Invited Article: High-pressure techniques for condensed matter physics at low temperature

Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pr...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 81; no. 4; pp. 041301 - 41308
Main Authors Feng, Yejun, Jaramillo, R., Wang, Jiyang, Ren, Yang, Rosenbaum, T. F.
Format Journal Article
LanguageEnglish
Published United States 01.04.2010
Online AccessGet full text
ISSN0034-6748
1089-7623
1089-7623
DOI10.1063/1.3400212

Cover

Abstract Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R 1 line shift with pressure at T = 4.5   K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P = 16   GPa . Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T = 5   K . Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent Δ P / P per unit area of ± 1.8 % / ( 10 4   μ m 2 ) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021 ± 0.011   GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium.
AbstractList Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T=4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P=16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T=5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent ΔP/P per unit area of ±1.8%/(104 μm2) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021±0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium.
Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T=4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P=16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T=5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent DeltaP/P per unit area of +/-1.8 %/(10(4) microm(2)) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021+/-0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium.
Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T=4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P=16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T=5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent DeltaP/P per unit area of +/-1.8 %/(10(4) microm(2)) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021+/-0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium.Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T=4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P=16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T=5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent DeltaP/P per unit area of +/-1.8 %/(10(4) microm(2)) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021+/-0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium.
Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R 1 line shift with pressure at T = 4.5   K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P = 16   GPa . Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T = 5   K . Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent Δ P / P per unit area of ± 1.8 % / ( 10 4   μ m 2 ) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021 ± 0.011   GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium.
Author Ren, Yang
Rosenbaum, T. F.
Jaramillo, R.
Feng, Yejun
Wang, Jiyang
Author_xml – sequence: 1
  givenname: Yejun
  surname: Feng
  fullname: Feng, Yejun
  organization: 3School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA
– sequence: 2
  givenname: R.
  surname: Jaramillo
  fullname: Jaramillo, R.
  organization: Harvard University
– sequence: 3
  givenname: Jiyang
  surname: Wang
  fullname: Wang, Jiyang
  organization: The University of Chicago
– sequence: 4
  givenname: Yang
  surname: Ren
  fullname: Ren, Yang
  organization: Argonne National Laboratory
– sequence: 5
  givenname: T. F.
  surname: Rosenbaum
  fullname: Rosenbaum, T. F.
  organization: The University of Chicago
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20441318$$D View this record in MEDLINE/PubMed
BookMark eNp90E1LxDAQBuAgK7quHvwD0psoVDNN2qbelsWPBcGLHjyFNJ26kbapSVbx31vZXQUVc5nL875MZo-MOtshIYdAz4Bm7BzOGKc0gWSLjIGKIs6zhI3ImFLG4yznYpfsef9Mh5cC7JDdhHIODMSYPM67VxOwiqYuGN3gRXRjnhZx79D7pcMooF505mWJPqqti7TtKuz84FsVArqoX7x7o32kQtTYt4G3PToVhug-2a5V4_FgPSfk4eryfnYT395dz2fT21jzNA1xodNUiaIs1LBoqQAygQnLeAZYCGCcJSWFXAiaV4nQGupS52UKFU-1ykoo2IQcr3p7Zz_3DLI1XmPTqA7t0sucsYILOvx3Qo7Wclm2WMnemVa5d7m5xgDOV0A7673DWmoTVDC2C06ZRgKVn_eWINf3HhInPxKb0r_s6cr6TesXfrXuG8q-qv_Dv5s_AHPnmj8
CODEN RSINAK
CitedBy_id crossref_primary_10_1073_pnas_1413318111
crossref_primary_10_1016_j_jallcom_2024_174390
crossref_primary_10_1063_5_0246223
crossref_primary_10_1107_S1600577519016308
crossref_primary_10_1103_PhysRevB_101_220404
crossref_primary_10_1038_nphys3416
crossref_primary_10_1063_1_4757178
crossref_primary_10_1016_j_mtphys_2018_12_002
crossref_primary_10_1002_adma_202209457
crossref_primary_10_1038_ncomms5218
crossref_primary_10_1103_PhysRevB_83_035106
crossref_primary_10_1103_PhysRevB_86_235131
crossref_primary_10_1103_PhysRevB_96_174431
crossref_primary_10_1103_PhysRevResearch_2_012010
crossref_primary_10_1073_pnas_1202434109
crossref_primary_10_1103_PhysRevB_92_235110
crossref_primary_10_1103_PhysRevB_95_125102
crossref_primary_10_1021_acsnano_2c01065
crossref_primary_10_1103_PhysRevB_89_125108
crossref_primary_10_1063_5_0050860
crossref_primary_10_1063_5_0123283
crossref_primary_10_1073_pnas_1114464109
crossref_primary_10_1038_ncomms13037
crossref_primary_10_1063_1_4769305
crossref_primary_10_1080_08957959_2013_794899
crossref_primary_10_1080_08957959_2023_2209902
crossref_primary_10_1103_PhysRevMaterials_8_013603
crossref_primary_10_1103_PhysRevB_86_014422
crossref_primary_10_1063_1_3580617
crossref_primary_10_1063_1_4867078
crossref_primary_10_1103_PhysRevB_96_020402
crossref_primary_10_1002_pssc_201600164
crossref_primary_10_1063_5_0026311
crossref_primary_10_1103_PhysRevLett_124_067201
crossref_primary_10_1063_1_4929861
crossref_primary_10_1007_s12043_014_0716_7
crossref_primary_10_1103_PhysRevB_97_054415
crossref_primary_10_1103_PhysRevB_105_064421
crossref_primary_10_1103_PhysRevB_91_155142
crossref_primary_10_1080_08957959_2021_1903457
crossref_primary_10_1103_PhysRevB_89_045112
crossref_primary_10_1038_s41565_023_01413_3
crossref_primary_10_1073_pnas_1005036107
crossref_primary_10_1107_S2052252519007061
Cites_doi 10.1080/08957950802235640
10.1029/JB093iB04p03261
10.1016/0378-4363(81)90127-3
10.6028/jres.100.012
10.1063/1.346593
10.1029/1998RG000053
10.1063/1.1141520
10.1063/1.351951
10.1143/JPSJ.76.125001
10.1080/08957950500502531
10.1103/PhysRevB.51.10336
10.1103/PhysRev.111.707
10.1016/S0168-9002(01)00580-0
10.1103/PhysRevB.77.184418
10.1143/JPSJ.25.634
10.1029/JB091iB05p04673
10.1080/08957950108202589
10.1029/JB083iB03p01257
10.1063/1.1662159
10.1080/08957950701659627
10.1103/PhysRevLett.99.137201
10.1088/0953-8984/18/25/S01
10.1038/nature08008
10.1007/978-1-4684-7470-1
10.1063/1.1328410
10.1143/JJAP.39.1249
10.1063/1.321957
10.1063/1.321737
10.1063/1.1397283
10.1103/PhysRev.141.510
10.1063/1.1137856
10.1088/0022-3727/42/7/075413
10.1063/1.325497
10.1103/PhysRevB.48.2929
ContentType Journal Article
Copyright American Institute of Physics
Copyright_xml – notice: American Institute of Physics
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1063/1.3400212
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1089-7623
ExternalDocumentID 20441318
10_1063_1_3400212
rsi
Genre Journal Article
GrantInformation_xml – fundername: DOE
  grantid: DE-AC02-06CH11357
– fundername: NSF
  grantid: EAR-0622171
– fundername: NSF
  grantid: DMR-0907025
– fundername: DOE
  grantid: DE-FG02-94ER14466
GroupedDBID ---
-DZ
-~X
.DC
.GJ
0ZJ
123
186
1UP
2-P
29P
3O-
4.4
41~
53G
5RE
5VS
6TJ
85S
9M8
A9.
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
AAYJJ
ABFTF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACKIV
ACLYJ
ACNCT
ACZLF
ADCTM
ADIYS
ADRHT
AEGXH
AEJMO
AENEX
AETEA
AFATG
AFDAS
AFFNX
AFHCQ
AFMIJ
AGKCL
AGLKD
AGMXG
AGTJO
AHPGS
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F20
F5P
FDOHQ
FFFMQ
HAM
L7B
M43
M6X
M71
M73
MVM
N9A
NEJ
NEUPN
NHB
NPSNA
O-B
OHT
P2P
QZG
RDFOP
RIP
RNS
ROL
RQS
TAE
TN5
UAO
UHB
VQA
WH7
XFK
XJT
XOL
XSW
YNT
YZZ
ZCG
ZXP
~02
AAGWI
AAYXX
ABJGX
ADMLS
ADXHL
BDMKI
CITATION
NPM
7X8
ID FETCH-LOGICAL-c455t-9c55a89b9a674ba1168e236461e9813432b0178807d28cc1fbc7b51d45ca6b193
ISSN 0034-6748
1089-7623
IngestDate Thu Sep 04 19:29:48 EDT 2025
Thu Apr 03 06:59:20 EDT 2025
Tue Jul 01 03:23:46 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Sun Jul 14 10:05:22 EDT 2019
Fri Jun 21 00:16:58 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 0034-6748/2010/81(4)/041301/8/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c455t-9c55a89b9a674ba1168e236461e9813432b0178807d28cc1fbc7b51d45ca6b193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://aip.scitation.org/doi/pdf/10.1063/1.3400212
PMID 20441318
PQID 733948041
PQPubID 23479
PageCount 8
ParticipantIDs pubmed_primary_20441318
crossref_primary_10_1063_1_3400212
scitation_primary_10_1063_1_3400212
proquest_miscellaneous_733948041
crossref_citationtrail_10_1063_1_3400212
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20100400
2010-04-01
2010-Apr
20100401
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 20100400
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Review of scientific instruments
PublicationTitleAlternate Rev Sci Instrum
PublicationYear 2010
References Piermarini, Block, Barnett (c1) 1973; 44
Rütt, Beno, Strempfer, Jennings, Kurtz, Montano (c33) 2001; 467–468
Skelton, Webb, Qadri, Wolf, Lacoe, Feldman, Elam, Carpenter, Huang (c11) 1984; 55
Bastow, Street (c29) 1966; 141
Syassen (c10) 2008; 28
Smith, Frickett (c12) 1995; 100
Jaramillo, Feng, Lang, Islam, Srajer, Rønnow, Littlewood, Rosenbaum (c27) 2008; 77
Neighbours, Alers (c13) 1958; 111
Hess, Schiferl (c9) 1990; 68
Boehler (c16) 2000; 38
Singh, Kenichi (c22) 2001; 90
Fukazawa, Hirayama, Yamazaki, Kohori, Matsumoto (c25) 2007; 76
Klotz, Chervin, Munsch, Le Marchand (c4) 2009; 42
Nakano, Akahama, Ohishi, Kawamura (c5) 2000; 39
Birch (c34) 1978; 83
Biswas, Van't Klooster, Trappeniers (c14) 1981; 103
Mao, Xu, Bell (c8) 1986; 91
Feng, Jaramillo, Srajer, Lang, Islam, Somayazulu, Shpyrko, Pluth, Mao, Isaacs, Aeppli, Rosenbaum (c26) 2007; 99
Burnett, Cheong, Paul (c2) 1990; 61
Bassett (c21) 2006; 18
Matsumoto, Mitui (c30) 1968; 25
Farber, Antonangeli, Aracne, Benterou (c32) 2006; 26
Dewaele, Loubeyre (c23) 2007; 27
Syassen, Holzapfel (c35) 1978; 49
Ruoff (c20) 1975; 46
Piermarini, Block, Barnett, Forman (c7) 1975; 46
Jaramillo, Feng, Lang, Islam, Srajer, Littlewood, McWhan, Rosenbaum (c28) 2009; 459
Chervin, Canny, Mancinelli (c15) 2001; 21
Takemura (c3) 2001; 89
Meade, Jeanloz (c17) 1988; 93
Ragan, Gustavsen, Schiferl (c18) 1992; 72
Shen, Gupta (c19) 1993; 48
Hill, Helgensen, Gibbs (c31) 1995; 51
(2023070315335537300_c32) 2006; 26
(2023070315335537300_c20) 1975; 46
(2023070315335537300_c11) 1984; 55
(2023070315335537300_c5) 2000; 39
(2023070315335537300_c18) 1992; 72
(2023070315335537300_c8) 1986; 91
(2023070315335537300_c17) 1988; 93
(2023070315335537300_c24) 2009
(2023070315335537300_c25) 2007; 76
(2023070315335537300_c4) 2009; 42
(2023070315335537300_c19) 1993; 48
(2023070315335537300_c3) 2001; 89
(2023070315335537300_c13) 1958; 111
(2023070315335537300_c29) 1966; 141
(2023070315335537300_c27) 2008; 77
(2023070315335537300_c23) 2007; 27
(2023070315335537300_c2) 1990; 61
(2023070315335537300_c7) 1975; 46
(2023070315335537300_c28) 2009; 459
(2023070315335537300_c12) 1995; 100
(2023070315335537300_c33) 2001; 467–468
(2023070315335537300_c30) 1968; 25
(2023070315335537300_c1) 1973; 44
(2023070315335537300_c21) 2006; 18
(2023070315335537300_c34) 1978; 83
Timmerhaus (2023070315335537300_c6) 1979
(2023070315335537300_c26) 2007; 99
(2023070315335537300_c10) 2008; 28
(2023070315335537300_c14) 1981; 103
(2023070315335537300_c22) 2001; 90
(2023070315335537300_c31) 1995; 51
(2023070315335537300_c15) 2001; 21
(2023070315335537300_c9) 1990; 68
(2023070315335537300_c16) 2000; 38
(2023070315335537300_c35) 1978; 49
References_xml – volume: 27
  start-page: 419
  issn: 0895-7959
  year: 2007
  ident: c23
  publication-title: High Press. Res.
– volume: 91
  start-page: 4673
  issn: 0148-0227
  year: 1986
  ident: c8
  publication-title: J. Geophys. Res.
– volume: 76
  start-page: 125001
  issn: 0031-9015
  year: 2007
  ident: c25
  publication-title: J. Phys. Soc. Jpn.
– volume: 18
  start-page: S921
  issn: 0953-8984
  year: 2006
  ident: c21
  publication-title: J. Phys.: Condens. Matter
– volume: 46
  start-page: 2774
  issn: 0021-8979
  year: 1975
  ident: c7
  publication-title: J. Appl. Phys.
– volume: 459
  start-page: 405
  issn: 0028-0836
  year: 2009
  ident: c28
  publication-title: Nature (London)
– volume: 25
  start-page: 634
  issn: 0031-9015
  year: 1968
  ident: c30
  publication-title: J. Phys. Soc. Jpn.
– volume: 72
  start-page: 5539
  issn: 0021-8979
  year: 1992
  ident: c18
  publication-title: J. Appl. Phys.
– volume: 467–468
  start-page: 1026
  issn: 0168-9002
  year: 2001
  ident: c33
  publication-title: Nucl. Instrum. Methods Phys. Res. A
– volume: 100
  start-page: 119
  issn: 1044-677X
  year: 1995
  ident: c12
  publication-title: J. Res. Natl. Inst. Stand. Technol.
– volume: 26
  start-page: 1
  issn: 0895-7959
  year: 2006
  ident: c32
  publication-title: High Press. Res.
– volume: 89
  start-page: 662
  issn: 0021-8979
  year: 2001
  ident: c3
  publication-title: J. Appl. Phys.
– volume: 49
  start-page: 4427
  issn: 0021-8979
  year: 1978
  ident: c35
  publication-title: J. Appl. Phys.
– volume: 42
  start-page: 075413
  issn: 0022-3727
  year: 2009
  ident: c4
  publication-title: J. Phys. D: Appl. Phys.
– volume: 44
  start-page: 5377
  issn: 0021-8979
  year: 1973
  ident: c1
  publication-title: J. Appl. Phys.
– volume: 51
  start-page: 10336
  issn: 0163-1829
  year: 1995
  ident: c31
  publication-title: Phys. Rev. B
– volume: 77
  start-page: 184418
  issn: 0163-1829
  year: 2008
  ident: c27
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 1257
  issn: 0148-0227
  year: 1978
  ident: c34
  publication-title: J. Geophys. Res.
– volume: 21
  start-page: 305
  issn: 0895-7959
  year: 2001
  ident: c15
  publication-title: High Press. Res.
– volume: 93
  start-page: 3261
  issn: 0148-0227
  year: 1988
  ident: c17
  publication-title: J. Geophys. Res.
– volume: 68
  start-page: 1953
  issn: 0021-8979
  year: 1990
  ident: c9
  publication-title: J. Appl. Phys.
– volume: 141
  start-page: 510
  issn: 0096-8250
  year: 1966
  ident: c29
  publication-title: Phys. Rev.
– volume: 111
  start-page: 707
  issn: 0096-8250
  year: 1958
  ident: c13
  publication-title: Phys. Rev.
– volume: 55
  start-page: 849
  issn: 0034-6748
  year: 1984
  ident: c11
  publication-title: Rev. Sci. Instrum.
– volume: 61
  start-page: 3904
  issn: 0034-6748
  year: 1990
  ident: c2
  publication-title: Rev. Sci. Instrum.
– volume: 103
  start-page: 235
  issn: 0378-4363
  year: 1981
  ident: c14
  publication-title: Physica B & C
– volume: 28
  start-page: 75
  issn: 0895-7959
  year: 2008
  ident: c10
  publication-title: High Press. Res.
– volume: 46
  start-page: 1389
  issn: 0021-8979
  year: 1975
  ident: c20
  publication-title: J. Appl. Phys.
– volume: 90
  start-page: 3269
  issn: 0021-8979
  year: 2001
  ident: c22
  publication-title: J. Appl. Phys.
– volume: 99
  start-page: 137201
  issn: 0031-9007
  year: 2007
  ident: c26
  publication-title: Phys. Rev. Lett.
– volume: 39
  start-page: 1249
  issn: 0021-4922
  year: 2000
  ident: c5
  publication-title: Jpn. J. Appl. Phys., Part 1
– volume: 48
  start-page: 2929
  issn: 0163-1829
  year: 1993
  ident: c19
  publication-title: Phys. Rev. B
– volume: 38
  start-page: 221
  issn: 8755-1209
  year: 2000
  ident: c16
  publication-title: Rev. Geophys.
– volume: 28
  start-page: 75
  year: 2008
  ident: 2023070315335537300_c10
  publication-title: High Press. Res.
  doi: 10.1080/08957950802235640
– volume: 93
  start-page: 3261
  year: 1988
  ident: 2023070315335537300_c17
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB093iB04p03261
– volume: 103
  start-page: 235
  year: 1981
  ident: 2023070315335537300_c14
  publication-title: Physica B & C
  doi: 10.1016/0378-4363(81)90127-3
– volume: 100
  start-page: 119
  year: 1995
  ident: 2023070315335537300_c12
  publication-title: J. Res. Natl. Inst. Stand. Technol.
  doi: 10.6028/jres.100.012
– volume: 68
  start-page: 1953
  year: 1990
  ident: 2023070315335537300_c9
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.346593
– volume: 38
  start-page: 221
  year: 2000
  ident: 2023070315335537300_c16
  publication-title: Rev. Geophys.
  doi: 10.1029/1998RG000053
– volume: 61
  start-page: 3904
  year: 1990
  ident: 2023070315335537300_c2
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1141520
– volume: 72
  start-page: 5539
  year: 1992
  ident: 2023070315335537300_c18
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.351951
– volume: 76
  start-page: 125001
  year: 2007
  ident: 2023070315335537300_c25
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.76.125001
– volume: 26
  start-page: 1
  year: 2006
  ident: 2023070315335537300_c32
  publication-title: High Press. Res.
  doi: 10.1080/08957950500502531
– volume: 51
  start-page: 10336
  year: 1995
  ident: 2023070315335537300_c31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.10336
– volume: 111
  start-page: 707
  year: 1958
  ident: 2023070315335537300_c13
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.111.707
– volume: 467–468
  start-page: 1026
  year: 2001
  ident: 2023070315335537300_c33
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/S0168-9002(01)00580-0
– volume: 77
  start-page: 184418
  year: 2008
  ident: 2023070315335537300_c27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.184418
– volume: 25
  start-page: 634
  year: 1968
  ident: 2023070315335537300_c30
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.25.634
– volume: 91
  start-page: 4673
  year: 1986
  ident: 2023070315335537300_c8
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB091iB05p04673
– volume: 21
  start-page: 305
  year: 2001
  ident: 2023070315335537300_c15
  publication-title: High Press. Res.
  doi: 10.1080/08957950108202589
– volume: 83
  start-page: 1257
  year: 1978
  ident: 2023070315335537300_c34
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB083iB03p01257
– volume: 44
  start-page: 5377
  year: 1973
  ident: 2023070315335537300_c1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1662159
– volume: 27
  start-page: 419
  year: 2007
  ident: 2023070315335537300_c23
  publication-title: High Press. Res.
  doi: 10.1080/08957950701659627
– volume: 99
  start-page: 137201
  year: 2007
  ident: 2023070315335537300_c26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.137201
– volume: 18
  start-page: S921
  year: 2006
  ident: 2023070315335537300_c21
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/18/25/S01
– volume: 459
  start-page: 405
  year: 2009
  ident: 2023070315335537300_c28
  publication-title: Nature (London)
  doi: 10.1038/nature08008
– start-page: 748
  volume-title: High Pressure Science and Technology
  year: 1979
  ident: 2023070315335537300_c6
  doi: 10.1007/978-1-4684-7470-1
– year: 2009
  ident: 2023070315335537300_c24
– volume: 89
  start-page: 662
  year: 2001
  ident: 2023070315335537300_c3
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1328410
– volume: 39
  start-page: 1249
  year: 2000
  ident: 2023070315335537300_c5
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.1143/JJAP.39.1249
– volume: 46
  start-page: 2774
  year: 1975
  ident: 2023070315335537300_c7
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.321957
– volume: 46
  start-page: 1389
  year: 1975
  ident: 2023070315335537300_c20
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.321737
– volume: 90
  start-page: 3269
  year: 2001
  ident: 2023070315335537300_c22
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1397283
– volume: 141
  start-page: 510
  year: 1966
  ident: 2023070315335537300_c29
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.141.510
– volume: 55
  start-page: 849
  year: 1984
  ident: 2023070315335537300_c11
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1137856
– volume: 42
  start-page: 075413
  year: 2009
  ident: 2023070315335537300_c4
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/42/7/075413
– volume: 49
  start-page: 4427
  year: 1978
  ident: 2023070315335537300_c35
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.325497
– volume: 48
  start-page: 2929
  year: 1993
  ident: 2023070315335537300_c19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.2929
SSID ssj0000511
Score 2.1977332
Snippet Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 041301
Title Invited Article: High-pressure techniques for condensed matter physics at low temperature
URI http://dx.doi.org/10.1063/1.3400212
https://www.ncbi.nlm.nih.gov/pubmed/20441318
https://www.proquest.com/docview/733948041
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgPUAPqOVzS0EWcCiHtOt1bMfcKj5UVpQDtKJ7ihyvI4Ha7KqbVqK_vjOx42TFgoBLtHKcjeR5fp54Zp4JeSWhmXFlEylVmaSa2yTjRiayYKW2kqvSYO3w0Wd5eJKOT8VpV0LQVJfUxZ69XllX8j9WhTawK1bJ_oNl459CA_wG-8IVLAzXv7Lxx-qq8RjDLfy6x7yNpEluxchAVGhtVBcwxRxoZgFPnDeymmFfY4EVjWd4tpwDJ9qLLPed1i-xvMWXT2J2ESax1yi8EKSgvDvpiWPiflxGzI3NBe6h-AhPDCt9C9vU4-8_TVg7MerjOXDSNoXdCAykxyQW5xl0mOkEGJb3KdafyhKglPb4cohrKFtJ5eA74a7CHk8bGfp-HxjO-Xlj09EQ3DkeGHxZN7u9dZusj5TCEP76wbujT1-7dRp8zVZrSvL9-CbUhw7PLjsrv3yBbJA7MO4-ZaLnlRxvknvhc4IeeABskVuuuk-2AmEv6G5QFX_9gEwCWGgAyxu6BBXaQYUCVGiECvVQoQEq1NQUoEJ7UHlITj68P357mIRzNRKbClEn2gphMl1oI1VaGMZk5vAcAcmczhhWGhfA00DsajrKYCqXhVWFYNNUWANzWPNHZK2aVe4JoYobnTL0qsEVFKzMbFZyoWAZdaUYTvmA7LYDmLcjhWefnOVN8oPkOcvDsA_Ii9h17pVWVnWirRVy4EEMbpnKzS4XueJcpyimNSCPvXXiv7TWHJCX0Vx_esWKXlezi65HPp-W2799y1Nyt5sYO2QN5qJ7Bo5rXTwPCLwBxwWXWA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Invited+article%3A+High-pressure+techniques+for+condensed+matter+physics+at+low+temperature&rft.jtitle=Review+of+scientific+instruments&rft.au=Feng%2C+Yejun&rft.au=Jaramillo%2C+R&rft.au=Wang%2C+Jiyang&rft.au=Ren%2C+Yang&rft.date=2010-04-01&rft.eissn=1089-7623&rft.volume=81&rft.issue=4&rft.spage=041301&rft_id=info:doi/10.1063%2F1.3400212&rft_id=info%3Apmid%2F20441318&rft.externalDocID=20441318
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon