Online Membrane Sampling for the Mass Spectrometric Analysis of Oil Sands Process Affected Water-Derived Naphthenic Acids in Real-World Samples
Large volumes of oil sands process-affected waters (OSPW) result from heavy oil extraction in Alberta, Canada. Currently, a toxic legacy of ca. 500 Mm3 is stored in tailings ponds under a zero-discharge policy. OSPW is a complex mixture of suspended and dissolved materials including a wide range of...
Saved in:
Published in | Separations Vol. 10; no. 4; p. 228 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Large volumes of oil sands process-affected waters (OSPW) result from heavy oil extraction in Alberta, Canada. Currently, a toxic legacy of ca. 500 Mm3 is stored in tailings ponds under a zero-discharge policy. OSPW is a complex mixture of suspended and dissolved materials including a wide range of inorganic and organic contaminants. Classically defined naphthenic acids (NAs; CnH2n+ZO2) are one of the primary toxic fractions in OSPW and have therefore been the subject of considerable research interest. Most studies employ considerable sample cleanup followed by liquid chromatography and/or high-resolution mass spectrometry (HRMS) for the characterization of these complex mixtures. However, these strategies can be time- and cost-intensive, limiting the scope of research and adoption for regulatory purposes. Condensed phase membrane introduction mass spectrometry (CP-MIMS) is emerging as a “fit-for-purpose” approach for the analysis of NAs. This technique directly interfaces the mass spectrometer with an aqueous sample using a hydrophobic semi-permeable membrane, requiring only pH adjustment to convert NAs to a membrane-permeable form. Here, we examine the perm-selectivity of classical NAs (O2) relative to their more oxidized counterparts (O3–O7) and heteroatomic (N, S) species collectively termed naphthenic acid fraction compounds (NAFCs). The investigation of 14 model compounds revealed that classically defined NAs are greater than 50-fold more membrane permeable than their oxidized/heteroatomic analogs. HRMS analysis of real OSPW extracts with and without membrane clean-up further supported selectivity towards the toxic O2 class of NAs, with >85% of the overall signal intensity attributable to O2 NAs in the membrane permeate despite as little as 34.7 ± 0.6% O2 NAs observed in the directly infused mixture. The information collected with HRMS is leveraged to refine our method for analysis of NAs at unit mass resolution. This new method is applied to 28 archived real-world samples containing NAs/NAFCs from constructed wetlands, OSPW, and environmental monitoring campaigns. Concentrations ranged from 0–25 mg/L O2 NAs and the results measured by CP-MIMS (unit mass) and SPE-HRMS (Orbitrap) showed good agreement (slope = 0.80; R2 = 0.76). |
---|---|
AbstractList | Large volumes of oil sands process-affected waters (OSPW) result from heavy oil extraction in Alberta, Canada. Currently, a toxic legacy of ca. 500 Mm3 is stored in tailings ponds under a zero-discharge policy. OSPW is a complex mixture of suspended and dissolved materials including a wide range of inorganic and organic contaminants. Classically defined naphthenic acids (NAs; CnH2n+ZO2) are one of the primary toxic fractions in OSPW and have therefore been the subject of considerable research interest. Most studies employ considerable sample cleanup followed by liquid chromatography and/or high-resolution mass spectrometry (HRMS) for the characterization of these complex mixtures. However, these strategies can be time- and cost-intensive, limiting the scope of research and adoption for regulatory purposes. Condensed phase membrane introduction mass spectrometry (CP-MIMS) is emerging as a “fit-for-purpose” approach for the analysis of NAs. This technique directly interfaces the mass spectrometer with an aqueous sample using a hydrophobic semi-permeable membrane, requiring only pH adjustment to convert NAs to a membrane-permeable form. Here, we examine the perm-selectivity of classical NAs (O2) relative to their more oxidized counterparts (O3–O7) and heteroatomic (N, S) species collectively termed naphthenic acid fraction compounds (NAFCs). The investigation of 14 model compounds revealed that classically defined NAs are greater than 50-fold more membrane permeable than their oxidized/heteroatomic analogs. HRMS analysis of real OSPW extracts with and without membrane clean-up further supported selectivity towards the toxic O2 class of NAs, with >85% of the overall signal intensity attributable to O2 NAs in the membrane permeate despite as little as 34.7 ± 0.6% O2 NAs observed in the directly infused mixture. The information collected with HRMS is leveraged to refine our method for analysis of NAs at unit mass resolution. This new method is applied to 28 archived real-world samples containing NAs/NAFCs from constructed wetlands, OSPW, and environmental monitoring campaigns. Concentrations ranged from 0–25 mg/L O2 NAs and the results measured by CP-MIMS (unit mass) and SPE-HRMS (Orbitrap) showed good agreement (slope = 0.80; R2 = 0.76). Large volumes of oil sands process-affected waters (OSPW) result from heavy oil extraction in Alberta, Canada. Currently, a toxic legacy of ca. 500 Mm[sup.3] is stored in tailings ponds under a zero-discharge policy. OSPW is a complex mixture of suspended and dissolved materials including a wide range of inorganic and organic contaminants. Classically defined naphthenic acids (NAs; C[sub.n]H[sub.2n+Z]O[sub.2]) are one of the primary toxic fractions in OSPW and have therefore been the subject of considerable research interest. Most studies employ considerable sample cleanup followed by liquid chromatography and/or high-resolution mass spectrometry (HRMS) for the characterization of these complex mixtures. However, these strategies can be time- and cost-intensive, limiting the scope of research and adoption for regulatory purposes. Condensed phase membrane introduction mass spectrometry (CP-MIMS) is emerging as a “fit-for-purpose” approach for the analysis of NAs. This technique directly interfaces the mass spectrometer with an aqueous sample using a hydrophobic semi-permeable membrane, requiring only pH adjustment to convert NAs to a membrane-permeable form. Here, we examine the perm-selectivity of classical NAs (O[sub.2]) relative to their more oxidized counterparts (O[sub.3]–O[sub.7]) and heteroatomic (N, S) species collectively termed naphthenic acid fraction compounds (NAFCs). The investigation of 14 model compounds revealed that classically defined NAs are greater than 50-fold more membrane permeable than their oxidized/heteroatomic analogs. HRMS analysis of real OSPW extracts with and without membrane clean-up further supported selectivity towards the toxic O[sub.2] class of NAs, with >85% of the overall signal intensity attributable to O[sub.2] NAs in the membrane permeate despite as little as 34.7 ± 0.6% O[sub.2] NAs observed in the directly infused mixture. The information collected with HRMS is leveraged to refine our method for analysis of NAs at unit mass resolution. This new method is applied to 28 archived real-world samples containing NAs/NAFCs from constructed wetlands, OSPW, and environmental monitoring campaigns. Concentrations ranged from 0–25 mg/L O[sub.2] NAs and the results measured by CP-MIMS (unit mass) and SPE-HRMS (Orbitrap) showed good agreement (slope = 0.80; R[sup.2] = 0.76). |
Audience | Academic |
Author | Monaghan, Joseph Gill, Chris G. Vander Meulen, Ian J. Headley, John V. Krogh, Erik T. Steenis, Dylan Peru, Kerry M. |
Author_xml | – sequence: 1 givenname: Joseph orcidid: 0000-0001-6984-6993 surname: Monaghan fullname: Monaghan, Joseph – sequence: 2 givenname: Dylan orcidid: 0009-0003-7358-2021 surname: Steenis fullname: Steenis, Dylan – sequence: 3 givenname: Ian J. surname: Vander Meulen fullname: Vander Meulen, Ian J. – sequence: 4 givenname: Kerry M. orcidid: 0000-0002-2819-8595 surname: Peru fullname: Peru, Kerry M. – sequence: 5 givenname: John V. surname: Headley fullname: Headley, John V. – sequence: 6 givenname: Chris G. orcidid: 0000-0001-7696-5894 surname: Gill fullname: Gill, Chris G. – sequence: 7 givenname: Erik T. orcidid: 0000-0003-0575-7451 surname: Krogh fullname: Krogh, Erik T. |
BookMark | eNp9kttuFSEUhiemJtbaJ_CGxOupHOYAlzv11KS6jdX0kqyBxS7NDIxATfoUvrK0W-MhjeGCxc___SSL9bQ5CDFg0zxn9EQIRV9mXCFB8TFkRmlHOZePmkPO1djKUaiDP-onzXHO15RSNophYPyw-b4Nsw9I3uMyJajFBSxrVXbExUTKVb2BnMnFiqakuGBJ3pBNgPk2-0yiI1s_VybYTD6maLB6N85VM1pyCQVT-wqT_1ZPH2C9qnnhjje--n0gnxDm9jKm2e7fxfyseexgznj8cz9qvrx5_fn0XXu-fXt2ujlvTdf3pQWKo5yoVB2dQDIxCOyNRQGUKWvc2KuJd1Z1yCmXTklJYeC9YJPjvWVKiKPmbJ9rI1zrNfkF0q2O4PW9ENNOQyrezKitUozyXrrJmW6QDjrrKDA2diNFYFPNerHPWlP8eoO56Ot4k2qPsuaSDgNVYyd-u3ZQQ31wsSQwi89Gb2pUL5TiQ3WdPOCqy-LiTf1456v-F6D2gEkx54ROG1_up6GCftaM6rsp0Q9MSWXFP-yvRvyP-gEtecWS |
CitedBy_id | crossref_primary_10_1080_10408347_2024_2381543 crossref_primary_10_1016_j_scitotenv_2025_178383 |
Cites_doi | 10.1021/acs.analchem.0c03259 10.1021/ac00212a013 10.1016/j.scitotenv.2020.137063 10.1016/S0045-6535(02)00133-9 10.3390/separations10020139 10.1021/acs.est.1c07359 10.1016/j.chemosphere.2019.05.222 10.1016/j.scitotenv.2020.139191 10.1016/j.chemosphere.2019.01.162 10.1021/jasms.9b00143 10.1002/etc.3892 10.1016/j.scitotenv.2021.150619 10.1002/jms.3721 10.1139/S07-038 10.1021/acs.analchem.7b00908 10.1016/j.scitotenv.2018.03.079 10.1007/s11705-017-1652-0 10.1002/mas.21472 10.1016/j.scitotenv.2020.144206 10.1016/j.ijms.2004.08.011 10.1016/j.jhazmat.2022.129798 10.1002/jms.3544 10.1021/es202606d 10.1016/j.aquatox.2015.04.024 10.1002/rcm.9487 10.1016/0021-9673(92)85209-C 10.1021/acs.analchem.8b04949 10.1002/rcm.4967 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. L7M PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.3390/separations10040228 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2297-8739 |
ExternalDocumentID | oai_doaj_org_article_d9910258fbfc468fa4df0a117470ea1b A747539926 10_3390_separations10040228 |
GeographicLocations | Canada Alberta United States Massachusetts United States--US |
GeographicLocations_xml | – name: Canada – name: Alberta – name: United States – name: Massachusetts – name: United States--US |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION D1I GROUPED_DOAJ HCIFZ IAO ITC KB. MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC PQGLB 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO JG9 L7M PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c455t-a0e78b08940ba81363e5cde3a019dcf759b24d94e2028f9880a62531bf25d1933 |
IEDL.DBID | BENPR |
ISSN | 2297-8739 |
IngestDate | Wed Aug 27 01:28:43 EDT 2025 Fri Jul 25 12:09:26 EDT 2025 Thu Jul 10 07:45:11 EDT 2025 Tue Jul 08 03:52:59 EDT 2025 Thu Apr 24 22:57:25 EDT 2025 Tue Jul 01 02:16:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-a0e78b08940ba81363e5cde3a019dcf759b24d94e2028f9880a62531bf25d1933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2819-8595 0000-0003-0575-7451 0009-0003-7358-2021 0000-0001-7696-5894 0000-0001-6984-6993 |
OpenAccessLink | https://www.proquest.com/docview/2806609743?pq-origsite=%requestingapplication% |
PQID | 2806609743 |
PQPubID | 2032417 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d9910258fbfc468fa4df0a117470ea1b proquest_journals_2806609743 gale_infotracmisc_A747539926 gale_infotracacademiconefile_A747539926 crossref_citationtrail_10_3390_separations10040228 crossref_primary_10_3390_separations10040228 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 20230301 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Separations |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ajaero (ref_25) 2018; 631–632 Duncan (ref_15) 2016; 51 Monaghan (ref_17) 2021; 765 ref_36 Peru (ref_32) 2019; 222 ref_33 Hawkes (ref_27) 2020; 18 Ripmeester (ref_5) 2019; 233 LaPack (ref_10) 1990; 62 Meshref (ref_6) 2020; 734 Headley (ref_4) 2016; 35 Rowland (ref_18) 2011; 45 Schock (ref_29) 2022; 806 Marentette (ref_19) 2015; 164 Vandergrift (ref_21) 2017; 89 Duncan (ref_26) 2011; 25 Vandergrift (ref_13) 2020; 31 Potter (ref_30) 1992; 625 Allen (ref_3) 2008; 7 Hughes (ref_23) 2017; 36 Kovalchik (ref_35) 2017; 11 Duncan (ref_16) 2020; 716 Boscaini (ref_31) 2004; 239 Zarkovic (ref_34) 2023; 37 ref_1 ref_2 Vandergrift (ref_12) 2020; 92 ref_9 Monaghan (ref_22) 2022; 440 ref_8 Vandergrift (ref_11) 2019; 91 Monaghan (ref_14) 2021; 8 Duncan (ref_20) 2022; 56 Rogers (ref_24) 2002; 48 ref_7 Duncan (ref_28) 2015; 50 |
References_xml | – ident: ref_7 – volume: 92 start-page: 15480 year: 2020 ident: ref_12 article-title: Direct, Isomer-Specific Quantitation of Polycyclic Aromatic Hydrocarbons in Soils Using Membrane Introduction Mass Spectrometry and Chemical Ionization publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c03259 – ident: ref_9 – volume: 18 start-page: 235 year: 2020 ident: ref_27 article-title: An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer? publication-title: Limnology and Oceanography: Methods – volume: 62 start-page: 1265 year: 1990 ident: ref_10 article-title: Membrane mass spectrometry for the direct trace analysis of volatile organic compounds in air and water publication-title: Anal. Chem. doi: 10.1021/ac00212a013 – volume: 716 start-page: 137063 year: 2020 ident: ref_16 article-title: Direct analysis of naphthenic acids in constructed wetland samples by condensed phase membrane introduction mass spectrometry publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137063 – volume: 48 start-page: 519 year: 2002 ident: ref_24 article-title: Isolation and characterization of naphthenic acids from Athabasca oil sands tailings pond water publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00133-9 – ident: ref_8 doi: 10.3390/separations10020139 – volume: 56 start-page: 3096 year: 2022 ident: ref_20 article-title: Membrane Sampling Separates Naphthenic Acids from Biogenic Dissolved Organic Matter for Direct Analysis by Mass Spectrometry publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c07359 – volume: 233 start-page: 687 year: 2019 ident: ref_5 article-title: Method for routine “naphthenic acids fraction compounds” determination in oil sands process-affected water by liquid-liquid extraction in dichloromethane and Fourier-Transform Infrared Spectroscopy publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.05.222 – volume: 734 start-page: 139191 year: 2020 ident: ref_6 article-title: Fourier transform infrared spectroscopy as a surrogate tool for the quantification of naphthenic acids in oil sands process water and groundwater publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139191 – volume: 222 start-page: 1017 year: 2019 ident: ref_32 article-title: Characterization of oil sands naphthenic acids by negative-ion electrospray ionization mass spectrometry: Influence of acidic versus basic transfer solvent publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.01.162 – volume: 31 start-page: 908 year: 2020 ident: ref_13 article-title: Condensed Phase Membrane Introduction Mass Spectrometry with In Situ Liquid Reagent Chemical Ionization in a Liquid Electron Ionization Source (CP-MIMS-LEI/CI) publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1021/jasms.9b00143 – volume: 8 start-page: 1051 year: 2021 ident: ref_14 article-title: A Direct Mass Spectrometry Method for the Rapid Analysis of Ubiquitous Tire-Derived Toxin N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine Quinone (6-PPDQ) publication-title: ES T Lett. – volume: 36 start-page: 3148 year: 2017 ident: ref_23 article-title: Using ultrahigh-resolution mass spectrometry and toxicity identification techniques to characterize the toxicity of oil sands process-affected water: The case for classical naphthenic acids publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.3892 – ident: ref_1 – volume: 806 start-page: 150619 year: 2022 ident: ref_29 article-title: Transformation of bitumen-derived naphthenic acid fraction compounds across surface waters of wetlands in the Athabasca Oil Sands region publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150619 – volume: 51 start-page: 44 year: 2016 ident: ref_15 article-title: A semi-quantitative approach for the rapid screening and mass profiling of naphthenic acids directly in contaminated aqueous samples publication-title: J. Mass Spectrom. doi: 10.1002/jms.3721 – volume: 7 start-page: 123 year: 2008 ident: ref_3 article-title: Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objectives publication-title: J. Environ. Eng. Sci. doi: 10.1139/S07-038 – volume: 89 start-page: 5629 year: 2017 ident: ref_21 article-title: Polymer Inclusion Membranes with Condensed Phase Membrane Introduction Mass Spectrometry (CP-MIMS): Improved Analytical Response Time and Sensitivity publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b00908 – volume: 631–632 start-page: 829 year: 2018 ident: ref_25 article-title: Fate and behavior of oil sands naphthenic acids in a pilot-scale treatment wetland as characterized by negative-ion electrospray ionization Orbitrap mass spectrometry publication-title: Sci Total Environ. doi: 10.1016/j.scitotenv.2018.03.079 – volume: 11 start-page: 497 year: 2017 ident: ref_35 article-title: Standard method design considerations for semi-quantification of total naphthenic acids in oil sands process affected water by mass spectrometry: A review publication-title: Front. Chem. Sci. Eng. doi: 10.1007/s11705-017-1652-0 – volume: 35 start-page: 311 year: 2016 ident: ref_4 article-title: Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil--A review publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.21472 – volume: 765 start-page: 144206 year: 2021 ident: ref_17 article-title: Direct mass spectrometric analysis of naphthenic acids and polycyclic aromatic hydrocarbons in waters impacted by diluted bitumen and conventional crude oil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144206 – volume: 239 start-page: 179 year: 2004 ident: ref_31 article-title: Investigation of fundamental physical properties of a polydimethylsiloxane (PDMS) membrane using a proton transfer reaction mass spectrometer (PTRMS) publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2004.08.011 – ident: ref_33 – ident: ref_2 – volume: 440 start-page: 129798 year: 2022 ident: ref_22 article-title: Aqueous Naphthenic Acids and Polycyclic Aromatic Hydrocarbons in a Meso-Scale Spill Tank Affected by Diluted Bitumen Analyzed Directly by Membrane Introduction Mass Spectrometry publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.129798 – volume: 50 start-page: 437 year: 2015 ident: ref_28 article-title: Ionization suppression effects with condensed phase membrane introduction mass spectrometry: Methods to increase the linear dynamic range and sensitivity publication-title: J. Mass Spectrom. doi: 10.1002/jms.3544 – volume: 45 start-page: 9806 year: 2011 ident: ref_18 article-title: Steroidal aromatic ‘naphthenic acids’ in oil sands process-affected water: Structural comparisons with environmental estrogens publication-title: Environ. Sci. Technol. doi: 10.1021/es202606d – volume: 164 start-page: 108 year: 2015 ident: ref_19 article-title: Toxicity of naphthenic acid fraction components extracted from fresh and aged oil sands process-affected waters, and commercial naphthenic acid mixtures, to fathead minnow (Pimephales promelas) embryos publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2015.04.024 – ident: ref_36 – volume: 37 start-page: e9487 year: 2023 ident: ref_34 article-title: A passive membrane system for on-line mass spectrometry reagent addition publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.9487 – volume: 625 start-page: 247 year: 1992 ident: ref_30 article-title: Detection of substituted benzenes in water at the pg/ml level using solid-phase microextraction and gas chromatography-ion trap mass spectrometry publication-title: J. Chromatogr. doi: 10.1016/0021-9673(92)85209-C – volume: 91 start-page: 1587 year: 2019 ident: ref_11 article-title: Direct Analysis of Polyaromatic Hydrocarbons in Soil and Aqueous Samples Using Condensed Phase Membrane Introduction Tandem Mass Spectrometry with Low-Energy Liquid Electron Ionization publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04949 – volume: 25 start-page: 1141 year: 2011 ident: ref_26 article-title: Characterization of a condensed-phase membrane introduction mass spectrometry (CP-MIMS) interface using a methanol acceptor phase coupled with electrospray ionization for the continuous on-line quantitation of polar, low-volatility analytes at trace levels in complex aqueous samples publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.4967 |
SSID | ssj0001736612 |
Score | 2.2404928 |
Snippet | Large volumes of oil sands process-affected waters (OSPW) result from heavy oil extraction in Alberta, Canada. Currently, a toxic legacy of ca. 500 Mm3 is... Large volumes of oil sands process-affected waters (OSPW) result from heavy oil extraction in Alberta, Canada. Currently, a toxic legacy of ca. 500 Mm[sup.3]... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 228 |
SubjectTerms | Acids Calibration Climate change Contaminants direct mass spectrometry direct membrane sampling Environmental monitoring Experiments Ions Liquid chromatography Mass spectrometry membrane permeation Membranes Mixtures Naphthenic acids Oil sands oil sands process affected water Oil spills Organic contaminants Permeability Scientific imaging Stainless steel Wetlands |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBPMVCQT4gcSGqEz_iHJdCVSFtkYCK3iw_xrBSm1bdhb_Rv9wZO1t1JR4XbnmMFccz9nyTjL9h7LWH4Lss-kYZmRqVg2psqy3asughpuh1KcmyODKHx-rjiT65VeqLcsIqPXAduL2EAAb9ss0hR2Vs9ipl4VsE0r0A3wZafdHn3QqmyteVXqLj6SrNkMS4fm8FlUsbdUkkaUT7suWKCmP_n9bl4mwOHrD7E0rk89q7h-wOjI_Y3f1NcbbH7KpShPIFnGG4iwdfPKWGj985glCOoI4vEBVzqi6_JkIC4uHnGwISfp75p-UpthnTik9bBfi8ZHZA4t8Qfl4279E0f-HZkb_4QQwJ1D4uUX458s-ILpuShlOfC6sn7Pjgw9f9w2aqrdBEpfW68QJ6G4QdlAjettJI0DGB9Aj5Usy9HkKn0qCgQwCSB5zlHiMl2Ybc6YSgTz5lO-P5CM8Y18kobw10QwpK-DBkQBQjTQBrjcjtjHWbYXZxIh6n-henDgMQ0o37jW5m7O1No4vKu_F38XekvxtRIs0uF9CU3GRK7l-mNGNvSPuOpjZ2MPpphwK-JpFkuTkKFiJfM2O7W5Ko_Lh9e2M_bloSVo5-YRuB4Zt8_j86-4LdQ9XImg63y3bWlz_hJeKjdXhVpsI1paUQEA priority: 102 providerName: Directory of Open Access Journals |
Title | Online Membrane Sampling for the Mass Spectrometric Analysis of Oil Sands Process Affected Water-Derived Naphthenic Acids in Real-World Samples |
URI | https://www.proquest.com/docview/2806609743 https://doaj.org/article/d9910258fbfc468fa4df0a117470ea1b |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZo9wAX1PIQS9uVD0hciOrEjuOc0G7bpULaBRUqeov8LCuV7Haz8Df4y51JnFYrQW9JPFYeMx5_Y0--IeSd9kZngRWJkNwlIhiRqDRXYMus8NZZnbclWWZzeX4pPl_lV3HBrYlplb1PbB21W1pcIz_GHUDJAP3yj6vbBKtG4e5qLKGxQwbgghUEX4PJ2fzrxcMqS8FhAso6uiEO8f1x4ztObdApkqUh_cvWlNQy9__PP7eTznSPPI9okY479e6TJ75-QZ6e9EXaXpK_HVUonflfEPbCwTeNKeL1NQUwSgHc0RmgY4pV5jdITIB8_LQnIqHLQL8sbqBP7Roafxmg4zbDwzv6A2DoOjkFE_0DZ3O9-olMCdjfLkB-UdMLQJlJm47T3dc3r8jl9Oz7yXkSaywkVuT5JtHMF8owVQpmtEq55D63znMN0M_ZUOSlyYQrhc8AiIQSRruGiImnJmS5A_DHX5Pdeln7N4TmTgqtpM9KZwTTpgwe0AyXxislWUiHJOs_c2UjATnWwbipIBBB3VT_0M2QfLjvtOr4Nx4Xn6D-7kWRPLu9sFxfV3EsVg4wMUA9FUywQqqghQtMpxCbFczr1AzJe9R-hUMcHtDq-KcCvCaSZVVjEGwJfeWQHG5JgvLtdnNvP1V0DU31YMhvH28-IM-wtn2X8HZIdjfr3_4IENDGjMiOmn4akcF4cjqZjqLRj9r1hDtCJAvc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigXxFOEFtgDiAtW1971en1AKLSElDZBglb0tt1niVScNAkgfgX_hN_IjB-tIkFvvcXZWTvxzOx8Y89-Q8hzE6zJIisSIblPRLQiUWmuwJZZEZx3Jq9bsozGcngkPhznx2vkT7cXBssquzWxXqj91OEz8m18AygZoF_-ZnaeYNcofLvatdBozGI__PoJKdvi9d4u6PdFlg3eHe4Mk7arQOJEni8Tw0KhLFOlYNaolEsecucDNwB2vItFXtpM-FKEDEJvLMG-DeQIPLUxyz3AHQ7nvUFuCs5L9Cg1eH_5TKfgEO6yhtwIxtn2IjQM3mBBSM2GZDMrAbDuE_C_aFCHuMEdcrvFprTfGNNdshaqe2Rjp2sJd5_8bohJ6Sh8gyQbPnw2WJBenVKAvhSgJB0BFqfY036JNAjI_k872hM6jfTj5AzmVH5B2w0KtF_XkwRPvwDonSe74BA_4GhsZl-RlwHnuwnITyr6CTBtUhf_NNcNiwfk6Fru_UOyXk2r8IjQ3EthlAxZ6a1gxpYxAHbi0galJItpj2TdbdaupTvHrhtnGtIe1I3-h2565NXFpFnD9nG1-FvU34UoUnXXX0znp7r1fO0BgQOwVNFGJ6SKRvjITAqZYMGCSW2PvETta1xQ4Ac60-6LgL-J1Fy6D4I1fbDska0VSVC-Wx3u7Ee3C9FCX7rN46uHn5GN4eHoQB_sjfc3yS1QAG9K7bbI-nL-PTwB7LW0T2uDp-Tkuj3sL4sYQrk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAIuiKcIFNgDiAtW1t712j4glDaNWkpCVajobdlniVScEAcQv4L_w69jxo9WkaC33uJ41k52Zme-sWe_IeS59kYngWWRkNxFIhgR5XGagy2zzFtndVq3ZJlM5d6xeHuSnmyQP91eGCyr7Hxi7ajd3OIz8gG-AZQM0C8fhLYs4nA0frP4FmEHKXzT2rXTaEzkwP_6Celb9Xp_BLp-kSTj3Y87e1HbYSCyIk1XkWY-yw3LC8GMzmMuuU-t81wD8HE2ZGlhEuEK4RMIw6EAW9eQL_DYhCR1AH04XPca2cwgK2I9srm9Oz08unjCk3EIfklDdcR5wQaVb_i8wZ6QqA2pZ9bCYd014H-xoQ5449vkVotU6bAxrTtkw5d3yY2drkHcPfK7oSmlE_8VUm748EFjeXp5SgEIUwCWdALInGKH-xWSImAvANqRoNB5oO9nZzCmdBVttyvQYV1d4h39BBB4GY1gefyAo6lefEGWBhxvZyA_K-kRINyoLgVq7uur--T4Smb_AemV89I_JDR1Uuhc-qRwRjBtiuABSXFpfJ5LFuI-SbppVrYlP8ceHGcKkiDUjfqHbvrk1fmgRcP9cbn4NurvXBSJu-sv5stT1foB5QCPA8zMgwlWyDxo4QLTMeSFGfM6Nn3yErWv0L3AD7S63SUBfxOJutQQBGsyYdknW2uSoHy7frqzH9W6pUpdLKJHl59-Rq7D6lLv9qcHj8lNmH_e1N1tkd5q-d0_ASC2Mk9bi6fk81Uvsr_UNkhL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Membrane+Sampling+for+the+Mass+Spectrometric+Analysis+of+Oil+Sands+Process+Affected+Water-Derived+Naphthenic+Acids+in+Real-World+Samples&rft.jtitle=Separations&rft.au=Monaghan%2C+Joseph&rft.au=Steenis%2C+Dylan&rft.au=Vander+Meulen%2C+Ian+J&rft.au=Peru%2C+Kerry+M&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.issn=2297-8739&rft.eissn=2297-8739&rft.volume=10&rft.issue=4&rft_id=info:doi/10.3390%2Fseparations10040228&rft.externalDocID=A747539926 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-8739&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-8739&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-8739&client=summon |