENNOQyrezKitUozyXrrJmW6QDjrrKDA2diNFYFPNerHPWlP8eoO56Ot4k2qPsuaSDgNVYyd-u3ZQQ31wsSQwi89Gb2pUL5TiQ3WdPOCqy-LiTf1456v-F6D2gEkx54ROG1_up6GCftaM6rsp0Q9MSWXFP-yvRvyP-gEtecWS
CitedBy_id crossref_primary_10_1080_10408347_2024_2381543
crossref_primary_10_1016_j_scitotenv_2025_178383
Cites_doi 10.1021/acs.analchem.0c03259
10.1021/ac00212a013
10.1016/j.scitotenv.2020.137063
10.1016/S0045-6535(02)00133-9
10.3390/separations10020139
10.1021/acs.est.1c07359
10.1016/j.chemosphere.2019.05.222
10.1016/j.scitotenv.2020.139191
10.1016/j.chemosphere.2019.01.162
10.1021/jasms.9b00143
10.1002/etc.3892
10.1016/j.scitotenv.2021.150619
10.1002/jms.3721
10.1139/S07-038
10.1021/acs.analchem.7b00908
10.1016/j.scitotenv.2018.03.079
10.1007/s11705-017-1652-0
10.1002/mas.21472
10.1016/j.scitotenv.2020.144206
10.1016/j.ijms.2004.08.011
10.1016/j.jhazmat.2022.129798
10.1002/jms.3544
10.1021/es202606d
10.1016/j.aquatox.2015.04.024
10.1002/rcm.9487
10.1016/0021-9673(92)85209-C
10.1021/acs.analchem.8b04949
10.1002/rcm.4967
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
L7M
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.3390/separations10040228
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2297-8739
ExternalDocumentID oai_doaj_org_article_d9910258fbfc468fa4df0a117470ea1b
A747539926
10_3390_separations10040228
GeographicLocations Canada
Alberta
United States
Massachusetts
United States--US
GeographicLocations_xml – name: Canada
– name: Alberta
– name: United States
– name: Massachusetts
– name: United States--US
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
PQGLB
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c455t-a0e78b08940ba81363e5cde3a019dcf759b24d94e2028f9880a62531bf25d1933
IEDL.DBID BENPR
ISSN 2297-8739
IngestDate Wed Aug 27 01:28:43 EDT 2025
Fri Jul 25 12:09:26 EDT 2025
Thu Jul 10 07:45:11 EDT 2025
Tue Jul 08 03:52:59 EDT 2025
Thu Apr 24 22:57:25 EDT 2025
Tue Jul 01 02:16:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-a0e78b08940ba81363e5cde3a019dcf759b24d94e2028f9880a62531bf25d1933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2819-8595
0000-0003-0575-7451
0009-0003-7358-2021
0000-0001-7696-5894
0000-0001-6984-6993
OpenAccessLink https://www.proquest.com/docview/2806609743?pq-origsite=%requestingapplication%
PQID 2806609743
PQPubID 2032417
ParticipantIDs doaj_primary_oai_doaj_org_article_d9910258fbfc468fa4df0a117470ea1b
proquest_journals_2806609743
gale_infotracmisc_A747539926
gale_infotracacademiconefile_A747539926
crossref_citationtrail_10_3390_separations10040228
crossref_primary_10_3390_separations10040228
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 20230301
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Separations
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ajaero (ref_25) 2018; 631–632
Duncan (ref_15) 2016; 51
Monaghan (ref_17) 2021; 765
ref_36
Peru (ref_32) 2019; 222
ref_33
Hawkes (ref_27) 2020; 18
Ripmeester (ref_5) 2019; 233
LaPack (ref_10) 1990; 62
Meshref (ref_6) 2020; 734
Headley (ref_4) 2016; 35
Rowland (ref_18) 2011; 45
Schock (ref_29) 2022; 806
Marentette (ref_19) 2015; 164
Vandergrift (ref_21) 2017; 89
Duncan (ref_26) 2011; 25
Vandergrift (ref_13) 2020; 31
Potter (ref_30) 1992; 625
Allen (ref_3) 2008; 7
Hughes (ref_23) 2017; 36
Kovalchik (ref_35) 2017; 11
Duncan (ref_16) 2020; 716
Boscaini (ref_31) 2004; 239
Zarkovic (ref_34) 2023; 37
ref_1
ref_2
Vandergrift (ref_12) 2020; 92
ref_9
Monaghan (ref_22) 2022; 440
ref_8
Vandergrift (ref_11) 2019; 91
Monaghan (ref_14) 2021; 8
Duncan (ref_20) 2022; 56
Rogers (ref_24) 2002; 48
ref_7
Duncan (ref_28) 2015; 50
References_xml – ident: ref_7
– volume: 92
  start-page: 15480
  year: 2020
  ident: ref_12
  article-title: Direct, Isomer-Specific Quantitation of Polycyclic Aromatic Hydrocarbons in Soils Using Membrane Introduction Mass Spectrometry and Chemical Ionization
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c03259
– ident: ref_9
– volume: 18
  start-page: 235
  year: 2020
  ident: ref_27
  article-title: An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer?
  publication-title: Limnology and Oceanography: Methods
– volume: 62
  start-page: 1265
  year: 1990
  ident: ref_10
  article-title: Membrane mass spectrometry for the direct trace analysis of volatile organic compounds in air and water
  publication-title: Anal. Chem.
  doi: 10.1021/ac00212a013
– volume: 716
  start-page: 137063
  year: 2020
  ident: ref_16
  article-title: Direct analysis of naphthenic acids in constructed wetland samples by condensed phase membrane introduction mass spectrometry
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137063
– volume: 48
  start-page: 519
  year: 2002
  ident: ref_24
  article-title: Isolation and characterization of naphthenic acids from Athabasca oil sands tailings pond water
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(02)00133-9
– ident: ref_8
  doi: 10.3390/separations10020139
– volume: 56
  start-page: 3096
  year: 2022
  ident: ref_20
  article-title: Membrane Sampling Separates Naphthenic Acids from Biogenic Dissolved Organic Matter for Direct Analysis by Mass Spectrometry
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c07359
– volume: 233
  start-page: 687
  year: 2019
  ident: ref_5
  article-title: Method for routine “naphthenic acids fraction compounds” determination in oil sands process-affected water by liquid-liquid extraction in dichloromethane and Fourier-Transform Infrared Spectroscopy
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.05.222
– volume: 734
  start-page: 139191
  year: 2020
  ident: ref_6
  article-title: Fourier transform infrared spectroscopy as a surrogate tool for the quantification of naphthenic acids in oil sands process water and groundwater
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139191
– volume: 222
  start-page: 1017
  year: 2019
  ident: ref_32
  article-title: Characterization of oil sands naphthenic acids by negative-ion electrospray ionization mass spectrometry: Influence of acidic versus basic transfer solvent
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.01.162
– volume: 31
  start-page: 908
  year: 2020
  ident: ref_13
  article-title: Condensed Phase Membrane Introduction Mass Spectrometry with In Situ Liquid Reagent Chemical Ionization in a Liquid Electron Ionization Source (CP-MIMS-LEI/CI)
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1021/jasms.9b00143
– volume: 8
  start-page: 1051
  year: 2021
  ident: ref_14
  article-title: A Direct Mass Spectrometry Method for the Rapid Analysis of Ubiquitous Tire-Derived Toxin N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine Quinone (6-PPDQ)
  publication-title: ES T Lett.
– volume: 36
  start-page: 3148
  year: 2017
  ident: ref_23
  article-title: Using ultrahigh-resolution mass spectrometry and toxicity identification techniques to characterize the toxicity of oil sands process-affected water: The case for classical naphthenic acids
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.3892
– ident: ref_1
– volume: 806
  start-page: 150619
  year: 2022
  ident: ref_29
  article-title: Transformation of bitumen-derived naphthenic acid fraction compounds across surface waters of wetlands in the Athabasca Oil Sands region
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.150619
– volume: 51
  start-page: 44
  year: 2016
  ident: ref_15
  article-title: A semi-quantitative approach for the rapid screening and mass profiling of naphthenic acids directly in contaminated aqueous samples
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.3721
– volume: 7
  start-page: 123
  year: 2008
  ident: ref_3
  article-title: Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objectives
  publication-title: J. Environ. Eng. Sci.
  doi: 10.1139/S07-038
– volume: 89
  start-page: 5629
  year: 2017
  ident: ref_21
  article-title: Polymer Inclusion Membranes with Condensed Phase Membrane Introduction Mass Spectrometry (CP-MIMS): Improved Analytical Response Time and Sensitivity
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b00908
– volume: 631–632
  start-page: 829
  year: 2018
  ident: ref_25
  article-title: Fate and behavior of oil sands naphthenic acids in a pilot-scale treatment wetland as characterized by negative-ion electrospray ionization Orbitrap mass spectrometry
  publication-title: Sci Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.079
– volume: 11
  start-page: 497
  year: 2017
  ident: ref_35
  article-title: Standard method design considerations for semi-quantification of total naphthenic acids in oil sands process affected water by mass spectrometry: A review
  publication-title: Front. Chem. Sci. Eng.
  doi: 10.1007/s11705-017-1652-0
– volume: 35
  start-page: 311
  year: 2016
  ident: ref_4
  article-title: Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil--A review
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.21472
– volume: 765
  start-page: 144206
  year: 2021
  ident: ref_17
  article-title: Direct mass spectrometric analysis of naphthenic acids and polycyclic aromatic hydrocarbons in waters impacted by diluted bitumen and conventional crude oil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144206
– volume: 239
  start-page: 179
  year: 2004
  ident: ref_31
  article-title: Investigation of fundamental physical properties of a polydimethylsiloxane (PDMS) membrane using a proton transfer reaction mass spectrometer (PTRMS)
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2004.08.011
– ident: ref_33
– ident: ref_2
– volume: 440
  start-page: 129798
  year: 2022
  ident: ref_22
  article-title: Aqueous Naphthenic Acids and Polycyclic Aromatic Hydrocarbons in a Meso-Scale Spill Tank Affected by Diluted Bitumen Analyzed Directly by Membrane Introduction Mass Spectrometry
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.129798
– volume: 50
  start-page: 437
  year: 2015
  ident: ref_28
  article-title: Ionization suppression effects with condensed phase membrane introduction mass spectrometry: Methods to increase the linear dynamic range and sensitivity
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.3544
– volume: 45
  start-page: 9806
  year: 2011
  ident: ref_18
  article-title: Steroidal aromatic ‘naphthenic acids’ in oil sands process-affected water: Structural comparisons with environmental estrogens
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202606d
– volume: 164
  start-page: 108
  year: 2015
  ident: ref_19
  article-title: Toxicity of naphthenic acid fraction components extracted from fresh and aged oil sands process-affected waters, and commercial naphthenic acid mixtures, to fathead minnow (Pimephales promelas) embryos
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2015.04.024
– ident: ref_36
– volume: 37
  start-page: e9487
  year: 2023
  ident: ref_34
  article-title: A passive membrane system for on-line mass spectrometry reagent addition
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.9487
– volume: 625
  start-page: 247
  year: 1992
  ident: ref_30
  article-title: Detection of substituted benzenes in water at the pg/ml level using solid-phase microextraction and gas chromatography-ion trap mass spectrometry
  publication-title: J. Chromatogr.
  doi: 10.1016/0021-9673(92)85209-C
– volume: 91
  start-page: 1587
  year: 2019
  ident: ref_11
  article-title: Direct Analysis of Polyaromatic Hydrocarbons in Soil and Aqueous Samples Using Condensed Phase Membrane Introduction Tandem Mass Spectrometry with Low-Energy Liquid Electron Ionization
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b04949
– volume: 25
  start-page: 1141
  year: 2011
  ident: ref_26
  article-title: Characterization of a condensed-phase membrane introduction mass spectrometry (CP-MIMS) interface using a methanol acceptor phase coupled with electrospray ionization for the continuous on-line quantitation of polar, low-volatility analytes at trace levels in complex aqueous samples
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.4967
SSID ssj0001736612
Score 2.2404928
Snippet Large volumes of oil sands process-affected waters (OSPW) result from heavy oil extraction in Alberta, Canada. Currently, a toxic legacy of ca. 500 Mm3 is...
Large volumes of oil sands process-affected waters (OSPW) result from heavy oil extraction in Alberta, Canada. Currently, a toxic legacy of ca. 500 Mm[sup.3]...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 228
SubjectTerms Acids
Calibration
Climate change
Contaminants
direct mass spectrometry
direct membrane sampling
Environmental monitoring
Experiments
Ions
Liquid chromatography
Mass spectrometry
membrane permeation
Membranes
Mixtures
Naphthenic acids
Oil sands
oil sands process affected water
Oil spills
Organic contaminants
Permeability
Scientific imaging
Stainless steel
Wetlands
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBPMVCQT4gcSGqEz_iHJdCVSFtkYCK3iw_xrBSm1bdhb_Rv9wZO1t1JR4XbnmMFccz9nyTjL9h7LWH4Lss-kYZmRqVg2psqy3asughpuh1KcmyODKHx-rjiT65VeqLcsIqPXAduL2EAAb9ss0hR2Vs9ipl4VsE0r0A3wZafdHn3QqmyteVXqLj6SrNkMS4fm8FlUsbdUkkaUT7suWKCmP_n9bl4mwOHrD7E0rk89q7h-wOjI_Y3f1NcbbH7KpShPIFnGG4iwdfPKWGj985glCOoI4vEBVzqi6_JkIC4uHnGwISfp75p-UpthnTik9bBfi8ZHZA4t8Qfl4279E0f-HZkb_4QQwJ1D4uUX458s-ILpuShlOfC6sn7Pjgw9f9w2aqrdBEpfW68QJ6G4QdlAjettJI0DGB9Aj5Usy9HkKn0qCgQwCSB5zlHiMl2Ybc6YSgTz5lO-P5CM8Y18kobw10QwpK-DBkQBQjTQBrjcjtjHWbYXZxIh6n-henDgMQ0o37jW5m7O1No4vKu_F38XekvxtRIs0uF9CU3GRK7l-mNGNvSPuOpjZ2MPpphwK-JpFkuTkKFiJfM2O7W5Ko_Lh9e2M_bloSVo5-YRuB4Zt8_j86-4LdQ9XImg63y3bWlz_hJeKjdXhVpsI1paUQEA
  priority: 102
  providerName: Directory of Open Access Journals
Title Online Membrane Sampling for the Mass Spectrometric Analysis of Oil Sands Process Affected Water-Derived Naphthenic Acids in Real-World Samples
URI https://www.proquest.com/docview/2806609743
https://doaj.org/article/d9910258fbfc468fa4df0a117470ea1b
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZo9wAX1PIQS9uVD0hciOrEjuOc0G7bpULaBRUqeov8LCuV7Haz8Df4y51JnFYrQW9JPFYeMx5_Y0--IeSd9kZngRWJkNwlIhiRqDRXYMus8NZZnbclWWZzeX4pPl_lV3HBrYlplb1PbB21W1pcIz_GHUDJAP3yj6vbBKtG4e5qLKGxQwbgghUEX4PJ2fzrxcMqS8FhAso6uiEO8f1x4ztObdApkqUh_cvWlNQy9__PP7eTznSPPI9okY479e6TJ75-QZ6e9EXaXpK_HVUonflfEPbCwTeNKeL1NQUwSgHc0RmgY4pV5jdITIB8_LQnIqHLQL8sbqBP7Roafxmg4zbDwzv6A2DoOjkFE_0DZ3O9-olMCdjfLkB-UdMLQJlJm47T3dc3r8jl9Oz7yXkSaywkVuT5JtHMF8owVQpmtEq55D63znMN0M_ZUOSlyYQrhc8AiIQSRruGiImnJmS5A_DHX5Pdeln7N4TmTgqtpM9KZwTTpgwe0AyXxislWUiHJOs_c2UjATnWwbipIBBB3VT_0M2QfLjvtOr4Nx4Xn6D-7kWRPLu9sFxfV3EsVg4wMUA9FUywQqqghQtMpxCbFczr1AzJe9R-hUMcHtDq-KcCvCaSZVVjEGwJfeWQHG5JgvLtdnNvP1V0DU31YMhvH28-IM-wtn2X8HZIdjfr3_4IENDGjMiOmn4akcF4cjqZjqLRj9r1hDtCJAvc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigXxFOEFtgDiAtW1971en1AKLSElDZBglb0tt1niVScNAkgfgX_hN_IjB-tIkFvvcXZWTvxzOx8Y89-Q8hzE6zJIisSIblPRLQiUWmuwJZZEZx3Jq9bsozGcngkPhznx2vkT7cXBssquzWxXqj91OEz8m18AygZoF_-ZnaeYNcofLvatdBozGI__PoJKdvi9d4u6PdFlg3eHe4Mk7arQOJEni8Tw0KhLFOlYNaolEsecucDNwB2vItFXtpM-FKEDEJvLMG-DeQIPLUxyz3AHQ7nvUFuCs5L9Cg1eH_5TKfgEO6yhtwIxtn2IjQM3mBBSM2GZDMrAbDuE_C_aFCHuMEdcrvFprTfGNNdshaqe2Rjp2sJd5_8bohJ6Sh8gyQbPnw2WJBenVKAvhSgJB0BFqfY036JNAjI_k872hM6jfTj5AzmVH5B2w0KtF_XkwRPvwDonSe74BA_4GhsZl-RlwHnuwnITyr6CTBtUhf_NNcNiwfk6Fru_UOyXk2r8IjQ3EthlAxZ6a1gxpYxAHbi0galJItpj2TdbdaupTvHrhtnGtIe1I3-h2565NXFpFnD9nG1-FvU34UoUnXXX0znp7r1fO0BgQOwVNFGJ6SKRvjITAqZYMGCSW2PvETta1xQ4Ac60-6LgL-J1Fy6D4I1fbDska0VSVC-Wx3u7Ee3C9FCX7rN46uHn5GN4eHoQB_sjfc3yS1QAG9K7bbI-nL-PTwB7LW0T2uDp-Tkuj3sL4sYQrk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAIuiKcIFNgDiAtW1t712j4glDaNWkpCVajobdlniVScEAcQv4L_w69jxo9WkaC33uJ41k52Zme-sWe_IeS59kYngWWRkNxFIhgR5XGagy2zzFtndVq3ZJlM5d6xeHuSnmyQP91eGCyr7Hxi7ajd3OIz8gG-AZQM0C8fhLYs4nA0frP4FmEHKXzT2rXTaEzkwP_6Celb9Xp_BLp-kSTj3Y87e1HbYSCyIk1XkWY-yw3LC8GMzmMuuU-t81wD8HE2ZGlhEuEK4RMIw6EAW9eQL_DYhCR1AH04XPca2cwgK2I9srm9Oz08unjCk3EIfklDdcR5wQaVb_i8wZ6QqA2pZ9bCYd014H-xoQ5449vkVotU6bAxrTtkw5d3yY2drkHcPfK7oSmlE_8VUm748EFjeXp5SgEIUwCWdALInGKH-xWSImAvANqRoNB5oO9nZzCmdBVttyvQYV1d4h39BBB4GY1gefyAo6lefEGWBhxvZyA_K-kRINyoLgVq7uur--T4Smb_AemV89I_JDR1Uuhc-qRwRjBtiuABSXFpfJ5LFuI-SbppVrYlP8ceHGcKkiDUjfqHbvrk1fmgRcP9cbn4NurvXBSJu-sv5stT1foB5QCPA8zMgwlWyDxo4QLTMeSFGfM6Nn3yErWv0L3AD7S63SUBfxOJutQQBGsyYdknW2uSoHy7frqzH9W6pUpdLKJHl59-Rq7D6lLv9qcHj8lNmH_e1N1tkd5q-d0_ASC2Mk9bi6fk81Uvsr_UNkhL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Membrane+Sampling+for+the+Mass+Spectrometric+Analysis+of+Oil+Sands+Process+Affected+Water-Derived+Naphthenic+Acids+in+Real-World+Samples&rft.jtitle=Separations&rft.au=Monaghan%2C+Joseph&rft.au=Steenis%2C+Dylan&rft.au=Vander+Meulen%2C+Ian+J&rft.au=Peru%2C+Kerry+M&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.issn=2297-8739&rft.eissn=2297-8739&rft.volume=10&rft.issue=4&rft_id=info:doi/10.3390%2Fseparations10040228&rft.externalDocID=A747539926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-8739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-8739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-8739&client=summon