Invited Article: High-pressure techniques for condensed matter physics at low temperature
Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pr...
Saved in:
Published in | Review of scientific instruments Vol. 81; no. 4; pp. 041301 - 41308 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2010
|
Online Access | Get full text |
ISSN | 0034-6748 1089-7623 1089-7623 |
DOI | 10.1063/1.3400212 |
Cover
Abstract | Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence
R
1
line shift with pressure at
T
=
4.5
K
using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to
P
=
16
GPa
. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at
T
=
5
K
. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent
Δ
P
/
P
per unit area of
±
1.8
%
/
(
10
4
μ
m
2
)
from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of
0.021
±
0.011
GPa
up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium. |
---|---|
AbstractList | Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T=4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P=16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T=5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent ΔP/P per unit area of ±1.8%/(104 μm2) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021±0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium. Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T=4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P=16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T=5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent DeltaP/P per unit area of +/-1.8 %/(10(4) microm(2)) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021+/-0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium. Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T=4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P=16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T=5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent DeltaP/P per unit area of +/-1.8 %/(10(4) microm(2)) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021+/-0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium.Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T=4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P=16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T=5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent DeltaP/P per unit area of +/-1.8 %/(10(4) microm(2)) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021+/-0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium. Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R 1 line shift with pressure at T = 4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P = 16 GPa . Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T = 5 K . Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent Δ P / P per unit area of ± 1.8 % / ( 10 4 μ m 2 ) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021 ± 0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium. |
Author | Ren, Yang Rosenbaum, T. F. Jaramillo, R. Feng, Yejun Wang, Jiyang |
Author_xml | – sequence: 1 givenname: Yejun surname: Feng fullname: Feng, Yejun organization: 3School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA – sequence: 2 givenname: R. surname: Jaramillo fullname: Jaramillo, R. organization: Harvard University – sequence: 3 givenname: Jiyang surname: Wang fullname: Wang, Jiyang organization: The University of Chicago – sequence: 4 givenname: Yang surname: Ren fullname: Ren, Yang organization: Argonne National Laboratory – sequence: 5 givenname: T. F. surname: Rosenbaum fullname: Rosenbaum, T. F. organization: The University of Chicago |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20441318$$D View this record in MEDLINE/PubMed |
BookMark | eNp90E1LxDAQBuAgK7quHvwD0psoVDNN2qbelsWPBcGLHjyFNJ26kbapSVbx31vZXQUVc5nL875MZo-MOtshIYdAz4Bm7BzOGKc0gWSLjIGKIs6zhI3ImFLG4yznYpfsef9Mh5cC7JDdhHIODMSYPM67VxOwiqYuGN3gRXRjnhZx79D7pcMooF505mWJPqqti7TtKuz84FsVArqoX7x7o32kQtTYt4G3PToVhug-2a5V4_FgPSfk4eryfnYT395dz2fT21jzNA1xodNUiaIs1LBoqQAygQnLeAZYCGCcJSWFXAiaV4nQGupS52UKFU-1ykoo2IQcr3p7Zz_3DLI1XmPTqA7t0sucsYILOvx3Qo7Wclm2WMnemVa5d7m5xgDOV0A7673DWmoTVDC2C06ZRgKVn_eWINf3HhInPxKb0r_s6cr6TesXfrXuG8q-qv_Dv5s_AHPnmj8 |
CODEN | RSINAK |
CitedBy_id | crossref_primary_10_1073_pnas_1413318111 crossref_primary_10_1016_j_jallcom_2024_174390 crossref_primary_10_1063_5_0246223 crossref_primary_10_1107_S1600577519016308 crossref_primary_10_1103_PhysRevB_101_220404 crossref_primary_10_1038_nphys3416 crossref_primary_10_1063_1_4757178 crossref_primary_10_1016_j_mtphys_2018_12_002 crossref_primary_10_1002_adma_202209457 crossref_primary_10_1038_ncomms5218 crossref_primary_10_1103_PhysRevB_83_035106 crossref_primary_10_1103_PhysRevB_86_235131 crossref_primary_10_1103_PhysRevB_96_174431 crossref_primary_10_1103_PhysRevResearch_2_012010 crossref_primary_10_1073_pnas_1202434109 crossref_primary_10_1103_PhysRevB_92_235110 crossref_primary_10_1103_PhysRevB_95_125102 crossref_primary_10_1021_acsnano_2c01065 crossref_primary_10_1103_PhysRevB_89_125108 crossref_primary_10_1063_5_0050860 crossref_primary_10_1063_5_0123283 crossref_primary_10_1073_pnas_1114464109 crossref_primary_10_1038_ncomms13037 crossref_primary_10_1063_1_4769305 crossref_primary_10_1080_08957959_2013_794899 crossref_primary_10_1080_08957959_2023_2209902 crossref_primary_10_1103_PhysRevMaterials_8_013603 crossref_primary_10_1103_PhysRevB_86_014422 crossref_primary_10_1063_1_3580617 crossref_primary_10_1063_1_4867078 crossref_primary_10_1103_PhysRevB_96_020402 crossref_primary_10_1002_pssc_201600164 crossref_primary_10_1063_5_0026311 crossref_primary_10_1103_PhysRevLett_124_067201 crossref_primary_10_1063_1_4929861 crossref_primary_10_1007_s12043_014_0716_7 crossref_primary_10_1103_PhysRevB_97_054415 crossref_primary_10_1103_PhysRevB_105_064421 crossref_primary_10_1103_PhysRevB_91_155142 crossref_primary_10_1080_08957959_2021_1903457 crossref_primary_10_1103_PhysRevB_89_045112 crossref_primary_10_1038_s41565_023_01413_3 crossref_primary_10_1073_pnas_1005036107 crossref_primary_10_1107_S2052252519007061 |
Cites_doi | 10.1080/08957950802235640 10.1029/JB093iB04p03261 10.1016/0378-4363(81)90127-3 10.6028/jres.100.012 10.1063/1.346593 10.1029/1998RG000053 10.1063/1.1141520 10.1063/1.351951 10.1143/JPSJ.76.125001 10.1080/08957950500502531 10.1103/PhysRevB.51.10336 10.1103/PhysRev.111.707 10.1016/S0168-9002(01)00580-0 10.1103/PhysRevB.77.184418 10.1143/JPSJ.25.634 10.1029/JB091iB05p04673 10.1080/08957950108202589 10.1029/JB083iB03p01257 10.1063/1.1662159 10.1080/08957950701659627 10.1103/PhysRevLett.99.137201 10.1088/0953-8984/18/25/S01 10.1038/nature08008 10.1007/978-1-4684-7470-1 10.1063/1.1328410 10.1143/JJAP.39.1249 10.1063/1.321957 10.1063/1.321737 10.1063/1.1397283 10.1103/PhysRev.141.510 10.1063/1.1137856 10.1088/0022-3727/42/7/075413 10.1063/1.325497 10.1103/PhysRevB.48.2929 |
ContentType | Journal Article |
Copyright | American Institute of Physics |
Copyright_xml | – notice: American Institute of Physics |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1063/1.3400212 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1089-7623 |
ExternalDocumentID | 20441318 10_1063_1_3400212 rsi |
Genre | Journal Article |
GrantInformation_xml | – fundername: DOE grantid: DE-AC02-06CH11357 – fundername: NSF grantid: EAR-0622171 – fundername: NSF grantid: DMR-0907025 – fundername: DOE grantid: DE-FG02-94ER14466 |
GroupedDBID | --- -DZ -~X .DC .GJ 0ZJ 123 186 1UP 2-P 29P 3O- 4.4 41~ 53G 5RE 5VS 6TJ 85S 9M8 A9. AAAAW AABDS AAEUA AAPUP AAYIH AAYJJ ABFTF ABJNI ACBEA ACBRY ACGFO ACGFS ACKIV ACLYJ ACNCT ACZLF ADCTM ADIYS ADRHT AEGXH AEJMO AENEX AETEA AFATG AFDAS AFFNX AFHCQ AFMIJ AGKCL AGLKD AGMXG AGTJO AHPGS AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F20 F5P FDOHQ FFFMQ HAM L7B M43 M6X M71 M73 MVM N9A NEJ NEUPN NHB NPSNA O-B OHT P2P QZG RDFOP RIP RNS ROL RQS TAE TN5 UAO UHB VQA WH7 XFK XJT XOL XSW YNT YZZ ZCG ZXP ~02 AAGWI AAYXX ABJGX ADMLS ADXHL BDMKI CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c455t-9c55a89b9a674ba1168e236461e9813432b0178807d28cc1fbc7b51d45ca6b193 |
ISSN | 0034-6748 1089-7623 |
IngestDate | Thu Sep 04 19:29:48 EDT 2025 Thu Apr 03 06:59:20 EDT 2025 Tue Jul 01 03:23:46 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Sun Jul 14 10:05:22 EDT 2019 Fri Jun 21 00:16:58 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 0034-6748/2010/81(4)/041301/8/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c455t-9c55a89b9a674ba1168e236461e9813432b0178807d28cc1fbc7b51d45ca6b193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://aip.scitation.org/doi/pdf/10.1063/1.3400212 |
PMID | 20441318 |
PQID | 733948041 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_20441318 crossref_primary_10_1063_1_3400212 scitation_primary_10_1063_1_3400212 proquest_miscellaneous_733948041 crossref_citationtrail_10_1063_1_3400212 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20100400 2010-04-01 2010-Apr 20100401 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: 20100400 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Review of scientific instruments |
PublicationTitleAlternate | Rev Sci Instrum |
PublicationYear | 2010 |
References | Piermarini, Block, Barnett (c1) 1973; 44 Rütt, Beno, Strempfer, Jennings, Kurtz, Montano (c33) 2001; 467–468 Skelton, Webb, Qadri, Wolf, Lacoe, Feldman, Elam, Carpenter, Huang (c11) 1984; 55 Bastow, Street (c29) 1966; 141 Syassen (c10) 2008; 28 Smith, Frickett (c12) 1995; 100 Jaramillo, Feng, Lang, Islam, Srajer, Rønnow, Littlewood, Rosenbaum (c27) 2008; 77 Neighbours, Alers (c13) 1958; 111 Hess, Schiferl (c9) 1990; 68 Boehler (c16) 2000; 38 Singh, Kenichi (c22) 2001; 90 Fukazawa, Hirayama, Yamazaki, Kohori, Matsumoto (c25) 2007; 76 Klotz, Chervin, Munsch, Le Marchand (c4) 2009; 42 Nakano, Akahama, Ohishi, Kawamura (c5) 2000; 39 Birch (c34) 1978; 83 Biswas, Van't Klooster, Trappeniers (c14) 1981; 103 Mao, Xu, Bell (c8) 1986; 91 Feng, Jaramillo, Srajer, Lang, Islam, Somayazulu, Shpyrko, Pluth, Mao, Isaacs, Aeppli, Rosenbaum (c26) 2007; 99 Burnett, Cheong, Paul (c2) 1990; 61 Bassett (c21) 2006; 18 Matsumoto, Mitui (c30) 1968; 25 Farber, Antonangeli, Aracne, Benterou (c32) 2006; 26 Dewaele, Loubeyre (c23) 2007; 27 Syassen, Holzapfel (c35) 1978; 49 Ruoff (c20) 1975; 46 Piermarini, Block, Barnett, Forman (c7) 1975; 46 Jaramillo, Feng, Lang, Islam, Srajer, Littlewood, McWhan, Rosenbaum (c28) 2009; 459 Chervin, Canny, Mancinelli (c15) 2001; 21 Takemura (c3) 2001; 89 Meade, Jeanloz (c17) 1988; 93 Ragan, Gustavsen, Schiferl (c18) 1992; 72 Shen, Gupta (c19) 1993; 48 Hill, Helgensen, Gibbs (c31) 1995; 51 (2023070315335537300_c32) 2006; 26 (2023070315335537300_c20) 1975; 46 (2023070315335537300_c11) 1984; 55 (2023070315335537300_c5) 2000; 39 (2023070315335537300_c18) 1992; 72 (2023070315335537300_c8) 1986; 91 (2023070315335537300_c17) 1988; 93 (2023070315335537300_c24) 2009 (2023070315335537300_c25) 2007; 76 (2023070315335537300_c4) 2009; 42 (2023070315335537300_c19) 1993; 48 (2023070315335537300_c3) 2001; 89 (2023070315335537300_c13) 1958; 111 (2023070315335537300_c29) 1966; 141 (2023070315335537300_c27) 2008; 77 (2023070315335537300_c23) 2007; 27 (2023070315335537300_c2) 1990; 61 (2023070315335537300_c7) 1975; 46 (2023070315335537300_c28) 2009; 459 (2023070315335537300_c12) 1995; 100 (2023070315335537300_c33) 2001; 467–468 (2023070315335537300_c30) 1968; 25 (2023070315335537300_c1) 1973; 44 (2023070315335537300_c21) 2006; 18 (2023070315335537300_c34) 1978; 83 Timmerhaus (2023070315335537300_c6) 1979 (2023070315335537300_c26) 2007; 99 (2023070315335537300_c10) 2008; 28 (2023070315335537300_c14) 1981; 103 (2023070315335537300_c22) 2001; 90 (2023070315335537300_c31) 1995; 51 (2023070315335537300_c15) 2001; 21 (2023070315335537300_c9) 1990; 68 (2023070315335537300_c16) 2000; 38 (2023070315335537300_c35) 1978; 49 |
References_xml | – volume: 27 start-page: 419 issn: 0895-7959 year: 2007 ident: c23 publication-title: High Press. Res. – volume: 91 start-page: 4673 issn: 0148-0227 year: 1986 ident: c8 publication-title: J. Geophys. Res. – volume: 76 start-page: 125001 issn: 0031-9015 year: 2007 ident: c25 publication-title: J. Phys. Soc. Jpn. – volume: 18 start-page: S921 issn: 0953-8984 year: 2006 ident: c21 publication-title: J. Phys.: Condens. Matter – volume: 46 start-page: 2774 issn: 0021-8979 year: 1975 ident: c7 publication-title: J. Appl. Phys. – volume: 459 start-page: 405 issn: 0028-0836 year: 2009 ident: c28 publication-title: Nature (London) – volume: 25 start-page: 634 issn: 0031-9015 year: 1968 ident: c30 publication-title: J. Phys. Soc. Jpn. – volume: 72 start-page: 5539 issn: 0021-8979 year: 1992 ident: c18 publication-title: J. Appl. Phys. – volume: 467–468 start-page: 1026 issn: 0168-9002 year: 2001 ident: c33 publication-title: Nucl. Instrum. Methods Phys. Res. A – volume: 100 start-page: 119 issn: 1044-677X year: 1995 ident: c12 publication-title: J. Res. Natl. Inst. Stand. Technol. – volume: 26 start-page: 1 issn: 0895-7959 year: 2006 ident: c32 publication-title: High Press. Res. – volume: 89 start-page: 662 issn: 0021-8979 year: 2001 ident: c3 publication-title: J. Appl. Phys. – volume: 49 start-page: 4427 issn: 0021-8979 year: 1978 ident: c35 publication-title: J. Appl. Phys. – volume: 42 start-page: 075413 issn: 0022-3727 year: 2009 ident: c4 publication-title: J. Phys. D: Appl. Phys. – volume: 44 start-page: 5377 issn: 0021-8979 year: 1973 ident: c1 publication-title: J. Appl. Phys. – volume: 51 start-page: 10336 issn: 0163-1829 year: 1995 ident: c31 publication-title: Phys. Rev. B – volume: 77 start-page: 184418 issn: 0163-1829 year: 2008 ident: c27 publication-title: Phys. Rev. B – volume: 83 start-page: 1257 issn: 0148-0227 year: 1978 ident: c34 publication-title: J. Geophys. Res. – volume: 21 start-page: 305 issn: 0895-7959 year: 2001 ident: c15 publication-title: High Press. Res. – volume: 93 start-page: 3261 issn: 0148-0227 year: 1988 ident: c17 publication-title: J. Geophys. Res. – volume: 68 start-page: 1953 issn: 0021-8979 year: 1990 ident: c9 publication-title: J. Appl. Phys. – volume: 141 start-page: 510 issn: 0096-8250 year: 1966 ident: c29 publication-title: Phys. Rev. – volume: 111 start-page: 707 issn: 0096-8250 year: 1958 ident: c13 publication-title: Phys. Rev. – volume: 55 start-page: 849 issn: 0034-6748 year: 1984 ident: c11 publication-title: Rev. Sci. Instrum. – volume: 61 start-page: 3904 issn: 0034-6748 year: 1990 ident: c2 publication-title: Rev. Sci. Instrum. – volume: 103 start-page: 235 issn: 0378-4363 year: 1981 ident: c14 publication-title: Physica B & C – volume: 28 start-page: 75 issn: 0895-7959 year: 2008 ident: c10 publication-title: High Press. Res. – volume: 46 start-page: 1389 issn: 0021-8979 year: 1975 ident: c20 publication-title: J. Appl. Phys. – volume: 90 start-page: 3269 issn: 0021-8979 year: 2001 ident: c22 publication-title: J. Appl. Phys. – volume: 99 start-page: 137201 issn: 0031-9007 year: 2007 ident: c26 publication-title: Phys. Rev. Lett. – volume: 39 start-page: 1249 issn: 0021-4922 year: 2000 ident: c5 publication-title: Jpn. J. Appl. Phys., Part 1 – volume: 48 start-page: 2929 issn: 0163-1829 year: 1993 ident: c19 publication-title: Phys. Rev. B – volume: 38 start-page: 221 issn: 8755-1209 year: 2000 ident: c16 publication-title: Rev. Geophys. – volume: 28 start-page: 75 year: 2008 ident: 2023070315335537300_c10 publication-title: High Press. Res. doi: 10.1080/08957950802235640 – volume: 93 start-page: 3261 year: 1988 ident: 2023070315335537300_c17 publication-title: J. Geophys. Res. doi: 10.1029/JB093iB04p03261 – volume: 103 start-page: 235 year: 1981 ident: 2023070315335537300_c14 publication-title: Physica B & C doi: 10.1016/0378-4363(81)90127-3 – volume: 100 start-page: 119 year: 1995 ident: 2023070315335537300_c12 publication-title: J. Res. Natl. Inst. Stand. Technol. doi: 10.6028/jres.100.012 – volume: 68 start-page: 1953 year: 1990 ident: 2023070315335537300_c9 publication-title: J. Appl. Phys. doi: 10.1063/1.346593 – volume: 38 start-page: 221 year: 2000 ident: 2023070315335537300_c16 publication-title: Rev. Geophys. doi: 10.1029/1998RG000053 – volume: 61 start-page: 3904 year: 1990 ident: 2023070315335537300_c2 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1141520 – volume: 72 start-page: 5539 year: 1992 ident: 2023070315335537300_c18 publication-title: J. Appl. Phys. doi: 10.1063/1.351951 – volume: 76 start-page: 125001 year: 2007 ident: 2023070315335537300_c25 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.76.125001 – volume: 26 start-page: 1 year: 2006 ident: 2023070315335537300_c32 publication-title: High Press. Res. doi: 10.1080/08957950500502531 – volume: 51 start-page: 10336 year: 1995 ident: 2023070315335537300_c31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.10336 – volume: 111 start-page: 707 year: 1958 ident: 2023070315335537300_c13 publication-title: Phys. Rev. doi: 10.1103/PhysRev.111.707 – volume: 467–468 start-page: 1026 year: 2001 ident: 2023070315335537300_c33 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/S0168-9002(01)00580-0 – volume: 77 start-page: 184418 year: 2008 ident: 2023070315335537300_c27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.184418 – volume: 25 start-page: 634 year: 1968 ident: 2023070315335537300_c30 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.25.634 – volume: 91 start-page: 4673 year: 1986 ident: 2023070315335537300_c8 publication-title: J. Geophys. Res. doi: 10.1029/JB091iB05p04673 – volume: 21 start-page: 305 year: 2001 ident: 2023070315335537300_c15 publication-title: High Press. Res. doi: 10.1080/08957950108202589 – volume: 83 start-page: 1257 year: 1978 ident: 2023070315335537300_c34 publication-title: J. Geophys. Res. doi: 10.1029/JB083iB03p01257 – volume: 44 start-page: 5377 year: 1973 ident: 2023070315335537300_c1 publication-title: J. Appl. Phys. doi: 10.1063/1.1662159 – volume: 27 start-page: 419 year: 2007 ident: 2023070315335537300_c23 publication-title: High Press. Res. doi: 10.1080/08957950701659627 – volume: 99 start-page: 137201 year: 2007 ident: 2023070315335537300_c26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.137201 – volume: 18 start-page: S921 year: 2006 ident: 2023070315335537300_c21 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/18/25/S01 – volume: 459 start-page: 405 year: 2009 ident: 2023070315335537300_c28 publication-title: Nature (London) doi: 10.1038/nature08008 – start-page: 748 volume-title: High Pressure Science and Technology year: 1979 ident: 2023070315335537300_c6 doi: 10.1007/978-1-4684-7470-1 – year: 2009 ident: 2023070315335537300_c24 – volume: 89 start-page: 662 year: 2001 ident: 2023070315335537300_c3 publication-title: J. Appl. Phys. doi: 10.1063/1.1328410 – volume: 39 start-page: 1249 year: 2000 ident: 2023070315335537300_c5 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.1143/JJAP.39.1249 – volume: 46 start-page: 2774 year: 1975 ident: 2023070315335537300_c7 publication-title: J. Appl. Phys. doi: 10.1063/1.321957 – volume: 46 start-page: 1389 year: 1975 ident: 2023070315335537300_c20 publication-title: J. Appl. Phys. doi: 10.1063/1.321737 – volume: 90 start-page: 3269 year: 2001 ident: 2023070315335537300_c22 publication-title: J. Appl. Phys. doi: 10.1063/1.1397283 – volume: 141 start-page: 510 year: 1966 ident: 2023070315335537300_c29 publication-title: Phys. Rev. doi: 10.1103/PhysRev.141.510 – volume: 55 start-page: 849 year: 1984 ident: 2023070315335537300_c11 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1137856 – volume: 42 start-page: 075413 year: 2009 ident: 2023070315335537300_c4 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/42/7/075413 – volume: 49 start-page: 4427 year: 1978 ident: 2023070315335537300_c35 publication-title: J. Appl. Phys. doi: 10.1063/1.325497 – volume: 48 start-page: 2929 year: 1993 ident: 2023070315335537300_c19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.2929 |
SSID | ssj0000511 |
Score | 2.1977332 |
Snippet | Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 041301 |
Title | Invited Article: High-pressure techniques for condensed matter physics at low temperature |
URI | http://dx.doi.org/10.1063/1.3400212 https://www.ncbi.nlm.nih.gov/pubmed/20441318 https://www.proquest.com/docview/733948041 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgPUAPqOVzS0EWcCiHtOt1bMfcKj5UVpQDtKJ7ihyvI4Ha7KqbVqK_vjOx42TFgoBLtHKcjeR5fp54Zp4JeSWhmXFlEylVmaSa2yTjRiayYKW2kqvSYO3w0Wd5eJKOT8VpV0LQVJfUxZ69XllX8j9WhTawK1bJ_oNl459CA_wG-8IVLAzXv7Lxx-qq8RjDLfy6x7yNpEluxchAVGhtVBcwxRxoZgFPnDeymmFfY4EVjWd4tpwDJ9qLLPed1i-xvMWXT2J2ESax1yi8EKSgvDvpiWPiflxGzI3NBe6h-AhPDCt9C9vU4-8_TVg7MerjOXDSNoXdCAykxyQW5xl0mOkEGJb3KdafyhKglPb4cohrKFtJ5eA74a7CHk8bGfp-HxjO-Xlj09EQ3DkeGHxZN7u9dZusj5TCEP76wbujT1-7dRp8zVZrSvL9-CbUhw7PLjsrv3yBbJA7MO4-ZaLnlRxvknvhc4IeeABskVuuuk-2AmEv6G5QFX_9gEwCWGgAyxu6BBXaQYUCVGiECvVQoQEq1NQUoEJ7UHlITj68P357mIRzNRKbClEn2gphMl1oI1VaGMZk5vAcAcmczhhWGhfA00DsajrKYCqXhVWFYNNUWANzWPNHZK2aVe4JoYobnTL0qsEVFKzMbFZyoWAZdaUYTvmA7LYDmLcjhWefnOVN8oPkOcvDsA_Ii9h17pVWVnWirRVy4EEMbpnKzS4XueJcpyimNSCPvXXiv7TWHJCX0Vx_esWKXlezi65HPp-W2799y1Nyt5sYO2QN5qJ7Bo5rXTwPCLwBxwWXWA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Invited+article%3A+High-pressure+techniques+for+condensed+matter+physics+at+low+temperature&rft.jtitle=Review+of+scientific+instruments&rft.au=Feng%2C+Yejun&rft.au=Jaramillo%2C+R&rft.au=Wang%2C+Jiyang&rft.au=Ren%2C+Yang&rft.date=2010-04-01&rft.eissn=1089-7623&rft.volume=81&rft.issue=4&rft.spage=041301&rft_id=info:doi/10.1063%2F1.3400212&rft_id=info%3Apmid%2F20441318&rft.externalDocID=20441318 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon |